You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
First of all, thank you for the great resources and Youtube videos.
I wanted to point out that in slide 25 of the Llama notes, regarding the computational efficient realization of rotary matrix multiplication, there is a typo in the third vector, as the order of the last two entries ($x_d$ and $x_{d-1}$) is inverted.
This is what is currently in the slide:
$$R_{\theta, m}^d x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ ... \\ x_{d-1} \\ x_d \end{bmatrix} \otimes \begin{bmatrix} cos (m\theta_1) \\ cos (m\theta_1) \\ cos (m\theta_2) \\ cos (m\theta_2) \\ ... \\ cos (m\theta_{d/2}) \\\ cos (m\theta_{d/2})\end{bmatrix} + \begin{bmatrix} -x_2 \\ x_1 \\ -x_4 \\ x_3 \\ ... \\ \mathbf{-x_{d-1}} \\ \mathbf{x_{d}} \end{bmatrix} \otimes \begin{bmatrix} sin (m\theta_1) \\ sin (m\theta_1) \\ sin (m\theta_2) \\ sin (m\theta_2) \\ ... \\ sin (m\theta_{d/2}) \\\ sin (m\theta_{d/2})\end{bmatrix}$$
And this is how it should be:
$$R_{\theta, m}^d x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ ... \\ x_{d-1} \\ x_d \end{bmatrix} \otimes \begin{bmatrix} cos (m\theta_1) \\ cos (m\theta_1) \\ cos (m\theta_2) \\ cos (m\theta_2) \\ ... \\ cos (m\theta_{d/2}) \\\ cos (m\theta_{d/2})\end{bmatrix} + \begin{bmatrix} -x_2 \\ x_1 \\ -x_4 \\ x_3 \\ ... \\ \mathbf{-x_{d}} \\ \mathbf{x_{d-1}} \end{bmatrix} \otimes \begin{bmatrix} sin (m\theta_1) \\ sin (m\theta_1) \\ sin (m\theta_2) \\ sin (m\theta_2) \\ ... \\ sin (m\theta_{d/2}) \\\ sin (m\theta_{d/2})\end{bmatrix}$$
I imagine the error was already in the original paper and the screenshot comes from there. I have checked the RoFormer paper (page 7 equation 34) and they have since fixed the error.