-
Notifications
You must be signed in to change notification settings - Fork 580
feat: dpmodel energy loss & consistent tests #4531
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 3 commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1 @@ | ||
| # SPDX-License-Identifier: LGPL-3.0-or-later |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,337 @@ | ||
| # SPDX-License-Identifier: LGPL-3.0-or-later | ||
| from typing import ( | ||
| Optional, | ||
| ) | ||
|
|
||
| import array_api_compat | ||
| import numpy as np | ||
|
|
||
| from deepmd.dpmodel.loss.loss import ( | ||
| Loss, | ||
| ) | ||
| from deepmd.utils.data import ( | ||
| DataRequirementItem, | ||
| ) | ||
| from deepmd.utils.version import ( | ||
| check_version_compatibility, | ||
| ) | ||
|
|
||
|
|
||
| class EnergyLoss(Loss): | ||
| def __init__( | ||
| self, | ||
| starter_learning_rate: float, | ||
| start_pref_e: float = 0.02, | ||
| limit_pref_e: float = 1.00, | ||
| start_pref_f: float = 1000, | ||
| limit_pref_f: float = 1.00, | ||
| start_pref_v: float = 0.0, | ||
| limit_pref_v: float = 0.0, | ||
| start_pref_ae: float = 0.0, | ||
| limit_pref_ae: float = 0.0, | ||
| start_pref_pf: float = 0.0, | ||
| limit_pref_pf: float = 0.0, | ||
| relative_f: Optional[float] = None, | ||
| enable_atom_ener_coeff: bool = False, | ||
| start_pref_gf: float = 0.0, | ||
| limit_pref_gf: float = 0.0, | ||
| numb_generalized_coord: int = 0, | ||
| **kwargs, | ||
| ) -> None: | ||
| self.starter_learning_rate = starter_learning_rate | ||
| self.start_pref_e = start_pref_e | ||
| self.limit_pref_e = limit_pref_e | ||
| self.start_pref_f = start_pref_f | ||
| self.limit_pref_f = limit_pref_f | ||
| self.start_pref_v = start_pref_v | ||
| self.limit_pref_v = limit_pref_v | ||
| self.start_pref_ae = start_pref_ae | ||
| self.limit_pref_ae = limit_pref_ae | ||
| self.start_pref_pf = start_pref_pf | ||
| self.limit_pref_pf = limit_pref_pf | ||
| self.relative_f = relative_f | ||
| self.enable_atom_ener_coeff = enable_atom_ener_coeff | ||
| self.start_pref_gf = start_pref_gf | ||
| self.limit_pref_gf = limit_pref_gf | ||
| self.numb_generalized_coord = numb_generalized_coord | ||
| self.has_e = self.start_pref_e != 0.0 or self.limit_pref_e != 0.0 | ||
| self.has_f = self.start_pref_f != 0.0 or self.limit_pref_f != 0.0 | ||
| self.has_v = self.start_pref_v != 0.0 or self.limit_pref_v != 0.0 | ||
| self.has_ae = self.start_pref_ae != 0.0 or self.limit_pref_ae != 0.0 | ||
| self.has_pf = self.start_pref_pf != 0.0 or self.limit_pref_pf != 0.0 | ||
| self.has_gf = self.start_pref_gf != 0.0 or self.limit_pref_gf != 0.0 | ||
| if self.has_gf and self.numb_generalized_coord < 1: | ||
| raise RuntimeError( | ||
| "When generalized force loss is used, the dimension of generalized coordinates should be larger than 0" | ||
| ) | ||
|
|
||
| def call( | ||
| self, | ||
| learning_rate: float, | ||
| natoms: int, | ||
| model_dict: dict[str, np.ndarray], | ||
| label_dict: dict[str, np.ndarray], | ||
| ) -> dict[str, np.ndarray]: | ||
| """Calculate loss from model results and labeled results.""" | ||
| energy = model_dict["energy"] | ||
| force = model_dict["force"] | ||
| virial = model_dict["virial"] | ||
| atom_ener = model_dict["atom_ener"] | ||
| energy_hat = label_dict["energy"] | ||
| force_hat = label_dict["force"] | ||
| virial_hat = label_dict["virial"] | ||
| atom_ener_hat = label_dict["atom_ener"] | ||
| atom_pref = label_dict["atom_pref"] | ||
| find_energy = label_dict["find_energy"] | ||
| find_force = label_dict["find_force"] | ||
| find_virial = label_dict["find_virial"] | ||
| find_atom_ener = label_dict["find_atom_ener"] | ||
| find_atom_pref = label_dict["find_atom_pref"] | ||
| xp = array_api_compat.array_namespace( | ||
| energy, | ||
| force, | ||
| virial, | ||
| atom_ener, | ||
| energy_hat, | ||
| force_hat, | ||
| virial_hat, | ||
| atom_ener_hat, | ||
| atom_pref, | ||
| ) | ||
|
|
||
| if self.enable_atom_ener_coeff: | ||
| # when ener_coeff (\nu) is defined, the energy is defined as | ||
| # E = \sum_i \nu_i E_i | ||
| # instead of the sum of atomic energies. | ||
| # | ||
| # A case is that we want to train reaction energy | ||
| # A + B -> C + D | ||
| # E = - E(A) - E(B) + E(C) + E(D) | ||
| # A, B, C, D could be put far away from each other | ||
| atom_ener_coeff = label_dict["atom_ener_coeff"] | ||
| atom_ener_coeff = xp.reshape(atom_ener_coeff, xp.shape(atom_ener)) | ||
| energy = xp.sum(atom_ener_coeff * atom_ener, 1) | ||
| if self.has_f or self.has_pf or self.relative_f or self.has_gf: | ||
| force_reshape = xp.reshape(force, [-1]) | ||
| force_hat_reshape = xp.reshape(force_hat, [-1]) | ||
| diff_f = force_hat_reshape - force_reshape | ||
|
|
||
| if self.relative_f is not None: | ||
| force_hat_3 = xp.reshape(force_hat, [-1, 3]) | ||
| norm_f = xp.reshape(xp.norm(force_hat_3, axis=1), [-1, 1]) + self.relative_f | ||
| diff_f_3 = xp.reshape(diff_f, [-1, 3]) | ||
|
||
| diff_f_3 = diff_f_3 / norm_f | ||
| diff_f = xp.reshape(diff_f_3, [-1]) | ||
|
|
||
| atom_norm = 1.0 / natoms | ||
| atom_norm_ener = 1.0 / natoms | ||
| lr_ratio = learning_rate / self.starter_learning_rate | ||
| pref_e = find_energy * ( | ||
| self.limit_pref_e + (self.start_pref_e - self.limit_pref_e) * lr_ratio | ||
| ) | ||
| pref_f = find_force * ( | ||
| self.limit_pref_f + (self.start_pref_f - self.limit_pref_f) * lr_ratio | ||
| ) | ||
| pref_v = find_virial * ( | ||
| self.limit_pref_v + (self.start_pref_v - self.limit_pref_v) * lr_ratio | ||
| ) | ||
| pref_ae = find_atom_ener * ( | ||
| self.limit_pref_ae + (self.start_pref_ae - self.limit_pref_ae) * lr_ratio | ||
| ) | ||
| pref_pf = find_atom_pref * ( | ||
| self.limit_pref_pf + (self.start_pref_pf - self.limit_pref_pf) * lr_ratio | ||
| ) | ||
|
|
||
| l2_loss = 0 | ||
| more_loss = {} | ||
| if self.has_e: | ||
| l2_ener_loss = xp.mean(xp.square(energy - energy_hat)) | ||
| l2_loss += atom_norm_ener * (pref_e * l2_ener_loss) | ||
|
||
| more_loss["l2_ener_loss"] = self.display_if_exist(l2_ener_loss, find_energy) | ||
| if self.has_f: | ||
| l2_force_loss = xp.mean(xp.square(diff_f)) | ||
| l2_loss += pref_f * l2_force_loss | ||
|
||
| more_loss["l2_force_loss"] = self.display_if_exist( | ||
| l2_force_loss, find_force | ||
| ) | ||
| if self.has_v: | ||
| virial_reshape = xp.reshape(virial, [-1]) | ||
| virial_hat_reshape = xp.reshape(virial_hat, [-1]) | ||
| l2_virial_loss = xp.mean( | ||
| xp.square(virial_hat_reshape - virial_reshape), | ||
| ) | ||
| l2_loss += atom_norm * (pref_v * l2_virial_loss) | ||
|
||
| more_loss["l2_virial_loss"] = self.display_if_exist( | ||
| l2_virial_loss, find_virial | ||
| ) | ||
| if self.has_ae: | ||
| atom_ener_reshape = xp.reshape(atom_ener, [-1]) | ||
| atom_ener_hat_reshape = xp.reshape(atom_ener_hat, [-1]) | ||
| l2_atom_ener_loss = xp.mean( | ||
| xp.square(atom_ener_hat_reshape - atom_ener_reshape), | ||
| ) | ||
| l2_loss += pref_ae * l2_atom_ener_loss | ||
|
||
| more_loss["l2_atom_ener_loss"] = self.display_if_exist( | ||
| l2_atom_ener_loss, find_atom_ener | ||
| ) | ||
| if self.has_pf: | ||
| atom_pref_reshape = xp.reshape(atom_pref, [-1]) | ||
| l2_pref_force_loss = xp.mean( | ||
| xp.multiply(xp.square(diff_f), atom_pref_reshape), | ||
| ) | ||
| l2_loss += pref_pf * l2_pref_force_loss | ||
|
||
| more_loss["l2_pref_force_loss"] = self.display_if_exist( | ||
| l2_pref_force_loss, find_atom_pref | ||
| ) | ||
| if self.has_gf: | ||
| find_drdq = label_dict["find_drdq"] | ||
| drdq = label_dict["drdq"] | ||
| force_reshape_nframes = xp.reshape(force, [-1, natoms[0] * 3]) | ||
| force_hat_reshape_nframes = xp.reshape(force_hat, [-1, natoms[0] * 3]) | ||
| drdq_reshape = xp.reshape( | ||
| drdq, [-1, natoms[0] * 3, self.numb_generalized_coord] | ||
| ) | ||
| gen_force_hat = xp.einsum( | ||
| "bij,bi->bj", drdq_reshape, force_hat_reshape_nframes | ||
| ) | ||
| gen_force = xp.einsum("bij,bi->bj", drdq_reshape, force_reshape_nframes) | ||
| diff_gen_force = gen_force_hat - gen_force | ||
| l2_gen_force_loss = xp.mean(xp.square(diff_gen_force)) | ||
| pref_gf = find_drdq * ( | ||
| self.limit_pref_gff | ||
njzjz marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| + (self.start_pref_gf - self.limit_pref_gf) * lr_ratio | ||
| ) | ||
| l2_loss += pref_gf * l2_gen_force_loss | ||
|
||
| more_loss["l2_gen_force_loss"] = self.display_if_exist( | ||
| l2_gen_force_loss, find_drdq | ||
|
||
| ) | ||
|
|
||
| self.l2_l = l2_loss | ||
| self.l2_more = more_loss | ||
| return l2_loss, more_loss | ||
|
|
||
njzjz marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| @property | ||
| def label_requirement(self) -> list[DataRequirementItem]: | ||
| """Return data label requirements needed for this loss calculation.""" | ||
| label_requirement = [] | ||
| if self.has_e: | ||
| label_requirement.append( | ||
| DataRequirementItem( | ||
| "energy", | ||
| ndof=1, | ||
| atomic=False, | ||
| must=False, | ||
| high_prec=True, | ||
| ) | ||
| ) | ||
| if self.has_f: | ||
| label_requirement.append( | ||
| DataRequirementItem( | ||
| "force", | ||
| ndof=3, | ||
| atomic=True, | ||
| must=False, | ||
| high_prec=False, | ||
| ) | ||
| ) | ||
| if self.has_v: | ||
| label_requirement.append( | ||
| DataRequirementItem( | ||
| "virial", | ||
| ndof=9, | ||
| atomic=False, | ||
| must=False, | ||
| high_prec=False, | ||
| ) | ||
| ) | ||
| if self.has_ae: | ||
| label_requirement.append( | ||
| DataRequirementItem( | ||
| "atom_ener", | ||
| ndof=1, | ||
| atomic=True, | ||
| must=False, | ||
| high_prec=False, | ||
| ) | ||
| ) | ||
| if self.has_pf: | ||
| label_requirement.append( | ||
| DataRequirementItem( | ||
| "atom_pref", | ||
| ndof=1, | ||
| atomic=True, | ||
| must=False, | ||
| high_prec=False, | ||
| repeat=3, | ||
| ) | ||
| ) | ||
| if self.has_gf > 0: | ||
| label_requirement.append( | ||
| DataRequirementItem( | ||
| "drdq", | ||
| ndof=self.numb_generalized_coord * 3, | ||
| atomic=True, | ||
| must=False, | ||
| high_prec=False, | ||
| ) | ||
| ) | ||
| if self.enable_atom_ener_coeff: | ||
| label_requirement.append( | ||
| DataRequirementItem( | ||
| "atom_ener_coeff", | ||
| ndof=1, | ||
| atomic=True, | ||
| must=False, | ||
| high_prec=False, | ||
| default=1.0, | ||
| ) | ||
| ) | ||
| return label_requirement | ||
|
|
||
| def serialize(self) -> dict: | ||
| """Serialize the loss module. | ||
|
|
||
| Returns | ||
| ------- | ||
| dict | ||
| The serialized loss module | ||
| """ | ||
| return { | ||
| "@class": "EnergyLoss", | ||
| "@version": 1, | ||
| "starter_learning_rate": self.starter_learning_rate, | ||
| "start_pref_e": self.start_pref_e, | ||
| "limit_pref_e": self.limit_pref_e, | ||
| "start_pref_f": self.start_pref_f, | ||
| "limit_pref_f": self.limit_pref_f, | ||
| "start_pref_v": self.start_pref_v, | ||
| "limit_pref_v": self.limit_pref_v, | ||
| "start_pref_ae": self.start_pref_ae, | ||
| "limit_pref_ae": self.limit_pref_ae, | ||
| "start_pref_pf": self.start_pref_pf, | ||
| "limit_pref_pf": self.limit_pref_pf, | ||
| "relative_f": self.relative_f, | ||
| "enable_atom_ener_coeff": self.enable_atom_ener_coeff, | ||
| "start_pref_gf": self.start_pref_gf, | ||
| "limit_pref_gf": self.limit_pref_gf, | ||
| "numb_generalized_coord": self.numb_generalized_coord, | ||
| } | ||
|
|
||
| @classmethod | ||
| def deserialize(cls, data: dict) -> "Loss": | ||
| """Deserialize the loss module. | ||
|
|
||
| Parameters | ||
| ---------- | ||
| data : dict | ||
| The serialized loss module | ||
|
|
||
| Returns | ||
| ------- | ||
| Loss | ||
| The deserialized loss module | ||
| """ | ||
| data = data.copy() | ||
| check_version_compatibility(data.pop("@version"), 1, 1) | ||
| data.pop("@class") | ||
| return cls(**data) | ||
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.