@@ -21,14 +21,16 @@ gap> d := FinSet( [ 12 .. 13 ] );;
2121
2222#
2323gap> finsets := CapCategory( a );;
24+ gap> opposite := Opposite( finsets, " Opposite with all operations" );;
25+ gap> opposite_primitive := Opposite( finsets, " Opposite with primitive operations" : only_primitive_operations := true );;
2426
2527#
2628gap> alpha := MapOfFinSets( a, [ [ 1 , 3 ] , [ 2 , 5 ] ] , b );;
2729gap> beta := MapOfFinSets( c, [ [ 6 , 12 ] , [ 7 , 12 ] , [ 8 , 13 ] ] , d );;
2830
2931#
30- gap> CartesianCategoriesTest( finsets, a, b, c, alpha, beta );;
31- gap> CartesianCategoriesTest( finsets, a, b, c, alpha, beta : only_primitive_operations := true );;
32+ gap> CartesianCategoriesTest( finsets, opposite, a, b, c, alpha, beta );;
33+ gap> CartesianCategoriesTest( finsets, opposite_primitive, a, b, c, alpha, beta );;
3234
3335#
3436gap> i := InitialObject( finsets );;
@@ -39,12 +41,12 @@ gap> alpha := UniversalMorphismFromInitialObject( a );;
3941gap> beta := UniversalMorphismIntoTerminalObject( a );;
4042
4143#
42- gap> CartesianCategoriesTest( finsets, i, a, a, alpha, beta );;
43- gap> CartesianCategoriesTest( finsets, i, a, a, alpha, beta : only_primitive_operations := true );;
44+ gap> CartesianCategoriesTest( finsets, opposite, i, a, a, alpha, beta );;
45+ gap> CartesianCategoriesTest( finsets, opposite_primitive, i, a, a, alpha, beta );;
4446
4547#
46- gap> CartesianCategoriesTest( finsets, a, t, i, beta, alpha );;
47- gap> CartesianCategoriesTest( finsets, a, t, i, beta, alpha : only_primitive_operations := true );;
48+ gap> CartesianCategoriesTest( finsets, opposite, a, t, i, beta, alpha );;
49+ gap> CartesianCategoriesTest( finsets, opposite_primitive, a, t, i, beta, alpha );;
4850
4951#
5052# #############################################
@@ -61,8 +63,8 @@ gap> alpha := MapOfFinSets( a, [ [ 1, 3 ], [ 2, 5 ] ], b );;
6163gap> beta := MapOfFinSets( c, [ [ 6 , 12 ] , [ 7 , 12 ] , [ 8 , 13 ] ] , d );;
6264
6365#
64- gap> CocartesianCategoriesTest( finsets, a, b, c, alpha, beta );;
65- gap> CocartesianCategoriesTest( finsets, a, b, c, alpha, beta : only_primitive_operations := true );;
66+ gap> CocartesianCategoriesTest( finsets, opposite, a, b, c, alpha, beta );;
67+ gap> CocartesianCategoriesTest( finsets, opposite_primitive, a, b, c, alpha, beta );;
6668
6769#
6870gap> i := InitialObject( finsets );;
@@ -73,12 +75,12 @@ gap> alpha := UniversalMorphismFromInitialObject( a );;
7375gap> beta := UniversalMorphismIntoTerminalObject( a );;
7476
7577#
76- gap> CocartesianCategoriesTest( finsets, i, a, a, alpha, beta );;
77- gap> CocartesianCategoriesTest( finsets, i, a, a, alpha, beta : only_primitive_operations := true );;
78+ gap> CocartesianCategoriesTest( finsets, opposite, i, a, a, alpha, beta );;
79+ gap> CocartesianCategoriesTest( finsets, opposite_primitive, i, a, a, alpha, beta );;
7880
7981#
80- gap> CocartesianCategoriesTest( finsets, a, t, i, beta, alpha );;
81- gap> CocartesianCategoriesTest( finsets, a, t, i, beta, alpha : only_primitive_operations := true );;
82+ gap> CocartesianCategoriesTest( finsets, opposite, a, t, i, beta, alpha );;
83+ gap> CocartesianCategoriesTest( finsets, opposite_primitive, a, t, i, beta, alpha );;
8284
8385#
8486# #############################################
@@ -89,40 +91,40 @@ gap> a := FinSet( [ 1 .. 2 ] );;
8991gap> b := FinSet( [ 3 .. 5 ] );;
9092
9193#
92- gap> BraidedCartesianCategoriesTest( finsets, a, b );;
93- gap> BraidedCartesianCategoriesTest( finsets, a, b : only_primitive_operations := true );;
94+ gap> BraidedCartesianCategoriesTest( finsets, opposite, a, b );;
95+ gap> BraidedCartesianCategoriesTest( finsets, opposite_primitive, a, b );;
9496
9597#
9698gap> a := FinSet( [ 6 .. 8 ] );;
9799gap> b := FinSet( [ 12 .. 13 ] );;
98100
99101#
100- gap> BraidedCartesianCategoriesTest( finsets, a, b );;
101- gap> BraidedCartesianCategoriesTest( finsets, a, b : only_primitive_operations := true );;
102+ gap> BraidedCartesianCategoriesTest( finsets, opposite, a, b );;
103+ gap> BraidedCartesianCategoriesTest( finsets, opposite_primitive, a, b );;
102104
103105#
104106gap> i := InitialObject( finsets );;
105107gap> a := FinSet( [ 5 .. 8 ] );;
106108
107109#
108- gap> BraidedCartesianCategoriesTest( finsets, i, a );;
109- gap> BraidedCartesianCategoriesTest( finsets, i, a : only_primitive_operations := true );;
110+ gap> BraidedCartesianCategoriesTest( finsets, opposite, i, a );;
111+ gap> BraidedCartesianCategoriesTest( finsets, opposite_primitive, i, a );;
110112
111113#
112- gap> BraidedCartesianCategoriesTest( finsets, a, i );;
113- gap> BraidedCartesianCategoriesTest( finsets, a, i : only_primitive_operations := true );;
114+ gap> BraidedCartesianCategoriesTest( finsets, opposite, a, i );;
115+ gap> BraidedCartesianCategoriesTest( finsets, opposite_primitive, a, i );;
114116
115117#
116118gap> t := TerminalObject( finsets );;
117119gap> a := FinSet( [ 1 .. 3 ] );;
118120
119121#
120- gap> BraidedCartesianCategoriesTest( finsets, t, a );;
121- gap> BraidedCartesianCategoriesTest( finsets, t, a : only_primitive_operations := true );;
122+ gap> BraidedCartesianCategoriesTest( finsets, opposite, t, a );;
123+ gap> BraidedCartesianCategoriesTest( finsets, opposite_primitive, t, a );;
122124
123125#
124- gap> BraidedCartesianCategoriesTest( finsets, a, t );;
125- gap> BraidedCartesianCategoriesTest( finsets, a, t : only_primitive_operations := true );;
126+ gap> BraidedCartesianCategoriesTest( finsets, opposite, a, t );;
127+ gap> BraidedCartesianCategoriesTest( finsets, opposite_primitive, a, t );;
126128
127129#
128130# #############################################
@@ -133,40 +135,40 @@ gap> a := FinSet( [ 1 .. 2 ] );;
133135gap> b := FinSet( [ 3 .. 5 ] );;
134136
135137#
136- gap> BraidedCocartesianCategoriesTest( finsets, a, b );;
137- gap> BraidedCocartesianCategoriesTest( finsets, a, b : only_primitive_operations := true );;
138+ gap> BraidedCocartesianCategoriesTest( finsets, opposite, a, b );;
139+ gap> BraidedCocartesianCategoriesTest( finsets, opposite_primitive, a, b );;
138140
139141#
140142gap> a := FinSet( [ 6 .. 8 ] );;
141143gap> b := FinSet( [ 12 .. 13 ] );;
142144
143145#
144- gap> BraidedCocartesianCategoriesTest( finsets, a, b );;
145- gap> BraidedCocartesianCategoriesTest( finsets, a, b : only_primitive_operations := true );;
146+ gap> BraidedCocartesianCategoriesTest( finsets, opposite, a, b );;
147+ gap> BraidedCocartesianCategoriesTest( finsets, opposite_primitive, a, b );;
146148
147149#
148150gap> i := InitialObject( finsets );;
149151gap> a := FinSet( [ 5 .. 8 ] );;
150152
151153#
152- gap> BraidedCocartesianCategoriesTest( finsets, i, a );;
153- gap> BraidedCocartesianCategoriesTest( finsets, i, a : only_primitive_operations := true );;
154+ gap> BraidedCocartesianCategoriesTest( finsets, opposite, i, a );;
155+ gap> BraidedCocartesianCategoriesTest( finsets, opposite_primitive, i, a );;
154156
155157#
156- gap> BraidedCocartesianCategoriesTest( finsets, a, i );;
157- gap> BraidedCocartesianCategoriesTest( finsets, a, i : only_primitive_operations := true );;
158+ gap> BraidedCocartesianCategoriesTest( finsets, opposite, a, i );;
159+ gap> BraidedCocartesianCategoriesTest( finsets, opposite_primitive, a, i );;
158160
159161#
160162gap> t := TerminalObject( finsets );;
161163gap> a := FinSet( [ 1 .. 3 ] );;
162164
163165#
164- gap> BraidedCocartesianCategoriesTest( finsets, t, a );;
165- gap> BraidedCocartesianCategoriesTest( finsets, t, a : only_primitive_operations := true );;
166+ gap> BraidedCocartesianCategoriesTest( finsets, opposite, t, a );;
167+ gap> BraidedCocartesianCategoriesTest( finsets, opposite_primitive, t, a );;
166168
167169#
168- gap> BraidedCocartesianCategoriesTest( finsets, a, t );;
169- gap> BraidedCocartesianCategoriesTest( finsets, a, t : only_primitive_operations := true );;
170+ gap> BraidedCocartesianCategoriesTest( finsets, opposite, a, t );;
171+ gap> BraidedCocartesianCategoriesTest( finsets, opposite_primitive, a, t );;
170172
171173#
172174# #############################################
@@ -177,40 +179,40 @@ gap> a := FinSet( [ 1 .. 2 ] );;
177179gap> L := [ FinSet( [ 2 .. 5 ] ), FinSet( [ 6 .. 7 ] ), FinSet( [ 3 .. 8 ] ) ] ;;
178180
179181#
180- gap> DistributiveCartesianCategoriesTest( finsets, a, L : only_primitive_operations := true );;
181- gap> DistributiveCartesianCategoriesTest( finsets, a, L );;
182+ gap> DistributiveCartesianCategoriesTest( finsets, opposite, a, L );;
183+ gap> DistributiveCartesianCategoriesTest( finsets, opposite_primitive, a, L );;
182184
183185#
184186gap> a := InitialObject( finsets );;
185187gap> L := [ FinSet( [ 2 .. 5 ] ), FinSet( [ 6 .. 7 ] ), FinSet( [ 3 .. 8 ] ) ] ;;
186188
187189#
188- gap> DistributiveCartesianCategoriesTest( finsets, a, L : only_primitive_operations := true );;
189- gap> DistributiveCartesianCategoriesTest( finsets, a, L );;
190+ gap> DistributiveCartesianCategoriesTest( finsets, opposite, a, L );;
191+ gap> DistributiveCartesianCategoriesTest( finsets, opposite_primitive, a, L );;
190192
191193#
192194gap> a := FinSet( [ 1 .. 2 ] );;
193195gap> L := [ FinSet( [ 2 .. 5 ] ), InitialObject( finsets ), FinSet( [ 3 .. 8 ] ) ] ;;
194196
195197#
196- gap> DistributiveCartesianCategoriesTest( finsets, a, L : only_primitive_operations := true );;
197- gap> DistributiveCartesianCategoriesTest( finsets, a, L );;
198+ gap> DistributiveCartesianCategoriesTest( finsets, opposite, a, L );;
199+ gap> DistributiveCartesianCategoriesTest( finsets, opposite_primitive, a, L );;
198200
199201#
200202gap> a := TerminalObject( finsets );;
201203gap> L := [ FinSet( [ 2 .. 5 ] ), FinSet( [ 6 .. 7 ] ), FinSet( [ 3 .. 8 ] ) ] ;;
202204
203205#
204- gap> DistributiveCartesianCategoriesTest( finsets, a, L : only_primitive_operations := true );;
205- gap> DistributiveCartesianCategoriesTest( finsets, a, L );;
206+ gap> DistributiveCartesianCategoriesTest( finsets, opposite, a, L );;
207+ gap> DistributiveCartesianCategoriesTest( finsets, opposite_primitive, a, L );;
206208
207209#
208210gap> a := FinSet( [ 1 .. 2 ] );;
209211gap> L := [ FinSet( [ 2 .. 5 ] ), TerminalObject( finsets ), FinSet( [ 3 .. 8 ] ) ] ;;
210212
211213#
212- gap> DistributiveCartesianCategoriesTest( finsets, a, L : only_primitive_operations := true );;
213- gap> DistributiveCartesianCategoriesTest( finsets, a, L );;
214+ gap> DistributiveCartesianCategoriesTest( finsets, opposite, a, L );;
215+ gap> DistributiveCartesianCategoriesTest( finsets, opposite_primitive, a, L );;
214216
215217#
216218# #############################################
@@ -240,8 +242,8 @@ gap> epsilon := MapOfFinSets( t, [ [ t[1], exp_ab[1] ] ], exp_ab );;
240242gap> zeta := MapOfFinSets( t, [ [ t[ 1 ] , exp_cd[ 2 ] ] ] , exp_cd );;
241243
242244#
243- gap> CartesianClosedCategoriesTest( finsets, a, b, c, d, alpha, beta, gamma, delta, epsilon, zeta );;
244- gap> CartesianClosedCategoriesTest( finsets, a, b, c, d, alpha, beta, gamma, delta, epsilon, zeta : only_primitive_operations := true );;
245+ gap> CartesianClosedCategoriesTest( finsets, opposite, a, b, c, d, alpha, beta, gamma, delta, epsilon, zeta );;
246+ gap> CartesianClosedCategoriesTest( finsets, opposite_primitive, a, b, c, d, alpha, beta, gamma, delta, epsilon, zeta );;
245247
246248#
247249gap> i := InitialObject( finsets );;
@@ -263,8 +265,8 @@ gap> epsilon := MapOfFinSets( t, [ [ t[1], exp_ia[1] ] ], exp_ia );;
263265gap> zeta := MapOfFinSets( t, [ [ t[ 1 ] , exp_at[ 1 ] ] ] , exp_at );;
264266
265267#
266- gap> CartesianClosedCategoriesTest( finsets, i, a, a, t, alpha, beta, gamma, delta, epsilon, zeta );;
267- gap> CartesianClosedCategoriesTest( finsets, i, a, a, t, alpha, beta, gamma, delta, epsilon, zeta : only_primitive_operations := true );;
268+ gap> CartesianClosedCategoriesTest( finsets, opposite, i, a, a, t, alpha, beta, gamma, delta, epsilon, zeta );;
269+ gap> CartesianClosedCategoriesTest( finsets, opposite_primitive, i, a, a, t, alpha, beta, gamma, delta, epsilon, zeta );;
268270
269271#
270272# #############################################
0 commit comments