Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
25 commits
Select commit Hold shift + click to select a range
f61ed44
plamo3
mmngays Nov 15, 2025
c3b6134
fix plamo3
mmngays Nov 15, 2025
ce7a922
clean code
mmngays Nov 15, 2025
1ab3bba
clean up the code
mmngays Nov 15, 2025
d9854cc
fix diff
mmngays Nov 15, 2025
8dbbe79
Merge branch 'ggml-org:master' into features/suppert-plamo-3
mmnga Nov 15, 2025
967810d
clean up the code
mmngays Nov 15, 2025
74fa9d6
clean up the code
mmngays Nov 15, 2025
3391080
clean up the code
mmngays Nov 15, 2025
037d831
clean up the code
mmngays Nov 16, 2025
4d0be03
Merge branch 'ggml-org:master' into features/suppert-plamo-3
mmnga Nov 16, 2025
80c3418
clean up the code
mmngays Nov 16, 2025
9cecb26
clean up the code
mmngays Nov 16, 2025
3873edb
Merge remote-tracking branch 'origin/master' into features/suppert-pl…
mmngays Nov 16, 2025
8b92852
Merge branch 'features/suppert-plamo-3' of https://github.com/mmnga/l…
mmngays Nov 16, 2025
0df5296
clean up the code
mmngays Nov 16, 2025
cdb1d2c
add chat_template if exist
mmngays Nov 16, 2025
527c65a
clean up the code
mmngays Nov 17, 2025
0f9d0a6
Merge branch 'ggml-org:master' into features/suppert-plamo-3
mmnga Nov 17, 2025
5d52fe6
fix cpu-backend
mmngays Nov 17, 2025
dab7aaa
Merge branch 'features/suppert-plamo-3' of https://github.com/mmnga/l…
mmngays Nov 17, 2025
9bd33d0
chore: whitespace trim fix + typo fix
mmngays Nov 18, 2025
67a6dda
Merge branch 'ggml-org:master' into features/suppert-plamo-3
mmnga Nov 18, 2025
d965f02
Merge branch 'ggml-org:master' into features/suppert-plamo-3
mmnga Nov 21, 2025
c2aab05
Merge branch 'ggml-org:master' into features/suppert-plamo-3
mmnga Dec 7, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
151 changes: 151 additions & 0 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -4974,6 +4974,157 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
return [(new_name, data_torch)]


@ModelBase.register("Plamo3ForCausalLM", "PLaMo3ForCausalLM")
class Plamo3Model(TextModel):
model_arch = gguf.MODEL_ARCH.PLAMO3

def set_vocab(self):
# PLaMo models use a custom tokenizer with a .jsonl file
tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
tokenizer_config_path = self.dir_model / "tokenizer_config.json"

if not tokenizer_jsonl_path.is_file():
raise FileNotFoundError(f"PLaMo tokenizer file not found: {tokenizer_jsonl_path}")

# Load tokenizer config
with open(tokenizer_config_path, "r", encoding="utf-8") as f:
tokenizer_config = json.load(f)

# Load tokens from JSONL file (actually a list format)
tokens = []
scores = []
toktypes = []

with open(tokenizer_jsonl_path, "r", encoding="utf-8") as f:
for line_num, line in enumerate(f):
if line.strip():
token_data = json.loads(line)
# Format: [token, score, type, ?, ?, ?, ?]
token = token_data[0].encode("utf-8")
score = float(token_data[1])
token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"

tokens.append(token)
scores.append(score)

if token_type_str == "UNKNOWN":
toktypes.append(gguf.TokenType.UNKNOWN)
elif token_type_str == "CONTROL":
toktypes.append(gguf.TokenType.CONTROL)
elif token_type_str == "BYTE":
toktypes.append(gguf.TokenType.BYTE)
else:
token_str = token_data[0]
if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.NORMAL)

vocab_size = self.hparams["vocab_size"]
if vocab_size > len(tokens):
pad_count = vocab_size - len(tokens)
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
for i in range(1, pad_count + 1):
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
scores.append(-1000.0)
toktypes.append(gguf.TokenType.UNUSED)

self.gguf_writer.add_tokenizer_model("plamo2")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)

if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
self.gguf_writer.add_bos_token_id(token_id)
if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
self.gguf_writer.add_eos_token_id(token_id)
if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
self.gguf_writer.add_pad_token_id(token_id)
if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
self.gguf_writer.add_sep_token_id(token_id)
if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
self.gguf_writer.add_unk_token_id(token_id)

# Add <|plamo:op|> as EOT to ensure appropriate end of generation
self.gguf_writer.add_eot_token_id(4)

self.gguf_writer.add_add_space_prefix(False)

if "chat_template" in tokenizer_config and tokenizer_config["chat_template"] is not None:
self.gguf_writer.add_chat_template(tokenizer_config["chat_template"])

def _sliding_window_pattern(self, block_count: int) -> list[bool]:
layer_types = self.hparams.get("layer_types")
if isinstance(layer_types, list) and len(layer_types) == block_count:
return [t == "sliding_attention" for t in layer_types]

pattern = self.hparams.get("sliding_window_pattern")
if isinstance(pattern, int) and pattern > 0:
return [((i + 1) % pattern) != 0 for i in range(block_count)]

return []

def set_gguf_parameters(self):
hparams = self.hparams
block_count = hparams["num_hidden_layers"]

self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
head_dim = hparams["head_dim"]
self.gguf_writer.add_key_length(head_dim)
self.gguf_writer.add_value_length(head_dim)
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
self.gguf_writer.add_rope_freq_base(hparams["rope_theta"])

window_size = hparams.get("window_size") or hparams.get("sliding_window") or 0
self.gguf_writer.add_sliding_window(window_size)

pattern = self._sliding_window_pattern(block_count)
if len(pattern) == block_count and any(pattern):
self.gguf_writer.add_sliding_window_pattern(pattern)

self.gguf_writer.add_file_type(self.ftype)

def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:

if name.endswith(".pre_mixer_norm.weight"):
data_torch = data_torch + 1.0
elif name.endswith(".post_mixer_norm.weight"):
data_torch = data_torch + 1.0 / 5
elif name.endswith(".pre_mlp_norm.weight"):
data_torch = data_torch + 1.0
elif name.endswith(".post_mlp_norm.weight"):
data_torch = data_torch + 1.0 / (5**1.5)
elif name.endswith((".mixer.q_norm.weight", ".mixer.k_norm.weight")):
data_torch = data_torch + 1.0
elif name.endswith(".norm.weight"):
data_torch = data_torch + 1.0

results: list[tuple[str, Tensor]] = []

if "gate_up_proj.weight" in name:
name_up = name.replace("gate_up_proj.weight", "up_proj.weight")
name_gate = name.replace("gate_up_proj.weight", "gate_proj.weight")
gate_proj_weight, up_proj_weight = torch.chunk(data_torch, 2, dim=0)
results.append((self.map_tensor_name(name_gate), gate_proj_weight))
results.append((self.map_tensor_name(name_up), up_proj_weight))
else:
results.append((self.map_tensor_name(name), data_torch))

return results


@ModelBase.register("CodeShellForCausalLM")
class CodeShellModel(TextModel):
model_arch = gguf.MODEL_ARCH.CODESHELL
Expand Down
19 changes: 19 additions & 0 deletions gguf-py/gguf/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -375,6 +375,7 @@ class MODEL_ARCH(IntEnum):
PHIMOE = auto()
PLAMO = auto()
PLAMO2 = auto()
PLAMO3 = auto()
CODESHELL = auto()
ORION = auto()
INTERNLM2 = auto()
Expand Down Expand Up @@ -748,6 +749,7 @@ class MODEL_TENSOR(IntEnum):
MODEL_ARCH.PHIMOE: "phimoe",
MODEL_ARCH.PLAMO: "plamo",
MODEL_ARCH.PLAMO2: "plamo2",
MODEL_ARCH.PLAMO3: "plamo3",
MODEL_ARCH.CODESHELL: "codeshell",
MODEL_ARCH.ORION: "orion",
MODEL_ARCH.INTERNLM2: "internlm2",
Expand Down Expand Up @@ -1684,6 +1686,23 @@ class MODEL_TENSOR(IntEnum):
MODEL_TENSOR.SSM_B_NORM,
MODEL_TENSOR.SSM_C_NORM,
],
MODEL_ARCH.PLAMO3: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_POST_NORM,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_POST_NORM,
],
MODEL_ARCH.GPT2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.POS_EMBD,
Expand Down
2 changes: 2 additions & 0 deletions gguf-py/gguf/tensor_mapping.py
Original file line number Diff line number Diff line change
Expand Up @@ -578,6 +578,7 @@ class TensorNameMap:
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
"transformer.layers.{bid}.attn.q_norm", # openelm
"model.layers.layers.{bid}.mixer.q", # plamo2
"model.layers.layers.{bid}.mixer.q_norm", # plamo3
"layers.{bid}.self_attn.q_norm", # qwen3-embedding
"model.layers.{bid}.attention.query_layernorm", # apertus
),
Expand All @@ -593,6 +594,7 @@ class TensorNameMap:
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
"transformer.layers.{bid}.attn.k_norm", # openelm
"model.layers.layers.{bid}.mixer.k", # plamo2
"model.layers.layers.{bid}.mixer.k_norm", # plamo3
"layers.{bid}.self_attn.k_norm", # qwen3-embedding
"model.layers.{bid}.attention.key_layernorm", # apertus
),
Expand Down
1 change: 1 addition & 0 deletions src/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,7 @@ add_library(llama
models/phi3.cpp
models/plamo.cpp
models/plamo2.cpp
models/plamo3.cpp
models/plm.cpp
models/qwen.cpp
models/qwen2.cpp
Expand Down
21 changes: 21 additions & 0 deletions src/llama-arch.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_PHIMOE, "phimoe" },
{ LLM_ARCH_PLAMO, "plamo" },
{ LLM_ARCH_PLAMO2, "plamo2" },
{ LLM_ARCH_PLAMO3, "plamo3" },
{ LLM_ARCH_CODESHELL, "codeshell" },
{ LLM_ARCH_ORION, "orion" },
{ LLM_ARCH_INTERNLM2, "internlm2" },
Expand Down Expand Up @@ -1007,6 +1008,26 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
},
},
{
LLM_ARCH_PLAMO3,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_CODESHELL,
{
Expand Down
1 change: 1 addition & 0 deletions src/llama-arch.h
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@ enum llm_arch {
LLM_ARCH_PHIMOE,
LLM_ARCH_PLAMO,
LLM_ARCH_PLAMO2,
LLM_ARCH_PLAMO3,
LLM_ARCH_CODESHELL,
LLM_ARCH_ORION,
LLM_ARCH_INTERNLM2,
Expand Down
59 changes: 59 additions & 0 deletions src/llama-model.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1191,6 +1191,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
} break;
case LLM_ARCH_PLAMO3:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
if (hparams.n_swa == 0) {
hparams.n_swa = 2048;
}
hparams.set_swa_pattern(8);

switch (hparams.n_layer) {
case 24: type = LLM_TYPE_2B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_GPT2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
Expand Down Expand Up @@ -3725,6 +3740,45 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, i), {n_embd}, 0);
}
} break;
case LLM_ARCH_PLAMO3:
{
const int64_t head_dim_q = hparams.n_embd_head_k;
const int64_t head_dim_v = hparams.n_embd_head_v;

tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}

for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];

const int64_t num_attention_heads = hparams.n_head(i);
const int64_t num_key_value_heads = hparams.n_head_kv(i);
const int64_t q_proj_dim = num_attention_heads * head_dim_q;
const int64_t k_proj_dim = num_key_value_heads * head_dim_q;
const int64_t v_proj_dim = num_key_value_heads * head_dim_v;
const int64_t n_ff_cur = hparams.n_ff(i);

layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i),
{n_embd,q_proj_dim + k_proj_dim + v_proj_dim}, 0);
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {head_dim_q}, 0);
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {head_dim_q}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {num_attention_heads * head_dim_v, n_embd}, 0);
layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, i), {n_embd}, 0);

layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, i), {n_embd}, 0);

layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff_cur}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff_cur}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff_cur, n_embd}, 0);
}
} break;
case LLM_ARCH_GPT2:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
Expand Down Expand Up @@ -7270,6 +7324,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
{
llm = std::make_unique<llm_build_plamo2>(*this, params);
} break;
case LLM_ARCH_PLAMO3:
{
llm = std::make_unique<llm_build_plamo3>(*this, params);
} break;
case LLM_ARCH_GPT2:
{
llm = std::make_unique<llm_build_gpt2>(*this, params);
Expand Down Expand Up @@ -7762,6 +7820,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_PHIMOE:
case LLM_ARCH_PLAMO:
case LLM_ARCH_PLAMO2:
case LLM_ARCH_PLAMO3:
case LLM_ARCH_GEMMA:
case LLM_ARCH_GEMMA2:
case LLM_ARCH_GEMMA3:
Expand Down
4 changes: 4 additions & 0 deletions src/models/models.h
Original file line number Diff line number Diff line change
Expand Up @@ -395,6 +395,10 @@ struct llm_build_plamo : public llm_graph_context {
llm_build_plamo(const llama_model & model, const llm_graph_params & params);
};

struct llm_build_plamo3 : public llm_graph_context {
llm_build_plamo3(const llama_model & model, const llm_graph_params & params);
};

struct llm_build_plm : public llm_graph_context {
llm_build_plm(const llama_model & model, const llm_graph_params & params);
};
Expand Down
Loading
Loading