|
| 1 | +""" |
| 2 | +```julia |
| 3 | +rate(q::Integer, M::Integer, n::Integer) -> Real |
| 4 | +``` |
| 5 | + |
| 6 | +Calculate the rate of a code. That is, how efficient the code is. |
| 7 | +
|
| 8 | +Parameters: |
| 9 | + - `q::Integer`: the number of symbols in the code. |
| 10 | + - `M::Integer`: the size/number of elements in the code. |
| 11 | + - `n::Integer`: The word length. |
| 12 | +
|
| 13 | +Returns: |
| 14 | + - `Real`: Rate of the code. |
| 15 | +
|
| 16 | +--- |
| 17 | +
|
| 18 | +### Examples |
| 19 | +
|
| 20 | +```julia |
| 21 | +julia> rate(3, 5, 4) # the rate of the code which has 3 symbols, 5 words in the code, and word length of 4 (e.g., Σ = {A, B, C}, C = {ABBA,CABA,BBBB,CAAB,ACBB}) |
| 22 | +0.3662433801794817 |
| 23 | +``` |
| 24 | +""" |
| 25 | +rate(q::T, M::T, n::T) where {T <: Integer} = log(q, M) / n |
| 26 | + |
| 27 | +__spheres(q::T, n::T, r::T) where {T <: Integer} = sum(Integer[((big(q) - 1)^i) * binomial(big(n), big(i)) for i in 0:r]) |
| 28 | +__sphere_bound(round_func::Function, q::T, n::T, d::T) where {T <: Integer} = round_func((big(q)^n) / __spheres(q, n, d)) |
| 29 | + |
| 30 | +""" |
| 31 | +```julia |
| 32 | +sphere_covering_bound(q::Integer, n::Integer, d::Integer) -> Integer |
| 33 | +``` |
| 34 | + |
| 35 | +Computes the sphere covering bound of a ``[n, d]_q``-code. |
| 36 | +
|
| 37 | +Parameters: |
| 38 | + - `q::Integer`: the number of symbols in the code. |
| 39 | + - `n::Integer`: the word length. |
| 40 | + - `d::Integer`: the distance of the code. |
| 41 | + |
| 42 | +Returns: |
| 43 | + - `Integer`: the sphere covering bound. |
| 44 | +
|
| 45 | +--- |
| 46 | +
|
| 47 | +### Examples |
| 48 | +
|
| 49 | +```julia |
| 50 | +julia> sphere_covering_bound(5,7,3) |
| 51 | +215 |
| 52 | +``` |
| 53 | +""" |
| 54 | +sphere_covering_bound(q::T, n::T, d::T) where {T <: Integer} = __sphere_bound(ceil, q, n, d - 1) |
| 55 | + |
| 56 | +""" |
| 57 | +```julia |
| 58 | +sphere_packing_bound(q::Integer, n::Integer, d::Integer) -> Integer |
| 59 | +sphere_packing_bound(q::Integer, n::Integer, d::Integer, ::Rounding) -> Real |
| 60 | +``` |
| 61 | + |
| 62 | +Computes the sphere packing bound of a ``[n, d]_q``-code. The sphere packing bound is also known as the hamming bound. You can use `hamming_bound` to compute the same thing. |
| 63 | +
|
| 64 | +Parameters: |
| 65 | + - `q::Integer`: the number of symbols in the code. |
| 66 | + - `n::Integer`: the word length. |
| 67 | + - `d::Integer`: the distance of the code. |
| 68 | + - `::Rounding`: use the argument `no_round` in this position to preserve the rounding of the code — which usually by default rounds down. |
| 69 | + |
| 70 | +Returns: |
| 71 | + - `Integer`: the sphere packing bound. |
| 72 | +
|
| 73 | +--- |
| 74 | +
|
| 75 | +### Examples |
| 76 | +
|
| 77 | +```julia |
| 78 | +julia> sphere_packing_bound(5,7,3) |
| 79 | +2693 |
| 80 | +``` |
| 81 | +""" |
| 82 | +sphere_packing_bound(q::T, n::T, d::T) where T <: Integer = |
| 83 | + __sphere_bound(a -> floor(T, a), q, n, floor(T, (d - 1) / 2)) |
| 84 | +sphere_packing_bound(q::T, n::T, d::T, ::Rounding) where T <: Integer = |
| 85 | + __sphere_bound(identity, q, n, floor(T, (d - 1) / 2)) |
| 86 | +hamming_bound(q::T, n::T, d::T) where T <: Integer = |
| 87 | + sphere_packing_bound(q, n, d) |
| 88 | +hamming_bound(q::T, n::T, d::T, ::Rounding) where T <: Integer = |
| 89 | + sphere_packing_bound(q, n, d, no_round) |
| 90 | + |
| 91 | +""" |
| 92 | +```julia |
| 93 | +sphere_packing_bound(q::Integer, n::Integer, d::Integer) -> Real |
| 94 | +``` |
| 95 | + |
| 96 | +Computes the Singleton bound of a ``[n, d]_q``-code. |
| 97 | +
|
| 98 | +Parameters: |
| 99 | + - `q::Integer`: the number of symbols in the code. |
| 100 | + - `n::Integer`: the word length. |
| 101 | + - `d::Integer`: the distance of the code. |
| 102 | + |
| 103 | +Returns: |
| 104 | + - `Real`: the Singleton bound. Can round down, as it is an equivalent to the Hamming bound in that it is an upper bound. |
| 105 | +""" |
| 106 | +# promote() |
| 107 | +# _T = typeof(T) |
| 108 | + |
| 109 | +singleton_bound(q::T, n::T, d::T) where T <: Integer = |
| 110 | + floor(T, float(big(q))^(big(n) - big(d) + 1)) |
| 111 | +singleton_bound(q::T, n::T, d::T, ::Rounding) where T <: Integer = |
| 112 | + float(big(q))^(big(n) - big(d) + 1) |
| 113 | + |
| 114 | + |
| 115 | +gilbert_varshamov_bound(q::T, n::T, d::T) where T <: Integer = |
| 116 | + __sphere_bound(a -> floor(T, a), q, n, d - 1) |
| 117 | +gilbert_varshamov_bound(q::T, n::T, d::T, ::Rounding) where T <: Integer = |
| 118 | + __sphere_bound(identity, q, n, d - 1) |
| 119 | + |
| 120 | +function __plotkin_bound_core(round_func::Function, q::T, n::T, d::T) where T <: Integer |
| 121 | + if ! isequal(q, 2) |
| 122 | + throw(error("The Plotkin bound only works for the binary code.")) |
| 123 | + end |
| 124 | + |
| 125 | + if iseven(d) && 2d > n |
| 126 | + return round_func((d) / (2d + 1 - n)) |
| 127 | + elseif isodd(d) && 2d + 1 > n |
| 128 | + return round_func((d + 1) / (2d + 1 - n)) |
| 129 | + elseif iseven(d) |
| 130 | + return T(4d) |
| 131 | + # return A_2(2d, d) ≤ 4d |
| 132 | + elseif isodd(d) |
| 133 | + return T(4d + 4) |
| 134 | + # return A_2(2d + 1, d) ≤ 4d + 4 |
| 135 | + end |
| 136 | +end |
| 137 | + |
| 138 | +plotkin_bound(q::T, n::T, d::T) where T <: Integer = |
| 139 | + __plotkin_bound_core(a -> floor(T, a), q, n, d) |
| 140 | +plotkin_bound(q::T, n::T, d::T, ::Rounding) where T <: Integer = |
| 141 | + __plotkin_bound_core(identity, q, n, d, no_round) |
| 142 | + |
| 143 | +elias_bassalygo_bound(q::T, n::T, d::T) where T <: Integer = |
| 144 | +elias_bassalygo_bound(q::T, n::T, d::T, ::Rounding) where T <: Integer = |
| 145 | + |
| 146 | +function __johnson_bound_core(round_func::Function, q::T, n::T, d::T) where T <: Integer |
| 147 | + if isinteger((d - 1) / 2) # is odd |
| 148 | + t = T((d - 1) / 2) |
| 149 | + __sphere_bound(round_func, q, n, t) # if d = 2t + 1 |
| 150 | + elseif isinteger(d / 2) |
| 151 | + t = T(d / 2) |
| 152 | + __sphere_bound(round_func, q, n, t) |
| 153 | + end |
| 154 | +end |
| 155 | + |
| 156 | +@doc raw""" |
| 157 | +```julia |
| 158 | +construct_ham_matrix(r::Int, q::Int) -> Matrix |
| 159 | +``` |
| 160 | + |
| 161 | +Construct a Hamming parity-check matrix. |
| 162 | +
|
| 163 | +Parameters: |
| 164 | + - `r::Int`: number of rows of a parity check matrix. |
| 165 | + - `q:::Int`: The size of the alphabet of the code. |
| 166 | + |
| 167 | +Returns: |
| 168 | + - `Matrix`: The Hamming matrix, denoted as ``\text{Ham}(r, q)`` |
| 169 | +
|
| 170 | +--- |
| 171 | +
|
| 172 | +### Examples |
| 173 | +
|
| 174 | +```julia |
| 175 | +julia> construct_ham_matrix(3,2) |
| 176 | +3×7 Array{Int64,2}: |
| 177 | + 0 0 0 1 1 1 1 |
| 178 | + 0 1 1 0 0 1 1 |
| 179 | + 1 0 1 0 1 0 1 |
| 180 | +``` |
| 181 | +""" |
| 182 | +function construct_ham_matrix(r::Int, q::Int) |
| 183 | + ncols = Int(floor((q^r - 1) / (q - 1))) |
| 184 | + M = Matrix{Int}(undef, r, ncols) |
| 185 | + |
| 186 | + for i in 1:ncols |
| 187 | + M[:, i] = reverse(digits(parse(Int, string(i, base = q)), pad = r), dims = 1) |
| 188 | + end |
| 189 | + |
| 190 | + return M |
| 191 | +end |
| 192 | + |
| 193 | +""" |
| 194 | +```julia |
| 195 | +isperfect(n::Int, k::Int, d::Int, q::Int) -> Bool |
| 196 | +``` |
| 197 | + |
| 198 | +Checks if a code is perfect. That is, checks if the number of words in the code is exactly the "Hamming bound", or the "Sphere Packing Bound". |
| 199 | + |
| 200 | +Parameters: |
| 201 | + - `q:::Int`: The size of the alphabet of the code. |
| 202 | + - `n::Int`: The length of the words in the code (block length). |
| 203 | + - `d::Int`: The distance of the code. |
| 204 | + - `k::Int`: The dimension of the code. |
| 205 | + |
| 206 | +Returns: |
| 207 | + - `Bool`: true or false |
| 208 | +
|
| 209 | +--- |
| 210 | +
|
| 211 | +### Examples |
| 212 | +
|
| 213 | +```julia |
| 214 | +julia> isperfect(11, 6, 5, 3) |
| 215 | +true |
| 216 | +``` |
| 217 | +""" |
| 218 | +function isperfect(n::T, k::T, d::T, q::T) where T <: Int |
| 219 | + isprimepower(q) || throw(error("Cannot check if the code is perfect with q not a prime power.")) |
| 220 | + M = q^k |
| 221 | + |
| 222 | + isequal(sphere_packing_bound(q, n, d), M) && return true |
| 223 | + return false |
| 224 | +end |
| 225 | + |
| 226 | +""" |
| 227 | +```julia |
| 228 | +ishammingbound(r::Int, q::Int) -> Bool |
| 229 | +``` |
| 230 | + |
| 231 | +Checks if the code is a perfect code that is of the form of a generalised Hamming code. |
| 232 | + |
| 233 | +Parameters: |
| 234 | + - `r::Int`: number of rows of a parity check matrix. |
| 235 | + - `q::Int`: The size of the alphabet of the code. |
| 236 | + |
| 237 | +Returns: |
| 238 | + - `Bool`: true or false |
| 239 | +""" |
| 240 | +function ishammingperfect(r::Int, q::Int) |
| 241 | + n = 2^r - 1 |
| 242 | + k = n - r |
| 243 | + M = q^k |
| 244 | + d = size(construct_ham_matrix(r, q), 1) # the number of rows of the hamming matrix (which is, by design, linearly independent) |
| 245 | + d = r |
| 246 | + # r is dim of dueal code; dim of code itself is block length minus r |
| 247 | + # println(n) |
| 248 | + # println((q^r - 1) / (q - 1)) |
| 249 | + |
| 250 | + isequal(n, (q^r - 1) / (q - 1)) && \ |
| 251 | + isequal(d, 3) && \ |
| 252 | + isequal(M, q^(((q^r - 1) / (q - 1)) - r)) && \ |
| 253 | + return true |
| 254 | + return false |
| 255 | +end |
| 256 | + |
| 257 | +""" |
| 258 | +```julia |
| 259 | +ishammingperfect(n::Int, k::Int, d::Int, q::Int) -> Bool |
| 260 | +ishammingperfect(q::Int, n::Int, d::Int) -> Bool |
| 261 | +``` |
| 262 | + |
| 263 | +Checks if the code is a perfect code that is of the form of a generalised Hamming code. |
| 264 | + |
| 265 | +Parameters: |
| 266 | + - `q:::Int`: The size of the alphabet of the code. |
| 267 | + - `n::Int`: The length of the words in the code (block length). |
| 268 | + - `d::Int`: The distance of the code. |
| 269 | + - `k::Int`: The dimension of the code. |
| 270 | + |
| 271 | +Returns: |
| 272 | + - `Bool`: true or false |
| 273 | +
|
| 274 | +--- |
| 275 | +
|
| 276 | +### Examples |
| 277 | +
|
| 278 | +```julia |
| 279 | +julia> isgolayperfect(11, 6, 5, 3) # this is one of golay's perfect codes |
| 280 | +true |
| 281 | +``` |
| 282 | +""" |
| 283 | +function ishammingperfect(n::T, k::T, d::T, q::T) where T <: Int |
| 284 | + isprimepower(q) || return false |
| 285 | + |
| 286 | + M = q^k |
| 287 | + r = log(ℯ, ((n * log(ℯ, 1)) / (log(ℯ, 2))) + 1) / log(ℯ, 2) |
| 288 | + |
| 289 | + if isequal(n, (q^(r - 1)) / (q - 1)) && isequal(d, 3) && isequal(M, q^(((q^r - 1) / (q - 1)) - r)) |
| 290 | + return true |
| 291 | + end |
| 292 | + |
| 293 | + return false |
| 294 | +end |
| 295 | +function ishammingperfect(q::Int, n::Int, d::Int) |
| 296 | + isprimepower(q) || return false # we are working in finite fields, so q must be a prime power |
| 297 | + d ≠ 3 && return false |
| 298 | + |
| 299 | + r = 1 |
| 300 | + while ((q^r - 1) / (q - 1)) < n |
| 301 | + r = r + 1 |
| 302 | + end |
| 303 | + |
| 304 | + return ifelse(isequal(((q^r - 1) / (q - 1)), n), true, false) |
| 305 | +end |
| 306 | + |
| 307 | +""" |
| 308 | +```julia |
| 309 | +isgolayperfect(n::Int, k::Int, d::Int, q::Int) -> Bool |
| 310 | +``` |
| 311 | + |
| 312 | +Golay found two perfect codes. `isgolayperfect` checks if a code of block length n, distance d, alphabet size q, and dimension k, is a perfect code as described by Golay. |
| 313 | +
|
| 314 | +Parameters: |
| 315 | + - `n::Int`: The block length of words in the code (e.g., word "abc" has block length 3). |
| 316 | + - `k::Int`: The dimension of the code. |
| 317 | + - `d::Int`: The distance of the code (i.e., the minimum distance between codewords in the code). |
| 318 | + - `q::Int`: An Int that is a prime power. The modulus of the finite field. |
| 319 | + |
| 320 | +Returns: |
| 321 | + - `Bool`: true or false. |
| 322 | +
|
| 323 | +--- |
| 324 | +
|
| 325 | +### Examples |
| 326 | +
|
| 327 | +```julia |
| 328 | +julia> isgolayperfect(11, 6, 5, 3) # this is one of golay's perfect codes |
| 329 | +true |
| 330 | +``` |
| 331 | +""" |
| 332 | +function isgolayperfect(n::T, k::T, d::T, q::T) where T <: Int |
| 333 | + isprimepower(q) || false # we are working in finite fields, so q must be a prime power |
| 334 | + M = q^k |
| 335 | + (isequal(q, 2) && isequal(n, 23) && isequal(d, 7) && isequal(M, 2^12)) && return true |
| 336 | + (isequal(q, 3) && isequal(n, 11) && isequal(d, 5) && isequal(M, 3^6)) && return true |
| 337 | + return false |
| 338 | +end |
0 commit comments