1515import sys
1616import unittest
1717
18+ import torch
1819from transformers import AutoTokenizer , T5EncoderModel
1920
2021from diffusers import (
2122 AuraFlowPipeline ,
23+ AuraFlowTransformer2DModel ,
2224 FlowMatchEulerDiscreteScheduler ,
2325)
24- from diffusers .utils .testing_utils import is_peft_available , require_peft_backend
26+ from diffusers .utils .testing_utils import (
27+ floats_tensor ,
28+ is_peft_available ,
29+ require_peft_backend ,
30+ )
2531
2632
2733if is_peft_available ():
@@ -49,8 +55,9 @@ class AuraFlowLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
4955 "joint_attention_dim" : 32 ,
5056 "caption_projection_dim" : 32 ,
5157 "out_channels" : 4 ,
52- "pos_embed_max_size" : 32 ,
58+ "pos_embed_max_size" : 64 ,
5359 }
60+ transformer_cls = AuraFlowTransformer2DModel
5461 tokenizer_cls , tokenizer_id = AutoTokenizer , "hf-internal-testing/tiny-random-t5"
5562 text_encoder_cls , text_encoder_id = T5EncoderModel , "hf-internal-testing/tiny-random-t5"
5663
@@ -71,3 +78,26 @@ class AuraFlowLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
7178 @property
7279 def output_shape (self ):
7380 return (1 , 64 , 64 , 3 )
81+
82+ def get_dummy_inputs (self , with_generator = True ):
83+ batch_size = 1
84+ sequence_length = 10
85+ num_channels = 4
86+ sizes = (32 , 32 )
87+
88+ generator = torch .manual_seed (0 )
89+ noise = floats_tensor ((batch_size , num_channels ) + sizes )
90+ input_ids = torch .randint (1 , sequence_length , size = (batch_size , sequence_length ), generator = generator )
91+
92+ pipeline_inputs = {
93+ "prompt" : "A painting of a squirrel eating a burger" ,
94+ "num_inference_steps" : 4 ,
95+ "guidance_scale" : 0.0 ,
96+ "height" : 8 ,
97+ "width" : 8 ,
98+ "output_type" : "np" ,
99+ }
100+ if with_generator :
101+ pipeline_inputs .update ({"generator" : generator })
102+
103+ return noise , input_ids , pipeline_inputs
0 commit comments