|
| 1 | +""" |
| 2 | +Custom Parameter Conversions |
| 3 | +============================ |
| 4 | +
|
| 5 | +This example covers defining and using custom parameter post-fitting conversions. |
| 6 | +""" |
| 7 | + |
| 8 | +from specparam import SpectralModel |
| 9 | + |
| 10 | +from specparam.utils.download import load_example_data |
| 11 | + |
| 12 | +# Import the default set of parameter conversions |
| 13 | +from specparam.convert.definitions import check_converters, DEFAULT_CONVERTERS |
| 14 | + |
| 15 | +# Import objects to define parameter conversions |
| 16 | +from specparam.convert.converter import PeriodicParamConverter, AperiodicParamConverter |
| 17 | + |
| 18 | +################################################################################################### |
| 19 | +# Parameter Conversions |
| 20 | +# --------------------- |
| 21 | +# |
| 22 | +# After model fitting, a model object includes the parameters for the model as defined by the |
| 23 | +# fit modes and as arrived at by the fit algorithm. These fit parameters define the model fit, |
| 24 | +# as visualized, for example, by the 'full model' fit, when plotting the model. |
| 25 | +# |
| 26 | +# However, these 'fit' parameters are not necessarily defined in a way that we actually |
| 27 | +# want to analyzed. For this reason, spectral parameterization supports doing post-fitting |
| 28 | +# parameter conversions, whereby after the fitting process, conversions can be applied to |
| 29 | +# the fit parameters. |
| 30 | +# |
| 31 | +# Let's first explore this with an example model fit. |
| 32 | +# |
| 33 | + |
| 34 | +################################################################################################### |
| 35 | + |
| 36 | +# Load example spectra |
| 37 | +freqs = load_example_data('freqs.npy', folder='data') |
| 38 | +powers = load_example_data('spectrum.npy', folder='data') |
| 39 | + |
| 40 | +# Define fitting fit range |
| 41 | +freq_range = [2, 40] |
| 42 | + |
| 43 | +# Initialize and fit an example model |
| 44 | +fm = SpectralModel() |
| 45 | +fm.report(freqs, powers, freq_range) |
| 46 | + |
| 47 | +################################################################################################### |
| 48 | +# |
| 49 | +# In the above, we see the model fit, and reported parameter values. |
| 50 | +# |
| 51 | +# Let's further investigate the different versions of the parameters: 'fit' and 'converted'. |
| 52 | +# |
| 53 | + |
| 54 | +################################################################################################### |
| 55 | + |
| 56 | +# Check the aperiodic fit & converted parameters |
| 57 | +print(fm.results.get_params('aperiodic', version='fit')) |
| 58 | +print(fm.results.get_params('aperiodic', version='converted')) |
| 59 | + |
| 60 | +################################################################################################### |
| 61 | +# |
| 62 | +# In the above, we can see that there are fit parameters, but there is no defined converted |
| 63 | +# version of the parameters, indicating that there are no conversions defined for the |
| 64 | +# aperiodic parameters. |
| 65 | +# |
| 66 | + |
| 67 | +################################################################################################### |
| 68 | + |
| 69 | +# Check the periodic fit & converted parameters, for an example peak |
| 70 | +print(fm.results.get_params('periodic', version='fit')[1, :]) |
| 71 | +print(fm.results.get_params('periodic', version='converted')[1, :]) |
| 72 | + |
| 73 | +################################################################################################### |
| 74 | +# |
| 75 | +# In this case, there are both fit and converted versions of the parameters, |
| 76 | +# and they are not the same! |
| 77 | +# |
| 78 | +# There are defined periodic parameter conversions that are being done. Note also that it is |
| 79 | +# the converted versions of the parameters that are printed in the report above. |
| 80 | +# |
| 81 | + |
| 82 | +################################################################################################### |
| 83 | +# Default Converters |
| 84 | +# ------------------ |
| 85 | +# |
| 86 | +# To see what the conversions are that are being defined, we can examine the set of |
| 87 | +# DEFAULT_CONVERTERS, which we imported from the module. |
| 88 | +# |
| 89 | + |
| 90 | +################################################################################################### |
| 91 | + |
| 92 | +# Check the default model fit parameters |
| 93 | +DEFAULT_CONVERTERS |
| 94 | + |
| 95 | +################################################################################################### |
| 96 | +# Change Default Converters |
| 97 | +# ~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 98 | +# |
| 99 | +# Next, we can explore changing which converters we use. |
| 100 | +# |
| 101 | +# To start with a simple example, let's turn off all parameter conversions. |
| 102 | +# |
| 103 | +# Note that as a shortcut, we can get a parameter definition from the Modes sub-object that |
| 104 | +# is part of the model object, specified to return a dictionary. |
| 105 | +# |
| 106 | + |
| 107 | +################################################################################################### |
| 108 | + |
| 109 | +# Get a dictionary representation of current parameters |
| 110 | +null_converters = fm.modes.get_params('dict') |
| 111 | +null_converters |
| 112 | + |
| 113 | +################################################################################################### |
| 114 | + |
| 115 | +# Initialize & fit a new model with null converters |
| 116 | +fm1 = SpectralModel(converters=null_converters) |
| 117 | +fm1.report(freqs, powers, freq_range) |
| 118 | + |
| 119 | +################################################################################################### |
| 120 | +# |
| 121 | +# In the above no parameter conversions were applied! |
| 122 | +# |
| 123 | + |
| 124 | +################################################################################################### |
| 125 | + |
| 126 | +# Check that there are no converted parameters - should all be nan |
| 127 | +print(fm1.results.get_params('aperiodic', version='converted')) |
| 128 | +print(fm1.results.get_params('periodic', version='converted')) |
| 129 | + |
| 130 | +################################################################################################### |
| 131 | +# |
| 132 | +# Next, we can explore specifying to use different built in parameter conversions. |
| 133 | +# |
| 134 | +# To do so, we can explore the available options with the |
| 135 | +# :func:`~specparam.convert.definitions.check_converters` function. |
| 136 | +# |
| 137 | + |
| 138 | +################################################################################################### |
| 139 | + |
| 140 | +# Check the available aperiodic parameter converters |
| 141 | +check_converters('aperiodic') |
| 142 | + |
| 143 | +################################################################################################### |
| 144 | + |
| 145 | +# Check the available periodic parameter converters |
| 146 | +check_converters('periodic') |
| 147 | + |
| 148 | +################################################################################################### |
| 149 | +# |
| 150 | +# Now we can select different conversions from these options. |
| 151 | +# |
| 152 | + |
| 153 | +################################################################################################### |
| 154 | + |
| 155 | +# Take a copy of the null converters dictionary |
| 156 | +selected_converters = null_converters.copy() |
| 157 | + |
| 158 | +# Specify a different |
| 159 | +selected_converters['periodic']['pw'] = 'lin_sub' |
| 160 | + |
| 161 | +################################################################################################### |
| 162 | + |
| 163 | +# Initialize & fit a new model with selected converters |
| 164 | +fm2 = SpectralModel(converters=selected_converters) |
| 165 | +fm2.report(freqs, powers, freq_range) |
| 166 | + |
| 167 | +################################################################################################### |
| 168 | +# |
| 169 | +# In the above, the converted and reported parameter outputs used the specified conversions! |
| 170 | +# |
| 171 | + |
| 172 | +################################################################################################### |
| 173 | +# Create Custom Converters |
| 174 | +# ------------------------ |
| 175 | +# |
| 176 | +# Finally, let's explore defining some custom parameter conversions. |
| 177 | +# |
| 178 | +# To do so, for any parameter that we wish to define a conversion for, we can define a |
| 179 | +# callable that implements our desired conversion. |
| 180 | +# |
| 181 | +# In order for specparam to be able to use the callable, they must follow properties: |
| 182 | +# |
| 183 | +# - for aperiodic component conversions : callable should accept inputs `fit_value` and `model` |
| 184 | +# - for periodic component conversions: callable should accept inputs `fit_value`, `model`, and `peak_ind` |
| 185 | +# |
| 186 | + |
| 187 | +################################################################################################### |
| 188 | + |
| 189 | +# Take a copy of the null converters dictionary |
| 190 | +custom_converters = null_converters.copy() |
| 191 | + |
| 192 | +################################################################################################### |
| 193 | +# |
| 194 | +# To start with, let's define a simple conversion for the aperiodic exponent to convert the |
| 195 | +# fit value into the equivalent spectral slope value (the negative of the exponent value). |
| 196 | +# |
| 197 | +# To define this simple conversion we can even use a lambda function. |
| 198 | +# |
| 199 | + |
| 200 | +################################################################################################### |
| 201 | + |
| 202 | +# Create a custom exponent converter as a lambda function |
| 203 | +custom_converters['aperiodic']['exponent'] = lambda param, model : -param |
| 204 | + |
| 205 | +################################################################################################### |
| 206 | +# |
| 207 | +# Let's also define a conversion for a periodic parameter. As an example, we can define a |
| 208 | +# conversion of the fit center frequency value that finds and update to the closest frequency |
| 209 | +# value that actually occurs in the frequency definition. For this case, we will implement |
| 210 | +# conversion function. |
| 211 | +# |
| 212 | + |
| 213 | +################################################################################################### |
| 214 | + |
| 215 | +# Import utility function to find nearest index |
| 216 | +from specparam.utils.select import nearest_ind |
| 217 | + |
| 218 | +# Define a function to update the center frequency |
| 219 | +def update_cf(fit_value, model, peak_ind): |
| 220 | + """Updates center frequency to be closest existing frequency value.""" |
| 221 | + |
| 222 | + f_ind = nearest_ind(model.data.freqs, fit_value) |
| 223 | + new_cf = model.data.freqs[f_ind] |
| 224 | + |
| 225 | + return new_cf |
| 226 | + |
| 227 | +################################################################################################### |
| 228 | + |
| 229 | +# Add the custom cf converter function to function collection |
| 230 | +custom_converters['periodic']['cf'] = update_cf |
| 231 | + |
| 232 | +################################################################################################### |
| 233 | +# |
| 234 | +# Now we have defined our custom converters, we can use them in the fitting process! |
| 235 | +# |
| 236 | + |
| 237 | +################################################################################################### |
| 238 | + |
| 239 | +# Initialize & fit a new model with custom converters |
| 240 | +fm3 = SpectralModel(converters=custom_converters) |
| 241 | +fm3.report(freqs, powers, freq_range) |
| 242 | + |
| 243 | +################################################################################################### |
| 244 | +# |
| 245 | +# In the above report, our custom parameter conversions were used. |
| 246 | +# |
| 247 | + |
| 248 | +################################################################################################### |
| 249 | +# Parameter Converter Objects |
| 250 | +# --------------------------- |
| 251 | +# |
| 252 | +# In the above, we defined custom parameter converters by directly passing in callables that |
| 253 | +# implement our desired conversions. As we've seen above, this works to pass in conversions |
| 254 | +# |
| 255 | +# However, only passing in the callable is a bit light on details and description. If you |
| 256 | +# want to implement parameter conversions using an approach that keeps track of additional |
| 257 | +# description of the approach, you can use the |
| 258 | +# :class:`~specparam.convert.converter.AperiodicParamConverter` and |
| 259 | +# :class:`~specparam.convert.converter.PeriodicParamConverter` objects to |
| 260 | +# |
| 261 | + |
| 262 | +################################################################################################### |
| 263 | + |
| 264 | +# Define the exponent to slope conversion as a converter object |
| 265 | +exp_slope_converter = AperiodicParamConverter( |
| 266 | + parameter='exponent', |
| 267 | + name='slope', |
| 268 | + description='Convert the fit exponent value to the equivalent spectral slope value.', |
| 269 | + function=lambda param, model : -param, |
| 270 | +) |
| 271 | + |
| 272 | +# Define the center frequency fixed frequency converter as a converter object |
| 273 | +cf_fixed_freq_converter = PeriodicParamConverter( |
| 274 | + parameter='cf', |
| 275 | + name='fixed_freq', |
| 276 | + description='Convert the fit center frequency value to a fixed frequency value.', |
| 277 | + function=update_cf, |
| 278 | +) |
| 279 | + |
| 280 | +################################################################################################### |
| 281 | + |
| 282 | +# Take a new copy of the null converters dictionary & add |
| 283 | +custom_converters2 = null_converters.copy() |
| 284 | +custom_converters['aperiodic']['exponent'] = exp_slope_converter |
| 285 | +custom_converters2['periodic']['cf'] = cf_fixed_freq_converter |
| 286 | + |
| 287 | +################################################################################################### |
| 288 | +# |
| 289 | +# Same as before, we can now use our custom converter definitions in the model fitting process. |
| 290 | +# |
| 291 | + |
| 292 | +################################################################################################### |
| 293 | + |
| 294 | +# Initialize & fit a new model with custom converters |
| 295 | +fm4 = SpectralModel(converters=custom_converters2) |
| 296 | +fm4.report(freqs, powers, freq_range) |
| 297 | + |
| 298 | +################################################################################################### |
| 299 | +# Adding New Parameter Conversions to the Module |
| 300 | +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 301 | +# |
| 302 | +# As a final note, if you look into the set of 'built-in' parameter conversions that are |
| 303 | +# available within the module, you will see that these are defined in the same way as done here, |
| 304 | +# using the conversion objects introduced above. The only difference is that they are defined |
| 305 | +# within the module and therefore can be accessed via their name, as a shortcut, |
| 306 | +# rather than the user having to pass in their own full definitions. |
| 307 | +# |
| 308 | +# This also means that if you have a custom parameter conversion that you think would be of |
| 309 | +# interest to other specparam users, once the ParamConverter object is defined it is quite |
| 310 | +# easy to add this to the module as a new default option. If you would be interested in |
| 311 | +# suggesting a mode be added to the module, feel free to open an issue and/or pull request. |
| 312 | +# |
0 commit comments