|
| 1 | +# Getting Started with TNFR 🚀 |
| 2 | + |
| 3 | +This guide will get you up and running with the TNFR Python Engine in minutes. |
| 4 | + |
| 5 | +## Installation |
| 6 | + |
| 7 | +### Using pip (Recommended) |
| 8 | + |
| 9 | +```bash |
| 10 | +pip install tnfr |
| 11 | +``` |
| 12 | + |
| 13 | +**Requirements**: Python ≥ 3.9 |
| 14 | + |
| 15 | +### Optional Dependencies |
| 16 | + |
| 17 | +For enhanced performance and features: |
| 18 | + |
| 19 | +```bash |
| 20 | +# GPU acceleration with JAX |
| 21 | +pip install tnfr[jax] |
| 22 | + |
| 23 | +# PyTorch backend support |
| 24 | +pip install tnfr[torch] |
| 25 | + |
| 26 | +# Visualization tools |
| 27 | +pip install tnfr[viz] |
| 28 | + |
| 29 | +# All optional features |
| 30 | +pip install tnfr[all] |
| 31 | +``` |
| 32 | + |
| 33 | +### From Source |
| 34 | + |
| 35 | +For development or to get the latest features: |
| 36 | + |
| 37 | +```bash |
| 38 | +git clone https://github.com/fermga/TNFR-Python-Engine.git |
| 39 | +cd TNFR-Python-Engine |
| 40 | +pip install -e ".[dev]" |
| 41 | +``` |
| 42 | + |
| 43 | +## Quick Start |
| 44 | + |
| 45 | +### Your First TNFR Network (3 Lines!) |
| 46 | + |
| 47 | +```python |
| 48 | +from tnfr.sdk import TNFRNetwork |
| 49 | + |
| 50 | +# Create, activate, and measure a network |
| 51 | +network = TNFRNetwork("hello_world") |
| 52 | +results = (network |
| 53 | + .add_nodes(10) |
| 54 | + .connect_nodes(0.3, "random") |
| 55 | + .apply_sequence("basic_activation", repeat=3) |
| 56 | + .measure()) |
| 57 | + |
| 58 | +print(results.summary()) |
| 59 | +``` |
| 60 | + |
| 61 | +**Output:** |
| 62 | +``` |
| 63 | +=== TNFR Network Results === |
| 64 | +Network: hello_world |
| 65 | +Nodes: 10 |
| 66 | +Edges: 13 |
| 67 | +Coherence C(t): 0.782 |
| 68 | +Sense Index Si: 0.654 |
| 69 | +Status: STABLE |
| 70 | +``` |
| 71 | + |
| 72 | +### What Just Happened? |
| 73 | + |
| 74 | +Let's break down the code: |
| 75 | + |
| 76 | +1. **`add_nodes(10)`**: Created 10 Resonant Fractal Nodes (NFRs) |
| 77 | + - Each node has an EPI (structural form), νf (frequency), and φ (phase) |
| 78 | + |
| 79 | +2. **`connect_nodes(0.3, "random")`**: Connected nodes randomly |
| 80 | + - 30% connection probability |
| 81 | + - Creates couplings based on phase synchrony |
| 82 | + |
| 83 | +3. **`apply_sequence("basic_activation", repeat=3)`**: Applied operator sequence |
| 84 | + - Emission → Coherence → Resonance |
| 85 | + - Repeated 3 times to stabilize the network |
| 86 | + |
| 87 | +4. **`measure()`**: Calculated network metrics |
| 88 | + - C(t): Total coherence (pattern stability) |
| 89 | + - Si: Sense index (reorganization stability) |
| 90 | + |
| 91 | +## Interactive Learning (5 Minutes) |
| 92 | + |
| 93 | +TNFR includes guided tutorials to learn the concepts: |
| 94 | + |
| 95 | +```python |
| 96 | +from tnfr.tutorials import hello_tnfr |
| 97 | + |
| 98 | +# Guided tour of TNFR fundamentals |
| 99 | +hello_tnfr() |
| 100 | +``` |
| 101 | + |
| 102 | +This interactive tutorial will: |
| 103 | +- ✅ Explain core TNFR concepts |
| 104 | +- ✅ Show you how to create and manipulate networks |
| 105 | +- ✅ Demonstrate structural operators in action |
| 106 | +- ✅ Teach you to interpret coherence metrics |
| 107 | + |
| 108 | +## Core Workflow |
| 109 | + |
| 110 | +Every TNFR application follows this pattern: |
| 111 | + |
| 112 | +```python |
| 113 | +from tnfr.sdk import TNFRNetwork |
| 114 | + |
| 115 | +# 1. Initialize network |
| 116 | +network = TNFRNetwork("my_network") |
| 117 | + |
| 118 | +# 2. Build structure |
| 119 | +network.add_nodes(20, epi_range=(0.8, 1.2)) |
| 120 | +network.connect_nodes(0.4, topology="scale_free") |
| 121 | + |
| 122 | +# 3. Apply operators |
| 123 | +network.apply_operator("emission", target_nodes=[0, 1, 2]) |
| 124 | +network.apply_operator("coherence") |
| 125 | +network.apply_operator("resonance") |
| 126 | + |
| 127 | +# 4. Measure & analyze |
| 128 | +results = network.measure() |
| 129 | +print(f"Coherence: {results.coherence:.3f}") |
| 130 | +print(f"Sense Index: {results.sense_index:.3f}") |
| 131 | + |
| 132 | +# 5. Visualize (optional) |
| 133 | +network.visualize(show_metrics=True) |
| 134 | +``` |
| 135 | + |
| 136 | +## Domain-Specific Examples |
| 137 | + |
| 138 | +### Biological Network |
| 139 | + |
| 140 | +Model cellular communication: |
| 141 | + |
| 142 | +```python |
| 143 | +from tnfr.sdk import TNFRNetwork |
| 144 | + |
| 145 | +# Create a cellular network |
| 146 | +cells = TNFRNetwork("cell_network") |
| 147 | + |
| 148 | +results = (cells |
| 149 | + .add_nodes(20, epi_range=(0.8, 1.2)) # Biological variation |
| 150 | + .connect_nodes(0.3, "scale_free") # Power-law connectivity |
| 151 | + .apply_sequence("therapeutic", repeat=5) # Healing pattern |
| 152 | + .measure()) |
| 153 | + |
| 154 | +print(f"Network health: {results.coherence:.2%}") |
| 155 | +``` |
| 156 | + |
| 157 | +### Social Network |
| 158 | + |
| 159 | +Model information spreading: |
| 160 | + |
| 161 | +```python |
| 162 | +from tnfr.sdk import TNFRNetwork |
| 163 | + |
| 164 | +# Create a social network |
| 165 | +community = TNFRNetwork("social_community") |
| 166 | + |
| 167 | +results = (community |
| 168 | + .add_nodes(50) |
| 169 | + .connect_nodes(0.25, "small_world") # Small-world topology |
| 170 | + .apply_operator("emission", target_nodes=[0]) # Seed information |
| 171 | + .apply_sequence("propagation", repeat=10) # Spread through network |
| 172 | + .measure()) |
| 173 | + |
| 174 | +print(f"Information reach: {results.active_nodes}/{results.total_nodes}") |
| 175 | +``` |
| 176 | + |
| 177 | +### Technology/IoT Network |
| 178 | + |
| 179 | +Model distributed system coordination: |
| 180 | + |
| 181 | +```python |
| 182 | +from tnfr.sdk import TNFRNetwork |
| 183 | + |
| 184 | +# Create IoT sensor network |
| 185 | +sensors = TNFRNetwork("iot_sensors") |
| 186 | + |
| 187 | +results = (sensors |
| 188 | + .add_nodes(30) |
| 189 | + .connect_nodes(0.35, "lattice") # Grid topology |
| 190 | + .apply_sequence("synchronization", repeat=8) # Coordinate sensors |
| 191 | + .measure()) |
| 192 | + |
| 193 | +print(f"Sync quality: {results.sense_index:.3f}") |
| 194 | +``` |
| 195 | + |
| 196 | +## Understanding Results |
| 197 | + |
| 198 | +### Coherence Metrics |
| 199 | + |
| 200 | +After measuring a network, you get these key metrics: |
| 201 | + |
| 202 | +```python |
| 203 | +results = network.measure() |
| 204 | + |
| 205 | +# Total Coherence C(t) [0, 1] |
| 206 | +print(f"C(t): {results.coherence:.3f}") |
| 207 | +# > 0.7: Strong coherence (stable patterns) |
| 208 | +# 0.3-0.7: Moderate coherence (evolving) |
| 209 | +# < 0.3: Weak coherence (fragmentation risk) |
| 210 | + |
| 211 | +# Sense Index Si [0, 1+] |
| 212 | +print(f"Si: {results.sense_index:.3f}") |
| 213 | +# > 0.8: Excellent stability |
| 214 | +# 0.4-0.8: Moderate stability |
| 215 | +# < 0.4: Unstable (changes may cause bifurcation) |
| 216 | + |
| 217 | +# Reorganization Gradient ΔNFR |
| 218 | +print(f"ΔNFR: {results.delta_nfr:.3f}") |
| 219 | +# Positive: Structure expanding |
| 220 | +# Negative: Structure contracting |
| 221 | +# ~0: Equilibrium |
| 222 | +``` |
| 223 | + |
| 224 | +### Network Status |
| 225 | + |
| 226 | +```python |
| 227 | +if results.coherence > 0.7 and results.sense_index > 0.6: |
| 228 | + print("✓ Network is STABLE and healthy") |
| 229 | +elif results.coherence < 0.3: |
| 230 | + print("⚠ Network is FRAGMENTING - apply coherence operators") |
| 231 | +else: |
| 232 | + print("◐ Network is EVOLVING - monitor closely") |
| 233 | +``` |
| 234 | + |
| 235 | +## Built-in Operator Sequences |
| 236 | + |
| 237 | +TNFR provides pre-configured operator sequences for common patterns: |
| 238 | + |
| 239 | +```python |
| 240 | +# Available sequences |
| 241 | +sequences = [ |
| 242 | + "basic_activation", # Emission → Coherence → Resonance |
| 243 | + "therapeutic", # Self-org → Coherence → Regeneration |
| 244 | + "exploration", # Dissonance → Mutation → Coherence |
| 245 | + "propagation", # Emission → Resonance → Coupling |
| 246 | + "synchronization", # Reception → Coherence → Silence |
| 247 | + "stabilization", # Coherence → Silence → Coherence |
| 248 | +] |
| 249 | + |
| 250 | +# Use any sequence |
| 251 | +network.apply_sequence("therapeutic", repeat=5) |
| 252 | +``` |
| 253 | + |
| 254 | +## Visualization |
| 255 | + |
| 256 | +### Basic Network Plot |
| 257 | + |
| 258 | +```python |
| 259 | +network.visualize() |
| 260 | +``` |
| 261 | + |
| 262 | +Shows: |
| 263 | +- Nodes (colored by coherence level) |
| 264 | +- Edges (thickness = coupling strength) |
| 265 | +- Phase synchronization |
| 266 | + |
| 267 | +### Interactive Dashboard |
| 268 | + |
| 269 | +```python |
| 270 | +from tnfr.viz import launch_dashboard |
| 271 | + |
| 272 | +# Launch interactive web dashboard |
| 273 | +launch_dashboard(network) |
| 274 | +``` |
| 275 | + |
| 276 | +Features: |
| 277 | +- Real-time metric updates |
| 278 | +- Operator controls |
| 279 | +- Time-series plots |
| 280 | +- Network graph explorer |
| 281 | + |
| 282 | +### Save Metrics Plot |
| 283 | + |
| 284 | +```python |
| 285 | +import matplotlib.pyplot as plt |
| 286 | + |
| 287 | +# Plot coherence over time |
| 288 | +results.plot_metrics() |
| 289 | +plt.savefig("coherence_evolution.png") |
| 290 | +``` |
| 291 | + |
| 292 | +## Advanced Configuration |
| 293 | + |
| 294 | +### Custom Node Parameters |
| 295 | + |
| 296 | +```python |
| 297 | +# Precise control over node properties |
| 298 | +network.add_nodes( |
| 299 | + count=15, |
| 300 | + epi_range=(0.5, 1.5), # EPI magnitude range |
| 301 | + freq_range=(10, 50), # νf in Hz_str |
| 302 | + phase_sync=True, # Start with synchronized phases |
| 303 | + initial_coherence=0.8 # Target initial C(t) |
| 304 | +) |
| 305 | +``` |
| 306 | + |
| 307 | +### Custom Topology |
| 308 | + |
| 309 | +```python |
| 310 | +# Different network topologies |
| 311 | +network.connect_nodes(0.3, topology="random") # Erdős–Rényi |
| 312 | +network.connect_nodes(0.3, topology="scale_free") # Barabási–Albert |
| 313 | +network.connect_nodes(0.3, topology="small_world") # Watts–Strogatz |
| 314 | +network.connect_nodes(0.3, topology="lattice") # Grid |
| 315 | +``` |
| 316 | + |
| 317 | +### Backend Selection |
| 318 | + |
| 319 | +```python |
| 320 | +from tnfr.sdk import TNFRNetwork |
| 321 | + |
| 322 | +# Choose computational backend |
| 323 | +network = TNFRNetwork("my_net", backend="jax") # GPU-accelerated |
| 324 | +# Options: "numpy" (default), "jax", "torch" |
| 325 | +``` |
| 326 | + |
| 327 | +## Performance Tips |
| 328 | + |
| 329 | +### For Large Networks (>1000 nodes) |
| 330 | + |
| 331 | +```bash |
| 332 | +# Use JAX backend with GPU |
| 333 | +pip install tnfr[jax] |
| 334 | +``` |
| 335 | + |
| 336 | +```python |
| 337 | +network = TNFRNetwork("large_net", backend="jax") |
| 338 | +``` |
| 339 | + |
| 340 | +### Caching |
| 341 | + |
| 342 | +```python |
| 343 | +# Enable intelligent caching for repeated operations |
| 344 | +from tnfr.sdk import TNFRNetwork |
| 345 | + |
| 346 | +network = TNFRNetwork("cached_net", enable_cache=True) |
| 347 | +``` |
| 348 | + |
| 349 | +## Next Steps |
| 350 | + |
| 351 | +Now that you're up and running: |
| 352 | + |
| 353 | +1. **Learn the Theory**: Read [Core Concepts](Core-Concepts.md) to understand the paradigm |
| 354 | +2. **Explore Examples**: Check out [Examples & Use Cases](Examples.md) for your domain |
| 355 | +3. **API Deep Dive**: See the [API Reference](https://tnfr.netlify.app/api/overview/) for advanced features |
| 356 | +4. **Join the Community**: Ask questions in [GitHub Discussions](https://github.com/fermga/TNFR-Python-Engine/discussions) |
| 357 | + |
| 358 | +## Troubleshooting |
| 359 | + |
| 360 | +### Import Errors |
| 361 | + |
| 362 | +```bash |
| 363 | +# If you get "No module named 'tnfr'" |
| 364 | +pip install --upgrade tnfr |
| 365 | + |
| 366 | +# Or for development install |
| 367 | +pip install -e . |
| 368 | +``` |
| 369 | + |
| 370 | +### Low Coherence |
| 371 | + |
| 372 | +If your network has low coherence (<0.3): |
| 373 | + |
| 374 | +```python |
| 375 | +# Apply stabilization sequence |
| 376 | +network.apply_sequence("stabilization", repeat=5) |
| 377 | +results = network.measure() |
| 378 | +``` |
| 379 | + |
| 380 | +### Installation Issues |
| 381 | + |
| 382 | +See [Troubleshooting Guide](https://tnfr.netlify.app/user-guide/TROUBLESHOOTING/) for common issues. |
| 383 | + |
| 384 | +## Getting Help |
| 385 | + |
| 386 | +- 📖 **Documentation**: https://tnfr.netlify.app |
| 387 | +- 💬 **Discussions**: https://github.com/fermga/TNFR-Python-Engine/discussions |
| 388 | +- 🐛 **Issues**: https://github.com/fermga/TNFR-Python-Engine/issues |
| 389 | +- 📧 **Email**: See [CONTRIBUTING.md](https://github.com/fermga/TNFR-Python-Engine/blob/main/CONTRIBUTING.md) |
| 390 | + |
| 391 | +--- |
| 392 | + |
| 393 | +[← Back to Home](Home.md) | [Core Concepts →](Core-Concepts.md) | [Examples →](Examples.md) |
0 commit comments