|
| 1 | +"""Unified phase compatibility calculations for TNFR operators. |
| 2 | +
|
| 3 | +This module provides canonical implementations of phase-based coupling strength |
| 4 | +calculations used by multiple TNFR operators (UM, RA, THOL). All operators that |
| 5 | +perform phase-based coupling or propagation MUST use these functions to ensure |
| 6 | +consistency with TNFR physics and Invariant #5. |
| 7 | +
|
| 8 | +Physical Foundation |
| 9 | +------------------- |
| 10 | +
|
| 11 | +**Phase Compatibility in TNFR:** |
| 12 | +
|
| 13 | +Coupling between nodes requires phase synchronization. Destructive interference |
| 14 | +occurs when phases are misaligned (antiphase), while constructive interference |
| 15 | +occurs when phases align. The coupling strength formula reflects this physics: |
| 16 | +
|
| 17 | +.. math:: |
| 18 | + \\text{coupling_strength} = 1.0 - \\frac{|\\Delta\\phi|}{\\pi} |
| 19 | +
|
| 20 | +where Δφ is the phase difference in radians. |
| 21 | +
|
| 22 | +**Physical Interpretation:** |
| 23 | +
|
| 24 | +- Δφ = 0 (perfect alignment) → coupling = 1.0 (maximum constructive interference) |
| 25 | +- Δφ = π/2 (orthogonal) → coupling = 0.5 (partial coupling) |
| 26 | +- Δφ = π (antiphase) → coupling = 0.0 (destructive interference) |
| 27 | +
|
| 28 | +**TNFR Invariant #5:** "No coupling without explicit phase verification" |
| 29 | +(see AGENTS.md). All coupling operations must verify phase compatibility |
| 30 | +before propagating structural information. |
| 31 | +
|
| 32 | +Canonical Usage |
| 33 | +--------------- |
| 34 | +
|
| 35 | +**Operators Using This Module:** |
| 36 | +
|
| 37 | +1. **UM (Coupling)**: Phase synchronization and network formation |
| 38 | +2. **RA (Resonance)**: Coherence propagation through phase-aligned paths |
| 39 | +3. **THOL (Self-organization)**: Sub-EPI propagation to coupled neighbors |
| 40 | +
|
| 41 | +**Before Refactoring:** |
| 42 | +
|
| 43 | +Each operator implemented its own phase compatibility calculation, leading |
| 44 | +to potential inconsistencies and maintenance burden. |
| 45 | +
|
| 46 | +**After Refactoring:** |
| 47 | +
|
| 48 | +All operators use the canonical functions defined here, ensuring theoretical |
| 49 | +consistency and simplifying validation against TNFR physics. |
| 50 | +
|
| 51 | +Examples |
| 52 | +-------- |
| 53 | +
|
| 54 | +**Basic coupling strength calculation:** |
| 55 | +
|
| 56 | +>>> import math |
| 57 | +>>> # Perfect alignment |
| 58 | +>>> compute_phase_coupling_strength(0.0, 0.0) |
| 59 | +1.0 |
| 60 | +>>> # Orthogonal phases |
| 61 | +>>> compute_phase_coupling_strength(0.0, math.pi/2) |
| 62 | +0.5 |
| 63 | +>>> # Antiphase (destructive) |
| 64 | +>>> round(compute_phase_coupling_strength(0.0, math.pi), 10) |
| 65 | +0.0 |
| 66 | +
|
| 67 | +**Phase compatibility check:** |
| 68 | +
|
| 69 | +>>> # Check if phases are compatible for coupling |
| 70 | +>>> is_phase_compatible(0.0, 0.1, threshold=0.5) |
| 71 | +True |
| 72 | +>>> is_phase_compatible(0.0, math.pi, threshold=0.5) |
| 73 | +False |
| 74 | +
|
| 75 | +**Network phase alignment:** |
| 76 | +
|
| 77 | +>>> import networkx as nx |
| 78 | +>>> from tnfr.constants.aliases import ALIAS_THETA |
| 79 | +>>> G = nx.Graph() |
| 80 | +>>> G.add_edges_from([(0, 1), (1, 2)]) |
| 81 | +>>> for i, theta in enumerate([0.0, 0.1, 0.2]): |
| 82 | +... G.nodes[i][ALIAS_THETA] = theta |
| 83 | +>>> alignment = compute_network_phase_alignment(G, node=1, radius=1) |
| 84 | +>>> 0.0 <= alignment <= 1.0 |
| 85 | +True |
| 86 | +
|
| 87 | +See Also |
| 88 | +-------- |
| 89 | +
|
| 90 | +operators.definitions : Operator implementations (UM, RA, THOL) |
| 91 | +metrics.phase_coherence : Kuramoto order parameter and phase metrics |
| 92 | +AGENTS.md : Invariant #5 - Phase Verification requirement |
| 93 | +UNIFIED_GRAMMAR_RULES.md : U3 - RESONANT COUPLING grammar rule |
| 94 | +
|
| 95 | +References |
| 96 | +---------- |
| 97 | +
|
| 98 | +.. [1] TNFR.pdf § 2.3: Phase synchronization and coupling |
| 99 | +.. [2] AGENTS.md: Invariant #5 - No coupling without phase verification |
| 100 | +.. [3] UNIFIED_GRAMMAR_RULES.md: U3 - Resonant Coupling requires |φᵢ - φⱼ| ≤ Δφ_max |
| 101 | +""" |
| 102 | + |
| 103 | +from __future__ import annotations |
| 104 | + |
| 105 | +import math |
| 106 | +from typing import TYPE_CHECKING, Any |
| 107 | + |
| 108 | +if TYPE_CHECKING: |
| 109 | + from ..types import TNFRGraph, NodeId |
| 110 | + |
| 111 | +from ..utils.numeric import angle_diff |
| 112 | + |
| 113 | +__all__ = [ |
| 114 | + "compute_phase_coupling_strength", |
| 115 | + "is_phase_compatible", |
| 116 | + "compute_network_phase_alignment", |
| 117 | +] |
| 118 | + |
| 119 | + |
| 120 | +def compute_phase_coupling_strength( |
| 121 | + theta_a: float, |
| 122 | + theta_b: float, |
| 123 | +) -> float: |
| 124 | + """Compute canonical coupling strength from phase difference. |
| 125 | +
|
| 126 | + This is the canonical TNFR formula for phase-based coupling strength, |
| 127 | + representing the degree of constructive vs. destructive interference |
| 128 | + between two oscillating nodes. |
| 129 | +
|
| 130 | + Parameters |
| 131 | + ---------- |
| 132 | + theta_a : float |
| 133 | + Phase of first node in radians [0, 2π) |
| 134 | + theta_b : float |
| 135 | + Phase of second node in radians [0, 2π) |
| 136 | +
|
| 137 | + Returns |
| 138 | + ------- |
| 139 | + float |
| 140 | + Coupling strength in [0, 1]: |
| 141 | + - 1.0: Perfect phase alignment (Δφ = 0) |
| 142 | + - 0.5: Orthogonal phases (Δφ = π/2) |
| 143 | + - 0.0: Antiphase (Δφ = π, destructive interference) |
| 144 | +
|
| 145 | + Notes |
| 146 | + ----- |
| 147 | + **Formula:** |
| 148 | +
|
| 149 | + .. math:: |
| 150 | + \\text{coupling_strength} = 1.0 - \\frac{|\\text{angle_diff}(\\theta_b, \\theta_a)|}{\\pi} |
| 151 | +
|
| 152 | + The formula uses :func:`~tnfr.utils.numeric.angle_diff` to compute the |
| 153 | + shortest angular distance between phases, properly handling wrap-around |
| 154 | + at 2π boundaries. |
| 155 | +
|
| 156 | + **Physics:** |
| 157 | +
|
| 158 | + - Based on wave interference physics: aligned phases → constructive interference |
| 159 | + - Antiphase (Δφ = π) → destructive interference → zero coupling |
| 160 | + - Linear interpolation between extremes reflects gradual transition |
| 161 | +
|
| 162 | + **Used By:** |
| 163 | +
|
| 164 | + - UM (Coupling): For determining link formation and synchronization strength |
| 165 | + - RA (Resonance): For gating coherence propagation to neighbors |
| 166 | + - THOL (Self-organization): For sub-EPI propagation through coupled nodes |
| 167 | +
|
| 168 | + **Invariant #5:** This function implements the explicit phase verification |
| 169 | + required by TNFR Invariant #5 (AGENTS.md). All coupling operations must |
| 170 | + verify phase compatibility before propagating structural information. |
| 171 | +
|
| 172 | + Examples |
| 173 | + -------- |
| 174 | + >>> import math |
| 175 | + >>> # Perfect alignment |
| 176 | + >>> compute_phase_coupling_strength(0.0, 0.0) |
| 177 | + 1.0 |
| 178 | + >>> # Small misalignment |
| 179 | + >>> compute_phase_coupling_strength(0.0, 0.1) # doctest: +ELLIPSIS |
| 180 | + 0.96... |
| 181 | + >>> # Orthogonal phases |
| 182 | + >>> compute_phase_coupling_strength(0.0, math.pi/2) |
| 183 | + 0.5 |
| 184 | + >>> # Antiphase (destructive) |
| 185 | + >>> round(compute_phase_coupling_strength(0.0, math.pi), 10) |
| 186 | + 0.0 |
| 187 | + >>> # Wrap-around handling |
| 188 | + >>> compute_phase_coupling_strength(0.1, 2*math.pi - 0.1) # doctest: +ELLIPSIS |
| 189 | + 0.93... |
| 190 | +
|
| 191 | + See Also |
| 192 | + -------- |
| 193 | + is_phase_compatible : Boolean compatibility check with threshold |
| 194 | + angle_diff : Shortest angular distance between phases |
| 195 | + """ |
| 196 | + phase_diff = abs(angle_diff(theta_b, theta_a)) |
| 197 | + return 1.0 - (phase_diff / math.pi) |
| 198 | + |
| 199 | + |
| 200 | +def is_phase_compatible( |
| 201 | + theta_a: float, |
| 202 | + theta_b: float, |
| 203 | + threshold: float = 0.5, |
| 204 | +) -> bool: |
| 205 | + """Check if two phases are compatible for coupling/propagation. |
| 206 | +
|
| 207 | + Determines whether two nodes are sufficiently phase-aligned to support |
| 208 | + resonant coupling, based on a configurable coupling strength threshold. |
| 209 | +
|
| 210 | + Parameters |
| 211 | + ---------- |
| 212 | + theta_a : float |
| 213 | + Phase of first node in radians [0, 2π) |
| 214 | + theta_b : float |
| 215 | + Phase of second node in radians [0, 2π) |
| 216 | + threshold : float, default=0.5 |
| 217 | + Minimum coupling strength required for compatibility [0, 1]. |
| 218 | + Default 0.5 corresponds to maximum phase difference of π/2 (orthogonal). |
| 219 | +
|
| 220 | + Returns |
| 221 | + ------- |
| 222 | + bool |
| 223 | + True if coupling_strength >= threshold (nodes are compatible) |
| 224 | + False if coupling_strength < threshold (nodes are incompatible) |
| 225 | +
|
| 226 | + Notes |
| 227 | + ----- |
| 228 | + **Common Thresholds:** |
| 229 | +
|
| 230 | + - 0.5 (default): Allows coupling up to π/2 phase difference |
| 231 | + - 0.7: More restrictive, requires Δφ < π/2.1 (~95°) |
| 232 | + - 0.9: Very restrictive, requires Δφ < π/10 (~18°) |
| 233 | +
|
| 234 | + **Usage:** |
| 235 | +
|
| 236 | + - **UM (Coupling)**: Gate link formation based on phase compatibility |
| 237 | + - **RA (Resonance)**: Filter neighbors for coherence propagation |
| 238 | + - **THOL propagation**: Minimum coupling for sub-EPI propagation |
| 239 | +
|
| 240 | + **Invariant #5:** This function provides a boolean interface to the |
| 241 | + phase verification requirement (AGENTS.md Invariant #5). |
| 242 | +
|
| 243 | + Examples |
| 244 | + -------- |
| 245 | + >>> import math |
| 246 | + >>> # In-phase: compatible |
| 247 | + >>> is_phase_compatible(0.0, 0.1, threshold=0.5) |
| 248 | + True |
| 249 | + >>> # Orthogonal: at threshold boundary |
| 250 | + >>> is_phase_compatible(0.0, math.pi/2, threshold=0.5) |
| 251 | + True |
| 252 | + >>> # Slightly beyond orthogonal: incompatible |
| 253 | + >>> is_phase_compatible(0.0, math.pi/2 + 0.1, threshold=0.5) |
| 254 | + False |
| 255 | + >>> # Antiphase: incompatible |
| 256 | + >>> is_phase_compatible(0.0, math.pi, threshold=0.5) |
| 257 | + False |
| 258 | + >>> # Higher threshold: more restrictive |
| 259 | + >>> is_phase_compatible(0.0, math.pi/4, threshold=0.9) |
| 260 | + False |
| 261 | + >>> is_phase_compatible(0.0, 0.1, threshold=0.9) |
| 262 | + True |
| 263 | +
|
| 264 | + See Also |
| 265 | + -------- |
| 266 | + compute_phase_coupling_strength : Continuous coupling strength [0, 1] |
| 267 | + """ |
| 268 | + coupling = compute_phase_coupling_strength(theta_a, theta_b) |
| 269 | + return coupling >= threshold |
| 270 | + |
| 271 | + |
| 272 | +def compute_network_phase_alignment( |
| 273 | + G: TNFRGraph, |
| 274 | + node: NodeId, |
| 275 | + radius: int = 1, |
| 276 | +) -> float: |
| 277 | + """Compute phase alignment in local neighborhood using Kuramoto order parameter. |
| 278 | +
|
| 279 | + This is a convenience wrapper around the existing |
| 280 | + :func:`~tnfr.metrics.phase_coherence.compute_phase_alignment` function, |
| 281 | + provided for API consistency within this module. |
| 282 | +
|
| 283 | + Parameters |
| 284 | + ---------- |
| 285 | + G : TNFRGraph |
| 286 | + TNFR network graph containing nodes with phase (theta) attributes |
| 287 | + node : NodeId |
| 288 | + Central node for neighborhood analysis |
| 289 | + radius : int, default=1 |
| 290 | + Neighborhood radius in hops from central node |
| 291 | +
|
| 292 | + Returns |
| 293 | + ------- |
| 294 | + float |
| 295 | + Phase alignment quality in [0, 1]: |
| 296 | + - 1.0: Perfect phase synchronization (all nodes aligned) |
| 297 | + - 0.0: Complete phase disorder (random phases) |
| 298 | +
|
| 299 | + Notes |
| 300 | + ----- |
| 301 | + **Kuramoto Order Parameter:** |
| 302 | +
|
| 303 | + Measures collective phase synchrony using: |
| 304 | +
|
| 305 | + .. math:: |
| 306 | + r = |\\frac{1}{N} \\sum_{j=1}^{N} e^{i\\theta_j}| |
| 307 | +
|
| 308 | + **Used By:** |
| 309 | +
|
| 310 | + - **RA (Resonance)**: Assess network coherence for propagation gating |
| 311 | + - **IL (Coherence)**: Validate phase locking effectiveness |
| 312 | +
|
| 313 | + **Implementation:** |
| 314 | +
|
| 315 | + This function delegates to the existing implementation in |
| 316 | + :mod:`tnfr.metrics.phase_coherence` to avoid code duplication |
| 317 | + while providing a unified API for phase compatibility calculations. |
| 318 | +
|
| 319 | + Examples |
| 320 | + -------- |
| 321 | + >>> import networkx as nx |
| 322 | + >>> from tnfr.constants.aliases import ALIAS_THETA |
| 323 | + >>> G = nx.Graph() |
| 324 | + >>> G.add_edges_from([(0, 1), (1, 2), (2, 3)]) |
| 325 | + >>> # Highly aligned phases |
| 326 | + >>> for i in range(4): |
| 327 | + ... G.nodes[i][ALIAS_THETA] = i * 0.1 |
| 328 | + >>> alignment = compute_network_phase_alignment(G, node=1, radius=1) |
| 329 | + >>> alignment > 0.9 # High alignment |
| 330 | + True |
| 331 | + >>> # Random phases |
| 332 | + >>> import math |
| 333 | + >>> G.nodes[0][ALIAS_THETA] = 0.0 |
| 334 | + >>> G.nodes[1][ALIAS_THETA] = math.pi/3 |
| 335 | + >>> G.nodes[2][ALIAS_THETA] = 2*math.pi/3 |
| 336 | + >>> G.nodes[3][ALIAS_THETA] = math.pi |
| 337 | + >>> alignment = compute_network_phase_alignment(G, node=1, radius=1) |
| 338 | + >>> 0.0 <= alignment <= 1.0 |
| 339 | + True |
| 340 | +
|
| 341 | + See Also |
| 342 | + -------- |
| 343 | + metrics.phase_coherence.compute_phase_alignment : Underlying implementation |
| 344 | + metrics.phase_coherence.compute_global_phase_coherence : Global network metric |
| 345 | + """ |
| 346 | + # Import existing function to avoid duplication |
| 347 | + from .phase_coherence import compute_phase_alignment |
| 348 | + |
| 349 | + return compute_phase_alignment(G, node, radius=radius) |
0 commit comments