|
| 1 | +package compat |
| 2 | + |
| 3 | +import ( |
| 4 | + "crypto/hmac" |
| 5 | + "encoding/base64" |
| 6 | + "math/big" |
| 7 | + "reflect" |
| 8 | + |
| 9 | + "errors" |
| 10 | + |
| 11 | + ecies "github.com/bitcoin-sv/go-sdk/primitives/aescbc" |
| 12 | + ec "github.com/bitcoin-sv/go-sdk/primitives/ec" |
| 13 | + c "github.com/bitcoin-sv/go-sdk/primitives/hash" |
| 14 | +) |
| 15 | + |
| 16 | +// EncryptSingle is a helper that uses Electrum ECIES method to encrypt a message |
| 17 | +func EncryptSingle(message string, privateKey *ec.PrivateKey) (string, error) { |
| 18 | + messageBytes := []byte(message) |
| 19 | + if privateKey == nil { |
| 20 | + return "", errors.New("private key is required") |
| 21 | + } |
| 22 | + decryptedBytes, _ := ElectrumEncrypt(messageBytes, privateKey.PubKey(), privateKey, false) |
| 23 | + return base64.StdEncoding.EncodeToString(decryptedBytes), nil |
| 24 | +} |
| 25 | + |
| 26 | +// DecryptSingle is a helper that uses Electrum ECIES method to decrypt a message |
| 27 | +func DecryptSingle(encryptedData string, privateKey *ec.PrivateKey) (string, error) { |
| 28 | + encryptedBytes, err := base64.StdEncoding.DecodeString(encryptedData) |
| 29 | + if err != nil { |
| 30 | + return "", err |
| 31 | + } |
| 32 | + plainBytes, err := ElectrumDecrypt(encryptedBytes, privateKey, nil) |
| 33 | + if err != nil { |
| 34 | + return "", err |
| 35 | + } |
| 36 | + return string(plainBytes), nil |
| 37 | +} |
| 38 | + |
| 39 | +// EncryptShared is a helper that uses Electrum ECIES method to encrypt a message for a target public key |
| 40 | +func EncryptShared(message string, toPublicKey *ec.PublicKey, fromPrivateKey *ec.PrivateKey) (string, error) { |
| 41 | + messageBytes := []byte(message) |
| 42 | + decryptedBytes, err := ElectrumEncrypt(messageBytes, toPublicKey, fromPrivateKey, false) |
| 43 | + if err != nil { |
| 44 | + return "", err |
| 45 | + } |
| 46 | + return base64.StdEncoding.EncodeToString(decryptedBytes), nil |
| 47 | +} |
| 48 | + |
| 49 | +// DecryptShared is a helper that uses Electrum ECIES method to decrypt a message from a target public key |
| 50 | +func DecryptShared(encryptedData string, toPrivateKey *ec.PrivateKey, fromPublicKey *ec.PublicKey) (string, error) { |
| 51 | + encryptedBytes, err := base64.StdEncoding.DecodeString(encryptedData) |
| 52 | + if err != nil { |
| 53 | + return "", err |
| 54 | + } |
| 55 | + plainBytes, err := ElectrumDecrypt(encryptedBytes, toPrivateKey, fromPublicKey) |
| 56 | + if err != nil { |
| 57 | + return "", err |
| 58 | + } |
| 59 | + return string(plainBytes), nil |
| 60 | +} |
| 61 | + |
| 62 | +// ElectrumEncrypt encrypts a message using ECIES using Electrum encryption method |
| 63 | +func ElectrumEncrypt(message []byte, |
| 64 | + toPublicKey *ec.PublicKey, |
| 65 | + fromPrivateKey *ec.PrivateKey, |
| 66 | + noKey bool, |
| 67 | +) ([]byte, error) { |
| 68 | + // Generate an ephemeral EC private key if fromPrivateKey is nil |
| 69 | + var ephemeralPrivateKey *ec.PrivateKey |
| 70 | + if fromPrivateKey == nil { |
| 71 | + ephemeralPrivateKey, _ = ec.NewPrivateKey() |
| 72 | + } else { |
| 73 | + ephemeralPrivateKey = fromPrivateKey |
| 74 | + } |
| 75 | + |
| 76 | + // Derive ECDH key |
| 77 | + x, y := toPublicKey.Curve.ScalarMult(toPublicKey.X, toPublicKey.Y, ephemeralPrivateKey.D.Bytes()) |
| 78 | + ecdhKey := (&ec.PublicKey{X: x, Y: y}).SerializeCompressed() |
| 79 | + |
| 80 | + // SHA512(ECDH_KEY) |
| 81 | + key := c.Sha512(ecdhKey) |
| 82 | + iv, keyE, keyM := key[0:16], key[16:32], key[32:] |
| 83 | + |
| 84 | + // AES encryption |
| 85 | + cipherText, err := ecies.AESCBCEncrypt(message, keyE, iv, false) |
| 86 | + if err != nil { |
| 87 | + return nil, err |
| 88 | + } |
| 89 | + |
| 90 | + ephemeralPublicKey := ephemeralPrivateKey.PubKey() |
| 91 | + var encrypted []byte |
| 92 | + if noKey { |
| 93 | + // encrypted = magic_bytes(4 bytes) + cipher |
| 94 | + encrypted = append([]byte("BIE1"), cipherText...) |
| 95 | + } else { |
| 96 | + // encrypted = magic_bytes(4 bytes) + ephemeral_public_key(33 bytes) + cipher |
| 97 | + encrypted = append(append([]byte("BIE1"), ephemeralPublicKey.SerializeCompressed()...), cipherText...) |
| 98 | + } |
| 99 | + |
| 100 | + mac := c.Sha256HMAC(encrypted, keyM) |
| 101 | + |
| 102 | + return append(encrypted, mac...), nil |
| 103 | +} |
| 104 | + |
| 105 | +// ElectrumDecrypt decrypts a message using ECIES using Electrum decryption method |
| 106 | +func ElectrumDecrypt(encryptedData []byte, toPrivateKey *ec.PrivateKey, fromPublicKey *ec.PublicKey) ([]byte, error) { |
| 107 | + |
| 108 | + if len(encryptedData) < 52 { // Minimum length: 4 (magic) + 16 (min cipher) + 32 (mac) |
| 109 | + return nil, errors.New("invalid encrypted text: length") |
| 110 | + } |
| 111 | + magic := encryptedData[:4] |
| 112 | + if string(magic) != "BIE1" { |
| 113 | + return nil, errors.New("invalid cipher text: invalid magic bytes") |
| 114 | + } |
| 115 | + |
| 116 | + var sharedSecret []byte |
| 117 | + var cipherText []byte |
| 118 | + |
| 119 | + if fromPublicKey != nil { |
| 120 | + // Use counterparty public key to derive shared secret |
| 121 | + x, y := toPrivateKey.Curve.ScalarMult(fromPublicKey.X, fromPublicKey.Y, toPrivateKey.D.Bytes()) |
| 122 | + sharedSecret = (&ec.PublicKey{X: x, Y: y}).SerializeCompressed() |
| 123 | + if len(encryptedData) > 69 { // 4 (magic) + 33 (pubkey) + 32 (mac) |
| 124 | + cipherText = encryptedData[37 : len(encryptedData)-32] |
| 125 | + } else { |
| 126 | + cipherText = encryptedData[4 : len(encryptedData)-32] |
| 127 | + } |
| 128 | + } else { |
| 129 | + // Use ephemeral public key to derive shared secret |
| 130 | + ephemeralPublicKey, err := ec.ParsePubKey(encryptedData[4:37]) |
| 131 | + if err != nil { |
| 132 | + return nil, err |
| 133 | + } |
| 134 | + x, y := ephemeralPublicKey.Curve.ScalarMult(ephemeralPublicKey.X, ephemeralPublicKey.Y, toPrivateKey.D.Bytes()) |
| 135 | + sharedSecret = (&ec.PublicKey{X: x, Y: y}).SerializeCompressed() |
| 136 | + cipherText = encryptedData[37 : len(encryptedData)-32] |
| 137 | + } |
| 138 | + |
| 139 | + // Derive key_e, iv and key_m |
| 140 | + key := c.Sha512(sharedSecret) |
| 141 | + iv, keyE, keyM := key[0:16], key[16:32], key[32:] |
| 142 | + |
| 143 | + // Verify mac |
| 144 | + mac := encryptedData[len(encryptedData)-32:] |
| 145 | + macRecalculated := c.Sha256HMAC(encryptedData[:len(encryptedData)-32], keyM) |
| 146 | + if !reflect.DeepEqual(mac, macRecalculated) { |
| 147 | + return nil, errors.New("incorrect password") |
| 148 | + } |
| 149 | + |
| 150 | + // AES decryption |
| 151 | + plain, err := ecies.AESCBCDecrypt(cipherText, keyE, iv) |
| 152 | + if err != nil { |
| 153 | + return nil, err |
| 154 | + } |
| 155 | + return plain, nil |
| 156 | +} |
| 157 | + |
| 158 | +// BitcoreEncrypt encrypts a message using ECIES using Bitcore encryption method |
| 159 | +func BitcoreEncrypt(message []byte, |
| 160 | + toPublicKey *ec.PublicKey, |
| 161 | + fromPrivateKey *ec.PrivateKey, |
| 162 | + iv []byte, |
| 163 | +) ([]byte, error) { |
| 164 | + |
| 165 | + // If IV is not provided, fill it with zeros |
| 166 | + if iv == nil { |
| 167 | + iv = make([]byte, 16) |
| 168 | + } |
| 169 | + |
| 170 | + // If fromPrivateKey is not provided, generate a random one |
| 171 | + if fromPrivateKey == nil { |
| 172 | + fromPrivateKey, _ = ec.NewPrivateKey() |
| 173 | + } |
| 174 | + |
| 175 | + RBuf := fromPrivateKey.PubKey().ToDERBytes() |
| 176 | + P := toPublicKey.Mul(fromPrivateKey.D) |
| 177 | + |
| 178 | + Sbuf := P.X.Bytes() |
| 179 | + kEkM := c.Sha512(Sbuf) |
| 180 | + kE := kEkM[:32] |
| 181 | + kM := kEkM[32:] |
| 182 | + cc, err := ecies.AESCBCEncrypt(message, kE, iv, true) |
| 183 | + if err != nil { |
| 184 | + return nil, err |
| 185 | + } |
| 186 | + d := c.Sha256HMAC(cc, kM) |
| 187 | + encBuf := append(RBuf, cc...) |
| 188 | + encBuf = append(encBuf, d...) |
| 189 | + |
| 190 | + return encBuf, nil |
| 191 | +} |
| 192 | + |
| 193 | +// BitcoreDecrypt decrypts a message using ECIES using Bitcore decryption method |
| 194 | +func BitcoreDecrypt(encryptedMessage []byte, toPrivatKey *ec.PrivateKey) ([]byte, error) { |
| 195 | + |
| 196 | + fromPublicKey, err := ec.ParsePubKey(encryptedMessage[:33]) |
| 197 | + if err != nil { |
| 198 | + return nil, err |
| 199 | + } |
| 200 | + |
| 201 | + P := fromPublicKey.Mul(toPrivatKey.D) |
| 202 | + if P.X.Cmp(big.NewInt(0)) == 0 && P.Y.Cmp(big.NewInt(0)) == 0 { |
| 203 | + return nil, errors.New("p equals 0") |
| 204 | + } |
| 205 | + |
| 206 | + Sbuf := P.X.Bytes() |
| 207 | + kEkM := c.Sha512(Sbuf) |
| 208 | + kE := kEkM[:32] |
| 209 | + kM := kEkM[32:] |
| 210 | + |
| 211 | + cipherText := encryptedMessage[33 : len(encryptedMessage)-32] |
| 212 | + mac := encryptedMessage[len(encryptedMessage)-32:] |
| 213 | + expectedMAC := c.Sha256HMAC(cipherText, kM) |
| 214 | + if !hmac.Equal(mac, expectedMAC) { |
| 215 | + return nil, errors.New("invalid ciphertext: HMAC mismatch") |
| 216 | + } |
| 217 | + iv := cipherText[:16] |
| 218 | + return ecies.AESCBCDecrypt(cipherText[16:], kE, iv) |
| 219 | +} |
0 commit comments