Skip to content

Commit e4890ea

Browse files
committed
AbstractFloat
1 parent f61e51f commit e4890ea

File tree

9 files changed

+21
-21
lines changed

9 files changed

+21
-21
lines changed

examples/workflow_introduction.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ ts_input_data = load_timeseries_data(data_path; T=24, years=[2016])
1414

1515
#= ClustData
1616
How the struct is setup:
17-
ClustData{region::String,K::Int,T::Int,data::Dict{String,Array},weights::Array{Float},mean::Dict{String,Array},sdv::Dict{String,Array}} <: TSData
17+
ClustData{region::String,K::Int,T::Int,data::Dict{String,Array},weights::Array{AbstractFloat},mean::Dict{String,Array},sdv::Dict{String,Array}} <: TSData
1818
-region: specifies region data belongs to
1919
-K: number of periods
2020
-T: time steps per period

src/clustering/attribute_weighting.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,10 @@
11
"""
2-
function attribute_weighting(data::ClustData,attribute_weights::Dict{String,Float})
2+
function attribute_weighting(data::ClustData,attribute_weights::Dict{String,AbstractFloat})
33
44
apply the different attribute weights based on the dictionary entry for each tech or exact name
55
"""
66
function attribute_weighting(data::ClustData,
7-
attribute_weights::Dict{String,Float}
7+
attribute_weights::Dict{String,AbstractFloat}
88
)
99
for name in keys(data.data)
1010
tech=split(name,"-")[1]

src/clustering/exact_kmedoids.jl

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -2,15 +2,15 @@
22

33
"Holds results of kmedoids run"
44
mutable struct kmedoidsResult
5-
medoids::Array{Float}
5+
medoids::Array{AbstractFloat}
66
assignments::Array{Int}
7-
totalcost::Float
7+
totalcost::AbstractFloat
88
end
99

1010

1111
"""
1212
kmedoids_exact(
13-
data::Array{Float},
13+
data::Array{AbstractFloat},
1414
nclust::Int,
1515
_dist::SemiMetric = SqEuclidean(),
1616
env::Any;
@@ -21,7 +21,7 @@ Performs the exact kmedoids algorithm as in Kotzur et al, 2017
2121
optimizer=Gurobi.Optimizer
2222
"""
2323
function kmedoids_exact(
24-
data::Array{Float},
24+
data::Array{AbstractFloat},
2525
nclust::Int,
2626
optimizer::DataType;
2727
_dist::SemiMetric = SqEuclidean(),

src/clustering/extreme_vals.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,7 @@ function simple_extr_val_ident(data::ClustData,
6767
end
6868

6969
"""
70-
simple_extr_val_ident(data::Array{Float};extremum="max",peak_def="absolute")
70+
simple_extr_val_ident(data::Array{AbstractFloat};extremum="max",peak_def="absolute")
7171
identifies a single simple extreme period from the data and returns column index of extreme period
7272
- `data_type`: any attribute from the attributes contained within *data*
7373
- `extremum`: "min" or "max"

src/clustering/intraperiod_segmentation.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -28,10 +28,10 @@ function intraperiod_segmentation(data_merged::ClustDataMerged;
2828
end
2929

3030
"""
31-
run_clust_segmentation(period::Array{Float,2};n_seg::Int=24,iterations::Int=300,norm_scope::String="full")
31+
run_clust_segmentation(period::Array{AbstractFloat,2};n_seg::Int=24,iterations::Int=300,norm_scope::String="full")
3232
!!! Not yet proven implementation of segmentation introduced by Bahl et al. 2018
3333
"""
34-
function run_clust_segmentation(period::Array{Float,2};
34+
function run_clust_segmentation(period::Array{AbstractFloat,2};
3535
n_seg::Int=24,
3636
iterations::Int=300,
3737
norm_scope::String="full")

src/clustering/run_clust.jl

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11

22
"""
3-
run_clust(data::ClustData;norm_op::String="zscore",norm_scope::String="full",method::String="kmeans",representation::String="centroid",n_clust::Int=5,n_init::Int=100,iterations::Int=300,save::String="",attribute_weights::Dict{String,Float}=Dict{String,Float}(),get_all_clust_results::Bool=false,kwargs...)
3+
run_clust(data::ClustData;norm_op::String="zscore",norm_scope::String="full",method::String="kmeans",representation::String="centroid",n_clust::Int=5,n_init::Int=100,iterations::Int=300,save::String="",attribute_weights::Dict{String,AbstractFloat}=Dict{String,AbstractFloat}(),get_all_clust_results::Bool=false,kwargs...)
44
norm_op: "zscore", "01"(not implemented yet)
55
norm_scope: "full","sequence","hourly"
66
method: "kmeans","kmedoids","kmedoids_exact","hierarchical"
@@ -15,7 +15,7 @@ function run_clust(data::ClustData;
1515
n_seg::Int=data.T,
1616
n_init::Int=100,
1717
iterations::Int=300,
18-
attribute_weights::Dict{String,Float}=Dict{String,Float}(),
18+
attribute_weights::Dict{String,AbstractFloat}=Dict{String,AbstractFloat}(),
1919
save::String="",#QUESTION dead?
2020
get_all_clust_results::Bool=false,
2121
kwargs...
@@ -78,10 +78,10 @@ function run_clust(data_norm_merged::ClustDataMerged,
7878
orig_k_ids::Array{Int,1}=Array{Int,1}(),
7979
kwargs...)
8080
# initialize data arrays
81-
centers = Array{Array{Float},1}(undef,n_init)
81+
centers = Array{Array{AbstractFloat},1}(undef,n_init)
8282
clustids = Array{Array{Int,1},1}(undef,n_init)
83-
weights = Array{Array{Float},1}(undef,n_init)
84-
cost = Array{Float,1}(undef,n_init)
83+
weights = Array{Array{AbstractFloat},1}(undef,n_init)
84+
cost = Array{AbstractFloat,1}(undef,n_init)
8585
iter = Array{Int,1}(undef,n_init)
8686

8787
# clustering
@@ -346,7 +346,7 @@ end
346346
Helper function to run run_clust_hierarchical_centroids and run_clust_hierarchical_medoid
347347
"""
348348
function run_clust_hierarchical(
349-
data::Array{Float,2},
349+
data::Array{AbstractFloat,2},
350350
n_clust::Int,
351351
iterations::Int;
352352
_dist::SemiMetric = SqEuclidean()

src/clustering/shape_based/cluster_gen_dbaclust_parallel.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,7 @@ writetable(joinpath("outfiles",string("parameters_dtw_",region,".txt")),df)
6464

6565
# Function that can be an input to pmap
6666

67-
@everywhere function dbac_par_sc(n_clust::Int,i::Int,rad_sc::Int,seq::Array{Float,2},n_init::Int,iterations::Int,inner_iterations::Int) # function to use with pmap to parallelize sc band calculation
67+
@everywhere function dbac_par_sc(n_clust::Int,i::Int,rad_sc::Int,seq::Array{AbstractFloat,2},n_init::Int,iterations::Int,inner_iterations::Int) # function to use with pmap to parallelize sc band calculation
6868

6969
rmin,rmax=sakoe_chiba_band(rad_sc,24)
7070

src/utils/load_data.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -81,7 +81,7 @@ function add_timeseries_data!(dt::Dict{String,Array},
8181
else
8282
K=K_calc
8383
end
84-
dt[data_name*"-"*string(column[1])]=Float.(column[2][1:(Int(T*K))])
84+
dt[data_name*"-"*string(column[1])]=AbstractFloat.(column[2][1:(Int(T*K))])
8585
end
8686
end
8787
return K

src/utils/utils.jl

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -212,7 +212,7 @@ function calc_medoids(data::Array,assignments::Array)
212212
K=maximum(assignments) #number of clusters
213213
n_per_period=size(data,1)
214214
n_periods =size(data,2)
215-
SSE=Float[]
215+
SSE=AbstractFloat[]
216216
for i=1:K
217217
push!(SSE,Inf)
218218
end
@@ -310,7 +310,7 @@ function set_clust_config(;kwargs...)
310310
end
311311

312312
"""
313-
run_pure_clust(data::ClustData; norm_op::String="zscore", norm_scope::String="full", method::String="kmeans", representation::String="centroid", n_clust_1::Int=5, n_clust_2::Int=3, n_seg::Int=data.T, n_init::Int=100, iterations::Int=300, attribute_weights::Dict{String,Float}=Dict{String,Float}(), clust::Array{String,1}=Array{String,1}(), get_all_clust_results::Bool=false, kwargs...)
313+
run_pure_clust(data::ClustData; norm_op::String="zscore", norm_scope::String="full", method::String="kmeans", representation::String="centroid", n_clust_1::Int=5, n_clust_2::Int=3, n_seg::Int=data.T, n_init::Int=100, iterations::Int=300, attribute_weights::Dict{String,AbstractFloat}=Dict{String,AbstractFloat}(), clust::Array{String,1}=Array{String,1}(), get_all_clust_results::Bool=false, kwargs...)
314314
Replace the original timeseries of the attributes in clust with their clustered value
315315
"""
316316
function run_pure_clust(data::ClustData;
@@ -322,7 +322,7 @@ function run_pure_clust(data::ClustData;
322322
n_seg::Int=data.T,
323323
n_init::Int=100,
324324
iterations::Int=300,
325-
attribute_weights::Dict{String,Float}=Dict{String,Float}(),
325+
attribute_weights::Dict{String,AbstractFloat}=Dict{String,AbstractFloat}(),
326326
clust::Array{String,1}=Array{String,1}(),
327327
get_all_clust_results::Bool=false,
328328
kwargs...)

0 commit comments

Comments
 (0)