Skip to content

Commit c25582d

Browse files
authored
[Docs] Update Imagen Video paper link in schedulers (#12724)
docs: Update Imagen Video paper link in scheduler docstrings.
1 parent 6156cf8 commit c25582d

26 files changed

+26
-26
lines changed

src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
5353
prediction_type (`str`, defaults to `v_prediction`, *optional*):
5454
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
5555
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
56-
Video](https://imagen.research.google/video/paper.pdf) paper).
56+
Video](https://huggingface.co/papers/2210.02303) paper).
5757
solver_type (`str`, defaults to `midpoint`):
5858
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
5959
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.

src/diffusers/schedulers/scheduling_ddim_cogvideox.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -157,7 +157,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
157157
prediction_type (`str`, defaults to `epsilon`, *optional*):
158158
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
159159
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
160-
Video](https://imagen.research.google/video/paper.pdf) paper).
160+
Video](https://huggingface.co/papers/2210.02303) paper).
161161
thresholding (`bool`, defaults to `False`):
162162
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
163163
as Stable Diffusion.

src/diffusers/schedulers/scheduling_ddim_inverse.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -160,7 +160,7 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
160160
prediction_type (`str`, defaults to `epsilon`, *optional*):
161161
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
162162
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
163-
Video](https://imagen.research.google/video/paper.pdf) paper).
163+
Video](https://huggingface.co/papers/2210.02303) paper).
164164
timestep_spacing (`str`, defaults to `"leading"`):
165165
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
166166
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.

src/diffusers/schedulers/scheduling_ddim_parallel.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -164,7 +164,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
164164
prediction_type (`str`, default `epsilon`, optional):
165165
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
166166
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
167-
https://imagen.research.google/video/paper.pdf)
167+
https://huggingface.co/papers/2210.02303)
168168
thresholding (`bool`, default `False`):
169169
whether to use the "dynamic thresholding" method (introduced by Imagen,
170170
https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space

src/diffusers/schedulers/scheduling_ddpm.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -154,7 +154,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
154154
prediction_type (`"epsilon"`, `"sample"`, or `"v_prediction"`, defaults to `"epsilon"`):
155155
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
156156
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
157-
Video](https://imagen.research.google/video/paper.pdf) paper).
157+
Video](https://huggingface.co/papers/2210.02303) paper).
158158
thresholding (`bool`, defaults to `False`):
159159
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
160160
as Stable Diffusion.

src/diffusers/schedulers/scheduling_ddpm_parallel.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -160,7 +160,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
160160
prediction_type (`str`, default `epsilon`, optional):
161161
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
162162
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
163-
https://imagen.research.google/video/paper.pdf)
163+
https://huggingface.co/papers/2210.02303)
164164
thresholding (`bool`, default `False`):
165165
whether to use the "dynamic thresholding" method (introduced by Imagen,
166166
https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space

src/diffusers/schedulers/scheduling_deis_multistep.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -101,7 +101,7 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
101101
prediction_type (`str`, defaults to `epsilon`):
102102
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
103103
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
104-
Video](https://imagen.research.google/video/paper.pdf) paper).
104+
Video](https://huggingface.co/papers/2210.02303) paper).
105105
thresholding (`bool`, defaults to `False`):
106106
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
107107
as Stable Diffusion.

src/diffusers/schedulers/scheduling_dpm_cogvideox.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -158,7 +158,7 @@ class CogVideoXDPMScheduler(SchedulerMixin, ConfigMixin):
158158
prediction_type (`str`, defaults to `epsilon`, *optional*):
159159
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
160160
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
161-
Video](https://imagen.research.google/video/paper.pdf) paper).
161+
Video](https://huggingface.co/papers/2210.02303) paper).
162162
thresholding (`bool`, defaults to `False`):
163163
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
164164
as Stable Diffusion.

src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -101,7 +101,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
101101
prediction_type (`str`, defaults to `epsilon`, *optional*):
102102
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
103103
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
104-
Video](https://imagen.research.google/video/paper.pdf) paper).
104+
Video](https://huggingface.co/papers/2210.02303) paper).
105105
thresholding (`bool`, defaults to `False`):
106106
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
107107
as Stable Diffusion.

src/diffusers/schedulers/scheduling_dpmsolver_sde.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -182,7 +182,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
182182
prediction_type (`str`, defaults to `epsilon`, *optional*):
183183
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
184184
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
185-
Video](https://imagen.research.google/video/paper.pdf) paper).
185+
Video](https://huggingface.co/papers/2210.02303) paper).
186186
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
187187
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
188188
the sigmas are determined according to a sequence of noise levels {σi}.

0 commit comments

Comments
 (0)