|
| 1 | +@safetestset "ProductDistribution Tests" begin |
| 2 | + @safetestset "rand SSM1D 1" begin |
| 3 | + using Distributions |
| 4 | + using SequentialSamplingModels |
| 5 | + using Test |
| 6 | + |
| 7 | + walds = [Wald(; ν = 2.5, α = 0.1, τ = 0.2), Wald(; ν = 1.5, α = 1, τ = 10)] |
| 8 | + dist = product_distribution(walds) |
| 9 | + data = rand(dist) |
| 10 | + @test length(data) == 2 |
| 11 | + @test data[1] < 10 |
| 12 | + @test data[2] > 10 |
| 13 | + end |
| 14 | + |
| 15 | + @safetestset "rand SSM1D 2" begin |
| 16 | + using Distributions |
| 17 | + using SequentialSamplingModels |
| 18 | + using Test |
| 19 | + |
| 20 | + walds = [Wald(; ν = 2.5, α = 0.1, τ = 0.2), Wald(; ν = 1.5, α = 1, τ = 10)] |
| 21 | + dist = product_distribution(walds) |
| 22 | + data = rand(dist, 3) |
| 23 | + @test size(data) == (2, 3) |
| 24 | + @test all(data[1, :] .< 10) |
| 25 | + @test all(data[2, :] .> 10) |
| 26 | + end |
| 27 | + |
| 28 | + @safetestset "rand logpdf 1" begin |
| 29 | + using Distributions |
| 30 | + using SequentialSamplingModels |
| 31 | + using Test |
| 32 | + |
| 33 | + walds = [Wald(; ν = 2.5, α = 0.1, τ = 0.2), Wald(; ν = 1.5, α = 1, τ = 10)] |
| 34 | + dist = product_distribution(walds) |
| 35 | + data = rand(dist) |
| 36 | + LL1 = logpdf(dist, data) |
| 37 | + LL2 = sum(i -> logpdf(walds[i], data[i]), 1:2) |
| 38 | + @test LL1 ≈ LL2 |
| 39 | + end |
| 40 | + |
| 41 | + @safetestset "logpdf SSM1D 2" begin |
| 42 | + using Distributions |
| 43 | + using SequentialSamplingModels |
| 44 | + using Test |
| 45 | + |
| 46 | + walds = [Wald(; ν = 2.5, α = 0.1, τ = 0.2), Wald(; ν = 1.5, α = 1, τ = 10)] |
| 47 | + dist = product_distribution(walds) |
| 48 | + data = rand(dist, 3) |
| 49 | + LL1 = logpdf(dist, data) |
| 50 | + LL2 = sum(i -> logpdf(walds[i], data[i, :]), 1:2) |
| 51 | + @test LL1 ≈ LL2 |
| 52 | + end |
| 53 | + |
| 54 | + @safetestset "rand SSM2D 1" begin |
| 55 | + using Distributions |
| 56 | + using SequentialSamplingModels |
| 57 | + using Test |
| 58 | + |
| 59 | + lbas = [ |
| 60 | + LBA(; ν = [3, 2], A = 0.8, k = 0.2, τ = 0.1), |
| 61 | + LBA(ν = [1, 2], A = 0.5, k = 0.3, τ = 10) |
| 62 | + ] |
| 63 | + dist = product_distribution(lbas) |
| 64 | + data = rand(dist) |
| 65 | + @test length(data.rt) == 2 |
| 66 | + @test data.rt[1] < 10 |
| 67 | + @test data.rt[2] > 10 |
| 68 | + end |
| 69 | + |
| 70 | + @safetestset "rand SSM2D 2" begin |
| 71 | + using Distributions |
| 72 | + using SequentialSamplingModels |
| 73 | + using Test |
| 74 | + |
| 75 | + lbas = [ |
| 76 | + LBA(; ν = [3, 2], A = 0.8, k = 0.2, τ = 0.1), |
| 77 | + LBA(ν = [1, 2], A = 0.5, k = 0.3, τ = 10) |
| 78 | + ] |
| 79 | + dist = product_distribution(lbas) |
| 80 | + data = rand(dist, 3) |
| 81 | + @test length(data) == 3 |
| 82 | + @test all(map(i -> data[i].rt[1], 1:3) .< 10) |
| 83 | + @test all(map(i -> data[i].rt[2], 1:3) .> 10) |
| 84 | + end |
| 85 | + |
| 86 | + @safetestset "logpdf SSM2D 1" begin |
| 87 | + using Distributions |
| 88 | + using SequentialSamplingModels |
| 89 | + using Test |
| 90 | + |
| 91 | + lbas = [ |
| 92 | + LBA(; ν = [3, 2], A = 0.8, k = 0.2, τ = 0.1), |
| 93 | + LBA(ν = [1, 2], A = 0.5, k = 0.3, τ = 10) |
| 94 | + ] |
| 95 | + dist = product_distribution(lbas) |
| 96 | + data = rand(dist) |
| 97 | + |
| 98 | + LL1 = logpdf(dist, data) |
| 99 | + LL2 = sum(i -> logpdf(lbas[i], data.choice[i], data.rt[i]), 1:2) |
| 100 | + @test LL1 ≈ LL2 |
| 101 | + end |
| 102 | + |
| 103 | + @safetestset "logpdf SSM2D 2" begin |
| 104 | + using Distributions |
| 105 | + using SequentialSamplingModels |
| 106 | + using Test |
| 107 | + |
| 108 | + lbas = [ |
| 109 | + LBA(; ν = [3, 2], A = 0.8, k = 0.2, τ = 0.1), |
| 110 | + LBA(ν = [1, 2], A = 0.5, k = 0.3, τ = 10) |
| 111 | + ] |
| 112 | + dist = product_distribution(lbas) |
| 113 | + data = rand(dist, 3) |
| 114 | + |
| 115 | + LL1 = logpdf(dist, data) |
| 116 | + LL2 = |
| 117 | + map(j -> sum(i -> logpdf(lbas[i], data[j].choice[i], data[j].rt[i]), 1:2), 1:3) |
| 118 | + @test LL1 ≈ LL2 |
| 119 | + end |
| 120 | +end |
0 commit comments