Skip to content

Commit e8d38d0

Browse files
committed
Adds Doge model implementation with dynamic attention
Introduces a new transformer model architecture featuring dynamic masked attention (DMA) mechanism that adaptively masks tokens based on learned importance scores. The implementation includes support for mixture of experts (MoE) with cross-domain routing, RoPE positional embeddings, and flexible attention backends. Key features include configurable sliding window attention, dynamic masking for sparse attention patterns, and efficient expert routing for scalable model capacity.
1 parent 39ddb40 commit e8d38d0

File tree

2 files changed

+1063
-0
lines changed

2 files changed

+1063
-0
lines changed
Lines changed: 241 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,241 @@
1+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2+
# This file was automatically generated from src/transformers/models/doge/modular_doge.py.
3+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
4+
# the file from the modular. If any change should be done, please apply the change to the
5+
# modular_doge.py file directly. One of our CI enforces this.
6+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7+
# coding=utf-8
8+
# Copyright 2025 Jingze Shi and the HuggingFace Inc. team. All rights reserved.
9+
#
10+
# The Doge family of small language models is trained by SmallDoge Team.
11+
#
12+
# Licensed under the Apache License, Version 2.0 (the "License");
13+
# you may not use this file except in compliance with the License.
14+
# You may obtain a copy of the License at
15+
#
16+
# http://www.apache.org/licenses/LICENSE-2.0
17+
#
18+
# Unless required by applicable law or agreed to in writing, software
19+
# distributed under the License is distributed on an "AS IS" BASIS,
20+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21+
# See the License for the specific language governing permissions and
22+
# limitations under the License.
23+
from transformers.configuration_utils import PretrainedConfig
24+
from transformers.modeling_rope_utils import rope_config_validation
25+
26+
27+
class DogeConfig(PretrainedConfig):
28+
r"""
29+
This is the configuration class to store the configuration of a [`DogeModel`]. It is used to instantiate an Doge
30+
model according to the specified arguments, defining the model architecture like [SmallDoge/Doge-320M](https://huggingface.co/SmallDoge/Doge-320M).
31+
32+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33+
documentation from [`PretrainedConfig`] for more information.
34+
35+
Args:
36+
vocab_size (`int`, *optional*, defaults to 32768):
37+
Vocabulary size of the Doge2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`DogeModel`]
38+
hidden_size (`int`, *optional*, defaults to 1024):
39+
Dimension of the hidden representations.
40+
intermediate_size (`int`, *optional*, defaults to 2048):
41+
Dimension of the MLP representations.
42+
num_hidden_layers (`int`, *optional*, defaults to 32):
43+
Number of hidden layers in the Transformer decoder.
44+
hidden_dropout (`float`, *optional*, defaults to 0.0):
45+
Dropout probability for each sequence transformation and state transformation module.
46+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
47+
The non-linear activation function (function or string) in the decoder.
48+
initializer_range (`float`, *optional*, defaults to 0.02):
49+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
50+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
51+
The epsilon used by the rms normalization layers.
52+
use_cache (`bool`, *optional*, defaults to `True`):
53+
Whether or not the model should return the last key/values attentions (not used by all models). Only
54+
relevant if `config.is_decoder=True`.
55+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
56+
Whether the model's input and output word embeddings should be tied.
57+
max_position_embeddings (`int`, *optional*, defaults to 2048):
58+
The maximum sequence length that this model might ever be used with.
59+
rope_theta (`float`, *optional*, defaults to 10000.0):
60+
The base period of the RoPE embeddings.
61+
rope_scaling (`Dict`, *optional*):
62+
Dictionary containing the scaling configuration for the RoPE embeddings.
63+
NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly.
64+
Doge family of small models use `{ 'rope_type': 'dynamic', 'factor': 4.0, 'original_max_position_embeddings': 2048 }` as the default value.
65+
Expected contents:
66+
`rope_type` (`str`):
67+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation.
68+
`factor` (`float`, *optional*):
69+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings.
70+
In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length.
71+
`original_max_position_embeddings` (`int`, *optional*):
72+
Used with 'dynamic', 'longrope' and 'llama3'.
73+
The original max position embeddings used during pretraining.
74+
`attention_factor` (`float`, *optional*):
75+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
76+
computation.
77+
If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value.
78+
`beta_fast` (`float`, *optional*):
79+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
80+
ramp function. If unspecified, it defaults to 32.
81+
`beta_slow` (`float`, *optional*):
82+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
83+
ramp function. If unspecified, it defaults to 1.
84+
`short_factor` (`List[float]`, *optional*):
85+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<`original_max_position_embeddings`).
86+
Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
87+
`long_factor` (`List[float]`, *optional*):
88+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<`original_max_position_embeddings`).
89+
Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
90+
`low_freq_factor` (`float`, *optional*):
91+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
92+
`high_freq_factor` (`float`, *optional*):
93+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
94+
num_attention_heads (`int`, *optional*, defaults to 8):
95+
Number of attention heads for each attention layer in the Transformer decoder.
96+
num_key_value_heads (`int`, *optional*):
97+
This is the number of key_value heads that should be used to implement Grouped Query Attention.
98+
If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
99+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used.
100+
When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group.
101+
For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf).
102+
If it is not specified, will default to `num_attention_heads`.
103+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
104+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
105+
attention_dropout (`float`, *optional*, defaults to 0.0):
106+
The dropout ratio for the attention probabilities.
107+
mlp_bias (`bool`, *optional*, defaults to `False`):
108+
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
109+
sliding_window (`int`, *optional*):
110+
Sliding window attention window size. If not specified, will default to `None`.
111+
keep_window_size (`int`, *optional*, defaults to 2048):
112+
The window size of tokens that are not dynamically masked, and dynamic masking is only performed when the sequence length exceeds this value.
113+
is_moe (`bool`, *optional*, defaults to `False`):
114+
Whether to use the Cross Domain Mixture of Experts, if `True`, the MoE will inherit the MLP to initialize.
115+
num_experts (`int`, *optional*, defaults to 16384):
116+
Number of routed experts in the model. This is only used when `is_moe=True`.
117+
num_experts_per_tok (`int`, *optional*, defaults to 64):
118+
Number of selected experts to route per-token.
119+
norm_topk_prob (`bool`, *optional*, defaults to `False`):
120+
Whether to normalize the topk probabilities.
121+
output_router_logits (`bool`, *optional*, defaults to `False`):
122+
Whether or not the router logits should be returned by the model. Enabling this will also
123+
allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
124+
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
125+
The aux loss factor for the total loss.
126+
127+
```python
128+
>>> from transformers import DogeConfig, DogeModel
129+
130+
>>> # Initializing a Doge-320M style configuration
131+
>>> configuration = DogeConfig()
132+
133+
>>> # Initializing a model from the Doge-320M style configuration
134+
>>> model = DogeModel(configuration)
135+
136+
>>> # Accessing the model configuration
137+
>>> configuration = model.config
138+
```"""
139+
140+
model_type = "doge"
141+
keys_to_ignore_at_inference = ["past_key_values"]
142+
# Default tensor parallel plan for base model `DogeModel`
143+
base_model_tp_plan = {
144+
"layers.*.self_attn.q_proj": "colwise",
145+
"layers.*.self_attn.k_proj": "colwise",
146+
"layers.*.self_attn.v_proj": "colwise",
147+
"layers.*.self_attn.dt_proj": "rowwise",
148+
"layers.*.self_attn.o_proj": "rowwise",
149+
"layers.*.input_layernorm.weight": "sequence_parallel",
150+
"layers.*.input_residual.weight": "sequence_parallel",
151+
"layers.*.post_attention_layernorm.weight": "sequence_parallel",
152+
"layers.*.post_attention_residual.weight": "sequence_parallel",
153+
"norm.weight": "sequence_parallel",
154+
"layers.*.mlp.gate_proj": "colwise",
155+
"layers.*.mlp.up_proj": "colwise",
156+
"layers.*.mlp.down_proj": "rowwise",
157+
"layers.*.mlp.router_gate": "colwise_rep",
158+
"layers.*.mlp.down_embed": "rowwise_rep",
159+
"layers.*.mlp.up_embed": "rowwise_rep",
160+
}
161+
base_model_pp_plan = {
162+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
163+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
164+
"norm": (["hidden_states"], ["hidden_states"]),
165+
}
166+
167+
def __init__(
168+
self,
169+
vocab_size=32768,
170+
hidden_size=1024,
171+
intermediate_size=2048,
172+
num_hidden_layers=32,
173+
hidden_dropout=0.0,
174+
hidden_act="silu",
175+
initializer_range=0.02,
176+
rms_norm_eps=1e-06,
177+
use_cache=True,
178+
tie_word_embeddings=False,
179+
max_position_embeddings=2048,
180+
rope_theta=10000.0,
181+
rope_scaling=None,
182+
num_attention_heads=8,
183+
num_key_value_heads=None,
184+
attention_bias=False,
185+
attention_dropout=0.0,
186+
mlp_bias=False,
187+
sliding_window=None,
188+
keep_window_size=2048,
189+
is_moe=False,
190+
num_experts=16384,
191+
num_experts_per_tok=64,
192+
norm_topk_prob=False,
193+
output_router_logits=False,
194+
router_aux_loss_coef=0.001,
195+
**kwargs,
196+
):
197+
self.vocab_size = vocab_size
198+
self.hidden_size = hidden_size
199+
self.intermediate_size = intermediate_size
200+
self.num_hidden_layers = num_hidden_layers
201+
202+
self.hidden_dropout = hidden_dropout
203+
self.hidden_act = hidden_act
204+
self.initializer_range = initializer_range
205+
self.rms_norm_eps = rms_norm_eps
206+
self.use_cache = use_cache
207+
208+
self.max_position_embeddings = max_position_embeddings
209+
self.rope_theta = rope_theta
210+
self.rope_scaling = rope_scaling
211+
self.num_attention_heads = num_attention_heads
212+
self.num_key_value_heads = num_key_value_heads
213+
self.attention_bias = attention_bias
214+
self.attention_dropout = attention_dropout
215+
self.mlp_bias = mlp_bias
216+
self.sliding_window = sliding_window
217+
self.keep_window_size = keep_window_size
218+
self.is_moe = is_moe
219+
self.num_experts = num_experts
220+
self.num_experts_per_tok = num_experts_per_tok
221+
self.norm_topk_prob = norm_topk_prob
222+
self.output_router_logits = output_router_logits
223+
self.router_aux_loss_coef = router_aux_loss_coef
224+
225+
# Validate the correctness of rotary position embeddings parameters
226+
# BC: if there is a 'type' field, copy it it to 'rope_type'.
227+
if self.rope_scaling is not None and "type" in self.rope_scaling:
228+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
229+
rope_config_validation(self)
230+
231+
# for backward compatibility
232+
if num_key_value_heads is None:
233+
self.num_key_value_heads = num_attention_heads
234+
235+
super().__init__(
236+
tie_word_embeddings=tie_word_embeddings,
237+
**kwargs,
238+
)
239+
240+
241+
__all__ = ["DogeConfig"]

0 commit comments

Comments
 (0)