|
| 1 | +#include "../src/llama-kv-cache-fp8.h" |
| 2 | +#include "../src/llama-model.h" |
| 3 | +#include "../src/llama-impl.h" |
| 4 | + |
| 5 | +#include <ggml-alloc.h> |
| 6 | +#include <ggml-cpp.h> |
| 7 | +#include <ggml.h> |
| 8 | + |
| 9 | +#include <cassert> |
| 10 | +#include <cmath> |
| 11 | +#include <cstdio> |
| 12 | +#include <vector> |
| 13 | + |
| 14 | +// Simple unit test that exercises the DeepSeek V3.2 FP8 KV K blob |
| 15 | +// layout (fp8_ds_mla-style 656-byte entries) by round-tripping |
| 16 | +// synthetic latent + RoPE data through llama_kv_cache_fp8::cpy_k |
| 17 | +// and llama_kv_cache_fp8::get_k. |
| 18 | + |
| 19 | +static void test_fp8_kv_dsmla_roundtrip() { |
| 20 | + printf("[fp8-kv-dsmla] starting roundtrip test...\n"); |
| 21 | + fflush(stdout); |
| 22 | + |
| 23 | + // Minimal hparams: 1 layer with KV, DeepSeek3.2 arch, kv_lora_rank=512, rope_dim=64 |
| 24 | + llama_model_params mparams = llama_model_default_params(); |
| 25 | + llama_model * model = new llama_model(mparams); |
| 26 | + model->arch = LLM_ARCH_DEEPSEEK3_2; |
| 27 | + |
| 28 | + llama_hparams & hp = model->hparams; |
| 29 | + hp.n_layer = 1; |
| 30 | + hp.n_layer_kv_from_start = 1; // has_kv(0) == true |
| 31 | + hp.n_lora_kv = 512; // kv_lora_rank |
| 32 | + hp.n_rot = 64; // rope_dim |
| 33 | + hp.n_embd = 576; // not used here directly |
| 34 | + |
| 35 | + // Ensure layers vector has at least 1 entry |
| 36 | + model->layers.resize(1); |
| 37 | + |
| 38 | + const uint32_t kv_size = 4; // a few KV cells per stream |
| 39 | + const uint32_t n_seq_max = 1; // single stream |
| 40 | + const uint32_t n_pad = 1; |
| 41 | + const uint32_t n_swa = 0; |
| 42 | + |
| 43 | + // Construct an FP8 KV cache instance |
| 44 | + llama_kv_cache_fp8 kv_fp8( |
| 45 | + *model, |
| 46 | + GGML_TYPE_F16, // ignored for DeepSeek V3.2 path |
| 47 | + GGML_TYPE_F16, // ignored for DeepSeek V3.2 path |
| 48 | + /*v_trans*/ true, |
| 49 | + /*offload*/ false, |
| 50 | + /*unified*/ true, |
| 51 | + kv_size, |
| 52 | + n_seq_max, |
| 53 | + n_pad, |
| 54 | + n_swa, |
| 55 | + LLAMA_SWA_TYPE_NONE, |
| 56 | + /*filter*/ nullptr, |
| 57 | + /*reuse*/ nullptr); |
| 58 | + |
| 59 | + // Synthetic latent+RoPE per token |
| 60 | + const int64_t D_latent = 512; |
| 61 | + const int64_t D_rope = 64; |
| 62 | + const int64_t D_total = D_latent + D_rope; |
| 63 | + |
| 64 | + const int64_t n_tokens = 3; // write 3 tokens into first 3 KV cells |
| 65 | + |
| 66 | + // Build a ggml context for tensors |
| 67 | + ggml_init_params params = {}; |
| 68 | + params.mem_size = 16 * 1024 * 1024; |
| 69 | + params.mem_buffer = nullptr; |
| 70 | + params.no_alloc = false; |
| 71 | + ggml_context * ctx = ggml_init(params); |
| 72 | + GGML_ASSERT(ctx != nullptr); |
| 73 | + |
| 74 | + // k_cur: [D_total, 1, n_tokens] |
| 75 | + ggml_tensor * k_cur = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, D_total, 1, n_tokens); |
| 76 | + |
| 77 | + // Fill with a simple deterministic pattern |
| 78 | + float * k_data = (float *) k_cur->data; |
| 79 | + for (int64_t t = 0; t < n_tokens; ++t) { |
| 80 | + for (int64_t d = 0; d < D_total; ++d) { |
| 81 | + float base = 0.01f * float(t + 1); |
| 82 | + // keep magnitudes reasonable for fp8 quantization |
| 83 | + k_data[d + D_total * t] = base * (1.0f + 0.001f * float(d)); |
| 84 | + } |
| 85 | + } |
| 86 | + |
| 87 | + // k_idxs: global KV indices for each token, here 0,1,2 |
| 88 | + ggml_tensor * k_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens); |
| 89 | + int64_t * idx_data = (int64_t *) k_idxs->data; |
| 90 | + for (int64_t t = 0; t < n_tokens; ++t) { |
| 91 | + idx_data[t] = t; // stream=0, cell=t |
| 92 | + } |
| 93 | + |
| 94 | + // Build a minimal slot_info that maps a single stream 0 |
| 95 | + llama_kv_cache::slot_info sinfo; |
| 96 | + sinfo.s0 = 0; |
| 97 | + sinfo.s1 = 0; |
| 98 | + sinfo.strm = { 0 }; |
| 99 | + sinfo.idxs = { std::vector<uint32_t>(kv_size) }; |
| 100 | + for (uint32_t i = 0; i < kv_size; ++i) { |
| 101 | + sinfo.idxs[0][i] = i; |
| 102 | + } |
| 103 | + |
| 104 | + // Write into the FP8 K blob using the new DS-MLA cpy_k |
| 105 | + kv_fp8.cpy_k(ctx, k_cur, k_idxs, /*il=*/0, sinfo); |
| 106 | + |
| 107 | + // Read back using get_k: expect [576, 1, kv_size, ns=1] |
| 108 | + ggml_tensor * k_out = kv_fp8.get_k(ctx, /*il=*/0, kv_size, sinfo); |
| 109 | + GGML_ASSERT(k_out != nullptr); |
| 110 | + GGML_ASSERT(k_out->type == GGML_TYPE_F32); |
| 111 | + GGML_ASSERT(k_out->ne[0] == D_total); |
| 112 | + GGML_ASSERT(k_out->ne[1] == 1); |
| 113 | + GGML_ASSERT(k_out->ne[2] == kv_size); |
| 114 | + GGML_ASSERT(k_out->ne[3] == 1); |
| 115 | + |
| 116 | + const float * out_data = (const float *) k_out->data; |
| 117 | + |
| 118 | + // Compare only the first n_tokens cells; the rest are unspecified |
| 119 | + float max_abs_err = 0.0f; |
| 120 | + for (int64_t t = 0; t < n_tokens; ++t) { |
| 121 | + for (int64_t d = 0; d < D_total; ++d) { |
| 122 | + float orig = k_data[d + D_total * t]; |
| 123 | + float got = out_data[d + D_total * (t + kv_size * 0)]; |
| 124 | + float err = fabsf(orig - got); |
| 125 | + if (err > max_abs_err) max_abs_err = err; |
| 126 | + } |
| 127 | + } |
| 128 | + |
| 129 | + printf("[fp8-kv-dsmla] max_abs_err = %g\n", (double) max_abs_err); |
| 130 | + fflush(stdout); |
| 131 | + |
| 132 | + // FP8 + BF16 round-trip is lossy; allow a modest tolerance |
| 133 | + GGML_ASSERT(max_abs_err < 0.1f); |
| 134 | + |
| 135 | + ggml_free(ctx); |
| 136 | + delete model; |
| 137 | + |
| 138 | + printf("[fp8-kv-dsmla] roundtrip test PASSED\n"); |
| 139 | + fflush(stdout); |
| 140 | +} |
| 141 | + |
| 142 | +int main() { |
| 143 | + test_fp8_kv_dsmla_roundtrip(); |
| 144 | + return 0; |
| 145 | +} |
0 commit comments