|
| 1 | +"""Demo script showing enhanced NAV transition metrics. |
| 2 | +
|
| 3 | +This script demonstrates the comprehensive metrics now collected by the NAV |
| 4 | +(Transition) operator, including regime classification, scaling factors, and |
| 5 | +latency tracking. |
| 6 | +""" |
| 7 | + |
| 8 | +from tnfr.structural import create_nfr, run_sequence |
| 9 | +from tnfr.operators.definitions import Silence, Transition, Coherence |
| 10 | +from tnfr.alias import get_attr |
| 11 | +from tnfr.constants.aliases import ALIAS_VF, ALIAS_THETA, ALIAS_DNFR, ALIAS_EPI |
| 12 | +import json |
| 13 | + |
| 14 | + |
| 15 | +def print_metrics(metrics: dict, title: str): |
| 16 | + """Pretty print metrics.""" |
| 17 | + print(f"\n{'='*60}") |
| 18 | + print(f"{title}") |
| 19 | + print('='*60) |
| 20 | + |
| 21 | + # Core identification |
| 22 | + print(f"Operator: {metrics['operator']} ({metrics['glyph']})") |
| 23 | + |
| 24 | + # Regime classification |
| 25 | + print(f"\nRegime Classification:") |
| 26 | + print(f" Origin: {metrics['regime_origin']}") |
| 27 | + print(f" Destination: {metrics['regime_destination']}") |
| 28 | + print(f" Type: {metrics['transition_type']}") |
| 29 | + |
| 30 | + # Phase metrics |
| 31 | + print(f"\nPhase Metrics:") |
| 32 | + print(f" Magnitude: {metrics['phase_shift_magnitude']:.4f} rad") |
| 33 | + print(f" Signed: {metrics['phase_shift_signed']:.4f} rad") |
| 34 | + print(f" Final: {metrics['theta_final']:.4f} rad") |
| 35 | + |
| 36 | + # Structural scaling |
| 37 | + print(f"\nStructural Scaling:") |
| 38 | + print(f" νf scaling: {metrics['vf_scaling_factor']:.4f}x") |
| 39 | + print(f" ΔNFR damping: {metrics['dnfr_damping_ratio']:.4f}x") |
| 40 | + if metrics['epi_preservation'] is not None: |
| 41 | + print(f" EPI preservation: {metrics['epi_preservation']:.4f}") |
| 42 | + |
| 43 | + # Deltas |
| 44 | + print(f"\nChanges:") |
| 45 | + print(f" Δνf: {metrics['delta_vf']:+.4f}") |
| 46 | + print(f" ΔΔNFR: {metrics['delta_dnfr']:+.4f}") |
| 47 | + |
| 48 | + # Latency |
| 49 | + if metrics['latency_duration'] is not None: |
| 50 | + print(f"\nLatency:") |
| 51 | + print(f" Duration: {metrics['latency_duration']:.6f} seconds") |
| 52 | + |
| 53 | + # Status |
| 54 | + print(f"\nStatus:") |
| 55 | + print(f" Transition complete: {metrics['transition_complete']}") |
| 56 | + |
| 57 | + |
| 58 | +def demo_latent_to_active(): |
| 59 | + """Demonstrate latent → active reactivation.""" |
| 60 | + print("\n" + "="*60) |
| 61 | + print("DEMO 1: Latent → Active Reactivation") |
| 62 | + print("="*60) |
| 63 | + |
| 64 | + # Create node and apply silence |
| 65 | + G, node = create_nfr("demo1", epi=0.5, vf=0.8) |
| 66 | + G.graph["COLLECT_OPERATOR_METRICS"] = True |
| 67 | + |
| 68 | + print("\n1. Initial state:") |
| 69 | + print(f" EPI={get_attr(G.nodes[node], ALIAS_EPI, 0.0):.4f}, " |
| 70 | + f"νf={get_attr(G.nodes[node], ALIAS_VF, 0.0):.4f}") |
| 71 | + |
| 72 | + # Apply silence to enter latency |
| 73 | + run_sequence(G, node, [Silence()]) |
| 74 | + print("\n2. After Silence (SHA):") |
| 75 | + print(f" EPI={get_attr(G.nodes[node], ALIAS_EPI, 0.0):.4f}, " |
| 76 | + f"νf={get_attr(G.nodes[node], ALIAS_VF, 0.0):.4f}, " |
| 77 | + f"latent={G.nodes[node].get('latent', False)}") |
| 78 | + |
| 79 | + # Apply transition |
| 80 | + Transition()(G, node) |
| 81 | + print("\n3. After Transition (NAV):") |
| 82 | + print(f" EPI={get_attr(G.nodes[node], ALIAS_EPI, 0.0):.4f}, " |
| 83 | + f"νf={get_attr(G.nodes[node], ALIAS_VF, 0.0):.4f}, " |
| 84 | + f"latent={G.nodes[node].get('latent', False)}") |
| 85 | + |
| 86 | + # Show metrics |
| 87 | + metrics = G.graph["operator_metrics"][-1] |
| 88 | + print_metrics(metrics, "Reactivation Metrics") |
| 89 | + |
| 90 | + # Verify expectations |
| 91 | + assert metrics["transition_type"] == "reactivation" |
| 92 | + assert metrics["regime_origin"] == "latent" |
| 93 | + assert metrics["vf_scaling_factor"] > 1.0 # νf increased |
| 94 | + assert metrics["latency_duration"] is not None |
| 95 | + |
| 96 | + print("\n✓ Latent → Active reactivation successful!") |
| 97 | + |
| 98 | + |
| 99 | +def demo_active_to_active(): |
| 100 | + """Demonstrate active → active standard transition.""" |
| 101 | + print("\n" + "="*60) |
| 102 | + print("DEMO 2: Active → Active Standard Transition") |
| 103 | + print("="*60) |
| 104 | + |
| 105 | + # Create node in active regime |
| 106 | + G, node = create_nfr("demo2", epi=0.4, vf=0.6) |
| 107 | + G.graph["COLLECT_OPERATOR_METRICS"] = True |
| 108 | + |
| 109 | + print("\n1. Initial state (active regime):") |
| 110 | + print(f" EPI={get_attr(G.nodes[node], ALIAS_EPI, 0.0):.4f}, " |
| 111 | + f"νf={get_attr(G.nodes[node], ALIAS_VF, 0.0):.4f}") |
| 112 | + |
| 113 | + # Apply transition |
| 114 | + Transition()(G, node) |
| 115 | + |
| 116 | + print("\n2. After Transition (NAV):") |
| 117 | + print(f" EPI={get_attr(G.nodes[node], ALIAS_EPI, 0.0):.4f}, " |
| 118 | + f"νf={get_attr(G.nodes[node], ALIAS_VF, 0.0):.4f}") |
| 119 | + |
| 120 | + # Show metrics |
| 121 | + metrics = G.graph["operator_metrics"][-1] |
| 122 | + print_metrics(metrics, "Standard Transition Metrics") |
| 123 | + |
| 124 | + # Verify expectations |
| 125 | + assert metrics["transition_type"] == "regime_change" |
| 126 | + assert metrics["regime_origin"] == "active" |
| 127 | + assert metrics["regime_destination"] == "active" |
| 128 | + # Active transition preserves νf by default |
| 129 | + assert 0.9 <= metrics["vf_scaling_factor"] <= 1.1 |
| 130 | + assert metrics["latency_duration"] is None # No prior silence |
| 131 | + |
| 132 | + print("\n✓ Active → Active transition successful!") |
| 133 | + |
| 134 | + |
| 135 | +def demo_resonant_to_active(): |
| 136 | + """Demonstrate resonant → active stabilization.""" |
| 137 | + print("\n" + "="*60) |
| 138 | + print("DEMO 3: Resonant → Active Stabilization") |
| 139 | + print("="*60) |
| 140 | + |
| 141 | + # Create node in resonant regime (high EPI and νf) |
| 142 | + G, node = create_nfr("demo3", epi=0.7, vf=0.9) |
| 143 | + G.graph["COLLECT_OPERATOR_METRICS"] = True |
| 144 | + |
| 145 | + print("\n1. Initial state (resonant regime):") |
| 146 | + print(f" EPI={get_attr(G.nodes[node], ALIAS_EPI, 0.0):.4f}, " |
| 147 | + f"νf={get_attr(G.nodes[node], ALIAS_VF, 0.0):.4f}") |
| 148 | + |
| 149 | + # Apply transition |
| 150 | + Transition()(G, node) |
| 151 | + |
| 152 | + print("\n2. After Transition (NAV):") |
| 153 | + print(f" EPI={get_attr(G.nodes[node], ALIAS_EPI, 0.0):.4f}, " |
| 154 | + f"νf={get_attr(G.nodes[node], ALIAS_VF, 0.0):.4f}") |
| 155 | + |
| 156 | + # Show metrics |
| 157 | + metrics = G.graph["operator_metrics"][-1] |
| 158 | + print_metrics(metrics, "Stabilization Metrics") |
| 159 | + |
| 160 | + # Verify expectations |
| 161 | + assert metrics["regime_origin"] == "resonant" |
| 162 | + # Resonant transition reduces νf slightly for stability |
| 163 | + assert metrics["vf_scaling_factor"] < 1.0 |
| 164 | + assert metrics["vf_scaling_factor"] >= 0.9 |
| 165 | + |
| 166 | + print("\n✓ Resonant → Active stabilization successful!") |
| 167 | + |
| 168 | + |
| 169 | +def demo_phase_wrapping(): |
| 170 | + """Demonstrate phase wrapping at 2π boundary.""" |
| 171 | + print("\n" + "="*60) |
| 172 | + print("DEMO 4: Phase Wrapping at 2π Boundary") |
| 173 | + print("="*60) |
| 174 | + |
| 175 | + # Create node with phase near 2π |
| 176 | + G, node = create_nfr("demo4", epi=0.5, vf=0.6, theta=6.0) |
| 177 | + G.graph["COLLECT_OPERATOR_METRICS"] = True |
| 178 | + |
| 179 | + theta_before = get_attr(G.nodes[node], ALIAS_THETA, 0.0) |
| 180 | + print(f"\n1. Initial phase: {theta_before:.4f} rad (near 2π = {2*3.14159:.4f})") |
| 181 | + |
| 182 | + # Apply transition |
| 183 | + Transition()(G, node) |
| 184 | + |
| 185 | + theta_after = get_attr(G.nodes[node], ALIAS_THETA, 0.0) |
| 186 | + print(f"2. Final phase: {theta_after:.4f} rad") |
| 187 | + |
| 188 | + # Show metrics |
| 189 | + metrics = G.graph["operator_metrics"][-1] |
| 190 | + |
| 191 | + print(f"\nPhase Change:") |
| 192 | + print(f" Raw: {theta_after - theta_before:+.4f} rad") |
| 193 | + print(f" Wrapped: {metrics['phase_shift_signed']:+.4f} rad") |
| 194 | + print(f" Magnitude: {metrics['phase_shift_magnitude']:.4f} rad") |
| 195 | + |
| 196 | + # Verify wrapping |
| 197 | + import math |
| 198 | + assert abs(metrics['phase_shift_signed']) <= math.pi |
| 199 | + print(f"\n✓ Phase correctly wrapped to [-π, π]!") |
| 200 | + |
| 201 | + |
| 202 | +def demo_epi_preservation(): |
| 203 | + """Demonstrate EPI preservation tracking.""" |
| 204 | + print("\n" + "="*60) |
| 205 | + print("DEMO 5: EPI Preservation Tracking") |
| 206 | + print("="*60) |
| 207 | + |
| 208 | + # Create node and stabilize with coherence |
| 209 | + G, node = create_nfr("demo5", epi=0.6, vf=0.7) |
| 210 | + G.graph["COLLECT_OPERATOR_METRICS"] = True |
| 211 | + |
| 212 | + # Apply coherence then transition |
| 213 | + run_sequence(G, node, [Coherence()]) |
| 214 | + epi_before_nav = get_attr(G.nodes[node], ALIAS_EPI, 0.0) |
| 215 | + |
| 216 | + Transition()(G, node) |
| 217 | + epi_after_nav = get_attr(G.nodes[node], ALIAS_EPI, 0.0) |
| 218 | + |
| 219 | + # Show metrics |
| 220 | + metrics = G.graph["operator_metrics"][-1] |
| 221 | + |
| 222 | + print(f"\nEPI Tracking:") |
| 223 | + print(f" Before NAV: {epi_before_nav:.6f}") |
| 224 | + print(f" After NAV: {epi_after_nav:.6f}") |
| 225 | + print(f" Preservation ratio: {metrics['epi_preservation']:.6f}") |
| 226 | + print(f" Drift: {abs(epi_after_nav - epi_before_nav):.6f}") |
| 227 | + |
| 228 | + # Verify preservation |
| 229 | + assert metrics['epi_preservation'] is not None |
| 230 | + assert 0.95 <= metrics['epi_preservation'] <= 1.05 |
| 231 | + print(f"\n✓ EPI identity preserved (< 5% drift)!") |
| 232 | + |
| 233 | + |
| 234 | +if __name__ == "__main__": |
| 235 | + print("\n" + "="*60) |
| 236 | + print("NAV TRANSITION METRICS DEMONSTRATION") |
| 237 | + print("Enhanced metrics for regime classification and scaling") |
| 238 | + print("="*60) |
| 239 | + |
| 240 | + demo_latent_to_active() |
| 241 | + demo_active_to_active() |
| 242 | + demo_resonant_to_active() |
| 243 | + demo_phase_wrapping() |
| 244 | + demo_epi_preservation() |
| 245 | + |
| 246 | + print("\n" + "="*60) |
| 247 | + print("ALL DEMOS COMPLETED SUCCESSFULLY!") |
| 248 | + print("="*60) |
| 249 | + print("\nKey Enhancements:") |
| 250 | + print(" ✓ Regime origin/destination classification") |
| 251 | + print(" ✓ Transition type (reactivation/phase_shift/regime_change)") |
| 252 | + print(" ✓ Phase shift magnitude with proper 2π wrapping") |
| 253 | + print(" ✓ Frequency scaling factor (νf_after / νf_before)") |
| 254 | + print(" ✓ ΔNFR damping ratio") |
| 255 | + print(" ✓ EPI preservation tracking") |
| 256 | + print(" ✓ Latency duration from SHA → NAV") |
| 257 | + print(" ✓ Full backward compatibility") |
| 258 | + print() |
0 commit comments