@@ -7502,78 +7502,154 @@ void ggml_compute_forward_ssm_conv(
75027502}
75037503
75047504// ggml_compute_forward_ssm_scan
7505-
75067505static void ggml_compute_forward_ssm_scan_f32 (
7507- const ggml_compute_params * params,
7508- ggml_tensor * dst) {
7509- const ggml_tensor * src0 = dst->src [0 ]; // s
7510- const ggml_tensor * src1 = dst->src [1 ]; // x
7511- const ggml_tensor * src2 = dst->src [2 ]; // dt
7512- const ggml_tensor * src3 = dst->src [3 ]; // A
7513- const ggml_tensor * src4 = dst->src [4 ]; // B
7514- const ggml_tensor * src5 = dst->src [5 ]; // C
7506+ const struct ggml_compute_params * params,
7507+ struct ggml_tensor * dst) {
7508+ const struct ggml_tensor * src0 = dst->src [0 ]; // s {d_state, dim, n_head, n_seqs+}
7509+ const struct ggml_tensor * src1 = dst->src [1 ]; // x {dim, n_head, n_seq_tokens, n_seqs}
7510+ const struct ggml_tensor * src2 = dst->src [2 ]; // dt {n_head, n_seq_tokens, n_seqs}
7511+ const struct ggml_tensor * src3 = dst->src [3 ]; // A {d_state, n_head} or {1, n_head}
7512+ const struct ggml_tensor * src4 = dst->src [4 ]; // B {d_state, n_group, n_seq_tokens, n_seqs}
7513+ const struct ggml_tensor * src5 = dst->src [5 ]; // C {d_state, n_group, n_seq_tokens, n_seqs}
7514+ const struct ggml_tensor * src6 = dst->src [6 ]; // ids {n_seqs}
75157515
75167516 const int ith = params->ith ;
75177517 const int nth = params->nth ;
75187518
7519- const int64_t nc = src0->ne [0 ]; // d_state
7520- const int64_t nr = src0->ne [1 ]; // d_inner
7521- const int64_t n_t = src1->ne [1 ]; // number of tokens per sequence
7522- const int64_t n_s = src0->ne [2 ]; // number of sequences in the batch
7519+ const int64_t nc = src0->ne [0 ]; // d_state
7520+ const int64_t nr = src0->ne [1 ]; // dim
7521+ const int64_t nh = src1->ne [1 ]; // n_head
7522+ const int64_t ng = src4->ne [1 ];
7523+ const int64_t nt = src1->ne [2 ]; // number of tokens per sequence
7524+ const int64_t ns = src1->ne [3 ]; // number of sequences in the batch
7525+
7526+ // can't use ggml_nbytes because src1 is not necessarily contiguous
7527+ const int64_t s_off = ggml_nelements (src1) * ggml_element_size (src1);
75237528
7524- GGML_ASSERT (ggml_nelements (src1) + ggml_nelements (src0) == ggml_nelements (dst));
7529+ GGML_ASSERT (ggml_nelements (src1) + nc*nr*nh*ns == ggml_nelements (dst));
75257530 GGML_ASSERT (src0->nb [0 ] == sizeof (float ));
75267531 GGML_ASSERT (src1->nb [0 ] == sizeof (float ));
75277532 GGML_ASSERT (src2->nb [0 ] == sizeof (float ));
75287533 GGML_ASSERT (src3->nb [0 ] == sizeof (float ));
75297534 GGML_ASSERT (src4->nb [0 ] == sizeof (float ));
75307535 GGML_ASSERT (src5->nb [0 ] == sizeof (float ));
7531- // required for the dot product between s and C
7532- GGML_ASSERT (src0->nb [1 ] == src0->ne [0 ]*sizeof (float ));
7533- // required for per-sequence offsets for states
7534- GGML_ASSERT (src0->nb [2 ] == src0->ne [0 ]*src0->ne [1 ]*sizeof (float ));
7535- // required to get correct offset for state destination (i.e. src1->nb[3])
7536- GGML_ASSERT (src1->nb [3 ] == src1->ne [0 ]*src1->ne [1 ]*src1->ne [2 ]*sizeof (float ));
7536+ GGML_ASSERT (src6->nb [0 ] == sizeof (int32_t ));
7537+ // allows optimizing the modulo since n_group should be a power of 2
7538+ GGML_ASSERT ((ng & -ng) == ng);
7539+
7540+ // heads per thread
7541+ const int dh = (nh + nth - 1 )/nth;
7542+
7543+ // head range for this thread
7544+ const int ih0 = dh*ith;
7545+ const int ih1 = MIN (ih0 + dh, nh);
7546+
7547+ const int32_t * ids = (const int32_t *) src6->data ;
7548+
7549+ for (int i3 = 0 ; i3 < ns; ++i3) {
7550+ const float * s0 = (const float *) ((const char *) src0->data + ids[i3]*(src0->nb [3 ])); // {d_state, dim, nh, ns}
7551+ float * s = ( float *) (( char *) dst->data + i3*(src0->nb [3 ]) + s_off); // {d_state, dim, nh, ns}
7552+
7553+ for (int i2 = 0 ; i2 < nt; ++i2) {
7554+ const float * x = (const float *) ((const char *) src1->data + i2*(src1->nb [2 ]) + i3*(src1->nb [3 ])); // {dim, nh, nt, ns}
7555+ const float * dt = (const float *) ((const char *) src2->data + i2*(src2->nb [1 ]) + i3*(src2->nb [2 ])); // {nh, nt, ns}
7556+ const float * A = (const float *) ((const char *) src3->data ); // {d_state, nh} or {1, nh}
7557+ const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb [2 ]) + i3*(src4->nb [3 ])); // {d_state, ng, nt, ns}
7558+ const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb [2 ]) + i3*(src5->nb [3 ])); // {d_state, ng, nt, ns}
7559+ float * y = ( float *) (( char *) dst->data + i2*(nh*nr*sizeof (float )) + i3*(nt*nh*nr*sizeof (float ))); // {dim, nh, nt, ns}
7560+
7561+ if (src3->ne [0 ] == 1 ) {
7562+ // Mamba-2 has a scalar decay factor per head; dA can be outside the state-wise loop
7563+
7564+ // n_head
7565+ for (int h = ih0; h < ih1; ++h) {
7566+ // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
7567+ const float dt_soft_plus = dt[h] <= 20 .0f ? log1pf (expf (dt[h])) : dt[h];
7568+ const float dA = expf (dt_soft_plus * A[h]);
7569+
7570+ // dim
7571+ for (int i1 = 0 ; i1 < nr; ++i1) {
7572+ const int ii = i1 + h*nr;
7573+ const float x_dt = x[ii] * dt_soft_plus;
7574+ float sumf = 0 .0f ;
7575+ #if defined(GGML_SIMD)
7576+ const int np = (nc & ~(GGML_F32_STEP - 1 ));
75377577
7538- // rows per thread
7539- const int dr = (nr + nth - 1 )/nth;
7578+ GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
75407579
7541- // row range for this thread
7542- const int ir0 = dr*ith;
7543- const int ir1 = MIN (ir0 + dr, nr);
7544- const int ir = ir1 - ir0;
7580+ GGML_F32_VEC adA = GGML_F32_VEC_SET1 (dA);
7581+ GGML_F32_VEC axdt = GGML_F32_VEC_SET1 (x_dt);
75457582
7546- for (int i3 = 0 ; i3 < n_s; ++i3) {
7547- for (int i2 = 0 ; i2 < n_t ; ++i2) {
7548- const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb [1 ]) + i3*(src0->nb [2 ])); // {d_state, d_inner, n_s}
7549- const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb [0 ]) + i2*(src1->nb [1 ]) + i3*(src1->nb [2 ])); // {d_inner, n_t, n_s}
7550- const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb [0 ]) + i2*(src2->nb [1 ]) + i3*(src2->nb [2 ])); // {d_inner, n_t, n_s}
7551- const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb [1 ])); // {d_state, d_inner}
7552- const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb [1 ]) + i3*(src4->nb [2 ])); // {d_state, n_t, n_s}
7553- const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb [1 ]) + i3*(src5->nb [2 ])); // {d_state, n_t, n_s}
7554- float * y = ( float *) (( char *) dst->data + ir0*(src1->nb [0 ]) + i2*(src1->nb [1 ]) + i3*(src1->nb [2 ])); // {d_inner, n_t, n_s}
7555- float * s = ( float *) (( char *) dst->data + ir0*(src0->nb [1 ]) + i3*(src0->nb [2 ]) + src1->nb [3 ]); // {d_state, d_inner, n_s}
7556-
7557- // use the output as the source for the next token-wise iterations
7558- if (i2 > 0 ) { s0 = s; }
7583+ GGML_F32_VEC ax[GGML_F32_ARR];
7584+ GGML_F32_VEC ay[GGML_F32_ARR];
7585+ GGML_F32_VEC az[GGML_F32_ARR];
75597586
7560- // d_inner
7561- for (int i1 = 0 ; i1 < ir; ++i1) {
7562- // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
7563- float dt_soft_plus = dt[i1] <= 20 .0f ? log1pf (expf (dt[i1])) : dt[i1];
7564- float x_dt = x[i1] * dt_soft_plus;
7565- float sumf = 0 .0f ;
7566- // d_state
7567- for (int i0 = 0 ; i0 < nc; ++i0) {
7568- int i = i0 + i1*nc;
7569- // state = prev_state * dA + dB * x
7570- float state = (s0[i] * expf (dt_soft_plus * A[i])) + (B[i0] * x_dt);
7571- // y = rowwise_dotprod(state, C)
7572- sumf += state * C[i0];
7573- s[i] = state;
7587+ for (int i = 0 ; i < np; i += GGML_F32_STEP) {
7588+ for (int j = 0 ; j < GGML_F32_ARR; j++) {
7589+ ax[j] = GGML_F32_VEC_LOAD (s0 + i + j*GGML_F32_EPR + ii*nc);
7590+ ay[j] = GGML_F32_VEC_LOAD (B + i + j*GGML_F32_EPR + (h & (ng - 1 ))*nc);
7591+ az[j] = GGML_F32_VEC_LOAD (C + i + j*GGML_F32_EPR + (h & (ng - 1 ))*nc);
7592+
7593+ ax[j] = GGML_F32_VEC_MUL (ax[j], adA);
7594+ ay[j] = GGML_F32_VEC_MUL (ay[j], axdt);
7595+
7596+ ax[j] = GGML_F32_VEC_ADD (ax[j], ay[j]);
7597+
7598+ sum[j] = GGML_F32_VEC_FMA (sum[j], ax[j], az[j]);
7599+
7600+ GGML_F32_VEC_STORE (s + i + j*GGML_F32_EPR + ii*nc, ax[j]);
7601+ }
7602+ }
7603+
7604+ // reduce sum0..sum3 to sum0
7605+ GGML_F32_VEC_REDUCE (sumf, sum);
7606+ #else
7607+ const int np = 0 ;
7608+ #endif
7609+ // d_state
7610+ for (int i0 = np; i0 < nc; ++i0) {
7611+ const int i = i0 + ii*nc;
7612+ const int ig = i0 + (h & (ng - 1 ))*nc;
7613+ // state = prev_state * dA + dB * x
7614+ const float state = (s0[i] * dA) + (B[ig] * x_dt);
7615+ // y = rowwise_dotprod(state, C)
7616+ sumf += state * C[ig];
7617+ s[i] = state;
7618+ }
7619+ y[ii] = sumf;
7620+ }
7621+ }
7622+ } else {
7623+ // Mamba-1 has an element-wise decay factor for the states
7624+
7625+ // n_head
7626+ for (int h = ih0; h < ih1; ++h) {
7627+ // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
7628+ const float dt_soft_plus = dt[h] <= 20 .0f ? log1pf (expf (dt[h])) : dt[h];
7629+
7630+ // dim
7631+ for (int i1 = 0 ; i1 < nr; ++i1) {
7632+ const int ii = i1 + h*nr;
7633+ const float x_dt = x[ii] * dt_soft_plus;
7634+ float sumf = 0 .0f ;
7635+ // NOTE: can't really use GGML_SIMD here because d_state is usually 16
7636+ // and also because expf is used within the loop.
7637+ // d_state
7638+ for (int i0 = 0 ; i0 < nc; ++i0) {
7639+ const int i = i0 + ii*nc;
7640+ const int ig = i0 + (h & (ng - 1 ))*nc;
7641+ // state = prev_state * dA + dB * x
7642+ const float state = (s0[i] * expf (dt_soft_plus * A[i0 + h*nc])) + (B[ig] * x_dt);
7643+ // y = rowwise_dotprod(state, C)
7644+ sumf += state * C[ig];
7645+ s[i] = state;
7646+ }
7647+ y[ii] = sumf;
7648+ }
75747649 }
7575- y[i1] = sumf;
75767650 }
7651+ // use the output as the source when it's not the first token-wise iteration
7652+ s0 = s;
75777653 }
75787654 }
75797655}
0 commit comments