|
| 1 | +"""Demo of enhanced VAL (Expansion) metrics (Issue #2724). |
| 2 | +
|
| 3 | +This script demonstrates the comprehensive telemetry metrics for the VAL |
| 4 | +operator including bifurcation risk, coherence preservation, fractality |
| 5 | +indicators, network impact, and structural stability. |
| 6 | +""" |
| 7 | + |
| 8 | +from tnfr.alias import set_attr |
| 9 | +from tnfr.constants.aliases import ALIAS_DNFR, ALIAS_D2EPI, ALIAS_THETA |
| 10 | +from tnfr.operators.definitions import Expansion |
| 11 | +from tnfr.structural import create_nfr |
| 12 | + |
| 13 | + |
| 14 | +def print_metrics_section(title: str, metrics: dict, keys: list[str]) -> None: |
| 15 | + """Print a section of metrics.""" |
| 16 | + print(f"\n{title}") |
| 17 | + print("=" * len(title)) |
| 18 | + for key in keys: |
| 19 | + if key in metrics: |
| 20 | + value = metrics[key] |
| 21 | + if isinstance(value, float): |
| 22 | + print(f" {key}: {value:.4f}") |
| 23 | + elif isinstance(value, bool): |
| 24 | + print(f" {key}: {'✓' if value else '✗'}") |
| 25 | + else: |
| 26 | + print(f" {key}: {value}") |
| 27 | + |
| 28 | + |
| 29 | +def demo_healthy_expansion(): |
| 30 | + """Demonstrate healthy expansion with all indicators positive.""" |
| 31 | + print("\n" + "=" * 60) |
| 32 | + print("SCENARIO 1: Healthy Expansion") |
| 33 | + print("=" * 60) |
| 34 | + |
| 35 | + G, node = create_nfr("healthy_node", epi=0.4, vf=1.0) |
| 36 | + |
| 37 | + # Add network context |
| 38 | + for i in range(3): |
| 39 | + neighbor = f"neighbor_{i}" |
| 40 | + G.add_node(neighbor) |
| 41 | + set_attr(G.nodes[neighbor], ALIAS_THETA, 0.3 + i * 0.1) |
| 42 | + G.add_edge(node, neighbor) |
| 43 | + |
| 44 | + # Set healthy conditions |
| 45 | + G.graph["COLLECT_OPERATOR_METRICS"] = True |
| 46 | + set_attr(G.nodes[node], ALIAS_DNFR, 0.2) # Positive, stable |
| 47 | + set_attr(G.nodes[node], ALIAS_D2EPI, 0.1) # Below threshold |
| 48 | + set_attr(G.nodes[node], ALIAS_THETA, 0.35) # Aligned with neighbors |
| 49 | + |
| 50 | + # Apply expansion |
| 51 | + Expansion()(G, node) |
| 52 | + |
| 53 | + # Get metrics |
| 54 | + metrics = G.graph["operator_metrics"][-1] |
| 55 | + |
| 56 | + # Display metrics |
| 57 | + print_metrics_section( |
| 58 | + "Core Metrics", |
| 59 | + metrics, |
| 60 | + ["vf_increase", "delta_epi", "expansion_factor"], |
| 61 | + ) |
| 62 | + |
| 63 | + print_metrics_section( |
| 64 | + "Structural Stability", |
| 65 | + metrics, |
| 66 | + ["dnfr_final", "dnfr_positive", "dnfr_stable"], |
| 67 | + ) |
| 68 | + |
| 69 | + print_metrics_section( |
| 70 | + "Bifurcation Risk", |
| 71 | + metrics, |
| 72 | + ["d2epi", "bifurcation_risk", "bifurcation_magnitude"], |
| 73 | + ) |
| 74 | + |
| 75 | + print_metrics_section( |
| 76 | + "Coherence", |
| 77 | + metrics, |
| 78 | + ["coherence_local", "coherence_preserved"], |
| 79 | + ) |
| 80 | + |
| 81 | + print_metrics_section( |
| 82 | + "Fractality", |
| 83 | + metrics, |
| 84 | + ["epi_growth_rate", "vf_growth_rate", "growth_ratio", "fractal_preserved"], |
| 85 | + ) |
| 86 | + |
| 87 | + print_metrics_section( |
| 88 | + "Network Impact", |
| 89 | + metrics, |
| 90 | + ["neighbor_count", "phase_coherence_neighbors", "network_coupled"], |
| 91 | + ) |
| 92 | + |
| 93 | + print_metrics_section( |
| 94 | + "Overall Health", |
| 95 | + metrics, |
| 96 | + ["expansion_healthy"], |
| 97 | + ) |
| 98 | + |
| 99 | + |
| 100 | +def demo_bifurcation_risk(): |
| 101 | + """Demonstrate expansion at bifurcation threshold.""" |
| 102 | + print("\n" + "=" * 60) |
| 103 | + print("SCENARIO 2: Expansion at Bifurcation Threshold") |
| 104 | + print("=" * 60) |
| 105 | + |
| 106 | + G, node = create_nfr("bifurcating_node", epi=0.4, vf=1.0) |
| 107 | + |
| 108 | + # Set conditions for bifurcation risk |
| 109 | + G.graph["COLLECT_OPERATOR_METRICS"] = True |
| 110 | + G.graph["VAL_BIFURCATION_THRESHOLD"] = 0.3 |
| 111 | + set_attr(G.nodes[node], ALIAS_DNFR, 0.2) |
| 112 | + set_attr(G.nodes[node], ALIAS_D2EPI, 0.5) # HIGH - above threshold |
| 113 | + |
| 114 | + # Apply expansion |
| 115 | + Expansion()(G, node) |
| 116 | + |
| 117 | + # Get metrics |
| 118 | + metrics = G.graph["operator_metrics"][-1] |
| 119 | + |
| 120 | + print_metrics_section( |
| 121 | + "Bifurcation Indicators", |
| 122 | + metrics, |
| 123 | + [ |
| 124 | + "d2epi", |
| 125 | + "bifurcation_threshold", |
| 126 | + "bifurcation_risk", |
| 127 | + "bifurcation_magnitude", |
| 128 | + ], |
| 129 | + ) |
| 130 | + |
| 131 | + print_metrics_section( |
| 132 | + "Overall Health", |
| 133 | + metrics, |
| 134 | + ["expansion_healthy"], |
| 135 | + ) |
| 136 | + |
| 137 | + if metrics["bifurcation_risk"]: |
| 138 | + print("\n⚠️ WARNING: Bifurcation risk detected!") |
| 139 | + print( |
| 140 | + f" d²EPI/dt² = {metrics['d2epi']:.3f} > threshold = {metrics['bifurcation_threshold']:.3f}" |
| 141 | + ) |
| 142 | + print(" Consider applying IL (Coherence) or THOL (Self-organization)") |
| 143 | + |
| 144 | + |
| 145 | +def demo_coherence_degradation(): |
| 146 | + """Demonstrate expansion with coherence concerns.""" |
| 147 | + print("\n" + "=" * 60) |
| 148 | + print("SCENARIO 3: Expansion with Low Coherence") |
| 149 | + print("=" * 60) |
| 150 | + |
| 151 | + G, node = create_nfr("low_coherence_node", epi=0.3, vf=1.0) |
| 152 | + |
| 153 | + # Set conditions |
| 154 | + G.graph["COLLECT_OPERATOR_METRICS"] = True |
| 155 | + G.graph["VAL_MIN_COHERENCE"] = 0.5 |
| 156 | + set_attr(G.nodes[node], ALIAS_DNFR, 0.2) |
| 157 | + set_attr(G.nodes[node], ALIAS_D2EPI, 0.1) |
| 158 | + |
| 159 | + # Apply expansion |
| 160 | + Expansion()(G, node) |
| 161 | + |
| 162 | + # Get metrics |
| 163 | + metrics = G.graph["operator_metrics"][-1] |
| 164 | + |
| 165 | + print_metrics_section( |
| 166 | + "Coherence Metrics", |
| 167 | + metrics, |
| 168 | + ["coherence_local", "coherence_preserved"], |
| 169 | + ) |
| 170 | + |
| 171 | + print_metrics_section( |
| 172 | + "Overall Health", |
| 173 | + metrics, |
| 174 | + ["expansion_healthy"], |
| 175 | + ) |
| 176 | + |
| 177 | + if not metrics.get("coherence_preserved", True): |
| 178 | + print("\n⚠️ WARNING: Coherence below threshold!") |
| 179 | + print(f" C_local = {metrics['coherence_local']:.3f}") |
| 180 | + print(" Consider applying IL (Coherence) to stabilize") |
| 181 | + |
| 182 | + |
| 183 | +def demo_network_impact(): |
| 184 | + """Demonstrate network coupling analysis.""" |
| 185 | + print("\n" + "=" * 60) |
| 186 | + print("SCENARIO 4: Network Coupling Analysis") |
| 187 | + print("=" * 60) |
| 188 | + |
| 189 | + G, node = create_nfr("network_node", epi=0.4, vf=1.0) |
| 190 | + |
| 191 | + # Add neighbors with varying phase alignment |
| 192 | + neighbors_info = [ |
| 193 | + ("aligned_1", 0.50), |
| 194 | + ("aligned_2", 0.52), |
| 195 | + ("misaligned", 2.0), # Far from node's phase |
| 196 | + ] |
| 197 | + |
| 198 | + for neighbor, phase in neighbors_info: |
| 199 | + G.add_node(neighbor) |
| 200 | + set_attr(G.nodes[neighbor], ALIAS_THETA, phase) |
| 201 | + G.add_edge(node, neighbor) |
| 202 | + |
| 203 | + # Set conditions |
| 204 | + G.graph["COLLECT_OPERATOR_METRICS"] = True |
| 205 | + set_attr(G.nodes[node], ALIAS_DNFR, 0.2) |
| 206 | + set_attr(G.nodes[node], ALIAS_D2EPI, 0.1) |
| 207 | + set_attr(G.nodes[node], ALIAS_THETA, 0.51) # Mostly aligned |
| 208 | + |
| 209 | + # Apply expansion |
| 210 | + Expansion()(G, node) |
| 211 | + |
| 212 | + # Get metrics |
| 213 | + metrics = G.graph["operator_metrics"][-1] |
| 214 | + |
| 215 | + print_metrics_section( |
| 216 | + "Network Metrics", |
| 217 | + metrics, |
| 218 | + [ |
| 219 | + "neighbor_count", |
| 220 | + "phase_coherence_neighbors", |
| 221 | + "network_coupled", |
| 222 | + "theta_final", |
| 223 | + ], |
| 224 | + ) |
| 225 | + |
| 226 | + print("\nNetwork Analysis:") |
| 227 | + if metrics["network_coupled"]: |
| 228 | + print(" ✓ Node is well-coupled to network") |
| 229 | + else: |
| 230 | + print(" ✗ Node has weak network coupling") |
| 231 | + |
| 232 | + print( |
| 233 | + f" Phase coherence: {metrics['phase_coherence_neighbors']:.2%} " |
| 234 | + f"({metrics['neighbor_count']} neighbors)" |
| 235 | + ) |
| 236 | + |
| 237 | + |
| 238 | +def main(): |
| 239 | + """Run all demonstration scenarios.""" |
| 240 | + print("\n" + "=" * 60) |
| 241 | + print("Enhanced VAL (Expansion) Metrics Demo") |
| 242 | + print("Issue #2724: Canonical Structural Indicators") |
| 243 | + print("=" * 60) |
| 244 | + |
| 245 | + demo_healthy_expansion() |
| 246 | + demo_bifurcation_risk() |
| 247 | + demo_coherence_degradation() |
| 248 | + demo_network_impact() |
| 249 | + |
| 250 | + print("\n" + "=" * 60) |
| 251 | + print("Demo Complete!") |
| 252 | + print("=" * 60) |
| 253 | + print( |
| 254 | + "\nThese metrics enable:\n" |
| 255 | + " 1. Early detection of bifurcation events\n" |
| 256 | + " 2. Validation of coherence preservation\n" |
| 257 | + " 3. Analysis of fractal self-similarity\n" |
| 258 | + " 4. Monitoring of network coupling\n" |
| 259 | + " 5. Overall structural health assessment" |
| 260 | + ) |
| 261 | + |
| 262 | + |
| 263 | +if __name__ == "__main__": |
| 264 | + main() |
0 commit comments