|
1 | | -LoadPackage( "InternalExteriorAlgebraForCAP" ); |
| 1 | +#! @Chapter Examples and Tests |
2 | 2 |
|
3 | | -LoadPackage( "HomologicalAlgebraForCAP" ); # necessary for computing spectral sequences |
| 3 | +#! @Section Basic Commands |
4 | 4 |
|
| 5 | +#! @Example |
| 6 | +LoadPackage( "InternalExteriorAlgebraForCAP" ); |
| 7 | +#! true |
| 8 | +LoadPackage( "HomologicalAlgebraForCAP" ); # needed for computing spectral sequences |
| 9 | +#! true |
5 | 10 | RepG := RepresentationCategoryZGraded( SymmetricGroup( 4 ) ); |
6 | | - |
| 11 | +#! The skeletal Z-graded representation category of SymmetricGroup( [ 1 .. 4 ] ) |
7 | 12 | G := UnderlyingGroupForRepresentationCategory( RepG ); |
8 | | - |
| 13 | +#! Sym( [ 1 .. 4 ] ) |
9 | 14 | irr := Irr( G ); |
10 | | - |
| 15 | +#! [ Character( CharacterTable( Sym( [ 1 .. 4 ] ) ), [ 1, -1, 1, 1, -1 ] ), |
| 16 | +#! Character( CharacterTable( Sym( [ 1 .. 4 ] ) ), [ 3, -1, -1, 0, 1 ] ), |
| 17 | +#! Character( CharacterTable( Sym( [ 1 .. 4 ] ) ), [ 2, 0, 2, -1, 0 ] ), |
| 18 | +#! Character( CharacterTable( Sym( [ 1 .. 4 ] ) ), [ 3, 1, -1, 0, -1 ] ), |
| 19 | +#! Character( CharacterTable( Sym( [ 1 .. 4 ] ) ), [ 1, 1, 1, 1, 1 ] ) ] |
11 | 20 | v := RepresentationCategoryZGradedObject( -1, irr[2], RepG ); |
12 | | - |
| 21 | +#! 1*(x_[-1, 2]) |
13 | 22 | cat := EModuleActionCategory( v ); |
14 | | - |
| 23 | +#! Module category of the internal exterior algebra modeled |
| 24 | +#! via right actions of 1*(x_[-1, 2]) |
15 | 25 | h := RepresentationCategoryZGradedObject( 3, irr[2], RepG ); |
16 | | - |
| 26 | +#! 1*(x_[3, 2]) |
17 | 27 | F := FreeEModule( h, cat ); |
18 | | - |
| 28 | +#! <An object in Module category of the internal exterior algebra modeled |
| 29 | +#! via right actions of 1*(x_[-1, 2])> |
19 | 30 | chi := Support( ActionDomain( F ) )[8]; |
20 | | - |
| 31 | +#! <x_[2, 4]> |
21 | 32 | c := ComponentInclusionMorphism( ActionDomain( F ), chi ); |
22 | | - |
| 33 | +#! <A morphism in The skeletal Z-graded representation category of |
| 34 | +#! SymmetricGroup( [ 1 .. 4 ] )> |
23 | 35 | u := UniversalMorphismFromFreeModule( F, c ); |
24 | | - |
| 36 | +#! <A morphism in Module category of the internal exterior algebra |
| 37 | +#! modeled via right actions of 1*(x_[-1, 2])> |
25 | 38 | t := FilteredTateResolution( u ); |
26 | | - |
| 39 | +#! <An object in Cocomplex category of Descending filtered object category of |
| 40 | +#! The skeletal Z-graded representation category of SymmetricGroup( [ 1 .. 4 ] )> |
27 | 41 | s := SpectralSequenceEntryOfDescendingFilteredCocomplex( t, 2, 0, 1 ); |
28 | | - |
| 42 | +#! <A morphism in Generalized morphism category of |
| 43 | +#! The skeletal Z-graded representation category of SymmetricGroup( [ 1 .. 4 ] )> |
29 | 44 | Display( UnderlyingHonestObject( Source( s ) ) ); |
30 | | -# 1*(χ_[2, 3]) + 1*(χ_[2, 5]) |
| 45 | +#! 1*(x_[2, 3]) + 1*(x_[2, 5]) |
| 46 | +#! @EndExample |
0 commit comments