Skip to content

Commit 4b22fe3

Browse files
swap default and customize section
1 parent 8fa6c72 commit 4b22fe3

File tree

1 file changed

+30
-30
lines changed

1 file changed

+30
-30
lines changed

machine-learning/05 - AutoML Sweepable API.ipynb

Lines changed: 30 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -7,9 +7,9 @@
77
"## AutoML Sweepable API\n",
88
"\n",
99
"This Notebook shows how to use `Sweepable` API to fully customize the pipeline or search space in your AutoML task. In this notebook, you will learn\n",
10+
"- use built-in `SweepableEstimator` to simplify your work.\n",
1011
"- how to use `AutoML().CreateSweepableEstimator` to create `SweepableEstimator`.\n",
11-
"- how to create `SweepablePipeline` for multiple trainer candidates.\n",
12-
"- use built-in `SweepableEstimator` to simplify your work."
12+
"- how to create `SweepablePipeline` for multiple trainer candidates.\n"
1313
]
1414
},
1515
{
@@ -68,6 +68,33 @@
6868
"using System.Diagnostics;"
6969
]
7070
},
71+
{
72+
"cell_type": "markdown",
73+
"metadata": {},
74+
"source": [
75+
"#### Use built-in sweepable estimators\n",
76+
"\n",
77+
"`AutoML` provides built-in sweepable estimator candidates for binary-classification, multi-class classification and regression. For those scenarios, you can simply use those candidates instead of creating `SweepableEstimator` from scratch."
78+
]
79+
},
80+
{
81+
"cell_type": "code",
82+
"execution_count": null,
83+
"metadata": {
84+
"dotnet_interactive": {
85+
"language": "csharp"
86+
},
87+
"vscode": {
88+
"languageId": "dotnet-interactive.csharp"
89+
}
90+
},
91+
"outputs": [],
92+
"source": [
93+
"var regressionTrainerCandidates = context.Auto().Regression();\n",
94+
"var binaryClassificationTrainerCandidates = context.Auto().BinaryClassification();\n",
95+
"var multiclassClassificationTrainerCandidates = context.Auto().MultiClassification();"
96+
]
97+
},
7198
{
7299
"cell_type": "markdown",
73100
"metadata": {
@@ -78,7 +105,7 @@
78105
"source": [
79106
"#### Use `AutoML().CreateSweepableEstimator` to create `SweepableEstimator`\n",
80107
"\n",
81-
"A `SweepableEstimator` is nothing different than a normal `Estimator` plus `SearchSpace`. The following code shows how to create a sweepable `LightGbm` and `SDCA`.\n",
108+
"In case the built-in `SweepableEstimator` doesn't satisfy your requirement, you can call `CreateSweepableEstimator` to create a customized `SweepableEstimator`. A `SweepableEstimator` is nothing different than a normal `Estimator` plus `SearchSpace`. The following code shows how to create a sweepable `LightGbm` and `SDCA`.\n",
82109
"\n",
83110
"For simplicity, the built-in search space for `LightGbm` and `SDCA` is used but you can fully customize the search space however way you want. For more details on how to do that, please check [Parameter And SearchSpace](./Parameter%20and%20SearchSpace.ipynb)"
84111
]
@@ -218,33 +245,6 @@
218245
"(res.Model as TransformerChain<ITransformer>).Last().GetType()"
219246
]
220247
},
221-
{
222-
"cell_type": "markdown",
223-
"metadata": {},
224-
"source": [
225-
"#### Use built-in sweepable estimators\n",
226-
"\n",
227-
"`AutoML` provides built-in sweepable estimator candidates for binary-classification, multi-class classification and regression. For those scenarios, you can simply use those candidates instead of creating `SweepableEstimator` from scratch."
228-
]
229-
},
230-
{
231-
"cell_type": "code",
232-
"execution_count": null,
233-
"metadata": {
234-
"dotnet_interactive": {
235-
"language": "csharp"
236-
},
237-
"vscode": {
238-
"languageId": "dotnet-interactive.csharp"
239-
}
240-
},
241-
"outputs": [],
242-
"source": [
243-
"var regressionTrainerCandidates = context.Auto().Regression();\n",
244-
"var binaryClassificationTrainerCandidates = context.Auto().BinaryClassification();\n",
245-
"var multiclassClassificationTrainerCandidates = context.Auto().MultiClassification();"
246-
]
247-
},
248248
{
249249
"cell_type": "markdown",
250250
"metadata": {},

0 commit comments

Comments
 (0)