Skip to content

Commit 2b7de59

Browse files
committed
compatibility for smac3v2 new smac version
1 parent 0621fb7 commit 2b7de59

File tree

3 files changed

+10
-5
lines changed

3 files changed

+10
-5
lines changed

CHANGELOG.md

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,8 @@
1+
# Version 1.3.6
2+
3+
## New SMAC version compatibility
4+
- The smac3v2 converter can now also handle the output of the new smac version
5+
16
# Version 1.3.5
27

38
## Access Specifier

deepcave/config.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,7 @@ class Config:
6161

6262
# General config
6363
TITLE: str = "DeepCAVE"
64-
DEBUG: bool = True
64+
DEBUG: bool = False
6565
# How often to refresh background activities (such as update the sidebar or process button for
6666
# static plugins). Value in milliseconds.
6767
REFRESH_RATE: int = 500

logs/SMAC3v2/mlp/run_4/runhistory.json

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1174,8 +1174,8 @@
11741174
"starttime": 1748856893.299079,
11751175
"endtime": 1748856893.353384,
11761176
"additional_info": {
1177-
"traceback": "Traceback (most recent call last):\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/smac/runner/target_function_runner.py\", line 190, in run\n rval = self(config_copy, target_function, kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/smac/runner/target_function_runner.py\", line 264, in __call__\n return algorithm(config, **algorithm_kwargs)\n File \"/Users/krissi/Documents/SMAC3/examples/2_multi_fidelity/1_mlp_epochs.py\", line 106, in train\n score = cross_val_score(classifier, dataset.data, dataset.target, cv=cv, error_score=\"raise\")\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/utils/_param_validation.py\", line 216, in wrapper\n return func(*args, **kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/model_selection/_validation.py\", line 684, in cross_val_score\n cv_results = cross_validate(\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/utils/_param_validation.py\", line 216, in wrapper\n return func(*args, **kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/model_selection/_validation.py\", line 411, in cross_validate\n results = parallel(\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/utils/parallel.py\", line 77, in __call__\n return super().__call__(iterable_with_config)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/joblib/parallel.py\", line 1986, in __call__\n return output if self.return_generator else list(output)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/joblib/parallel.py\", line 1914, in _get_sequential_output\n res = func(*args, **kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/utils/parallel.py\", line 139, in __call__\n return self.function(*args, **kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/model_selection/_validation.py\", line 866, in _fit_and_score\n estimator.fit(X_train, y_train, **fit_params)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/base.py\", line 1389, in wrapper\n return fit_method(estimator, *args, **kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py\", line 754, in fit\n return self._fit(X, y, incremental=False)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py\", line 496, in _fit\n raise ValueError(\nValueError: Solver produced non-finite parameter weights. The input data may contain large values and need to be preprocessed.\n",
1178-
"error": "ValueError('Solver produced non-finite parameter weights. The input data may contain large values and need to be preprocessed.')"
1177+
"traceback": "Traceback",
1178+
"error": "ValueError"
11791179
}
11801180
},
11811181
{
@@ -4882,8 +4882,8 @@
48824882
"starttime": 1748856917.1936471,
48834883
"endtime": 1748856917.3327649,
48844884
"additional_info": {
4885-
"traceback": "Traceback (most recent call last):\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/smac/runner/target_function_runner.py\", line 190, in run\n rval = self(config_copy, target_function, kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/smac/runner/target_function_runner.py\", line 264, in __call__\n return algorithm(config, **algorithm_kwargs)\n File \"/Users/krissi/Documents/SMAC3/examples/2_multi_fidelity/1_mlp_epochs.py\", line 106, in train\n score = cross_val_score(classifier, dataset.data, dataset.target, cv=cv, error_score=\"raise\")\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/utils/_param_validation.py\", line 216, in wrapper\n return func(*args, **kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/model_selection/_validation.py\", line 684, in cross_val_score\n cv_results = cross_validate(\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/utils/_param_validation.py\", line 216, in wrapper\n return func(*args, **kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/model_selection/_validation.py\", line 411, in cross_validate\n results = parallel(\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/utils/parallel.py\", line 77, in __call__\n return super().__call__(iterable_with_config)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/joblib/parallel.py\", line 1986, in __call__\n return output if self.return_generator else list(output)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/joblib/parallel.py\", line 1914, in _get_sequential_output\n res = func(*args, **kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/utils/parallel.py\", line 139, in __call__\n return self.function(*args, **kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/model_selection/_validation.py\", line 866, in _fit_and_score\n estimator.fit(X_train, y_train, **fit_params)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/base.py\", line 1389, in wrapper\n return fit_method(estimator, *args, **kwargs)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py\", line 754, in fit\n return self._fit(X, y, incremental=False)\n File \"/opt/homebrew/anaconda3/envs/smac/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py\", line 496, in _fit\n raise ValueError(\nValueError: Solver produced non-finite parameter weights. The input data may contain large values and need to be preprocessed.\n",
4886-
"error": "ValueError('Solver produced non-finite parameter weights. The input data may contain large values and need to be preprocessed.')"
4885+
"traceback": "Traceback",
4886+
"error": "ValueError"
48874887
}
48884888
},
48894889
{

0 commit comments

Comments
 (0)