Skip to content

Commit 1725f43

Browse files
committed
1 parent aee0442 commit 1725f43

File tree

3 files changed

+110
-102
lines changed

3 files changed

+110
-102
lines changed

PackageInfo.g

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ SetPackageInfo( rec(
1010

1111
PackageName := "FinSetsForCAP",
1212
Subtitle := "The elementary topos of (skeletal) finite sets",
13-
Version := "2023.05-06",
13+
Version := "2023.05-07",
1414

1515
Date := (function ( ) if IsBound( GAPInfo.SystemEnvironment.GAP_PKG_RELEASE_DATE ) then return GAPInfo.SystemEnvironment.GAP_PKG_RELEASE_DATE; else return Concatenation( ~.Version{[ 1 .. 4 ]}, "-", ~.Version{[ 6, 7 ]}, "-01" ); fi; end)( ),
1616
License := "GPL-2.0-or-later",

tst/CartesianClosedOpposite.tst

Lines changed: 52 additions & 50 deletions
Original file line numberDiff line numberDiff line change
@@ -21,14 +21,16 @@ gap> d := FinSet( [ 12 .. 13 ] );;
2121

2222
#
2323
gap> finsets := CapCategory( a );;
24+
gap> opposite := Opposite( finsets, "Opposite with all operations" );;
25+
gap> opposite_primitive := Opposite( finsets, "Opposite with primitive operations" : only_primitive_operations := true );;
2426

2527
#
2628
gap> alpha := MapOfFinSets( a, [ [ 1, 3 ], [ 2, 5 ] ], b );;
2729
gap> beta := MapOfFinSets( c, [ [ 6, 12 ], [ 7, 12 ], [ 8, 13 ] ], d );;
2830

2931
#
30-
gap> CartesianCategoriesTest( finsets, a, b, c, alpha, beta );;
31-
gap> CartesianCategoriesTest( finsets, a, b, c, alpha, beta : only_primitive_operations := true );;
32+
gap> CartesianCategoriesTest( finsets, opposite, a, b, c, alpha, beta );;
33+
gap> CartesianCategoriesTest( finsets, opposite_primitive, a, b, c, alpha, beta );;
3234

3335
#
3436
gap> i := InitialObject( finsets );;
@@ -39,12 +41,12 @@ gap> alpha := UniversalMorphismFromInitialObject( a );;
3941
gap> beta := UniversalMorphismIntoTerminalObject( a );;
4042

4143
#
42-
gap> CartesianCategoriesTest( finsets, i, a, a, alpha, beta );;
43-
gap> CartesianCategoriesTest( finsets, i, a, a, alpha, beta : only_primitive_operations := true );;
44+
gap> CartesianCategoriesTest( finsets, opposite, i, a, a, alpha, beta );;
45+
gap> CartesianCategoriesTest( finsets, opposite_primitive, i, a, a, alpha, beta );;
4446

4547
#
46-
gap> CartesianCategoriesTest( finsets, a, t, i, beta, alpha );;
47-
gap> CartesianCategoriesTest( finsets, a, t, i, beta, alpha : only_primitive_operations := true );;
48+
gap> CartesianCategoriesTest( finsets, opposite, a, t, i, beta, alpha );;
49+
gap> CartesianCategoriesTest( finsets, opposite_primitive, a, t, i, beta, alpha );;
4850

4951
#
5052
##############################################
@@ -61,8 +63,8 @@ gap> alpha := MapOfFinSets( a, [ [ 1, 3 ], [ 2, 5 ] ], b );;
6163
gap> beta := MapOfFinSets( c, [ [ 6, 12 ], [ 7, 12 ], [ 8, 13 ] ], d );;
6264

6365
#
64-
gap> CocartesianCategoriesTest( finsets, a, b, c, alpha, beta );;
65-
gap> CocartesianCategoriesTest( finsets, a, b, c, alpha, beta : only_primitive_operations := true );;
66+
gap> CocartesianCategoriesTest( finsets, opposite, a, b, c, alpha, beta );;
67+
gap> CocartesianCategoriesTest( finsets, opposite_primitive, a, b, c, alpha, beta );;
6668

6769
#
6870
gap> i := InitialObject( finsets );;
@@ -73,12 +75,12 @@ gap> alpha := UniversalMorphismFromInitialObject( a );;
7375
gap> beta := UniversalMorphismIntoTerminalObject( a );;
7476

7577
#
76-
gap> CocartesianCategoriesTest( finsets, i, a, a, alpha, beta );;
77-
gap> CocartesianCategoriesTest( finsets, i, a, a, alpha, beta : only_primitive_operations := true );;
78+
gap> CocartesianCategoriesTest( finsets, opposite, i, a, a, alpha, beta );;
79+
gap> CocartesianCategoriesTest( finsets, opposite_primitive, i, a, a, alpha, beta );;
7880

7981
#
80-
gap> CocartesianCategoriesTest( finsets, a, t, i, beta, alpha );;
81-
gap> CocartesianCategoriesTest( finsets, a, t, i, beta, alpha : only_primitive_operations := true );;
82+
gap> CocartesianCategoriesTest( finsets, opposite, a, t, i, beta, alpha );;
83+
gap> CocartesianCategoriesTest( finsets, opposite_primitive, a, t, i, beta, alpha );;
8284

8385
#
8486
##############################################
@@ -89,40 +91,40 @@ gap> a := FinSet( [ 1 .. 2 ] );;
8991
gap> b := FinSet( [ 3 .. 5 ] );;
9092

9193
#
92-
gap> BraidedCartesianCategoriesTest( finsets, a, b );;
93-
gap> BraidedCartesianCategoriesTest( finsets, a, b : only_primitive_operations := true );;
94+
gap> BraidedCartesianCategoriesTest( finsets, opposite, a, b );;
95+
gap> BraidedCartesianCategoriesTest( finsets, opposite_primitive, a, b );;
9496

9597
#
9698
gap> a := FinSet( [ 6 .. 8 ] );;
9799
gap> b := FinSet( [ 12 .. 13 ] );;
98100

99101
#
100-
gap> BraidedCartesianCategoriesTest( finsets, a, b );;
101-
gap> BraidedCartesianCategoriesTest( finsets, a, b : only_primitive_operations := true );;
102+
gap> BraidedCartesianCategoriesTest( finsets, opposite, a, b );;
103+
gap> BraidedCartesianCategoriesTest( finsets, opposite_primitive, a, b );;
102104

103105
#
104106
gap> i := InitialObject( finsets );;
105107
gap> a := FinSet( [ 5 .. 8 ] );;
106108

107109
#
108-
gap> BraidedCartesianCategoriesTest( finsets, i, a );;
109-
gap> BraidedCartesianCategoriesTest( finsets, i, a : only_primitive_operations := true );;
110+
gap> BraidedCartesianCategoriesTest( finsets, opposite, i, a );;
111+
gap> BraidedCartesianCategoriesTest( finsets, opposite_primitive, i, a );;
110112

111113
#
112-
gap> BraidedCartesianCategoriesTest( finsets, a, i );;
113-
gap> BraidedCartesianCategoriesTest( finsets, a, i : only_primitive_operations := true );;
114+
gap> BraidedCartesianCategoriesTest( finsets, opposite, a, i );;
115+
gap> BraidedCartesianCategoriesTest( finsets, opposite_primitive, a, i );;
114116

115117
#
116118
gap> t := TerminalObject( finsets );;
117119
gap> a := FinSet( [ 1 .. 3 ] );;
118120

119121
#
120-
gap> BraidedCartesianCategoriesTest( finsets, t, a );;
121-
gap> BraidedCartesianCategoriesTest( finsets, t, a : only_primitive_operations := true );;
122+
gap> BraidedCartesianCategoriesTest( finsets, opposite, t, a );;
123+
gap> BraidedCartesianCategoriesTest( finsets, opposite_primitive, t, a );;
122124

123125
#
124-
gap> BraidedCartesianCategoriesTest( finsets, a, t );;
125-
gap> BraidedCartesianCategoriesTest( finsets, a, t : only_primitive_operations := true );;
126+
gap> BraidedCartesianCategoriesTest( finsets, opposite, a, t );;
127+
gap> BraidedCartesianCategoriesTest( finsets, opposite_primitive, a, t );;
126128

127129
#
128130
##############################################
@@ -133,40 +135,40 @@ gap> a := FinSet( [ 1 .. 2 ] );;
133135
gap> b := FinSet( [ 3 .. 5 ] );;
134136

135137
#
136-
gap> BraidedCocartesianCategoriesTest( finsets, a, b );;
137-
gap> BraidedCocartesianCategoriesTest( finsets, a, b : only_primitive_operations := true );;
138+
gap> BraidedCocartesianCategoriesTest( finsets, opposite, a, b );;
139+
gap> BraidedCocartesianCategoriesTest( finsets, opposite_primitive, a, b );;
138140

139141
#
140142
gap> a := FinSet( [ 6 .. 8 ] );;
141143
gap> b := FinSet( [ 12 .. 13 ] );;
142144

143145
#
144-
gap> BraidedCocartesianCategoriesTest( finsets, a, b );;
145-
gap> BraidedCocartesianCategoriesTest( finsets, a, b : only_primitive_operations := true );;
146+
gap> BraidedCocartesianCategoriesTest( finsets, opposite, a, b );;
147+
gap> BraidedCocartesianCategoriesTest( finsets, opposite_primitive, a, b );;
146148

147149
#
148150
gap> i := InitialObject( finsets );;
149151
gap> a := FinSet( [ 5 .. 8 ] );;
150152

151153
#
152-
gap> BraidedCocartesianCategoriesTest( finsets, i, a );;
153-
gap> BraidedCocartesianCategoriesTest( finsets, i, a : only_primitive_operations := true );;
154+
gap> BraidedCocartesianCategoriesTest( finsets, opposite, i, a );;
155+
gap> BraidedCocartesianCategoriesTest( finsets, opposite_primitive, i, a );;
154156

155157
#
156-
gap> BraidedCocartesianCategoriesTest( finsets, a, i );;
157-
gap> BraidedCocartesianCategoriesTest( finsets, a, i : only_primitive_operations := true );;
158+
gap> BraidedCocartesianCategoriesTest( finsets, opposite, a, i );;
159+
gap> BraidedCocartesianCategoriesTest( finsets, opposite_primitive, a, i );;
158160

159161
#
160162
gap> t := TerminalObject( finsets );;
161163
gap> a := FinSet( [ 1 .. 3 ] );;
162164

163165
#
164-
gap> BraidedCocartesianCategoriesTest( finsets, t, a );;
165-
gap> BraidedCocartesianCategoriesTest( finsets, t, a : only_primitive_operations := true );;
166+
gap> BraidedCocartesianCategoriesTest( finsets, opposite, t, a );;
167+
gap> BraidedCocartesianCategoriesTest( finsets, opposite_primitive, t, a );;
166168

167169
#
168-
gap> BraidedCocartesianCategoriesTest( finsets, a, t );;
169-
gap> BraidedCocartesianCategoriesTest( finsets, a, t : only_primitive_operations := true );;
170+
gap> BraidedCocartesianCategoriesTest( finsets, opposite, a, t );;
171+
gap> BraidedCocartesianCategoriesTest( finsets, opposite_primitive, a, t );;
170172

171173
#
172174
##############################################
@@ -177,40 +179,40 @@ gap> a := FinSet( [ 1 .. 2 ] );;
177179
gap> L := [ FinSet( [ 2 .. 5 ] ), FinSet( [ 6 .. 7 ] ), FinSet( [ 3 .. 8 ] ) ];;
178180

179181
#
180-
gap> DistributiveCartesianCategoriesTest( finsets, a, L : only_primitive_operations := true );;
181-
gap> DistributiveCartesianCategoriesTest( finsets, a, L );;
182+
gap> DistributiveCartesianCategoriesTest( finsets, opposite, a, L );;
183+
gap> DistributiveCartesianCategoriesTest( finsets, opposite_primitive, a, L );;
182184

183185
#
184186
gap> a := InitialObject( finsets );;
185187
gap> L := [ FinSet( [ 2 .. 5 ] ), FinSet( [ 6 .. 7 ] ), FinSet( [ 3 .. 8 ] ) ];;
186188

187189
#
188-
gap> DistributiveCartesianCategoriesTest( finsets, a, L : only_primitive_operations := true );;
189-
gap> DistributiveCartesianCategoriesTest( finsets, a, L );;
190+
gap> DistributiveCartesianCategoriesTest( finsets, opposite, a, L );;
191+
gap> DistributiveCartesianCategoriesTest( finsets, opposite_primitive, a, L );;
190192

191193
#
192194
gap> a := FinSet( [ 1 .. 2 ] );;
193195
gap> L := [ FinSet( [ 2 .. 5 ] ), InitialObject( finsets ), FinSet( [ 3 .. 8 ] ) ];;
194196

195197
#
196-
gap> DistributiveCartesianCategoriesTest( finsets, a, L : only_primitive_operations := true );;
197-
gap> DistributiveCartesianCategoriesTest( finsets, a, L );;
198+
gap> DistributiveCartesianCategoriesTest( finsets, opposite, a, L );;
199+
gap> DistributiveCartesianCategoriesTest( finsets, opposite_primitive, a, L );;
198200

199201
#
200202
gap> a := TerminalObject( finsets );;
201203
gap> L := [ FinSet( [ 2 .. 5 ] ), FinSet( [ 6 .. 7 ] ), FinSet( [ 3 .. 8 ] ) ];;
202204

203205
#
204-
gap> DistributiveCartesianCategoriesTest( finsets, a, L : only_primitive_operations := true );;
205-
gap> DistributiveCartesianCategoriesTest( finsets, a, L );;
206+
gap> DistributiveCartesianCategoriesTest( finsets, opposite, a, L );;
207+
gap> DistributiveCartesianCategoriesTest( finsets, opposite_primitive, a, L );;
206208

207209
#
208210
gap> a := FinSet( [ 1 .. 2 ] );;
209211
gap> L := [ FinSet( [ 2 .. 5 ] ), TerminalObject( finsets ), FinSet( [ 3 .. 8 ] ) ];;
210212

211213
#
212-
gap> DistributiveCartesianCategoriesTest( finsets, a, L : only_primitive_operations := true );;
213-
gap> DistributiveCartesianCategoriesTest( finsets, a, L );;
214+
gap> DistributiveCartesianCategoriesTest( finsets, opposite, a, L );;
215+
gap> DistributiveCartesianCategoriesTest( finsets, opposite_primitive, a, L );;
214216

215217
#
216218
##############################################
@@ -240,8 +242,8 @@ gap> epsilon := MapOfFinSets( t, [ [ t[1], exp_ab[1] ] ], exp_ab );;
240242
gap> zeta := MapOfFinSets( t, [ [ t[1], exp_cd[2] ] ], exp_cd );;
241243

242244
#
243-
gap> CartesianClosedCategoriesTest( finsets, a, b, c, d, alpha, beta, gamma, delta, epsilon, zeta );;
244-
gap> CartesianClosedCategoriesTest( finsets, a, b, c, d, alpha, beta, gamma, delta, epsilon, zeta : only_primitive_operations := true );;
245+
gap> CartesianClosedCategoriesTest( finsets, opposite, a, b, c, d, alpha, beta, gamma, delta, epsilon, zeta );;
246+
gap> CartesianClosedCategoriesTest( finsets, opposite_primitive, a, b, c, d, alpha, beta, gamma, delta, epsilon, zeta );;
245247

246248
#
247249
gap> i := InitialObject( finsets );;
@@ -263,8 +265,8 @@ gap> epsilon := MapOfFinSets( t, [ [ t[1], exp_ia[1] ] ], exp_ia );;
263265
gap> zeta := MapOfFinSets( t, [ [ t[1], exp_at[1] ] ], exp_at );;
264266

265267
#
266-
gap> CartesianClosedCategoriesTest( finsets, i, a, a, t, alpha, beta, gamma, delta, epsilon, zeta );;
267-
gap> CartesianClosedCategoriesTest( finsets, i, a, a, t, alpha, beta, gamma, delta, epsilon, zeta : only_primitive_operations := true );;
268+
gap> CartesianClosedCategoriesTest( finsets, opposite, i, a, a, t, alpha, beta, gamma, delta, epsilon, zeta );;
269+
gap> CartesianClosedCategoriesTest( finsets, opposite_primitive, i, a, a, t, alpha, beta, gamma, delta, epsilon, zeta );;
268270

269271
#
270272
##############################################

0 commit comments

Comments
 (0)