|
39 | 39 | from ..types import NodeId, TNFRGraph |
40 | 40 |
|
41 | 41 | from ..alias import get_attr |
42 | | -from ..constants.aliases import ALIAS_DNFR, ALIAS_EPI, ALIAS_THETA, ALIAS_VF |
| 42 | +from ..constants.aliases import ALIAS_EPI, ALIAS_THETA |
43 | 43 | from ..utils import get_numpy |
44 | 44 |
|
45 | 45 | __all__ = [ |
46 | 46 | "capture_network_signals", |
47 | 47 | "metabolize_signals_into_subepi", |
48 | 48 | "propagate_subepi_to_network", |
| 49 | + "compute_cascade_depth", |
| 50 | + "compute_propagation_radius", |
| 51 | + "compute_subepi_collective_coherence", |
| 52 | + "compute_metabolic_activity_index", |
49 | 53 | ] |
50 | 54 |
|
51 | 55 |
|
@@ -329,3 +333,185 @@ def propagate_subepi_to_network( |
329 | 333 | G.nodes[neighbor]["epi_history"] = history[-10:] # Keep last 10 |
330 | 334 |
|
331 | 335 | return propagations |
| 336 | + |
| 337 | + |
| 338 | +def compute_cascade_depth(G: TNFRGraph, node: NodeId) -> int: |
| 339 | + """Compute maximum hierarchical depth of bifurcation cascade. |
| 340 | +
|
| 341 | + Recursively measures how many levels of nested sub-EPIs exist, |
| 342 | + where each sub-EPI can itself bifurcate into deeper levels. |
| 343 | +
|
| 344 | + Parameters |
| 345 | + ---------- |
| 346 | + G : TNFRGraph |
| 347 | + Graph containing bifurcation history |
| 348 | + node : NodeId |
| 349 | + Root node of cascade analysis |
| 350 | +
|
| 351 | + Returns |
| 352 | + ------- |
| 353 | + int |
| 354 | + Maximum cascade depth (0 if no bifurcation occurred) |
| 355 | +
|
| 356 | + Examples |
| 357 | + -------- |
| 358 | + >>> # Single-level bifurcation |
| 359 | + >>> compute_cascade_depth(G, node) |
| 360 | + 1 |
| 361 | +
|
| 362 | + >>> # Multi-level cascade (sub-EPIs bifurcated further) |
| 363 | + >>> compute_cascade_depth(G_complex, node) |
| 364 | + 3 |
| 365 | +
|
| 366 | + Notes |
| 367 | + ----- |
| 368 | + TNFR Principle: Cascade depth measures the hierarchical complexity |
| 369 | + of emergent self-organization. Depth = 1 indicates direct bifurcation; |
| 370 | + depth > 1 indicates recursive, multi-scale emergence. |
| 371 | + """ |
| 372 | + sub_epis = G.nodes[node].get("sub_epis", []) |
| 373 | + if not sub_epis: |
| 374 | + return 0 |
| 375 | + |
| 376 | + # For now: depth = 1 (direct children) |
| 377 | + # TODO: If sub-EPIs become independent nodes, recurse |
| 378 | + max_depth = 1 |
| 379 | + |
| 380 | + for sub in sub_epis: |
| 381 | + # If sub-EPI spawned its own children (future enhancement) |
| 382 | + nested_depth = sub.get("cascade_depth", 0) |
| 383 | + max_depth = max(max_depth, 1 + nested_depth) |
| 384 | + |
| 385 | + return max_depth |
| 386 | + |
| 387 | + |
| 388 | +def compute_propagation_radius(G: TNFRGraph) -> int: |
| 389 | + """Count total unique nodes affected by THOL cascades. |
| 390 | +
|
| 391 | + Parameters |
| 392 | + ---------- |
| 393 | + G : TNFRGraph |
| 394 | + Graph with THOL propagation history |
| 395 | +
|
| 396 | + Returns |
| 397 | + ------- |
| 398 | + int |
| 399 | + Number of nodes reached by at least one propagation event |
| 400 | +
|
| 401 | + Notes |
| 402 | + ----- |
| 403 | + TNFR Principle: Propagation radius measures the spatial extent |
| 404 | + of cascade effects across the network. High radius indicates |
| 405 | + network-wide self-organization. |
| 406 | +
|
| 407 | + Examples |
| 408 | + -------- |
| 409 | + >>> # Local cascade (few nodes) |
| 410 | + >>> compute_propagation_radius(G_local) |
| 411 | + 3 |
| 412 | +
|
| 413 | + >>> # Network-wide cascade |
| 414 | + >>> compute_propagation_radius(G_wide) |
| 415 | + 15 |
| 416 | + """ |
| 417 | + propagations = G.graph.get("thol_propagations", []) |
| 418 | + affected_nodes = set() |
| 419 | + |
| 420 | + for prop in propagations: |
| 421 | + affected_nodes.add(prop["source_node"]) |
| 422 | + for target, _ in prop["propagations"]: |
| 423 | + affected_nodes.add(target) |
| 424 | + |
| 425 | + return len(affected_nodes) |
| 426 | + |
| 427 | + |
| 428 | +def compute_subepi_collective_coherence(G: TNFRGraph, node: NodeId) -> float: |
| 429 | + """Calculate coherence of sub-EPI ensemble. |
| 430 | +
|
| 431 | + Measures how structurally aligned the emergent sub-EPIs are. |
| 432 | + Low variance = high coherence = stable emergence. |
| 433 | +
|
| 434 | + Parameters |
| 435 | + ---------- |
| 436 | + G : TNFRGraph |
| 437 | + Graph containing the node |
| 438 | + node : NodeId |
| 439 | + Node with sub-EPIs to analyze |
| 440 | +
|
| 441 | + Returns |
| 442 | + ------- |
| 443 | + float |
| 444 | + Coherence metric [0, 1] where 1 = perfect alignment |
| 445 | +
|
| 446 | + Notes |
| 447 | + ----- |
| 448 | + Uses variance-based coherence: |
| 449 | + C_sub = 1 / (1 + var(sub_epi_magnitudes)) |
| 450 | +
|
| 451 | + TNFR Principle: Coherent bifurcation produces sub-EPIs with similar |
| 452 | + structural magnitudes, indicating controlled emergence vs chaotic |
| 453 | + fragmentation. |
| 454 | +
|
| 455 | + Examples |
| 456 | + -------- |
| 457 | + >>> # Coherent bifurcation (similar sub-EPIs) |
| 458 | + >>> compute_subepi_collective_coherence(G, node) |
| 459 | + 0.85 |
| 460 | +
|
| 461 | + >>> # Chaotic fragmentation (varied sub-EPIs) |
| 462 | + >>> compute_subepi_collective_coherence(G_chaotic, node) |
| 463 | + 0.23 |
| 464 | + """ |
| 465 | + np = get_numpy() |
| 466 | + |
| 467 | + sub_epis = G.nodes[node].get("sub_epis", []) |
| 468 | + if len(sub_epis) < 2: |
| 469 | + return 0.0 # Need ≥2 sub-EPIs to measure coherence |
| 470 | + |
| 471 | + epi_values = [sub["epi"] for sub in sub_epis] |
| 472 | + variance = float(np.var(epi_values)) |
| 473 | + |
| 474 | + # Coherence: inverse relationship with variance |
| 475 | + coherence = 1.0 / (1.0 + variance) |
| 476 | + return coherence |
| 477 | + |
| 478 | + |
| 479 | +def compute_metabolic_activity_index(G: TNFRGraph, node: NodeId) -> float: |
| 480 | + """Measure proportion of sub-EPIs generated through network metabolism. |
| 481 | +
|
| 482 | + Parameters |
| 483 | + ---------- |
| 484 | + G : TNFRGraph |
| 485 | + Graph containing the node |
| 486 | + node : NodeId |
| 487 | + Node to analyze |
| 488 | +
|
| 489 | + Returns |
| 490 | + ------- |
| 491 | + float |
| 492 | + Ratio [0, 1] of metabolized sub-EPIs to total sub-EPIs |
| 493 | + 1.0 = all sub-EPIs included network context |
| 494 | + 0.0 = all sub-EPIs were purely internal bifurcations |
| 495 | +
|
| 496 | + Notes |
| 497 | + ----- |
| 498 | + TNFR Principle: Metabolic activity measures how much network context |
| 499 | + influenced bifurcation. High index indicates external pressure drove |
| 500 | + emergence; low index indicates internal acceleration dominated. |
| 501 | +
|
| 502 | + Examples |
| 503 | + -------- |
| 504 | + >>> # Network-driven bifurcation |
| 505 | + >>> compute_metabolic_activity_index(G_coupled, node) |
| 506 | + 0.90 |
| 507 | +
|
| 508 | + >>> # Internal-only bifurcation |
| 509 | + >>> compute_metabolic_activity_index(G_isolated, node) |
| 510 | + 0.0 |
| 511 | + """ |
| 512 | + sub_epis = G.nodes[node].get("sub_epis", []) |
| 513 | + if not sub_epis: |
| 514 | + return 0.0 |
| 515 | + |
| 516 | + metabolized_count = sum(1 for sub in sub_epis if sub.get("metabolized", False)) |
| 517 | + return metabolized_count / len(sub_epis) |
0 commit comments