diff --git a/scripts/data_analysis/0_before_after_datmod_prep.R b/scripts/data_analysis/0_before_after_datmod_prep.R index ef8886d..2d0f5b3 100644 --- a/scripts/data_analysis/0_before_after_datmod_prep.R +++ b/scripts/data_analysis/0_before_after_datmod_prep.R @@ -3,7 +3,7 @@ temp.filename <- paste0(site, '_mod_dat.csv') dat <- read.csv(file.path('data_cached', temp.filename)) # change infinite values to 365, representing a full year since application -dat<-do.call(data.frame,lapply(dat, function(x) replace(x, is.infinite(x),365))) +dat[,c("days_since_cultivation","days_since_fertilizer","days_since_planting")]<-do.call(data.frame,lapply(dat[,c("days_since_cultivation","days_since_fertilizer","days_since_planting")], function(x) replace(x, is.infinite(x),365))) # change 'NaN' values to NA to omit during data processing dat<-do.call(data.frame,lapply(dat, function(x) replace(x, "NaN",NA))) @@ -27,7 +27,7 @@ drop.predictors <- caret::findCorrelation(predictors.cor, cutoff = 0.95, verbose predictors.keep <- c(names.cor[-drop.predictors], 'frozen') # Change all 0 values to 0.0000001, so we can take the log10 of those vlaues -dat.mod[dat.mod==0] <- 0.0000001 +dat.mod[,responses][dat.mod[,responses]==0] <- 0.0000001 # log transform response vars dat.mod[,responses] <- log10(dat.mod[,responses])