@@ -229,17 +229,17 @@ represent samples of evidence per time step and columns represent different accu
229229
230230# Keywords
231231
232- - `n_steps=100 `: number of time steps at which evidence is recorded
232+ - `Δt = 0.001 `: the time step
233233"""
234- function simulate (rng:: AbstractRNG , model:: AbstractLBA ; Δt = 0.01 , _... )
235- (; τ, A, k, ν, σ) = model
234+ function simulate (rng:: AbstractRNG , model:: AbstractLBA ; Δt = 0.001 , _... )
235+ (; A, k, ν, σ) = model
236236 b = A + k
237237 n = length (ν)
238238 νs = sample_drift_rates (rng, ν, σ)
239- a = rand (rng,Uniform (0 , A), n)
239+ a = rand (rng, Uniform (0 , A), n)
240240 dt = @. (b - a) / νs
241- choice , t = select_winner (dt)
242- evidence = collect .( range .(a, a + νs * t, step = Δt))
243- time_steps = range ( 0 , t, length= length (evidence[ 1 ]))
241+ _ , t = select_winner (dt)
242+ time_steps = range ( 0 , t, step = Δt) # Define time steps first with Δt
243+ evidence = collect .( range .(a, a + νs * t, length = length (time_steps))) # Match evidence to time steps
244244 return time_steps, hcat (evidence... )
245245end
0 commit comments