@@ -42,7 +42,7 @@ def parse_command():
4242 parser .add_argument ('--seed' , type = int , default = 1 , metavar = 'S' ,
4343 help = 'random seed (default: 1)' )
4444 parser .add_argument ('--gpu' , default = None , type = str , help = 'if not none, use Single GPU' )
45- parser .add_argument ('--print_freq' , type = int , default = 10 , metavar = 'N' ,
45+ parser .add_argument ('--print_freq' , type = int , default = 50 , metavar = 'N' ,
4646 help = 'how many batches to wait before logging training status' )
4747 args = parser .parse_args ()
4848
@@ -158,17 +158,17 @@ def main():
158158
159159 train_loss += loss .data [0 ]
160160 pred = output .data .max (1 , keepdim = True )[1 ] # get the index of the max log-probability
161- per_acc = pred .eq (target .data .view_as (pred )).cpu (). sum ()
162- train_acc += per_acc
161+ per_acc = pred .eq (target .data .view_as (pred )).sum ()
162+ train_acc += per_acc . cpu ()
163163
164164 if it % args .print_freq == 0 :
165165 print ('=> output: {}' .format (save_dir ))
166166 print ('Train Iter: [{0}/{1}]\t '
167167 'Loss={Loss:.5f} '
168168 'Accuracy={Acc:.5f}'
169- .format (it , max_iter , Loss = loss , Acc = per_acc / args .batch_size ))
169+ .format (it , max_iter , Loss = loss , Acc = float ( per_acc ) / args .batch_size ))
170170 logger .add_scalar ('Train/Loss' , loss , it )
171- logger .add_scalar ('Train/Acc' , per_acc / args .batch_size , it )
171+ # logger.add_scalar('Train/Acc', per_acc / args.batch_size, it)
172172
173173 if it % iter_save == 0 :
174174 epoch = it // iter_save
@@ -180,6 +180,8 @@ def main():
180180 logger .add_scalar ('Lr/lr_' + str (i ), old_lr , it )
181181
182182 # remember change of train/test loss and train/test acc
183+ train_loss = float (train_loss )
184+ train_acc = float (train_acc )
183185 train_loss /= len (train_loader .dataset )
184186 train_acc /= len (train_loader .dataset )
185187
@@ -212,12 +214,14 @@ def test(model, test_loader, epoch, logger=None):
212214 output = model (data )
213215 test_loss += F .nll_loss (output , target , size_average = False ).data [0 ] # sum up batch loss
214216 pred = output .data .max (1 , keepdim = True )[1 ] # get the index of the max log-probability
215- correct += pred .eq (target .data .view_as (pred )).cpu ().sum ()
217+ correct += pred .eq (target .data .view_as (pred )).sum ().cpu ()
216218
219+ test_loss = float (test_loss )
220+ correct = float (correct )
217221 test_loss /= len (test_loader .dataset )
218222 correct /= len (test_loader .dataset )
219223
220- print ('\n Test set: Average loss: {:.4f}, Accuracy: {:.0f}%\n ' .format (test_loss , correct ))
224+ print ('\n Test set: Average loss: {:.4f}, Accuracy: {:.0f}%\n ' .format (test_loss , 100. * correct ))
221225
222226 logger .add_scalar ('Test/loss' , test_loss , epoch )
223227 logger .add_scalar ('Test/acc' , correct , epoch )
0 commit comments