|
7 | 7 | "## AutoML Sweepable API\n", |
8 | 8 | "\n", |
9 | 9 | "This Notebook shows how to use `Sweepable` API to fully customize the pipeline or search space in your AutoML task. In this notebook, you will learn\n", |
| 10 | + "- use built-in `SweepableEstimator` to simplify your work.\n", |
10 | 11 | "- how to use `AutoML().CreateSweepableEstimator` to create `SweepableEstimator`.\n", |
11 | | - "- how to create `SweepablePipeline` for multiple trainer candidates.\n", |
12 | | - "- use built-in `SweepableEstimator` to simplify your work." |
| 12 | + "- how to create `SweepablePipeline` for multiple trainer candidates.\n" |
13 | 13 | ] |
14 | 14 | }, |
15 | 15 | { |
|
68 | 68 | "using System.Diagnostics;" |
69 | 69 | ] |
70 | 70 | }, |
| 71 | + { |
| 72 | + "cell_type": "markdown", |
| 73 | + "metadata": {}, |
| 74 | + "source": [ |
| 75 | + "#### Use built-in sweepable estimators\n", |
| 76 | + "\n", |
| 77 | + "`AutoML` provides built-in sweepable estimator candidates for binary-classification, multi-class classification and regression. For those scenarios, you can simply use those candidates instead of creating `SweepableEstimator` from scratch." |
| 78 | + ] |
| 79 | + }, |
| 80 | + { |
| 81 | + "cell_type": "code", |
| 82 | + "execution_count": null, |
| 83 | + "metadata": { |
| 84 | + "dotnet_interactive": { |
| 85 | + "language": "csharp" |
| 86 | + }, |
| 87 | + "vscode": { |
| 88 | + "languageId": "dotnet-interactive.csharp" |
| 89 | + } |
| 90 | + }, |
| 91 | + "outputs": [], |
| 92 | + "source": [ |
| 93 | + "var regressionTrainerCandidates = context.Auto().Regression();\n", |
| 94 | + "var binaryClassificationTrainerCandidates = context.Auto().BinaryClassification();\n", |
| 95 | + "var multiclassClassificationTrainerCandidates = context.Auto().MultiClassification();" |
| 96 | + ] |
| 97 | + }, |
71 | 98 | { |
72 | 99 | "cell_type": "markdown", |
73 | 100 | "metadata": { |
|
78 | 105 | "source": [ |
79 | 106 | "#### Use `AutoML().CreateSweepableEstimator` to create `SweepableEstimator`\n", |
80 | 107 | "\n", |
81 | | - "A `SweepableEstimator` is nothing different than a normal `Estimator` plus `SearchSpace`. The following code shows how to create a sweepable `LightGbm` and `SDCA`.\n", |
| 108 | + "In case the built-in `SweepableEstimator` doesn't satisfy your requirement, you can call `CreateSweepableEstimator` to create a customized `SweepableEstimator`. A `SweepableEstimator` is nothing different than a normal `Estimator` plus `SearchSpace`. The following code shows how to create a sweepable `LightGbm` and `SDCA`.\n", |
82 | 109 | "\n", |
83 | 110 | "For simplicity, the built-in search space for `LightGbm` and `SDCA` is used but you can fully customize the search space however way you want. For more details on how to do that, please check [Parameter And SearchSpace](./Parameter%20and%20SearchSpace.ipynb)" |
84 | 111 | ] |
|
218 | 245 | "(res.Model as TransformerChain<ITransformer>).Last().GetType()" |
219 | 246 | ] |
220 | 247 | }, |
221 | | - { |
222 | | - "cell_type": "markdown", |
223 | | - "metadata": {}, |
224 | | - "source": [ |
225 | | - "#### Use built-in sweepable estimators\n", |
226 | | - "\n", |
227 | | - "`AutoML` provides built-in sweepable estimator candidates for binary-classification, multi-class classification and regression. For those scenarios, you can simply use those candidates instead of creating `SweepableEstimator` from scratch." |
228 | | - ] |
229 | | - }, |
230 | | - { |
231 | | - "cell_type": "code", |
232 | | - "execution_count": null, |
233 | | - "metadata": { |
234 | | - "dotnet_interactive": { |
235 | | - "language": "csharp" |
236 | | - }, |
237 | | - "vscode": { |
238 | | - "languageId": "dotnet-interactive.csharp" |
239 | | - } |
240 | | - }, |
241 | | - "outputs": [], |
242 | | - "source": [ |
243 | | - "var regressionTrainerCandidates = context.Auto().Regression();\n", |
244 | | - "var binaryClassificationTrainerCandidates = context.Auto().BinaryClassification();\n", |
245 | | - "var multiclassClassificationTrainerCandidates = context.Auto().MultiClassification();" |
246 | | - ] |
247 | | - }, |
248 | 248 | { |
249 | 249 | "cell_type": "markdown", |
250 | 250 | "metadata": {}, |
|
0 commit comments