- "traceback": "Traceback (most recent call last):\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/smac/runner/target_function_runner.py\", line 190, in run\n rval = self(config_copy, target_function, kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/smac/runner/target_function_runner.py\", line 264, in __call__\n return algorithm(config, **algorithm_kwargs)\n File \"/Users/krissi/Documents/SMAC3/examples/2_multi_fidelity/1_mlp_epochs.py\", line 106, in train\n score = cross_val_score(classifier, dataset.data, dataset.target, cv=cv, error_score=\"raise\")\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/utils/_param_validation.py\", line 216, in wrapper\n return func(*args, **kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/model_selection/_validation.py\", line 684, in cross_val_score\n cv_results = cross_validate(\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/utils/_param_validation.py\", line 216, in wrapper\n return func(*args, **kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/model_selection/_validation.py\", line 411, in cross_validate\n results = parallel(\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/utils/parallel.py\", line 77, in __call__\n return super().__call__(iterable_with_config)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/joblib/parallel.py\", line 1986, in __call__\n return output if self.return_generator else list(output)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/joblib/parallel.py\", line 1914, in _get_sequential_output\n res = func(*args, **kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/utils/parallel.py\", line 139, in __call__\n return self.function(*args, **kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/model_selection/_validation.py\", line 866, in _fit_and_score\n estimator.fit(X_train, y_train, **fit_params)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/base.py\", line 1389, in wrapper\n return fit_method(estimator, *args, **kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py\", line 754, in fit\n return self._fit(X, y, incremental=False)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py\", line 496, in _fit\n raise ValueError(\nValueError: Solver produced non-finite parameter weights. The input data may contain large values and need to be preprocessed.\n",
0 commit comments