Skip to content

Commit 50d2c71

Browse files
Merge pull request #121 from holgerteichgraeber/paper-up
Paper upload and reference update
2 parents 368ebb7 + 050d3f9 commit 50d2c71

File tree

4 files changed

+33
-31
lines changed

4 files changed

+33
-31
lines changed

Project.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ keywords = ["clustering", "data mining", "optimization", "motifs", "data segment
44
license = "MIT"
55
desc = "julia implementation of unsupervised learning methods for time series datasets. It provides functionality for clustering and aggregating, detecting motifs, and quantifying similarity between time series datasets."
66
author = ["Holger Teichgraeber"]
7-
version = "0.5.2"
7+
version = "0.5.3"
88

99
[deps]
1010
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"

README.md

Lines changed: 17 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
[![License](http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat)](LICENSE)
66
[![Build Status](https://travis-ci.com/holgerteichgraeber/TimeSeriesClustering.jl.svg?token=HRFemjSxM1NBCsbHGNDG&branch=master)](https://travis-ci.com/holgerteichgraeber/TimeSeriesClustering.jl)
77
[![codecov](https://codecov.io/gh/holgerteichgraeber/TimeSeriesClustering.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/holgerteichgraeber/TimeSeriesClustering.jl)
8-
8+
[![DOI](https://joss.theoj.org/papers/10.21105/joss.01573/status.svg)](https://doi.org/10.21105/joss.01573)
99

1010
[TimeSeriesClustering](https://github.com/holgerteichgraeber/TimeSeriesClustering.jl) is a [Julia](https://julialang.org) implementation of unsupervised learning methods for time series datasets. It provides functionality for clustering and aggregating, detecting motifs, and quantifying similarity between time series datasets.
1111
The software provides a type system for temporal data, and provides an implementation of the most commonly used clustering methods and extreme value selection methods for temporal data.
@@ -38,26 +38,27 @@ Pkg.add("TimeSeriesClustering")
3838
```
3939

4040
## Documentation
41-
[Documentation (Stable)](https://holgerteichgraeber.github.io/TimeSeriesClustering.jl/stable): Please refer to this documentation for details on how to use TimeSeriesClustering the current version of TimeSeriesClustering. This is the documentation of the default version of the package.
41+
[Documentation (Stable)](https://holgerteichgraeber.github.io/TimeSeriesClustering.jl/stable): Please refer to this documentation for details on how to use TimeSeriesClustering the current version of TimeSeriesClustering. This is the documentation of the default version of the package. The default version is on the `master` branch.
4242

43-
[Documentation (Development)](https://holgerteichgraeber.github.io/TimeSeriesClustering.jl/dev): If you like to try the development version of TimeSeriesClustering, please refer to this documentation.
43+
[Documentation (Development)](https://holgerteichgraeber.github.io/TimeSeriesClustering.jl/dev): If you like to try the development version of TimeSeriesClustering, please refer to this documentation. The development version is on the `dev` branch.
4444

4545
**See [NEWS](NEWS.md) for significant breaking changes when updating from one version of TimeSeriesClustering to another.**
4646

4747
## Citing TimeSeriesClustering
48-
If you find TimeSeriesClustering useful in your work, we kindly request that you cite the following paper ([link](https://doi.org/10.1016/j.apenergy.2019.02.012)):
49-
50-
```
51-
@article{Teichgraeber2019,
52-
author = {Holger Teichgraeber and Adam Brandt},
53-
title = {Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison},
54-
journal = {Applied Energy},
55-
volume = {239},
56-
pages = {1283–1293},
57-
year = {2019},
58-
doi = {https://doi.org/10.1016/j.apenergy.2019.02.012},
59-
}
60-
```
48+
If you find TimeSeriesClustering useful in your work, we kindly request that you cite the following paper ([link](https://doi.org/10.21105/joss.01573)):
49+
50+
```@article{Teichgraeber2019joss,
51+
author = {Teichgraeber, Holger and Kuepper, Lucas Elias and Brandt, Adam R},
52+
doi = {https://doi.org/10.21105/joss.01573},
53+
journal = {Journal of Open Source Software},
54+
number = {41},
55+
pages = {1573},
56+
title = {TimeSeriesClustering : An extensible framework in Julia},
57+
volume = {4},
58+
year = {2019}
59+
}
60+
61+
If you find this package useful, our paper [Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison](https://doi.org/10.1016/j.apenergy.2019.02.012) may additionally be of interest.
6162
6263
## Quick Start Guide
6364

docs/src/index.md

Lines changed: 15 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
[![License](http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat)](LICENSE)
66
[![Build Status](https://travis-ci.com/holgerteichgraeber/TimeSeriesClustering.jl.svg?token=HRFemjSxM1NBCsbHGNDG&branch=master)](https://travis-ci.com/holgerteichgraeber/TimeSeriesClustering.jl)
77
[![codecov](https://codecov.io/gh/holgerteichgraeber/TimeSeriesClustering.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/holgerteichgraeber/TimeSeriesClustering.jl)
8-
8+
[![DOI](https://joss.theoj.org/papers/10.21105/joss.01573/status.svg)](https://doi.org/10.21105/joss.01573)
99

1010
[TimeSeriesClustering](https://github.com/holgerteichgraeber/TimeSeriesClustering.jl) is a [Julia](https://www.juliaopt.com) implementation of unsupervised learning methods for time series datasets. It provides functionality for clustering and aggregating, detecting motifs, and quantifying similarity between time series datasets.
1111
The software provides a type system for temporal data, and provides an implementation of the most commonly used clustering methods and extreme value selection methods for temporal data.
@@ -38,16 +38,17 @@ Pkg.add("TimeSeriesClustering")
3838
```
3939

4040
## Citing TimeSeriesClustering
41-
If you find TimeSeriesClustering useful in your work, we kindly request that you cite the following paper ([link](https://doi.org/10.1016/j.apenergy.2019.02.012)):
42-
43-
```
44-
@article{Teichgraeber2019,
45-
author = {Holger Teichgraeber and Adam Brandt},
46-
title = {Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison},
47-
journal = {Applied Energy},
48-
volume = {239},
49-
pages = {1283–1293},
50-
year = {2019},
51-
doi = {https://doi.org/10.1016/j.apenergy.2019.02.012},
52-
}
53-
```
41+
If you find TimeSeriesClustering useful in your work, we kindly request that you cite the following paper ([link](https://doi.org/10.21105/joss.01573)):
42+
43+
```@article{Teichgraeber2019joss,
44+
author = {Teichgraeber, Holger and Kuepper, Lucas Elias and Brandt, Adam R},
45+
doi = {https://doi.org/10.21105/joss.01573},
46+
journal = {Journal of Open Source Software},
47+
number = {41},
48+
pages = {1573},
49+
title = {TimeSeriesClustering : An extensible framework in Julia},
50+
volume = {4},
51+
year = {2019}
52+
}
53+
54+
If you find this package useful, our paper [Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison](https://doi.org/10.1016/j.apenergy.2019.02.012) may additionally be of interest.

0 commit comments

Comments
 (0)