Skip to content

Commit 4d23366

Browse files
authored
Updating the readme
Adding some more pseudo code and updating the publications
1 parent 5a18214 commit 4d23366

File tree

1 file changed

+54
-19
lines changed

1 file changed

+54
-19
lines changed

README.md

Lines changed: 54 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -82,10 +82,10 @@ import ufl
8282
import numpy as np
8383
import sys, os
8484
sys.path.append(os.environ.get('HIPPYLIB_PATH'))
85-
from hippylib import *
85+
import hippylib as hp
8686

8787
sys.path.append(os.environ.get('HIPPYFLOW_PATH'))
88-
from hippyflow import *
88+
import hippyflow as hf
8989

9090
# Set up PDE Variational Problem and observable using a function
9191
def build_observable(mesh, **kwargs):
@@ -96,16 +96,19 @@ def build_observable(mesh, **kwargs):
9696
Vh = [Vh2, Vh1, Vh2]
9797
# Initialize Expressions
9898
f = dl.Constant(0.0)
99+
100+
def u_boundary(x,on_boundary):
101+
return on_boundary
99102

100103
u_bdr = dl.Expression("x[1]", degree=1)
101104
u_bdr0 = dl.Constant(0.0)
102-
bc = dl.DirichletBC(Vh[STATE], u_bdr, u_boundary)
103-
bc0 = dl.DirichletBC(Vh[STATE], u_bdr0, u_boundary)
105+
bc = dl.DirichletBC(Vh[hp.STATE], u_bdr, u_boundary)
106+
bc0 = dl.DirichletBC(Vh[hp.STATE], u_bdr0, u_boundary)
104107

105108
def pde_varf(u,m,p):
106109
return ufl.exp(m)*ufl.inner(ufl.grad(u), ufl.grad(p))*ufl.dx - f*p*ufl.dx
107110

108-
pde = PDEVariationalProblem(Vh, pde_varf, bc, bc0, is_fwd_linear=True)
111+
pde = hp.PDEVariationalProblem(Vh, pde_varf, bc, bc0, is_fwd_linear=True)
109112

110113
# Instance observable operator (in this case pointwise observation of state)
111114
x_targets = np.linspace(0.1,0.9,10)
@@ -116,8 +119,8 @@ def build_observable(mesh, **kwargs):
116119
targets.append((xi,yi))
117120
targets = np.array(targets)
118121

119-
B = assemblePointwiseObservation(Vh[STATE], targets)
120-
return LinearStateObservable(pde,B)
122+
B = hp.assemblePointwiseObservation(Vh[hp.STATE], targets)
123+
return hf.LinearStateObservable(pde,B)
121124

122125
# Set up mesh
123126
ndim = 2
@@ -129,15 +132,15 @@ observable_kwargs = {} # No kwargs given in this example
129132
observable = build_observable(mesh,**observable_kwargs)
130133

131134
# Instance probability distribution for the parameter
132-
prior = BiLaplacian2D(Vh[PARAMETER],gamma = 0.1, delta = 1.0)
135+
prior = hp.BiLaplacian2D(observable.problem.Vh[hp.PARAMETER],gamma = 0.1, delta = 1.0)
133136

134137
# Instance Active Subspace Operator
135-
AS = ActiveSubspaceProjector(observable,prior)
138+
AS = hf.ActiveSubspaceProjector(observable,prior)
136139
# Compute and save input reduced basis to file:
137140
AS.construct_input_subspace()
138141

139142
# Instance POD Operator to compute POD basis and training data
140-
POD = PODProjector(observable,prior)
143+
POD = hf.PODProjector(observable,prior)
141144
POD.construct_subspace()
142145
output_directory = 'location/for/training/data/'
143146
POD.generate_training_data(output_directory)
@@ -181,7 +184,7 @@ These publications use the hippyflow library
181184

182185
[**Derivative-Informed Projected Neural Networks for High-Dimensional Parametric Maps Governed by PDEs**](https://www.sciencedirect.com/science/article/pii/S0045782521005302).
183186
Computer Methods in Applied Mechanics and Engineering. Volume 388, 1 January 2022, 114199.
184-
([Download](https://arxiv.org/pdf/2011.15110.pdf))<details><summary>BibTeX</summary><pre>
187+
([Download](https://www.sciencedirect.com/science/article/pii/S0045782521005302))<details><summary>BibTeX</summary><pre>
185188
@article{OLearyRoseberryVillaChenEtAl2022,
186189
title={Derivative-informed projected neural networks for high-dimensional parametric maps governed by {PDE}s},
187190
author={O’Leary-Roseberry, Thomas and Villa, Umberto and Chen, Peng and Ghattas, Omar},
@@ -194,14 +197,46 @@ Computer Methods in Applied Mechanics and Engineering. Volume 388, 1 January 202
194197
}</pre></details>
195198

196199
- \[2\] O'Leary-Roseberry, T., Du, X., Chaudhuri, A., Martins, J., Willcox, K., Ghattas, O.,
197-
[**Adaptive Projected Residual Networks for Learning Parametric Maps from Sparse Data**](https://arxiv.org/abs/2112.07096).
198-
arXiv:2112.07096.
199-
([Download](https://arxiv.org/pdf/2112.07096.pdf))<details><summary>BibTeX</summary><pre>
200-
@article{OLearyRoseberryDuChaudhuriEtAl2021,
201-
title={Adaptive Projected Residual Networks for Learning Parametric Maps from Sparse Data},
202-
author={O'Leary-Roseberry, Thomas and Du, Xiaosong, and Chaudhuri, Anirban, and Martins Joaqium R. R. A., and Willcox, Karen, and Ghattas, Omar},
203-
journal={arXiv preprint arXiv:2112.07096},
204-
year={2021}
200+
[**Learning high-dimensional parametric maps via reduced basis adaptive residual networks**](https://www.sciencedirect.com/science/article/abs/pii/S0045782522006855).
201+
Computer Methods in Applied Mechanics and Engineering. Volume 402, December 2022, 115730.
202+
([Download](https://www.sciencedirect.com/science/article/abs/pii/S0045782522006855))<details><summary>BibTeX</summary><pre>
203+
@article{OLearyRoseberryDuChaudhuriEtAl2022,
204+
title={Learning high-dimensional parametric maps via reduced basis adaptive residual networks},
205+
author={O’Leary-Roseberry, Thomas and Du, Xiaosong and Chaudhuri, Anirban and Martins, Joaquim RRA and Willcox, Karen and Ghattas, Omar},
206+
journal={Computer Methods in Applied Mechanics and Engineering},
207+
volume={402},
208+
pages={115730},
209+
year={2022},
210+
publisher={Elsevier}
211+
}
212+
}</pre></details>
213+
214+
- \[3\] Wu, K., O'Leary-Roseberry, T., Chen, P., Ghattas, O.,
215+
[**Large-Scale Bayesian Optimal Experimental Design with Derivative-Informed Projected Neural Network**](https://link.springer.com/article/10.1007/s10915-023-02145-1).
216+
Journal of Scientific Computing 95. Article number: 30 (2023)
217+
([Download](https://link.springer.com/article/10.1007/s10915-023-02145-1))<details><summary>BibTeX</summary><pre>
218+
@article{WuOLearyRoseberryChenEtAl2023,
219+
title={Large-Scale {B}ayesian Optimal Experimental Design with Derivative-Informed Projected Neural Network},
220+
author={Wu, Keyi and O’Leary-Roseberry, Thomas and Chen, Peng and Ghattas, Omar},
221+
journal={Journal of Scientific Computing},
222+
volume={95},
223+
number={1},
224+
pages={30},
225+
year={2023},
226+
publisher={Springer}
205227
}
206228
}</pre></details>
207229

230+
- \[4\] Cao, L., O'Leary-Roseberry, T., Jha, P., Oden, J.T., Ghattas, O.,
231+
[**Residual-Based Error Correction for Neural Operator Accelerated Infinite-Dimensional Bayesian Inverse Problems**](https://www.sciencedirect.com/science/article/pii/S0021999123001997).
232+
Journal of Computational Physics, 112104
233+
([Download](https://www.sciencedirect.com/science/article/pii/S0021999123001997))<details><summary>BibTeX</summary><pre>
234+
@article{CaoOLearyRoseberryJhaEtAl2023,
235+
title={Residual-based error correction for neural operator accelerated infinite-dimensional {B}ayesian inverse problems},
236+
author={Cao, Lianghao and O'Leary-Roseberry, Thomas and Jha, Prashant K and Oden, J Tinsley and Ghattas, Omar},
237+
journal={Journal of Computational Physics},
238+
pages={112104},
239+
year={2023},
240+
publisher={Elsevier}
241+
}
242+
}</pre></details>

0 commit comments

Comments
 (0)