diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..e2615b4 --- /dev/null +++ b/.gitignore @@ -0,0 +1,10 @@ +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# Uncompressed data +data/ + +# Jupyter Notebook +.ipynb_checkpoints diff --git a/.travis.yml b/.travis.yml new file mode 100644 index 0000000..b6f7e48 --- /dev/null +++ b/.travis.yml @@ -0,0 +1,18 @@ +# After changing this file, check it on: +# http://lint.travis-ci.org + +language: python + +sudo: false + +python: + - "3.4" + +install: + - pip install -U pip + - pip install -U -r requirements.txt + +script: + - tar xvzf data.tar.gz + - export PYTHONHASHSEED=0 + - python -m doctest lib/experiments.py diff --git a/README.md b/README.md index fbc90b8..fdd06bf 100644 --- a/README.md +++ b/README.md @@ -2,7 +2,9 @@ Implementation of graph wavelets via sparse cuts with some baselines, datasets and evaluation. -Evaluation is performed using python notebooks. +Evaluation is performed using IPython Notebook. + +After code review some results may differ from those presented in the paper. Scalability and approximation experiments: ----------------------- @@ -12,10 +14,30 @@ Compression experiments: ----------------------- https://nbviewer.jupyter.org/github/arleilps/sparse-wavelets/blob/master/compression-experiments.ipynb +Testing: +------ +At the moment there is only one doctest in lib/experiments.py. To run the test +you should use python version 3.4 or 3.5, NetworkX 1.11 and set PYTHONHASHSEED=0. +This conditions are used to constrain the behaviour of the NetworkX function +fiedler_vector(). Once ready, enter the following command: +``` +python -m doctest lib/experiments.py -v +``` + +List of supported Python versions: +------------------ + + +
+ For more details, see the paper: [Graph Wavelets via Sparse Cuts ](http://arxiv.org/abs/1602.03320 "") Arlei Silva, Xuan-Hong Dang, Prithwish Basu, Ambuj K Singh, Ananthram Swami -ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2016 (to appear). +ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2016. Arlei Silva (arlei@cs.ucsb.edu) - diff --git a/compression-experiments.ipynb b/compression-experiments.ipynb deleted file mode 100644 index 6ef1673..0000000 --- a/compression-experiments.ipynb +++ /dev/null @@ -1,780 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Compression Experiments using Real Data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Imports" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "import networkx\n", - "import math\n", - "import scipy.optimize\n", - "import numpy\n", - "import sys\n", - "from scipy import linalg\n", - "import matplotlib.pyplot as plt\n", - "from IPython.display import Image\n", - "import pywt\n", - "import scipy.fftpack\n", - "import random\n", - "import operator\n", - "import copy\n", - "from collections import deque\n", - "from sklearn.preprocessing import normalize\n", - "from sklearn.cluster import SpectralClustering\n", - "from matplotlib.lines import Line2D\n", - "from lib.io import *\n", - "from lib.vis import *\n", - "from lib.graph_signal_proc import *\n", - "from lib.syn import *\n", - "from lib.experiments import *\n", - "from lib.static import *\n", - "from lib.datasets import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Small Traffic" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "G = read_graph(small_traffic[\"path\"] + \"traffic.graph\", small_traffic[\"path\"] + \"traffic.data\")\n", - "F = read_values(small_traffic[\"path\"] + \"traffic.data\", G) " - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "#vertices = 100\n", - "#edges = 128\n" - ] - } - ], - "source": [ - "print(\"#vertices = \", G.number_of_nodes())\n", - "print(\"#edges = \", len(G.edges()))" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "algs = [OptWavelets(n=20), OptWavelets(), GRCWavelets(), Fourier(), HWavelets()]\n", - "\n", - "comp_ratios = [0.1, 0.20, 0.30, 0.40, 0.50, 0.60]\n", - "\n", - "res_smt, time_smt = compression_experiment_static(G, numpy.array(F), algs, comp_ratios, 10)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACIIAAAZQCAYAAAAM5nmmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAuIwAALiMBeKU/dgAAIABJREFUeJzs3Xl8VPW9//H3ZCGEABKEIIQtIFsABZOwBZIgVUBvVSq1\nIopatK3FR2vbW/uTurRal3utt62t27UtVQRrbxVcqaUKYZclRfZNMUESZFXCmhDm90c4w2T2mZyZ\nM3Pm9Xw88iCZ5ZzPyTckn3O+n/P5OpxOp1MAAAAAAAAAAAAAAABIeClWBwAAAAAAAAAAAAAAAABz\nUAgCAAAAAAAAAAAAAABgExSCAAAAAAAAAAAAAAAA2ASFIAAAAAAAAAAAAAAAADZBIQgAAAAAAAAA\nAAAAAIBNUAgCAAAAAAAAAAAAAABgExSCAAAAAAAAAAAAAAAA2ASFIAAAAAAAAAAAAAAAADZBIQgA\nAAAAAAAAAAAAAIBNUAgCAAAAAAAAAAAAAABgExSCAAAAAAAAAAAAAAAA2ASFIAAAAAAAAAAAAAAA\nADZBIQgAAAAAAAAAAAAAAIBNUAgCAAAAAAAAAAAAAABgExSCAAAAAAAAAAAAAAAA2ASFIAAAAAAA\nAAAAAAAAADZBIQgAAAAAAAAAAAAAAIBNUAgCAAAAAAAAAAAAAABgExSCAAAAAAAAAAAAAAAA2ASF\nIAAAAAAAAAAAAAAAADZBIQgAAAAAAAAAAAAAAIBNUAgCAAAAAAAAAAAAAABgExSCAAAAAAAAAAAA\nAAAA2ASFIAAAAAAAAAAAAAAAADZBIQgAAAAAAAAAAAAAAIBNUAgCAAAAAAAAAAAAAABgE2lWBwAg\n+Zw5c0Y7d+5s8lj79u2VkkJtGgAAAAAAAAAAAIDEdvbsWR0+fLjJY3369FFaWmxKNCgEARBzO3fu\nVH5+vtVhAAAAAAAAAAAAAEBMbNmyRQMGDIjJvrj9HgAAAAAAAAAAAAAAwCYoBAEAAAAAAAAAAAAA\nALAJCkEAAAAAAAAAAAAAAABsIs3qAAAkn/bt23s9tmXLFnXo0MGCaAAki+PHjysvL0+StHv3bmVl\nZVkcEQC74/cOgFjj9w6AWOP3DoBY4/cOgFjj9w4idfDgQeXn5zd5zNccabRQCAIg5lJSvJsRdejQ\nQR07drQgGgDJolWrVq7PO3bsSMIOIOr4vQMg1vi9AyDW+L0DINb4vQMg1vi9AzP5miON2r5iticA\nAAAAAAAAAAAAAABEFYUgAAAAAAAAAAAAAAAANkEhCAAAAAAAAAAAAAAAgE1QCAIAAAAAAAAAAAAA\nAGATFIIAAAAAAAAAAAAAAADYBIUgAAAAAAAAAAAAAAAANkEhCAAAAAAAAAAAAAAAgE1QCAIAAAAA\nAAAAAAAAAGATFIIAAAAAAAAAAAAAAADYBIUgAAAAAAAAAAAAAAAANkEhCAAAAAAAAAAAAAAAgE1Q\nCAIAAAAAAAAAAAAAAGATFIIAAAAAAAAAAAAAAADYRJrVAQAAAMRCVlaWnE6n1WEASCL83gEQa/ze\nARBr/N4BEGv83gEQa/zeQaKiIwgAAAAAAAAAAAAAAIBNUAgCAAAAAAAAAAAAAABgExSCAAAAAAAA\nAAAAAAAA2ASFIAAAAAAAAAAAAAAAADZBIQgAAAAAAAAAAAAAAIBNUAgCAAAAAAAAAAAAAABgExSC\nAAAAAAAAAAAAAAAA2ASFIAAAAAAAAAAAAAAAADZBIQgAAAAAAAAAAAAAAIBNUAgCAAAAAAAAAAAA\nAABgExSCAAAAAAAAAAAAAAAA2ASFIAAAAAAAAAAAAAAAADZBIQgAAAAAAAAAAAAAAIBNUAgCAAAA\nAAAAAAAAAABgExSCAAAAAAAAAAAAAAAA2ASFIAAAAAAAAAAAAAAAADZBIQgAAAAAAAAAAAAAAIBN\nUAgCAAAAAAAAAAAAAABgExSCAAAAAAAAAAAAAAAA2ASFIAAAAAAAAAAAAAAAADaRZnUAAJCszp49\nq0OHDlkdBgAAAAAAAAAAABAVF154oVJS6E8RaxSCAIBFDh06pJycHKvDAAAAAAAAAAAAAKJi//79\n6tixo9VhJB1KbwAAAAAAAAAAAAAAAGyCQhAAAAAAAAAAAAAAAACboBAEAAAAAAAAAAAAAADAJtKs\nDgAAcN6WLVvUoUMHq8MAAAAAAAAAAAAAwnLw4EHl5+dbHQZEIQgAxJUOHTqoY8eOVocBAAAAAAAA\nAAAAIEFRCAIgLhw/flytWrXyejwrK8uCaAAAAAAAAAAAAAAguOPHj4f0WCxRCAIgLuTl5fl83Ol0\nxjgSAAAAAAAAAAAAAAhN69atrQ7BS4rVAQAAAAAAAAAAAAAAAMAcdAQBEBd2796tjh07Wh0GAAAA\nAAAAAAAAAITs2LFjXo8dOHDA74oIsUAhCIC4kJWVpaysLKvDAAAAAAAAAAAAAICQ+ZrjPHHihAWR\nnMfSMAAAAAAAAAAAAAAAADZBIQgAAAAAAAAAAAAAAIBNUAgCAAAAAAAAAAAAAABgExSCAAAAAAAA\nAAAAAAAA2ASFIAAAAAAAAAAAAAAAADZBIQgAAAAAAAAAAAAAAIBNUAgCAAAAAAAAAAAAAABgExSC\nAAAAAAAAAAAAAAAA2ASFIAAAAAAAAAAAAAAAADZBIQgAAAAAAAAAAAAAAIBNUAgCAAAAAAAAAAAA\nAABgExSCAAAAAAAAAAAAAAAA2ASFIAAAAAAAAAAAAAAAADZBIQgAAAAAAAAAAAAAAIBNUAgCAAAA\nAAAAAAAAAABgExSCAAAAAAAAAAAAAAAA2ASFIAAAAAAAAAAAAAAAADZBIQgAAAAAAAAAAAAAAIBN\nUAgCAAAAAAAAAAAAAABgExSCAAAAAAAAAAAAAAAA2ASFIAAAAAAAAAAAAAAAADZBIQgAAAAAAAAA\nAAAAAIBNUAgCAAAAAAAAAAAAAABgExSCAAAAAAAAAAAAAAAA2ASFIAAAAAAAAAAAAAAAADZBIQgA\nAAAAAAAAAAAAAIBNpFkdAADAnpxOpyorK7V//36dPHlSp06dkiS1bNlSmZmZysnJUY8ePeRwOCyO\nFKFiTBFP6urqVFVVpZqaGh08eFCnTp3S6dOnlZGRoaysLLVu3VpZWVnKyclR9+7dlZqaanXIAAAA\nMdXQ0KA9e/aopqbGlcOfPn1a6enpysrKcn106NBBPXr0UIsWLawOGQAsd+rUKTU0NFgdhqVSU1PV\nsmVLq8MwBeNpr/EEAISHQhAAQLM5nU7t3r1b69at09q1a7Vu3TpVVFToyJEjAd+XnZ2tgoKCJh95\neXkUEsQBxhTxZs+ePXr//fe1aNEiVVRUaNeuXSFfzElNTVXXrl2Vl5eniy++WIWFhSosLNQll1yi\ntDTSYQD28bvfSZMmSd27Wx1JbFRVSfPmST/8odWRRA9jinAcPHjQlS+tWbNG27dvV11dXUjvdTgc\n6ty5s/Ly8tS7d29ddtllKioq0tChQ5k8ApBU/vznP2vGjBlWh2GpZ599VnfddZfVYZiC8bTXeAIA\nwuNwOp1Oq4MAkFwOHDignJycJo/t379fHTt2tCgia9jh+7B37169+OKLevHFF1VdXe31fAtJnSVl\nSjIuHZ6SdFJSjSRflyS7dOmiO++8U9/5znfUpUuXKEUOfxjTxPW3v/1NtbW1VochSbr11ltNKbA4\nc+aM5syZoz/+8Y9asWKFjLQ10sIiz7Q3IyNDl156qcaOHasJEyaouLg47Lhfeukl3X777X6fz8nJ\n0b59+yKKNxxDhgzRhg0bAr7mm9/8pl577bWoxnHkyBFdeOGFAV/z/vvv64orrlBtba3+9re/RTWe\nWLrmmmsS6m847Od3v5PuuUfq1UtatMj+hQNVVdLYsdKnn0q//a09CwcYU6sjShxvvfWWnn/+ef3r\nX//SmTNnXI9HkjN55ktpaWnKz89XaWmpJkyYoLKyMmVmZoa8veXLl2vMmDF+n09JSdGhQ4d0wQUX\nhB1rOCZPnqw33ngj4GuGDh2qdevWRTUOqTE/PHjwoN/nn3nmGdeE3Z/+9KeoxxMrZWVl6t27t9Vh\nAEGdPn1avXv31t69e60OxRJdu3bVrl27lJGRYXUopmA87TWeZujZs6eqqqr8Pv+Xv/xF06ZNi2FE\njcrKyrRkyRK/z//iF7/Qgw8+GHQ7jz76qB544AG/z8dLviNJP/rRj/TUU09FNY7Nmzdr8ODBQV8z\nYMAA7du3T++++25U44mlKVOmqFWrVpbs2w5zX2ax+ntBIQiAmLP6F1+8SNTvg9Pp1KJFi/Tss89q\n/vz5rjvyW0i6RFKB28egc4/7Uidpk6R15z7WStqo84UEqampmjRpkr7//e+rrKyMjhJRxJjaQ15e\nniorK60OQw6HQ0eOHFHbtm2btZ3Zs2fr5z//uT7//HPXdj2FmsYG+llz30abNm00btw4zZw5U4WF\nhSFt+7PPPlOvXr38xudwOLR582b1798/pO1F4ssvv1SHDh2Cfj9ycnJUU1MTtTikxomo6667zu/3\nIz09XV9++aUyMzP1ySefqE+fPlGNJ1YcDoeWLl2qUaNGWR0Kkpj7JLrdCweS5ViT5Til5DpWM/3j\nH//QT37yE23dulVSbPKljIwMlZaW6p577tGECROCbre+vl7t2rVzLSvpy5tvvqn/+I//CCnOSHXq\n1CngZITT6VRqaqoOHTrU7Dw2kC1btmjQoEEBc8dNmzZpwIABkhoLZezA4XBo1qxZlkysAZF49tln\nNWPGDLVvL82aJaWnWx1RdNXXS7ffLh0+bM/uEYynvcazufLy8gIWglj192rs2LEBC0EeeuihkApB\nli1bppKSEr+5htX5jruhQ4dq7dq1UYtDavw/cPfdd/uNpWPHjq4buMrLyzV27NioxhMrDodDu3fv\nVneLTqoSde4rGqz+XtjjbAIAEHVOp1Nz585Vfn6+xo0bp9dff10NDQ0qkfSqpKOS1kh6XtKdki6T\n/4IBnXvusnOvfV6NRQNHz21rjBrXs/773/+uyy+/XPn5+Zo7d27IFzERGsbUfhwOh6UfZvj8889V\nWlqqW2+9VXv37m2ybafT2eRnJpK4jG24dxcxPo4dO6Y333xTK1asCDnenj17qkePHl7bd7d48eJw\nvw1hWbp0qc6ePdtk/57H6XQ6tX//fm3bti2qsZSXl7s+99y/w+FQYWGh113EVv/cxsPPPWCG7t0b\nJ8979WqcTB87tnFy3W6SqWCAMYU/R48e1be+9S1dddVV2rZtm+n5kud23F9XV1enhQsX6r333gsp\n1vT0dI0cObJJTuD+uRT9XGnr1q06cOBAk/175kqSdPbs2YATMGbwlysZOnbs6CoCMVid65ArIRlN\nnz5dubm5Ony48e9SZqa9Pz78sLFooGvXrvr2t79t9bffdIwn/PGVl1gpUL4UquHDhze57hIv+Y5n\nHE6nUx9//LGOHj0a81iMzyWptLTU6z1W507kXjAThSAAgKBqamp07bXXaurUqdq2bZtaS/q+Grs9\nlEu6UZIZDQYzzm1riaQNku6S1FrStm3bNHXqVF133XVRv5s9WTCm9ubrAne0P8ywbNkyDR06VEuX\nLvWazDAKCXw9Hk6MnidGZpz0l5aWBnyv+0lnNISzfatjKSsr8/m4FT+z8fJzD5jJ7oUDyVgwwJjC\n0/bt2zVkyBD93//9X1TyJc+cyX07xufh8vf339ie1flJpK+NhL/tG2PnazLCeD4RP4BElZGRoZkz\nZ0qS5syR6nytg2sTdXWNxyhJM2fOtOUSIownkolnEa4vVuZe7nGdPXtWS5cujWosS5YsCVgcwXUq\n2B2FIAAAv5xOp2bPnq38/Hy9/fbbSpf0iKRqSc+ocZmQaBks6dlz+3pEUroalxwYOHCgXnnlFRKb\nCDGmySveq80XLlyo8ePH6/Dhw3I4HEEnIiKJMdgkR6T8nTQa+4z2CXY4d9FG847bo0ePav369RGd\nYMfy5zGefu6BaLBr4UAyFwwwpjBs3LhRJSUlqqys9MqXpPPLuzQnX3J/v1n5UqC//5K0fv161dbW\nRrz9YELNf5xOZ9S7k5SXl5MrAQnC6CJx4IC0YIHV0UTPe+9JBw/av3sE44lkEqwI1+p8x100Y9m2\nbZu++OILSf6Lmcm9YHcUggAAfDI6RkybNk1ffvmlCiRVSLpfUpsYxtHm3D4rJBVIOnLkiG655RY6\nSUSAMU1u8Vx1vmHDBk2ePNm1dnywCY309HRdeeWVuv/++/Xaa69pw4YNqqqq0pdffqkzZ87oxIkT\nOnjwoDZu3Kj33ntPTz75pG655Rb17t27ycmRWRXzvk4a3bf5xRdfaMeOHc3ahz/+ii88TwCN441m\n+0/PJWqM/RrS0tI0evRor/fF+mcxXn7ugWiyW+EABQOMKaR9+/bp6quv1sGDByV550vuuY3D4VBK\nSoqKi4t17733avbs2aqoqNBnn32mw4cPq76+XqdOndLhw4e1detWLVy4UE8//bTuuOMODRw4UCkp\nKabmS+4tyt1zO0O07wb1dSeor1xJim5Ryvbt2yOajCBXAqyRDF0kkql7BOOJZGJlEa6/fMdXoYLT\nGd2bp3xt2z0GX0vyGXGRe8Eu0qwOAAAQfzZv3qwrr7xS1dXVSpf0kKR71djBwSqDJK2U9F+SHlZj\nJ4m1a9dq4cKFys/PtzCyxMCYIlZV4eHu5/Tp0/rWt76lY8eOSfJ9UdyY0OjWrZvuu+8+ffOb31T7\n9u39bjMjI0MZGRnKzs5Wfn6+xo8f73qupqZG7777rt555x29//77qjt39ac5J0o9e/ZUjx49VFVV\n5Zow8bR48WL17ds34n34s2zZMp09e9Zrv56fG+Oyb98+7dixIyqxBGt1XlhY2GSdWil6P5eBxjMa\n++SuC8Qjo3DAmGwfOzYxJ9spGDiPMU1ut9xyiz7//HO/uYbx9zY7O1v33nuvpk6dqtzcXL/bS0lJ\n0QUXXKALLrhAffv21eWXX+567siRI/rHP/6hd955R++8807APC0URovyDz/80O/fzMWLF+uqq66K\naPuB7NixQ/v27fP5fTO+ds+VjKKUaMQSyWSEXXIlIFFNnz5djz32mPbu3asFC6Rrr7U6InMlW/cI\nxhPJwijCPXXqlFexsBT7fEdqmm9J529YMopS2rQx/zbFSJbks0vuRT4HAx1BAABNrFmzRiUlJaqu\nrtYASesk/VzWFgwY0tXYSWKdpAGSqqurVVJSojVr1lgbWJxjTJOXkfQ7HA7NmjVLDQ0NUf84c+aM\n2rZtG3KMjzzyiLZv3y7J/52tqampevDBB7V9+3Z997vfDVgEEkznzp11xx13aP78+friiy/04osv\navjw4c1uoVhaWhrwpC5adzj4226g44l1LAbPO1J69+4dlZ9B4y4vX3f5OhwOjRs3Lio/96NGjTL3\nGwqYING7SFAw4I0xTU5/+ctf9MEHH/gsZjAeczgc+s53vqOdO3fq3nvvDVgEEkx2dramTJmiOXPm\naP/+/Xr11Vd15ZVXujqFRCJYi/JY5yeekxGhvCfasfiajIhGrvTnP/9ZkneuZHzdo0ePqOx32rRp\nUfiuAtFl5y4Sydg9gvFEsjCKcOPtOpV7Ea6hoaFBy5Yti1osgXJXz/y0tLQ0qjmQv+tUt956a1Su\nU3XnRAuiEAQA4GbNmjUaN26cDh8+rCJJSyUNtjooHwarMbYiSYcOHdK4ceMoHPCDMUU8O3jwoJ5+\n+mmfrbqlxhPDjIwMvfbaa3rooYdMv5DRtm1bffvb39aKFStUUVGh2267TenpkZVI+bpwL50/0Y3W\nCbb7WqruJ5Fdu3ZV165dmzzu6z1mOXbsmCoqKsI6wQYQG4laOEDBgH+MaXI5c+aMHn74Yb9Lmzid\nTqWkpOjXv/61nnvuOWVnZ5u6/4yMDN1www1asGCBduzYoXvuuUetW7cOezuBciVJ+ve//+3qPGIm\nz1zJ2F96eroKCwubxCA15p/RWqs+3MkIAPFh+vTpys3N1YED0oIFVkdjnmTtHsF4Iln4y72k2OU7\n7v8OGTJEGRkZPm9cikYsO3fudC1BHs6SfIDdUAgCAJDUuHTIhAkTVFtbq1JJH0i60OqgArhQjTGW\nSKqtrdWECRO0ZcsWi6OKL4wp4t2f/vQnv63GjTsjn3vuOX3jG9+IeiyXXnqp/vSnP2n37t1NWqOH\nyt967oaamhrt2rWrOSF6CVR8UVpaqtGjRzd5LJpFKcuWLVNDQ4Ok88ftHldaWppXPABiJ9EKBygY\nCI4xTR5vvfWWPvvsM0n+86X/9//+n370ox9FPZZevXrpqaeeUlVVlW6++eaw3mu0KJeaFv0aonU3\nqGfxhfE9Kygo0MSJE5u81r0o5fjx46bGsWvXLlVXV7ti8IXJCCA+2bGLRDJ3j2A8kSz85RVW5Tvj\nx4/XsGHDfOaz0bhOFcmSfIAdUQgCAFBNTY2uvPJKHT58WMMkvS3J/FX5zNdG0jtq7CJx+PBhXXHF\nFa5K32THmCIRzJkzx+fdrcYF+iuuuEK33XZbTGPq3LmzBg0aFPb78vLyXC0X/d3pafYdDsuXL/cq\nvjCUlJRozJgxrq+jXZQSrNV5YWGha/IHgDUSpXCAgoHQMabJ4ZVXXvF6zL21dr9+/fTQQw/FNKYL\nLrhAw4YNC+s9LVq00IgRIwK2KDc7V/rkk0/8TkaUlJQ0KVL1LEpZunSpqbEwGQEkNrt1kUj27hGM\nJ5JBKEW4sch3DJ7XqdzjqqioML0oJZIl+QA7ohAEAJKc0+nUd7/7XVVXV2uApPeUGAUDhjaSFkga\nIKm6ulrf+973Al5cTAaMKRLBF198oU2bNknyf1fkj3/841iG1GylpaUxXX810PZKS0tVUlISF7FI\n3OEKxIt4LxygYCB8jKm9nT17VosWLfJbZOpwOHT33XdHvLRdrAXLB2KZn5SVlWnUqFFKS0uT5F3I\nG6tYmIwAEoOdukjQPYLxRHIIpQg3mvmOe26Vmpqq0aNHN7lOFe3OcCzJBzSiEAQAktycOXP09ttv\nK13Sa4rvpUP8uVCNsaersXXyHOMMKEkxpkgEq1at8nrM/QQtOztb48aNi2VIzRao7WY0Wl36O8Hu\n1KmT+vTpo/z8fHXo0MHrec/3NteJEye0du1aTrCBBBGvhQMUDESOMbWvrVu36quvvpLke+k1h8Oh\n66+/3pLYIhEsV6qoqNCJEydM25+/XCklJUXFxcVq1aqVLrvsMp8TJNHI28iVgMRmly4SdI9oxHgi\nGVhRhOu5JJ/UuBxz69atVVxcrNTUVEnRvU61e/duff75501i8ETuhWRBIQgAJLGamhr94Ac/kCQ9\nJGmwteE0y2BJD577/Ac/+EHSLifCmCJR7Nixw+fjxl2R+fn5rpPDROHrJNL9hHPv3r369NNPTdmX\nr+IL43vnfofF6NGjm8QQjaKU5cuX68yZM64YjP0Y0tLSmrReB2C9eCscoGCg+RhTe/KXLxlycnLU\nqVOnGEXTfMFalJ85c8bUu0EDTUa0adPYM9Gzg5qRK61bt860opTdu3drz549TWLwxGQEEP/s0EWC\n7hHnMZ5IBsGKcGOR77h3PsvKytLQoUN95kNmLhHoa1ssyYdkRSEIACQpY/mQI0eOqEDSz6wOyAQ/\nk3SZpCNHjiTlciKMKRLJ3r17Az7fuXPnGEVinry8PHU/N8vl745PswowVqxYofr6ekm+17z39bn7\n6z7//HPt3r3blFiCtTovLCx0TfoAiB/xUjhAwYB5GFP78ZcvGX/TEy1fimWL8s8++0xV5/4DeE5G\nhJIrnTlzRsuXLzclFl/HxGQEkJgSvYsE3SOaYjxhd6EU4UYz3zH4y72MuMwuSmFJPuA8CkEAIEm9\n+uqrevvtt9VC0l8kpVkcjxnS1XgsxnIir776qrUBxRhjikRy7NixgM+3bNkyRpGYq7S0NODkhll3\nOAQ6wXY/ofU8wY51LJI0duxYU/YDwHxWFw5QMGA+xtReAuVLDocjIfOlYJ0vYp0rjR49WikpjZdH\nPQt5ox2LMRlBNxAgcSRyFwm6R3hjPGF3oRThRiPf8VzKcMyYMa6vY1WEG2hJPq5TIZlQCAIAScjp\ndOqRRx6RJD0gaZC14ZhqsBqPSZJ+9atfJU0HCcYUiaahoSHg8wcPHoxRJObyd1eB2Uuy+DvBbt++\nvQYOHOj6esiQIWrbtq3X6zy3EalTp05pzZo1rHkPJDCrCgcoGIgextQ+/OVLRl6RiPlSsFxp7dq1\nOnnyZLP3E+pkRLt27TRo0CCf5xhm5m3kSoB9JGoXCbpH+MZ4wu6Cdb+IVr5j5FYDBw5Udna26/Ex\nY8a4XheN61RVVVWqrKxsEoMnci8kEwpBACAJLV68WNu2bVNrST+0Opgo+KGk1pK2bt1qWjIb7xhT\nJBp/S4UYkwBbtmyJcUTm8HUy6X7iuWfPHn322WfN2sepU6e0evVqrxNsz4kNSUpJSdGoUaO8WqKb\nVZSyYsUK1Z27bcrYh3tc6enpKi4ubvZ+AERXrAsHKBiIPsbUHoItrVZZWWlaC+1YGTFihKuTSTRb\nlC9evNjnZER+fr7at2/f5LX+WpSbUZRSVVXlyv2YjADsIRG7SNA9wj/GE3bnL8+IRb7jaxmW7Oxs\nDRw40GdeZEZ3El/bcM8Jc3Jy1L9//2bvB0gUFIIAQBJ65plnJEnTJLWxNpSoaCvplnOfG8dqd4wp\nEk1OTo7XY+4ngVVVVdq6dWssQzJFr1691K1bN0nedzYYmluAsXLlSq/iC4OvOz38td10v0siUsFa\nnRcWFgadxAIQH2JVOEDBQOwwpokvWL5UX1+vDz74IJYhNVsoLcqbmyu5F94Gm4yQ/OdK9fX1WrFi\nRbNi8XUsTEYAiS/RukjQPSIwxhN2FqwIN1r5jiFY7mXEZRSlnDp1KiqxGNepgnVIAeyGQhAASDJ7\n9+7V/PnzJUl3WRxLNBnHNm/ePFVXV1saS7QxpkhEvXr1CvqaJ554IgaRmK+0tDSq668GOsH2PJn2\n91gsYpG4wxVINNEuHKBgIPYY08QWSr70X//1XzGIxFzB8oNkyJWYjAASWyJ1kaB7RHCMJ+wslCJc\nK3Mvz6LBhiRIAAAgAElEQVSU5naGY0k+oCkKQQAgybz44otqaGjQGEmDrA4migZLGq3GdbVffPFF\nq8OJKsYUiaiwsNDvc8adAHPnztW8efNiGJU5grXdbO5drv7WvG/btq2GDBni9fqioiJXVw4z1189\nffq0PvroI06wAZuJVuEABQPWYUwT15AhQ5SamipJPpeEczqdWrlypZ566imrQoxIsFxpzZo1zbob\nNNy7UnNyctS3b19XDKFuK9RYyJUAe0qULhJ0jwgN4wk7C5ZvmJnvuOc9/fr1U8eOHb1eH6gItzmx\n7N27V59++qkkluQDDBSCAEAScTqdrgn071scSywYx/jiiy8GrHpOZIwpElV+fr46d+4syXtiw3is\noaFBN910k2bPnm1JjJHydVLp/vNaWVmpqghn4Orq6ryKL4zJoOLiYp8TDenp6Ro+fLhXa3Sn09ms\nuz4++ugjnT592hWDsV33/RYXF0e8fQDWMbtwgIIB6zGmialVq1YB7+A0/p7fe++9euKJJxImP452\ni3J/kxF9+vTxudyO1Dgh4StXak5RSnV1tT755BNJTEYAdpQIXSToHhE6xhN2Fs0iXF/5jnGdyl/B\nx0UXXaSLL77YFYO75lynYkk+wBuFIACQRHbv3q3q6mq1kDTJ6mBi4BuS0tVYDWysEW03jCkS2eTJ\nk31eFHc6na6Txrq6Ot16660aN26cFi1aZEGU4evVq5e6du0qyfuE1hDpHQ6rVq1ynZx7fu8CtRb3\n13azsrJSe/bsiSgWfyfnxtgVFha6OpEASDxmFQ5QMBA/GNPEdMMNN/h83D1fkhonhAoKCjRv3jyd\nPXs2liGGLZQW5ZHmStXV1dq1a5ck78mISHKluro6rVy5MqJYfOVKTEYA9hLvXSToHhEexhN2FawI\n1+x8xxAs9/JXhGvcdGRWLCzJh2RGIQgAJJF169ZJki6RlAw14xlqPFbp/LHbDWOKRDZjxgylpDSm\no74KJty7TCxatEjjxo1T37599eCDD2r16tVxfddraWlpVCY3wl13NZTnohGLxB2ugB00t3CAgoH4\nw5gmnltvvVVt2rSRFDxfWr9+va6//np1795dP/7xj7V48WLV19fHNN5QBbsQb+dcickIwD7iuYsE\n3SPCx3jCrlq0aOHVKdaTlbmXWUUpLMkHeKMQBACSiDFxXmBxHLFkHKtdiwYYUySyvn376vbbb/e5\nrIjB/W5Xh8OhTz75RL/61a80YsQItW/fXldffbV++ctf6r333tOBAwdifQh+BWu7GWmrS/cTbPfv\nV6tWrVRYWOj3fSNHjlR6errX+6TI2m7W19dr1apVnGADSSDSwgEKBuIXY5pY2rZtq5kzZ4aVL9XU\n1Oi3v/2tLr/8crVr107jxo3TfffdpzfeeCPiTmBmC5YrrV69OqK7QQNNRgQqvOjevbu6n/uBNqtF\nOZMRQHKI1y4SdI+IDOMJuwqWd5iR77jnPXl5ecrNzfX7vkBFIpHEsm/fPu3cuVMSS/IB7tKsDgAA\nEDtr166VlJxFA8ax2w1jilCVl5dH9Y7QkSNHKj8/P+z3Pfnkk/rnP/+pPXv2uCYv/C0XI8n1Gkk6\nevSoFixYoAVuV2e6d++uoqIiFRUVadiwYSoqKlJWVlaERxU5XyeX7u3bd+/erb179wY8KfZUX1+v\nlStXNjmxNrY5cuRIpaam+n1vZmamCgoKmhRvGN/rSO76WL16tU6ePNlkvNzjSk9PV3FxcdjbBRCf\njMIBowhg7NjARQAUDMQ/xjSx/OQnP9Ebb7yhNWvWhJ0vnTp1SosWLWqyxF6nTp1c+VJRUZGGDx+u\n7Ozs2BzMOSNGjFBGRobq6upcx+OeK50+fVqrVq0Ku2uGv8mIHj16uJbu86ekpESvvPKKV660evVq\n1dXVqUWLFiHH8cUXX2jHjh1+x0piMgKwC6OLxIwZMzRnjjRxohTGr4uooHtE5BjP5OS+nNxtt92m\n2267zfJYzFZWVqZf/vKXXo+bme+4/xuo0EOSevbsqa5du2rv3r1ehbORXKfy9R6W5AMoBAGApOF0\nOlVRUSEpOYsG1q1b1+TCoh0wpvYbU7O5n8jOmjVLs2bNitq+fvvb30ZUCNKuXTvNnz9fY8eO1dGj\nRyX5Xq/U4Ll+qOf479mzR1VVVXr99dclSSkpKRo8eLCuuOIKTZw4UaWlpa7laKKpd+/eTU5ofR3L\n4sWLNXXq1JC36Vl84X7soUySlJSUaNWqVZKaFqV8+umnYRelBFt3tbCwUJmZmSFvD0D8C7VwgIKB\nxMGYJo60tDS9/vrrKi4udnX0aE6+tH//fr3zzjt65513XI/169dP48aN04QJE3TllVeGNQkQiYyM\nDI0YMSJg14zFixeHVQjyxRdfaPv27T4nI0LNlV555RVJ8ipKWblyZVix+MqVmIwA7Gv69Ol67LHH\ntHfvXi1YIF17rbXx0D2ieRjP5GbldcZoLoEcShGuGfmOIdTca+7cuV5FuB999FHYRSnBrlOxJB+S\nFUvDAECSqKys1JEjR9RC0iCrg4mhQZLSJR05ckSVlZVWh2MqxtR+YxpNxiSA2R/Gtptj6NChWrhw\noTp16uTVYSLQto2TVvcPz2N1Op36+OOP9etf/1rjxo1Tly5d9MMf/lBbtmxpVsyhKC0tNXX91UjX\nXTWMGTMmJrFI3OEK2FWwJUUoGEg8jGni6Nq1qxYvXqx+/fp5Xbxvbr7kcDi0Y8cOPfvss7rmmmuU\nk5Oj22+/3VVAGi3B8gU75kpMRgD2ZHSRkBo7N9TVWRcL3SOaj/FMbr5yp1h9RJNRhBuv16nc4zI6\nw4UbC0vyAd7oCAIASWL//v2SpM6SLO5oGFMZajzmKkkHduxQTwuWiIiW/du3S0ryMT1wQD179rQ2\noAQRjRNKM++SKCoq0tq1azVt2jQtXrzY605WQ7Dj8Hzec3LkwIED+v3vf6/f//73Gj9+vB5++GEV\nFRWZdBRNlZWVaY5xxcYjJqfTGfaap+4n2O7HlJGRoeHDhwd9/+jRo5WSkuKzk87ixYt10003hRTH\nmTNntGLFCk6wgSTl2UWipESaN6/xuUmTpMpKqUcP6e9/lzIzpQMHrI0XwWVmNo7XpEn+x5QikPiQ\nl5enjz76SHfddZf++te/Smq6HIwh3HzJeL+xjdraWr300kt66aWXVFRUpIcffljjx4836zBcgrUo\nX7VqVVh3gwaajAil8KJfv37KycnRgQMHfOZKDz74YEhxGLGQKwHJJV66SJzvHtFFN9/8ddXVkYxF\n4pZbrtFjj/1Ke/fWxMl40g0kVuzaEURqzD8C5UvNyXfcv2+5ubnKy8sL+v5AxSKLFy8OqZhEapz3\n2LZtG0vyAT5QCAIASeLkyZOSpGRs1G8c88koXLy00slz/yb1mJ48GfB1OC8RltDJzc3VBx98oJdf\nflk///nPVV1d7fPOVXfNKQx5//339f777+vWW2/Vr3/9a1144YUmHo3vk0z3IoxPPvlENTU16ty5\nc9BtNTQ0eBVfGNsaPnx4SBMkF1xwgQYPHqyPP/7Yq+1mOHd9rF27VidOnPDq3mJIT09XcXFxyNsD\nkHiMYpCSksYigcsua/q8r8eQODzHr0cPikDiSdu2bTVnzhzdfPPN+s///E9t27ZNkvdyMJ7CyZnc\n86U1a9Zo4sSJmjhxop555hlTi7BDaVH+0UcfBezU4c7fZESXLl3Uq1evkLYxZswYvf766z5blNfX\n1ys9PT3oNg4cOKCtW7cyGQEkGaOLxIwZMzRnjjRxohTlVba8uHePmDy5WuvWdYttADYzebL0u98p\nLsaTbiCxE+1iDCsFK8JtTr4T7pJ8kjRgwAB16NBBhw4d8spfw7lOtWTJEq/HWJIPaMTSMACQJE6d\nOiVJamlxHFYwjtluJQOnzv2b1GNKIUjIEqlt5bRp0/Tpp5/qhRde0ODBg5ss8xKsrXmwghf39xuv\nf+mll3TppZdq2bJlph5H7969lZub64rTl1C7gqxdu1bHjx+X5H1RItQ7JDxf676dXbt2qaamJqRt\nBGt1XlRUpMzMZCxRA5JL9+7nu0bA3ubNowgkHk2cOFGbN2/W3/72N40aNapJHuQrVwsnZ/KVLy1Y\nsEBDhgzR66+/btoxhNKiPNRc6eDBg66l/4ztGfGbkSudOnUq5BblwSYjOnXqxGQEYFPTp09Xbm6u\nDhyQFiyI/f6N7hEdOzYWLqB5rrpK6tBBlo8n3UBiK1pLK4e6/HI0GUW4xnFK5uY7hnByrzFjxnjl\nrEZnuPr6+pC2Eew6FQW4SGZ0BAEAAEgCidARxF16erruuOMO3XHHHVq9erX++te/at68eaqqqnK9\nJlhb80CvMx43Xl9dXa2vfe1reuWVVzR58mTTjqO0tFRz5871+/0vLy/XlClTgm4n0CRIOGvMl5SU\n6Pe//73fWG688cZmxSJxhysAALF0/fXX6/rrr9fWrVv16quv6o033tDWrVtdz/vLl9z/9fc643Ej\nXzp69KhuuOEGPfnkk/rxj39sSvylpaUB7/gsLy/XAw88EHQ7zV0WxhBo4qK8vDyk7iT+cqVw75IF\nkHgyMjJ033336e677455Fwn37hE33RT77hV21KJF4/fy6adj3xXEfTzvu+8+uoFEmXs3i9tvv12j\nRo2KeQz//d//rR07dgTsKNZcxtLCS5YsCXidqjn5jhR+7jXv3B0G7p3hTp06pY8++kijR48OKRaW\n5AN8oxAEAJJEy5aNPRROBXmdHRnHbLf7042uGEk9pnQdCMj9RHbWrFmaNm2a1SFFZNiwYRo2bJj+\n53/+R9u3b9e//vUvLVu2TKtWrWpSGCIFXgrG14m0++RGXV2dpk6dqrZt2+rKK680JfaysjLNnTvX\n63FjbEK9y9V9csNzGZaRI0eGHE+w9VeDFYI0NDRo+fLlnGADUFWVNGmS1VEgFiZNkpYsoStIvBsw\nYIAefvhhPfzww9qzZ48WLlyopUuXauXKldq1a1eTPChQvuTrefdObE6nUz/96U/Vpk0b3Xnnnc2O\nu6ysTA8//LDX4553gwZrUR6oECScu1IvueQStWvXTl999ZVXvrN48WLdf//9QbcRrJU5uRJgb9On\nT9fjjz+uvXv3asEC6dprY7Nfo3tEhw6NnSxgjquvlubOPd8VJNbjmZubq+nTp8dmp5DUmDdYcf1s\n9uzZ2rFjR9T3U1ZWFrCbRyT5jucyLH379g05nmDXqYIVghw6dMjVFc4fci8kMwpBACBJGBPmybiQ\nhnHMme+/Lw0damksZsqsqJAmTEjuMaUQJOn069dP/fr104wZMyQ1tgFft26dKioqVFFRoXXr1qmy\nstL1es/2kp6PGV8bEyD19fX61re+pY8//ljdTZjx8nWy6X6Hw86dO/XFF1+oU6dOfrdx9uxZr+IL\nYxsFBQVh/T/o2LGj+vXr57rLRDo/0RLK+qsVFRU6duxYkztUPAtTiouLQ44HQGKqqpLGjpUqK6Ue\nPc4vETNpUtPHuna1Nk6E7vPPvcdPOv/Y2LHSokUUgySKbt266dvf/rarjXxtba0rTzJyph07djRZ\nQsXgviSfL8ZzM2bM0CWXXKLhw4c3K9aRI0cqIyNDdXV1TZYCNPKLkydPavXq1UHzC3+TER07dgxr\nGRaHw6Hi4mK9++67XrnSqlWrdObMGaWl+b+cevjwYW3evJmiWSCJtWzZMuZdQdy7RzzwwBMqK2MZ\nETPdf/+fdM8991kynjNnzqQbCEwVShFuJPlOJEvySdKQIUPUtm1b1dbWeuVP5eXlQYtSlixZ4tq3\nr+tUnTp1Ur9+/cKKCbATCkEAxIXjx4+rVatWXo9nZWVZEI095eTkSJJqJNVJSpYOkafVeMyS1LFv\n38aFUm0i51wSm9RjaqPxRGQ6dOig8ePHa/z48a7HampqVF5erkWLFmn+/Pk6ePCgJO+7Wd25Tzgc\nPXpU06dP18KFC5sd38UXX6zc3FxVV1f7nVQpLy/XDTfc4HcbFRUVrhNi9zil8O5wdX/P9u3bvba3\nY8cO7d+/3/X3wpdg664WFRW5OlABsCejCOTTT6VevZoWByxZcv65yZMpHEgUVVWN41VZGXhMKQZJ\nXG3atFFpaWmTNt1HjhxReXm5ysvLNX/+fFeXNc8L6J6dRIxCkYaGBk2bNk2bN28OOFEQTKgtygMV\nghw+fFibNm3yORkRSmtzTyUlJXr33XebbEc6X5QSqF08kxEApNh3BXHvHvHd796jFi0oHDDTd797\nj5588g+WjCfdQGC2UItww8l3mnOdyijCXbBggVcR7sqVK4MWpQS7TsWSfIil48ePh/RYLKVYuncA\nOCcvL0+tW7f2+oB5evTooezsbNVJ2mR1MDG0SVK9pOzsbPXo0cPqcEzFmNpvTGGOzp0768Ybb9QL\nL7ygmpoavfPOO7rqqqua3OHqa6LB/ST2ww8/1IIFC0yJp7S0NOD6rsGWhzFr3VVDsLabkcYicYcr\nYHeBikCkxs8XLWp8zigc8FjBC3GGMU1e2dnZuu666/Sb3/xGu3fvVnl5uaZOnarU1NSAHUHcu4js\n2rVLzz33XLNjCZY/BMs/jMkI9/gM8ZIrMRkBJBejK4jU2Nmhri56+6J7RPQxnrATowg3Xq9Tucdl\nFKVEGovEdSrElq85zry8PEtjohAEAJKEw+HQZZddJklaZ3EssWQca0FBQcD2vImIMbXfmMJ8KSkp\nmjhxot5++22tWLFChYWFAYtB3D355JOmxBDopDOUJVn8tTpPSUkJulaqL4EmNwLFcvbsWS1btoxW\n50CSClYwYKBwIHEwpnA3evRovfzyy9q0aZMmTJgQNF8ynv/Nb34TcCIhFP7yB/e7QRsaGvy+P1D+\nEkn3tIKCAlfHUl8tygMJ9jy5EpA8pk+frtzcXB04IJl0j4FPdI+IDcYTdhIsH4n0OlV2drYGDRoU\ndjyRXqc6cuSINm7cyHUqIAAKQQDEhd27d+vYsWNeHzBXYWGhpOQsGjCO3W4YUyB0w4cP1/Lly3XX\nXXf5fY17V5Dy8nJ99tlnzd6vr5NO94mVbdu26cCBA37j8Sy+MCZbhgwZElH3rG7durm66XhuN9Cd\nFOvXr9fRo0ebxOD+/vT09IBt2wEkrlALBgwUDsQ/xhT+9OvXT++++64ef/zxJu253bkXflRWVurD\nDz9s1j6NFuXu+3Lfx4kTJwLeDepvMqJdu3a65JJLwo4nLS1NI0eObBKDkR+uWLHCb1HKl19+yWQE\nAJdYdJGge0TsMJ6wk2BFuOHmO81Zkk+SioqKlJmZ6YrBXaDrVEuXLvXqCseSfLCSrznO3bt3WxoT\nhSAA4kJWVpbPD5iroKBAUnIWDRjHbjeMKRCetLQ0/eEPf9Dtt98eUleQt99+u9n7vPjii9WlSxdJ\n3ie0Bn93OKxfv15fffWVJHlNRkRyh6uhpKSkyclyKEUpwdZdLSoqUsuWLSOOCUB8CrdgwEDhQPxi\nTBGKe++9V4888khI3T7eeuutZu0rlBbl/vKQr776Shs2bPA5GRFJ5zSDvxblJ06c0Jo1a3y+Z+nS\npTp79myT9zAZASS3aHeRoHtEbDGesItQinDDyXcMkV6nSktL04gRI8Iuwg12nYol+RBr8TjPSSEI\nACQRY+J8g6TT1oYSE6fVeKySfYsGGFMgMi+88IJ69+4tyX9xhiQtX77clP2VlpZGtP5qoBaYzTmh\njaTtJq3OgeQTacGAgcKB+MOYIhwzZ87U5ZdfHrB41ul0mpIvBctr/OVKgSYjopUrhZu3MRkBJK9o\ndpGge0TsMZ6wi4yMDA0bNixur1OFWpTCdSogOApBACCJ5OXlqUuXLqqTNM/qYGLgDUn1aqyk79mz\np8XRRAdjCkQmLS1Nv/jFL/ye9Bp3Hqxfv96U/QU6+TSWofHF/cTbfQKmOS03pfALQZxOp5YuXUqr\ncyCJNLdgwEDhQPxgTBGJRx991O9zRl6wcePGkDqHBBJKi3Kj4MNdoHbhzZmMGDFihFq0aOGKwV0o\neZsv5EpAcopWFwm6R1iD8YRdBMtLwr1O1aZNGw0dOjTieMK9TnX06FGtX7+e61RAEBSCAEAScTgc\nuvPOOyVJz1ocSywYx3jnnXcGXf4hUTGmQOS+8Y1veLXC9LRnzx5T9uXr5NP97totW7bo0KFDXs97\nFl8YkywDBw5UdnZ2xPH06dNHF110kSR5bd/XJMaGDRt05MiRJjG4vy89PV3FxcURxwMgvphVMGCg\ncMB6jCkiNXz4cFcBtq+cRJLOnDmj6urqZu0nWIvy48eP+7wb1H1iwD2+1q1b67LLLos4noyMDBUV\nFflsUb58+XKvohQmIwD4E40uEnSPsA7jCbsIVoQbar5jXNsqLi5u1rXakSNHKj093RWDO1/XqViS\nDwgNhSAAkGTuvPNOpaamaqmkjVYHE0UbJS2TlJqa6iqUsCvGFIhMZmamRo4c6XUHq/vXp06d0rFj\nx5q9rz59+qhLly6S/BedeN7hsHHjRq/iC+P9ZrQWHzNmjGu7wYpSgrU6LyoqUsuWLZsdEwDrmV0w\nYKBwwDqMKZrra1/7WtCOHwcOHGjWPlq2bBm0RblnPlJbWxu1yQjJf4vy48ePa+3atU1eu2zZMiYj\nAPhldhcJukdYi/GEHYRShBtKvmNo7nWqli1bqrCw0GcRrq/OcCzJB4SGQhAASDK5ubm67rrrJEnP\nWxxLND137t9Jkya5Jl/tijEFItejR4+grzl58qQp+yotLQ1r/dVAa50GapkZqnDabrLuKpAcolUw\nYKBwIPYYU5ghVvlSsHzCM1datmyZGhoaJHlPRkQ7Vwo1b2MyAoBkbhcJukdYj/GEHYRShGvldSr3\nuI4dO+ZVlMJ1KiA0FIIAQBKaMWOGJOllSbXWhhIVRyXNPve5cax2x5gCkenYsWPQ16Smppqyr0An\noU6n0+skNtA682acYI8ZM8bvc56xLFmyhFbngM1Fu2DAQOFA7DCmMEus8qVwW5QHypXMKLwYNWqU\n67g886Bw8jaJXAmAeV0k6B4RHxhP2EGw/CRQvuOeG7Vq1UpFRUXNjifU61THjh1TRUUF16mAEFAI\nAgBJqKysTP3799cxSb+zOpgo+J2kY5IGDBiQNHdeMaZAZE6cOBH0NVlZWabsK9DkhiRt3rxZhw8f\ndj3uXnzhfnLbt29f5eTkNDuewYMHq127dl7bdzqdTU7uN23a5Foqxler8xYtWqi4uLjZ8QCwTqwK\nBgwUDkQfYwozxSpfGjlypFq0aCHJd4vyY8eOad26da6v3ScE3HOTzMxMUyYj2rRpo0svvdRni3L3\nopRQJiPGjh3b7HgAJDYzukjQPSJ+MJ6wg3CKcH3lO0bnsxEjRphSFDx69GilpKS4YnDnfp3KV1c4\n99dfdNFFLMkHnEMhCAAkIYfDoQceeECS9LCkTdaGY6qNkh459/n999/f7HWhEwVjCkSmurra6zH3\nn7E2bdqYdjGmT58+6ty5c5N9uE8sOJ1OLVmyRFJjUYhn8YXZrcUdDodGjx7tNblh7P/IkSOSgrc6\nLyoqUsuWLU2JCUDsxbpgwEDhQPQwpjCbr3zJU6dOnZq9n1BalBt5yfHjxwNORqSlpTU7Hsl/i/La\n2lpVVFRIkpYvXx50MqJv376mxAMgsTW3iwTdI+IL44lEF6wIN1i+YzDrOlXbtm11ySWX+C3CNR5n\nST4gdBSCAECSmjJlir7+9a+rXtJtkuotjscM7sdyzTXXaMqUKdYGFGOMKRC+rVu3+iwuMk4ue/fu\nber+SktLQ5rciPa6q7625a8ohXVXAfuyqmDAQOGA+RhTRMPWrVu9HnPPn1q3bq0OHTqYsq9QW5Qv\nX75cZ86ckeQ9GRGtXMlfLExGAAhVc7pI0D0i/jCeSHThFOFafZ3KvSiF61RA6CgEAYAk5XA49MIL\nLyg7O1vrJP231QGZ4L8kVUjKzs7W888/n3SdIxhTIDxbtmzR9u3bJXlPIEiN/6cuvfRSU/cZ6GTU\nfUmWQCe1Zk4mBDpZN2JxX6LGF06wgcRkdcGAgcIB8zCmiIba2lr961//8ls4a3a+FKxF+bJly+R0\nOmOWK40ZM8bnUn2SQsrbJHIlAE1F2kWC7hHxifFEoguWp/jKd9xzooyMDI0YMcK0eIJdpzpx4oTW\nrl3LdSogRBSCAEAS69y5s55++mlJ0i/VuARHotqgxiVRJOnpp592Lb+QbBhTJArjDk4r/fGPfwz6\nGrPv4Aw0uSFJGzdu1OHDh1VeXu5z0qFnz57Kzc01LZ6CggJlZWV57ceYYNm6dav279/veszzdS1a\ntNCoUaNMiwdAbMRLwYCBwoHmY0ztKR7ypdmzZ+v06dOSfBfOSubmS6NGjQrYovzo0aOqqKhosk68\nZ25i5mTEhRdeqAEDBjR5zL0opba2lskIAGGJpIsE3SPiF+OJRBdKEa6vfMd9uWAjdzNDsG5svrrC\nsSQf4B+FIACQ5KZOnepaTuRbkg5ZHVAEDkm6UeeXD5k6darFEVmLMUUiePnll3XDDTdo165dluz/\n3//+t/7whz94XbR3/zotLU1XX321qfvt27evq6jJ1+SG0+nU//7v/3oVX0SrtXhqaqpGjhzptf6q\nJG3YsEHz5s3z+T73E/6WLVuaGhOA6Iq3ggEDhQORY0zta/ny5br88su1du1aS/ZfU1Oj+++/P2hX\nvuuuu860fYbSovy9994LOBlh9oRaSUlJk5zMcPToUT3zzDOqr69v8hyTEQCCCbeLBN0j4hvjiUQW\nShGur3zHYPZ1qg4dOqh///5N4nEvSvnwww99vo8l+QDfKAQBgCRnLCfSpUsXbZU0UVKt1UGFoVaN\nMW+V1KVLF5YPEWOKxOB0OvX3v/9d+fn5mj59unbs2BGzfVdXV+umm25SQ0ODKxbP2BwOh6666irT\n1rt3V1paGnBy46mnngr4XrP5W3/V6XTqN7/5TcD3cocrkFjitWDAQOFA+BhT+1u8eLGGDRumb3zj\nG45aUi8AACAASURBVDEtCDl+/LimTJmiL7/8UpK8ikaNrwcMGKCCggJT9x0sv3j66adjNhkhBb4z\n1V/exmQEgEDC6SJB94j4x3gikYVShGvFdSpfRbhfffVV0O6+XKcCmqIQBACgzp0765///Kfat2+v\nNZK+rsQoHKiV9B+S1qixZe/ChQtZPuQcxhSJoqGhQbNmzVJ+fr4mT56sRYsWRXV/O3bs0OjRo7V9\n+3ZJ/lucS40XZaLB10mp+wnu4cOH/cYWaCIiUp7bdN9voFgkTrCBRBLvBQMGCgdCx5gmD4fDofnz\n52vYsGH62te+pjfffFNnz56N2v7279+vsWPHasmSJU2KPnzFdf/995u+/1ByJX9xxTJXCpa3SeRK\nAPwLtYsE3SMSA+OJRBbOdSrPTrrRWC6Y61SAeSgEAQBIkgYOHKh//OMfatOmjcoljVN8LylyUNLl\nkpZIatOmjRYsWKD8/HyLo4ovjCkShXEh/4033tC4cePUv39/Pf744/rkk09M28eJEyf0wAMPaMiQ\nIaqsrPQ5eWA85nA4dMMNN6ioqMi0/bsL56TU/QQ7NzdXeXl5psczfPhw111Ini3WA8XTokWLqJzw\nAzBfohQMGCgcCI4xTT4Oh0MOh0MffvihJk2apB49emjmzJn6+OOPTdtHQ0ODnn76afXv39+19Iqv\nfMlQVFSkG2+80bT9G3y1KPfkaxmWtLQ0FRcXmx5Ply5d1KtXr4Dx+MNkBAB/QukiQfeIxMF4IpGF\nm68Y184KCgqUmZlpejz+CnuDXadiST7AG4UgAACXoqIiffDBB64uEmMkbbQ6KB82SCqRtFaNXSM+\n/PDDqE3YJjrGFInA/UK+w+HQzp079fOf/1x9+vTRkCFD9NOf/lTvv/++qzV5qBoaGrRkyRJ973vf\nU48ePfToo4/q9OnTTfZp8DxxfOaZZ5p5VP717dtXF110kdd+Df6WqonGHa6SlJGRoaKiIp8n1P4e\nczgcKioqUsuWLaMSEwDzJFrBgIHCAf8Y0+TkdDpdf4MdDoeqq6v1xBNPaOjQoerTp4/uvvtuzZ8/\nX/v37w97uxUVFfrpT3+qvLw83XPPPfrqq68CFoE4nU5lZmbqpZdeMu343LVs2dJvbmLs39fXQ4cO\nVatWraISk3uL8kCxMBkBIBzBukjQPSKxMJ5IVCNHjgxYhOsvJ4vWdaquXbuqZ8+ePuMJdJ2KJfkA\nb2lWBwAAiC9FRUVaunSprrjiCm2trlaBpAcl/UxSusWx1Ut6QtIj5z7v0qWLFi5cSNeIIBhTJALP\ndeeNE70NGzZow4YNrvVIe/Toofz8fHXv3l1du3ZV69atlZmZqfr6eh09elS1tbWqrq7Whg0btHXr\nVlfhh/s2PfflHkNWVpbeeusttW/fPqrHW1paqtdeey2su0qjeUJbUlKiZcuWhfUe7nAF4l+iFgwY\njMIB4xjGjk28YzAbYwrPAlpJ+vTTT/Xss8/q2WefldS4TOSgQYPUvXt3devWTW3atFGrVq109uxZ\nV760f/9+bdiwQZs2bdKJEye8thkoX0pNTdXcuXPVr1+/qB1nWVmZli9fHvLro33xv6SkRH/5y19C\nei2TEQBCZXSRuPvuuzVnjjRxonRuLpbuEQmI8USiyszMVFFRkZYvXx5X16lefvnlsOLhOhXgjUIQ\nAICX/Px8rV27Vt/73vf01ltv6QFJ8yS9JGmQRTFtlHSbpIpzX19zzTV6/vnn1blzZ4siSiyMKeKZ\n5+SCv4kHSaqqqlJlZWXI2/W31Imvx9u1a6f58+eroKAgvAOIQFlZmV577bWw3hOtOy2MbT/22GNh\nvYcTbCC+JXrBgIHCgfMY0+QW6G5Iz5xn3759qqmpCXm74eRLLVq00KxZs3TttdeGdwBhKisr06OP\nPhrWe6KdK4WLXAlAKKZPn67HH39ce/fu1YIFkvHrle4RiYnxRKIKpQjXPTdMSUnR6NGjoxaPUQgS\nDnIvwBtLwwAAfOrcubPmz5+v2bNnKzs7WxWSLlNj54ajMYzj6Ll9FqixYCA7O1uvvPKK5s+fT8FA\nmBhTxCOj8MOz3bnnHanuBSKer/H34flef885HA4NHjxYK1asiOoEgrtQTk7dT7BzcnKietdtcXGx\nUlNTvfbrL54WLVpo1KhRUYsHQPPYpWDAwJIijCkC50PBnjcrX+rWrZsWLlyoKVOmRP14R40aFbBF\nuefjKSkpGjNmTNTi6dWrl3JzcwPG44nJCAChMLpISI0dI+rq6B6RyBhPJKpQ8xYj17z00kvVpk2b\nqMUTyvU5luQDgqMQBADgl8Ph0M0336zNmzfr61//uurVuKRIrqTvq7GjQ7RslHTXuX09qMZlQ665\n5hpt3rxZU6dODastHM5jTJOD552d8Wjs2LG6++671a1bN78TEf4mOsIRbKIjMzNTM2fO1Jo1a9S/\nf3/zDjCIfv366aKLLvKK0Ve8DocjqhMbkpSVlaWhQ4e6vvYXj/FcUVGRWrZsGdWYzOAee7z/nwDM\nYreCAUMyFw4wpslr4MCB+tnPfqZ+/fo1+Zsc63wpLS1Nd955pzZs2BD1nMRgtCgPVNjiHv/gwYPV\ntm3bqMY0ZsyYoIU2hkSZjEiE8wYgGUyfPl25ubk6cEBasIDuEYmO8Uwc8fp30Iq4PItwg+Ve0b6R\n6uKLL3bdMBjKdbNEWZIvXn/mYF8UggAAgurcubPefPNNzZkzRwMGDNAxSc9JukRSiaRXJZ02YT+n\nz21rzLltPy/pmKQB/5+9Ow+TqjzzBvw03WzdCLK0iiKL6CCOYFhiBKEbozNJNE7GROPolYlbMCZx\nSaKTuESTEYkS8ymaxRhFEh1NNAbHGEdHorIZlU3EoAgaBAVRcBnpBdnq+6OttpquXunq6q6+7+uq\nK83pOu95ql4Dp079zvsMHx533323FSNakDnNTbt/KZC6tHdbc9BBB8XNN98ca9eujYULF8bll18e\nhx9+eL1fRDTltdW1T3LsvffeOy666KJYvXp1TJkypfrDbmsqLS2t9/WlvsbW+EBbUlLSYD3JmtrD\nHa7N+e8G2rtcDQwkdcTggDnt2Pr16xfXXnttvPjii/Hiiy/G1KlT48gjj4z8/Px6gyEtdb7UvXv3\nOOOMM2L58uXxq1/9Knr16tVKr7xK8nyjMecmrXWu1Jbq2VPOk6Dt2H0VCatHtG/ms+1ry/8GZquu\n1BBuW7lOlQzhNqae9nidKrkNMkkQBIBGycvLi9NPPz1WrFgRTzzxRJx88smRn58f8yPi9IjoGRFj\nI+LrEfHriFgSEdvqGW/bR8/59Uf7jI2IvT4aa0FEFBQUxCmnnBJPPvlkrFixIk4//XRp2RZmTnNP\nQ4n9tmrMmDExZcqUWL58ebz11lvxxz/+Mb7zne/EkUceGZ07d27UMuZ1fYGR+ujTp098+ctfjnvu\nuSfWr18fN9xwQ+y///5Ze92TJk1q9LLtrdGypqSkpNH1tPUP2A3VD7ko1wMDSR0pOGBOSTVs2LC4\n9NJL4+mnn4533303Hn744bjsssti4sSJ0b179xY7X+rRo0eccMIJ8etf/zrWr18fd9xxR6uumpaq\nPZ8rHXPMMRmvZ084V4K2J3UVCatHtH/ms21rq//+Zbuuxp57ZbolX5LrVLDn8hLiRkAr27RpU+yz\nzz41tr399ttRXFycpYqyIxfehw0bNsRtt90Wt912W6xfv77W7ztHRP+I6B4RyQYCWyOiMiLejKrW\nILs74IADYvLkyTF58uSsfkHbUZlT2poPP/wwXn755Vi1alX1Y82aNfH+++/HBx98EFu2bIktW7ZE\nIpGIrl27Rrdu3aJPnz5RXFwc+++/fxxyyCFx6KGHxpFHHhnDhg3L9ssByJibbor49rdzOzCQKjUk\nMX16xEUXZbuilmdOs11R+7Fz584a50qrVq2KV199Nd57770a50s7duyIrl27RteuXaN3795RXFwc\n/fv3j4MPPjiGDRsWY8eOjZEjR7oYDZAlv/jFL+L888+v/vmb3/xmlitiT5hPoKPKhe++Wkq23wtB\nEKDVZfsvvrYil96HRCIRr732WixZsiQWL14cS5YsiSVLlsR7771X7369e/eOsWPHxpgxY6ofgwcP\nduGxDTCnAND+3HRTxEkn5X5gIGnduogHHsjtwIA5BYCOY+vWrXHzzTdHRMRFF12kjUg7Zz6BjiqX\nvvvaU9l+LwRBgFaX7b/42opcfx8SiUSsXbs2Nm3aFJWVlVFZWRkRVf0Gu3fvHsXFxTFo0CABgXbE\nnAIAAAAAAHXJ9e++miLb70VBqxwFgA4nLy8vBg8eHIMHD852KbQQcwoAAAAAAND2dcp2AQAAAAAA\nAAAAtAxBEAAAAAAAAACAHCEIAgAAAAAAAACQIwRBAAAAAAAAAAByhCAIAAAAAAAAAECOEAQBAAAA\nAAAAAMgRgiAAAAAAAAAAADlCEAQAAAAAAAAAIEcIggAAAAAAAAAA5AhBEAAAAAAAAACAHCEIAgAA\nAAAAAACQIwRBAAAAAAAAAAByhCAIAAAAAAAAAECOEAQBAAAAAAAAAMgRgiAAAAAAAAAAADlCEAQA\nAAAAAAAAIEcIggAAAAAAAAAA5AhBEAAAAAAAAACAHCEIAgAAAAAAAACQIwRBAAAAAAAAAAByhCAI\nAAAAAAAAAECOEAQBAAAAAAAAAMgRgiAAAAAAAAAAADlCEAQAAAAAAAAAIEcIggAAAAAAAAAA5AhB\nEAAAAAAAAACAHCEIAgAAAAAAAACQIwRBAAAAAAAAAAByhCAIAAAAAAAAAECOEAQBAAAAAAAAAMgR\ngiAAAAAAAAAAADlCEAQAAAAAAAAAIEcIggAAAAAAAAAA5AhBEAAAAAAAAACAHCEIAgAAAAAAAACQ\nIwRBAAAAAAAAAAByhCAIAAAAAAAAAECOEAQBAAAAAAAAAMgRgiAAAAAAAAAAADlCEAQAAAAAAAAA\nIEcIggAAAAAAAAAA5AhBEAAAAAAAAACAHCEIAgAAAAAAAACQIwRBAAAAAAAAAAByhCAIAAAAAAAA\nAECOEAQBAAAAAAAAAMgRgiAAAAAAAAAAADlCEAQAAAAAAAAAIEcIggAAAAAAAAAA5AhBEAAAAAAA\nAACAHCEIAgAAAAAAAACQIwRBAAAAAAAAAAByhCAIAAAAAAAAAECOEAQBYtGiRfGtb30rDj/88Ojd\nu3f07Nkzhg8fHmeeeWY88cQT2S4PAAAAAAAAgEYqyHYBQPZUVlbGd7/73bj11lurt+Xl5UVExMsv\nvxwvv/xy3HnnnfHFL34xbrvttujdu3e2SgUAAAAAAACgEQRBoIPatWtXnHzyyfHII49Uhz+6d+8e\nhx12WHTu3DlWrFgRW7ZsiYiIWbNmxbp162LevHnRrVu3bJYNAAAAAAAAQD0EQaCD+tGPflQjBDJ5\n8uS47rrrYu+9946IqtVCrr322rjmmmsiLy8vlixZEt/4xjdi5syZ2SwbAADYTSKRiIqKimyXkVWF\nhYXVn21ygTnNvTlti7Zt2xavv/56vPHGG1FWVhYVFRVRWVkZERHdunWLbt26RZ8+fWLfffeN/fbb\nL/baa68sVwwAAEBjCYJAB7Rx48a44YYbqi+qfeUrX4lf/epXNZ7TvXv3uPrqq2PXrl3x4x//OCIi\n7rrrrvjud78bI0aMaPWaad927NgR//3f/x0REf/6r/8aBQX++WnvzCkAtB0VFRXRo0ePbJeRVWVl\nZVFUVJTtMlqMOc29Oc228vLymDdvXjz77LPx7LPPxvPPPx9vvfVWJBKJRo9RXFwchx56aPzjP/5j\nfOpTn4rx48fHIYccksGqAQAAaC7f2kAHNH369Oq7ywoLC2P69Ol1PveHP/xh3HnnnbF+/fpIJBIx\nbdq0+K//+q/WKpUcMWfOnDjllFMiImL27Nlx3HHHZbki9pQ5bXvuu+++6pZe2XbGGWdUh4NWrVoV\n8+fPz3JFLaNTp05x1llnZbsMAIBGqaysjPvuuy9mzZoVs2fPjq1bt1b/LnljSFNWXdm8eXPMnz8/\n5s+fX30zSf/+/eP444+PE088MT772c9Gly5d9qjmyZMnx4wZM+r8/UknnRR//OMf9+gYDfnggw+i\nT58+sWvXrnqfd9NNN8UFF1yQ0VoefvjhOPHEE+v8fUFBQbz77rvRo0ePeOWVV2Lu3LkZrac1nXPO\nOdkuAQAA2jVBEOiAHnjggYiouuBzyimnRO/evet8bufOneOss86KKVOmRETEn//859ixY4e7/2mS\n++67r/rnP/zhD0IDOcCctj3f//73Y+3atdkuo/rflp49e0ZExPz582Py5MlZrqplFBQUCIIAbd8l\nEbFn38O2H9si4qfZLqIVmFOaaP369XHzzTfH7bffHu+9915EVJ2jpQt9NGVFkHRjbNy4MWbMmBEz\nZsyI3r17x6mnnhpf+9rXYvTo0c2qvbS0NGbMmFFnQKU1AsYLFiyIXbt2NRiSmTt3bsaDIMlgR121\njBo1qnr1oKeeeipnzrvz8vIEQQAAYA91ynYBQOtavXp1rF69uvoiwvHHH9/gPp/73Oeqf96yZUtO\n3WFC5u3YsaM6fBQRMWvWrNixY0cWK2JPmdO2K3lxPluPtlxbJl8bQJvSpYM9OoJsv8fmtN2oqKiI\nK6+8Mg455JC4/vrr4/33369xLpNIJGoFP5p7PpQ6VvL377//fvzqV7+KsWPHxrHHHhuPPvpok1/D\npEmTah0jeZxEIhHvvPNO/O1vf2vyuE2Res0jtYbU9y6RSMS8efMyWkddtSR/jqj5fiVl+7zZeTcA\nALQNgiDQwSxbtiwiPr5oMG7cuAb3GTNmTHTp0qX6A/nzzz+fuQLJOXPmzInNmzdH9OoV0atXbN68\nOebMmZPtstgD5rTt2/2CdWs82mpdrfG6AACybfbs2TFs2LCYOnVqfPjhh7XCH4lEIm0opLnnR3UF\nTJLbn3zyyTj++OOjpKQknn322Ua/jgEDBsRBBx1UPVY6mb45pb7xU88P33nnnVixYkXG6igrK4ul\nS5fWG45IFwSJaJ/n3c69AQCgZQmCQAfz0ksvVf/cpUuXGDBgQIP7dO7cOQ488MDqD+WpY0BDqluI\nTJwYMWFCRFS1EqH9MqftU1u4c681j+mORACgI9i5c2dcdtll8dnPfjY2bNhQbzijrjBHU8+N6hon\nXehkwYIFMX78+KisrGz0a5o0aVK9oYBMhtAbE75orVoWLFgQO3fujIio8V4n5efnx8SJE9Pu2x7P\nu517AwBAyxIEgQ7mtddeq/65MSGQpAMPPDDtGFCfGi1EJk2KOOaYiNBKpD0zp+1Xtu/ga+/HAwBo\na7Zu3RonnnhiTJs2rXpbfQGN5J87d+4cn/zkJ+Ob3/xm3H777TF79uxYtWpVbNq0KcrKymLnzp1R\nVlYWGzdujJUrV8b//M//xM9+9rM499xz47DDDotOnTrVGjv1eMk6UjXlfKquVS6Sx8tkS5annnqq\n+nNNas11hRQyuTpJXWMn6xo1alT06NEj7e+ddwMAAAXZLgBoXVu2bImIqosYvXr1avR+qc9NjgEN\nqdFC5BOfqNqY0krkuOOOy26BNJk5bb9a6w67dMfJ1LHru1CciWO6SxEAaCs++OCDOOGEE+Kpp55K\nG75I3Zb8+dOf/nR85StfiX/5l3+J3r171zt+9+7do3v37lFcXByHHHJIjd+9++678eCDD8a9994b\nTz75ZOzYsSNt+KS50gVBUl/H5s2b48UXX4zDDjus2ceoS33hi9TX1RqhlPpCJnl5eWnfJ+fdAABA\nkhVBoA3ZvHlzPPLII/Hzn/88fvzjH8f1118fd9xxRzzzzDMtdqd9WVlZ9c/dunVr9H7du3dPOwbU\np0YLkfz8qodWIu2aOW1fkhdQ8/LyYubMmbFz586MP3bs2BE9e/asruGcc87JyHHGjx9f4zXu/nqn\nTJnS4sf88MMPW3H2AADS2759e3z+85+vDoHsvpLC7quAnHTSSbFs2bKYPXt2nHHGGQ2GQBrSp0+f\nOOuss+LRRx+NtWvXxmWXXRZ9+/atddzmGjBgQBx00EHVryWdTK3EUde4qSGQ1Pd606ZNGWmfW1FR\nEYsXL673fdw9CHLGGWdk5Ly7pKSk+j1ISj3v/uEPf5iRzxQAAMCeEQSBiHjvvfdi9uzZce2118aX\nvvSlGDx4cHTq1KnGIz8/P2PHv//++6OkpCT23XffOOGEE+LCCy+MH/zgB/H9738/vva1r8X48eOj\nb9++MXny5Fi9evUeHSv1w3RBQeMXBUo+N5FIxPbt2/eoBjqGWi1EkrQSabfMKQAAZN/ZZ58dCxYs\nSLvyRnJbXl5eDBw4MP73f/837r///hgxYkRGatlvv/3immuuiddffz2mTJkSPXv23OMVQSIiSktL\n6x1jzpw5ezR+OruHL1L/96ijjqqxLdO1pGtRk3rs/Pz8mDhxYosfFwAAyB2CIHRIK1asiJ/85Cdx\n6qmnxtChQ6Nv377xmc98Jq644op44IEH4vXXX69ezjSTy1Fu2LAhJk2aFF/+8pdjwYIFEVH7okKy\nhrKyspgxY0aMGDEirrnmmmYfs7CwsPrnrVu3Nnq/5HPz8vKiqKio2cen40jbQiSi6ueUViK0H+YU\nAACya/r06XH33Xc3GAI59thjY+nSpa3WurFbt25x+eWXx+rVq+PMM8/MSHuYiMy2ZPnrX/9afePL\n7rWfccYZceCBB6Zd7SQTq5PU16ImImLUqFHRo0ePFj8uAACQOwRB6JBuv/32uPTSS+MPf/hDvPba\nazVCH6lLme7pHSz1WbVqVYwdOzbmzZtX67i7h1BSt2/fvj2uuuqq+MpXvtKs+lIvFFRWVjZ6v4qK\nirRjQF1qtRBJ0kqk3TKnAACQPStXrozLL7887Q0rqSGQL3zhC/HII49Enz59Wr3G4uLimDFjRvz5\nz3+O/fffv9njpAuCpF4Defvtt2PlypXNHj+d+gIdJSUltVbgSL7nrRkESR63rqAMAABAkiAIHdru\noY/dgxiZ8u6778Y//dM/xVtvvVUj7JGXlxdjx46Nq6++Ou6666749a9/HZdcckkccMABNe6mycvL\ni9/97ndx8cUXN/nY/fr1qz7em2++2ej9Nm7cWP1z3759m3xcOpY6W4gkaSXS7phTAADIrjPPPDM+\n/PDDiKgZikgNgRx33HFx3333ZbS9bWN87nOfixdeeKHZK5IceOCBMWTIkIhI344louVX4kgdL/WY\nxcXFceihh0ZJSUn1tt1DKS+//HKL1bF169ZYtGhRvdelBEEAAICGCILQ4aWuvtG1a9cYM2ZMnHvu\nudGrV6+MhUEmT54cr7/+evWfE4lE9OzZM/70pz/FwoUL44orrojTTz89zjnnnJg2bVq89tpr8aMf\n/ahGPYlEIm666ab43//93yYd+9BDD63++Z133ml0e5hku5zdx4B06mwhkqSVSLtjTgEAIHt+//vf\nx8KFCyOidggkacCAAfG73/0uCgoKWr2+dHr37h2PPvpoXHzxxc26vjJp0qR6V0JtySDI1q1bY+HC\nhbWuu+Tl5VWvBJIaBMlkLU8//XRs27atuoaImvOcn59fa3USAACA3QmC0GF17tw5Ro4cGWeffXb8\n8pe/jIULF8aWLVti0aJFccstt0SvXr0yctzZs2fHAw88UGMlkK5du8aTTz4ZJ5xwQtp98vPz48or\nr4wbb7yx1kWACy+8MHbt2tXo4w8fPrzGn5ctW9bgPhs2bIhNmzbVOQbsrs4WIklaibQ75hQAALJj\n586dcdVVV9UZpkgGFmbOnJmVdjD16dSpU/zkJz+J7t27N3nfula9yERLlnThi6TS0tKIqLoppri4\nuLqGVC0Zhq9rrGRdo0aN0rIXAABokCAIHdKll14aH3zwQTz33HNx2223xde//vUYM2ZMq9w1M2XK\nlOqfkxdrfvSjH8WoUaMa3PfCCy+Mf/qnf6r+8J9IJOKVV16Je+65p9HHP/LII6Nbt27VFy0WLFjQ\n4D7z58+vPl5E/XfBQIMtRJK0Emk3zCkAAGTP7373u3jllVciou6WMKeeemp8+tOfzlaJGZEuCJL6\n+jdu3BirV69ukWPVFypJvQYyceLEtHPQkqGU+sbKy8vTFgYAAGgUQRA6pH333Te6du3a6sd98cUX\nY8GCBTXuHOnXr19cfPHFjR7j2muvrbXtlltuafT+hYWFcdxxx1VfuLj77rsb3Cf5nLy8vBgxYkQM\nHjy40cej42mwhUiSViLthjkFAIDsufXWW2ttS72u0KlTpxo3neSKAw88MIYMGRIRtVfgSGqpzx2p\n4YvUY+29994xcuTI6j+nhkIyEUr58MMP49lnn623lc4xHwXwAQAA6iMIAq3o97//ffXPybt2zj77\n7CatRDJ69OgYM2ZM9f6JRCKeeeaZWLt2baPHOPPMM6trWL58eTz88MN1Pnfp0qXxyCOPVF+EOPvs\nsxt9HDqmBluIJGkl0m6YUwAAyI4XX3wxnnrqqerP/6mS1wW++MUvxtChQ7NUYWaVlpbWet2pWmIl\njm3bttUKXyTf2wkffb5Jqm+F1Jao5dlnn40PP/ywuoaImsGU/Pz8mDhx4h4fBwAAyH2CINCKHn30\n0VrbvvSlLzV5nJNPPrlRY9fli1/8YowePbr6z1//+tfj5ZdfrvW8N998M/793/89du3aFYlEIgYM\nGBDnnXdek+ul42h0C5EkrUTaPHMKAADZk3pDSV2+/vWvt0Il2VFXG5SWbMnyzDPPxNatWyMiaoVO\nSktLa/z5iCOOiF69elXXkKolViepa4xkXaNHj46ioqI9Pg4AAJD7BEGglVRUVMTSpUtrXCgoLCys\nEchorHR3f8yfP79JY9x+++1RWFgYiUQiNmzYEJ/61Kfisssui0ceeSRmz54dU6dOjdGjR8dLL70U\niUQiCgoK4rbbbosuXbo0uV46jka3EEnSSqTNM6cAAJA96VbwTL2usO++++Z0q5B0QZDUsMaGkYqw\nxgAAIABJREFUDRvi1Vdf3aNj1Bcm2T0IkpeXF0cffXSNGloylFLfGHl5eXUGYwAAAHbX+H4UwB5Z\ntmxZ7Nq1q/oCQV5eXowdOzY6dWp6HuuTn/xkdO7cOXbs2FE93pIlS5o0xic+8Yn4/e9/H6effnqU\nl5fHBx98ENOmTYtp06bVem7nzp3jl7/8ZfzzP/9zk2ul7UkkElFRUZGRsavvVmuohUhSspXIww/H\n73//+xg3blxG6iosLKy3x3J7Z04BACD3bNy4MZ577rl628J84QtfyOnz4oEDB8bgwYNj7dq1ad+H\niKrw+p60xkkNX6S+lz169Eh7805JSUn8z//8T0R8PA8RH4dSmlvL9u3b45lnnql3PgVBAACAxhIE\ngVaycuXKWtsOPvjgZo3VuXPnGDBgQLz22mvV21599dXYtWtXk4Iln//85+O5556LCy+8MB577LHY\ntWtXreccffTRMX369GatXELb9MILL8QRRxyR2YM05eLUMcdEPPxwzJgxI2bMmJGRcpYvXx4jRozI\nyNhtgTkFAIDcM2/evAaf0xGCAZMmTYrf/OY3dQYk5s6dG+ecc06zxt6+fXs8/fTTNcZOhjuOPvro\ntMcsKSmpc7y5c+c2OwiycOHCqKysrBF4ST1+fn5+2hViAQAA0tEaBlpJamgjadCgQc0eb+DAgTXu\nhNm5c2esW7euyeMMHTo0Hn744Xj99dfj3nvvjRtuuCGuv/76uOeee+KVV16JefPmCYHkmAcffDCz\nB5g4sXEtRJI+8YmqFSQyKOOvOcvMKQAA5J6lS5c2+JzdW5fkorrCLi3RkmXRokVRWVkZEVFrtZG6\nAh9jx46NwsLC6hpS7Ul7zLpeR7Ku0aNHR1FRUbPHBwAAOhYrgkAr2bhxY61tBx54YLPHS7fvW2+9\nFYMHD27WePvtt1+cfPLJza6H9uOCCy6IF154If7whz9UbfjEJyK+//2IXr1a5gDdukU0ZWni/PyI\nq6+O2Lq1ZY7/f/8Xcd11Ec8/HxERp5xySlxwwQUtM3YbZU4BACD3pAuCpAYP9tlnn9hvv/1as6Ss\nSBcESW3J8sYbb8SaNWtiyJAhTR67vuBGXSGbgoKCOOqoo+KJJ56orqElQin11ZKXl9chVn8BAABa\njhVBoJW8++67tbb16NGj2eOl2/edd95p9nh0HHvvvXfce++9ceutt0a3bt0ili2LOP/8iJUrI7p3\n3/NHc/pT5+W1zLFXrqx6Lc8/H926dYtbb7017r333ujVUoGINsqcAgBA7lmxYkXa1iTJEMRhhx2W\nhapa38CBA6tXVK2vPUxzpO6XOnb37t3jk5/8ZJ37pa4WkrqSyBtvvJF2RdiG7NixI/7617/W+foi\nOkYbIAAAoOUIgkArKS8vr7Wte/fuzR4v3b4VFRXNHo+OJS8vL84999xYuHBhDB8+POKddyIuvjhi\n5syInTuzXV7T7dwZcccdVa/hnXdi+PDhsXDhwjj33HPrvZCWS8wpAADkjh07dsRbb71V73OGDRvW\nStVk36RJk2q1bknVnJYsO3furBW+SIZsjjrqqCgoqHsh5braxjS3lsWLF1df00m+ztS68vPzY+LE\niU0eFwAA6Li0hoFWsn379lrbunXr1uzx0gVBtm3b1uzxsq28vLy6x25T6ZHbfCNGjIhFixbFRRdd\nFDNmzIi4886q1SR+8IOI4uJsl9c4mzZFXHNNxPLlERFxzjnnxE033dRh/7swp9Rl7ty5af8tainj\nxo3rMHelAgBk2oYNG2LXrl3VLUfS6d+/fytXlT2TJk2K3/72t7W270lLlsWLF0d5eXn1GKnBi/qC\nHhERRx11VHTp0iW2b99eK6g+d+7cOPPMM5tUS131J+d+9OjRPg8BAECWpLvZP5P7tRRBEMiiPbmr\nva7lYdur5vTyTWrPr7stKCoqittvvz2OPfbYOPfcc6Ns+fKIr30t4tJLI8aNy3Z59fvrXyOmTYv4\n4IPYa6+94tZbb43TTjst21VlnTklKfn3YyKRiJkzZ8bMmTMzdqzp06cLggAAtJD169c3+Jz99tuv\nFSppG9K1RUkNb6xbty7Wrl1b3UKmMepbuaO0tLTefbt16xZjx46tsaLInoRS6qslLy9PWxgAAMii\nHj16ZLuEZtEaBlpJ586da22rrKxs9njp9u3SpUuzx4PTTjstnnvuuRg9enTEBx9EXH55xC9+EdEW\nV5rZtq2qtiuuiPjggxgzZkwsXbpUYGA35pRUeXl5GXkkxwYAoOVs2bKlwef07du3FSppGwYNGlQd\n8qjr3LOpAYzU56eO2aVLlzjqqKMa3D+1VUvqDSpr166NdevWNbqOnTt3xlNPPVXvObUgCAAA0FRW\nBIFWkq7tSUsHQdrzMqFr1qyJ4vbStiKHHXzwwfHXv/41Lr300pg+fXrE/fdXtee46qqIAw7IdnlV\n1q+P+M//jFi9OiIivn7hhXHl1KnRpUuX2NQWAw5Z1mvgwHhwzpy45oor4taf/axdzOl3vvOduO66\n64TbWlgmVk8SAAGgrdhUvikqoiLbZbSYbC8fS/Y15nrBnrSbbY+S7WHqOgedM2dOfPWrX23UWLt2\n7aoVvkiuMPLJT34yunbt2uAYJSUlMW3atD2uZenSpVFWVlajDVBqXfn5+TVCJwAAQOsqKytr1n6b\nNm3ao44Ie0oQBFpJujt1mvsXR137tue7gYqKitp1kCWXdO3aNW688cb49Kc/HWeeeWa8u2pVxLnn\nRnz3uxHHHpvd4v7yl4gbboiorIzo2TPi0kvj1nHj4tbFi7NbV3vwxS9G7LdfVduVNjqnffv2jd/8\n5jfx+c9/Prs15SihDQBy2ZCbhkTkUoZUvrnDa0wQpDFhhebq169fvPvuuy065plnnhl33HFHs/dP\nBkF215yWLEuXLo0tW7ZU75t6rtxQW5ikCRMmRKdOnWrtH1G12khjgyB11Z0MhYwePdr1EgAAyKLm\nno9XVGT3hhWtYaCV7LvvvrW2vfHGG80e7/XXX2/UMaC5TjzxxHj++eer7jyqqIi45pqIn/ykKoTR\n2iorq449dWrVzyNHRtx+e8S4ca1fS3s2fnzV+zZyZJub05KSkli2bJkQSAYlEomMPAAAaHk7duxo\n8DkFBZm7vytTLQX3RLr2KKnno6+99lraayXp1BcaKSkpadQYe+21VxxxxBE1akgGS+bMmdOoMRqq\nJS8vL4455phGjwUAAJAkCAKtJN3SP2vXrm32eOvWrau1VOjAgQObPR6kM2DAgHjiiSfiyiuvrPrv\n7ZFHIr7xjYi//731ivj736uO+cgjEXl5EV/9atUKEloJNU9xcdX79+//XvV+ZnlO8/Ly4qqrrorH\nH388BgwY0Ho1dECZuJjfUhf1AQCoqTGrfXz44YetUMmeBYqT+7eEQYMGxaBBgyKi7tXuGrsqSGpQ\nI3WsgoKCOProoxtdU2poZPdQSmNu/tm1a1csWLCg3nPqdAEYAACAhgiCQCsZNmxYrW2vvPJKs8ba\nvn17rbtchg4dGp06+b80La+goCCuvvrqePzxx6N///4Ra9dWfYn/pz9FZHI1gESi6hjf+EbVMfv2\njfh//y/irLMi8vMzd9yOID8/4uyzq97Pvn2zNqf9+/ePxx9/PP7zP/8zo3czdmTJC8p5eXkxc+bM\n2LlzZ8YeF154YZZfLQBA7ujevXuDz2mtIEhbCgiXlpbWGyxpzEociUSiVvgiOeaoUaOisLCw0fXU\nt3pIY2pZtmxZ/N///V+NGnYPpkyYMKHR9QAAACT51gVayahRo2r0jk0kErF48eLYtWtXkwMcixcv\nju3bt9foZTt69OgMVQ5VjjnmmFi2bFmcccYZ8eijj0bceGPE0qURl1wS0aNHyx6srCzipz+N+Ohu\nrmM/85n42YwZ0c8qIC1r/PjYdMopccE558QTjz3WqnP6uc99Ln77299GsTkFAFrAmovWNLtnb1tU\nXl4eQ35ce1VJOo7GBEEy3W+6LbYBnDRpUtx55521tievjzRmRZBk+CL1mkpyjNLS0ibVM3HixDp/\nN3fu3PjKV75S7/511Zt6rSeX/m4DAABajyAItJLCwsIYNWpULFmypPoiQ3l5eTz33HMxZsyYJo21\nYMGCWtsa28MW9sQ+++wTDz/8cNxwww1x2WWXxY65cyMqKyOmTWvZA02ZErFwYRQUFMR1110X3/nO\nd6x4kyHFAwbE7EceMacAQLtWXFScU1+WFkbjVyQgN/Xt27fB57z11lsZraE5K3xkOjySrk1Kapjj\n73//e2zYsCH233//OseoLyzS1Gsr/fr1i+HDh8fKlStrBEoaG0pp6DnawgAAAM0lCAKt6LOf/Wws\nWbKkxrb777+/yUGQ+++/P+3Y0Bo6deoUl1xySfTq1SvOPffciFdfbfmDfDTmL3/5y5g8eXLLj08N\n5hQAANqWAQMGNPicTAZBbrrppti6dWuT9nnwwQfjoYceqg5CZMLgwYNj0KBBsW7dujqPM2fOnDj9\n9NPrHCO1ZUtq2KVTp071rvBRl5KSknjppZdqrTDy6quv1htKSSQSMX/+/HoDN4IgAABAcwmCQCv6\nt3/7t5g6dWpEfHyHyMyZM2PKlClRUNC4/zs+99xzsWjRohoXPD71qU/FoEGDMlY3pLNo0aKqH8aN\na/nBjzoq4uGHY/HixUIDrcicAgBA29CvX7/o2rVrbNu2rc7Aw+uvv56x49cXpKjL66+/Hg899FAG\nqqmptLQ07rzzzjoDFHPnzq2z/nThi+R7O2LEiOjZs2eT6ykpKYlbb721zlpOO+20tL9bvnx5vPfe\nezXmN7WugoKCmDBhQpPrAQAAiIiwJju0on/8x3+MCRMm1LiAs2nTprjxxhsbPcZll11W4895eXnx\nzW9+s8VqhMbYsWNHPPDAA1V/yMQdSh+NOWvWrNixY0fLj08t5hQAANqWwYMH1/m7RCIRL774YusV\n04bUtUpGMlCRuuLH7l544YV47733IqJmG5u8vLwoLS1tVj31tZOpr5a62sIkVxUZPXp0TrW8AgAA\nWpcgCLSyH/zgB9U/Jy9S/PCHP4xly5Y1uO/Pf/7zeOyxx2rcITJ06NA67y6BTJkzZ05s3rw5olev\niE98ouUPMGpURM+esXnz5kb1VWbPmVMAAGhbjjjiiLQrgSSvCaxcubK1S2oT0gVBUt+nV155JTZu\n3Jh23/o+i9QX6KjPAQccEEOGDImIj+cmeb2nvuM19LlIWxgAAGBPCIJAK/vnf/7n+MIXvlBj2c+t\nW7fGpEmT4s9//nPafXbs2BFTpkyJCy+8sPqiQvIOkZtvvjny8/NbrX6IiLjvvvuqfpg4MSIT//3l\n51eNnXosMsqcAgBA2zJ69Oha21IDD5WVlbF8+fLWLKlNGDx4cAwcODAios72MHWtxJGJIEhy3+Tc\npM7R6tWr6wylzJs3r876IwRBAACAPVOQ7QIgW44//vh488036/z9hg0bam0bNWpUvWM+8sgjsd9+\n+zV47Ntuuy2WLFkSb7zxRkRUXbjYsmVL/Mu//EuMHTs2vvCFL8SQIUOisrIyVq9eHXfffXesX7++\nVgjkggsuiM9+9rMNHg9aUsZbiCRNmhTx8MMxa9as+MUvfhEFBf7JyhRzCgAAbc/YsWMbfM6cOXNi\n5MiRrVBN21JaWhp33XVXnUGKuXPnxr/927/V2p4avkiu2hERcdhhh0Xfvn2bXU9JSUn89re/rbOW\nU089tca2v/3tb/HOO+/UqCH1tRQUFMSECROaXQ8AAIBvYOiwXnrppVi3bl2jnpv8MF7XnTbJYMa2\nbdsaNV6/fv3isccei2OPPTY2btxY40P/4sWLY/HixbWOv/vFgVNPPTVuvPHGRh0PWlLGW4gk7dZK\n5Nhjj83csTo4cwoAAG3P0UcfHYWFhVFZWVnjmkCqxx57LC688MIsVJddkyZNirvuuqvW9uT7lG5F\nkBUrVsTmzZurn5MaCNmT1UAi6l9NZM6cObWCIHWtTJKsa/To0VFUVLRHNQEAAB2b1jB0aIlEokUe\nzXHooYfGwoULY8KECbWCHhE17wRJHicvLy+6dOkSP/rRj+Kee+6pdwnR9qa8vDztg7anWS1EVqyI\n+MY3qh4vvti4fbQSaTXmFAAA2p6uXbvGsccem/a6Q/Iawl/+8pd4//33s1BddqVrm5L6Pq1atSre\nfvvtGr+vry1MaWnpHtUzdOjQ2H///SMiaq04ku649dUSoS0MAAC0N23xe05BEDq0ZACjpR5NdcAB\nB8TcuXPj3nvvjfHjx0enTp1qjJU69l577RVnn312LF++PK688sqWfiuybsiQIdGjR49aD9qWJrcQ\n2bkz4q67Ii66KGLlyqrHhRdG/Nd/Vf2uIR8dY9asWbFjx45m103dzCkAALRdJ554Yq1tqYGH7du3\nxx/+8IfWLKlNGDJkSAwcODAios7rMbuvClJf+GJPVwSJiJg4cWL13KTO0csvv1wrlJLaoiYdQRAA\nAGhf0n3HOWTIkKzWJAhCh7VmzZrYuXNniz127NhRfRGiqU4++eSYP39+bNy4MR566KG46aabYsqU\nKXHttdfGbbfdFgsWLIh33nknbrvttviHf/iHFn4noPGa1ELk7bcjLr444o47InbujNNOOy1OO+20\nqrDAjBkRl1wSsWlT/WPs1kqElmdOAQCg7fryl78chYWFEZE+8JBIJOKmm25q7bLahNLS0npXad39\n88bcuXNr3HiTdPDBB8d+++23x/VM/Gj1w4Zqeemll6qDIaktgJMKCgpiwoQJe1wPAADQsQmCQBvS\nr1+/OP744+P888+Pyy+/PL73ve/F2WefHePGjYuCgoJsl5dRa9asibKysloP2pZGtxCZPz/ia1+L\neP756NGjR/z2t7+Nu+++O+6+++74zW9+U9XreNmyiHPOqXpuXbQSyThzCgAAbVfPnj3j1FNPrRV4\nSLaPjagKFjz44IPZKC+r6ls1I5FI1FgRZOXKlbXCF8n3sCVWA4mof1WR1FrqCsQn6xkzZkzV5ysA\nAKDdSPcd55o1a7JakyAI0CYUFRWlfdB2NKqFyNatETfcEHHVVRFbtsTYsWPjueeei69+9avVbY7O\nOOOMeO6552Ls2LERW7ZUPfeGG6r2TUcrkYwxpwAA0PZ961vfqvN3eXl5kUgk4nvf+15s3769FavK\nvtLS0lrbUgMyK1eujE0frVhY32qE6cZpjsMPPzz69OkTETVX+EgkEjWO39DKiNrCAABA+9MWv+cU\nBAGgURpsIfLKKxHnnRfx0EMREfG9730vnnrqqTj44INrPfWQQw6Jp556Kr73ve9VbXjooap9X321\n9rhaiWSMOQUAgLZv9OjRcdJJJ9UIOUREjVVCXnnllZg6dWo2ysuagw46KA488MCISN82JyJi3rx5\nEVF/+KKlVgSJiJgwYUKtFUciqlZt2bx5c3UtddUbIQgCAAC0DEEQABqlzhYiiUTEH/8Y8a1vRaxd\nG/3794/Zs2fHtGnTokuXLnWO16VLl5g2bVrMnj27qh/z2rUR3/xmxKxZVWMmaSWSMeYUAADah6lT\np0b+R+fsu4cIkquCTJ06NR5//PFslJc1paWltdrmpEq2ZEkNX6S+fwMHDoyBAwe2WD31hUrmzp0b\nq1evjo0bN0bEx0Ge1HoKCgpiwoQJLVYPAADQcQmCANCgOluIvP9+xOWXR/z85xHbtsXnP//5eP75\n5+O4445r9NjHHXdcLF++PE444YSIbdsifvaziCuuqBo7SSuRFmdOAQCg/Tj00EPj29/+dq3wQOqf\nd+7cGaeddlqsWLEia3W2tvpWz0i2ZFm9enW8+eab1duS/5uXl9eiq4FENBwESQZT0tWal5cXY8aM\nicLCwhatCQAA6JgEQQBoUNoWIosXR5xzTsQzz0TXrl3jZz/7WfzpT3+K4uLiJo9fXFwcDz30UNx8\n883RtWvXiKefjvja1yKWLKl6glYiLc6cAgBA+3LNNdfE8OHDa62AkRoG2bx5cxx77LHxwgsvZKPE\nVldXECQZlHnxxRfj/vvvr3P/0tLSFq1n9OjR0aNHjxo1JM2ZM6fBzz7awgAAAC1FEASABtVoIbJr\nV8SvfhXxH/8R8e67cdhhh8XChQvj/PPPr7fPcUPy8vLiggsuiIULF8bw4cMj3nkn4pJLqo61a5dW\nIi3MnAIAQPvStWvXuOuuu6Jbt27VK0ikWxnk7bffjvHjx8e9996bzXJbxUEHHRQHHnhgRNReJSX5\n8w033FDn/i0dBOnUqVOMHz++Rg3J1j0rVqyIRx99tN79BUEAAICWIggCQL1qtBA5+OCI88+P+OiC\n4nnnnReLFi2KkSNHttjxRo4cGYsXL47zzjuvasO990ZccEHEIYdEhFYiLcGcAgBA+zR69Oi46667\nqsMFETUDEMmASEVFRZx22mlx2mmnxYYNGzJe15o1a2LevHkZP046paWlda6SEhHx7rvvVm9LDbr3\n798/hg4d2uL1pLaHSc5Juloiaq4aUlBQEBMmTGjxegAAgI5JEASAelW3EImI+OUvI1atij59+sQD\nDzwQt9xyS0b6FxcWFsYtt9wSs2bNit69e0e8/HLVsSO0EmkB5hQAANqvL33pS3H99denDYNE1AwZ\n3HvvvTFs2LD49re/HWvWrGnxWlatWhXnnHNODBs2LJ588skaNbWW+lbRSFdLMhCSGthoSfWNm27F\nxWQ9Y8aMychnMQAAoGMSBAGgXjXadmzbFpMmTYrnn38+/vVf/zXjxz7ppJNi+fLlVcv1btuWviaa\nzJwCAED79t3vfjemT58enTp1qrESSF2rg9x8881xyCGHRElJSUyfPj3+9re/xa5du5p83MrKynjm\nmWfiBz/4QYwYMSIOPfTQmDlzZuzcubNWCGRP2kw2RUPtXeoKpmQqCHLkkUdGt27dIqJ2QKe+kIy2\nMAAAQEsqyHYBALRtyeV98/Pz4+qrr47vf//7kZ+f32rHHzBgQDz++ONx3XXXxQ9/+MPYuXNn1pYc\nzhXmFAAA2r8LLrgg+vbtG5MnT46tW7fWGwZJhjQWLFgQCxYsiIiIoqKiGDlyZAwePDgGDhwYffr0\nie7du0fXrl1j69atsWXLligrK4stW7bE3//+93jppZdi7dq1NVYcqWslknTbWrL9ZKqhQ4fGgAED\nYv369U1akaShAElzdenSJY488siYN29ek8IwgiAAAEBLEgQBoF5/+ctf4j/+4z/ioosuiqOOOior\nNeTn58cVV1wRn/70p+Pmm2+O66+/Pit15ApzCgAAueH000+PESNGxKmnnhovv/xy2pBGXcGNioqK\nePrpp+Ppp59u1LGS+9YV9Nj9eMntI0eOjFtuuSWjnz1KS0vj7rvvrjd4kfq7fv36xfDhwzNWT0lJ\nSYNh99R6CgoKYsKECRmrBwAA6HgEQQCo14ABA+J3v/tdtsuIiIhx48bFuHHjsl1Gu2dOAQAgd4wY\nMSKWLFkSV155Zfz85z+P7du3N7hqR7rfNVZylZHkGHWNPWjQoLjqqqviq1/9anTqlNnu1JMmTYq7\n7767wecla584cWJG62ls25lkPWPGjInCwsKM1gQAAHQsmf0UBgBAq2vuRf32qqO9XgCA3XXv3j1+\n+tOfxvLly+PEE0+MTp06VbdJST4iPj5v2pNzp91bz+zegmbUqFFx++23x6pVq+LMM8/MeAgkomZb\nldTXWNfrbWxQo7nGjx8fBQUFja6nvbSFcd4NAADthyAIAECO2P1ifGP7o7dnHe31AgDU5x/+4R/i\nv//7v2PFihVx3nnnRY8ePaq/vE93rtiY86e69ksNNeyzzz5x7rnnxlNPPRVLliyJs846qzoI0RqG\nDh0aAwYMqLPW3V9raWlpRuspLCyM0aNHN7qe9hAEcd4NAADti9YwAAA5oqPdndfRXi9Ao2zLdgGt\nqKO81o7yOiM61mvNsGHDhsUvfvGLuOGGG+LRRx+NWbNmxezZs+Ott96q9dyGvtRPd87VuXPnGDNm\nTJSWlsZnPvOZKCkpyfq5WWlpadxzzz0NPm/vvfeOI444IuP1lJSUxKJFixp8XufOnWPChAkZr2dP\nZHtuAQCApstLiHADrWzTpk2xzz771Nj29ttvR3FxcZYqyg7vAwAALaG8vDx69OiR7TKyqqysLIqK\nirJdRosxp7k3p23FunXrYuHChbF8+fJ47bXXYt26dbF+/fooKyuLioqKqKysjIiqVjPdunWLXr16\nRf/+/aN///4xaNCgOOyww+Lwww+Pww8/PLp27ZrlVwMAALQ1vvv6WLbfCyuCAG1CeXl5FBYW1tru\nwh8AAAC0jIEDB8bAgQPj5JNPznYpAAAAOaO8vLxR21qTIAjQJgwZMiTtdosWAQBA/QoLC6OsrCzb\nZWRVulB5e2ZOc29OAQAAyF1tcVVPQRAAAABox/Ly8qykl2PMKQAAALAnBEGANmHNmjUdsj8YAAAA\nAAAA0H6lW9Vz06ZNdXZEaA2CIECbUFRU5I43AAAAAAAAoF1J9x1nRUVFFir5WKesHh0AAAAAAAAA\ngBYjCAIAAAAAAAAAkCMEQQAAAAAAAAAAcoQgCAAAAAAAAABAjhAEAQAAAAAAAADIEYIgAAAAAAAA\nAAA5QhAEAAAAAAAAACBHCIIAAAAAAAAAAOQIQRAAAAAAAAAAgBwhCAIAAAAAAAAAkCMEQQAAAAAA\nAAAAcoQgCAAAAAAAAABAjhAEAQAAAAAAAADIEYIgAAAAAAAAAAA5QhAEAAAAAAAAACBHCIIAAAAA\nAAAAAOQIQRAAAAAAAAAAgBxRkO0CACIiysvLo7CwsNb2oqKiLFQDAAAAAAAA0LDy8vJGbWtNgiBA\nmzBkyJC02xOJRCtXAgAAAAAAANA4PXr0yHYJtWgNAwAAAAAAAACQI6wIArQJa9asieLi4myXAQAA\nAAAAANBoZWVltbZt2rSpzo4IrUEQBGgTioqKoqioKNtlAAAAAAAAADRauu84KyoqslAR8ARVAAAg\nAElEQVTJx7SGAQAAAAAAAADIEYIgAAAAAAAAAAA5QhAEAAAAAAAAACBHCIIAAAAAAAAAAOQIQRAA\nAAAAAAAAgBwhCAIAAAAAAAAAkCMEQQAAAAAAAAAAcoQgCAAAAAAAAABAjhAEAQAAAAAAAADIEYIg\nAAAAAAAAAAA5QhAEAAAAAAAAACBHCIIAAAAAAAAAAOQIQRAAAAAAAAAAgBwhCAIAAAAAAAAAkCME\nQQAAAAAAAAAAcoQgCAAAAAAAAABAjhAEAQAAAAAAAADIEYIgAAAAAAAAAAA5QhAEAAAAAAAAACBH\nFGS7AAA+tnnz5myXAAAAAAAAAE3me662QxAEaBPKy8ujsLCw1vaioqIsVJM9hx12WLZLAAAAAAAA\nABqpvLy8UdtakyAI0CYMGTIk7fZEItHKlQAAAAAAAAA0To8ePbJdQi2dsl0AAAAAAAAAAAAtw4og\nQJuwZs2aKC4uznYZAAAAAAAAAI1WVlZWa9umTZvq7IjQGgRBgDahqKgoioqKsl1Gq+rbt2+8/fbb\n2S4DAAAAAAAAMqJv377ZLiHj0n3HWVFRkYVKPiYIApAlnTp1sgoKAAAAAAAA0KI6ZbsAAAAAAAAA\nAABahiAIAAAAAAAAAECOEAQBAAAAAAAAAMgRgiAAAAAAAAAAADlCEAQAAAAAAAAAIEcIggAAAAAA\nAAAA5AhBEAAAAAAAAACAHCEIAgAAAAAAAACQIwRBAAAAAAAAAAByhCAIAAAAAAAAAECOEAQBAAAA\nAAAAAMgRgiAAAAAAAAAAADlCEAQAAAAAAAAAIEcIggAAAAAAAAAA5AhBEAAAAAAAAACAHCEIAgAA\nAAAAAACQIwRBAAAAAAAAAAByhCAIAAAAAAAAAECOEAQBAAAAAAAAAMgRgiAAAAAAAAAAADlCEAQA\nAAAAAAAAIEcIggAAAAAAAAAA5AhBEAAAAAAAAACAHCEIAgAAAAAAAACQIwqyXQBARER5eXkUFhbW\n2l5UVJSFagAAAAAAAAAaVl5e3qhtrUkQBGgThgwZknZ7IpFo5UoAAAAAAAAAGqdHjx7ZLqEWrWEA\nAAAAAAAAAHKEFUGANmHNmjVRXFyc7TIAAAAAAAAAGq2srKzWtk2bNtXZEaE1CIIAbUJRUVEUFRVl\nuwwAAAAAAACARkv3HWdFRUUWKvmY1jAAAAAAAAAAADlCEAQAAAAAAAAAIEcIggAAAAAAAAAA5AhB\nEAAAAAAAAACAHCEIAgAAAAAAAACQIwRBAAAAAAAAAAByhCAIAAAAAAAAAECOEAQBAAAAAAAAAMgR\ngiAAAAAAAAAAADlCEAQAAAAAAAAAIEcIggAAAAAAAAAA5AhBEAAAAAAAAACAHCEIAgD8f/buPDjO\n+s73/af31mLZsiXZRjZ4EQaGfbIAYRkIiyXGYALJkHOAEFDdubGlGyCTzJTNneEWJJBKJlMDiZSp\nTAamKnaWYZKDnXMtmbBeiE8IPhAITMDINmC8YC1YyLJavT33j3bLLam79Ujq7l/30+9XlcpS62np\n207lh6zf5/n8AAAAAAAAAAAA4BAEQQAAAAAAAAAAAAAAAByCIAgAAAAAAAAAAAAAAIBDEAQBAAAA\nAAAAAAAAAABwCIIgAAAAAAAAAAAAAAAADkEQBAAAAAAAAAAAAAAAwCEIggAAAAAAAAAAAAAAADgE\nQRAAAAAAAAAAAAAAAACHIAgCAAAAAAAAAAAAAADgEARBAAAAAAAAAAAAAAAAHIIgCAAAAAAAAAAA\nAAAAgEMQBAEAAAAAAAAAAAAAAHAIgiAAAAAAAAAAAAAAAAAOQRAEAAAAAAAAAAAAAADAIQiCAAAA\nAAAAAAAAAAAAOARBEAAAAAAAAAAAAAAAAIcgCAIAAAAAAAAAAAAAAOAQBEEAAAAAAAAAAAAAAAAc\ngiAIAAAAAAAAAAAAAACAQxAEAQAAAAAAAAAAAAAAcAiv6QEAQJKGh4dVWVk56fGqqioD0wAAAAAA\nAAAAAADA1IaHh209VkgEQQAUheXLl6d93LKsAk8CAAAAAAAAAAAAAPZUV1ebHmESjoYBAAAAAAAA\nAAAAAABwCBpBABSFvXv3qr6+3vQYAAAAAAAAAAAAAGDb0aNHJz3W29ub8USEQiAIAqAoVFVVqaqq\nyvQYAAAAAAAAAAAAAGBbuj3OY8eOGZjkBI6GAQAAAAAAAAAAAAAAcAiCIAAAAAAAAAAAAAAAAA5B\nEAQAAAAAAAAAAAAAAMAhCIIAAAAAAAAAAAAAAAA4BEEQAAAAAAAAAAAAAAAAhyAIAgAAAAAAAAAA\nAAAA4BAEQQAAAAAAAAAAAAAAAByCIAgAAAAAAAAAAAAAAIBDEAQBAAAAAAAAAAAAAABwCIIgAAAA\nAAAAAAAAAAAADkEQBAAAAAAAAAAAAAAAwCEIggAAAAAAAAAAAAAAADgEQRAAAAAAAAAAAAAAAACH\nIAgCAAAAAAAAAAAAAADgEARBAAAAAAAAAAAAAAAAHIIgCAAAAAAAAAAAAAAAgEMQBAEAAAAAAAAA\nAAAAAHAIgiAAAAAAAAAAAAAAAAAOQRAEAAAAAAAAAAAAAADAIQiCAAAAAAAAAAAAAAAAOARBEAAA\nAAAAAAAAAAAAAIcgCAIAAAAAAAAAAAAAAOAQBEEAAAAAAAAAAAAAAAAcgiAIAAAAAAAAAAAAAACA\nQxAEAQAAAAAAAAAAAAAAcAiCIAAAAAAAAAAAAAAAAA5BEAQAAAAAAAAAAAAAAMAhCIIAAAAAAAAA\nAAAAAAA4BEEQAAAAAAAAAAAAAAAAh/CaHgAAAJSPUCikWCxmegyjPB6PgsGg6TEAAAAAAAAAAIBD\nEQQBAAAF8+ijj6qtrc30GEZ1dnZq3bp1pscAAAAAAAAAAAAOxdEwAACgYFpbW9XY2Gh6DGOWLFmi\nO++80/QYAAAAAAAAAADAwWgEAQAABRMIBLRx40a1tbVp/nzpscckn8/0VPkViUh33CENDEgbN25U\nIBAwPRIAAAAAAAAAAHAwgiAAAKCgWltb9eCDD2r//v169llp7VrTE+XX9u2JEAhtIAAAAAAAAAAA\noBA4GgYAABRUshVEkjZvlsJhwwPlUTiceI0SbSAAAAAAAAAAAKAwCIIAAICCa21tVWNjo3p7pa4u\n09Pkz7ZtUl8fbSAAAAAAAAAAAKBwCIIAAICCK4dWENpAAAAAAAAAAACACQRBAACAEU5vBaENBAAA\nAAAAAAAAmEAQBAAAGOHkVhDaQAAAAAAAAAAAgCkEQQAAgDFObQWhDQQAAAAAAAAAAJhCEAQAABjj\nxFYQ2kAAAAAAAAAAAIBJBEEAAIBRTmsFoQ0EAAAAAAAAAACYRBAEAAAY5aRWENpAAAAAAAAAAACA\naQRBABSF4eHhtG8AyoNTWkFoAwEAAAAAAAAAoLwU4z4nQRAARWH58uWqrq6e9AagPDihFYQ2EAAA\nAAAAAAAAyk+6Pc7ly5cbnYkgCAAAKAql3gpCGwgAAAAAAAAAACgGBEEAFIW9e/fq6NGjk94AlI9S\nbgWhDQQAAAAAAAAAgPKUbo9z7969RmciCAKgKFRVVaV9A1BeSrUVhDYQAAAAAAAAAADKUzHucxIE\nAQAARaMUW0FoAwEAAAAAAAAAAMWEIAgAACgqpdYKQhsIAAAAAAAAAAAoJl7TAwAAAKRKtoK0tbVp\n82appUXy+01PlR5tIEDxC4VCisVipscwyuPxKBgMmh4DAAAAAAAAQIEQBAEAAEWntbVVDz74oPbv\n36+uLmntWtMTpUcbCFD8Hn30UbW1tZkew6jOzk6tW7fO9BgAAAAAAAAACoSjYQAAQNFJtoJIicaN\ncNjwQGnQBgKUhuRxU+WKoBoAAAAAAABQfmgEAQAARanYW0FoAwFKQ+pxU/PnS489Jvl8pqfKr0hE\nuuMOaWCAoBoAAAAAAABQjgiCAACAopS6ebt5s9TSIvn9pqdKoA0EKC2pwbJnny2+YFmubd+eCIEQ\nVAMAAAAAAADKE0fDAACAopU80qG3V+rqMj3NCbSBAKWlFI6byhWCagAAAAAAAAAIggAAgKJVjJu3\nbLICpalYg2W5RlANAAAAAAAAgCOPhjlw4ICeeuopW9eeccYZ+tSnPpXniQAAwEylHunQ1WX+SAc2\nWYHSVMzHTeUKQTUAAAAAAAAAkkODIP/5n/+pe+65x9a1zz33XH6HAQAAs1JMm7dssgKlrdiCZblG\nUA0AAAAAAACA5NCjYf7whz/Isqwp3y666CJdeumlpscFAABTKJYjHdhkBUpbMR43lSsE1QAAAAAA\nAAAkOTIIsmvXLkmSy+VK+5b83M0332xyTAAAYFMxbN6yyQo4Q7EEy3KNoBoAAAAAAACAJEceDfP+\n+++PBT4syxr3ueTjknT99dcXdC4AADBzpo90SG6y1tdLZ5zxgF5++Yfy+RbI610gn+/EW/qPa+Vy\neQo7MIC0ium4qVwhqAYAAAAAAAAglSODIH19fWkfTw2B1NXV6ZRTTinUSAAAYJYCgYA2bNig9vb2\ngm/epm6y/vf/LkkHNTx8cBpfwSWvd96koIjXOz9riMTtrhz38wuA3DAdLMs12kAAAAAAAAAApHJk\nECQSiWT8nGVZcrlcOvPMMws4EQAAyIXW1lY99NBDBd+8TW6y1tVJ1147k69gKRr9SNHoR5J6bD/L\n5QrYaBtZIJ9v/rj3aR8BsnNSKwhtIAAAAAAAAAAmcmQQpKqqSkNDQ1mvWbZsWWGGAQAAORMMBgve\nCpK6yXrLLYXdLLasUYXDBxQOH5jW87zeeTaPrKF9BOXLKa0gtIEAAAAAAAAAmMiRQZDq6uopgyBz\n5swp0DQAACCXCt0KktxkbWxcrPvu+408nqOKRPrH3qLR/owfx+PH8jtcBtHoEUWjRxQK7bb9nET7\nyHxboZHkx15vrdxuR/44iTLghFYQ2kAAAAAAAAAApOPI39xXV1fn5BoAAFB8CtkKMn6T9f9Wbe30\njpaLxULjgiHR6ICNEMmApHjuX8wUEu0jBxUOH5zW89K3j8zPGiLxeKpoH0FRKPVWENpAAAAAAAAA\nAKTjyCBIXV2ddu3alXWDIRwOF3AiAACQS4VqBTnRBtKo1tbWaT/f4wnK42lUINBo+zmWFVc0OjhF\n28jApM/F48PTni8XZtY+4rd1ZM34QMl82keQc6XcCkIbCAAAAAAAAIBMHPnb9FWrVmnHjh1Zrxke\nNrNZAgAAZq8QrSCmNlldLrd8vlr5fLWSmmw/L9E+MmDryBrz7SPhGbWPeDxzbR1ZQ/sIpqNUW0Fo\nAwEAAAAAAACQiWODIFP58MMPCzAJAADIl3y3gsy2DaTQEu0jJykQOMn2cxLtIx/bDI2Ybx+JxQYV\niw0qFNpj+zmJ9pH5tkIjtI+Up1JsBaENBAAAAAAAAEA2jvwN92mnnZb185Zlafdu+/XlAACg+OSz\nFaRcNlkT7SPz5PPNU0XFStvPi8dHJwRF7DSRDEiK5e/FZJBoHzmkcPjQtJ6Xvn1kftYQicdTTftI\niSq1VhDaQAAAAAAAAABk47IsyzI9RK59+OGHWrx4sVwul1JfXvIX85ZlqaKiQoODg/J6HZmFAYpa\nb2+vGhoaxj12+PBh1dfXG5oIQKkKhUJqamrS/v37dffdudu8feIJ6eGHE20gu3fvdmwQpJDst4+M\nD5XEYkdNj26by+WzeWTN/AntIz7To0NSZ2en2traVF8vbdpUvK0g4bB0yy2JIEhnZ6fWrVtneiQA\nAAAAAAAAE5jeD3VkEESSzj//fL322mtpwyCWZcnlcunFF1/URRddZHBKoDyZXvgAOEtHR4fa29tz\ntnmbusna0dGh9evX52ZQzEiifWTA1pE1pttHZsrjqbF1ZA3tI/k1OjqqlStX5jxYlmvJoNqSJUvU\n09NDUA0AAAAAAAAoQqb3Qx1bh3HNNdfotddey3pNd3c3QRAAAEpca2urHnrooZwd6ZA8cqGxsVGt\nra25GRIz5nYHFAgsViCw2PZzLMtSLPaxzdCI+faRWOxjxWIfKxTaa/s5LpdvXLOI3SYS2kcyCwQC\n2rhxo9ra2nJ+3FSulMuxVQAAAAAAAABmx7GNIDt37tSnP/3prMfDrFy5Uu+8846pEYGyZToBB8B5\nctUKQhtIeUvfPjIwZYik9NtH5mcNkXg8c8qmfaTYW0FoAwEAAAAAAABKg+n9UMcGQSTpwgsv1O9/\n//usx8Ns27ZNq1evNjglUH5ML3wAnCcUCqmpqWnWm7fJTdbGxkbt3r2bTVZMyX77yPiASSw2ZHp0\n2+y3j8wf97lSbR/p7OxUW1tbzo6bypXUoFpnZ6fWrVtneiQAAAAAAAAAGZjeD3V0EOQnP/mJbr/9\n9oxBECkRFtmxY4epEYGyZHrhA+BMs20FoQ0EhRSPh221jaR+HI0OyLKipke3zeOZY/PImuJqHynW\nVhDaQAAAAAAAAIDSYXo/1NFBkEgkorPOOks9PT2SlLEV5F//9V915513mhoTKDumFz4AzjTbVhDa\nQFDsEu0jQ7ZCI6XbPuId1z5iL0QyX253bms7iq0VhDYQAAAAAAAAoLSY3g91dBBEkn7zm99o9erV\naVtBpMQv1OfOnatXXnlFy5cvNzUmUFZML3wAnGumrSC0gcDJMrePDGQNkZR6+8hUx9l4PDUZ20eK\nrRWENhAAAAAAAACgtJjeD3V8EESSbr75Zj3++ONZwyCnn366duzYoXnz5pkaEygbphc+AM4101YQ\n2kCA8ey3j4wPmMRiH5se3bap2kc2bXpd9977U+OtILSBAKUnFAopFouZHsMoj8ejYDBoegwAAAAA\nAIwxvR/qLch3MexHP/qR/vCHP6inp2dcGCR5NIwkvfXWW7ryyivV1dU16X8QAABQGoLBoDZs2KD2\n9nZt3iy1tEy9eRsOS5s3J97fuHEjIRBAicC011sjr7dGFRX2W/Pi8ci4phG7R9iYaB+xrKgikcOK\nRA6n/fwnPynV1Um9vVJXl7lWkG3bEiGQJUuWcJwlUCIeffRRtbW1mR7DKIJrAAAAAACYVRaNIJK0\na9cuXXjhhRocHJSkSc0gyY9XrFihxx9/XOeff76ROYFyYDoBB8DZptsKQhsIYNaJ9pF0x9dk/rgQ\n7SPJ9cFUKwhtIEBpSj1eqhxxjBUAAAAAAOb3Q8uiEUSSVq1apSeeeELXX3+9hoaGMjaD7NmzRxdd\ndJHuu+8+ff3rX5fP5zM5NgAAmKbptILQBgKYl9o+Ii2z/bzM7SMDWUMklhWx/T2uvTaxRphqBUm2\ngZx00nzdeOMqjYzslt9/kjyeisIOAmBaAoGANm7cqLa2Ns2fLz32mOT0Xy1EItIdd0gDA/xMBQAA\nAABAMSibRpCk1157Tddee60OHTo09ljyryAZBkkGQ5YtW6b7779fN998s7zessnMAHlnOgEHwPns\ntoLQBgKUl0T7yFGbR9YkAiW/+MUB/fM/hwreCpLaBnLXXdINN5z4nNc7T37/SQoETpLf33j8z5Mm\n/LlIbneBK0wAjEltBbHTUFbqkj9T0QYCAAAAAECC6f3QsguCSNK7776rz3/+83rllVfGNYNI48Mg\nyY8XL16s1tZWfeELX9BZZ51lZGbASUwvfADKQ0dHh9rb2zNu3qZusnZ0dGj9+vVmBgVQ1KZ73FSu\nJDdV6+oSrSQzCaD4fPUTAiKTQyN+f4NcLk/uXwAAdXZ2qq2tzdjxUoXCMVYAAAAAAExmej+0LIMg\nkhSLxfStb31L3/rWtxSNRiVNbgZJ99jy5cv1F3/xF7rkkkt0zjnn6PTTT1dVVVWBpwdKm+mFD0B5\nmGrzljYQAHZNFSzLtWxtILnnlt+/KE2rSOO4j32+BeP+nQRgauXSCkIbCAAAAAAAk5neD3V0EOTO\nO++c8prXX389bTOIlD4QMvFxSWpoaNDChQu1cOFCzZkzR4FAQH6/v6h+UepyufRv//ZvpscAJJlf\n+ACUj0ybt7SBAJiOQreCJDdVFy6s0JYtn5R0SKOj+xWPH8vvN87C5fLL71+c9hia1NCIx1NTVP8O\nAkxzeisIbSAAAAAAAKRnej/U0UEQt9tt65eQU/0VTPwama4v1l94WpYll8ulWCxmehRAkvmFD0D5\nyLR5SxsIgOkqVCtIpqCaZVmKxYY0OnpA4fCBDH/u1+joAVlWOD/D2eB2V6YNi0z80+OhVRHlwemt\nILSBAAAAAACQnun9UG9Bvoths826TGwDSRf4sCxr1t8HAADkVjAY1IYNG9Te3q7Nm6WWlsTjmzcn\n/ty4cSMbFgBsaW1t1UMPPaT9+/erqyt/m7nbtiVCII2NjWptbR173OVyyeutkddbo6qq0zM+37Is\nRaMDUwRGDmh09KCk3AfF4/FjGhnp0chIT9brPJ65NgIji+V2s0ajtAUCAW3cuFFtbW1jP4s4pRUk\nHOZnKgAAAAAAihWNIJp9UKRYm0CSaARBsTGdgANQXia2glgWbSAAZibfrSCFPLbKsmIKh3unCIsc\nUCRyWJK5fzL6fHVTtov4fAvldpfFPQ4oUU5tBaENBAAAAACAzEzvh5bFb8vynXUp5ixNsYdUAADI\nt4mtIMn/bHPnKoDpyncrSKY2kHxwuTwKBBYpEFikOXP+PON18XhE4fCHY8fOZAqMRKMDeZkzEulT\nJNKn4eHXs1zlkt+/UH5/4xSBkTq5XO68zAlk48RWENpAAAAAAAAobmXRCOLglzil5OunEQTFxHQC\nDkD5SW0FkWgDATBz+WoFKWQbSD7EYiGFwwePB0Myh0ZisSFjM7pcXvn9i48HQzKHRrzeeQTqkXNO\nawWhDQQAAAAAgOxM74eWRSMIAAAob6mtIBJ3rgKYuXy1ghSyDSQfPJ6gKiqWq6JiedbrotEhhcMH\nUwIi+9MGRuLxUM5ntKyoRkf3aXR0n4ay5FHc7mCagMjk4IjXW53zGeFcTmoFoQ0EAAAAAIDiRxAE\nAAAUjGVZOnbsmJHv/cUvflEfffTR2PvDw8NG5qisrOROc6CETTxuKhebueW0qer1zpHXO0eVlasy\nXmNZlqLRI5MCIhNDI+HwQVlWNOczxuMhhUJ7FArtyXqdxzMnwzE0J0Ijfv9ieTzBnM+I0tTa2qoH\nH3wwb8dLFUoyuLZkyRLdeeedpscBAAAAAABpcDSMw3E0DIqR6SokAOYMDw+rurq876A+evSoqqqq\nTI8BYBZSj5vKxREPySMWOLZqeiwrrkikL8MxNPtTAiMfSjL3b0Kvd37GY2gCgcbjgZGFcrt9xmZE\n4XR2dqqtrS3nx0sVSuoxVp2dnVq3bp3pkQAAAAAAKEqm90PLohGEu24BAAAA5EouW0HKqQ0k11wu\nt/z+Bvn9DZLOy3hdPB5VJPJhhsBIomlkdPSAotH+vMwZjQ4oGh3Q8PAbWa5yyedryBIYSYRGfL56\nuVzuvMyJwij1VhDaQAAAAAAAKA2OD4KUcxsIAABF7euSSuwu2BkLS/pH00MAyKXW1lY99NBDs97M\nTW6qNjY2qrW1NbdDQpLkdnuPH9fSmPW6WCykcPhQhrDIidBILPZxHqa0FIl8qEjkQ0mvZrnOo0Bg\nccawSPJPr3c+N0QUqUAgoI0bN6qtrS1nx0sVCsE1AAAAAABKh6ODILfffrvpEQAAQCZ+lU8QBIDj\n5KIVhE3V4uLxBFVRsUwVFcuyXheNHlU4fHDKwEg8PpKHKWMaHf1Ao6MfaGgo81UuVyBrUCT5p8cz\nh8CIAaXaCkIbCFC8QqFQ2R8J7fF4FAwGTY8BAAAAFA1HB0Eee+wx0yMAAAAAcKjZtoLQBlKavN5q\neb2nqrLy1IzXWJalaHRwirBI4k/LiuR8RssaVSi0V6HQ3qzXud1VKcGQxgyhkcXyeCpzPmM5K8VW\nEIJrQHF79NFH1dbWZnoMozo7O7Vu3TrTYwAAAABFw2VxdgqAAuvt7VVDQ8O4xw4fPqz6+npDEwEo\nlOHhYVVXVyc+2KjyaQQJS3ow8e7Ro0dVVVVldBwAudPR0aH29nbV10ubNtnfzA2HpVtuSQRBOjo6\ntH79+vwOiqJkWXFFIgMKh/dPERg5JClubE6vd96EgEhjmsDIIrnd5fIf9tkbHR3VypUrtX//ft19\nd/G3gjzxhPTww4k2kJ6eHoIgQJFJXVPKEWsTAAAAipHp/VBHN4IAAAAAQD7NtBWENhBIksvllt9f\nJ7+/TtXV52a8zrJiCocPjx07kyk0Eon05mXOaPSIotEjOnbsv7Je5/PVTwqITAyN+P0Ncrk8eZmz\nlJRSKwhtIEDxS11T5s+XHntM8vlMT5VfkYh0xx3SwABrEwAAAJAOjSAACs50Ag6AOTSC0AgCONF0\nW0FoA0G+xONhhcOHJgREJgdHotEjBqd0y+9flOEYmhPH0/h8C+RyuQzOmX+l0gpCGwhQGkplTckV\n1iYAAAAUO9P7oTSCAAAAAMAsTLcVhDYQ5Ivb7VcweLKCwZOzXheLHVM4fDBNs8j+ce/H48fyMGVc\n4XDie2Tjcvnl9y/OEBg50Tbi8dSUbGCkFFpBaAMBSkcprCm5wtoEAAAATI1GEAAFZzoBB8AcGkFo\nBAGcym4rCG0gKBWWZSkWG8p4DM3o6P6xjy0rbGxOt7sya1gk+afHU5z/7S32O/i54x4oLcW+puQK\naxMAAABKgen9UBpBAAAAAGCW7LaC0AaCUuFyueT11sjrrVFV1ekZr7MsS9HoQJbASDI0ckhSLOdz\nxuPHNDLSo5GRnqzXeTxzbQRGFsvtLuxmYjHfwc8d90DpKeY1JVdYmwAAAAB7aAQBUHCmE3AAzKER\nhEYQwMmmagWhDQTlzLJiCod7M4ZFkn9GIoclmfs1hde7QIFAY9bQiM+3UG537u6rKdY7+LnjHihN\nxbqm5AprEwAAAEqF6f1QGkEAAAAAIAemagWhDQTlzOXyKBBYpEBgkebM+fOM18XjEYXDh6YMjESj\nA3mZMxrtVzTar+Hh17Nc5ZLfv/B4MKQxS2CkTi6Xe8rvWYx38HPHPVC6inFNyQ1CYGsAACAASURB\nVBXWJgAAAMA+GkEAFJzpBBwAc2gEoREEcLpMrSC0gQC5FYuNKBw+dPzYmcyhkVhsyNiMLpdXfv/i\nsWBIptCI1ztP4XC4qO7g5457oLQ5tRWEtQkAAAClxPR+KI0gAAAAAJAjmVpBaAMBcsvjqVBFxXJV\nVCzPel00OqRw+ODxYMj+jIGReDyU8xktK6rR0X0aHd2noSx5FLc7KL//JN12W1Df/raM38HPHfdA\n6XNiKwhrEwAAADA9BEEAFIXh4WFVVlZOepy75gEAQCkJBoPasGGD2tvbxzZeJDYuAFO83jnyeueo\nsnJVxmssy1I0emRCQGRyaCQcPijLiuZ8xng8pFBoj664Qvrxj6XeXqU9XqpQksG1JUuW6M477zQz\nBIBZa21t1YMPPpjxyLpSw9oEAACAYjY8PGzrsUIiCAKgKCxfnv5OPk6vAgAApWZiK4hl0QYCFDOX\nyyWfr1Y+X62qqs7MeJ1lxRWJ9KVpFdk/ITDyoaTp/zvG708cIfXww+ZaQbjjHnAOJ7WCsDYBAACg\n2FVXV5seYRKCIAAAAACQQxNbQZK5VjYugNLmcrnl9zfI72+QdF7G6+LxqCKRDzMeQ5NsG4lG+yc9\n99prE5udplpBknfcNzR4df75/67XX98qr3ee7Te3mzUOKCZOaQWhDQQAAACYPoIgAIrC3r17VV9f\nb3oMAACAnEhtBZFoAwHKidvtVSDQqECgMet1sVhI4fChSWGRr3zlWX3zm78v+B38qXfc/7f/FlUo\n9HuFQtP7Gm53cFrBEYIkQH45oRWENhAAAACUgqNHj056rLe3N+OJCIVAEARAUaiqqlJVVZXpMQAA\nAHIitRVEYuMCwGQeT1AVFctUUbFs3OP33hvSY481FfwO/uQd93V1iWaSmYjHk+GWQzN6PkESIPdK\nvRWENhAAAACUgnR7nMeOHTMwyQkEQQAAAAAgD1pbWzU8PDz2PgDYMfF4qULcwZ96x/0tt5hrDJh9\nkKRiFkGSuQRJ4Eil3ApCGwgAAAAwcy7LSp5YjZmwLEv79+/XgQMHdODAAR08eFBHjhxRKBQae5MS\nv8gJBoOqqKjQ3LlzddJJJ429NTZmr4sFnKa3t1cNDQ3jHjt8+DBHwwBlYHh4WNXV1YkPNkoqkV9A\nzlpY0oOJd48ePUoDEgAAyCoUCqmpKdEKcvfd+b+D/4knpIcflk46qV47d/6bPJ5jikaP2HqLx6d5\nfkwRI0gCpxodHdXKlSsLtqbkSnJtWrJkiXp6egiCAAAAoKSY3g+lEWSa/vjHP+q5557Ta6+9ptdf\nf11vvvnmWNhjpioqKnTmmWfq3HPP1XnnnafLL79cf/Znf5ajiQEAAAAAQCkpZCtI6h339977/2jx\n4uum9fxYLKRYbNB2cKSYgyTx+IjC4RGFwwdn9HyCJChWpdgKQhsIAAAAMDs0gkwhHA5ry5YteuKJ\nJ/TMM8/o8OHDY5/L9V+dy+Uae3/RokW68sor9bnPfU7XXXedvF4yO3AO0wk4AObQCEIjCAAAsKdQ\nrSDJO+4bGxu1e/fugm+2OilIMlsESZBPpdYKQhsIAAAASp3p/VDSBRm88sor+tGPfqT/+I//0ODg\noKT0wY/U8MZsWJY17usfPHhQmzdv1ubNmzV//nx98Ytf1F//9V/r7LPPzsn3AwAAAAAAxasQrSDF\ncMe9xxOUxxOU379wRs93UpCERhLkUym1ghTD2gQAAACUOhpBJtixY4ceeOABPfnkk5LGhz8yhT5m\n+1do5+smr7nuuut077336lOf+tSsvidgkukEHABzaAShEQQAANiX71YQ020gxcBJQZLZIkjifKXS\nCkIbCAAAAJzA9H4ojSDHvffee2pra1NXV5ekEyGMiSGNfORmMjWNpH7v5DW//vWv9etf/1o33HCD\nHnnkETU2NuZ8HgAAAAAAYF4+W0G44z6BRpITzDaSzJPbXS4pcXNKoRWEtQkAAADIjbJvBLEsS9/9\n7nd1//33a2RkJG0AxPRfUbpZXC6Xqqqq9MADD+iuu+4yNRowI6YTcADMoRGERhAAADA9+WoFoQ2k\nODgpSDJbBEkKo9hbQWgDAUpDKBRSLBYzPYZRHo9HwWDQ9BgAgCJmej+0rBtB+vr69MUvflHPPvvs\npACI6fBHqnRHxFiWpaNHj+prX/uatm/frs2bN6u2ttbUiAAAAAAAIA/y0QrCHffFg0aSE2gkKYxi\nbgVhbQJKx6OPPqq2tjbTYxjV2dmpdevWmR4DAICMyrYRZOfOnbrpppv0wQcfyLKsogyAZJM6r8vl\n0rJly/SrX/1K5557ruHJgKmZTsABMIdGEBpBAADA9OW6FYQ2ECQ5KUgyW+UUJCnWVhDaQIDSkbqO\nlCPWKQCAHab3Q8uyEeSFF17QmjVrNDQ0JKk4W0CmkgyAuFwuWZalvXv36vLLL1d3d7cuuOAC0+MB\nAAAAAIAcyWUrCHfcIxWNJCeUUyNJMbaCsDYBpSV1HZk/X3rsMcnnMz1VfkUi0h13SAMDrFMAgNJQ\ndo0gzz77rK6//noNDw/nJACS/BqzlYsZLMvSnDlztG3bNl188cU5mQvIB9MJOADm0AhCIwgAAJiZ\nXLWC0AaCYuKkIMlsFTpIUmytILSBAKWn2NaRfGOdAgBMl+n90LJqBHnzzTe1du3aWYVAMgU/Zhrk\nSH69iV93Ol8vtR1kaGhIf/mXf6mXXnpJp5122oxmAgAAAAAAxSUXrSDccY9iQyPJCSYaSb7+9Vbd\nc8/9xltBWJuA0lSM7UL5wjoFAChFZdMIMjAwoE9/+tPas2fPjEIgqUGN1Of5fD6tWLFCp59+ulas\nWKGFCxeqoaFBc+fOVSAQUDAYlGVZGh0d1ejoqAYHB3X48GEdPnxYu3fv1ttvv63du3crEolM+b3s\nzmhZllatWqWXXnpJc+fOtf18oFBMJ+AAmEMjCI0gAABg5mbbCkIbCDCek4IkMxEOS7fcIvX1yejd\n/NxlD5SucmkFYZ0CAMyE6f3QsmkEufXWW2cUApl4vdfr1WWXXabVq1fr4osv1ic/+Un5ZxlzjUQi\n2rlzp3bs2KHt27fr+eefHwuGTGfeZDOIJL3zzjv60pe+pC1btsxqNgAAAAAAUBxm0wrCnazAZOXe\nSOL3J4IgDz8sY3fzszYBpa0cWkFYpwAApaosGkE2bdqkL33pS9MKVUy89vzzz9e6det00003qba2\nNn/DShocHNSvfvUr/fCHP9TOnTvTzpONy+UaC4X89Kc/1c0335zXeYHpMp2AA2AOjSA0ggAAgNmZ\naSsIbSBA8SmGIInpVpDk2rRoUaWeeqpV1dWL5fPVy++vl8934s3rnZvxyG4AZjm9FYQ2EADATJne\nD3V8EKS/v19nnHGG+vv7JU0/BHLZZZfpm9/8pi655JK8zpnJ7373O/393/+9nn76adthkNTrGhoa\n9Kc//Snv4RVgOkwvfADMIQhCEAQAAMxeR0eH2tvbVV8vbdo09Z23qRu9HR0dWr9+fWEGBZBXuQqS\n/I//IT3yiGyvKbmSujbddZd0ww2Zr3W5fPL56o6HRBrGhUQmhkb8/np5vbVyudyFeSEA1NnZqba2\ntoKvI/mWuk51dnZq3bp1pkcCAJQQ0/uhjg+CfOMb39D3vve9sZaMbFIDFEuWLFFnZ6fWrFlTiDGn\n9OSTT+orX/mK3n33XVuBkNRWkG984xv69re/XahRgSmZXvgAmEMQhCAIAACYvem2gtAGAiCdZJDk\n6NEPdfbZV+nAgd6C3s2fXJvq6hLHLuR249gjn2+BrdBI4v0Fcrk8uRwAKCtObQWhDQQAMBum90O9\nBfkuhgwMDOhf/uVfbNUGpoYrbr31VnV0dGjOnDn5HtG2a665Rn/84x/11a9+VY899phcLteU4Zbk\n53/4wx/q7/7u72gFAQAAAADAAYLBoDZs2KD29nZt3iy1tGTeQOVcewCZeDxBeTxBzZ+/UBs33mdr\nTcmV1LXpllvy8f1iikQOKxI5bPN6l3y+BTZDIw3y+erkdjv6V+vAtAQCAW3cuFFtbW0FW0fyjZ+h\nAAClztGNIPfdd58eeOCBrIGJ1ACI2+3Wd77zHX3ta18r5JjT9v3vf19f+9rXFI/HJWVuBkltBbnv\nvvv0D//wD4UcE8jIdAIOgDk0gkgdL3Zo7dlr1VjTaHQkAABQ2uy2gtAGAsCO6TYNzVZybVq8uFbP\nP/83crk+UiTSO/YWDif+jMeP5XeQWfB6a6cIjTSM+5zbXS7/AEa5clorCG0gAIDZMr0f6uggyMkn\nn6z9+/dLSh+WmBgC+fGPf6wvf/nLhRxxxjZv3qzbb7997HVN9fpOPvlkvfvuu4UcEcjI9MIHwByC\nIBp73Wc3nK3mpma1NLXo4pMvlt9TLn8ZAAAgVzo6OtTe3q76emnTpsl33qaea9/R0aH169ebGRRA\nSZhqTcmV6axNsdixlGDI4XEhkYmhkUikV7HYUH6GzgGPpyZDaKQhbaDE46kwPTIwbZ2dnWpra8v7\nOpJvqetUZ2en1q1bZ3okAEAJMr0f6tggyIsvvqjLLrtsyjaQZGPG9773Pd19990FnnJ2Ojs71d7e\nbvs1Pv/887rkkksKPCUwmemFD4A5BEGU9nVX+6t15fIr1dzUrOamZi2bt6yw8wEAgJI01R38tIEA\nmI5CtYLkc22KxUIZQyLpPo5Gj+Tse+ea211lOzSSCI5U2ToiHcgnp7SC0AYCAMgF0/uhjj3I8Oc/\n/3nWz6cGJP7qr/6q5EIgkrR+/Xrt2LFDP/3pT7OGQZJ+9rOfEQQBAKAIHQ0f1Za3t2jL21skSafX\nna7mlc1qObVFl51ymYLeoOEJAQBAMQoGg9qwYYPa29u1ebPU0nLizlvOtQcwXdnWlFzJ99rk8QTl\n8SxVMLjU1vXxeFiRSN+UoZFw+PDx4MhATufNPtuwQqFhhULv2rre7Q6mDYxkOrrG46khOIKcCwQC\n2rhxo9ra2vK2juQbP0MBAJzCsY0gZ5xxhnbt2iVp8rEpqUem1NXVadeuXZo3b17BZ8yFjz/+WKee\neqr6+vokZX+tq1at0ltvvVXwGYGJTCfgAJhDI4g09/65GowP2n5qhbdCVyy/Qs0rE20hpy44NT8z\nAgCAkpTpDn7aQADMRL5bQUp9bYrHo4pG+7OERg5P+Fy/pLjpsdNyufzy+epshUZ8vnp5vbUER2BL\nqbeC0AYCAMgV0/uhjmwE6e3t1dtvv521JSPZBnL//feXbAhEkmpqanT//fdr3bp1aX8QT75OSXrn\nnXfU19enurq6Qo8JAACOe+/u9/TmkTfV9U6Xund3a+eBnVmvH4mOaNs727TtnW2SpJW1K9Xc1KyW\nphZdvuxyVfmrCjE2AAAoUunu4Je4kxXAzOSzFcQJd9m73V75/Qvl9y+0db1lxRSJfJQmNHI4bQtJ\nJNIny4rm+VUkZwsrHD6gcPiAretdLq98vjoboZFksGS+XC53nl8FilEpt4I4YZ0CACDJkY0gTzzx\nhG688ca0QZCJbSAffPCB/KXyU0gG4XBYS5cuzdoKkgyE/PKXv9QNN9xgYkxgjOkEHABzaASROnt6\ndNPSpWo4/vPH4eHDenL3k+ru6db23dvVd6zP9pf1e/y67JTL1NLUouamZp1RdwZ3aAEAUIYm3sFv\nWaV9xz0As/LVClLqbSCFYFmWotEjtkIjyY8tK2x67Azc8vkW2AqN+P318noXyO125H2rZalUW0Fo\nAwEA5JLp/VBH/mT1xhtvZP18MhTx5S9/ueRDIJLk9/v15S9/Wd/97nen3Px54403CIIAAGDQ+l27\n1LZvny6qqdHaujqtravTrefcqlvPuVWxeEyvHHxFXT1d6u7p1kv7X1LcylwjHI6F9dSep/TUnqf0\nN0/+jU6ee/LYETJXrrhSNYGaAr4yAABgysQ7+JP3h3AnK4CZyEcrCHfZ2+NyueTz1crnq5W0asrr\nLctSLDZ0PBhyOM1RNZOPronHQ/l/IZKk+Nj3t8clr7c2Q2ikIU2gpE5ud+n/bt+pSrEVhHUKAOA0\njmwEufPOO/Xv//7vGRtBkkGQ5557TpdeeqmhKXNrx44duuSSS6Z8zbfffrseffRRQ1MCCaYTcADM\noRFE0rZtUkXFuE+fVlGhtXV1ur6uThfW1MhzPNg5MDKg3+z+jbp3d6u7p1uHjh6y/S29bq8uXnrx\n2DEy5yw8h7YQAAAcLPUOfok77gHMTq5bQWgDKQ6J4MhwhpDI5NBIONyreHzY9NgZeTxzx4VGUgMj\n6QIlHk/Q9MhlpdRaQWgDAQDkmun9UEc2guzduzft46mbH5WVlbr44osLNVLeXXjhhaqurtbw8HDa\nMEjSnj17CjwZAACYytsjI/rOvn36zr59avD5tGbBAq2tq9NVtbW6+aybdfNZNytuxfX6h6+ru6db\nXT1d+u37v1XMimX8mtF4VM+/97yef+95bXh6gxZXL1ZzU6It5OoVV6u2oraArxAAAORb6h38Eney\nApidXLaCcJd98XC5XPJ6q+X1VquiYrmt58RiI7ZDI5FIr2Kxj/P8KlJnG9TIyKBGRnpsXe/xVNsO\njfj99fJ4qvL8CpytlFpBWKcAAE7kyEaQVatWaffu3ZI0LhCRGpD4xCc+oZdfftnIfPlywQUX6OWX\nX54UBEkGYCzLUlNTk3bt2mVqRECS+QQcAHNoBJEqu7t1zOYvFCrcbl1dW6u1dXVas2CBGlJ+YzIY\nGtTTe58eC4Z88PEHtsdxu9y6cMmFal7ZrJZTW/Tni/9cbpd7Oq8IAAAUoVAopEceeUSSdNddd7GJ\nAWBWctUKQhtIeYnHRxWJ9GUIjRyeFCiJRj8yPXJGbneFfL6GtCGRyR83yOOppolzglJpBaENBACQ\nD6b3Qx3ZCDI8nL2uzuVy6bTTTivQNIWzatWqKcMtR48eLdA0AAAgnfcvuki/j0S0pa9PW/v7dTAc\nznjtSDyurf392trfL5ekz9TUjB0hc1rlXN14xo268YwbZVmW/qv3v8ZCIS+8/4LCscxfN27FtWPf\nDu3Yt0P/8Nw/qL6yXqubVqt5ZbOuWXmN6qsI5gEAUIqCwaD+9m//1vQYABwiF60g3GVfftzugAKB\nRgUCjbauj8cjikT6J4RGDmdsIYlE+iUV5t7WeHxEo6PvaXT0PVvXu1wB26ERn69eXu9cxwdHSqEV\nhHUKAOBUjmwEmTdvnoaGhiSlbwRxuVxav369vv/975saMS+++tWv6gc/+EHWRpA5c+ZocHDQ1IiA\nJPMJOADm0AiSCGVWVSXqZeOWpf89NKQtfX3a0t+vN6YIs6Y6raJCa+vqtLauThfU1MiT8sujo+Gj\nenbvs2PBkL1H0h+bl45LLn3ypE+qualZLU0t+nTjp+Vxe2w/HwAAAIBzzLYVhDYQ5JplxRSJDNgK\njSQ+7pOU+VhVk1wun3y+uiyhkYZxn/N6a+UqwTbPYm8FoQ0EAJAvpvdDy7IRRJLmzJlTgEkKa2xj\nLYuRkZECTAIAAOxwu1z6VE2NPlVTo2+uWKE9IyOJUEhfn14YHFQ8y3PfHhnRd/bt03f27VODz6c1\nCxZobV2drqqtVbW/Wteddp2uO+06WZaldwbeGQuFPPfucwpFQxm/riVLLx94WS8feFkP/H8PqDZY\nq2tWXqPmpmatXrlai+cszv1fBAAAAICiNJtWEO6yRz64XB75/YlghB2WFVc0emRcYCRzaCTxZlmR\nPL+K5GwRhcMHFQ4ftPkMj3y+BZNCI6mBkfGfWyCXy/yNHcXcCsI6BQBwMkc2glRWVmp0dFRS5kaQ\ne+65R//4j/9oasS8+PrXv65/+qd/ytoIEgwGdezYMVMjApLMJ+AAmEMjyPhGkGz6IxFt6+/Xlr4+\ndQ8MaDieLRZyQoXbratra7W2rk5rFixQw4TfroxERvT8e8+ru6db3T3derv/7Wm9lPMWnafmlc1q\nObVFFy25SD6Pb1rPBwAAAFBaZtoKQhsISpFlWYpGB22ERg6PvW9Zo6bHzsAlr3d+SjCkYYqja+rk\ndufn3/jF2gpCGwgAIJ9M74c6shGkqqpqLAiSSfLoGCc5evTolNdUVlYWYBIAADBbC3w+3bZokW5b\ntEihWEzPHjmiLX192trfr4PhcMbnjcTj2trfr639/XJJ+kxNzdgRMqsqK1Xhq1BzU7Oam5olSXs+\n2qPtPdvV1dOlZ/Y+o+FI9ma1Pxz6g/5w6A/69m+/rTn+ObpqxVVqaWpRc1Ozls5dmsu/AgAAAABF\nYCatINxlj1Llcrnk882TzzdP0qlTXm9ZlmKxo1lCI5OPronHC3WjpqVotF/RaL+kt2w9w+udZzM0\nkvjY7bb3/+1ibAVhnQIAOJ0jG0GWLVumffv2ScrcCLJ69Wpt27bN1Ih5sWbNGm3bti1rI8jSpUv1\n3nvvmRoRkGQ+AQfAHBpB7DeCZBK3LO0cGhoLhbxh40i8pNMqKsZCIRfU1Mhz/GeEpNHoqH6777fq\neqdL3bu79cbhN6Y125n1Z6q5qVktTS265ORLFPDySxQAAADACabbCkIbCJBZLHbMdmgkEulVLFa8\nN7V6PDUZQyITP47Ha7Rq1dlF0wpCGwgAIN9M74c6Mghy3nnn6fXXX88aiDjllFO0d+9eUyPmxcqV\nK/Xuu+9KSh+AkaSzzz5br732monxgDGmFz4A5hAEmX0QZKLdIyPa2tenLX19emFwUPYOkJEafD6t\nWbBAa+vqdFVtrSo9k88N3je4T9t3J9pCntrzlD4e/dj2XJW+Sn12+WfH2kJW1K6w/VwAAAAAxaej\no0Pt7e2qr5c2bcp8N384LN1yi9TXl3jO+vXrCzso4DCxWEiRSF/awEi6QEk0esT0yBlt2eLXP/9z\neMp1JN9S16nOzk6tW7fOzCAAAEczvR/qyCDIDTfcoK1bt04KgkjjW0EOHDighQsXGpoyt3p7e7Vo\n0aKxjzM1oaxZs0ZbtmwxMSIwxvTCB8AcgiC5D4Kk6o9EtK2/X1v6+tQ9MKDhuL1YSIXbrWtqa7W2\nrk5/uWCBGtL8JiYSi+h3H/xOXT1d6u7p1quHXp3WbKsWrFLzysSRNJcvu1wVvoppPR8AAACAWXZb\nQWgDAcyKxyPHgyOH07SOTP44cXRMYaQGMEy2gtAGAgAoBNP7od6CfJcCW758ua3rtm/fri996Ut5\nnqYwnnzyybGwR7Zsz4oV3I0LAIBTLfD5dNuiRbpt0SKFYjE9c+SItvT16df9/ToYDmd83kg8ri39\n/drS3y+XpM/U1IwdIbOqslKS5PP4dOkpl+rSUy7Vg1c+qINDB/Xk7ifVvbtbT+5+UgMjA1ln29W/\nS7v6d+mR3z+ioDeovzjlL8aOkVm1YNVYcxsAAACA4hQMBrVhwwa1t7dr82appWXy3fzhsLR5c+L9\njRs3srkKGOB2+xQILFYgsNjW9fF4VNFov63QSCRyWJFIv2S7j3Q8vz8RBHn4YWVcR/KNdQoAUC4c\n2Qjygx/8QF/96lenbAS56qqrtH37dkNT5taaNWu0bdu2KV/zI488ora2NkNTAgmmE3AAzKERJL+N\nIJnELUs7h4a05fgRMm8eO2b7uadXVur640fIXFBTI0+awEYsHtPLB15Wd0+3unq69PL+l2XJ/o+Y\ny+YtGztC5rPLP6tqf7Xt5wIAAAAonKlaQWgDAZzPsuKKRAamCI2kHl/TJ8uKjj3fdCtIcp1atKhK\nzz//t6qpWa5AYKmCwaUKBJbI7WbdAopRKBRSLBYzPYZRHo9HwWDQ9BiYBtP7oY4Mgvz+97/XhRde\nmDEUISWOTnG73frTn/6kU0891cSYObNnzx6tWrVq7LVmC4Ls2LFDF1xwgYkxgTGmFz4A5hAEMRME\nmWj3yIi2Hg+FvDA4aPs+ngafT9cdD4VcVVurCo8n7XV9x/oSbSE93eru6VbvsV7bs/ncieaR5pXN\najm1RWfWn0lbCAAAAFBEOjo61N7ervp6adOmE3fzp27udnR0aP369WYHBVAULMtSNHpkXGjkX//1\nP3TvvT+btI7kW+o6dddd0g03TL7G56tXILA0JRySCIgkHwsEGuV2+wozMIAxnZ2dZX+je2dnp9at\nW2d6DEyD6f1QRwZBotGo5s2bp5GREUnZgxGf//zn9Ytf/MLEmDlz2223afPmzVMGXyorKzU4OChP\nhk0boFBML3wAzBkXBPm6yisI8o+Jd4shCJKqPxLRtv5+benrU/fAgIbj9mIhFW63rqmt1dq6Oq1Z\nsED1GX5rE7fievXgq2NtIf/rg/+luGW/QnZJzRI1r2xWc1OzrlpxleYG59p+LgAAAIDcy9QKQhsI\nALumahfKl+Q6VVeXOB5mZgEUl/z+RePCIRMDI37/Yrnd3lyPD5S10dFRrVy5Uvv37zc9ihFLlixR\nT08PP1+VGNP7oY4MgkjSlVdeqWeffTZtOEIaHwZ56qmndMUVVxiYcvZ++9vf6rLLLhv7OFvo5fLL\nL9fTTz9d6BGBSUwvfADMGRcEKVPFFgRJFYrF9MyRI9rS16et/f06FA7bep5L0mdqarS2rk5r6+q0\nqrIy47UfjXykp/Y8lWgL2d2tA0MHbM/ncXn0maWfUXNTs1qaWnTuonPldrltPx8AAABAbkxsBZFo\nAwEwPZnahfLFThtI7rgVCJw0qU0kNTDi9y+Si99pANOSbAWZP1967DHJ5/BynkhEuuMOaWCANpBS\nZXo/1LFBkIcfflj33HNP1iCIlAhOnHTSSXr11VdLbhP6o48+0vnnn6/333/fVuDle9/7nu6++24D\nkwLjmV74AJhDEKS4gyCp4palnUND2nL8CJk3jx2z/dzTKyt1/fEjZC6oqZEnw9EulmXpj4f/ONYW\n8uL7Lyoaj6a9Np2FVQu1umm1WppadPWKq7WgcoHt5wIAAACYuYl381sWbSAApqfQrSDJNpDFi2v1\n7LNtsqyDGh3dN/YWix3N7wATuFxe+f2NaY+fST7m89VzXC6QIrUVpJBtmLkkegAAIABJREFUQqYk\n1y3aQEqX6f1QxwZBDh48qKVLl46FI7KFJCTpkksu0fbt21VRUVHQOWdqdHRU11577ZStJ1LitXs8\nHu3bt0+LFi0q9KjAJKYXPgDmWJalYxkCBYcOHdIll1yiQ4cO6ROS/qekOTn4nvvUqBZ16V2tkGQp\n0V8x3uf1H/q+/i/N0fCMvseQpL+U9IqkRYsW6cUXX8z439zKysqS/Ef87pERbT0eCnlhcFB2D3dp\n8Pl03fFQyFW1tarIckTd0OiQntn7jLp6utTV06X3B9+3PZ/b5danGz+t5pXNajm1RZ9Y/Al53ByH\nBwAAAORL6t38lkUbCIDpK1QrSGobSKZ1KhodVCi0LyUc8oFGR/eNeyweH8nPgBm4XP6xgEimwIjX\nO78kf88EzFSyFaRQbUKmpK5btIGULtP7oY4NgkhTHw8jjW/MuOKKK7R161ZVZqkzLwajo6O66aab\ntG3btnFhj4lSX9tnP/tZ/eY3vyn0qEBaphc+AMXHsiytXbtWv/71r3WGpBck5aLb4X0t1RV6Vnu0\nUiu0Wz/TF9WmTu3UpyZde5re0i91k87Uf83oe/VLulTSnyRdf/31euKJJxz7D/H+SET/b3+/tvT1\nafvAgIbj9mIhFW63rqmt1dq6Oq1ZsED1Wf6lZlmW3up7a6wt5Pn3nlc4Zu+oGklaULFA16y8Ri1N\nLbpm5TVaWL3Q9nMBAAAATC31bn6JNhAA01eoVpDkXfWzWacsy1I0+tGkcMj4wMgHsqzRPLyCzNzu\niozHzyQf83rnOvZ3VCg/5dIKQhuIM5jeD3V0EGTLli363Oc+lzUIIo0PTJxzzjnaunWrli5dWsBJ\n7Tt48KBuuOEG7dy5c+wxOyGXLVu2aM2aNYUaE8jK9MIHoPhs2rRJt912m3yS/reks3PwNSeGQJ7V\nFTpZ+xSRV+36vn6kr0x6TqWG9S/6im7Tphl9zz9K+oSkiKSf/OQnuvXWW2f1GkpBKBbTM0eOaEtf\nn7b29+tQ2F5Ywy3pM3Pnjh0hs2qKIO5weFjPv/e8ut7pUvfubvUM9Exrzk8s/oSam5rV3NSsC5dc\nKK/bO63nAwAAAJgseTd/8n3aQABMV75bQey0geSKZVmKRHrTtokkHxsd3S/LiuRthnQ8nuqMx88k\nH/N6c9HLCxSG01tBaANxDtP7oY4OgkjSueeeqzfeeENS5sCENP6YmPnz5+vhhx/WLbfcUpAZ7frl\nL3+ptrY29fb2jgU87IRAzjnnHL366qsFnhbIzPTCB6C4HDx4UGeeeaY++ugjfVPSvTn4mplCIKl+\nrDv1f+pHimvy8SH/h36kR/RVBTX9uzi+KenvJdXW1urNN9/U4sWLZ/gqSk/csrRzaEhbjh8h82aG\nY4DSOb2yUmuPh0IuqKmRe4o7VXoGetTd063unm49s/cZjUTt17PODczV1SuvVktTi1avXK3Gmkbb\nzwUAAABwQigU0iOPPCJJuuuuu7hbFcC05bsVJBdtILlkWXGFwx9mPH4m8dgBSbGCzuXxzM14/Ezy\nMY+nuNv0UT6c3gpCG4hzmN4PdXwQ5PHHH9fNN988ZSuIpHHHrLhcLq1evVrf+c53dNZZZxVi1Ize\neustbdiwQVu3bh17DdNpOXn88cd14403FmpcYEqmFz4AxSP1SJhPSPqdpNn2NNgJgSS9qIt1pZ5W\nWJN/mD5Pr+o/9Xmt1J5pff+IpAslvSLnHxEzld0jI2OhkBcHB2XvABmpwefTdcdDIVfV1qrCMzms\nkyoUDemF915QV0+Xunu69ae+P01rznMWnqPmlYm2kItPvlh+j8NuIwAAAAAAoIjlqxWkkG0guRSP\nRxUOH8pw/EziLRw+JKmw23te7/yMx88kHlsit5sNaxSGU1tBaANxFtP7oY4PgkjS1VdfraeffnpG\nYRCXy6UvfOELam9v18UXX1yIcce89NJL+sEPfqCf//znisfjYzMl58skNQRyzTXXqKurq1AjA7aY\nXvgAFI+f/vSnuuWWW+RX4kiY2UYvpxMCSdqlJn1KO/Wx5k76XI3+f/buOzyqOm3j+HcmhSQEQgol\nVANBioiLFBHpoARFiK8oFlZdeNVd14ZdLNgWdtcKrq7KKjZ0FXwhsJjQUSmClBVWCJAABkLLTEIC\naZNk5v1jSDZhUiaTcpLJ/bmuXMI553fOMxgOmZw7z5PJAn7H/7CkWnWUHhGzcOFCbrvttmqt90bW\nggJWWK3EWSysTE8n2+5eLCTQbOaa0FAmRUQwITyc1m68qzty5ggrk1aSkJzAmkNrOGc753adwf7B\njIkaQ0x0DOOjx9OlVRe314qIiIiIiIhI9dVVV5CG1g2kNtntBdhsx8sdP1O8raDgdL3X5efXusLx\nM86PDpjNfvVel3gfb+0Kom4g3sXo56FNIghy6NAhLr30UvLy8oDKQxSAS9ii+PeXXHIJN910Ezfc\ncEOddQnZu3cvS5cuZdGiRezevbvcOqoKgRQfExwczH/+8x86d+5cJ7WKeMroG5+INAwOh4PevXuT\nmJjIy8CzNTyfJyGQ0msH8hOnaVvu/hm8wV94Ej8K3a7nZeB5oFevXvzyyy9NtitIefKKilh35gxx\nFgvLrFZO2mxurTMDQ0JCSkbIdA+quiWprcjG5qObiT8YT0JyArtP7a5WrT0jejI+ejwx0TEM7zKc\nAN+Aaq0XERERERERkarVdleQxtoNpDbZ7fnk56dWMH7Gua2w0FrPVZnw929X4fiZZs064e8fidlc\n057B0hR4W1cQdQPxPkY/D20SQRCA9957j/vuu8+triDFygteFG9r27YtQ4YMYfDgwfTu3ZsePXpw\n0UUX4VNF6/JiRUVF/Prrr+zfv5+9e/fy448/snnzZk6ePFnhNd2pu3Q3kPnz5zNt2jS36hGpT0bf\n+ESkYVi/fj2jR48mGDgOtKjBuWoSAil9jqFs5CjlByiHsImvmEJHUt06XxbQATiH87WOHDmyWvU0\nFXaHg5/OnmXZ+REyv+TkuL22Z1BQSSjkipYtMbsRtknNSmVl8koSkhJYlbyKzPxMt68X6BvIqKhR\nxHSLYXz38USHRbu9VkREREREREQqVttdQby5G0htKirKOR8McR0/U7ytsPBMPVdlplmz9hWMn3Fu\n8/dvh8lkrue6pKHxtq4g6gbifYx+HtpkgiAAv//97/nggw88CoOAaxDjwp/sNZlMhIaG0qZNG0JC\nQmjWrBnNmjXD4XBgs9nIz88nMzOT06dPk5GR4XK+ys5f3RDIfffdx9tvv+3WaxSpb0bf+ESkYZg8\neTLffPMN9wHv1OA8tRECKX2ukWzgMF3L3R9BGgu5nWtY7db57gP+jvO1Llq0yKOamprk3FzizodC\nNmZm4t4AGWjj58f150MhY0NDCXQjnFtoL2Trsa3EJ8WTkJTAjhM7qlVrt9BuJSNkRl40kub+zau1\nXkRERERERET+q7a6gqgbSO0qLDxX4fiZ4o+iIvfH8tYGk8kXf/8O5Y6fKd7m59daHXqbAG/pCqJu\nIN7J6OehTSoIUlhYyDXXXMOGDRuqFQYpduE/GO6MaLlQddZUp77SXUOuvvpq4uPjMZuVhpSGyegb\nn4gYLzU1lS5dulBUVMQewNOBa7UZAinvnOAALgh+Yuc5XuZ5XsKnipjCHqAv4OPjQ0pKCu3bt69R\nbU2NxWbj2/R04iwWVqank213LxYSZDZzTVgYE8PDmRAeTms33wGezj7NyqSVJCQnsDJpJdZc99uj\nNvNpxvAuw0uCIT0jeuqbDSIiIiIiIiLVUFtdQdQNpP4VFmZWOH6meJvdnluvNZlM/iUBkYoCI76+\nYfr+TSPnLV1B1A3EOxn9PLRJBUEAcnNzmTBhAuvXr/coDFKssn8YqjpnTdZWdj6Hw8G4ceNYsmQJ\nAQGaXy8Nl9E3PhEx3gsvvMCLL77IMOB7D89RFyGQ8s7tSwGF+LkcM5bVLOR22pBW6bmGARtxvuZZ\ns2bVSn1NUV5REWvPnGGZxcIyq5WTNptb68zAkJCQkhEy3YOC3FpXZC9ix4kdJCQlEJ8Uz9ZjW3Hg\n/tdpnUM6l4yQGR01mpbNWrq9VkRERERERKSpqmlXEHUDaZgcDgeFhRkVjp9xbjuGw5Ffr3WZzYEV\njp8p3ubrG6KwSAPX2LuCqBuI9zL6eWiTC4KAM1V6ww03sHLlyjIhipqq7j8EtXlNh8PBxIkT+frr\nr/FvbHc4aXKMvvGJiLEcDgcdO3bk+PHjfAnc4sE56jIEUt41gsgmB9exH+1J5SumMJRNFZ7nS+A2\nnD+FcvToUb1xrAV2h4Ofzp4tGSGzNyfH7bU9g4JKQiFXtGyJ2c3/H9YcK6sPrSYhKYGEpAROZZ9y\n+5q+Zl+Gdh5KTLcYYqJj6Nu2rz4PRERERERERMpR064g6gbSeDkcDgoK0ioYP3Ps/H9TcTgK6rUu\nH5/gCsfPFG/z9W1RrzVJWY29K4i6gXgvo5+HNskgCIDdbufJJ5/k9ddfr9UwSH0pXbPJZGLmzJm8\n9NJLeqggjYLRNz4RMdahQ4fo1q0b/kAWUN0va+sjBFLetcKwcIZW2PEtc4wPhczhaR7jNcr7Vzgf\naAEU4HztUVFRdVJrU5aUk8Myq5U4i4WNmZlVDOz5r7Z+flwfEcHE8HDGhoYS6OPj1jq7w87PJ38u\n6Ray+ehmihxFbtcbGRxZMkJmbNexhAaGur1WRERERERExNt52hVE3UC8n8Nhx2Y7VeH4Gee244D7\n36epDT4+IRWOnyne5uPjXpda8Uxj7QqibiDezejnoU02CFLsm2++4e677+bMmTONJhBSus6wsDA+\n/vhjJkyYYHBVIu4z+sYnIsZatGgRN998MwOAn6q5tj5DIOVdsz2pFOLDadq5HDeJpXzMXbQi02Xf\nAGAHztc+efLkOq23qbPYbHybnk6cxcLK9HSy7e7FQoLMZq4JC2NSeDgTwsOJqMa7xcy8TNYeXkv8\nwXgSkhM4lnXM7bVmk5krO15JTLSzW8jlkZdjNpndXi8iIiIiIiLibTztCqJuIAJgtxdis52sYPyM\n88NmOwnVGAFcG3x9wyocP+Pc1hGzWZ+znmqsXUHUDcS7Gf08tMkHQcD5B/7www/zz3/+s0xHjYb2\nR3NhUOWOO+7gtddeIyIiwsiyRKrN6BufiBjrqaee4i9/+Qv3Au9VY50RIZDyrt2FI3TiKBsZ5nJc\nFIdYxE30Z2eZ7fcCH+B87XPmzKmXmgXyiopYe+YMcRYLy61WTtpsbq0zA0NCQkpGyHQPcv8nNhwO\nB7+k/VIyQub7X7+nwO5+y9LWQa0ZFz2O8dHjuabbNUQE6es8ERERERERaXqq2xVE3UCkOuz2Amy2\n4+WOnyneVlBwut7r8vNrUxIQ+W9gpHRopANms1+919VYNLauIOoG4v2Mfh6qIEgpa9asYebMmWzf\nvh2gQYRCyqvhyiuv5M9//jPDhrk+gBJpDIy+8YmIscaOHcvatWv5ALjbzTVGhkAqqmEiy5jLQzgo\n273Bn3zm8hD38n7JqJgPcIZBxo4dy+rVq+u1bnGyOxz8dPYscRYLcRYLe3Ny3F7bKyiIiedDIVe0\nbIm5GqP4ztnOsf7weuKT4olPiufImSNurzVhYkD7AYyPHk9MdAyDOgzCx+ze+BoRERERERGRxqy6\nXUHUDURqm92eT35+agXjZ5zbCgut9VyVCX//dmXCIRcGRvz9IzGbfas+lRdqbF1B1A3E+xn9PFRB\nkHKsXLmS2bNn88MPPwBlwxjF6uqPrbJrjRkzhmeeeYaRI0fWybVF6ovRNz4RMY7D4SA8PJyMjAx2\nAJe7saYhhEAqquVFnmcGb2HB9f51Gwt5n3sJJpsdOMfDhIaGYrVay/33XupXUk4Oy6xW4iwWNmZm\n4t4AGWjr58f1ERFMCg9nTGgogT7uBzMcDgcH0w+WjJDZcGQDeYV5bq8PDQjlmm7XlIyRaRfsOqJI\nXDkcDnKqEfzxRkFBQbrviIiIiIhIo+NuVxB1AxGjFBXlnA+GuI6fKd5WWHimnqvyoVmzSJduIqUD\nI/7+bTF56WjixtIVRN1Amgajn4cqCFKJAwcO8Mknn7Bw4UJSUlJKtlf1TdSq/kirs75r165MnTqV\n3/72t3Tr1s2NqkUaPqNvfCJinCNHjhAVFYU/cBao6uvwhhQCqaimL7iVR3iTzVzlcmwv9rKYyXRj\nHy2AAuDw4cNcdNFF9V22VMJis7EiPZ1lFgsr09PJtrsXCwkym7kmLIxJ4eFMCA8noprvLHMLcvnu\n1+9KgiEHrAeqtf437X5DTLcYxncfz5Udr8TPR61By5OdnU1wcLDRZRjq3LlzNG/e3OgyRERERERE\nqsXdriDqBiINWWHhuQrHzxR/FBWdq9eaTCZf/P07lDt+pnibn1/rRvlDJY2lK4i6gTQNRj8PVRDE\nTbt27WL16tWsWbOGTZs2kZub63JMdW+I5f3RBwUFMWzYMMaOHcvVV19N3759Pa5ZpKEy+sYnIsbZ\ntm0bV1xxBV2AI1Uc2xBDIMUurG0VV/Muf+QNHnU5Nohs3udenmEhKTj/DAYOHFj/RYtb8oqKWHvm\nDHEWC8utVk7abG6tMwNXhYSUjJDpHhRU7WsfyjhEQlICCUkJrD28lpwC97tYtGzWkrFdxxLTzdkt\npFNIp2pf31spCKIgiIiIiIiINF5VdQVRNxDxBoWFmRWOnyneZre7PpesSyaTf4XjZ4q3+fqGNciw\nSEPvCqJuIE2H0c9DFQTxgN1uZ//+/ezZs4c9e/aQlJTE8ePHOX78OCdOnKiy9XTz5s2JjIykffv2\ndOjQgW7dutG3b18uvfRSunfvjtnsne2YRIoZfeMTEeN89913jBw5kp7AvkqOa8ghkGLl1biD/tzF\nx2QR4nJ8CO+TyUN8990qhg8fbkDFUl12h4Ofzp4lzmIhzmJhbzXGi/QKCmJSRAQTw8O5omVLzNV8\nU5xfmM/GlI0kJCUQnxTPL2m/VGv9Ja0vISY6hvHR4xnaeSjNfJvuTxWUCYI8RtWtiLyFDXjN+UsF\nQUREREREpLGqqiuIuoFIU+BwOCgszKhw/Ixz2zEcjvx6rctsDqxw/EzxNl/fkHoPizT0riDqBtJ0\nGP08VEGQOlBUVERubi55eXnk5ztvugEBASUfPtWYJS/ijYy+8YmIcVauXElMTAy/AXZVcExjCIEU\nK6/WAvy4iUXs4vJyVuxkwYJz3HWXgiCNUVJODnFWK8ssFjZmZuLeABlo6+fH9RERTAoPZ0xoKIEe\nfC14NPOos1tIcgJrDq0hKz/L7bXN/ZozOmo0MdHObiFdQ7tW+/qNWZkgyEyaVhBktvOXCoKIiIiI\niEhjVlFXEHUDEfkvh8NBQUFaBeNnjp3/byoOR0G91uXjE1zh+Jnibb6+LWr9ug21K4i6gTQtRj8P\nVRBEROqd0Tc+ETFOVUGQxhQCKVZezW04zUPM5QPudTm+efMCPv/cj9hYA4qVWmOx2ViRnk6cxcLK\n9HRy7O7FQoLMZq4JC2NSeDgTwsOJ8OBdaEFRAVuObSnpFvLvk/+u1vqLwy8mplsM47uPZ0SXEQT6\nBVa7hsZEQRAFQUREREREpHGrqCuIuoGIVI/DYcdmO1Xh+BnntuNAUb3W5eMTUuH4meLf+/hUbwxz\nQ+0Kom4gTYvRz0MVBBGRemf0jU9EjFPZaJjGGAIpVlHtn3M79/I+Obg+gH30UZgzB/z8DChYalVu\nURHrzpwhzmJhmcXCqQL3frLCDFwVEsLE8HAmRUTQPah6b2iLnTh7gpXJK0lISmBV8ioy8jLcXhvg\nG8DIi0YS083ZLeTi8Isb5GzXmlAQREEQERERERFp/C7sCgLqBiJSF+z2Qmy2kxWMn3F+2Gwngfp9\nvOzrG1bh+Bnnto6YzWVDFQ2tK4i6gTQ9Rj8PVRBEROqd0Tc+ETHOtm3buOKKK+gCHCm1vTGHQIpV\n9Bp+oTeTWUwivVzWXHUVfPUVdOhgQMFSJ+wOB9uyslhmtRJnsbA3J8fttb2Cgph0foTMoJYtMXsQ\nyCiyF7EtdVtJt5Dtx7fjqMYb86hWUcRExzA+ejyjokYR7B9c7RoaGgVBFAQREREREZHG78KuIA6H\nuoGIGMVuL8BmO17u+JnibQUFp+u9Lj+/NmXCIRDJiBGvc+JEeoPoCqJuIE2P0c9DFQQRkXpn9I1P\nRIxz5MgRoqKi8AfO4nwe6w0hkGIVvRYrzWnNBzi4zWVNRAR88QVcfbUBBUudS8rJIe58KGRTZibu\nDZCBtn5+XH8+FDImNJRAHx+Prp+Wncaq5FUkJCewMmklaTlpbq/1M/sxrMswxkePJyY6hktaX9Io\nu4UoCKIgiIiIiIiIeIfSXUEcDnUDEWnI7PZ88vNTKxg/49xWWGit8zqKwxdGdwVRN5CmyejnoQqC\niEi9M/rGJyLGcTgchIeHk5GRwQ4gwotCIMXKC4OkcZQBQFDQIxQWvobNVvZhuskEs2bBs8+Ch8/7\npRGw2GysSE8nzmJhZXo6OXb3YiFBZjPjwsKYGB7OhPBwIjx8x2p32Nl5YmdJt5Afj/2I3eFuNAU6\ntuxITLcYxncfz5ioMYQEhHhUR31TEERBEBERERER8Q6lu4KAuoGINHZFRTnngyGu42eKtxUWnqnR\nNUoHMIzsCqJuIE2T0c9DFQQRkXpn9I1PRIw1duxY1q5dyxw6Md/LQiDFLgyD3M0onuYoY8eOZc6c\n1dx0Exw54rru6qth4UJnQl28W25REWszMlhmtbLMYuFUQYFb68zAVSEhTIqIYGJ4ON2DgjyuISM3\ngzWH1hCfFE9CUgInzp1we62PyYchnYaUdAv5TbvfNNhuIQqCKAgiIiIiIiLeo7grSPGv1Q1ExLsV\nFp6rcPxM8UdR0blKz2F0VxB1A2m6jH4e6pVBkOPHj7NmzRq3ju3VqxcDBw6s44pEpDSjb3wiYqyn\nnnqKv/zlC1qyniwvDIEUKx0GaUEyZxnFU0/dzpw5c8jIgLvugmXLXNd16ABffQVXXVXvJYtB7A4H\n27KyiDsfCtmbk+P22l5BQUw6P0JmUMuWmD0MYzgcDnaf2k1CUgIJyQlsTNlIob3Q7fXtgtsxrts4\nYqJjuKbbNYQFhnlUR11QEERBEBERERER8R55eXnMmzcPgIceekg/VS8iFBZmVjh+Jj//KGfPpnDr\nrXmGdQVRN5Cmy+jnoV4ZBJk3bx4zZsxw69gNGzYwbNiwOq5IREoz+sYnIsb6+9//xX339QIvDoEU\nKx0GgWTefTeRP/zhOsA5y/a11+Dpp6GoqOw6X1/4y19gxgzn2BhpWg7m5LDMaiXOYmFTZibuDm9p\n5+/P9eHhTAwPZ0xoKIE1mDOUlZ/FusPriD8YT3xSPEez3P87ajaZGdRhUEm3kP6R/fExGzfzSEEQ\nBUFEREREREREpOlyOBy8/farPPTQk/XeFaR0NxB1MWp6jH4e6pVBkGnTpvHxxx9XedyQIUPYuHFj\n3RckImUYfeMTEWM995yFV16JAJI5wCi6e2kIpNhBOnEx64FuPPeclZdeCi+z/4cfYMoUOFHOVI4b\nboCPPoJWreqnVml4LDYbK9LTibNYWJmeTo7dvVhIkNnMuLAwJkVEcF1YGBE1eHfrcDjYZ9nn7BaS\nlMB3v36Hrcjm9vrwwHDGRY8jppuzW0jb4LYe1+IJBUEUBBERERERERGRpi0vL4/o6GhSU1PrtStI\ncTeQDh06kJycrG4gTYzRz0O9MggydOhQNm/eXOGccofDgclk4q233uKBBx6o5+pExOgbn4gYy+Fw\n0KrVLLKyPuZLjnKL0QXVsS+B2+hESMjvyMh4odyvT06dgttug3XrXNd37QqLF0O/fnVfqzRsuUVF\nrM3IIM5qZbnFwqmCArfWmYGrQkJKRshEBwXVqI5sWzYbjmwgISmB+KR4kjOSq7W+f2R/YqJjGB89\nnis6XoGv2bdG9VRFQRAFQURERERERERE3nnnHe6///566wqibiBi9PNQrwyCdO7cmdTUVMD5sKk0\nk8lUEgQ5dOgQXbp0MaJEkSbN6BufiBjvhRde4MUXX2QY8L3RxdSxYcBGnK951qxZFR5XVAQvvgiv\nvOIcG1Nas2Ywbx7cfbdGxYiT3eFgW1YWcedHyOzLyXF7be+gICaeD4UMatkScw0/qZLSk4g/GE9C\ncgLrD68ntzDX7bWtAlpxdderiYmOYVy3cXRo2aFGtZRHQRAFQURERERERERE6rsriLqBiNHPQ70y\nCBIUFER+fj5QNghS/BO4DoeD1q1bc+rUKUPqE2nqjL7xiYjxUlNT6dKlC0VFRewGLjW6oDqyB+gL\n+Pj4kJKSQvv27atck5AAU6eC1eq6b+pUeO890PNcudDBnByWnQ+FbMrMxL0BMtDO35/rw8OZGB7O\nmNBQAn18alRHXmEe3//6fUm3kERLYrXW923bl5huMYzvPp4hnYbg71Pz1IaCIAqCiIiIiIiIiIhA\n/XUFUTcQAeOfh3plEMTPzw/7+fnpFwZBiruBjBgxgnXl9V8XkTpn9I1PRBqGyZMn880333Af8I7R\nxdSR+4C/43ytixYtcnvd0aMwZQps2eK6r3dv56iYXr1qrUzxMmk2GyusVpZZraxMTyfH7l4sJMhs\nZlxYGJMiIrguLIyIWngnfOTMERKSEkhISmDt4bWcs51ze22wfzBjosYwPno8MdExdGnlWSc/BUEU\nBBERERERERERgfrrCqJuIALGPw/1yiBIq1atOHv2LFBxEOTOO+/ko48+MqpEkSbN6BufiDQM69ev\nZ/To0QQDx4EWRhdUy7KADsA5nK915MiR1Vpvs8FTT8Gbb7rua94c5s+HW2+thULFq+UWFbE2I4M4\nq5XlFgunCgrcWmcGhoaElIyQiQ4KqnEttiIbm1I2lXQL2XN6T7XW94roRUx0DOOjxzOsyzACfAPc\nWqcgiIIgIiIiIiIiIiLF6roriLqBSDGjn4d6ZRCkY8eOnDhxAqgYiyGhAAAgAElEQVQ4CHL//fcz\nd+5co0oUadKMvvGJSMPgcDjo3bs3iYmJvAw8a3RBtexl4HmgF/DLgw9imjULwsKqfZ5vvoFp0yAr\ny3XfH/7gDIooUC7usDscbMvKIu78CJl9OTlur+0dFMSkiAgmhoczqGVLzOdHLtZEalYqK5NXEp8U\nz+rk1WTmZ7q9NtA3kFFRo0q6hUSHRVd4rIIgCoKIiIiIiIiIiBSr664g6gYixYx+Hmqul6vUs5Jv\n9NbwGJGmwGKxkJCQwMsvv8ykSZNo3749ZrO55OPTTz81ukQR8VImk4nnnnsOgJeA/xhbTq3agzMI\nAs6Ai2nePOjeHd5+G9zsyFDsxhthxw647DLXfX//O1x1FRw+XNOKpSkwm0wMDglhTteu7B00iAOD\nBvFq164MCwmp8k3B3pwc5qSkcOWuXXTYsoV79u9nhdVKblGRx/V0aNmBaf2mseimRViesPDD737g\nmWHPcHnk5VWuzS3M5duD3/JA/AN0f7s73d/uzgPfPsCKAyvIKXA/4CIiIiIiIiIiIk1LQEAATz/9\nNAALFzo7eNQWm815ToCZM2cqBCKG8sqOIEOHDmXz5s0lHUCKle4I8sgjj/Dqq68aWKWIsU6dOsUV\nV1xBSkqKyz5TqZ/yXbBgAXfccUetXtvoBJyINBwOh4NJkyaxfPly+gNbAD+ji6qhAmAwsBOYCCwF\nyvRO6NkTXnsNrr0WqtFVITcXHnwQ/vEP132tWsEnn8DEiTWpXJqyNJuNFVYrcVYrq9LTybHb3VoX\nZDYzLiyMSRERXBcWRkQt9dI8de4Uq5JXEZ8Uz6rkVVhzrW6vbebTjOFdhpd0C+kU2IkWLc4Pn1JH\nEBERERERERGRJq+uuoKoG4iUZvTzUK/sCHLxxRdXeUx2dnY9VCLScOXl5ZGSklIS+jCZTCUfUHas\nkohIXTGZTLz//vuEhoayA/ir0QXVgr/gDIGEBgTwnr8/LlGPxESYMAFiYuA/7vdBCQyE+fPh44+d\nvy7tzBnnm5Unnqh2wxERAFr7+3NXZCRL+vTBctVVLO/Th/+NjKStX+XRrBy7nSUWC3clJtJ282ZG\n7NrF60ePklSNsTPlaRvclt9e9lu+uPELTj12ih+n/8gLI15gcMfBmFz/VpWRX5TP6kOreWTVI/R+\ntze93+ldo1pERERERERERMS71EVXEHUDkYamyQZBTp06VQ+ViDQObdq0ISYmhmeffZa4uDiFQESk\nXkVGRjJv3jwAXsQ5VqWx2o1zzA3AvPnzidy/H26+ufyDV61yznv5wx8gLc3ta9x5J2zdCj16uO57\n9VUYPRqOH6926SIlAn18mBARwfwePTg+ZAib+/Xjqc6d6RUUVOk6O/B9ZiaPJSfTfds2Ltm2jZmH\nDrE1Kwt7Db628DH7cEXHK5g1chZbpm8h7fE0vrzxS+647A7aNG9T5fqjWUc9vraIiIiIiIiIiHin\n6dOn06FDB9LSID6+5uf79luwWJzdQKZPn17zE4rUkFcGQXqU92SkFIfDQXJycj1VI9IwhYWFsXjx\nYo4cOcLJkydZsWIFL774IhMmTADKjocREalrt99+O9dffz0FwBTA/SEQDYcVuAXnaJiJEydy++23\nw0UXwVdfwQ8/wIABrovsdnjvPYiOdo6Lyc9361qXXgo//QRTprju27gR+vWDtWtr8GJEzjObTFwZ\nEsKcrl3ZO2gQBwYN4tWuXRkaElLlG4m9OTnMSUlh8M6ddNiyhXv272eF1UpeUVGNagoPCueWPrfw\nSewnnHj0BDvv2cmfRv+JYZ2H4WPyqdG5RURERERERESkaajNriDqBiINkcnhhT/6f+rUKSIjIzGZ\nTGU6G5QeeREYGEhmZia+vr5GlSnSYJnN5pK/LwsWLOCOO+6o1fMbPRNLRBqmEydOMGDAAI4fP85A\nYC3Qwuii3HQWGAP8BLRv357t27cTGRlZ9iC73flu4OmnITW1/BN16+Zs6xEbC24E8hwOePddmDHD\ndSSMyQQvvgjPPANmr4z+itHSbDZWWK3EWa2sSk8nx253a11zs5lxYWFMjIjgurAwIvz9a62mM3ln\nWHtoLfFJ8SQkJZB6NhVswOzzB8wEau9yDVup133u3DmaN29uaDkiIiIiIiIiIg1NXl4e0dHRpKam\n8vDDzvHbnli6FObOdXYDSU5OVhBEAOOfh3rlY4G2bdty2WWX4XA4ynQ1KB0KycvL46effjKiPBER\nESlHZGQkq1atIiwsjJ+A63EGLBq6s8AEnCGQ8PBwVq9e7RoCAWca47e/hf37YdYsCAx0PSY5Gf7n\nf2DUKNi1q8prm0zwxz/Cpk3QpUvZfQ4HPP88XHutsyWhSG1r7e/PXZGRLOnTB8tVV7GsTx/+NzKS\ntn5+la7Lttv5P4uFuxITabt5MyN27eKNo0dJysmpcU2tAlpxY+8b+cfEf3B0xlH2/GEPr4x6pcbn\nFRERERERERER71MbXUHUDUQaKq8MggBcc801VR6TkJBQD5WIiIiIuy655BISEhJo0aIF3+HsstGQ\nx8RYgNHA90CLFi2Ij4+nd+/elS9q3hxeeAEOHHAGQ8rz3XfQvz9MmwYnTlRZx8CBsHMnnJ/uVcbK\nlc5RMVu2VHkaEY8F+vhwfUQE83v04PiQIWzu148nO3WiV1BQpevswPeZmTyanEz3bdu4ZNs2Zh46\nxNasLOw1bFxoMpno06YPD1/5cI3OIyIiIiIiIiIi3mv69Ol06NCBtDSIj6/++m+/df4gXocOHZg+\nfXrtFyjiIa8Ngtx0000V7iseGfPFF1/UY0UiIiLijoEDB7J27dqSziDDgD1GF1WO3cBwYDvOTiDr\n1q1j4MCB7p+gY0f49FPYuhWGDHHd73DAggXQvTv86U+Qm1vp6cLCIC4O5sxxHQVz7BgMHw5vvuk8\nrUhdMptMXBkSwp+7dWPvoEEcGDSIV7t2ZWhISJVvPvbm5DAnJYXBO3fSYcsW7tm/nxVWK3lFRfVS\nu4iIiIiIiIiINC016QqibiDSkHltEGTAgAEMGjSo0vEwhw4dYuXKlUaUJyIiIpUYOHAgP/zwA+3b\nt2cf0B94BSgwuC5w1vAyMADYB7Rv357vv/+eAQMGeHbCQYNg40b46ivX+S4A2dnw7LPQsyf885+V\nJjnMZnjqKVi3Dtq1K7uvsBAeeQQmT4bMTM9KFfFE96AgHuvcmR/69ePkkCEs6NGD2IgIAi9MLF3g\npM3G/BMnmLBnDxGbNnHjf/7DpydPYi1oCHcCERERERERERHxFp52BVE3EGnIvDYIAvDHP/6x0v0O\nh4MXX3yxnqoRERGR6ujduzfbt29n4sSJFADPAYOB/xhY057zNTyPMxAyceJEtm/fXvU4mKqYTHDz\nzZCYCLNnQ3Cw6zEpKXDrrXDVVc4uIpUYMQJ27YJRo1z3/d//wYAB8O9/16xkEU+09vfnrshIlvTp\ng/Wqq1jWpw/T27WjjZ9fpeuy7Xb+z2LhzsRE2mzaxIhdu3jj6FGSq+iUIyIiIiIiIiIiUhVPuoKo\nG4g0dF4dBLnlllvo3r07gEtXkOLfb926lY8++siQ+kRERKRykZGRLF26lM8++4zQ0FB2Apfj7MiR\nVY91ZJ2/Zn9gJxAaGsrnn3/O0qVLiYyMrL0LBQTA00/DwYPwv//rDIhcaMsWGDwYpk6Fo0crPFW7\ndrB6NTzzjOu+pCTnKf7xD42KEeME+vhwfUQE/+jZkxNDhrC5Xz+e7NSJnkFBla6zA99nZvJocjLR\nW7dyybZtzDx0iK1ZWdj1CS0iIiIiIiIiIh6oblcQdQORhs7kcHj3d0tXr17NuHHjMJlMZcbCFAdB\nHA4HISEh7Ny5k6ioKKPKFC9lsVj46aefSE5OJisrCz8/P8LDw+nduzcDBgzA19fX6BLLZTabS/6O\nLFiwgDvuuKNWz5+WlkabNm3KbDt9+jStW7eu1euIiHc5ceIE9957L8uXLwcgGPgt8Afg0jq65h7g\nXeBz4Nz5bRMnTuS9996r3QBIRf79b+c8l/Xry98fGAiPPQZPPFF+F5Hz4uOduZH0dNd9d9wB774L\nzZvXUs0iteBATg7LLBbirFY2Z2Zid3NdpL8/14eHMzEigjGtWhHg40N2djbBxX8/ZgL+dVV1A2MD\nZjt/ee7cOZrrL7mIiIiIiIiISKXeeecd7r//flq3hs8/B/8Kvo9ks8HttzuDIO+88w733Xdf/RYq\njYLRz0O9PggCMGXKFBYtWlRpGKRnz55s3ryZVq1aGVWm1KKMjAy2b99e8rFjxw5SUlLKHGMymSgq\nKqqT6y9evJh58+axadMmKvor1qJFC26++WaeeOKJks41DYWCICLSUDkcDr788kteeeUV9u3bV7J9\nGM5AyP8ANW3Alw/8H84AyMZS23v16sWzzz7LrbfeWqbTWJ1zOGDZMmfgIymp/GPat3eOlPntb8Fc\nfsO3lBTn9JnypspccgksXgw9e9Zi3SK1JM1m419WK8usVlamp5Nrdy8W0txsZlxYGDFBQdzTrZtz\no4IgIiIiIiIiIiJSgby8PKKjo0lNTeXhh2HSpPKPW7oU5s51dgNJTk7WWBgpl9HPQ5tEECQzM5NB\ngwaRdP7hyYVhkOLf9+vXj/j4eJf/IdLw/fLLL6xYsYIdO3awfft2Dh8+XGb/hQ/siscD1XYQ5Pjx\n49x22218//33Za5bXgCpeLu/vz/PPvsszz77bK3WUhMKgohIQ+dwONiwYQPvvvsuS5YsKbmf++Ps\nDtK/1MelVPzc14az68eOUh+7gYLz+319fbnhhhu47777GDFiRP0GQC5ks8Hf/gYvvQSZmeUf078/\nvPkmDBtW4SkefxzmzXPdFxwM8+fDLbfUYs0itSy3qIg1GRnEWSwst1o5XVDgxqJcuPZa568VBBER\nERERERERkUpU1RVE3UDEXUY/D20SQRCAAwcOMHjwYDLPPzipKAzStWtXFi1aRL9+/QypUzwzY8YM\n5s6dC7iGPqD8/9+1HQQ5cOAAI0eO5OTJky4BkPKCKKW3OxwObrvtNj777LNqPWTcs2cPTzzxRJXH\nxbszzKwUBUFEpDE5fvw48+fPZ/78+aSmprrs9wMigUAg4Py2PCAXOMF/Qx+ldejQgbvvvpu7776b\n9u3b11HlHrJYYNYseP99qOjfscmT4a9/hQrG3i1aBNOnw9mzrvvuuw/eeAMUYpeGrsjhYFtWFnHn\nR8gk5uSUf6CCIAqCiIiIiIiIiIi4qaquIOoGIu4y+nlokwmCAHz//fdMnDiRs+efelQ0Jsbf359Z\ns2bx2GOP4efnZ0itUj3FQZALx/8UK/3/ty6CIOnp6fTr149jx46VbCu+Rv/+/Zk0aRJRUVHk5uZy\n4MABvvjiC44fP15yTLGHHnqIN954w+3rfvfdd4waNarSYzx5nQqCiEhj5HA4OHLkSEl3qB07drBj\nxw4yMjIqXRcaGsqAAQPo379/ycdFF11kbPcPd+zdC48+CgkJ5e/394eHH4ZnnoGWLV12HzgAN90E\nu3e7Lh0wwBkWueii2i1ZpC4dyMkhzmJhmdXKpsxMSr4iVBBEQRARERERERERkWqoqCuIuoFIdRj9\nPLRJBUEAfv75Z6699lpOnjxZsq287gwmk4mLLrqIl156iSlTpuDr62tIveKe0kGQ0vz9/enTpw8D\nBgzgq6++KtMRpjaDIDfeeCNLliwp8znUsmVLFi5cyHXXXedyfFFREbNnz+aFF14o2VZc07fffsu4\ncePcuu53333H6NGjKz3GZDJRWFjo/otBQRAR8R4Oh4Nff/2VtLQ0cnNzyc3NBSAwMJDAwEBat25N\nly5dGn7oozLx8c5AyL595e9v0wZeftnZAsTHp8yu3Fy4/3746CPXZaGh8OmnMGFCHdQsUsfSbDb+\nZbUSZ7Gw8vhx8mJinDsUBBERERERERERkSpU1BVE3UCkOox+HtrkgiAAR44cYfLkyezcudOlg0R5\nIz0iIyOZPn06N910E3369DGkZqncjBkzePfdd+nduzcDBgwo+bjssstKQjxRUVGkpKQAtRsEWb16\nNePGjSvzudOsWTM2b95c5YihefPm8fDDD5d5ABkdHc2+ffswm801rs1TCoKIiDQyBQXwwQfOkTFW\na/nHXHopvPkmjBnjsuvjj50jYc7nZMp48kl45RVQJlYaK0tWFq1DQpy/URBERERERERERETccGFX\nEFA3EKkeo5+HNskgCDg7MvzpT3/iT3/6U0m3hAs7g5S3LSoqihEjRjB06FD69u1Lz5499U3VBuDU\nqVO0atWq0uRdXQVBhg8fzsaNG8uMnJk9ezZPPvmkW+vHjRvH6tWry6z/5JNPmDp1ao1r85SCICIi\njVRGhrP7x9tvQ0XdoK6/Hl57DS6+uMzmPXtg8mTnyJgLDR8O//wnREbWQc0idSw7O5vg4GDnbxQE\nERERERERERERN1zYFcThUDcQqR6jn4d6dRBk2rRpVR6ze/fucjuDQPmBkAu3A7Rp04a2bdvStm1b\nWrRoQbNmzfD3929QbeZNJhMffvih0WUYqi6CIHv37qVPnz5luoG0bt2a1NRUt8cJ7dy5kwEDBpQJ\nggwePJhNmzbVqLaaUBBERKSRO3gQHn8c4uLK3+/r65wJ8/zzzhkw52Vlwd13w9dfuy5p0wa+/BKq\nmEgm0uAoCKIgiIiIiIiIiIiIJ0p3BXE41A1Eqsfo56FeHQQp/TC7MlX9EVx4joqOb0jBj9Jqs/tF\nY1YXQZDnn3+eV155pUyI44knnmDOnDnVOs/AgQPZsWNHmfMcOnSILl261Kg+TykIIiLiJdatgxkz\nYPfu8veHhcELL8Dvfw9+foDzDc3f/gaPPuqcOFOa2QwvvggzZzp/LdIYKAgCj//rcW7udzP9I/s3\n2PcsIiIiIiIiIiINTemuIKBuIFI9Rj8PbRLfwnc4HJV+VGc9OAMfF364cx2jPqTuJCQkuGy78cYb\nq32eyZMnu3VuERGRahk9GnbuhPnznS09LpSeDg8+CH37wrffgsOByQQPPAA//ACdO5c93G6H556D\nCRPAaq2flyAiNffq5lcZOH8gnd/qzAPfPsDaQ2spKCqoeqGIiIiIiIiISBMWEBDA008/XfL7mTNn\nKgQijYY6glB1R5CqNPSfqlNHEKfa7giSk5NDy5YtSz5/HA4HzZs3JzMzE3M1f0x68+bNDB06tExH\nkFtvvZXPP//c4/rccc899/DZZ5+5bLfZbCW/9vHxwcfHp8x+k8lETk6Ox9c1OgEnItIkZWXBnDnw\n5puQn1/+MddcA2+8AZdcAjjDHnfc4cyIXKhTJ+cImcGD67BmkVqgjiCU+7pbBbRiwsUTuKHnDYzr\nNo7m/hodIyIiIiIiIiJyoby8PObNmwfAQw89pCCIuM3o56HqCFILORijO36oG4gx/v3vf2O324H/\nBksGDBhQ7RAIOEfD+J1vyV8cBtmxY0et1luegoIC8vPzXT5Kfw4VFhaWe4yIiDQyLVs6gyD79sFN\nN5V/zKpVzu4g990HaWmEh8Py5TB7tusomKNHYfhwmDvXOU5GRBqXM3ln+Hz359z49Y1EvBrBxC8n\n8tGuj0jLTjO6NBERERERERGRBiMgIIAnnniCJ554QiEQaVSaRBBEpC4kJia6bIuOjvboXH5+fnTs\n2LHMtuTk5JKgSV0qb9SROx8iItJIRUU5W3n88AMMGOC6326Hv/8duneH117DXJDP00/D2rXQtm3Z\nQwsK4OGH4eabnQ1HRKRh6hratdL9eYV5LD+wnOnLptPu9XYMXzCcN7e8yaGMQ/VUoYiIiIiIiIiI\niNQmBUFEPHTkyBGXbV26dPH4fJ07dy7TxaWoqKhklE1dWbBgAUVFRdX+KCwsrNO6RESkHgwdClu3\nwiefQPv2rvszM+Hxx51jYpYsYeQIB7t2wYgRrocuXgz9+8PPP9d92SJSfT///mf+84f/8MqoVxjQ\nvpwAWCl2h50fUn7gkVWP0G1eNy577zJmrZ/FrhO71HFQRERERERERESkkVAQRMRDJ0+edNnWqVMn\nj89X3tpTp055fD4REZEqmc1wxx1w4AA8/zwEBroek5wM//M/MHo0kSd3sWYNPP2062FJSTB4MHz0\nUd2XLSLVYzKZuKTNJTwz/Bl+uvsnUh5O4W/j/8aYqDH4mHwqXbv71G5e+v4lLv/gcqLmRvFwwsNs\nOLKBQruCwSIiIiIiIiIiIg2VgiAiHkpPT3fZFhwc7PH5yltrtVo9Pp+IiIjbmjeHF1+E/fth6tTy\nj9mwAfr3x/fe6cx+4AT/+heEhpY9JC8Ppk+H3/0OcnLqvGoR8VCnkE78cdAfWXPHGtIeT+OzGz7j\nxl43EuQXVOm6XzN/Ze7WuYz6ZBTtXmvH7+J+R1xiHDkF+gsvIiIiIiIiIiLSkDSJIIjJZGqyH1J3\nsrOzXbYFlveT1G4qb22OnqKJiEh96tQJPvvMOTLmyitd9zsczpYf3btz3c+z2bUlj0GDXA/7+GNn\nd5ADB+q8YhGpodDAUKb2ncrimxdjedzCsluWMe0304gIiqh0nTXXysf//pjYr2KJ+GsEN3x1A5/8\n+xOsOQoyi4iIiIiIiIiIGM3X6ALqmuZYS10pKChw2RYQEODx+coLgthsNo/P19hkZ2cTFFT5T6FW\npHnz5rVcjYhIEzdoEGzaBF9/DU88ASkpZfdnZ8Mzz9Dl/ff54U+v8tjWm3j7b2UDqHv2QP/+8OGH\ncPPN9Vi7iHgs0C+Q63tcz/U9rqfIXsTmo5tZkriEpYlLOXzmcIXrcgtzWZq4lKWJS/Ex+TC8y3Bi\ne8YyqcckurTqUo+vQEREREREREREpHaV1xygLtfVFq8Ogtx5551GlyBNTE26sJS3tikFmaKiojxe\n25T+nERE6o3JBFOmwMSJ8OabMGcOnDtX9piUFPx/O4V5Q+Yy9E+fMH1OdJlDzp1znmLjRnjtNfD3\nr9+XICKe8zH7MKzLMIZ1Gcbr17zOntN7SsIeu07uqnBdkaOI9UfWs/7Ieh5KeIh+7foR2zOWG3re\nQJ82fdS1UEREREREREREGpXg4GCjS/CIVwdBFixYYHQJ4sX8/PxctuXm5np8vvLW+uuJmYiIGC0w\nEGbOhN/9Dp59FhYscI6IKW3zZm7e3J3fXP8okw/OZk9i2X+/3n7bOW3m66+hi5oDiNS74/n5dK9B\nBzWTyUTftn3p27Yvz494niNnjhCXGMfS/Uv5/tfvsTvsFa7ddXIXu07uYtaGWXQN7Upsj1hie8Yy\npNMQfMw+HtckIiIiIiIiIiIiFfPqIIhIXSpvjEltB0Ga0siTw4cP07p1a6PLEBGRikRGOue83H8/\nPPIIbNjgcsjFy1/nx4AF/PGyNXz8c78y+7Ztg3794LPP4Lrr6qlmEQHg4q1b6RsRwfiwMGLCwrgq\nJAQ/s9nj813U6iIeGvwQDw1+CEuOhRUHVrB0/1JWJq0kt7Dir4cPZRzijR/f4I0f36B1UGsm9phI\nbM9YxnYdS4Cv5yMWRURERERERERE6sq5CztluyktLa1GExFqSkEQEQ+Fh4e7bPP0RlDR2vKu4a2a\nN2/epIIvIiKNVr9+sG4dxMXBY49BcnKZ3UF56Sz4+XKGtZrBH7P/Sl7Bf7/czMiACRPg6afhpZfA\nV1+JitSb3dnZ7M7O5i9Hj9LCx4exoaGMDwtjfFgYHQM8D2FEBEVw52/u5M7f3ElOQQ6rklexNHEp\nyw8sJz03vcJ1aTlpfLjrQz7c9SHN/ZoTEx3DDT1v4Nru1xIaGOpxPSIiIiIiIiIiIrXJ0+eXOTk5\ntVxJ9Xj+Y2AiTVzbtm1dth07dszj8x09etSta4iIiBjOZILYWPjlF3jtNQgJcTlk2pk3+bGgP9HN\nUlz2zZkDY8fCyZP1UayIXOhsURFLLBbuOXCATj/+yKU//cQTycmsz8jAZq94zEtVgvyCiO0Zy8ex\nH3PqsVOsv3M9Dw56kM4hnStdl12QzTf7vmHqkqm0ea0NV392Ne9se4djWZ5/bS0iIiIiIiIiItKU\nKQgi4qHyWvn8+uuvHp8vJSUFk8lU8nsfHx86d678m+YiIiKGatYMHn0UDh6EP/wBLhg1cRm72ZHf\nh8kscln63XfO5iLlTJgRkXr2n+xsXj16lNE//0z4pk3E7tnD+8ePk5KX5/E5fc2+jLxoJHPHz+XI\nQ0fYec9Onh/+PJe2ubTSdYX2QtYcWsP98ffT6c1ODJo/iNk/zGZv2l4cDofH9YiIiIiIiIiIiDQl\nJoe+myZNRFRUFCkpzp9KdjgcmEwmioqKPD7fpk2bGDZsGCaTqeR8I0aMYN26ddU+V0FBAcHBwRQW\nFpbU16NHD/bt2+dxfQ1ZWloabdq0KbPt9OnTtG7d2qCKRESkVvzyCzzyCKxaVWazA3ibB3iU1ynE\nr8w+sxleeQWefNIlRyJSK7KzswkODnb+Zibgb2g59ccGzHb+cnVqKhvy8ohPT2dnNUcZ9g4Kco6Q\nCQ9naEgIzWrhL2pyejJx++NYmriUjSkbceDeW9LuYd2J7RlLbM9YBnccjNmkm4aIiIiIiIiIiDRM\nRj8PVRBEmozaDoLk5OTQsmXLkp9MdDgcBAcHc+bMGczV/Ab5li1buOqqq8qESm655RYWLlzocX0N\nmdE3PhERqUMOB8THOzuFJCaW2fUjV3AzX3MU145X114Ln34K4eH1Vag0FQqCwLlz50pmmZ7Mz2dl\nRgbxViurMjLIOB9Edkdzs5nRoaHOYEhYGBcFBta4zNPZp/nXgX+xJHEJq5NXk1+U79a6ts3bMqnH\nJGJ7xjI6ajTNfJvVuBYREREREREREZHaYvTzUP0IlYiHgoKC6NevX5kW1dnZ2ezatava59q4caPL\ntuHDh9eoPhEREUOYTM5Ux+7d8PbbEBZWsmswW9lFP2KId1n27bdw+eWwbVt9FivS9LRr1ow727Xj\nn5dcwukhQ9jUrx/PdulC/+KwTCWy7XaWW63cd/AgUVu30jh69TsAACAASURBVGvbNh5JSmJ1ejr5\ndrtH9bRp3oZp/aax/NblWJ6wsPimxUztO5VWAa0qXXcq+xQf7PyAa7+4ltavtmbK4in88z//JDMv\n06M6REREREREREREvImCICI1EBMT47Jt8eLF1T5PeWvKO7eIiEij4ecH998PSUnw8MPg6wtAOOms\n4Dpe4RnMlO3MlZICQ4c68yPqWSdS93zNZoaEhPByVBTbBwzg1JAhfNqzJ7e2aUPY+b+zlUnMyeHN\nY8e4ZvduwjZu5Po9e3g3NZXDubke1RPsH8yNvW/ksxs+4/Rjp1n929X8ceAf6dCiQ6XrztrO8vUv\nX3PrN7fS+tXWxHwew3vb3+PE2RMe1SEiIiIiIiIiItLYaTSMNBm1PRoG4JdffuHSSy/FZDKVnLdN\nmzYcO3YMXze+eQ6wa9cu+vfvXzIWBmDw4MFs3ry5RrU1ZEa3QhIREQMcOACPPQbLl5dsWscobuVL\nTtPW5fCbboJ//ANatqzPIsUbaTRM2dEw7ipyOPgpK4v49HTi09PZfvYs1XnjeHFgoHOETHg4I0JC\nCPDxqdb1S3M4HOw4sYOliUtZkriEvWl73V47uONgYnvEEtszlh4RPTyuQUREREREREREpDqMfh7q\nlUGQ48ePs2bNGreO7dWrFwMHDqzjiqQhqIsgCDhHuGzcuLEkyGEymfjzn//M448/7tb6mJgYVq1a\nVWb9J598wtSpU2tcW0Nl9I1PREQMtHYtzJgBe/YAcJxIbuVLvmeEy6EXXwyLF8Oll9Z3keJNygRB\nHqNpBUFec/7SkyDIhdJsNlaeD4WsTE/HWljo9tpAs5lRrVqVBEO6BQbWqJYD1gPEJcaxdP9Sthzd\ngsPNiErPiJ4loZCBHQZiNqlBpoiIiIiIiIiI1A2jn4d6ZRBk3rx5zJgxw61jN2zYwLBhw+q4ImkI\n6ioIsmrVKmJiYsp0BQkICGDz5s385je/qXTt3/72Nx588MEya6Ojo9m3bx8+NfipyYbO6BufiIgY\nrKgIPvoInn0WTp+mEB+e5RX+wlMuhwYGwrvvwl131X+Z4h3KBEGaqNoIgpRW5HCw4+xZZ7cQq5Vt\n1ewW0r24W0hYGCNatSKwBl/3njx3kmX7l7E0cSlrD6/FVmRza137Fu2Z1GMSsT1jGXnRSPx9mkpC\nSERERERERERE6oPRz0O9Mggybdo0Pv744yqPGzJkCBs3bqz7gqRBqKsgCMANN9xAXFxcmUBHy5Yt\n+fzzz5kwYYLL8YWFhcyZM4dZs2aVWWMymVixYgUxMTG1UldDZfSNT0REGoisLJg9G958E2w2/sV1\n3MGnZBDmcui0afC3vzmDISLVoSBI7QdBLmSx2ViVkVHSLSStoMDttQFmMyOLu4WEhdE9KMjjOrLy\ns0hISmBp4lJWHFxBVn6WW+tCmoVw3cXXEdsjlpjoGFo0a+FxDSIiIiIiIiIiImD881CvDIIMHTqU\nzZs3lzxgv1DxA/e33nqLBx54oJ6rk7py7bXXcuLEiQr37927l8LzLayLPwf69u1b6Tnj4+Np165d\nlde2WCxcfvnlHDt2DKBMuGPAgAFMmjSJqKgocnNzOXjwIAsXLiQ1NdUlBPLAAw/w1ltvufV6GzOj\nb3wiItLAHDoETz4JixdzhC7cxCK24zq6r2/vQhYv9aV7dwNqlEbL4XCQk5Pj0dp169YxceJEaNkS\nFi4EHx/YtQteew0yMvD392f27Nnce++9Fb73cKe+9957j2eeeQabzQZhYfDoo9Cvn7N7zm23wdmz\nLF++nFGjRnl0jaCgII/rqy57qW4hCenpbM3Kwl6N9d0CAhgfHs74sDBGtmpFkIfdQmxFNtYfXs/S\nxKXE7Y/jxLmK3yeU5u/jz9iuY4ntEcvEHhNpG9zWo+uLiIiIiIiIiEjTZvTzUK8MgnTu3JnU1FTA\n+Y3V0kwmU8lD90OHDtGlSxcjSpQ6ULrjR00Vf44cPnyYzp07u7UmMTGRMWPGcPLkyZLPu+LPtwuV\nDoAU/37KlCksXLiw3r5JbySjb3wiItJA/fADzJhB/o49PMrrvMP9Loe0aJbPRx+bmXyLnwEFSlNz\nzz33MH/+fJgwAR58ED78EL76CoDevXvz5ZdfVhksdtfu3bu55ZZb2Ldvn3PDlCkwfTrMnQsrVnDP\nPffw/vvv18q16pO1oIDV6eklwZDT1egW0sxkcnYLCQ8nJiyMiwMDPfpa2e6w81PqTyxJXMKSxCUc\nsB5wa50JE0M6DSG2ZyyxPWOJDouu9rVFRERERERERKRpMvp5qFcGQYKCgsjPzwfKBkFKP3xv3bo1\np06dMqQ+qRtRUVH8+uuvtXa+6gZBAFJTU7nttttKRg5d+PlXXjDJz8+PZ555hueee652Cm8Eyrvx\nHT58uNwbX122MRcRkQbIbofPPoOZM/nn8WH8L/8gG9exHg9NSOavi7vi38z7A5RijMLCQiIjI7FY\nLPDww/Dtt3DAGSD4/e9/z+uvv05QDcaYlCcnJ4dHH32U9957z7mhRw8YPx7eeouIiAhOnDiBr69v\nrV6zPtkdDnadO0e81Up8ejo/VrNbSFRAQMkImVGhoTT3sFtIoiWRpYlLWZq4lK2pW91e16dNH2J7\nOEMhl0de3iQC3CIiIiIiIiIiUrXs7GyXbWlpaURFRZXZpiBIDfn5+WG3O7+lWN6DeJPJxIgRI1i3\nbp1RJUodqM2OIEBJ15jqBEGKLV68mLlz57Jly5ZyO4IABAcHc/PNN/P4449z8cUX17TcRqW8IEhF\nvPAWJSIi7sjOhr/+lcS/xDE5/3N+oY/LIYNb/sJX/4TO4y8xoEDxdmvWrOHqq692/sbfH2w2wsLC\n+PDDD4mNja3Tay9ZsoTp06eTkZFRcu3imsaMGVOn165P6QUFrM7IIOF8t5CT51+nO5qZTAxv1aok\nGNLDw/E3qVmpLNu/jKX7l7Lu8DoK7YVurevYsmNJKGR4l+H4+ahLkYiIiIiIiIhIU+Xu96UUBKmh\nVq1acfbsWaDiIMidd97JRx99ZFSJ0kRYLBa2bdvGoUOHyMrKwtfXl4iICHr16sXAgQMb9U901oSC\nICIi4rajR8l+/AXu+2o4n3Kny+4wrHx+zWeM/+QWaNfOgALFW5WMhTlv5MiRfPbZZ3Ts2LFern/s\n2DGmTp3Kd999V6amxjgexh12h4Ofz50j/vwYmS2ZmRRVY/1FAQHEnA+FjG7VimAPvs4+k3eG+IPx\nLN2/lG8Pfss52zm31oUGhDLh4gnE9oxlXLdxNPdXRzsRERERERERkaZEQZB60rFjR06cOAFUHAS5\n//77mTt3rlElijRpGg0jIiLV5fhxKx/evo77D80g///Zu/OwKOv9/+PPYRUEEVBxV9xARU3TXHPL\nVKwUTppiq/Yt+1Wnsj3byzqWlnVOdTp5Ss+xsnIbl1xyyywztzSPClpqrgkygICgMMzvjxFDZ4BB\nYW4YXo/r4jown3s+n/dN13Ufmft1vz/UcBh/1vdNXn7Bivdjj0BAgAEViqeJjo4mKSkJb29vXnnl\nFZ566im8L3MrkstltVqZMmUKL774IlarlejoaPbu3evWGoySfr5byPLz3UJOlKFbiJ/JxLUhIcSG\nhxMbFkbby+gWkpufy9qDazEnmlmUtIjk7GSX3lfDpwbXt7ie+Oh4bmxzI3VruucPexERERERERER\nMY62hnGT6Oho9u/fDxQfBHn66ad57bXXjCpRpFpzFgRx54VPRESqKJuNHW+sZOTz0fyW39xheABr\n+bzxU9Sf9jjccgtcxjYRIoWOHj3KE088wcMPP0yPHj0MreXHH3/k73//O1OnTnVbR5LKxHa+W8iK\n891Cfihjt5Cm/v7EhoUxNCyM60JDCS5jtxBrgZVNRzdhTjSzMHEhv6X95tL7vExe9Gna58IWMpGh\nkaW/SUREREREREREPILR90M9MgjSp08fNm7ceCH4UahoEOTRRx9l6tSpBlYpUn0ZfeETEZGqLeOP\nHMYP+p0Fu6Mdxupzgi8YQ79e+TB9OlxzjQEVikhFysjPZ3VaGstTU1lusXC8DN1CfE0m+oSEEHt+\nG5n2NWuWqVuIzWZjT8qeC6GQbSe2ufzeThGdiIu2h0I6RXQqc5cSERERERERERGpOoy+H+qRQZDx\n48cza9asEoMgEyZM4IMPPjCwSpHqy+gLn4iIVH02G7zzymmefDmQfNvFT/d7YeU1nuVJ3sTrtlvh\nb3+DathFQaQ6sNls7MrOZrnFwvLUVH44fZr8MvyJ28Tfn6HnQyHXhYZSq4zdQo5kHGFR0iLMiWa+\nPfQtVptrvUqahTQjLjqO+Oh4ejftjY9X2dYVEREREREREZHKzej7oR4ZBJkyZQqTJk0qMQgSFxfH\n/PnzDaxSpPoy+sInIiKeY+NGGP2Xcxw96ecwdiNL+A93EhaQC088AU8+CTVrGlCliLjL6fx81qSl\n2YMhFgtHz551+b0+57uFFAZDOpSxW4glx8LX+77GnGRmxa8rOJN3xqX3hQeEc1PUTcRFxXF9y+sJ\n9A10eU0REREREREREamcjL4f6pFBkIULF3LzzTcXGwQB6NixIzt27DCqRJFqzegLn4iIeJZTp+C2\n22ysXOl4w7YZh5jLKLqxFRo2tHcHue028PIyoFIRcSebzcbuwm4hFgvfZ2SQV4Y/fxv5+dlDIeHh\nDAoNJaQM3UJy8nJYfWA15kQzi/ct5tSZUy69L8AngCGthhAfHc8NrW8gPDDc5TVFRERERERERKTy\nMPp+qEcGQU6ePEmDBg2cBkHA/oFgQEAAGRkZ+JSx9a+IXDmjL3wiIuJ5CgrgtdfgxRdt2GwXB0L8\nOMvbPMr9fIAJoGtXmD4d+vQxpFYRMUbmJd1CjpSxW0ivWrWIPR8M6ViGbiHWAis/HPkBc6KZhYkL\nOZR+yKX3eZu86dusL3HRccRFx9E0pKnL9YqIiIiIiIiIiLGMvh/qkUEQgM6dO7Nz584St4f5/vvv\n6dmzp4FVilRPRl/4RETEc61ZA2PHQnKy49gY5vAR9xJMlv2FUaPgjTcgMtK9RYqI4Ww2G3vPnLGH\nQlJT+a6M3UIaFHYLCQvj+tBQavv6urzuruRdLNy7EHOSmR1/uN6lskuDLsRF2UMhMfViyrRtjYiI\niIiIiIiIuJfR90M9Ngjy1FNPMXXq1BKDIM899xwvv/yygVWKVE9GX/hERMSzHT8OY8bAhg2OY1Ek\nMo+RxLDb/oK/P0ycCM88A7VqubdQEak0svLzWZuefiEY8nsZuoV4Az1DQuzdQsLCuCooyOWQxqH0\nQyxKXIQ5ycx3v39Hga3Apfe1DG15oVNIz8Y98fbydrleERERERERERGpeEbfD/XYIMjWrVu55ppr\nStwepmXLluzfv9+oEkWqLaMvfCIi4vny8+HZZ+HNNx3HAjjDP/l/3Ml//3yxXj2YPBnGjwdv3VAV\nqc5sNhuJ57uFrLBYWJ+ezrky/Nlc/5JuIaEudgs5deYUS/ctxZxoZuVvK8nNz3XpfXUD6zI8ajhx\n0XEMajGIGj41XK5VREREREREREQqhtH3Qz02CALQo0cPNm/eXGJXkGXLljFkyBADqxSpfoy+8ImI\nSPWxeDHceSekpzuO/R8z+DsPEUCRm60dO8L06TBwoPuKFJFKLdtqZV1amr1biMXCwVzXAhoAXkCP\nWrXs3ULCw+kcFISXC91Css9ls+rAKsyJZpbsW4Ilx+LSejV9axLbOpa4qDiGtR5GaECoy7WKiIiI\niIiIiEj5Mfp+qEcHQWbPns2dd95ZbBAE7GGRjRs3GlWiSLVk9IVPRESql4MHYdQo2LbNcewqfmYu\no2jFbxcPDB8O06ZB69buKVJEqgSbzca+nByWp6ay/Hy3kLNl+JM6wteXIee7hQwOCyPMhW4h+QX5\nbPh9A+ZEM+YkM4czDru0lo+XD/2b9ycuKo4R0SNoXKuxy3WKiIiIiIiIiMiVMfp+qEcHQfLy8oiJ\nieHXX38FKLYryIwZMxg/frxRZYpUO0Zf+EREpPrJzYVHH4V//tNxrBYZzGQcf2HhxQO+vvDgg/D8\n8xCqp+pFxNEZq5V16emssFhYnprKb2XsFtK9sFtIWBhdgoNL7RZis9nY8ccOFiYuxJxoZlfyLpfX\n69awG3HRccRFx9G2TtsL26aKiIiIiIiIiEj5M/p+qEcHQQBWrVrFkCFDnHYFAfsHaSEhIWzfvp3I\nyEijyhSpVoy+8ImISPX1+edw772Qne049gjTeYOn8CPv4oHwcHjpJZgwwR4OEREpxv4zZy5sIfNt\nejq5BQUuv7du0W4hoaHU8fMr9T2/WX5jUdIiFiYu5IfDP2DDtT/v24S3IS7KHgrp3rg7XiYvl+sU\nEREREREREZHSGX0/1OODIACjR49m7ty5JYZBoqOj2bhxI7Vr1zaqTJFqw+gLn4iIVG9798LIkbBn\nj+NYT58tfJn/F5pw1HGwbVt46y2Ija34IkWkysuxWvk2Pf1CMOTXnByX32sCrgkOJjY8nNiwMK4O\nDsa7lA4eydnJLElagjnJzKrfVnHWetalteoH1Wd4m+HEt41nQPMB+Pv4u1yniIiIiIiIiIg4Z/T9\n0GoRBMnIyOCaa64pcYsYgM6dO7N8+XKH/yAiUr6MvvCJiIhkZ8N998GnnzqOhQdk82neGIbmL3X+\n5iFD7IGQ9u0rtkgR8Si/njlj30LGYmFdejo5ZegWUsfXl8GhocSGhTEkLIy6pXQLyTqXxcpfV2JO\nMrN031LSc9NdWifYL5hhrYcRFx1HbKtYQmqEuFyjiIiIiIiIiIj8yej7odUiCAKwb98+evToQUZG\nBlB8GKRFixbMnTuXzp07G1KnSHXg7MJ38OBBpxe+mjVruqssERGpZmw2mDEDHnoIzl7y4LzJZOO5\n6Pm8uHc03ji5Wevtbd8q5uWXoU4d9xQsIh4jx2rlu4wMlqemstxiYV8Zu4V0DQ4m9vw2Mt1q1Sqx\nW0ieNY/1v6/HnGjGnGjmWOYxl9bx9fJlYORA4qPjGR41nAbBDVyuUURERERERESkOsl2shd5SkoK\nkZGRF72mIEgF+e677xg+fDiZmZmAYxik8DU/Pz9efPFFHn/8cXy1D7xIuXMWBClONbpEiYiIQbZv\nh1Gj4MABx7Hrrk7j83OjqLdrjfM3h4TACy/Agw9CKU/oi4gU50BOjn0LmdRU1paxW0i4jw+Dz4dC\nhoSFUa+Ea5HNZmPr8a32UEiSmT0pTvbIKkaPxj2Ii4ojLjqOqDpRLr9PRERERERERMTTmUrZ0reQ\ngiAVaOfOnQwbNow//vjjwmuFv4KiYRCTyUTz5s155ZVXGD16ND4+PobUK+KJFAQREZHKJj0dxo0D\ns9lxrEEDG1/etYJrZ90NJ044n6BVK5g6FUaMABf/0S8i4kyu1cqGjAx7MMRiIfHMmTK9/+qgIGLD\nw4kNC6N7Kd1C9qXuY1HiIhYmLmTT0U3YcO3f3m3rtCUu2h4K6dqwK14mrzLVKCIiIiIiIiLiSRQE\nqSQOHTrEyJEj2b59+0XbwsDFYZDCnxs0aMDdd9/NqFGjiImJMaRmEU+irWFERKQystlg+nR46inI\nz794zNsbXn/xLE+cew3TtKmQm+t8kgED4O234aqrKr5gEakWDhV2C7FYWJuWRnYZuoWE+vgwODSU\n2PBwhoaFEVFCt5ATmSdYsm8J5kQzaw6u4Zz1nEtrNApuxIioEcRFx9GveT/8vNUdSURERERERESq\nF20NU4lYrVZee+01XnvtNfLPf9J/aWcQZ69FRkbSr18/+vTpQ8eOHYmOjtaNapEychYEceeFT0RE\npCQ//ACjR8OxY45jw4fDrMlHCX3jafjsM+cTmEwwfjxMngz161dssSJSrZwtKOD7jAyWp6ay3GJh\nTxm7hXQJCmLo+W1ketSqhY+X804ep8+eZvn+5ZiTzHy972syz2W6NH+Ifwg3tLmBuKg4hrYaSrB/\ncJnq8xQ2m40zZfxv42kCAwNdfhpKRERERERExBMZfT/Uo4Mg48ePL/WYX375xWlnEHAeCLn0dYB6\n9eoRERFBREQEwcHB+Pv74+fnV6k+9DCZTHz88cdGlyECGH/hExERKU1KCtx2G3zzjeNY8+Ywbx5c\nnf8TPPIIbNrkfJKgIJg0CSZOhBo1KrReEamefs/NZYXFwvLUVNakp5Nltbr83to+PlwfGkpsWBhD\nw8Jo4O/v9Liz+Wf59tC3mBPNLEpaxImsYrbIuoS/tz+DWgwiLjqOm9rcRERQhMu1VXXZ2dkEBQUZ\nXYahsrKy9NCMiIiIiIiIVGtG3w/16CCIl5eXS2GM0n4Fl85R3PGVKfhRlM1mw2QyYS3Dh4IiFcno\nC5+IiIgrrFZ7U4+XX7ZvG1OUnx+88w7cN8GG6asv4ckn4cgR5xM1awZvvAG33GLvFiIiUgHOFXYL\nOR8M2V3GjhRXBQURe75bSM9iuoUU2ArYfGwz5kQzCxMXsi91n0tzmzDRq0kv4qLjiIuOo1VYqzLV\nVtUoCKIgiIiIiIiIiIjR90OrRRCkPE+xuLBHZf81KggilYnRFz4REZGyWLUKxo6FU6ccxxIS4KOP\nIMg7B95+G/72N3CyHyQAvXvD9OnQrVvFFiwiAhwp7BZisbA6LY3MMvw9GOLtzaDQUGLDwxkaFkaj\nYrqFJJ5KZOHehZiTzGw+ttnl+WPqxRAXZQ+FdGnQpdI+VHG5LgqCPA74GVqO+5wDptm/VRBERERE\nREREqjuj74dWiyBIaa70V1DZP7RSRxCpbIy+8ImIiJTVsWMwejT88IPjWNu29q1i2rUDTpyAZ5+F\nWbMc24gUuu02e2CkceOKLFlE5IJzBQVsLOwWYrGwq7jAWjE61qxp7xYSHk6vWrXwddIt5NjpYyxO\nWow5yczag2vJL8h3ae4mtZpc6BRybdNr8fX2LVNtldFFQZBJVK8gyOv2bxUEERERERERkerO6Puh\n1SII4sGnWKrC81cQRCoToy98IiIilyMvDyZNgmnTHMcCA+Ff/7JnPADYvh0efRTWr3c+WUCAfTuZ\nJ54A3SgTETc7ekm3kNNl+FuxVmG3kLAwhoaF0bhGDYdj0nPTWbZ/GeZEM8t/XU7WuSyX5g6tEcqN\nbW4kPjqewS0HU9Oval4fFQRREERERERERETE6PuhCoJ4OAVBpDIy+sInIiJyJcxmuOsuyMhwHLv3\nXnj3XahRA3tHkIUL7WGPAwecT9aokb07yK23gpMn7EVEKlpeQQE/nj5t7xaSmsrOMnYLiSnsFhIW\nRu+QEPwuuZbl5uey9uBazIlmFiUtIjk72aV5a/jUYHDLwcRFxXFjmxupW7Pq/K2gIIiCICIiIiIi\nIiJG3w9VEMTDKQgilZHRFz4REZErdeAAjBwJP//sONa5M8ydCy1bnn/h7Fn4xz/g1Vfh9GnnE3bt\nCu+8A717V1jNIiKuOH727IVuIassFjLK8HdksLc3153vFhIbFkaTS7qFWAusbDq6CXOimYWJC/kt\n7TeX5vUyedGnaR/io+MZETWCyNDIMp2TuykIoiCIiIiIiIiIiNH3QxUE8XAKgkhlZPSFT0REpDzk\n5sIjj9i3hLlUSAjMnAnx8UVeTE6GF1+Ejz6CggLnk95yC7zxBjRvXhEli4iUSX6RbiErLBZ+znJt\ni5dC7QMDiQ0PJzYsjD6XdAux2WzsSdnDwsSFmBPNbDuxzeV5O0V0Ii46jrjoODpFdMJkMpWproqm\nIIiCICIiIiIiIiJG3w9VEMTDKQgilZHRFz4REZHy9OmnMGECnDnjOPboozBlCvj6Fnnxf/+zD6xa\n5XxCf3+YOBGeeQZq1aqQmkVELseJs2dZeb5byDdpaaTn57v83ppeXn92CwkPp9kl3UIOZxxmcdJi\nFiYuZP2h9Vhtrv392rx2c+Ki7KGQ3k174+PlU6ZzqggKgigIIiIiIiIiImL0/dBqEQSp7hQEkcrG\n6AufiIhIeduzx75VzN69jmO9e8MXX0DjxkVetNlg2TJ47DFISnI+aUQETJ4M48aBt3eF1C0icrny\nCwr4KTOT5ampLLdY2F7GbiFtAwMvbCFzbe3a+BfpFmLJsfD1vq8xJ5lZ8esKzuQ5Sdo5ER4Qzk1R\nNxEfHc/1La4nwDegTDWVFwVBFAQRERERERERMfp+qMcHQcROQRCpTIy+8ImIiFSErCx7Z5DPP3cc\nq1PH/vr1118ykJcHH35o3zImLc35xJ06wdtvw8CB5V6ziEh5+ePsWb5JS2O5xcJKi4W0MnQLCfTy\nYmBht5CwMCID/gxw5OTlsPrAahYmLmRx0mJSc1Jdm9M3kCEthxAXHceNbW4kLCCszOd0uRQEURBE\nRERERERExOj7oR4dBBk3bpzRJVQqM2fONLoEEcD4C5+IiEhFsdngX/+Chx+Gc+cuHjOZ4IUX4Pnn\nnTT4sFjglVfg/fehuJunI0bA1KnQunWF1C4iUl6sNhubT59m+fltZLZmZpbp/VEBAcSGhxMbFkbf\nkBBqnL9o5hfks/HIRsyJZhYmLuRQ+iGX5vM2edOveT/iouIYET2CpiFNy3pKZaIgiIIgIiIiIiIi\nIkbfD/XoIIiIVE5GX/hEREQq2rZtMGoUHDzoODZoEHz2GVzyf4V2SUnw+OOwdKnziX194cEH7WmS\n0NByrVlEpKIknzvHyvOhkJUWC5YydgsZULs2seHhDA0Lo+X5biE2m41fTv6COdGMOcnMjj92uDxn\nlwZdiIuKI75tPO3rti/3LWUVBFEQRERERERERMTo+6EKgoiI2xl94RMREXGHtDS46y5YvNhxrGFD\n+PJL6NOnmDevXg0TJ8L//ud8PDwcXn7ZvheNj095lSwiUuGsNhtbMzNZnprKcouFLZmZlOVDidYB\nARe2kOlXuzYB57uFHEo/xKLERSxMXMiGwxsosBW4NF/L0JbERccRFx1Hz8Y98fa6tGVT2SkIoiCI\niIiIiIiIiNH3QxUEERG3M/rCJyIi4i42G0ybBs88ZpSOSAAAIABJREFUA1brxWPe3jBlCjz2mH3b\nGAf5+fDxx/buHykpzhdo2xbefhuGDi332kVE3CHl3Dm+SUtjeWoqK9PSOJWX5/J7A7y86F+79oVg\nSKvAQABOnTnF0n1LMSeaWfnbSnLzc12ar17NegxvM5y46Diua3EdNXxqXNY5KQiiIIiIiIiIiIiI\n0fdDFQQREbcz+sInIiLibhs2wJgxcPy441hcHMycCbVrF/PmjAx4/XV45x04d875MUOHwltvQbt2\n5VaziIi7WW02tmVmstxiYXlqKpvL2C2k1fluIUPDwuhfuzaB3t5kn8vmm9++wZxkZknSEtJy01ya\nq6ZvTWJbxxIXFccNbW6gdo3iLtKOFARREERERERERETE6PuhCoKIiNsZfeETERExQnIyjB0La9Y4\njrVoAXPnQpcuJUxw4AA8+STMn+983Nsb7rsPXnoJ6tQpj5JFRAyVmpfHNxYLyy0WVlgspJShW0gN\nLy/6hYQQGx5ObFgYrQMCsNqsbPh9A+ZEM+YkM4czDrs0l4+XDwOaDyAuOo4RUSNoVKtRiccrCKIg\niIiIiIiIiIjR90MVBBERt3N24Tt48KDTC58+PBQREU9itcIrr8Crr9q3jSnK3x/efRfuvbeYrWIK\nffcdTJwI27c7Hw8JgRdegAcfBL/qcvdRRDxdgc3G9sJuIRYLP50+TUEZ3t+iRg37FjLh4QyoXZsA\nLy9+/uNneygk0cyu5F0uz3VNo2uIi4ojLjqO6DrRmC65aCsIoiCIiIiIiIiIVC/Z2dkOr6WkpBAZ\nGXnRawqCiIhHcxYEKY4uUSIi4om++QZuvRVOnXIcu/VW+PBDKLyH6FRBAfz3vzBpEpw44fyYVq1g\n2jQYPryUZImISNVjuaRbSHIZuoX4m0z0q12boWFhxIaFERUYyIG0Axc6hfxw+AdsLm5K0ya8zYVQ\nSPfG3fEyeSkIgoIgIiIiIiIiUr1c+pBIcRQEERGPpiCIiIgIHD0Ko0fDxo2OY23bwrx50K5dKZNk\nZcGbb8LUqZCb6/yYAQNg+nTo1OmKaxYRqYwKbDZ2ZGXZu4WkpvJjGbuFNC/sFhIWxsDQULJzU1mS\ntARzkplVv63irPWsS/PUD6rPiKgRDG06lPhO8fYXFQQRERERERER8XgKgoiIoK1hRERECuXlwdNP\nw9tvO44FBsJHH9k7hJTq8GF45hn4/HPn4yYT3H23fU+a+vWvqGYRkcouLS+PVWlpF7qF/HHunMvv\n9TOZ6Fu79oVgSCNvK98c+AZzopml+5aScTaj9EmKBCIUBBERERERERHxfNoaRkQE50EQd174RERE\nKpsFC2DcODh92nHsvvvsDT1q1HBhok2bYOJE+/86ExRk305m4kQXJxQRqdoKbDZ2nu8WssJiYWNG\nBtYyvL+Zv799C5nwcK4NDmT7sY0s3LuQRUmLOJZ5zPmbFARREERERERERESqPaPvhyoIIiJuZ/SF\nT0REpDL69VcYNQp27HAc69IF5s6FFi1cmMhmgy++gKeegiNHnB/TvDm88YZ9QRfbFoqIeIL0vDxW\nn+8Wstxi4UQZuoX4mkxcGxJCbFgYQ8JCyUnfy6KkRZiTzOxJ2fPngQqCKAgiIiIiIiIi1Z7R90MV\nBBERtzP6wiciIlJZ5eTAww/DjBmOYyEh8J//wIgRZZjsrbdgyhRw0poQgN697e1GunW77JpFRKoq\nm83GL9nZLE9NZbnFwg9l7BbSxN+f2LAwhoaF0awghdW/LsWcaObHAz8qCKIgiIiIiIiIiFRzRt8P\nVRBERNzO6AufiIhIZTd7tn1LmDNnHMcefxxefx18fV2c7PhxeO45mDXL3i3Emdtvt0/auPHlliwi\nUuVl5OezOi2NFRYLy1NTOVaGbiE+JhN9zncLaZ+fzo0tO9kHFAQRERERERERqZaMvh+qIIiIuJ3R\nFz4REZGqYPduGDkSEhMdx/r0se/+0qhRGSbcvh0mToTvvnM+HhBg307m8cdBN+9EpJqz2Wz8Lzv7\nwhYy32dkkO/qxyc5OTBsmP17BUFEREREREREqiWj74d6uWUVEREREREpk/btYcsWGDPGcez776Fz\nZ1i9ugwTdukC334L8+dDixaO4zk58NJLEBVlb0lSUHCZlYuIVH0mk4kOQUE82bQp6666itTevVnQ\nvj33NGhAY39/o8sTERERERERESmRgiAiIiIiIpVUUBB8/jm8/z74XfJEeUoKDB4Mr7xShsyGyQR/\n+Qvs2QNvvgm1ajkec+wY3HEH9OgBP/xwxecgIuIJavn4EF+3Lh9FRXG4Rw92de3K1BYtGFi7Nr4m\nk9HliYiIiIiIiIhcREEQEREREZFKzGSC+++3ZzKaN794zGaDF1+E2Fh7MMRl/v7wxBOwfz/cdx94\nOfmzYMsW+x40o0fDoUNXcAYiIp7FZDIRExTE402bsuZ8txBzTAwTGjSgqbqFiIiIiIiIiEglYLLZ\nXN3kVkqSnJxMZmYmOTk55OTkkJubi7Nfbd++fQ2oTqRyMXpPLBERkaoqLQ3uvBOWLHEca9QIvvoK\nevW6jIl37YLHHoNVq5yP+/vDo4/CM89AcPBlLCAiUj3YbDa2paTQLSLC/sIkwK/Et3iOc8Dr9m+z\nsrKoWbOmoeWIiIiIiIiIGMno+6EKgpRBVlYW27ZtY8eOHezYsYOkpCSOHTvGH3/8QX5+fqnvN5lM\nLh0n4umMvvCJiIhUZQUFMG0aTJoEVuvFYz4+8MYbMHGivZNImdhssGyZPRCSlOT8mIgImDwZxo0D\nb+/Lql9ExNNlZ2cTFBRk/0FBEBEREREREZFqyej7oQqClGLnzp0sXbqUlStX8tNPPzkEOcry6zOZ\nTFgv/bRepBoy+sInIiLiCb77DsaMgRMnHMfi4+GTT6B27cuYOC8P/vlPeOklewsSZzp1gunTYcCA\ny1hARMSzKQiiIIiIiIiIiIiI0fdDFQRxIj09ndmzZzNz5kx27tx54XVnvyqTi49a2my2cguCfPjh\nh2zcuLHU4+rVq8e0adOueD2R8mb0hU9ERMRTnDwJY8fC2rWOYy1awLx50LnzZU5uscDLL8MHH0Bx\nXe1GjICpU6F168tcRETE8ygIoiCIiIiIiIiIiNH3QxUEKcJisTBt2jTef/99srKyHIIfJYU+Svo1\nmkymcg2CfP/99/Tt27fUekwmE1u2bKFLly5XvKZIeTL6wiciIuJJrFZ7XuPVVx3H/P3h73+He+65\njK1iCiUlweOPw9Klzsd9feGvf4Xnn7/MFiQiIp5FQRAFQURERERERESMvh/q5ZZVKrmCggLeeOMN\nIiMjeeONN8jMzLwQ7DCZTBe+wB6wcPblTn369KFv377F1lK0nhkzZri1NhERERFxL29veOUVWL4c\nwsMvHjt7FiZMgDvvhOzsy1wgKgqWLIFvvoGYGMfxvDx4+21o1ark7iEiIiIiIiIiIiIi4hbVPgiy\nfft2unbtyqRJky4EQIqGP4wMfJTkmWeeAS4Oqlz6ZbPZmDNnDmfPnjW4WhERERGpaEOHws8/Q48e\njmOzZ0P37pCYeAULXH+9fYEPPwRnqfXUVHjgAejUCVasuIKFRERERERERERERORKVOsgyIcffkiv\nXr3YuXPnRQEQoNIFPy41ZMgQ2rRpc+Hn4gIrmZmZLC2ujbeIiIiIeJQmTWD9enjkEcex3buha1eY\nM+cKFvDxsbcY2b8fnngC/Jzsd7BnD8TGwrBhsHfvFSwmIiIiIiIiIiIiIpejWgZB8vPzueeee3jg\ngQc4d+7chRAIVP4ASFH333+/S7V++eWXbqhGRERERCoDPz+YPh3mzYNatS4ey86GsWPh/vvt28Zc\ntpAQePNNe+jj5pudH7N8OXToAA8+CKdOXcFiIiIiIiIiIiIiIlIW1S4IkpeXx6hRo/jkk08u6gJS\nlQIghcaNG0dAQADAhSBLUYXntWzZMnJyctxdnoiIiIgY6OabYds2+04tl/rnP6FPHzh48AoXadnS\nnjj59lvo3Nlx3GqF99+H1q3t6ZRz565wQREREREREREREREpTbUKghSGQBYtWuTQBcQVhaGR4r7c\nLTg4mOHDhzutv+hrOTk5rFmzxp2liYiIiEgl0KoV/Pgj3H2349jWrdClCyxZUg4L9etnn3DmTKhf\n33E8PR0efRRiYmDRIqhiAWwRERERERERERGRqqRaBUEefPBBFi9eXKYuIJcGPQrf4+zLCGPHjnXp\nuGXLllVwJSIiIiJSGQUEwL//DbNm2b8vKj0dhg+Hp56C/PwrXMjLC+66C/bvh+eegxo1HI/Zvx/i\n4mDQINi58woXFBERERERERERERFnqk0Q5KOPPmLGjBkudwFxFv7w8/Nj0KBBPP3003z55Zds2rSJ\nI0eOkJGRwdnzm6y7uzNIbGwstWvXLnbtwsDLihUr3FqXiIiIiFQud94JP/0Ebdo4jr35JgwcCMeP\nl8NCQUHw6quQlAQJCc6PWbvWvpXMPffAyZPlsKiIiFQmA/4zgH/89A9OZukaLyIiIiIiImIEk82o\nVhZutGfPHrp06UJeXh7gWgik8Dhvb2+GDRvG3XffzfXXX0/ApY9RFuHl5XUheHHpfIVb0Vit1is8\nG0djxozhq6++KnXtQ4cO0aRJk3JfX6SsUlJSqFev3kWvJScnU7duXYMqEhERqT4yM+35iy+/dByr\nVw/mzLGHQsrNjz/CxIn2FIozwcEwaRI88ojzLiIiIlVMdnY2QUFB9h8mAX6GluM+54DXz39//ry9\nTF4MjBzI2JixxLeNp3aN2gYWKCIiIiIiIuI+Rt8PrRYdQe69917OnTsHlBwCKbplDMCtt97K3r17\nWbRoEcOHDy8xBGKkYcOGuXTchg0bKrgSkcuXnZ3t9EtERETKV3CwPezx3nvg63vxWHIyXH89TJ4M\nBQXltGDPnrBxI3z2GTgLJWdmwjPPQNu2MHcuVPGcus1m49ChQ2zevJn169ezcuVKVq5cyfr169m8\neTOHDh0ybFtJERF3K7AVsPrAasYvHk/EtAjiv4xn7u655OTlGF2aiIiIiIiISLmpjPc5Pb4jyIwZ\nM5gwYYLTbhlFFe0C0rJlSz7++GP69u1bprWM6giSnJxM/fr1S137vvvu4/333y/39UXKylkCrjge\nfokSEREx1ObNcMst8PvvjmNDh8Ls2VCnTjkueOYMvPUWTJli/96ZPn1g+nTo2rUcF64YNpuNgwcP\nsm3bNrZu3cq2bdvYvn07aWlpJb4vNDSUq6+++qKvyMhIt28zKSIVQx1BKPW8g/yCiI+OJyEmgUEt\nBuHr7Vv8wSIiIiIiIiKVnKuf67mzI4hHB0Hy8/Np2bIlR48eBYq/oVw0BDJs2DA+//xzatWqVeb1\njAqCALRp04bffvsNuPg8i9bTrVs3fiquJbeIGykIIiIiUnlYLHDHHfD1145jjRvDV1/Zm3qUq+PH\n4dlnYdas4o+54w54/XVo1KicF79yx44dY8aMGcyYMYPjx487jPsBDYAAoHCzm1wgBziB/V7ppRo2\nbMg999zDvffeS8OGDSuochFxBwVBgOkDIGsTWEvv/FEnsA6j2o0iISaB3k1742WqFs1rRURERERE\nxIMoCOJmM2fO5O677y6xG0jRkMZtt93GrFmzLvtJPCODIHfeeSezZ892WL9oyCUwMJDMzEw9aSiG\ncxYEOXjwoNMLX82aNd1VloiISLVVUABvvmnPZly6JYyPD0ybBg89BOX+z8ht22DiRChuC8PAQHjy\nSXjiCfv3BrLZbKxbt44PPvgAs9l84d/1fkBH4OoiXzEUf9/3HPA/YNv5r63ALv4Mh3h7exMfH8/9\n999P//799W93kSpIQRBg2TLwM0Hqj5C8BiybwZZX6hRNajVhTMwYEmISuKr+VboGioiIiIiISJXg\nbBuYlJQUIiMjL3pNQZBy0qFDB3bv3l1sEKRoQCM+Pp558+Zd0XpGBkE++OADHnzwwVLX37NnD1FR\nURVSg4irnAVB3HnhExEREefWr4cxY+CPPxzHbr4ZPv4YQkLKeVGbDRYssIc9Dh50fkyjRvbtZMaO\nBS/3Pilus9mYM2cOr776KomJiRde7wv8PyAe8L/CNc4CC4EPgKKRmOjoaJ5//nkSEhJ0M1SkClEQ\nBHsQJCDgz7G8TDj1HSSvhfQdQIGTCS4WFR7F2A5jSYhJoHV464qoWERERERERKTCGH0/1GP7be7a\ntcvlEEi7du3473//a0CV5ad9+/YuHbd3794KrkREREREqqp+/eDnn6F/f8ex+fOha1fYubOcFzWZ\n7CmTPXvgjTcgONjxmGPH4PbboUcP2LixnAso3okTJxgxYgS33noriYmJBAH3Y+/gsR4Yw5WHQDg/\nxxjgO+AX7AGTICAxMZFbb72VuLg4Tpw4UQ4riYi4h0N0zTcYGtwAnd6CHl9BywcguG2JcySlJvHi\nty/S5r02dJvRjbd/fJtjp49VWM0iIiIiIiIinsRjgyCff/55sWNFn6bz8vJi5syZBBrcavpKudrl\n42BxT1mKiIiIiAD168OqVTBpkuPYr7/asxgff2xv5FGuatSwbwOzfz/ce6/zzh9btkDv3va2Jb//\nXs4F/MlmszF79mzatWvHkiVL8AVeBY4D72Pf+qWidMDeGeT4+TV9gcWLF9O+fXs+/fTTYre8FBGp\nTH7t0YMP27RhUGgo3pcO+odD45HQ5QO45lNofjcENitxvq3Ht/LYN4/RZHoTBvxnAB9t+whLjqXC\n6hcRERERERGp6jw2CLJkyZIS2ycXdgMZP348Xbt2dWNlFaN+/frUqlULoMTzVhBERERERErj4wOv\nvQZffw1hYReP5ebC//0fjBsHZ85UwOIREfCvf8GOHTBokPNjvvwSoqLsaZXMzHJdvrALyB133EF6\nejpXA9uB5wAnvUoqTPD5NbcDVwNpaWncfvvt6g4iIlVChJ8fExo2ZFWnTvzRqxcfR0URGxaG76Wf\nVwQ0gma3QdeZcPW/oclY8I8odl4bNr499C0Tlk6g/rT63DTnJj7f9TlZ57Iq+IxEREREREREqhaT\nzQMfKUtLS6NOnToXfi56ioUhCZvNhq+vL/v27aNZs5KfPHGVl5eX061oim5DY7Vay2UtZ2JiYi5s\n/XLpOReuP2LECBYsWFBhNYi4wug9sURERMR1hw/DLbfATz85jsXEwLx59kxGhbDZ7GmUxx6Dffuc\nHxMRYU+t3HUXeDs8d14mu3fvZvDgwRw/fhxf4EXgSexdOYyUB7wBvHL++4YNG7Jq1SratWtnbGEi\n4lR2djZBQUH2HyYBfoaW4z7ngNft32ZlZVGzZk2HQ9Ly8liSmsr8lBRWWiycdfaRlM0Gp3dD8lpI\nWQd56aUuHegbyPCo4STEJDC01VD8vKvLL11EREREREQqK6Pvh3pkR5AffvjhQhDCWc6lMBQxZMiQ\ncguBVAYRERGltopOSUlxUzUiIiIi4gmaNoXvvoOHHnIc+9//oGtXe4OOCmEywY03wq5d8M47EBrq\neMzJk/YWJV27wrp1l73Uli1b6Nu3L8ePH6ctsA14FuNDIGCv4TnsNbUFjh8/Tt++fdmyZYuxhYmI\nlFGory931K/Pog4dSO7dm8/btuUvdeoQUHQ7MJMJQmKg9UPQcx50eBMihoK3Y7Ck0Jm8M3zxvy8Y\n8cUI6k+rzz2L72HdwXVYCyruYRwRERERERGRyswjgyA///yzS8clJCRUcCXuVb9+/WLHCruCKAgi\nIiIiImXl5wfvvgtffQXBl+yPkpUFY8bAX/8KZ89WYAEPPwz799sXctb5Y8cOGDgQ4uPh11/LNP2W\nLVu47rrrsFgsdAM2AB3KpfDy1QF7bd2A1NRUrrvuOoVBRKTKquXjQ0JEBPNjYkjp3Zu57doxum5d\nal4UCvGGsG4Q/RT0WgDtXoY6/cBUfEwvLTeNf//8bwb+dyBNpjdh4oqJbD62udQHZ0REREREREQ8\niUcGQQ4cOODScQMHDqzgStyrVq1apR6Tnl56S1UREREREWdGjYKtW6GDk5TEe+/BtdfC779XYAHh\n4fD3v9tbkdxwg/NjzGZo1w4efxxc+Lfv7t27GTp0KJmZmfQD1gDh5Vp0+QrHXmNfIDMzk6FDh7Jn\nzx6DqxIRuTI1vb0ZWa8eX7RvT0rv3phjYrgtIoJaRYN/Xn5Qty+0fwl6LYSopyG0GyV9tHUi6wTv\n/PQO3f/dndb/aM3za59nb8reCj8fEREREREREaNVqyCIyWS68H3z5s2JiIhwV0luUaNGjVKPyc3N\ndUMlIiIiIuKp2rSBTZtg3DjHsS1boHNn+PrrCi4iOhqWLoWVK6F9e8fxvDx46y1o3Ro++ADy851O\nc+LECQYPHozFYuEaYAkQ7PTIyiUYWIq9M4jFYuH666/nxIkTBlclIlI+Ary9GVGnDrPbtiW5d2+W\ndujAuPr1CfXx+fMgn5pQfwh0fNO+fUyrh6FWTInz/pb2G5M3TKbdB+246sOrePOHNzmccbiCz0ZE\nRERERETEGB4ZBDl27NhFoY+ibDYbJpOJ1q1bu7mqiudKEORshfXrFhEREZHqIjAQPvnE/nXpP0HT\n0uDGG+GZZ4rNX5SfwYPtW8L8859Qp47j+KlT8MAD0KmTPTRShM1mY8KECRw/fpy2wDKqRgikUDCw\nHGgLHD9+nPvuu0/bHoiIx/H38uKG8HA+iY7mZK9erOzYkXsaNKCOb5GtYfxCoVEcdP4HdJ8DkfdC\nzZYlzrvz5E6eWv0Uzd5pRp9P+vDBlg9IydZWuiIiIiIiIuI5PDIIkpWVVeoxzZo1c0Ml7lVc+KWo\nvLw8N1QiIiIiItXBuHHw00/2xhuXmjIFBg2CCm9U4eMD990H+/fbt4MpenOw0J49MHQoDBsGe+1b\nAnz22WcsWbIEX+BLKvd2MMUJx167L7B48WI+++wzgysSEak4vl5eDA4L46OoKE707MnaTp24v2FD\n6vv5/XlQjfrQNAG6/hu6zoKmt0ONhiXO+8ORH3hg2QM0eKsBQz8dyn93/pfTZ09X7MmIiIiIiIiI\nVDCPDIKcOXOm1GOCg6vS836ucWXbF7+iH5CIiIiIiFyhjh1h61YYNcpxbP16+1Yx69a5oZDatWHq\nVHvoIz7e+THLl0OHDpwYP56H/vpXAF4EOrihvIrSAXjh/PcPPfSQtogRkWrBx8uLAaGhvN+mDUd7\n9mTDVVfxcKNGNPb3//Ogms0gcjxc8yl0/ic0Ggl+xcf+rDYrK39byZ3mO4mYFsHIr0ayYO8CcvO1\nxa6IiIiIiIhUPR4ZBMnJySn1GFe2UalqXDnvgIAAN1QiIiIiItVJrVrw5Zfw9787NuQ4edLeGeT1\n16GgwA3FtGoFCxbY0yedOzsM26xWJsycSVp6OlcDT7mhpIr2FNAFSEtL0xYxIlLteJtM9Kldm3da\nt+b3Hj34sXNnHm/ShOaFn/uYTFArGlo9AD2+hI5vQ/0bwKf4B4Ry83OZv3c+N391MxHTIhi3aBzf\n/PYN+QUVveeZiIiIiIiISPnwyCCIK10vXAlNVDUpKaXvZxsYGOiGSkRERESkujGZ4K9/hQ0boEmT\ni8cKCuDZZ+GmmyA11U0F9e8PW7bAJ59A/foXXp4DLAH8gFmAj5vKqUi+2M+lcIuYOXPmGFuQiIhB\nvEwmeoSEMLVlSw50787Wq6/mmaZNaVX4UIzJG0I7Q9Tj0HM+tH8N6g4Er+IfFjp99jSzdsxiyKdD\naPR2I/667K9sPLJRoTsRERERERGp1DwyCFKzZs1Sj3Fl+5iq5ujRo6UeExQU5IZKRERERKS66t4d\nfv4ZYmMdx5Ytgy5d4Kef3FSMtzeMGwf79sGzz2Lz9+fV80PPAzFuKsMdOmA/J4DJkyfrBqVIZXGu\nmn1VIiaTiauDg3m9RQv2XXMNO7t25flmzWhX+ICMly/U6QXtnodeCyD6WQjraQ+LFCM5O5n3trxH\n7096E/luJM+sfoZfTv6ia66IiIiIiIhUOiabB/61GhkZyeHDhwEu+mPcZDJhs9kwmUzcdNNNmM3m\ncl3Xy8vrwhpFFV3XarWW65pFNWjQgOTkZKD48+7Xrx9r166tsBpEXJGSkkK9evUuei05OZm6desa\nVJGIiIiUt4ICmDIFnn/ecUsYX1+YNs3eQcRkcl9N6+bMYeDYsQQBx4HiNwWomk4DjYAsYN26dfTv\n39/YgkSqqezs7Gr/EEZWVpZLD+kYZU92NvNTUpiXksIv2dkXD+ZlQMp3kLwWMnYCpX9s1r5uexJi\nEkjokECL0BYVU7SIiIiIiIhUKUbfD/XIjiAhISElPo1hs9k4cuSIGyuqeMnJyZw8eRKgxHNv2rSp\nu0oSERERkWrMywsmTYLVqyEi4uKxvDx4+GEYPRpOn3ZfTe/Pnw/AHXheCASgFnD7+e/ff/99I0sR\nEanU2tWsyfPNm7OzWzf2XXMNf4uM5OrC8I5vCDS8Ca6aDj2+hBb/D4KjSpxvd8punlv3HC3/3pIe\n/+7Bu5ve5UTmCTeciYiIiIiIiIhzHtkRJC4ujsWLFzt05zCdf9zQZrMRGBjI6dOn8fIqvyyMkR1B\nVq5cSWxsbKnrP/vss7zyyisVUoOIq4xOwImIiIh7nTgBCQmwfr3jWOvWMG8edOxYsTUcO3aMZs2a\nYbVa2YVnbQtT1C6gI+Dt7c3hw4dp2LCh0SWJVDs2m80jt6Mti8DAwAufwVQlB3NyWHDqFPNSUth0\naVLxzFFIXmP/yin94SIvkxcDmg8gISaBv7T9C6EBoRVUtYiIiIiIiFRGRt8P9XHLKm7WooXzNpyF\nYQiAnJwc9uzZQ0yMZ3wEvG7dOpeOa9myZQVXIiIiIiJysQYN7J1BXngB/va3i8f274fu3eH992H8\n+IqrYcaMGVitVq7Fc0MgAB2APsD3ViszZszgxRdfNLokkWrHZDJV6m1RpHiRAQE81qQJjzVpwpHc\n3AuhkB8yMrAFNobmd0KzOyDrV3sgJGUtnE0p3tCPAAAgAElEQVRxOleBrYA1B9ew5uAa7l92P7Gt\nYkmISeCmqJsI9A1085mJiIiIiIhIdeORW8NERka6dNyaNWsquBL3WbZsmUvHde3atYIrERERERFx\n5OMDr78OS5ZA6CUPRefmwt1324MgFfEQvc1mY8aMGQDcX/7TVzqF5zhjxowSt40UEZHiNalRg4cb\nN2ZD584c69mT91u3ZkDt2niZTBDcGlreB92/gE7vQsPh9i1linHOeo5FSYsYM38M9abW47YFt7Fs\n/zLyrHluPCMRERERERGpTjxya5jvv/+evn37lrpNyoABA1i9enW5rWvU1jD79u0jOjq62LXB/uF3\nUFAQGRkZVbI9q3gWo1shiYiIiLEOHYJbboEtWxzHOnSwbxXTpk35rXfgwAFatmyJH3Aa8C+/qSul\ns0AwkIf93F0NyouISOmSz51j0flOIWvS0rjwKU9BPqRtg5Q1cOp7sOaUOld4QDgj241kbIex9Gna\nBy+TRz6vJSIiIiIiUi0ZfT/UI//C7NatG35+fgBOQw+FgYn169dz+PBhd5dX7gqfbixOYQilS5cu\nCoGIiIiIiOGaN4cNG+DBBx3Hdu2Crl1h7tzyW2/btm0AdMTzQyBgP8eO578vPHcRESkf9fz8uKdh\nQ1Z26kRy797MjIrihrAwfL19Ibw7RE+Cngug3YtQ51ow+RY7V2pOKv/a9i/6zepHs3ea8fg3j7P9\nxHZ1cxIREREREZEr5pFBEH9/f7p06eL0D+eirxUUFPCvf/3LnaWVu6ysLGbOnOlSwOO6665zQ0Ui\nIiIiIqXz94d//AO++AKCgi4ey8y0dwx56CE4d+7K1yoMQ1x95VNVGYXnqiCIiEjFCfP15a4GDVja\nsSPJvXoxOzqaEeHh+PsEQN3+0P4V6LUAop6E0K6U9DHc0dNHeevHt7j6o6uJfj+al759iaRTSW47\nFxEREREREfEsHhkEgdJDD4VdQd577z1OnTrlpqrK31tvvYXFYgEo9YmRuLg4d5QkIiIiIuKy0aNh\n61aIiXEc+8c/4Npr4fffr2yNrVu3AtUzCFJ47iIiUrFq+/pyW/36mDt0IKV3b75o146RdesS6FcL\n6sdCx6nQcy60+isEtytxrn2p+3h5/ctEvx/N1R9dzVsb3+Lo6aNuOhMRERERERHxBCabh/ab3LVr\nF506dboQ+LhU4esmk4l77rmHDz/88IrX9PLycrpe0bWsVmsx7y67I0eO0L59e7KzswHHIEhhlxCb\nzUaLFi349ddfy21tkSth9J5YIiIiUvmcOQMPPACzZjmOhYXB7NkwbFjZ57XZbISHh5OWlsY2oMuV\nFlpFbAO6AqGhoaSmpmqLSBERg5yxWllhsTAvJYUlqalkFX4ulHMCUtZC8hrIPljqPCZMXNvsWsbG\njGVku5GEB4ZXcOUiIiIiIiJyJYy+H+qxQRCA9u3bk5iYCDjvllE0oLFixQquv/76K1rP3UGQwYMH\ns3r1apfCLk8//TSvvfZaua0tciWMvvCJiIhI5fXJJ/ZASG6u49ikSfDyy+Dj4/p8hw4dIjIyEj8g\nE/Arr0IrubNAMJAHHDx4kObNmxtbkIiIkGu18k1aGvNTUlh06hQZhZ8RZR2wB0JS1kLuH6XO4+Pl\nw+CWgxkbM5YR0SMI8gsq9T0iIiIiIiLiXkbfD/XoIMiUKVOYNGlSiUEJsIdE6tWrx+bNm2natOll\nr+fOIMjkyZN54YUXXDo3Hx8fDhw4QOPGjctlbZEr5ezCd/DgQacXvpo1a7qrLBEREakkdu6EkSPB\nWUO7/v1hzhyoX9+1uTZv3kz37t1pBhwqxxqrgmbAYey/g27duhldjoiIFHGuoIA1aWnMS0nBfOoU\nlvx8sNkgcy8kr4bkbyEvrdR5AnwCGB41nISYBIa2Goq/j3/FFy8iIiIiIiIXKdzBo6iUlBQiIyMv\nek1BkHKSkZFB06ZNycrKAorvClI41q5dO7799lvq1KlzWeu5Kwjy+eefc/vtt1/4ubRuIPHx8cyb\nN++K1xUpL86CIMXx4EuUiIiIlCAjA+6+G+bPdxyrXx+++AL69St9nvXr19O/f3+igb3lXmXlFg0k\nYf8d9O3b1+hyRESkGHkFBaxPT2deSgoLTp0iJS8PbFZI32EPhaRsAKvjh4qXql2jNje3vZmEmAT6\nN++Pt5e3G6oXERERERERV7dldmcQxMstqxgkJCSECRMmlHgjuXDMZDKxZ88e+vXrx/Hjx91VYpn9\n5z//4a677rrwsys3yR977LEKrEhEREREpPyFhMDcufDOO45bwfzxBwwcCH/7GxQUlDxP7vk9ZmpU\nUJ2VWeE55+TkGFqHiIiUzNfLi0FhYXwYFcWJXr349qqreLBxUxpE9ISop6DXAmj/KtTtB17Fb3KW\nnpvOxz9/zKDZg2g8vTGPrHiEn47+pAcsREREREREqiGP7ggCcPLkSdq0aVNiVxBw3Cbmiy++oH//\n/mVaqyI7ghQUFPDCCy8wZcoUCgoKit0S5tL1RowYwYIFCy5rTZGKoq1hREREpCw2bYJbboEjRxzH\nbrgB/vtfCAtz/t6VK1cydOhQrgJ+rtAqK5+rgJ3AihUrGDJkiNHliIhIGRXYbPx4+jTzU1KYl5LC\nkbNnIf8MpH4PyWvBsgUoJREJtAhtQUJMAgkxCbSv177iCxcREREREalmtDWMQd555x0effTREsMT\ncHEYxNvbm/vvv5/JkycTHBzs0joVFQTZtWsX9913H5s2bbowT2GdJZ2Dn58fu3fvpmXLlmVeU6Qi\nOQuCuPPCJyIiIlXPqVNw++2wYoXjWLNm8NVXcM01jmPaGkZbw4iIeAKbzcaWzEzmpaQwPyWFA7m5\ncC4dTq23h0IyfnFpno4RHUmISWBMzBia125esUWLiIiIiIhUY0bfD/XorWEKPfTQQ1x11VVAyfvz\nFN0mxmq18t5779GqVSumTp3qNMVT0fbt28f//d//0aVLF5dCIIUKj3v00UcVAhERERERj1CnDnz9\nNUyeDF6X/BXz++/Qpw+89x5c+s/kgIAAAE7yEIdp4qZqjXeYJpzkIeDP34GIiFRdJpOJa2rV4s2W\nLfm1e3e2X301k1p1pE3LMXDVu9D9C2gxAYJalzjPLyd/4Zk1zxD5biS9P+nNe5vf42TWSTedhYiI\niIiIiLhLtegIAvDLL7/Qs2fPC3uEu9oZpPDnoKAgbrnlFhISEujbty8+l25UTvl0BDl16hRLlixh\nzpw5rFmzxqGOkmovuk6XLl348ccfndYpYjSjE3AiIiJSta1dCwkJkJzsODZ6NMyYAYVN/Q4dOkRk\n5HTgXSL5jW8ZQFOc7DHjQQ7ThP6s4yAtgYc5eHAizZs3N7osERGpADabjd3Z2cw7v33M7jNn4Mxh\nSF5j7xSSc7TUObxMXgxqMYiEmATio+MJqRHihspFREREREQ8m9H3Q6tNEAT+P3t3HlZ1ue///7kY\nBUREWA6YA86zFU6VqWmWVpomzpg2mGUqnX1Ond+3drvatdtTu7PRMttWtkMcwtnSdmpOmTmXhprz\njAoiCsjM5/fHR8wBWAtlrQ/C63FdXJcs7vvzeS+W181wv3jfEBsby+jRox0eEQPXdg65PogREBBA\nt27d6NChA3fffTeNGzemfv36BAUFOQyC5OXlkZmZyaVLlzhz5gwnTpzg8OHDbN++na1bt7Jr1y4K\nCgqKvK+z4ZWAgAC2b99O06Yl/xWIiFWsXvhERETk9nfqFAwbBuvX3/ixZs1g3jxo29b8/jg4uB0X\nLiwCGtOIg6yuwGGQY9TjAVZziMbAQYKCBnD+/M4SOyOKiEjFsTcjg/nJycxLSuKntDRI33c5FLIa\ncpIdzvf19OXRZo8yvM1wHm36KH7e6iolIiIiIiJyM6zeD61UQRAwj4n54IMPnAqDQNGBkOsfL+rj\nzlzP0fzi7l3cNQ3DwNPTk7lz5/LEE084rEXEKlYvfCIiIlIx5OXB738Pf/3rjR/z84OPPoLRo+HB\nBx9k1ap9hLKa5AocBrk6BBLKQZJ5gAcfbM6KFSusLk1ERCxw4NIl5icnMz8piS0XU+HCLjMUkrQW\n8tIczg/0CWRgy4GMaDOCXo164eWhrrMiIiIiIiLOsno/1MPxkIolJiaGqKioKx06HDEM45rOHIVv\nhY9f/eaMouY5cw9nrmuz2YiJiVEIREREREQqBS8v+MtfYMkSqF792o9lZsKYMfDss9C+fRfgOA/x\nAI04yCEa8wCrOUY9K8p2iatDII04yEM8ABynQ4cOVpcmIiIWaeLvz//Wr8/miAgOd7mXf0QM4p4O\nb8E986HNu1CzF3hUKXZ+Wk4aX/z8BX3i+lDnH2G8+PWLbDi2gQKjwI3PQkRERERERG5GpesIAlBQ\nUEBUVBRz5sxx6tiV6xUXILnVjiCluc711zMMgzfeeIM33njD6bkiVrE6ASciIiIVz+HDMGQIbN16\n48caNEjl6NGOdOAA868LTFSEziDXh0BW8wBPcJxtQHx8PJGRkVaXKCIi5ciJrCwWXj4+Zl3KaTi3\n0ewUkrIZjDyH8++oVp8RbYYxou0I2tVqp+PHREREREREimD1fmilDIKAGQb5r//6L6ZMmXJTYRCr\nXf9D9vvvv090dLRF1YiUjtULn4iIiFRM2dnwu9/B1KlFffQiXjxFOgs4U4HCIEWFQGpxnEAgFzh0\n6BDh4eFWlykiIuXU6exsFl0OhXyXdAwjeb0ZCkn9CXD8e7JmIS0Y1W4kw9sMp3GNxq4vWERERERE\n5DZh9X5opQ2CFPrkk0+YMGECubm5Vx4r75+Sq4Mrvr6+fP755wwdOtTiqkScZ/XCJyIiIhXbnDnm\nkTAZGTd+rA//ZDGvcJrat30YpKgQSH2OMxsYAdT18eH4Bx9gGzz4xrNzRERErpOUk8Pi5GTmJyez\n4vR+8s+uNkMhaXudmn9nnQ6MbjeSoa2HUiewjourFRERERERKd+s3g+t9EEQgM2bNzNmzBj27t17\nTaeN8vipuToE0qpVK2bPnk3btm0trkqkdKxe+ERERKTi27sXIiMhIeHGj3VhI18yBAPbbRsGKS4E\nAnA/8D3wJvAGgK8v9OsHo0ZBnz7g42NZ3SIicns4n5vLknPnmJ+UxDcndpJ79jszFHLpqMO5Nmzc\nU78bT7WPYlDLQQT7BbuhYhERERERkfLF6v1QBUEuy8nJ4c033+S9994jLy+v3AVCrg6A2Gw2xo8f\nz9///neqVKlicWUipWf1wiciIiKVQ0YGvPACxMbe+LEQkplJFK3YfduFQUoKgewC2gGewDEg7PrJ\nISEwbJgZCunUCa47clJEROR6F/Py+OrcOeLPnmXZ8S3knF4BZ1dD9hmHcz09vOkR3ptn7xxFv2b9\nCPAJcEPFIiIiIiIi1rN6P1RBkOvs3buX119/nQULFlwJXRRy96eqqHv36NGDf/zjH9x1111urUWk\nLFm98ImIiEjlYRjwyScwcSJkZ1/7MRsFvMafeJpPeZBVt0UYpKQQCMB44CMgEoh3dLFmzSAqynwL\nD3dd0SIiUmGk5+WxPCWF+LNnWHpoHVlnVkDSWshNdTjXx8ufh5o+xrg7R/FQ44fw8VSHKhERERER\nqbis3g9VEKQYP//8M++88w5LliwhNzf3mlBGIVd86q6/T+E9unbtyssvv0y/fv3K/J4i7mb1wici\nIiKVz44d8Nhjlzh1yv+Gj/VkFX/jZYYQX67DII5CIBeBukA6sPqtt+ixYwd8/TXk5jq+eNeuZpeQ\nwYMhWC38RUTEscz8fP6TksKXZxJZdGAFmae/heTvIf+Sw7l+vtV5rPlAxt/1JN0adMPD5uGGikVE\nRERERNzH6v1QBUEcSEpKYsaMGcyYMYNff/31yuNFBUOuVtKn1dm51apVIzIykgkTJnDnnXeWomqR\n8s3qhU9EREQqp9RUg3r1VpKe3vuGj9XhFDFM4v/jr+UyDOIoBALwNvAHoGXLliQkJJg/d5w7B19+\naZ6Ps3Gj4xv5+EC/fmYopG9f830REREHsgsKWJGSwpzE4yzc9xWXTq+Acz+C4TiMGOhXiwGtBjPx\nrifpENbB4e/NREREREREbgdW74cqCFIKBw4cYNmyZSxfvpwffviBtLS0G8aU5ofVoj71jRo1onfv\n3gwYMICePXvi7e19SzWLlEdWL3wiIiJSecXFzSIqagvwN+Da77U9yeNl/saXDC1XYRBnQiC7gAgg\nF4iLi2PEiBE3XujAAZg503w7eNDxjWvUgKFDzVBIly6gjTkREXFCTkEBq1NTmXXyEPP3LiQj8Vs4\nvx0ocDg3OLAhg1oN5XcRo2lpb+n6YkVERERERFzE6v1QBUFuwf79+9m+fTs///wzhw8f5sSJE5w4\ncYLExERycnKKnefj40PdunWpX78+9evXp0mTJnTo0IFOnToREhLixmcgYg2rFz4RERGpvAzD4PHH\nH2fp0mS8+ZJc7rhhTC9WcJAmHCHc8jCIMyGQXKALsB3o378/ixYtKjmgbhjw449ml5C5cyElxXEh\nTZpAVJT51rjxrTwlERGpRPIKClh34QJfHNvDgj3zSEv8Fi4mODW3ZnArBrcexssRo2lQvb6LKxUR\nERERESlbVu+HKgjiInl5eWRmZpKVlUV2djbe3t74+/vj5+eHl5eX1eWJWMrqhU9EREQqt8TERFq3\nbs358540YSYHePiGMXdwDAMPTnKHZWEQZ0IgAO8ArwPBwcEkJCRQp04d52+SkwPLlpmhkK++Mt93\n5N57zS4hQ4aYXUNERESckG8Y/HDhAp8d3sGC3V9yMfFbyDjk1NwweweGtRnGKxFPUitAvzsQERER\nEZHyz+r9UAVBRMTtrF74RERERGbOnMmoUaPwwoPneI2PeBMDj2vGeJNNEBdJxu72MIizIZCdQAfM\nriCxsbFERUXd/E1TUiA+3gyFbNjgeLyPDzz6qBkKeeQR8PW9+XuLiEilUmAYbLp4kWn7f2DR7rlc\nTFwBWaccT7R5Ur/2fYxoM5xX7hpOsF+Q64sVERERERG5CVbvhyoIIiJuZ/XCJyIiIvLbETFLaQm8\nQy+eZxZJ1LxhbABpZBDotjCIsyGQc8D9wB6cPBKmNA4dgpkzzVDIgQOOxwcHmx1CRo0yO4aUVR0i\nIlLhGYbB1osXmbJ3JUt2f8mF0yshx4ljyzx8CK/bk1FtR/By+0iq+vi5vlgREREREREnWb0fqiCI\niLid1QufiIiICJhHxHTo0IFTp07REYgljGeZw/fcf8NYb3LIxcflYRBnQyBpQC9gCxAWFsbWrVtL\ndySMswwDNm82AyFz5sC5c47nNGoEUVFmKKRJk7KvSUREKizDMNiRdpH3f1nKV3viuZC4CvIzHM6z\neVWlcb2HeLLtcH7Xtj8BXj5uqFZERERERKR4Vu+HKggiIm5n9cInIiIiUighIYFu3bqRkpJCd2AB\nXvyFP/F3XrlhrI0CDDxcFgYpTQjkMWAdEBISwrp162jVqlWZ1lKknBz45hszFLJ0KWRnO57TpYsZ\nCBk6FEJCXF+jiIhUKD9dSOFvP89j2d55XDizDgocf+2x+dSgWf2+PNVuJBNb9sbfy8sNlYqIiIiI\niFzL6v1QBUFExO2sXvhERERErrZlyxZ69epFWloaHYHlwPf0ZzT/5gLVi5wTziHW0KPMwiDOhkCS\ngb7AViAwMJBVq1bRsWPHMqmhVFJTIT7eDIWsX+94vLc3PPKIGQp57DHw9XV9jSIiUqFsSz3DX7fP\n4T9747mY/CMY+Q7n2KrUoXmDR3m2fRTPN+tKgKenGyqtXPLy8li0aBEAAwYMwEvBGxERERERwPr9\nUAVBRMTtrF74RERERK63ZcsW+vTpQ0pKCi2BuUAA4Qwmnu1EFDmnHkf5nvtvOQzibAhkJzAM2IPZ\nCeSbb76hQ4cOt3TvMnH4MMTFmaGQffscj69eHYYMMY+P6doVbDbX1ygiIhXK1nPH+fO2maz4dR5p\nKdudmmMLCKdlw/6MbT+Cp8PvploFCiwYhsGlS5csufd3331H//79AViyZAk9e/a0pA5/f39s+p5C\nRERERMoRq/dDFQQREbezeuETERERKcru3bvp3bs3p06dwhv4AxCNL6/wf0zjhSLn1OI0m+l002EQ\nZ0IgucBfgLcv/zssLIwVK1a45ziY0jAM2LrVDITMng3JyY7nNGxoBkJGjYJmzVxeooiIVDybzh7g\n3a3/ZtW+eWRc2OvUHFu1VrQO78/YdiMYVa8Fwd7eLq7StTIyMqhatarVZVgqPT2dgIAAq8sQERER\nEbnC6v1QBUFExO2sXvhEREREipOYmMjzzz/PkiVLALgb+Dewk+E8x7/I4MZNliBS2cbdNOZwqe7l\nTAhkFzAGKPxb5/79+zNt2jTq1KlT2qfmXrm58J//mKGQxYshO9vxnE6dzEDIsGEQGur6GkVEpMJZ\nd2oXf9k6gzX7FpCZcdSJGR7Ygu+idXh/nms7hOFhjQj18XF5nWVNQRAFQURERESk/LF6P1RBEBFx\nO6sXPhEREZGSGIZBXFwckyZN4vz583gDrwN9aMEY5rGb1jfM8SWLNXSnC5uduoejEMhFIIbfuoAE\nBwczZcoURowYcfu1Pb9wAebNM0Mha9c6Hu/lBX37mqGQfv2gShXX1ygiIhWKYRisPL6Zv2/7nHX7\nFpCdddbxJJs3hHShTcN+jG0zkKF16lPrNgmFXBME+R/g9ij71uUA75n/VBBERERERMobq/dDFQQR\nEbezeuETERERcUZiYiLjxo1j6dKlAFQFhuHPaabxFaNuGO9BPp8zmlHElXjdkkIgu4CpwEwg/fL4\n26YLiDOOHoW4ODMUsteJ9v3VqsHgwWYo5P77wcPD9TWKiEiFUmAU8PWhNfxj2+f8cGAJubkXHE/y\n9IPQrrRp2J9nWj3K4Fph1PX1dX2xN+maIMirVK4gyLvmPxUEEREREZHyxur9UAVBRMTtrF74RERE\nRJxlGAazZ8/mnXfeYc+ePVceb8JYjjCFPK7fFDKI5p/8g//Bk4IbrldUCKQWx1mAGQD5/qqxLVu2\n5Pe//z3Dhw+//bqAOGIYsG2bGQiZPRuSkhzPadAARo40QyEtWri+RhERqXBy8nNYuG85k7d/wabD\ny8nPz3Q8yTsI7N1p07A/o5s/yOCatWhQzrpVKQiiIIiIiIiIlD9W74cqCCIibmf1wiciIiJSWoZh\nsGbNGqZOncrChQvJz88H7gLmAY1uGN+V9cxnEDX5LeBwjHr0YDWHaUwoB3mIB/iV4+zEPP4FwMvL\ni4EDBzJ+/Hi6d+9e8QIgRcnNhRUrzFDIokWQleV4TocOZiBk2DC47vtKERERZ1zKvcSXexbx4Y5Y\nth9bRUFBruNJvjXB/gCtwvvxZOOuRNasSWM/P9cX64CCIAqCiIiIiEj5Y/V+qIIgIuJ2Vi98IiIi\nIrfi1KlTTJ8+nenTp3PyZDowAxh4wzhPTtOQSKqygTTqcYzV5NEYOAg8AJePgwGoW7cuY8eOZezY\nsYSFhbnpmZRDFy/C/PlmKGTNGrNzSEk8PaFPHzMU0r8/lIPNOBERuf2czzzP7IR5TPspll9ObsAo\noqvXDfzrg70nLcP7MbJhBINCQ2lhURBBQRAFQURERESk/LF6P1RBEBFxO6sXPhEREZGyYBgGR44c\nYevWbXz0kR9r1vTBMDyvG5UH/BUYBpdDIEFBA+jUqQ4RERFX3ho2bFg5un+UxvHjEBdnhkJ273Y8\nvlo1iIyEqCjo3h08PFxfo4iIVDiJaYnE/TKH6T/Hse/MNucmBTYHe0+aNXiE4fVaE2m30zogwG1f\n2xUEURBERERERMofq/dDFQQREbezeuETERERcYUNG2DoUIOTJ4ve9KlWLY/Zs8/Qt2+YQh+lYRjw\n009mIGTWLDhzxvGcevVg5EizU0irVq6vUUREKqSDKQeZuWs2n+2cybGUX52YYYOg9lCzJ03qPcyQ\nuk2ItNu5s2pVl37tVxBEQRARERERKX+s3g9VEERE3M7qhU9ERETEVZKSzPzBihVFf7xKFbNhxaRJ\n0Late2urEPLyYOVKMxSycCFkZjqec/fdZiBk+HCoVcv1NYqISIVjGAa7zu5i5s5ZfLFrFmfSjjue\nZPOC4I5QsycN6/ZkSJ0GDLLb6RgYWOahEAVBFAQRERERkfLH6v1QBUFExO2KWvgOHz5c5MKnH+JF\nRETkdpOfD//zP/DPf5Y87oEHzEBIv37gef2JMuJYWhosWGCGQr77zuwcUhJPT3joITMU8vjj4O/v\nnjpFRKRCMQyDjSc2ErdrFrN+mUtqZrLjSR5VIOReqNmLenW6ElkrjEF2O/dUq4ZHGYRCFARREERE\nRERErJWRkXHDY0lJSYSHh1/zmIIgIlKhFRUEKY6WKBEREbndHDtmhjwOHQKbzXE+oWFDmDABnn4a\ngoPdUmLFc+KEeWxMbCz88ovj8YGBMGiQ2Z6lRw8lcURE5KbkFeTx3eHvmLVrNvP2zCcjJ83xJK9A\nCO0GNXtRp2YHBtWsTaTdTtegIDxvMhSiIIiCICIiIiJiLWe7/ikIIiIVmoIgIiIiUlFdHQJp1AhW\nr4affjKPi0lPL3muvz+MHg0TJ0LLlu6pt8IxDPj5ZzMQMmsWnD7teE7duuYLNGoUtGnj+hpFRKRC\nysrLYtn+ZczaNZul+5aSk5/teJJPCNgfgJq9sNdowxN2O5F2Oz2qV8fLw8PpeysIoiCIiIiIiFhL\nQRAREXQ0jIiIiFRMRYVA6tf/7WPdusHRo+DhAQUFJV+rd2+Ijoa+fc3xchPy82HVKjMUsmABXLrk\neM6dd5qBkBEjoHZt19coIiIV0sXsiyzau4hZu2ax8tBK8o18x5P86oK9J9TsRUhQYwaEhjLIbqdX\ncDA+Dr4ZUBBEQRARERERsZaOhhERoeggiDsXPhEREZGyVlIIpKgxNWtCrVqwa1fJ123SxOwQMmYM\nVKvmsvIrvvR0WLjQDIWsWuU4iePhYdsTloMAACAASURBVKZxRo2CAQNAG0siInKTzmacZd7uecza\nNYsNxzc4NymgMdTsBTV7EhQQxuOhoUTa7fQODqZKEceZKQiiIIiIiIiIlD9W74cqCCIibmf1wici\nIiJSlpwJgRQ39u9/h7lzYf58s4FFcQID4amnYMIEaNrUNc+j0jh1yjw2JjYWdu50PD4gAAYNgqgo\n6NkTitiAExERccbR1KPMTZjLrF2z+PnMz85NqtbGDIXYe1DVL4R+ISFE2u30qVED/8tfkxQEURBE\nRERERMofq/dDFQQREbezeuETERERKSulCYGUNMfDA6ZOhX/9C86dK36uzQaPPAKTJpkNK5w8flSK\ns3MnzJwJcXFmQMSRsDDz2JhRo6BdO9fXJyIiFdaepD3M/mU2s3bN4uD5g07M8IDgDlCzJ4R2xd8n\nkEcuh0J6+PpSu3p1c5iCICIiIiIi5YLV+6EKgoiI21m98ImIiIiUhZsJgTiam5kJs2dDTIzjZhUt\nWpiBkFGjoPCPgOUm5eebL0JsrNmepYhzXW/Qrp35yR8xwgyIiIiI3ATDMNh6aiuzds1ibsJcEtMT\nHU/y8IEa95ihkJAu+OYaZPfpY35MQRARERERkXLB6v1QBUFExO2sXvhEREREbtWthECcuYZhwLp1\nZiBk8WIoKCj+OkFB8Oyz8OKLEB5+889JLsvIgEWLzFDIihUlf/LBbOfSq5cZChk4UKkcERG5afkF\n+aw7uo5Zu2Yxb888UrNSHU/yDIDAe+Clleb7CoKIiIiIiJQLVu+HKggiIm5n9cInIiIicivKIgRS\nmmsdOWIeGzN9OqSWsB9ks0H//hAdDT166NiYMpGYaLZoiY2Fn35yPN7fH554wgyF9OoFnp6ur1FE\nRCqk7Lxs/nPwP8z+ZTZLfl3CpdxLxQ++KhChIIiIiIiISPlg9X6ogiAi4nZWL3wiIiIiN6ssQyCl\nvWZGBsycCZMnw+7dJV+zbVvz2JgRI8xsgpSBX34xAyFxcXDypOPxderA8OFmKKR9eyVzRETkpqXn\npLPk1yXM/mU23xz4hryCvGsHKAiiIIiIiIiIlDtW74cqCCIibmf1wiciIiJyM1wRArmZaxsGrFpl\nHhvz9dfm+8WpUQPGjjWPjalXr2xqrfTy82HtWjMUMm8epKc7ntOmjRkIGTkS6tZ1fY0iIlJhnbt0\njvl75jP7l9msPbIWA0NBEBQEEREREZHyx+r9UAVBRMTtrF74RERERErLlSGQW7nHgQPwwQfw2WeQ\nllb8OE9PGDjQPDbmvvvUnKLMXLoEixeboZBvvzVDIiWx2aBnTzMU8sQTEBjonjpFRKRCOnnxJHMT\n5jJz20x2TNxhPqggiIiIiIhIuWD1fqiCICLidlYvfCIiIiKl4Y4QyK3eKy0N/v1v89iY/ftLHnvX\nXWYgZOhQqFKlbOoW4MwZmD3bDIVs3+54vJ+fmc6JioLevcHLy/U1iohIhZSRkUHVqlXNdxQEERER\nEREpF6zeD/Vwy11ERERERERuQ+4MgYB57dWrzXsdOmTe+9gxx/MCA2HCBNi7F5Ytg4cfLn7sjh0w\nZox5r9dfh1Onyqz8yq1WLXjpJdi2DRIS4P/9v5LP48nMhFmz4JFH4I474L/+ywyQ6G81RERERERE\nRETkFikIIiIiIiIiUgR3h0AK3WwYBMDDA/r2hW++gT174MUXobg/jk1KgnfegQYNYMQI2LSp7J5D\npdeqFbz7Lhw5Yr6YTz9d8jEwZ87AP/8JERHQpg385S9w/LjbyhURERERERERkYpFQRAREREREZHr\nWBUCKXQrYZBCLVrABx/AiRPw/vsQHl70uLw880STLl2gc2eIi4OcnFt/DoKZzOnRAz791Ax7zJkD\njz4Knp7Fz9m92+wm0qAB9OwJM2bAxYtuK1lERERERERERG5/CoKIiIiIiIhcxeoQSKGyCIMAVK9u\nnjqyfz8sXgy9ehU/dvNmiIoyMwh//KOZXZAy4ucHQ4fCV1+Z5/HExECHDsWPN4zfuonUqgXDh5vn\n/uTlua9mERERERERERG5LSkIIiIiIiIicll5CYEUKqswCJhNKPr3h5UrYdcueO45M5tQlNOn4Y03\nzPuPHg3bt9/8c5Ai1KwJkybBli3mGT6vvlryf7SsrN+6idStC9HRsHWrGRYRERERERERERG5joIg\nIiIiIiIilL8QSKGyDIMUatMGPv4Yjh+Hv/4V6tUrelxODnzxBUREQNeu8OWXkJt7a/eW67RoAX/6\nExw+DGvXwrPPQlBQ8ePPnoXJk6FjR2jVCt59F44edV+9IiIiIiIiIiJS7ikIIiIiIiIilV55DYEU\nckUYBCAkBF55xbzmvHnQrVvxYzdsME82adQI/vxnSE6+9fvLVTw8zBdg+nSzJcuXX0K/fuDlVfyc\nvXvhtdegYUPo0QM+/RQuXHBXxSIiIiIiIiIiUk4pCCIiIiIiIpVaeQ+BFHJVGATMrMGgQWZDiu3b\n4amnwNe36LEnTpgnmdSrZzav2LmzbGqQq1SpAoMHw5IlcOoUTJkCnTqVPKewm0jt2mZi56uv1L5F\nRERERERERKSSUhBEREREREQqrdslBFLIlWGQQnfdBZ99Zh4b8847EBZW9LisLLMBRfv2Zh0LF0J+\nftnWIoDdDhMmwKZNZgeQ11+H8PDix2dl/dZNJCwMJk6EzZvBMNxXs4iIiIiIiIiIWEpBEBERERER\nqZRutxBIIXeEQcDMH7z2Ghw5ArNnwz33FD92zRp44glo0gTeew/Ony/7egRo3hz++Ec4eBDWr4fn\nnoPq1Ysfn5wMH3wAnTtDy5ZmsufIEbeVKyIiIiIiIiIi1lAQREREREREKp3bNQRSyF1hEABvbxg2\nDH74wWwsERVlPlaUI0fg5ZfhjjvghRdgzx7X1FTp2WzQtSt8/DEkJsK8efD448W/MAC//vpbN5Fu\n3WD6dEhNdV/NIiIiIiIiIiLiNgqCiIiIiIhIpXK7h0AKuTMMUqhjR4iNNe/zxhtQs2bR4y5dgmnT\noFUreOgh+OorKChwbW2VVpUqMGgQLFpkhkI+/BC6dCl5TmE3kdq1YfBgWLIEcnLcU6+IiIiIiIiI\niLicgiAiIiIiIlJpVJQQSCErwiBg5gfefNO81xdfQERE8WNXrIB+/aBZM4iJgYsXXV9fpRUSAuPH\nw8aNsG8f/OEP5n+O4mRn/9ZNJCwMJkyATZvAMNxXs4iIiIiIiIiIlDkFQUREREREpFKoaCGQQlaF\nQQB8fWHUKNiyBTZsgKFDwdOz6LEHD8JLL0HdujBpkplTEBdq2hTeegsOHDBfnOefh+Dg4sefO/db\nN5HmzeGPfzT/Q4mIiIiIiIiIyG1HQRAREREREanwKmoIpJCVYRAAmw3uvRfmzIEjR+DVV83mFEVJ\nT4cpU8yswaOPwn/+o2NjXKrwxfnoI/PomAULYOBA8PYufs7+/ebZP40bQ9eu8PHHcP68+2oWEREp\npeEJCcw+c4a0vDyrSxERERERKRdshqGeryLiXklJSdS87kD5s2fPYrfbLapIREREKrKKHgK5Wnl6\nrpmZMHu2eRzMzp0lj23RAiZOhCefhKpV3VNfpZeSAl9+CbGx8MMPjsf7+MBjj5ktYB55xHxfRETK\nhYyMDKoWfgF9FagsS3QO8O7lfy9bBn5++NpsPFyjBoPtdvqFhhLk5WVlhSIiIiJSiVm9H6qOICIi\nIiIiUqEtXFg+ghHucH1nkIULravFzw+efhp++gnWrIEnngCPYn4C3bsXXnwR7rgD/vu/dSKJW9So\nYR4Xs2GDeXzMW29BkybFj8/J+a2bSJ06MH48bNwI+tsSEREpR7INgyXnzjFq717sGzbw2M6dfJ6Y\nyPncXKtLExERERFxK3UEERG3szoBJyIiIpVPTIy5f12RQyBXO3bMDIFER1tdybWOHoUPP4Tp0yE1\ntfhxNhv07w+TJpkdTmw299VYqRkGbNpkdgmZM8fsGuJI48YQFWV2Cmnc2PU1iojIDdQRhCsdQYrj\nZbPxYHAwkXY7A0JDCSnpiDQRERERkTJg9X6ogiAi4nZWL3wiIiIiYq2MDJg5EyZPht27Sx7bpo0Z\nCBk5Evz93VOfYHYAWb7cDIUsXWq+78g995iBkKFDzY4jIiLiFgqCQO+NG1mdnU2eE7/q9gR6Xg6F\nDAwNxa7jzkRERETEBazeD1UQRETczuqFT0RERETKB8OAVavMQMhXX5V8ykiNGjB2rHkiSWXp7FJu\nnD8P8fFmKOT77x2P9/aGRx81QyGPPgq+vq6vUUSkElMQBJYlLKNzk14sTUlhXlIS36akkOPEr709\ngB7VqxNpt/OE3U4thUJEREREpIxYvR+qIIiIuJ3VC5+IiIiIlD8HD8IHH8Bnn8HFi8WP8/Q0j/mZ\nNAm6dtWxMW53+LDZziU2Fvbvdzw+OBiGDDFDIffeqxdMRMQFFAQBXoX29dozqfMkRrQdQTZeLE1O\nZl5SEt+kpJDtxK/AbUC3oKAroZAwBRlFRERE5BZYvR+qIIiIuJ3VC5+IiIiIlF9pafDFF2aXkH37\nSh57111mIGTYMKhSxT31yWWGAVu2mIGQOXMgOdnxnPBwiIoyQyFNm7q+RhGRSkJBEK553qH+oYyL\nGMf4juMJCwwjLS+Pr86dY15SEstSUsgqKHB4aRtw3+VQyKDQUO7QNxoiIiIiUkpW74cqCCIibmf1\nwiciIiIi5V9BAXz7LcTEwDfflDzWbodx4+CFFyAszD31yVVyc80XKTYWliyB7GzHczp3NgMhQ4dC\naKjraxQRqcAUBKHI5+3l4cWQ1kOI7hxNp7qdAEjPy2PZ5eNjvj53jktOhEIA7qlWzQyF2O00UChE\nRERERJxg9X6ogiAi4nZWL3wiIiIicnv59Vfz2JgZMyAjo/hxXl4QGQnR0dCli/vqk6ukpsK8eWYo\nZN06x+O9vOCRR8xQyGOPqbXLTTAMg6NHj3L27FkyMzPJysoCoEqVKvj5+VGzZk0aNGiATcfyiFRY\nCoLg8Hl3uaML0Z2jGdRyEN6e3gBcys9n+eVQyFfnzpGen+/UbTsFBhJptxNptxPu53dLT0FERERE\nKi6r90MVBBERt7N64RMRERGR29OFC2YYZMoUOHSo5LGdOpnHxgweDD6VZUOsvDlyBOLizFDIr786\nHh8UBEOGmKGQ++4DDw+Xl3i7MQyDw4cPs23bNrZu3cq2bdvYvn0758+fL3FecHAwERER17yFh4cr\nHCJSQSgIAvE74vl418esPLSyxCl1A+syvuN4not4jlD/3zpSZebn8+3588SfPcuSc+dIczIUElG1\n6pVQSBN//5t9JiIiIiJSAVm9H6ogiIi4ndULn4iIiIjc3vLzYdky89iYVatKHlu7tnlkzLhxUKuW\ne+qT6xgGbNtmBkJmz4akJMdzGjaEkSPNUEjz5i4vsbw7efIk06dPZ/r06Zw6deqGj/sAdQA/oLCn\nShaQCSRi7pVeLywsjLFjx/Lcc88RpjOVRG5rCoJAeno6AQEBJJxNYPKmycTujCUzL7PYqVW8qjCy\n7UiiO0fTtlbbaz6WXVDAipQU4pOSWJyczAUnQyHtAwIYXLMmkXY7zRUKEREREan0rN4PVRBERNzO\n6oVPRERERCqOhASYPNnMGGQWv9+Djw8MG2Z2CYmIcF99cp3cXPj2W/MFW7wYLh9jUqKOHc1AyLBh\nUIl+ZjAMg9WrVzN16lQWLVpE/uWNSB+gHRBx1Vsbit/3zQF+AbZdftsK7OK3cIinpycDBw5k/Pjx\n9OjRQ11CRG5DCoL8FgQplJKZwvRt0/lwy4ccv3i8xMs80PABojtH81izx/D08Lz2FgUFrDp/nnlJ\nSSxMTuZ8Xp5TpbUJCGDw5U4hra6qS0REREQqD6v3QxUEKUfy8vLYvXs3Z8+eJTU1lfz8fIKCgqhf\nvz7NmzfH09PT8UVKaefOneTn59OiRQv8dKaluInVC5+IiIiIVDwpKfDpp/DBB3DsWMlj770XoqNh\n4EDw9nZPfVKECxdg/nwzFLJmjePxXl7Qp48ZCunXDyroz7CGYTB79mzefvtt9u7de+XxbsALwEDA\n9xbvkQ0sBKYC6696vEWLFrz++usMHz5cgRCR24iCIDcGQQrlFeSxcM9CYjbFsOH4hhIv1yi4ERM7\nTeSpO58iqErQDR/PLShgdWoq8UlJLExK4pyToZCW/v5XQiFtAgK0voqIiIhUElbvhyoIYrGTJ08y\nc+ZMFi5cyM6dO8nOzi5ynI+PD/fffz8DBgwgKiqKatWqlcn9J06cyNSpU7HZbNSrV48WLVrQsmXL\na95CQkLK5F4ihaxe+ERERESk4srLgyVLzGNj1q0reewdd8D48TB2LISGuqc+KcaxYxAXZ4ZC9uxx\nPL5aNRg82AyF3H8/eHi4vkY3SExMZNy4cSxduhSAqsCTmAGQNi665y7gIyAWSL/8WP/+/Zk2bRp1\n6tRx0V1FpCwpCFJ8EORq205tI2ZTDHN+mUNuQW6x46r6VOWpO59iYqeJNA1pWuSYvIIC1l64wLyk\nJBYkJXE2t/jrXa2Zn9+VUEj7qlUVChERERGpwKzeD1UQxCInTpzg97//PXFxcRQUFODMy1D4g4G/\nvz/jxo3jD3/4wy0HQiZOnMiHH354wz2uFhISUmRApH79+rd0b6m8rF74RERERKRy+OknmDLFzBcU\nk7kHwNcXRo40u4S0a+e++qQIhgE7dpiBkFmz4OxZx3Pq1zdfwFGjoGVL19foAoZhMHPmTCZNmkRq\nairewB+AaCDQTTWkATHAH4FcIDg4mMmTJzNy5EhtVIqUcwqCOBcEKXQ6/TTTtk7jo60fcTaj+K8z\nNmw80vQRojtH82CjB4tdC/MNg/WpqcxLSmJ+cjKnc3KKHHe9Jn5+RF4OhdytUIiIiIhIhWP1fqiC\nIBaYNm0a//3f/01WVtY1ARBH3+xfPzY0NJR3332XZ5555qZrOXDgAD/88AO7d+9m165dbN++nTNn\nztwwrqja/P39SUtLu+l7S+Vl9cInIiIiIpVLUhJMnw4ffginTpU8tnt3MxDSvz+44HROKY28PFix\nwgyFLFoEmZmO50REmIGQ4cPhup85yqvru4BEAJ/jug4gjvwCjAG2XX5f3UFEyj8FQUoXBCmUnZfN\nnF/mELMphh2nd5Q4tpW9FZM6TWJU+1H4e/sXOy7fMPjhcqeQeUlJnHIyFBJepcqVUEjHwECFQkRE\nREQqAKv3QxUEcaO8vDxGjx7NnDlzroQ6rv+mvriXo7hxNpuNLl26EB8fT1hYWJnUeezYMdauXcvi\nxYtZunQpeXl5RdZls9nIz88vk3tK5WL1wiciIiIilVNuLixYAJMnww8/lDy2QQN48UV49lkIDnZP\nfVKCixfNFy82FlavNjuHlMTTEx5+2AyFPP44+Pm5p85SSkhI4KGHHuLUqVN4A28ArwDeFteVC/yV\n37qDhIWFsWLFClq1amVtYSJSJAVBbi4IUsgwDL4/9j0xm2JYuHchBUZBsWODqwQz9u6xvNjpReoH\nldwtucAw+PHixSuhkOMltSe7Sn1fXwbZ7Qy22+lcrRoeCoWIiIiI3Jas3g9VEMRNcnNziYyM5Kuv\nvsIwjGuCHaV9CYqaW7t2bebPn88999xTNgVftn79erp3715kEEVBELlZVi98IiIiIiJbtpiBkLlz\nzYBIcfz9zSzBpEmgPfBy4sQJ87yf2FhISHA8PjAQIiPNF7J7d/DwcH2NTtiyZQt9+vQhJSWFlsBc\noK3VRV1nFzAU2IN5bOzy5cvp2LGjxVWJyPUUBLm1IMjVjqYe5cMtHzJ9+3RSs1KLHedp82Rgy4FE\nd47mvnr3OdXpeXNa2pVQyJGsLKfqqevjcyUUcm9QkEIhIiIiIrcRq/dDFQRxk9GjRxMbG3tLAZDr\nXX8tHx8fPvroI5566qlbuu7VLly4QHBwMDab7ZouJAqCyK0oauE7fPhwkQtfWfwQLyIiIiJSnNOn\n4eOP4aOPoIhTMq/x4INmIOTRR8tNlqByMwz46SeYORNmzTJfTEfq1YORIyEqClq3dn2NxdiyZQu9\nevUiLS2NjsByIMSyakp2DugLbAECAwNZtWqVwiAi5YyCIGUXBCmUkZNB7M5YJm+azJ7kPSWOvbvO\n3UR3jmZo66H4evk6vLZhGGy7HAqJT0rikJOhkDo+PjwRGsrgmjXpGhSEp0IhIiIiIuVGRkbGDY8l\nJSURHh5+zWMKglQwn332Gc8+++yV4Mb1n/LSnvlY3PzCcEZMTAwTJky4hYp/k5ubi6+vr4IgUqaK\nCoIUR0uUiIiIiLhDdjbEx0NMDGzdWvLYxo1hwgR46ikICnJPfeJAXh6sWmV2CVm4EC5dcjznrrvM\nLiHDh0Pt2q6v8bKEhAS6detGSkoK3YGlQKDb7n5z0oDHgHVAjRo1WL9+vY6JESlHFAQp+yBIIcMw\nWHFoBTGbYli2f1mJY2sF1OL5Ds/zfIfnqV3Vua8rhmHwU3r6lVDI/sxMp+bV9PbmCbudSLud7kFB\neCmhKiIiImIpZ/f7FQSpQM6ePUvTpk1JT08HuCZMcbXSvAxFdRW5PgwyefJkXnzxxVuqvZCHh4eC\nIFKmFAQRERERkfLKMODHH81jY+bNM/MFxalaFcaMgYkToVkzt5UojqSlmWGQ2FgzHOLoZwpPT+jd\n2wyFDBhgngfkIomJiXTo0IFTp07RCVhJ+Q+BFEoDemF2BgkLC2Pr1q3UqVPH4qpEBBQEAdcFQa62\n79w+pmyawoyfZpCRe+NffBby8fRhaOuhRHeOJiIswunrG4bBLxkZxF8Ohex1JtQIhHp7MzA0lEi7\nnQeqV8dboRARERERt1MQpBJ67rnn+OSTT24IUsBvG9yNGzfm4Ycf5v7776d58+bUr1+fwMBAbDYb\n6enpnDx5kv3797N582a+/fZbtm/ffs11Cq91fRjkX//6F88888wtPwcFQaSs6WgYEREREbkdnDxp\nHhnz8ceQnFzy2L59zWNjHnpIx8aUKydPmsfGxMbCrl2Ox1etCoMGmaGQHj3MkEgZMQyDxx9/nKVL\nl9ISWE/5PQ6mOOeA+4E9QP/+/Vm0aFGpu5yKSNlTEMQ9QZBCqVmpfLbjM6ZsnsKR1CMlju1avyvR\nnaMZ0GIAXh5epbpPQkYG85KSmJeUxC9FtBovSg0vLwZcDoX0Cg7GR9+UiIiIiLiFjoapZE6cOEF4\neDgFBQXXPG4YBp6engwZMoTo6Gg6depUquseOXKEqVOn8tlnn5GSklLkL10K7zFnzhwGDRp0S89D\nQRApa0UFQdy58ImIiIiIlEZmJsyZYx4b8/PPJY9t3tzsEDJ6tJkpkHJk504zEBIXB4mJjsfXrQsj\nRpihkLZtb/n2M2fOZNSoUXgD24Bbv6I1dgERQC4QGxtLVFSUxRWJyDVBkP+hcgVB3jP/6c4gSKH8\ngnyW7ltKzKYY1hxZU+LY+kH1ebHjizx797PU8KtR6nvtvSoU8rOToZDqXl48HhJCpN1O7xo18FUo\nRERERMStrN4PVRDEhV5//XX+9Kc/3dC5o1OnTnz66ae0bt36lq6flZXF559/zltvvcWZM2eKPG7G\n19eXZcuW8cADD9z0fRQEkbJm9cInIiIiInIzDAPWrzePjVm4EK7L/F+jWjV45hmYMAEaNXJfjeKE\n/Hz47jszFLJgATizoda+vRkIGTECbuI4lMTERFq3bs358+d5B3it9FWXK+8ArwPBwcEkJCToiBgR\ni10TBKmkrAiCXO3n0z8zedNk4nbFkZ2fXew4Py8/nmz/JJM6T6KVvdVN3Wv/pUtXQiHbLx9H7kg1\nT0/6X+4U8nBwMFXKsOOViIiIiBTN6v1QBUFcqF69epw6dQr47RiYZ555hmnTpuFZht9sp6en8847\n7xATE0N2dvYNwZOgoCDWr19PmzZtbur6CoJIWbN64RMRERERuVVHj8LUqTB9Opw/X/w4mw369TOP\njenZ03xfypGMDDPVExsLK1eWnO4B89yfBx80QyEDB4ITm45XHwkTAfwIlO5wgPInF+gCbEdHxIiU\nBwqCWB8EKZSUkcS/tv2LqVuncirtVIljezfqTXTnaPo27YuH7ea6dRzKzGR+UhLxSUlsSUtzak5V\nT0/6Xe4U0qdGDfwVChERERFxCav3QxUEcZGdO3dy5513XhOaePrpp5k+fbrL7rl//35Gjx7Njz/+\neEMY5I477uDHH38kLCys1NdVEETKmtULn4iIiIhIWbl0CWbONLuEJCSUPLZ1azMQEhUF/v7uqU9K\nITERZs0yQyGOzgACMwTyxBNmKKRnTyhmI23WrFmMHDkSH8wjYW7uTzTKn6uPiImLi2PEiBEWVyRS\neRmGwaVLl6wuw1L+/v7lKpCWk5/D/N3zidkUw6aTm0oc27RGUyZ2msiYO8cQ6Bt40/c8mpV1JRTy\n48WLTs0J8PDg0cuhkEdCQghQKERERESkzFi9H6ogiIu89957vPLKK1d+AImIiGDjxo1l2gmkKAUF\nBfztb3/jzTffJDc398rjhmHQrl071q9fT2Bg6X6gUBBEyprVC5+IiIiISFkzDPO0kcmTYelS8/3i\nBAfD2LEwfjw0aOC+GqUUdu0yEz5xcXDypOPxYWHmsTFRUeYxMpcZhkGrVq3Yu3cvbwO/d13Flngb\n+APQsmVLEhISytUmrIhIefHjiR+J2RTDvN3zyCvIK3ZcNd9qPHPXM0zoNIFGwbd2rtzxrCwWJCcT\nf/YsG5wMhfh5ePBIjRpE2u08GhJCoNft3r9KRERExFpW74cqCOIiTz75JDNnzgTM4MTmzZuJiIhw\n2/03b97MoEGDOHny5DXBjQcffJBly5aVKpCiIIiUNasXPhERERERVzp4ED78ED79FErae/HwME8X\nmTQJ7r9fx8aUS/n5sGaN2SVk/nxIT3c8p21bs0vIiBGs3rePnj17UhU4Bdz833mXTxeBukA6sHr1\nanr06GFtQSIi5djJiyeZumUqRLXJLwAAIABJREFUH2/7mHOZ54odZ8NG/+b9ie4cTY+GPW45ZHcy\nO5uFSUnMS0pi3YULOLMZUMXDgz6XQyGPhYQQpFCIiIiISKlZvR+qIIiLREREsGPHDmw2G/fffz9r\n1qxxew3JyckMHjyYtWvXXhPeePLJJ5kxY4bT11EQRMqa1QufiIiIiIg7pKfDv/9tdgnZt6/ksXfe\naQZChg+HKlXcU5+UUkYGLF5shkK+/RYKCkoeb7MRabcz/+xZxgMfuqVI9xsPfARERkYSHx9vdTki\nIuVeZm4ms3bNImZTDLvO7ipxbLta7ZjUaRIj2o7Az9vvlu99OjubhcnJzEtKYk1qKg6+kgHgY7Px\nUI0aDLbb6R8SQnVv71uuQ0RERKQysHo/VEEQF6lbty6JiYnYbDY++OADXnjhBUvqyMvLY9y4ccyY\nMeOaAMerr77K22+/7dQ1FASRsmb1wiciIiIi4k4FBWZuYPJkWL685LGhoTBuHLzwAtSt65765Cac\nPg2zZ5uhkB07ihxyEmgA5AO7gDZuLM+ddgHtAE9PT44dO0ZYWJjVJYmI3BYMw2DNkTXEbIphya9L\nMEro1RHiF8K4iHGM7zieutXK5huEszk5LLocCvnu/Hmc+S2vt83Gg8HBDLbbeTw0lBoKhYiIiIgU\ny+r9UAVBXCQwMJCMjAxsNhtbt27lrrvusrSeN998kz/+8Y/XhDgmT57Miy++6HCugiBS1qxe+ERE\nRERErLJvH0yZAp9/XvIpI15eEBlpdgnp0kXHxpRrCQkwc6b5duLElYffBN4C7gfWWVSau9wPfI/5\nu4c33njD6nJERG47h84f4oPNH/Dpjk+5mF38uXJeHl5EtookunM0Xe7oUmb3T87JYfG5c8xLSmLl\n+fPkObFl4GWz0bN6dQbb7QwIDSXUx6fM6hERERGpCKzeD1UQxEW8vb3Jz8/HZrORlJREjRo1rC6J\nTz75hBdeeIGCggIMw8DDw4NPPvmEMWPGlDhPQRApa1YvfCIiIiIiVrtwAWbMMEMhhw6VPLZjRzMQ\nMmQIaI+lHCsogLVrITYWIz6eO9LTOQXMBoZZXZuLzQZGYHZHPX78ODYll0REbkpadhr//vnfTN40\nmf0p+0sc26luJ17q/BKRrSLx9iy7zhwpubksudwp5Nvz58l1YvvAE+hRvTqDa9ZkYGgoNfUNi4iI\niIjl+6EKgrhIUFAQaWlp2Gw2cnNz8fDwsLokABYvXszw4cPJzs7GMAw8PT2Ji4tjyJAhxc5REETK\nmtULn4iIiIhIeZGfD8uWmcfGrFxZ8tjateH5582jY2rXdk99cnMOJSTQuE0bfICLgK/VBblYNhAI\n5AKHDh0iPDzc4opERG5vBUYBy/cvJ2ZTDCsOrShxbFhgGOM7jOe5iOewB5Tt79ZSc3NZerlTyDcp\nKeQ4sZXgAXS73ClkYGgodXwr+ldBERERkaJZvR+qIIiLtGjRgn379mGz2Th37hzVq1e3uqQr1q5d\ny+OPP05aWhqGYeDt7U18fDz9+/cvcryCIFLWrF74RERERETKo4QEs0PIF19AZmbx47y9Ydgws0tI\nhw7uq0+cFx8fz5AhQ+gAbLG6GDfpAGzDfO6RkZFWlyMiUmHsTtrN5E2T+eLnL8jMK/4bBF9PX0a2\nHUl0l2ja1WpX5nVczMvjq8uhkOUpKWQVFDicYwO6BgURabczyG6nrkIhIiIiUolYvR9aPtpUVEDN\nmjW78u/ExEQLK7lR9+7dWbt2LbVq1brSsWTo0KGsWFFyulxERERERERcp3VrmDYNTpyAv/0N6tcv\nelxuLsTGmkfG3HsvzJ1rPiblx7Zt2wCIsLgOdyp8roXPXUREykYreyumPTaNE787wV8f/Cv1qtUr\nclx2fjaf/fQZ7ae154F/P8CivYvILyi7P+Kr5uXFiFq1WNCmDUn33sucVq2ItNvxK6ETtgGsv3CB\n6AMHuGPjRu7bvp3/O36c41lZZVaXiIiIiBRNQRAXueeee678e+PGjRZWUrT27duzYcMGGjdujM1m\nIzs7m4EDB7Ju3TqrSxMREREREanUatSAl1+Ggwdh/nzo3r34sRs3mt1BwsPh3XchKcl9dUrxtm7d\nClTOIEjhcxcRkbJVw68Gr9z3CoeiDxE/OJ6u9bsWO3bNkTUMnDuQplOa8v7G97mQdaFMa6nq5cXQ\nmjWJb92apPvuI75VK4ba7QQ4OB79h4sX+d3Bg9T/8Ue6bNvGe8eOcbikNmgiIiIictN0NIyL7Nix\ng4iICGw2GwMGDGD+/PlWl1Sk5ORk+vbte+UvdgIDA1mxYgWdOnW6MkZHw0hZs7oVkoiIiIjI7ebn\nn2HyZIiLg+zs4sf5+sLIkeaxMe3bu68++Y1hGISEhHD+/Hm2AXdbXZCbbMM8HiY4OJhz585hs9ms\nLklEpMLbnridmE0xzPllDjn5OcWOC/AOYMydY5jUeRLNQpoVO+5WZebn85+UFOKTklh67hxpTv7u\nuENgIJF2O5F2O439/FxWn4iIiIg7Wb0fqiCIC7Vs2ZJff/0VLy8vDh48SL16Rbfts1pGRgYDBw5k\n5cqVAFSvXp3Vq1fT/vJvDRUEkbJm9cInIiIiInK7Sk6Gf/0Lpk6FkydLHtu9uxkI6d8fvLzcU5/A\nkSNHCA8PxwdIA3ysLshNsoFAIBc4fPgwDRs2tLYgEZFK5Ez6GaZtncZHWz/iTMaZEsc+0vQRojtH\n07tRb5eG9rLy81lx/jzxSUksTk7mopO/R76ratUroZBm/v4uq09ERETE1azeD9XRMC40adIkAPLz\n8/nf//3fEsdmZWXx2muv0ahRI/z8/GjevDl//vOf3RK0CAgI4Ouvv2bo0KEApKam0rt3b/bu3evy\ne4uIiIiIiIjzQkPh1Vfh8GGYMwfuvbf4sWvXwqBB0Lgx/P3vkJLivjors7NnzwJQh8oTAgHwxXzO\nYP6yS0RE3KdW1Vq80eMNjr50lC8GfEFEneIPJ1u2fxkPz3yY1lNbM23rNDJyMlxSUxVPT/qFhvJF\ny5acve8+vm7bljG1a1PdQTp1R3o6rx0+TPPNm2m/ZQtvHznCngzX1CgiIiJSkakjiAtlZ2fTsmVL\njhw5gs1mY/78+QwYMOCGcbm5ufTq1YsNGzZw9cths9no27cvS5cudVtL1ZdeeonJkycDEBYWxtq1\na2natKk6gkiZsjoBJyIiIiJSkWzdah4bM2cO5OYWP87PD558EiZOhNat3VdfZbN27Vp69OhBC2CP\n1cW4WQvgV8zPQbdu3awuR0Sk0jIMgx+O/0DMphgW7FlAvlH873CrV6nO2LvH8mLHF2lQvYHLa8sp\nKGB1airxZ8+yMDmZlLw8p+a18vdn8OVOIa0DAnQEmYiIiJR7Vu+HqiOIC/n6+vJ///d/gPnN96hR\no9i+ffsN495//32+//57wAxZFL4ZhsHy5cuZMmWK22r+5z//yZ/+9CcAEhMT6dmzp9vuLSIiIiIi\nIqXXoQN88QUcOwZvvQW1axc9LjMTPv4Y2rSBBx+EpUtB2f6yl5WVBUAVi+v4/9m77+ioyvXt499J\nQhJIAiQhCb0rvSglgGIDC4qCggUBG1JEJeo5vmL/2fWoR0IvohyD4AFUFLEcVKyR0KQXpdckEwiQ\nQtpk3j82QSQzQ4Bk75nJ9VmLZTL73jP3DK6dIc81z22Fkud8/PhxS/sQEansbDYblzS8hHm3zmNH\nwg7+X4//R2RopMvaI3lHeDP5TZqOb8rAeQP5effPVORnR4MDArg2Kop3W7YktUcPlrRvz4g6dYip\nUsXjeZtyc3lh927arVxJ6xUreHbnTtZmZ1doryIiIiK+TDuCmGDEiBG8++67ANSoUYP58+fTu3fv\nk8fbtm3Lpk2bXKaYnU4n7dq1Y+3atab1C/D+++8zcuTIkzt+nL5TiXYEkfNhdQJORERERMSfFRTA\n/PmQmAgrVniubdrU2CHk3nuhRg1z+vN333zzDddddx0dgd+tbsZkHYG1wNdff821115rdTsiInKK\nnIIcZq+bzfjl49lk3+Sx9qLaF5EQn8Adbe8gJCjElP6Kiov5+ehRFtjtfGy3k+Zpm7NTXFC1KgNP\n7BRyUXi4dgoRERERr2H1eqiCICYoLCykd+/e/PzzzwAEBQUxZswYXnrpJapWrUpoaCiFJ97Ynjp+\npeT70NBQcnNzTe/7iy++4Pbbbz/5aSaNhpHyYvWFT0RERESkMnA6ISXFGBszfz542nk9LAzuuccI\nhbRoYVqLfkmjYTQaRkTEmzmdTr7d8S2JKYks/nOxx9rYsFhGdRrFA10eoHa4my3HKoDD6eTXU0Ih\nBwoKynRe09DQk6GQzhERCoWIiIiIpaxeD1UQxCTZ2dn06dOHX3/99eQb0OjoaIYPH87bb7/tMQgS\nFRVFRkaGJX0nJydz4403cuTIkZP9KAgi58vqC5+IiIiISGWzfz9MnWr8OdM/L6+7DhIS4JprIEAD\nZc/a8uXLiY+PpxGwy+pmTNYI2IPxGnTp0sXqdkRE5Az+PPQnE5ZP4P0175NdkO22rkpAFe5oewcJ\n8Ql0qtvJxA6h2Onkt2PHWGC3s8BuZ19+fpnOaxQScjIU0rV6dQIUChERERGTWb0eqiCIifLz8xkx\nYgRJSUl/C1MApWYZnnq8X79+fPLJJ1a0DMCmTZu49tprOXDgwMnbFASR82H1hU9EREREpLLKy4OP\nPjLGxqxZ47m2RQtjh5C77oKICHP68we7du2iSZMmBANZQLDVDZkkH4gACoGdO3fSuHFjaxsSEZEy\nO5p3lPfXvM+E5RPYkbnDY+0lDS4hIT6Bm1vdTFBAkEkdGoqdTpafEgrZXcZQSP1TQiHdFQoRERER\nk1i9HqogiAUWLFjAY489xr59+wDcblHndDoJDg4mOTmZiy++2MwWS9m7dy/XXnstW7Zs0Y4gct6s\nvvCJiIiIiFR2Tif88osRCPn0Uygudl9bvToMGwYPPgjNmpnXo69yOp1ER0eTmZnJKsDaf82bZxXQ\nGYiMjOTQoUPajl9ExAc5ih0s/nMx45aNY+mupR5rG1RvwINdHmR4p+FEVY0yqcO/OJ1OVmZlscBu\nZ77dzs4T483PpE5wMANiYrg1JoZLatQgUD+vREREpIJYvR6qIIhFCgoKeO+993j33XdZvXq1y5pq\n1aoxa9YsBg4caHJ3rmVmZnLDDTewbNkyAAVB5JxZfeETEREREZG/7NkDkyfD9OmQmem+zmaDvn2N\nsTFXXWV8L6717t2b7777junAcKubMcl0YCTGc1+yZInV7YiIyHlal7aO8Snj+XD9h+QVuQ9ZVA2q\nytD2QxkTP4Y2sW1M7PAvTqeT37OzT4ZCth0/Xqbz4qpU4ZYToZCeNWoQpJl4IiIiUo6sXg9VEMQL\nHDhwgF9++YXNmzeTnp5OUVERzZs3Z8iQIdSpU8fq9v7m+PHjvPjii6SmpgLw/vvvW9yR+CKrL3wi\nIiIiIlJabi58+KGxS8jGjZ5r27SBMWNgyBCoVs2c/nzJ2LFjeeONNxgJTLW6GZOMxAiDjB07ltde\ne83qdkREpJxk5GYwfdV0Jq2YxIGsAx5rezftTUJ8AtdfcD0BNmtCFU6nk3U5OUYoJD2drWUMhcRU\nqcLNtWpxa0wMV9SsqVCIiIiInDer10MVBBER01l94RMREREREfecTli6FMaPh88/N753JzIS7r/f\nGBvTqJF5PXq7+fPnc9ttt9EZWGF1MybpjDEeZv78+V6zs6mIiJSfQkchH2/+mMSURJbtW+axtnlU\ncx7u+jD3dryXiJAIkzoszel0sik3l/np6Syw29mYm1um86KDguhfqxYDY2LoFRlJFYVCRERE5BxY\nvR6qIIiImM7qC5+IiIiIiJTNjh0waRLMnAlHj7qvCwiA/v2NsTE9e2pszI4dO2jWrBnBwDEgxOqG\nKlg+EAEUYjz3Jk2aWNyRiIhUpOX7l5OYksi8jfMoKi5yWxcRHMF9F93Hw10fpllUMxM7dG3ziZ1C\nFtjtrMvJKdM5kUFB9DuxU0jvyEiCFQoRERGRMrJ6PVRBEBExndUXPhEREREROTvZ2fDBB8YuIVu3\neq7t0MEYG3PnnRAaak5/3sbpdFK/fn0OHDjAXOAOqxuqYHOBO4F69eqxd+9ebJU9CSQiUkkcyDrA\nlBVTmLpqKhm5GW7rbNjoe2FfHun2CFc2vtIrfk78kZt7MhTye3Z2mc6pERjITSd2CrkmMpLQwMAK\n7lJERER8mdXroQqCiIjprL7wiYiIiIjIuSkuhiVLIDERvvrKc22tWjBiBIweDfXqmdOfN/m///s/\nXnjhBXoCP1ndTAXrCfyC8Zyff/55q9sRERGT5RXlMWf9HBJTElmXts5jbdvYtiTEJzC43WCqVqlq\nUoeebT9+/GQoZGVWVpnOiQgM5MboaAbGxHBdVBRVFQoRERGR01i9HqogiIiYzuoLn4iIiIiInL8/\n/oCJE+H9940dQ9wJCoIBA4xdQrp3rzxjY/bv30+jRo1wOBysA9pZ3VAFWQ+0BwIDA9mzZw9169a1\nuiUREbGI0+nkx90/kpiSyGdbPsOJ+6WH6KrRjOg0gtFdRlO/en0Tu/Rs1/HjfJyRwfz0dFLKGAoJ\nCwig74lQyPXR0VRTKERERESwfj1UQRARMZ3VFz4RERERESk/R4/CrFkwYQJs3+65tnNnIxBy220Q\nEmJKe5YaOHAgH3/8MaOBSVY3U0FGA1Mwnuv8+fOtbkdERLzEzsydTFw+kZm/z+Ro/lG3dYG2QAa2\nHkhCfALd6nfzirExJfbk5fGJ3c58u53kY8fKdE61gACuPxEKuSEqivCgoArusvIpKipi4cKFAPTv\n358gvcYiIuKlrF4PVRBERExn9YVPRERERETKn8NhjIsZP94YH+NJXByMGmX8qV3bnP6ssHTpUq66\n6irCgQNAhNUNlbNjQD0gG+O5XnHFFdY2JCIiXie7IJv/rPkP45eP549Df3is7VK3CwnxCdza5laC\nA4NN6rBs9ufnnwyF/HL0qIe9Tv4SGhBAn6goBsbE0Dc6muoKLJSLb7/9lquvvhqAJUuW0Lt3b4s7\nEhERcc3q9VAFQUTEdFZf+EREREREpGJt2mTsEPLBB5Cb676uShW4/XZjl5AuXczrzyxOp5PWrVuz\nZcsWXgKesbqhcvYS8BzQqlUrNm7c6FWf4hYREe9S7Czmm23fkJiSyDfbv/FYWye8Dg90foCRnUcS\nGxbrsdYKB/Pz+TQjgwV2Oz8eOUJxGc4Jsdm49kQo5MboaGpWqVLhffqrESNGMGPGjJNfT5s2zeKO\nREREXLN6PVRBEBExndUXPhERERERMUdmJsycCRMnwu7dnmu7dzcCIQMGGAERfzFnzhwGDx5MFWA1\n0NbqhsrJeqATUAh8mJTEnUOGWNyRiIj4is32zYxPGc8H6z4gt9B9YjQkMIQ7291JQnwCHWp3MLHD\nsksrKGDhiVDI0sxMHGU4p4rNxjWRkQyMieGmWrWI8qc3PhWsqKiIOnXqkJGRAUCtWrU4ePCgxsOI\niIhXsno9VEEQETGd1Rc+ERERERExl8MBn39ujI354QfPtXXrwujRMGIE+MM/EZxOJ/369WPRokV0\nAn4DfH25pxDohhFsuQlY2KMHtpkzoWVLaxsTERGfknk8k3dXv8vEFRPZc3SPx9rLG11OQnwCN7W4\nicCAQJM6PDv2ggI+y8hgvt3Od2UMhQTZbPSqWZNbY2PpFx1NrWDvGonjbU6OhalRw7jh6FGNhxER\nEa9l9XqogiB+ICoq6ow1NpuNQ4cOmdCNyJlZfeETERERERHrrF1rjI358EPIy3NfFxICd95p7BLS\nsaN5/VWEgwcP0qZNGzIzM3kZeNrqhs7Ty8CzQCSwEagDEBwMzz8Pjz/uX1u6iIhIhSsqLuKzLZ+R\nmJLIz3t+9ljbuGZjHuryEMMuHkbN0JomdXj2DhUW8vmJnUKWZGZSWIZlmEDgqhM7hfSvVYtYhUJK\nOTkWpm9fcDph8WKNhxEREa9l9XqogiB+ICAgAJvNhqe/SpvNhsNRlgyySMWz+sInIiIiIiLWy8iA\nGTNg0iTYv99z7WWXGYGQfv3AV3f+nj17NkOHDqUKsApoZ3VD52gd0BljV5AkoNRAmI4djXlAF19s\ndmsiIuIHfj/4O4kpiczdMJcCR4HburAqYdzd4W7GxI+hRa0WJnZ49jILC1l06BAL7Ha+OXyYgjIs\nyQQAV9SsycCYGG6uVYvaISEV36iX+9tYmLfeMm785z81HkZERLyW1euhCoL4gZIgiDtOp1NBEPEq\nVl/4RERERETEexQWwqefGmNjfv3Vc23DhvDgg3D//VCGzTG9yqkjYloBPwPRVjd1lg4BPYHNwE09\nerAwNRXbjh2lCwMDjZ1BnnsOqlY1uUsREfEHadlpTFs1jSkrp5Caneqx9rrm15EQn8A1za4hwBZg\nUofn5mhREV+cCIV8degQ+WVYnrEBPWvU4NaYGG6JiaFuJQ2F/G0szMcfGzcOGKDxMCIi4rWsXg/1\n7ndFIiIiIiIiIuLXqlSB226DX36BlSvhrruMKSOu7NkDTzwB9evDyJGwYYO5vZ4Pm83GtGnTqFu3\nLpuBPkCW1U2dhSyMnjcDdevWZeqCBdjWr4d//AMCTvv1ksMBr79u7A7ys+ct/kVERFyJC4/jucuf\nY/cju0m6OYnOdTu7rf1629f0+bAPbSa3YfKKyWQXZJvY6dmpERTE4Lg4Pm3bFvsllzC3VSsG1KpF\n1dN/lp7CCfx09CgPb9tG/d9+49LVq0nct4+9nmbs+aF58+YZX/TsaYROAwPh0ksBmD9/voWdiYiI\neCftCOIHPI2GKbldO4KIN7E6ASciIiIiIt4tLQ2mTYMpUyDV84eA6dXLGBtzww3GeoC3SEyEm282\ndjE51caNG7nssss4fPgwlwOLgAgrGjwLWUBf4CcgOjqan376idatW/9VsHw5e4Y+zad/tCaB8aXv\nYPRoIxgS4e3PVEREvJXT6eS3fb+RmJLIx5s+xuF0/7vumqE1uf+i+3mo60M0qtnIxC7PXY7DwZcn\ndgr54tAhcouLy3Ret+rVuTUmhgExMTQKDa3gLq1TaixMp07GgVWrNB5GRES8ltXroQqC+AEFQcTX\nWH3hExERERER31BQAPPnG6GKFSs81zZtCg89BPfdZ+wYbqXERHjkEaOnpUtLh0FWrFhBr169yMrK\nogvwFd47JiYDYyeQlUBERATfffcdXbp0+VvNnj1w5RVOduy0MS7gMRKK3yl9Rw0aGOmePn3MaFtE\nRPzY3qN7mbxiMtNXT+fw8cNu6wJsAfRv2Z+E+AR6Nuzpcby6N8l1OPj68GEW2O0sOnSI7DL+Xr9L\nRAQDY2IYGBNDUz8bzVZqLExJ+tfh0HgYERHxWlavh2o0jIiIiIiIiIh4peBgGDwYli+HZctg0CBw\n90HPHTvgscegXj0jELJ1q7m9nurmm40QyI4dcOWVRlDiVF26dOG7774jKiqKFUBPYL0VjZ7BOuAy\njBBIdHQ033//vesQyJWwY6eNpk3h5q9HQteupe9s7164/npj9s+hQ2a0LyIifqpBjQa81vs19j66\nl+l9p9Mmpo3LumJnMZ9s/oTLZ13OxdMvZtaaWeQVef84lWqBgdwSE8Oc1q2x9+jBZ23bMiQujupn\n2PpsRVYWT+zYQbOUFDqtXMlru3ezLTfXpK4rVqmxMCU0HkZERMQt7QjiB7QjiPgaqxNwIiIiIiLi\nuw4cMEbGTJsGdrvn2uuuM8bGXHstBJj8UZiTAYkd7ncG2bRpE1dffTUHDhygCvAc8ARQxdxWSykE\nXgdeOvF13bp1WbJkyd/HweDhOTocMH48PP00HD9e+gFiY2HiRBg4EHzk09kiIuK9nE4n3+38jsSU\nRBb/sRgn7pc8YqrFMKrzKB7o/AB1IuqY2OX5yy8u5tvMTOanp/PZoUMcKSoq03kdwsIYGBPDrbGx\ntKhWrYK7LH9ux8KU0HgYERHxUlavhyoI4gcUBBFfY/WFT0REREREfF9eHnz0kTGGZc0az7UXXggP\nPwx33w0REeb0B2ULgxw8eJBRo0bx+eefA3Ax8B+grXlt/s164B5g9Ynvb7rpJqZOnUqdOn9fLCvL\nc2PHDhg+HL7/3vWD9e8PkyZB3brl+yRERKTS2nZ4GxNSJvD+mvfJKshyW1cloAq3tbmNhPgEutTr\n4rbOWxUUF/N9Zibz7XYWZmRwuIyhkLYnQiEDY2JoExZWwV2WD7djYUpoPIyIiHgpq9dDNRpGRERE\nRERERHxOaCjccw+sXg0//2xsLuFux/Q//jCCIPXrw6OPwvbt5vTYsKERkPA0JqZOnTosXLiQpKQk\nIiMjWY0RBnkJOGZOm3DisV4COmGEQCIjI5k9ezYLFy48txAIGAe//RZmzIDq1UsfX7gQWreGmTNB\nn1MSEZFy0DyqOYl9Etn32D7GXTuOZpHNXNYVFhfy4foP6fpuV3rM7MG8jfModBSa3O25Cw4I4Lro\naGa2bElqjx78r317htepQ60qnvcV25CTw//t2kXbFStovXw5z+3cyfrsbJcfMvUWbsfClNB4GBER\nEZe0I4gf0I4g4musTsCJiIiIiIh/2rMHJk82cgeHD7uvs9mgb19jbEyvXhU/naSswYmDBw8ycuRI\nFi1aBEA4MBR4AGhXQb2tByYDs4HsE7e52wUEziIEcrr9+2H0aDix80kpvXrB9OnGnYqIiJQTR7GD\nL//8ksSURL7b+Z3H2vrV6/NglwcZfvFwoqtFm9Rh+SoqLuano0eZb7fzid1OemHZwi0XVq16cqeQ\njuHh2LxkdNsZx8KU0HgYERHxQlavhyoI4gcUBBFfY/WFT0RERERE/FtuLnz4IYwfDxs2eK5t3doI\nhAwZAhW5Q3pZAxROp5O5c+fy8ssvs3nz5pO398QIhNwChJxnL/nAJxgBkF9Oub1Vq1Y888wzDBo0\nyOUC0DmHQEo4nTB/PjxRmQUaAAAgAElEQVT0ENjtpY9XqwavvGJs3+JuexcREZFztCF9A+NTxpO0\nLom8ojy3dVWDqjKk/RDGxI+hbaxVw9rOn8Pp5JejR1lgt/Ox3c7BgoIyndcsNPRkKKRTRISloZAz\njoUpofEwIiLihaxeD1UQxA8oCCK+xuoLn4iIiIiIVA5OJ/zwAyQmGhtRePoNSM2aMHw4PPggNGpU\nMf2cTZDC6XTyww8/MHnyZD799NOT/6YPxtgdpNMpf9qduN2VAoxdP1ad8mcdUPL54KCgIG6++WZG\njx7N5Zdf7nax57xDIKc6dAgeeQRmz3Z9PD7eGBfTps05PoCIiIh7GbkZzFg1g0krJrE/a7/H2l5N\nepEQn8ANF95AgC3ApA7LX7HTSfKJUMgCu539ZQyFND4lFNLVglDIiBEjmDFjhrGV2z/+4bn4rbdg\n8WJGjBjBtGnTzGlQRETEA6vXQxUE8QMKgoivsfrCJyIiIiIilc+OHTBpkpEvOHrUfV1AAPTvb+wS\nctll5T825lwCFQcOHGDGjBnMmDGD/ftLL1hVAeoAVYHQE7flAceBg/wV+jhVvXr1GD58OMOHD6du\n3brl3nOZfPkljBwJ+/aVPlalCjz7LDzxBAS7i7mIiIicu0JHIZ9s/oTElER+2/ebx9pmkc14uOvD\n3HvRvVQPqW5ShxWj2Okk5dixk6GQPfn5ZTqvQUjIyVBIt+rVCajgUEiZx8KU0HgYERHxMlavhyoI\n4gcUBBFfY/WFT0REREREKq/sbPjgA2NszNatnms7dDACIYMGQdWq5dfDuQYrnE4nu3btYtWqVaxc\nuZJVq1axatUqMjMzPZ4XGRlJ586d6dSp08k/jRs3LtOneissBFLi2DEYOxamTHF9vF07I73TpUs5\nPqiIiMjfrdi/gsSUROZtnEdhsasIpSEiOIJ7O97Lw/EP0zyquYkdVgyn08mKrCwW2O3Mt9vZled+\nZM6p6gUHM+BEKKRHjRoEVkAopMxjYUpoPIyIiHgZq9dDFQTxAwqCiK+x+sInIiIiIiJSXAzffmuM\njfnyS8+10dHGxhUPPAD165fP45dXwMLpdLJ7927sdjvHjx/n+PHjAFStWpWqVasSExNDo0aNzmkr\n9woPgZzqp5/g/vvhzz9LHwsIgMcegxdegGrVKqgBEREROJh1kCkrpzB15VTsuXa3dTZs9L2wLwnx\nCVzV5CrTR6ZUBKfTyersbCMUkp7O9rKEQpxOYouL6R8dTf9atbikZs1yC4UkJCQwc+bMso2FKXFi\nPMywYcNITEwslz5OV61aNb/4+xYRkYpn9XqogiB+QEEQ8TVWX/hERERERERO9eefMHEivP8+ZGW5\nrwsMND5ompAA3buf/9gYU4MWZ8mS3o4fN8Ieb71lfKr3dM2bw4wZcMUVFdyIiIhUdnlFeXy04SMS\nUxJZk7rGY23b2LaM6TqGwe0HU62KfwQWnU4na0tCIXY7f5wImpayfbsR5KxIZRkLU+LEeJiKtG7d\nOtq1a1ehjyEiIv7B6vXQAFMeRURERERERETES11wgbEzyL59xn+bu9np3eGAefPgkkuMSSVJSZCf\nf+6P27ChEbBo2tQIXFx5pRHAsJplAZWqVeH11yElxZjLc7pt24zGRo2Co0dNaEhERCqr0KBQ7ul4\nD6tHrObHe37k5pY3E2BzvZyyIX0DI74YQYN3GvDkt0+y79g+k7stfzabjY4REbzctClbunZlfefO\nPNeoEa1P35nr118rtpGePaFjx7LXd+wIl15acf0An332WYXev4iISHnRjiB+QDuCiK+xOgEnIiIi\nIiLiSXExfPUVjB8P//uf59rYWCOX8MADULv2uT2eN+0M4jW9FBbCv/4FL74IBQWlj9erB9OmwQ03\nmN+biIhUSruO7GLi8om8u/pdjua7DyQG2gIZ0HoACfEJdK/f3e/GiGzKyWGB3c4Cu531aWnGjh0/\n/mgc7NgRnngCatQonwcLDT37LdicTijLWJuyOHrUCKmuXQvArbfeyowZM6hRXs9PRET8mtXroQqC\n+AEFQcTXWH3hExERERERKatNm4yxMf/5D+Tmuq+rUgVuu80YG9Oly9k/jjcEMLyhh1I2b4Zhw+C3\n31wfv/NOGDcO9O9JERExSXZBNh+s/YDxKePZemirx9rOdTuTEJ/AbW1uIzgw2KQOzbM1N5f56elM\nmz6dfW+/bYQ3o6Ph6afhoousbu/8/P47vPIKHDpEaGgoiYmJDB8+3O+CPSIiUnGsXg9VEMQPKAgi\nvsbqC5+IiIiIiMjZysyE994zQiG7dnmu7dbNCIQMGGAERMrKyiCGV4ZASjgcMHkyPPkk5OSUPl6r\nlrF9yx13nP2nhkVERM5RsbOY/23/H4kpiXy97WuPtbXDa/NA5wcY1XkUsWGxHmt91eLly7lv8GDS\nt20zfh4PHQp33QWBgVa3dnYcDiMBPHs2OJ20atWK//73v7Rr187qzkRExMdYvR6qIIgfUBBEfI3V\nFz4REREREZFz5XDAokWQmAg//OC5tm5dGD0aRowo+4YVVgQyvDoEcqpdu4wXc8kS18f79oUpU6B+\nfVPbEhER2ZKxhQkpE5i1dha5he63EAsODGZQ20EkxCdwUR0f3zHDhZycHBISEpg5c6ZxQ/v28Mwz\nvrNzl90OL78M69YBMGzYMBITEwkLC7O4MRER8UVWr4cqCOIHFAQRX2P1hU9ERERERKQ8rFsHEyYY\nHxj1NIo+JAQGDTJ2CenY8cz3a2Yww2dCICWcTuNTuo8+CkeOlD5evTq8+Sbcfz8EBJjfn4iIVGpH\n8o4wc/VMJiyfwO6juz3W9mzYk4T4BPq17EdQQJBJHZpj7ty5jBgxguzsbONn89ix0L271W15lpwM\nb7wBx44RERHBtGnTGDRokNVdiYiID7N6PVRBED+gIIj4GqsvfCIiIiIiIuUpIwPefRcmTYJ9+zzX\n9uxpBEL69YMgD2s+ZgQ0fC4EcqqDB+Ghh+CTT1wfv+IKmDEDmjc3tS0RERGAouIiPt/6OYkpify0\n+yePtY1qNOKhrg8x7KJhRFaNNKnDirdt2zZuv/12Vq9ebdwwcCAMHw7BwdY2drqCAuM9w4IFAHTq\n1ImPPvqI5noPISIi58nq9VAFQfyAgiDia6y+8ImIiIiIiFSEwkJYuBDGj4dffvFc26ABPPigsR4S\nFeW6piKDGj4dAjnVxx8bL2RaWuljoaHw0kvwyCOeUzciIiIVaE3qGhJTEpmzfg4FjgK3ddWqVOPu\nDnczJn4MLWu1NLHDipOfn8/YsWMZN26cccOFF8Jzz0G9etY2VmL/fnjhBfjzTwAeffRRXn/9dYK9\nLawiIiI+yer1UAVB/ICCIOJrrL7wiYiIiIiIVLRVq4yxMXPnGh80dadqVRgyBMaMgbZtSx+viMCG\n34RAShw+DI89ZoyMcaVLF5g5E9q1M7cvERGRU6TnpDNt5TQmr5xManaqx9prm11LQnwC1za/lgCb\n7486W7RoEffccw+HDx+GatWMn9u9elnb1Lffwr//DcePEx0dzaxZs+jbt6+1PYmIiF+xej1UQRA/\noCCI+BqrL3wiIiIiIiJmSUuD6dNh8mRI9bzmw1VXGWNjbrgBAgP/ur08gxt+FwI51TffwIgRxpM8\nXVAQPPWU8SckxPzeRERETihwFDB/43wSUxJZcWCFx9oW0S14uOvD3N3xbsKDw03q8MycTie5ubln\ndc7+/fu59957SU5ONm64+mp44AFjBy8z5eXBlCmwZAkAl1xyCe+99x71znKXkmrVqmGz2SqiQxER\n8RNWr4cqCOIHFAQRX+Pqwrdz506XF76wsDCz2hIREREREakwBQXG6PnERFi+3HNtkybw0ENw331Q\ns6ZxW3kEOPw6BFIiKwuefhomTgRXv/Jq08bYHSQ+3vzeRERETuF0Olm2bxmJKYks2LQAh9P97+9r\nhNRg2EXDeKjrQzSJbGJil67l5OQQHu49wRQrZGdn63fXIiJyUk5OTqnb7HY7TZr8/ee2giByVhQE\nEV/jKgjiji5RIiIiIiLib1JSYPx4mDcPiorc14WFwd13w8MPQ8uW5xfkqBQhkFP9+isMGwZbt5Y+\nZrPBI4/ASy8ZL7KIiIjF9h3bx+QVk5m+ajqHjh9yWxdgC+CmFjfxSPwjXNboMst2pFAQREEQERH5\nu7L+TFYQRM6KgiDiaxQEERERERERgQMHYOpU44/d7rn22mthzBho3Rp69Tq7QEelC4GUyMszwh5v\nvAGufifSpAnMmGG8oCIiIl7geOFxPlz/IYkpiWxI3+CxtkNcBxLiExjUbhChQeaOV/lbEOSfQLCp\nD2+dAuAt40sFQURE5FQKgkiFUBBEfI1Gw4iIiIiIiPwlLw/++19jbMzvv3uuveACGDwYZs2CXbvO\nHOyotCGQU61ZY8zZcffi3n8/vPnmX3N4RERELOZ0Olm6aymJKYks2roIJ+6XcWKqxTCy00ge6PIA\ndSPqmtLf34IgT1G5giCvGl8qCCIiIqfSaBipEAqCiK9xFQQx88InIiIiIiLijZxOY6LJ+PHwySeu\nN7EoERYGQUFw9Kj7gIdCIKcoLIR//xuefx7y80sfr1MHpkyBfv3M701ERMSD7Ye3M2H5BN77/T2y\nCrLc1gUFBHFbm9tIiE+ga72uFdqTgiAKgoiIyJlZvR4aYMqjiIiIiIiIiIiIRzYbXHopzJsHO3fC\n2LEQFeW6NifHCIGAEfTo1g127/7ruEIgp6lSBZ54AtauNV7k0x08CP37w+23Q1qa+f2JiIi40Syq\nGeOuG8e+x/aReF0izaOau6wrKi5izvo5xL8bT/eZ3flow0cUOgpN7lZERES8hYIgIiIiIiIiIiJe\npkEDeO012LcPZsyAdu081x88aIyNefVV2LJFIRC3WrSAH3+ESZOg5JPMp5o3D1q3htmzjS1aRERE\nvET1kOqMiR/D1oe2smjQIno37e22dtm+ZQz6eBBNEpvw6s+vkpGbYWKnIiIi4g00GsYPaDSM+Bqr\nt0ISERERERHxNU4n/PCDMTbms8/KllFo3NjIPCgE4sbu3TBqFHz9tevjffrA1Kl6AUVExGttTN/I\n+JTxJK1L4njRcbd1oUGhDGk3hDHxY2gXd4Z0aRloNIxGw4iIyJlZvR6qHUFERERERERERLyczWbs\n8vHpp7B9O/zjH1Cjhudz7HaYPh0OHTKnR5/TqBF8+SV88IHrGTxffQVt2sDkyVBcbH5/IiIiZ9Am\ntg3TbpzG3kf38nqv16lfvb7LuryiPN79/V3aT21Prw968fnWz3EU64OjIiIi/kxBEBERERERERER\nH9KkCbz1ljE2ZvJkaNnSdV1ODrzyipF3GDvWCIbIaWw2GDoUNm2C224rfTw7Gx58EK64Av74w/T2\nREREyiK6WjRPXPoEOxN2Mm/gPHo06OG29vud39Pvo35cOPFCxi0bx7H8YyZ26j+mHThARkGB1W2I\niIi4pdEwfkCjYcTXWL0VkoiIiIiIiD/ZvRu6d4eDBz3XVasGDzwA//wn1K5tTm8+Z+FC40VKTS19\nLCQEXnjB2I4lKMj83kRERM7CygMrSUxJ5L8b/kthcaHbuvDgcO7teC8Pd32YC6IvKNN9azQM8OWX\nBFWrxvVRUQyNi6NvdDShgYFWdiciIl7G6vVQ7QgiIiIiIiIiIuKj9uyBq64yQiBNm8KSJXDjja5r\nc3Ph7beNHUUeeQQOHDC3V5/Qv7+xO8iwYaWP5ecbW6vEx8Pateb3JiIichY61+1M0s1J7H5kN89d\n9hyxYbEu67ILspmwfAItJrag75y+LNm+xOWHTqW0IqeTzw8d4tZNm6jz22+M2LqVn48c0esnIiJe\nQTuC+AHtCCK+xuoEnIiIiIiIiD/YsweuvBJ27DBCIEuXQsOGxrHvv4d+/YzJJu6EhMD99xvZhvr1\nzenZp3z7LYwYATt3lj4WFARPPAHPPAOhoeb3JiIicpbyi/L5aMNHJKYk8nvq7x5rW8e0JiE+gSHt\nh1CtSrVSx7UjCPDll1C1qsuyxqGhDImLY2hcHBdWK/36iYhI5WD1eqh2BBERERERERER8TGeQiBg\n7BKycSM0aOD+PvLzYdIkaNbMmIaye3fF9+1TeveG9euN7VNstr8fKyqCV16Biy6C5GRr+hMRETkL\nIUEh3N3xblaNWMVP9/zEgFYDCLC5XiLaZN/EyC9G0uCdBoz9dix7j+41uVvvFxLgfnltV14eL+/e\nTYvly4lftYpJ+/eTUVBgYnciIiLaEcQvaEcQ8TVWJ+BERERERER82ZlCIO5qIyKM8TDufj0QFAT3\n3ANPPmncr5xi2TJjXMymTaWP2Wzw0EPw6qtQ8uloERERH7D7yG4mrZjEjNUzOJJ3xG1doC2QW1rd\nQkJ8Aj0a9CA3N7fS7wiy/8gRvs7NJSktjR+OuH/tSgTZbFwfFcXQuDj6RkcTGhhYsb2KiIjlrF4P\nVRDEDygIIr7G6gufiIiIiIiIrzqbEIircxo2hEsvhfnzobDQdX1gIAwdCk89BRdcUP7PwWfl5xu7\ngLz2mrEjyOkaNYLp0+Gaa8zvTURE5DzkFOTwwdoPGL98PFsytnis7VSnE6Paj2J49+HGDZU0CJKd\nnU1YWBgAe/Ly+DAtjaS0NDbn5p7xbmoEBnJbbCxD4+K4pEYNAk7feUxERPyC1euhCoL4AQVBxNdY\nfeETERERERHxRecSAnF37ocfwuzZMGMGuNupPCAABg+Gp5+GFi3K73n4vHXrjN1BVq50ffyee+Dt\ntyEqytS2REREzlexs5gl25eQmJLIV9u+cl94SiBCQZC/OJ1OVmdnk5Saytz0dNLdpW5P0Tg0lCFx\ncQyNi+PCatUqoGkREbGK1euhlgdB7rvvPisf3i/MmjVLQRDxKVZf+ERERERERHzN+YRAPN1HYCC8\n+SZMmwZ5ea7Ps9ngjjuMQEibNuf/XPxCURGMGwfPPuv6hYuLg0mTYMAA83sTEREpB1sztjJh+QRm\nrZlFTmHO3w8qCOIyCHKqwuJilmRmkpSWxsKMDPKKi894910jIhgaF8cdsbHUCq4sL6qIiP+yej3U\n8iBIyW4Wcu48/RUqCCLeyOoLn4iIiIiIiC8pjxDIme4rNRXeegsmT4bjx12fa7PBwIHwzDPQvv25\nPx+/sm0b3H8//Pij6+MDBsDEiVC7trl9iYiIlJMjeUd47/f3mLB8AruO7DJuVBDkjEGQUx0rKuJj\nu50P0tL44ciRM9YH2Wz0iYpiaFwcN0ZHExoYeB5Ni4iIVaxeD/WaIIgm1FQMBUHEG1l94RMRERER\nEfEV5RkCKct9pqfDv/9tZBdyctzfx803G5thXHTR+fXiF4qLjRk7jz8OWVmlj0dGGi/q3XcbaRoR\nEREf5Ch2sOiPRSSmJPLDHz8oCHIWQZBT7cnL48O0NJLS0ticm3vG+hqBgdwaG8vQuDgurVGDAL2X\nEBHxGVavh3pNEETOnXYEEV9j9YVPRERERETEF1RECKSs952RYUw+GT/edbahxI03GoGQLl3Kpy+f\ntm8fjBoFixe7Pn7NNcYMnsaNTW1LRESkvC3bsYzuzbob3ygIck6cTiers7NJSk1lbno66YWFZzyn\nUUgIQ+LiGFq7Ni2qVTvnxxYREXNYvR7qNUEQ7QhSMRQEEW9k9YVPRERERETE21VkCORsHuPwYUhM\nNP4cPer+vvr0geeeg27dyrdHn+N0wkcfwZgxRprmdGFh8Npr8OCDEBBgfn8iIiLlICcnh/DwcOMb\nBUHOW1FxMf/LzCQpLY2FGRnkFRef8ZwuEREMjYvjjthYYoIry1+AiIhvsXo9VP/iFBERERERERHx\nImaEQMC4z6VLjcfYscN4zD17/l4TFQUvvAC7dsGLLxpTTlz56ivo3t3Y9OLXX8u/V59hs8GgQbBp\nk/Hf0+XkGCGRnj1h82bz+xMRERGvExQQwPXR0cxt3Zq0Hj14r0ULrqxZE0976a/IymLMtm3U/e03\nbly/nnnp6eTpw8AiInIKBUFERERERERERLyEWSGQEmUJgwDUrGmMgNm1C159FaKjXd/fkiVw6aXQ\nqxf8+GPF9e31YmJgzhz4/HOoV6/08eRk6NjReDHLsBW8iIiIVA7Vg4K4t04dvu/Ykd3duvFakya0\n9jAGpsjp5ItDh7h90ybikpO5f8sWfjxyhGLtwi8iUukpCCIiIiIiIiIi4gXMDoGUKGsYBKB6dXjy\nSSMQ8q9/GXkHV77/Hq64Ai6/HL77zpiYUindeCNs3AgjR5Y+VlAATz8NXbrA6tXm9yYiIiJerUFo\nKGMbNWJDly6s6tSJR+rXJ7ZKFbf1xxwOZqamcsWaNTRdtoynd+xgS06OiR2LiIg3URBERERERERE\nRMRiVoVASpxNGAQgPBwefxx27oS334a4ONd1P/0EvXsbu4R8800lDYTUqAFTpxrpmGbNSh9fuxa6\ndoWxY+H4cfP7ExEREa9ms9m4OCKCd5o3Z3/37nzZrh2DYmOpGuB+iW93fj6v7tlDqxUr6LJqFeP3\n7SO9oMDErkVExGoKgoiIiIiIiIiIWMjqEEiJsw2DAISFwWOPGYGQxESoW9d1XXIyXHcddOsGixdX\n0kDIlVfCunXwz3/C6Qs3Dge88YYxLubnn63pT0RERLxeUEAAfaKjmdO6Nak9evB+ixZcVbMmNg/n\nrMzKImHbNuomJ3Pj+vXMS0/nuMNhWs8iImINm9Np7T+9AwICsNk8/YiS8+V0OrHZbDj0g128hN1u\nJzY29m+3paenE+NuT2ERERERERE/5S0hkPLqKS8P3nsPXnsN9u1zX9epEzz3nDE5pVL+Wmj5chg2\nDDZscH189Gh4/XWIiDC3LxERkTLIyckhPDzc+OYpINjSdsxTALxqfJmdnU1YWJil7Zxqb14ec9LT\nSUpNZWNu7hnrqwcGcmtMDENr16ZnjRoEVMo3ZCIiFcvq9VCvCYJY3IbfUxBEvInVFz4RERERERFv\n4I0hkBLn21t+PvznP/Dqq7B7t/u6Dh2MQEj//qU3yfB7BQVG2OPll6GwsPTxBg1g2jTo08f83kRE\nRDxQEMT7giAlnE4na7KzSUpLY05aGmmu3mOcpmFICEPi4hgaF0dLL3xOIiK+yur1UMuDIFdccYV2\nBDHJ0qVLrW5BBLD+wiciIiIiImI1bw6BlCiPHgsLISkJXnnFuB932raFZ5+FAQMgMPD8+vY5Gzca\nu4OkpLg+PnQovPMOREeb25eIiIgbCoJ4bxDkVEXFxXybmUlSWhqfZmRwvLj4jOd0johgaFwcd8TG\nEhtcWf5iRUQqhtXroZYHQUSk8rH6wiciIiIiImIlXwiBlCivXgsLYc4cIxDy55/u61q1gmeegdtv\nr2SBEIcDxo+Hp5+G48dLH4+JgYkT4dZbK+ksHRER8SYKgvhGEORUWUVFfJKRQVJqKt8fOcKZFgYD\ngeuiohhauzY3RUdTtVK9MRMRKR9Wr4dWtk03RUREREREREQs40shEDB6W7rU6HXHDqP3PXvO/n6q\nVIG774ZNm2D2bGjZ0nXd5s0weDC0bg0ffABFRefXv88IDIRHH4UNG+Cqq0oft9uNdMwtt8CBA+b3\nJyIiIj4tIiiIu2vX5tuOHdnTrRtvNG1KWw9BFgew+PBh7ti0idrJyQzbsoUfMjMp1mfLRUR8hoIg\nIiIiIiIiIiIm8LUQSInyCoMABAUZQY8NG+Cjj6BNG9d1f/xhBEdatoT33zd2FKkUmjaFb7+Fd9+F\nGjVKH1+40EjJzJwJWogRERGRc1A/NJT/17Ah6zp35vdOnXisfn3iqlRxW3/M4eC91FSuXLuWJsuW\n8dSOHWzOyTGxYxERORcKgoiIiIiIiIiIVDBfDYGUKM8wCBgbYNx+O6xbBwsWQPv2ruu2b4f77oML\nL4QZM6Cg4Nwf02fYbDBsmLF9Sr9+pY8fPQr33w+9ext/GSIiIiLnwGaz0TEigrebN2df9+581a4d\nd8bGUjXA/dLhnvx8Xtuzh9YrVtB55UoS9+0jvVK8QRMR8T0KgoiIiIiIiIiIVCBfD4GUKO8wCEBA\nAAwYAL//bmx2cfHFrut27YIRI6B5c5gyBfLzz+9xfULduvDpp/Df/4KrGdLffw/t2sG4ceBwmN+f\niIiI+I2ggACui47mw9atSevRg1ktW9KrZk1sHs5ZlZ3NI9u2UTc5mRvWreOjtDSO6z2JiIjXUBBE\nRERERERERKSC+EsIpERFhEHACIT06wcrV8KiRdCli+u6vXth9Gho1gwmTIDjx8//sb2azQa33Qab\nN8OQIaWP5+bCo4/CJZfAxo3m9yciIiJ+JyIoiLtr1+bbjh3Z060bbzRtStuwMLf1DuDLw4cZtHkz\nccnJ3LdlC0szMynWGDsREUspCCIiIiIiIiIiUgH8LQRSoqLCIGDkHvr2hZQU+Oor6NbNdd3+/TBm\njNHDO+8YeQi/Fh0NSUmweDE0aFD6eEoKXHQRvPhiJZmfIyIiImaoHxrK/2vYkHWdO/N7p048Vr8+\ntYOD3dZnORy8n5rKVWvX0njZMp7csYNNOTkmdiwiIiUUBBERERERERERKWf+GgIpUZFhEDACIddd\nB8nJsGQJXHqp67rUVHjsMWjSBN56C7Kzy68Hr3T99bBhg7EtyukKC+H556FzZ1ixwvzeRERExG/Z\nbDY6RkTwdvPm7O3Wja/bt2dwbCzVAtwvM+7Nz+f1PXtos2IFnVauZNzevaQpsCoiYhoFQURERERE\nREREypG/h0BKVHQYBIxASO/e8NNPxmNdcYXruvR0ePxxIxDy+uuQlVW+fXiV6tVh0iT48Ue44ILS\nx9evN7ZSefzxSrBVioiIiJgtKCCAa6OimN26Nak9evCfli3pHRmJzcM5q7OzeXT7duolJ3P9unXM\nTUsj1+EwrWcRkcpIQRARERERERERkXL06af+HwIpcXoY5NNPK+ZxbDYjBLJ0qZF/6N3bdV1GBjz5\nJDRuDC+/DEePVumHb0UAACAASURBVEw/XuGyy2DtWnjiCQgM/Pux4mJji5QOHeCHHyxpT0RERPxf\nRFAQd9WuzZIOHdjbvTv/atqUdmFhbusdwFeHD3Pn5s3UTk7m3i1b+D4zk2Kn07ymRUQqCZvTqaur\niJjLbrcTGxv7t9vS09OJiYmxqCMREREREZHylZgIN9/s3yGQU+3ZY4RAEhLMe8zkZHjpJfj6a/c1\nNWsaPSUkQGSkeb2ZbtUqGDbMCIa4MnIkvPEG1Khhbl8iIuKXcnJyCA8PN755Cgi2tB3zFACvGl9m\nZ2cT5iHwUNmtzc4mKTWVOenpHCzDOJj6ISEMiYtjaFwcrfW6ioifsHo9VEEQETGd1Rc+ERERERER\n8R/LlxuBkC++cF9TvTqMGQOPPALR0eb1ZqrCQnjzTXjhBXC14FKvHkydCn37mt+biIj4FQVBFAQp\nK4fTyXeZmSSlpfGJ3U5ucfEZz7k4PJyhcXEMiosjLriy/M8lIv7I6vVQjYYRERERERERERGf1bUr\nLFoEK1dC//6ua44dM0bFNG5sjI6x201t0RxVqsBTT8GaNdC9e+nj+/fDjTfCnXf66QsgIiIi3ibQ\nZuOaqCiSWrUirUcPPmjZkqsjIz0uTq7OzubR7dupl5zM9evWMTctjVyHw7SeRUT8hYIgIiIiIiIi\nIiLi8zp1MsbTrFkDAwe6rsnOhtdfNwIhjz8OaWmmtmiOVq3g559h/Hhw9UnluXOhdWvjv9ooWERE\nREwSHhTE0Nq1+V+HDuzt3p03mzalvYddVRzAV4cPc+fmzdROTubeLVv4PjOTYr1/EREpEwVBRERE\nRERERETEb3ToAPPnw/r1cMcdYLOVrsnNhbfegiZN4NFH4cAB8/usUIGB8PDDsGEDXH116eMZGcbO\nIDfdBPv2md+fiIiIVGp1Q0L4Z8OGrO3ShbWdO/PPBg2o42EMTJbDwazUVHqtXUujZcsYu307G3Ny\nTOxYRMT3KAgiIiIiIiIiIiJ+p21bY9OLjRth8GAIcPFbsOPHYdw4aNrUyE34XSaicWP45ht4/32o\nWbP08S++MHYHmTYNiotNb09ERESkfXg4bzZrxt7u3flf+/YMiYujmqs3bifsy8/njb17abtiBRev\nXMk7e/eSmp9vYsciIr5BQRAREREREREREfFbrVrB7NmweTPcfbexWcbp8vNh4kRo1gweeAD27DG/\nzwpjs8E99xgvwC23lD6elQWjRkGvXrBtm+ntiYiI+CJ7jt3qFvxOoM3G1VFRJLVqRVqPHnzQsiVX\nR0Z6XMj8PTubx7Zvp/5vv9Fn3TrmpKWR63CY1rOIiDdTEERERERERERERPzehRfCrFmwdSsMGwZB\nQaVrCgpg6lRo3hxGjICdO01vs+LUrg0ffwwLFkBcXOnjP/wA7doZM3OKikxvT0RExJe0ndKWF354\ngaz8LKtb8UvhQUEMrV2b/3XowN7u3XmzaVPah4W5rXcAXx8+zODNm4lLTuaezZv5LjMTh9NpXtMi\nIl7G5nTqKigi5rLb7cTGxv7ttvT0dGJiYizqSERERERERCqbXbvgtdeMqSmFha5rAgPhrrvgqaeM\ncIjfOHwY/vEPIxnjSpcuMHOmEQwRERE5TU5ODuHh4cY3TwHBlrZjngLg1RNfn3jeMdVieOayZxjZ\naSQhQSEWNlc5rMvOJiktjQ/T0jhYUHDG+nrBwQyOi2NoXBxtS/6fFRExidXrodoRRERERERERERE\nKp3GjWHaNGMayujREOxiEcvhMIIiLVoYgZCtW01vs2JERRlP7JtvoFGj0sdXrICLL4bnnzfm5oiI\niIhL9lw7CV8n0HJSS2avm02xs9jqlvxa+/Bw3mzWjL3du/O/9u0ZGhdHWID7pc79BQX8a+9e2q1c\nyUUrV/LvvXtJ1XsbEakkFAQREREREREREZFKq2FDmDQJduyAMWMgNLR0TXExJCVB69YweDBs2mR+\nnxXimmtgwwZ4+GGw2f5+rKgIXnzRCIQsW2ZNfyIiIj5i15FdDP10KBdNu4jFfyxGm/FXrECbjauj\novigVSvSLrmEpJYtuSYy0uOi55rsbP6xfTv1fvuN69au5cO0NHIcDtN6FhExm4IgIiIiIiIiIiJS\n6dWrB4mJRiDkscegatXSNcXFMGcOtG0Lt98O69eb32e5Cw+H8ePh55+NrU9Ot2kT9OhhvCg5Oeb3\nJyIi4oX6NO/j8vZ1aevoO7cvl8+6nOS9ySZ3VTmFBQYypHZtvunQgb3du/NWs2Z0CAtzW18MfJOZ\nyZDNm6mdnMzdmzfzXWYmDoV3RMTP2JyKJYqIyayeiSUiIiIiIiJyJunp8Pbbxm4hnvIPt9wCzz4L\nHTua11uFycuDl16CN94w5uKcrkkTmDEDevUyvzcREfEaOTk5hIeHG988BbgYr+aXCoBXjS+zs7NZ\nc2gNY78byy97fnF7yk0tbuLVq16lTWwbc3qUk9ZnZ5OUlsaHaWkcKCg4Y3294GDujItjaFwc7Ur+\n/xYROQ9Wr4cqCCIiprP6wiciIiIiIiJSVhkZ8M47MGECZGW5r7vpJiMQ0rmzeb1VmDVr4L774Pff\nXR8fNgzeegtq1jS3LxER8QoKghhBkLCwMJxOJ4v/XMyT3z3JhvQNLk+zYeOuDnfxwhUv0KhmI/P6\nFQAcTidLMzNJSkvjY7udnOLiM57TMTycoXFxDIqNpU5IiAldiog/sno9VEEQETGd1Rc+ERERERER\nkbN1+LAxOiYxEY4edV93/fXw3HMQH29ebxWiqMjYEuX55yE/v/TxOnVgyhTo18/83kRExFIKgvwV\nBCnhKHYwZ/0cnl36LLuP7nZ5enBgMA92eZCnej5FrWq1TGhYTpfjcLAwI4Ok1FSWZGZypkhIAHB1\nZCRDa9emf61ahAUGmtGmiPgJq9dDFQQREdNZfeETEREREREROVdHjsD48cYuIUeOuK+75hojEHLJ\nJeb1ViG2boX774df3Gx7f9ttxgsSF2duXyIiYhkFQUoHQUrkF+UzdeVUXv75ZTJyM1zeTURwBI/3\neJxHuz9KeLBGkFjlYH4+c9PTSUpLY0129hnrwwICGBATw9C4OK6MjCTQZjOhSxHxZVavhyoIIiKm\ns/rCJyIiIiIiInK+jh2DiRONTTMOH3Zfd9VVxqYal11mXm/lrrgYpk6FJ54AVwslUVEwbhwMGQJa\nFBER8XsKgrgPgpTIys/i7d/e5u3f3ia7wHXIIC4sjmcve5bhnYYTHFhZXkTvtCE7m6S0NGanpXGg\noOCM9XWDgxkcF8fQuDjahSvMIyKuWb0eqiCIiJjO6gufiIiIiIiISHnJyjImpLz1Ftjt7usuv9zY\nIeTKK304K7FnD4wcCV9/7fp4nz5GYKRhQ3P7EhERUykIcuYgSIn0nHRe+ekVpqycQmFxocuappFN\neenKl7ij7R0E2ALKsWE5Ww6nk6WZmcxOS+PjjAyyHY4zntMhLIyhtWtzZ2wsdUJCTOhSRHyF1euh\nCoKIiOmsvvCJiIiIiIiIlLecHCMD8eabkJbmvu6SS4xAyNVX+2ggxOmE2bPhkUdcb4USHg5vvAGj\nRkGAFrNERPyRgiBlD4KU2Jm5k+d/eJ7Z62bjxPWyXIe4DrzW6zWua34dNp98k+BfchwOFmZkkJSa\nypLMTIrPUB8A9I6MZGhcHDfHxBAWGGhGmyLixaxeD1UQRERMZ/WFT0RERERERKSi5ObCjBlGFuLg\nQfd18fFGIKRPHx8NhKSlwZgxMG+e6+M9e8K778KFF5rbl4iIVDgFQc4+CFJiXdo6nvruKRb/udht\nzeWNLuf13q/TrX63c2xUytvB/HzmpqeTlJbGGldj8k4TFhDALTExDI2L4/+zd+dhUdbrH8ffw6os\nIm6guSGaimkqWGZu5FKd7Fhplpa2uJtLluVummvZT9NKS/McC9dcyqXMFMVSMwXXXBNUVBQX3EAR\ngfn98YRHm0EQhhnQz+u65joyzz3Pc08dB+L7eb73E76+OBfIH/ZEJLccvR6qIIiI2J2jP/hERERE\nRERE8lpyMsyaBRMmwIkTmdeFhBiBkFatCmgg5IcfoGdPOH3a8pi7O4waBe++Cy4u9u9NRETyhIIg\nOQ+CZPjt2G8MCh/E5uObM615rtpzjHtiHNVLVs/xdcT2/kxMJCw+nrnx8ZxMScmyvoybGx38/Ojo\n50etjL83InJfcPR6qIIgImJ3jv7gExEREREREbGX69dh9mwYNw5iYzOvq13bCIS0bl0AJ6pcuADv\nvWckX6ypW9c4Vru2ffsSEZE8cVsQZAD3VxDkE+OPuQ2CAJjNZlYcWsGQ8CHsPbvXao2TyYnXHn6N\nUU1HUc6nXK6uJ7aVZjYTcfEiYadPs+TcORLT0rJ8TS1PTzr6+dHBz48y7u526FJEHMnR66EKgoiI\n3Tn6g09ERERERETE3lJSICwMxo6FI0cyr6tZE4YPhzZtCmAgJDwcuna1/gadnWHgQOPNFSpk/95E\nRMRmbguC3KdsEQTJkJaexpzdcxgRMYLYS9ZTo+7O7vR+pDeDGw6muEdxm1xXbOdqWho/nDtHWHw8\nvyQkkJ5FvRPQzNeXjn5+PF+iBF7aOU3knuTo9VAFQUTE7hz9wSciIiIiIiLiKDduwNy5RiDk8OHM\n64KCYNgwaNfOyFAUGElJRuNTpoC1XztWq2bsDtKggf17ExERm1AQxLZBkAzJqclM3zadsb+N5fy1\n81ZrirgX4f0G7/N2/bfxdLPt9cU2Tl+/zvwzZwiLj2dHYmKW9Z5OTjxfsiQd/fxo5uuLc4GcFSgi\n1jh6PVRBEBGxO0d/8ImIiIiIiIg4WmoqLFgAY8bAwYOZ11WtCkOHQvv2UKBuFt2yBTp3hn37LI+Z\nTNC7tzEv5z5fSBQRKYjMZjNXr151dBsO5eHhgSmPFuwvX7/MJ5s/YdLvk0i6kWS1xt/LnxGNR9Cl\nbhdcnV3zpA/Jvb1JSYSdPs3cM2c4cf16lvWl3dzoUKoUHf39eVg/I4kUeI5eD1UQRETsztEffCIi\nIiIiIiL5RVoaLFoEo0dbz0xkCAw0AiGvvgquBWW95/p1I+wxbpyRfPmnChVgxgxo2dL+vYmIiORz\n8YnxjPl1DF9FfcWN9BtWawJ9AxnzxBja1WiHk6mgzZS7f6SZzWy4eJGw+HgWnz1LYlpalq+p6elJ\nRz8/XvHzo4y7ux26FBFbc/R6qIIgImJ3jv7gExEREREREclv0tNh6VL48EPYsyfzuoAAGDIEOnUC\nNzf79Zcru3cbu4NERlo//vrr8H//B8WK2bUtERGRgiDmQgzD1w9n3p55mdbU8a/D+GbjaRnYMs92\nKhHbuJqWxrJz5wiLj+eXhASyioSYgGa+vnT08+OFEiXwKlBbxInc3xy9HqogiIjYnaM/+ERERERE\nRETyq/R0WL7cCITs2JF5XfnyMHgwvPEGFIibRFNT4dNPYfhwSE62PO7nB198AW3a2L83ERGRAmDn\n6Z0MCR/CqsOrMq0JrRjK+GbjebTso3bsTHIqPiWF+fHxhMXHsz0xMct6DycnXihZko5+fjTz9cVZ\noR+RfM3R66EKgoiI3Tn6g09EREREREQkvzObYeVKIxCS2UYaAA88AIMGQZcuUKiQ/frLscOHjWY3\nbLB+vE0b+Pxz8Pe3b18iIiIFxIajGxgUPogtJ7ZkWvNC9RcY+8RYqpWoZsfOJDf2JiUxJz6eOfHx\nnLh+Pcv60m5udChVio7+/jzs5WWHDkXkbjl6PVRBEBGxO0d/8ImIiIiIiIgUFGYz/PwzjBoFf/yR\neV3p0vD++9CtG3h42K+/HElPh5kz4b334MoVy+NFi8LkyfDaa6A7XUVERCyYzWaWHVzGkPAh7D+3\n32qNk8mJN2u/yQdNP6BskbJ27lByKt1sZsPFi3wbH8/is2dJTMtqeAzU9PSko58fHfz8eKBAbBUn\ncn9w9HqogiAiYneO/uATERERERERKWjMZli71giEbNqUeZ2fn5Gv6NEDPD3t11+OnDhhNPrjj9aP\nt2gBM2ZAxYp2bUtERKSgSE1PJWxXGB9EfMDxy8et1hRyKUSfR/owqOEgihUuZucOJTeupqWx7Nw5\nwuLj+SUhgawiISagma8vHf38eKFECbxcXOzRpohkwtHroQqCiIjdOfqDT0RERERERKSgMpshIsII\nhGQ2XQWgRAkYMAB69QJvb7u1d/fMZliwAPr2hXPnLI97esL48fDWW+DkZP/+RERECoDk1GS+2PoF\n4zaOI+FagtUaH3cfBj4+kH71++Hhmt+3D5N/ik9JYX58PGHx8WxPTMyy3sPJiedLlKCjvz/NihbF\nRT9Hidido9dDFQQREbtz9AefiIiIiIiIyL1gwwYYPRrCwzOvKVYM3nkHevcGHx/79XbXzp6Ffv1g\n/nzrxxs0gK+/hurV7duXiIhIAXIp+RITN09k8pbJXL1x1WpNaa/SjGgygs51OuPq7GrnDsUW9iUl\nERYfz9z4eI5fv55lvb+bGx1KlaKjnx8Pe3lh0ui9u5KamsoPP/wAwHPPPYeLdlqRbHL0eqiCICJi\nd47+4BMRERERERG5l2zaZARCVq/OvKZoUXj7bSNrUbSo/Xq7aytWQM+ecPKk5TE3NxgxAt5/H1y1\ncCUiIpKZU1dOMfrX0czcPpPU9FSrNVWKVWHME2NoG9QWJ5N2iyiI0s1mNly8SFh8PIvPnuVKWlbD\nY+AhT086+vnxip8fD7i726HLgm/t2rW0aNECgDVr1tC8eXMHdyQFhaPXQ/XJLiIiIiIiIiIiUoA9\n/jj8/DNs2QLPPGO95uJFGDkSKlQwshQJ1neNd7xnn4W9e6F7d8tjKSkwbBjUqwfbt9u/NxERkQKi\ntHdppj0zjf1v7eflh162WvNXwl+8tPglHpn5CGui19i5Q7EFJ5OJUF9f/lOtGqcbNGB+9er8q1gx\nnO/wmj+TkhgYE0O533+n+c6dfHP6NFdSrYeFxPDdd9/d/POiRYsc2InI3dGOICJid45OwImIiIiI\niIjcy6KijB1Cli3LvMbLC/r0McbGlChhv97uyvr10LUrREdbHnN2hgED4IMPoHBh+/cmIiJSgOw4\ntYPB4YNZHZ359mHNApoxofkEQsqE2LEzyQvxKSksOHOGsNOniUpMzLLew8mJ50qUoKOfH819fXFx\n0j4CGVJTUyldujTnzp0DoESJEpw6dUrjYSRbHL0eqiCIiNidoz/4RERERERERO4HO3fCmDGwZEnm\nNZ6e0KsXvPsu+PnZr7dsu3rVCHtMmgTp6ZbHH3wQvv4aGjWyf28iIiIFzPoj6xkUPoitJ7dmWtM2\nqC1jnxjLg8UftGNnklf2JyURFh/PnPh4jl+/nmW9v5sb7UuVoqOfH7W9vDCZTHboMv+6ORbGx8d4\n4tIljYeRbHP0eqgiXSIiIiIiIiIiIveg2rVh8WLYvRteegms/R4/KQkmToSAAGN3kFOn7N/nHXl4\nGA1u2QI1a1oeP3QIGjeGt96Cy5ft35+IiEgBEhoQypbOW1jSbglVi1e1WrN432KCvgii+4runLx8\n0s4diq1V9/RkXKVKHK1fn/UPP8yb/v54O2c+POZ0SgqTT5ygblQUNbdt46PYWE4kJ9ux4/zl5liY\nRo2gYUNA42Gk4NCOICJid45OwImIiIiIiIjcj/btg7FjYcEC65trALi7Q7du8P77ULasffvLUkoK\nTJhgbHNy44bl8XLl4Kuv4Omn7d+biIhIAZOansrsnbMZGTGSk1esBz4KuRSi36P9GPj4QHwL+9q5\nQ8kr19LSWH7+PGGnT/NzQgJpWdSbgNCiRenk788LJUrgfZ+MRbltLMwnnxhPDhig8TCSbY5eD1UQ\nRETsztEffCIiIiIiIiL3s4MHYdw4mDsX0jL5zb+bG3TuDIMGQfny9u0vS3v3Gs398Yf14x07wuTJ\nULy4ffsSEREpgK7duMbnWz9n/MbxXEi+YLWmaKGiDHp8EH0e7YOHq4edO5S8dCYlhQVnzhAWH0/k\nlStZ1hd2cuL5EiV41c+PFr6+uDjdu8MnbhsLkzFrsU0bjYeRbHP0eui9+7dTRERERERERERELFSt\nCt98AwcOwJtvgrWbGVNSYPp0qFzZ2CHk6FG7t5m5GjVg0yaYNAkKF7Y8HhYG1avDd9+B7oETERG5\no8KuhXnv8feI6RfD4IaDKexi+b31YvJFBoUPospnVZgZNZPU9FQHdCp5oZSbG33LlmVbcDD76tVj\nSPnylHd3z7T+Wno6886c4V979lD299955/Bhdly5wr2478BtY2GcnY2HxsNIAaIdQUTE7hydgBMR\nERERERGR/zlyBMaPh9mzrU9cASMs0qkTDBkCgYF2be/OYmKga1dYt8768datYdo0KFPGvn2JiIgU\nUHFX4hi9YTQzt88kzWx967AHiz/I2CfG0qZ6G0wmk507lLyWbjbz68WLzImPZ9HZs1zObAu5W9Tw\n8KCjvz+vlCpF2UKF7NBl3rIYCxMcbByIitJ4GMk2R6+HakcQERERERERERGR+1hAAMyYAX/9BT17\nGmNh/ik1Ff7zH2M3kddeg0OH7N+nVZUqwdq18PXXxrbd/7RsGQQFwaxZ2h1EREQkG8p4l2F6q+ns\nf2s/7Wq0s1pz6PwhXlz0Io98/QjhMeF27lDympPJRFNfX76uVo3TDRqwICiIZ4oVw/kOr9l79SqD\nYmIov2ULzXbuZPapU1xJLbg7x0RERBghEB8fqF37fwdq1wYfH86dO0dERITD+hPJDgVBRERERERE\nREREhAoVjM0zoqOhTx+wtit4Whp8+60xeeWVV2D/fvv3acFkgs6dYd8+YweQf7p0Cbp0gebNjR1E\nREREJEtVildhYduFRHaNpEWlFlZrIuMiaR7WnJZhLYmKi7Jzh2IPhZ2dealUKVbWqkVcgwZMqVyZ\nEG/vTOvNwLqLF3nj4EH8Nm+mw759rDp/ntT0dPs1bQMWY2EyaDyMFCAaDSNyH7t8+TLr168nIiKC\nnTt3cvDgQRISEnBxcaFYsWI89NBDNGnShNdffx0/Pz+bXdfRWyGJiIiIiIiISNZOnYKJE+HLL+Ha\nNes1JhO0awfDhsFDD9m3P6vMZli0CHr3hrNnLY97eMCYMdC37+2/1BcREZE7Co8JZ1D4ICLjIjOt\naVejHWNCx1CleBU7diaOcCApibD4eObExxN7/XqW9X6urrT386Ojnx91vLzy9UihTMfCZNB4GMkm\nR6+HKggich86ePAgAwYMYM2aNaSkpNx8/tZvvLd+NLi6ujJo0CCGDx9uk29ojv7gExEREREREZHs\ni4+H//s/+OILuHo187o2bYxAyK27ZzvM+fPQvz+EhVk//uijxriYGjXs25eIiEgBZjabWbJ/CUPX\nDeXQeetz4lycXOhSpwsjmoygtHdpO3co9pZuNvPbpUuEnT7NorNnuZyWluVrgjw86Ojnxyt+fpQr\nVMgOXd6dtWvX0qJFC2MszJIlluHhtDTjB99Ll1izZg3Nmzd3TKOS7zl6PVSjYUTuQ3/++Sc//vgj\nN27cwGQyYTKZcHZ2pkqVKjRq1IhGjRrh7+9/81hqaiqjR4/mhRdeIC0b38RFRERERERE5N7h5wcf\nfwxHj8LgweDlZb1uyRKoUweee864UdKhihc3Ztj89BOUK2d5/I8/jGY//BBuuUlGREREMmcymWgb\n1Ja9vfYyo9UMyniXsahJTU/ly6gvCZwayJDwIVxMvuiATsVenEwmmhQtytfVqnG6QQMWBgXRqnhx\nXO6w48e+q1cZfOQIFbZs4YmdO/nvqVNcTk21Y9d3lulYmAwaDyMFhIIgIvcxZ2dnnn32WRYvXsy5\nc+c4cOAAERERREREEBcXR3h4OFWrVgWMH/B+/PFHhg8f7uCuRURERERERMQRSpaEceOMQMjw4VCk\niPW6ZcsgJARatYKtW+3aoqWnn4Y//4RevSyP3bgBH3xgNLttm/17ExERKaBcnFzoGtyVv/r8xYRm\nEyhaqKhFzbXUa4zfOJ5KUyrxyeZPuHYjkzlzcs8o7OxMu1KlWFGzJnGPPcbUypWp5+2dab0ZWH/x\nIm8ePIj/5s2037ePn86fJzU93X5N/0Nqairff/+98UXTppkXhoYCsHTpUlLzUYhF5FYaDSNyH1q+\nfDkrVqxgxIgRlLN2V8wtLl26RIMGDThw4ABmsxl3d3eOHz9OiRIlcnx9R2+FJCIiIiIiIiK5d+EC\nTJ0Kn34KF+9ws++TT8KIEdCggf16s+rXX6FLF/jrL8tjTk7wzjswahR4eNi/NxERkQLswrULfLTp\nI6b8MYXk1GSrNWWLlGVkk5G8Vvs1XJxyP4JeCo4DSUnMiY9nTnw8x65fz7K+lKsr7UuVoqO/P3W9\nvDDdYXcRW8tyLEwGjYeRbHD0eqh2BBG5D/373/9m5syZWYZAAHx8fJg8eTIZmbGUlBRWrlyZ1y2K\niIiIiIiISD7n62tsqHH0KIwZA8WKWa9bvRoefxyaNzeyGA7TuDHs2gUDB1r+Uj89HT75BGrVgogI\nh7QnIiJSUPkW9mVC8wkc7nOYbnW74WyyXDw/cfkEXVZ0oeb0mizdvxTdp37/qObpyZhKlYipX58N\ntWvTpXRpfDILWABnbtxgysmThERFUWPbNsYfO0ZssvWAka1lORYmg8bDSAGgIIiIZKl58+YULlz4\nZupy//79Du5IRERERERERPILHx8YOtQIhEyYAJltIhoeDk2aGLtsr18PDln/KVzYaPKPP+Dhhy2P\nR0cbW3137w6XLtm/PxERkQLsgSIP8NWzX7G3117aBrW1WnPg3AHafNeG+rPqs/7Iejt3KI7kZDLR\nuGhRZlatyukGDfguKIhnixfH5Q47fuy/epUhR45QccsWQnfu5D+nTnE5j0axZHssTAaNh5F8TkEQ\nEcmSk5MTPj4+N7++fPmyA7sRERERERERkfzI29vYbOPoUZg4Ef6xC/JNGzbAE08YG3SsWeOgQEhw\nMGzbBmPHFzVZugAAIABJREFUgpub5fEZM6BGDdCuqCIiInetaomqLHpxEVu7bOWJgCes1mw9uZUn\nvn2Cp+Y8xY5TO+zcoThaIWdnXixViuU1axL32GN8Vrkyj3h7Z1pvBiIuXqTzwYP4bd7My3v38uP5\n89xIT7dZTxEREZw7d85IOdeunfULatcGHx/OnTtHhHaUk3xIQRARyVJycjJnzpy5+fU/51mJiIiI\niIiIiGTw9IQBA+DIEZg8Gfz9rddt3AgtW0KDBrBqlQMCIa6uMGQI7NwJjz1mefzkSXj2WejQAc6e\ntXNzIiIiBV+9B+oR3imcX179hbql61qtWR29mroz6tJ+SXsOJxy2c4eSH5R0c6N32bL8ERzMgUce\nYViFClQsVMh6sdlMclISC2NjabV1K2XWraPXrl1sPH2axMREkpKScvxYsGCBcY2sxsJkuGU8zIIF\nC3J17Ts9NEZJcspk1v97RCQLCxYsoEOHDgCYTCZ+/PFHnnrqqRyf7+zZsxZhkjNnzlCyZMlc9Ski\nIiIiIiIi+c+1azBrljGR5eTJzOtCQmDECGjVCu6wQ3jeSEuDadNg8GBISrI8Xrw4TJ0K7ds7oDkR\nEZGCL92czuJ9ixm6bmimgQ8XJxe61e3G8CbD8ffKJEkq94V0s5lNly4RFh/Pd2fOcCktzTgQHQ1d\nuuTtxT/5xNg9LjuioowEdB7avXs3NWvWzNNrSN5w9HqodgQRkTtKT09n4sSJN7/28/OjWbNmDuxI\nRERERERERAqSwoWhd2/j9/bTp0P58tbrIiPh3/82fu/+ww9gw52+s+bsDH36wJ9/QosWlsfPn4dX\nXjEaPHHCjo2JiIjcG5xMTrSr0Y59vfYx/ZnpVoMeqempTIucRuDUQIatG8al5EsO6FTyAyeTiUZF\nizKjalVON2jAoqAg/l28OE6bN+fthRs1yt5YmAy1a9/cFSSvLFu2LE/PL/cu7QgiInc0ZswYRowY\nARi7gUybNo3u3bvn6pyOTsCJiIiIiIiIiOOkpMC338LYsXD0aOZ1tWrB8OHwwgvgZM/b2cxm+OYb\n6N8fLl60PO7tDRMnQteudm5MRETk3pGUksTUP6by0aaPuHTdeuCjWOFiDGk4hLceeYtCLpmMCpH7\nyuEzZ2jXuTM7Vq40nqhdGwYOBB8f21ygUKG73/3NbIbkZNtc/9IlYxu9XbsAePHFF5k5cyY+tnp/\nYleOXg9VEEQkD507d45t27YRHR3N5cuXcXV1pXjx4gQFBRESEoKLi4ujW7yj1atX06pVK9LT0zGb\nzYSGhhIeHp7r8zr6g09EREREREREHO/GDZgzxwiEREdnXhcUZARCXnwxe+Pabeb0aXjrLVi61Prx\npk1h5kyoXNmOTYmIiNxbEq4lMGHjBKb+MZXradet1pQrUo5RTUfR8eGOuDjl73UVyXtms5mZM2fS\nt18/ricnGyP8hg6FOnUc3Vru7Nhh/GB8/jyFChViypQpdO3aFZPGEhZYjl4PVRBE7kkXLlwgMjLy\n5iMqKorY2NjbakwmE2kZM8VsbPHixUydOpVNmzaR2V8xb29v2rVrx/vvv0+VKlXypI/c2LVrF02a\nNOHKlSuYzWZKlSrF9u3bKVOmTK7P7egPPhERERERERHJP1JTYf58GDMGDh3KvK5qVRg2DF5+Gex6\nb82SJUYgJD7e8lihQjB6NLz9tp2bEhERubecuHyCkREj+e/O/5Jutj4frnqJ6oxrNo7WVVtrcVzY\ns2cPL730Evv37zd28ejYETp1snNy2AbS0ozd6ObMAbOZ6tWrs3DhQmrWrOnoziSXHL0eqiCI3BP2\n7t3Ljz/+SFRUFJGRkRw5cuS24//8gcBsNudJECQuLo4OHTrw66+/3nbdW/+a3dqL2WzGzc2NYcOG\nMWzYMJv2khuHDx+mcePGxMfHYzab8fb2Zt26dQQHB9vk/I7+4BMRERERERGR/CctDb77zshV7N+f\neV3lysZNn6+8Aq6udmouIQHefRdmz7Z+PCQEZs0y5tmIiIhIjh04d4Ch64aydH8mO3IB9cvWZ0Kz\nCTSp2MSOnUl+lJSURL9+/Zg1a5bxRK1aRnK4oKw3nT1rpKF37wagc+fOTJkyBU9PTwc3Jrbg6PVQ\nBUHkntC/f3+mTJkCWIY+wDKIkRdBkEOHDtG0aVNOnz5tEQCxFkS59Xmz2UyHDh0ICwu7qxTrnj17\neP/997OsW7VqVbbPGRsbS6NGjThx4gRmsxkPDw9WrVpFo0aNsn2OrDj6g09ERERERERE8q/0dGMT\njg8/hD//zLyuUiUYMsS4+dPNzU7N/fILdOsGx45ZHnNxMRoaMgTc3e3UkIiIyL3pjxN/MCh8EBFH\nIzKtebry04xvNp6H/R+2X2OSL82fP59u3bqRmJgIRYrAoEHw2GOObuvONm+Gjz6Cy5fx9vbmq6++\non379o7uSmzI0euhCoLIPSEjCJIR8vinWwMXeREESUhIoE6dOpw4ceLmcxnXCA4OpnXr1gQEBHDt\n2jUOHTrEvHnziIuLu1mToV+/fkyaNCnb192wYQOhoaF3rLmb9xkXF0eTJk2IiYnBbDbj7u7O8uXL\nadGiRbZ7yg5Hf/CJiIiIiIiISP6Xng7LlhmBkJ07M6+rUAEGD4bXX7dT/iIx0Qh7fP45WPvValCQ\nsTtI/fp2aEZEROTeZTab+SX6FwaFD2Lnaes/DJgw0aFmBz4M/ZBKvpXs3KHkJ4cPH+all15i+/bt\nxhNt20LXrnZMDGdTSgrMnAmLFwMQHBzMggULqFy5soMbE1tz9Hqok12uImJHJpPp5sPd3Z3g4GC6\ndeuGj49Pns2M69q1K8ePH7/5tdlspkiRIixfvpytW7cydOhQOnToQOfOnfnoo484evQoI0eOtBgT\nM2XKFFavXn1X1771/Wb2yI4zZ87QrFmzmyEQV1dXFi1aZPMQiIiIiIiIiIhIdjg5wfPPw/btRiAk\ns4m1x45Bjx7GyJgvvoDk5DxuzMsLpk6F336DatUsj+/bBw0aQP/+kJSUx82IiIjcu0wmE09WfpKo\nblHMbzOfQN9AixozZubumUu1z6vR56c+xCfGO6BTyQ8qV67M5s2befvtt40nFi+GPn3g5EnHNnar\nkyehd++bIZD+/fuzefNmhUAkT2hHELkn9O/fn2nTphEUFERISMjNx8MPP4yLiwsAAQEBxMbGAth0\nR5A1a9bw5JNP3rbriLu7O5s3b6ZOnTp3fO3UqVN5++23bwtrVK5cmf379+PkZL+cVkJCAk2bNmXv\n3r2YzWZcXFxYsGABL7zwQp5cz9EJOBEREREREREpeMxmWLXK2CHkjz8yrytdGgYONCa4FC6cx00l\nJxtz3SdMAGu/ZwoIMO74bNYsjxsRERG596WkpfD19q/5cMOHxCdZD3x4unryzmPvMKDBAIq4F7Fz\nh5JfrFixgtdff52EhATw8IB33nH8z2Nr18KkSXDtGsWLF2f27Nm0atXKsT1JnnL0eqiCIHJPiI+P\np2jRorjfYf/PvAqCNG7cmI0bN942cmbcuHEMHDgwW69/8sknWbNmzW2v/+abb3j11Vdz3Vt2XLp0\nidDQUHb+vceqs7MzYWFhvPzyy3l2TUd/8ImIiIiIiIhIwWU2w5o1MGqUMVo9M35+8N57xm4hnp55\n3NTOnfDmm7Bjh/XjnTvDJ59A0aJ53IiIiMi9LykliU+3fMrHmz/m8vXLVmuKFy7O0EZD6VWvF+4u\n9pgdJ/nNiRMn6NChA7/99pvxxNNPGzuE5HlS+B+uXYPPPjMSzRjrinPnzqVs2bL27UPsztHroRoN\nI/cEPz+/O4ZA8sq+fftuhkAylChRgnfffTfb5xg/frzFc9OnT7dJf1lJTEzkySefvBkCcXJyYtas\nWXkaAhERERERERERyQ2TCVq2hI0bITwcGje2XhcfDwMGGJtyfPwxJCbmYVO1a8PWrcbOINZ+RzVr\nFgQFwQ8/5GETIiIi9wdPN0+GNh5KTN8Y3n3sXdydLb/3nr92nnd+eYcHP3+Qb3Z+Q1p67m8MloKl\nbNmyrFu3juHDhxvreKtWQc+eEBNjvyZiYoxrrlqFyWRixIgRhIeHKwQidqEgiEguLFiw4OafM3bz\nePPNN2+Oo8mOunXrEhwcfPP1ZrOZLVu2cOzYsbxo+aZr167xr3/9i61btwJGCOSrr76iU6dOeXpd\nERERERERERFbMJngiSdgwwaIiDD+bM3Zs8aomIoVYdw4uGz9xuHcc3ExLrRrFzRqZHn81Cl4/nlo\n185IqYiIiEiuFPcozictP+FQn0O8UfsNnEyWy56xl2J5fdnrPPzlwyw/uBwNSri/uLi48OGHHxIe\nHk7p0qXh2DEjmLF8ubHNXF4xm41r9OwJx45RunRpwsPDGTVq1F2tIYrkhoIgIrnw888/WzzXpk2b\nuz5P27Zts3VuW0lJSaF169Zs3LgRAJPJxGeffUbnzp3z7JoiIiIiIiIiInmlSRNjd5DffjN2C7Hm\n/HkYOhQqVIAPP4SLF/OomapVjWTKF1+Al5fl8UWLjN1BwsLydgFCRETkPlHepzz/af0f9vTcw3PV\nnrNas/fsXlovaE2j/zZiY+xGO3cojhYaGsrOnTt56qmnICUFJk825gzmxZZxiYnGuSdPhpQUnn76\naXbt2kVoaKjtryVyByazom9ynwgICCA2Nhb43+4daWk53wrs6tWrFClS5GZ61Gw24+npyaVLl3By\nuruM1ebNm2nYsOHNHUFMJhPt27dnzpw5Oe7vTiZOnMjAgQNvjrQpUqQI9evXz/brW7ZsSf/+/XN8\nfUfPxBIRERERERGRe9uWLTB6NPz0U+Y1RYpAv37w9ttQrFgeNRIbC927Q2Y3/Dz9NHz5JZQvn0cN\niIiI3H9+P/47g8IH8euxXzOteabKM4xvNp6afjXt2Jk4Wnp6OpMmTWLw4MGkpqbCI4/ARx/Z9iID\nB8LWrbi4uDBhwgT69+9/1+uGcm9w9Hqo9p4RyaGdO3eSnp5+W3gjJCQkRx/m9erVw9XVldTU1Jvn\ni4qKyoOuDVevXgW4GWK5dOkSq1evzvbrS5cunSd9iYiIiIiIiIjYQv368OOPEBlpBEKWL7esuXzZ\nOPbpp9CnD/TvDyVK2LiR8uWNNMqcOUbiJCHh9uOrVkGNGsYCRI8eoEUCERGRXHus3GNEvBbBz4d/\nZnD4YHbF77Ko+fGvH/npr594tdarjGo6igDfAAd0Kvbm5OTEgAED8PHxoVu3bhAdbfuL/H3OadOm\n0bVrV9ufXySb9F8WIjl04MABi+cqV66co3O5urpStmzZ256Ljo4mPT09R+fLDpPJlKuHiIiIiIiI\niEh+FxICy5bB9u3wwgvWa65cgXHjoGJF4wbOM2ds3ITJBB07wr590K6d5fHERHjrLWO+zcGDNr64\n7ZnNZo4ePcrWrVvZsGEDq1evZvXq1WzYsIGtW7dy9OhRtAm1iIg4mslk4ukqT7O9+3bmvjCXgKKW\nQQ8zZsJ2h1H186r0W9WPM0m2/iFA8qtt27YZf3jsMduf/O8d+CMjI21/bpG7oNEwct+w9WiYESNG\nMGbMmNt2BBk1ahTDhg3L0flCQ0PZsGHDbeeLjo6mYsWKOe4xv3L0VkgiIiIiIiIicn/aswfGjIFF\niyCz34oWLgw9e8J774G/fx408cMP0KsXnDpleczdHUaOhAEDwMXxmzmbzWaOHDlCVFQUkZGRREVF\nsX37di5cuHDH1/n6+hIcHHzbIyAgQDcXiYiIw6SkpTAjagajfx2daeDDy82Ldx97l3cfexdvd287\ndyj2kpqaSunSpTl37hx88gkEB9v2ApGR8N57lChRglOnTuGSD36mE8dw9HqodgQRyaHTp09bPFeu\nXLkcn8/aa+Pj43N8PhERERERERERuV3NmrBwoREIad/e2Kzjn65dg0mTICAA+vWDkydt3MRzzxm7\ng3TubHns+nUYPBgefRR27rTxhbPv5MmTjBw5krJlyxIYGEi7du34+OOPCQ8P58KFC7gBFYBqQO2/\nH9X+fs4NuHDhAmvXruWjjz6iXbt2BAYGUrZsWUaOHElcXJzD3peIiNy/3Jzd6P1Ib6L7RvNh0w/x\ndrMMeiSmJDJqwygCpwYy9Y+pXE+97oBOJa9FREQYIRAfH6hd2/YXqFMHihTh3LlzbNiwwfbnF8km\nBUFEcijhnzNdAS8vrxyfz9prz58/n+PziYiIiIiIiIiIdTVqwLx5Rh6jY0dwsvJb0uRkmDoVKlUy\nJrf8vdGsbRQtCl9/DWvXGomTf9q+3ZhrM3So0YgdmM1m1q1bR9u2balQoQKjRo0iLi4ONyAE6A7M\nAKKAK8BRYD+w4+/H/r+fu/J3zYy/XxOMEQ6Ji4tj1KhRlC9fnhdffJH169drhIyIiNidl5sXw5sM\nJ7pvNP3r98fN2c2i5uzVs/T7uR/VvqhG2K4w0tJzvru85D/fffed8YdGjcDZ2fYXcHY2zn3rtUQc\nQEEQkRxKSkqyeK5w4cI5Pp+11169ejXH5xMRERERERERkTurVg2+/RYOHoQ33rC+FpCSAtOmQeXK\n0L07HD1qwwaaNTO2J+nf33J7krQ0GDfOuFN10yYbXvR2ZrOZefPmERQURLNmzViyZAlpaWk0BuYD\nl4FtwJdAV6AuRrAjM25/13T9+zWRf59jPtAISEtLY/HixTzxxBMEBQUxb948BUJERMTuSnqWZNKT\nkzjU+xCvPfwaJiy3CTt68SidfuhEna/qsPLQSn2/ugekpqby/fffG180bZp3F/r73EuXLiU1NTXv\nriNyBwqCiOTQjRs3LJ4rVKhQjs9nLQiSkpKS4/MVNElJSTl+iIiIiIiIiIjkRuXK8J//wKFD0KUL\nWBvlfuMGzJgBVaoYNdHRNrq4p6cxi2bzZggKsjx+8KBxV2nfvpCYaKOLGk6dOkXr1q155ZVXOHDg\nAF5AL2APsAF4GXC3wXXc/z7Xr8BuoCfgBRw4cIBXXnmF5557jlOnTtngSiIiInenQtEKzH5uNrt7\n7ubfVf9ttWbPmT08O/9ZGs9uzKbYvAtnSt7L87EwGTQe5p5SUNcwFQQRsSGTtcGyuXjt/ZQuDQgI\nwMvLK0cPERERERERERFbqFQJZs6Ew4ehRw9wdbWsSU2FWbOgalV4/XUjPGIT9esbI2FGjLBMopjN\n8Nln8NBD8Msvub6U2WwmLCyMoKAgVqxYgSswGogDvgAeyvUVMlcTmPb3tUYDrsDy5cupUaMGc+bM\nua9+HyYiIvnHQ6UeYtnLy9j4xkYalm9otWZj7EYa/rch/57/b/4886edOxRbyNFYmL17oWdP47Fv\nX/Zeo/Ew95Scrl8GWBsBaUcKgojkkKuV3wRcu3Ytx+ez9lo3tztttCkiIiIiIiIiInmhQgWYPt3Y\n9aN3b3C3si1GWhp88w1Urw6vvgr799vgwu7uMGoUREVBSIjl8WPH4MknjTk2CQk5ukTGLiCdOnXi\n4sWLBAPbgWGAd256v0vef19zOxAMXLhwgY4dO2p3EBERcajHyz/Or6//ysr2K6lZqqbVmhWHVlBr\nei1e++E1jl08ZucOJafueixMWhqEhUG/fnDggPHo2xfmzDGOZUXjYcTBFAQRySEPDw+L52wdBPH0\n9Mzx+QqaI0eOkJiYmKOHiIiIiIiIiEheKFfO2IgjJgbefhusTQVOT4e5c6FGDXj5ZfjTFjcI16oF\nv/8OEydav+js2cYYmSVL7uq0e/fuJSQk5OYuIGOA38nbHUCy8tDfPdy6O0hISAj7snvHrYiIiI2Z\nTCaeefAZdnTfQdjzYVQsWtGixoyZb3d9y4OfP0j/n/tzNums/RuVu3JXY2HOnIF33zVmB6al0b59\ne9q3b28EQGbNggED4GwW/841HuaekdP1yyNHjji0bwVBRHKoePHiFs/lJpRg7bXWrnGv8vT0zPFD\nRERERERERCQvlSkDkyfDkSPG7/2t3B+E2QwLF0LNmvDii7BrVy4v6uJiXGzPHmjSxPJ4fDy0bQtt\n2sCpU0yZArGxmZ9u27ZtNG7cmLi4OKoDUcBQjPCFo7li7A4SBVQH4uLiaNy4Mdu2bcv0NbGxMGWK\nnRoUEZH7krOTM6/WepUDbx1gylNTKOlR0qImJS2FT//4lMCpgXy44UMSU3Tzan6V7bEwv/0GXbrA\nrl14eXnxzTffMHfuXObOncvs2bONdamdO6FzZ6M2MxoPc88oqGuYCoKI5JCfn5/FcydOnMjx+Y4f\nP56ta4iIiIiIiIiIiGP4+xubdBw9CoMGgZeX9brFi40bTZ9/HrZvz+VFK1eGdevgq6/A28rwlqVL\nmRI4hbffhtBQs9UwyLZt22jWrBkJCQnUA34DrG9271g1MXqrB5w/f55mzZpZDYPExkJoqLFLi8Ig\nIiKS19xd3On7aF+i+0YzsslIvNwsfwC4knKFDyI+IHBqIJ9v/ZyUtBQHdCqZydZYmORkmDQJRoyA\nK1cICQlhx44ddOrUCZPJhMlk4rXXXmPHjh2EhITAlStG7aRJxmut0XgYcSAFQURyKCAgwOK5Y8dy\nPgsuNjYWk8l082tnZ2fKly+f4/OJiIiIiIiIiEjeKFkSxo83AiHDhkGRItbrfvgBgoPh2Wdh69Zc\nXNDJCbp1g3374JlnLA4/f20elYgmJsZEaKMbt4VB9u7dy1NPPcWVK1doAoQD+XkP2uIYPTYGrly5\nwlNPPXXbmJiMEEhMDFSqZIRtRERE7MHb3ZsPmn5AdN9o+j3aD1cny321ziSdoc+qPlT7vBpzd88l\n3ZzugE7ln7IcC3P4MPToAStWAPD++++zadMmKleubFFapUoVNm3axPvvv288sWKF8droaMvzajyM\nOJCCICI5VLVqVYvnDh8+nKNz3bhxw2JHkMDAQJyc9FdURERERERERCS/Kl4cRo82AiEffGCsLViz\nciU8+ig8/TT8/nsuLli2rLHYMG8elChx8+nyHGc9oUYYJNaV0LqXiD2SxqlTp2jZsiUJCQk8AqwA\nrOwpku94AysxdgZJSEigRYsWnDp1yiIEsn496D4qERGxt1Kepfj0qU851OcQHWt1xITJoubIxSO8\n+v2r1PmqDj/99RNms9kBnUqGTMfCmM2wZAm89RYcO0bp0qVZs2YNH330EW5ubpmez83NjY8++og1\na9bg7+8Px45Br16wdKlxzgwaDyMOpFVmkRyqU6fOzaCGyWTCbDYTGRlJevrdpzsjIyO5ceMGAGaz\nGZPJRN26dW3ar4iIiIiIiIiI5A1fXxg50lgDGD3a+Nqan3+GBg2gRYs7j5S/I5MJ2rc3dgfp0OHm\n07eFQc77EFr9NB3b9CcuLo7qwE8UjBBIBm9gFVAdiIuLo1OnYYSGmhUCERGRfKNi0Yp8+/y37Oqx\ni1YPtrJaszt+N8/Me4am3zTl9+O5SYNKTmU6FubiRRgyBD7/HFJSaNWqFbt27aJ58+bZPnfz5s3Z\nvXs3zzzzDKSkwGefwdChxrkzaDyMOIiCICI55OHhQZ06dW5LcSYlJbFjx467PtfGjRstnmvcuHGu\n+hMREREREREREfvy8TFGxRw9aoyOKZ7JDJa1a6FxY2N3i4iI228czbaSJWHuXFi+HB54APhHGOT6\nA4T/PhYXyrGQ/D0OJjPFgYWAC+VYu3YIMTEmhUBERCTfqelXkxXtV/DbG7/RoFwDqzW/HvuVBv9p\nwHMLnmPf2X1WayRvWB0LExkJnTvDli24u7vz2WefsXz5ckqWLHnX5y9ZsiQrVqxg6tSpuLu7G9u/\ndekCUVFGgcbDiIMoCCKSC0899ZTFc4sXL77r81h7jbVzi4iIiIiIiIhI/lekCAwaZARCPv7YyGxY\nExFhhEGaNDHCITkKhDz7LOzdC927A0YYZAGhOBENBOLNenwol8N34ng+lMOb9UAgTk5HWLAgXiEQ\nERHJlxqWb8jGNzay/OXl1ChZw2rNsoPLqDm9Jm8se4PYS7F27vD+dNtYmPR0+PJLeO89SEggKCiI\nrVu30rt3b0wmyxE/2WUymejTpw9bt26levXqcP48DBhgXCs9XeNhxCEUBBHJhZdffvnmnzPGw/z3\nv/+9q62dduzYwbZt226+HuDRRx+lQoUKNu9XRERERERERETsx8vLWGc4ehQmTQJ/f+t1v/1mjIt5\n/HFjfMxdB0J8fIyFhvXrMVeqxGiOk04obkRzgUBCWU9sAQyDxFKOUNZzgUDciCY9vQljxnS7bYde\nERGR/MRkMvFs1WfZ1WMXs1vPpryPZXox3ZzO7J2zefCzB3l39bucv3reAZ3eH24bC1O5MvTuDQsX\nAtCjRw+2bdtGrVq1bHa9WrVqERkZSY8ePYwnFi6EPn2gShVA42HEvhQEEcmFGjVq0LBhw9v+4/Ps\n2bNMnjw52+cYPHjwbV+bTCZ69eplsx5FRERERERERMSxPDygf3+IiYGpU6FMGet1v/8OTz8Njz4K\nK1fmIBDStCnzhw1jBeDGcVZmjIkpgGGQjBBIDIFUIpoVhOLKcZYvX878+fMd3Z6IiMgdOTs581rt\n1zjU+xCTn5xMCY8SFjXX064zacskKk2txJhfx5CUkuSATu9tN8fCAEybBocOUaxYMb7//numT5+O\nh4eHza/p4eHB9OnTWbp0Kb6+vnDwoHFt0HgYsSsFQURyadiwYTf/nLGrxwcffMDOnTuzfO3nn3/O\nL7/8ctt2U4GBgbRv3z5PehUREREREREREccpXNi4KTQ62lgPKJdJLmPbNmPiS3Aw/PBD9gMhZrOZ\n0R9/DMBwoAXHWV8AwyD/DIGsJ5SWHGf438fHjBmjXUFERKRAcHdx5+36bxPdN5oRjUfg6eppUXP5\n+mWGrx9O4NRApm2bRkpaigM6vTfdNoolJYWmTZuya9cunnvuuTy/9vPPP8/u3btp0qQJpPzv36nG\nw4i9KAgikkstW7akdevWN//j02QykZycTNOmTVm5cqXV16SmpjJ69Gj69u17MwRiNpsxmUxMnToV\nZ2eWLTfwAAAgAElEQVRnu/UvIiIiIiIiIiL2VagQ9OwJhw/DjBlQsaL1uh074PnnoU4dWLLEGDF/\nJxERERw4cAAvoN/fz5UvYGEQayGQ8hwHjPfkBezfv19304qISIFSxL0Io0JHEd03mj6P9MHVydWi\nJj4pnrd+eovqX1Rn/p75pJuz+MYvWfr1118BcHZ2ZuzYsaxdu5ayZcva7fply5YlPDycMWPG3Fz7\ny+hJJK+ZzIpOyz3iX//6F6dOncr0+L59+27O3coIXWQ192vVqlX4Zza89Rbnzp2jbt26nDhxAuC2\ncEdISAitW7cmICCAa9eu8ddffzF37lxOnjxpEQLp06cPn376abbeb0F29uxZSpUqddtzZ86coWTJ\nkg7qSERERERERETEcW7cgDlzYOxYY7eQzNSoAcOHQ9u2YO0+orZt27JkyRJ6AV/849idAhb5RXZ6\n7AVMx3ivixYtckifIiIiuRVzIYYR60cwb888zFhfqq3tX5vxzcbzZOCTt+0sL9l34sQJ3nvvPfr1\n60f9+vUd2svvv//O1KlTmThxol3DKOI4jl4PVRBE7hkBAQHExsba5FwZwYwjR45Qvnz5bL3mwIED\nNGvWjNOnT9+2O4i1v2K3BkAyvn7ppZeYO3fuffHN3NEffCIiIiIiIiIi+VFqKsybB2PGwF9/ZV5X\nrRoMGwYvvQQuLsZzJ0+epEKFCqSlpbEHeMjK6/JzGCS7ve0BamHc2RsbG0uZMmXs3quIiIit7Dq9\niyHrhvDTXz9lWtO0YlMmNJvAo2UftWNnIpJbjl4P1WgYuaeYzWabPHKiWrVqbN26lYYNG2IymSxC\nILcGPDKuYzKZcHNzY+TIkcybN+++CIGIiIiIiIiIiIh1Li7QqRPs3w9z5xqBD2sOHIBXX4WgIPjm\nGyNAMnPmTNLS0miE9RAI5N8xMXcTUKkJNATS0tKYOXOmXfsUERGxtYf9H+bHDj+y4fUN1C9rfceK\niKMR1J9VnxcWvsD+s/vt3KGIFFQKgsg9JSOAYavH3XrggQfYsGEDCxcupEGDBjg5Od12rlvP7e3t\nzZtvvsnu3bsZPny4rf9RFDhJSUlWHyIiIiIiIiIi9xtnZ+jQAf78ExYuhIcySXb89Re8/jpUrWpm\nypTLgAu9sjh3fguD5GSXkoz3OHPmzBzf1CUiIpKfNK7QmM1vbuaHl34gqGSQ1ZrvD3zPQ9Mfosvy\nLhy/lD929BIRQ35c59RoGJE8dO7cObZu3UpMTAyXL1/GxcWFEiVKUL16derVq4dLxt6d9xlrWyFl\nRh9RIiIiIiIiInK/S0+HH36ADz+EXbvuVHmUzxlHF77BnZQ7njM/jInJaQ/XAW/gBhATE0NAQEBe\ntyoiImI3aelpfLvrWz6I+IDjl61/X3R3dqfPI30Y3GgwxQoXs3OHIvJP2d1gwJ6jYRQEERG7UxBE\nREREREREROTumc2wfLkRCNm+PfO6csQyiAm8yX8oxPVM6xwZBsnttUOAKGDRokW0bds2z/oUERFx\nlOTUZKZtm8bY38aScC3Bao2Puw/vP/4+/R7th6ebp507FJEM+TEIotEwIpIvHDlyhMTERIuHiIiI\niIiIiIgYTCZo3RoiI2HlSnjkEet1xynPW0wjkGim0odrFLJa56gxMbYIoAT//b9RUVG2b1BERCQf\nKORSiHcee4eYvjEMazQMD1cPi5pL1y8xdN1QKn9WmS8jv+RG2g0HdCoi1tY4jxw54tCeFAQRkXzB\n09PT6kNERERERERERG5nMsEzz8CWLfDzz+Djs9dqXRwP0I+pBHCESfQnCcsFJHuHQWy1C0lGECQy\nMtK2DYqIiOQzPoV8GP3EaKL7RtMrpBcuTi4WNacTT9Pzx54ETQti4Z8LSTenO6BTkftXflznVBBE\nREREREREREREpAAymaBlSzMmUyOgGXX41WpdPP68yyQCOMLHvEcit/9S2l5hEFuOorl1RxCNFhYR\nkfuBv5c/XzzzBQfeOkD7h9pbrTmccJiXl7xMvZn1+CX6F32PFLmPKQgiIiIiIiIiIiIiUkAdO3aM\nixcv4MY6ttCE9TQllHVWa89SioF8TEWOMp5BXMb75rG8DoPYMgQC8BDgCly4cIFjx47ZrE8REZH8\nLrBYIPPazGNH9x08VfkpqzXbT23nyTlP0jysOdtObrNzhyKSHygIIiIiIiIiIiIiIlJAnTlzBoDS\ngBvQlA2soxm/0ogW/GL1NecpwRDGU5GjjGYYF/EB8i4MYusQCIA7xnsGOHv2bK57FBERKWhq+9dm\n1SurWP/aeh594FGrNeuOrOORrx/hxUUvcvDcQTt3KCKOpCCIiIiIiIiIiIiISAF17do1AAr/4/lG\nbOQXnmQzj/E0P1l97QWKMYLRVOQoHzCSBHxtHgbJixBIhoz3nPHPQERE5H7UtGJTfu/8O0vbLaVa\niWpWaxbvW0yNaTXotqIbJy+ftHOHIuIICoKIiIiIiIiIiIiIFFDJyckAFMrk+GNs4SeeYSv1eJbl\nVmsuUZQP+YCKHGUYo/EkySZhkLwMgcD/3rOCICIicr8zmUw8X/159vTcw6x/z6JskbIWNWnmNGZu\nn0nlzyozcM1ALly74IBORcReFAQRERERERERERERucfVI5LltCaKujzPUqs1VyjCWIZRgWNMoxeL\naJvjMEheh0BERETEkouTC2/WeZNDvQ8xscVEfAv5WtQkpybz8eaPqTS1EhM2TuDqjasO6FRE8pqC\nICIiIiIiIiIiIiIFVKFCxr4Yydmsr8sOltKGXdTiRb7DRLpFTRJefMQgGrGRZqylAkfvKgxirxBI\nxnsuXPifg3FERETub4VdCzOgwQBi+sUwpOEQCrtYfq+8mHyRweGDqfJZFWZEzeBG2g0HdCoieUVB\nEBEREREREREREZECKiMEcbfDUWqxh+94iT3U5GXmWw2EXMWTmXTnNP74cDFbYRB77gSS8Z4VBBER\nEbGuaKGijG02lui+0fQI7oGzydmiJu5KHN1Xdueh6Q+xaO8izGazAzoVEVtTEERERERERERERESk\ngCpVqhQAp4CUHLy+BvuYTwf2EcSrhOFEmkXNdQpxiaJAOjEE0ojfrIZB7BkCuY7xngFKliyZJ9cQ\nERG5V5T2Ls30VtPZ/9Z+XqrxktWaQ+cP0W5xO+rNrMfamLV27lBEbE1BEBEREREREREREZECqkKF\nCvj6+pIC/JmL81TjIGF04gDVeJ3/4kyqlSrj18mxVKAme9jEYzeP2DMEAsZ7vQH4+vpSoUKFPLuO\niIjIvaRK8SosaLuAyK6RtAxsabUm6lQULcJa0CKsBVFxUXbuUERsRUEQERERERERERERkQLKZDJR\nt25dAGyxVFOFw/yXNznEg3Tma1y4YbXuMj40ZBMvM4+NPG7XEAj8770GBwdjMpny9FoiIiL3muAy\nwax+dTXhncKpV6ae1Zq1MWsJmRlCu0XtOHT+kJ07FJHcUhBEREREREREREREpAALCQkBbBMEyVCJ\nI3xNV/6iCt35Elerg2dMLKQ9jfiNGAIpy3G7hEDgf+81472LiIjI3Xsi4An+6PIHi19czIPFH7Ra\ns2jfIoK+CKLHyh7EXYmzc4ciklMKgoiIiIiIiIiIiIgUYMHBwYBtgyAZKnKML+lJNIG8xee4cd1K\nlbEjxwnK0YMv2UBjzHnQy61u3RFEREREcs5kMtEmqA17e+1lRqsZlPEuY1GTZk7jq6ivqDy1MoPX\nDuZi8kUHdCoid0NBEBEREREREREREZECLCMMsRusxjRsoRwn+Jw+xFCJfnyKO8lW61bxL5qygfps\nYSnP/z97dx4eVWH2ffw7Yd+URbaAhE0lqFgF+lIVZXFBKyhFbAFRqAJ133etuxW3Cj4gFougLBVQ\nwKUgCqmKGxBUFFEEwiKLRAUlYQvJvH8caEFmQgKZmSR8P9c1l3HmnnPuw3P1wMP5ed/kxuCvoLcT\nXCsYBJEkqaiUTSrLgNYDWHrNUgafMZjqFavvU7N151Ye/eBRmg5pymMfPMbWnK0J6FRSQRgEkVQs\nZGdnR3xJkiRJkiQpf02aNCE5OZkdwJQYn6sBa7mRp6jH+l3vRJ79MZf/Rw9epSVfMZLL2U75Iuvh\nVSAHaFC+PI1nzYJffimyY0uSdKirVK4St55yK8uvXc7tp9xOpbKV9qnZuG0jt71zG0c9cxTPL3ie\nnXk7E9CpVHwUx+ecoXA4HOspfZK0l8zMTOrUqVOgWm9RkiRJkiRJ+3ffffdx//330x54L4bnWcWR\ndCSN5TSjKct4hT8whksZynXkUSbq9+qxjut5mr8wgsM5uOBGe2AOcB9wL0DlytCjB/TvD6efDkn+\n94+SJBWVtZvXcv9/7uefn/6T3HBuxJpjah3Dw50e5g+pfyAUChV5D+FwmC1bthT5cUuSypUrx+TX\nVkWjoP+32bBhA7Vr145xNwGDIJLiziCIJEmSJElS0VqzZg0pKSnk5uayEDg+Buf4dQgkjY40YjUA\nX3M07ZnDD+T/F9vV+IW/MILreZpk1hW6hy+AVkAZYBWQ/OuCxo3h0kuDV5MmhT6+JEmKbMmPS7h7\n9t1M+mpS1Jq2yW159IxH6dSkU5GeOzs7m6pVqxbpMUuarKwsqlSpkug2FEVxDIIYjZZULGRkZJCV\nlbXPS5IkSZIkSfvXoEEDLrjgAgBGxOD4+YVAAFqwhHRa05RlAJRne8TjbOYwHudWGrOCy3ierzmm\nUH08u+uf3YkQAgFYsQLuvx+aNoWOHeHFF8H1w5IkHbSjax3NxJ4TmTdgHp2bdI5YM2/tPDq/2Jmz\nx57NgnUL4tyhlDiRnnFmZGQktCcngkiKu0gTQeKZgJMkSZIkSSqN0tLS6NSpE1WBtUC1Ijru/kIg\n0Wrrs5bGZPARp+R7/POZym0M5nd8nG/dL0ADIAtIe/BBOsyfD2++CTt35n8BVavCRRcFq2NOOQUc\nqy5J0kF7Z/k73P7O7aSvS49a88dj/8hDnR6iec3mB3WuvSaC3AyUP6jDlRw7gCeCH50IUvIk+nmo\nE0EkSZIkSZIkqRTo0KEDLVq0IAsYUkTHLEwIBKARq0mjI01ZxjqS+Z56vMZ5XMgkQuRF/M40LuBk\nPuI03uUNfk8ekYMaQwhCIKmpqZx+110wdSqsWQNPPQXH57MMJysLRo2C9u3h6KPh4YdhdfRrkCRJ\n+3dG0zOYO2AuEy+cyFE1j4pY8/Kil0kdlsqVb17Jus2FXwkXUflD7CUdIIMgkiRJkiRJklQKhEIh\n7rnnHgAeAL48yOMVNgSy255hkOU043qG8CQ38Q3HMIgRVGBbxO+9z2l05Q1asZAxXMIOyv33sy+A\nB3f9fPfdd/9vD3udOnDDDfD55zB/Plx9NdSoEb25pUvh7rshJQXOPhsmTICtWwv4KyJJkvaUFEqi\n57E9WXTlIkb8fgT1q9bfp2Zn3k6enf8szZ9pzl2z7uLnbT8noFPp0GMQRJIkSZIkSZJKiV69etG1\na1dygH5AzgEe50BDILv9OgzSkTQqsJ0RXMEKGnMnD1OdjRG/u4jj6McYmrGMv3M9G6ny32vp1q0b\nvXr12vdLoRC0bg3PPAPr1sHEiXDuuZAU5a/Aw2GYORN694b69eEvf4FPPgnelyRJhVKuTDkGtRnE\n0muX8rfOf+PwCofvU7MlZwuPzHmEpkOb8uSHT7JtZ+RgqKSiEQqH/ZOtpPhK9E4sSZIkSZKk0mzd\nunUce+yxbNy4kYeAuwr5/YMNgRT0WJupyj8YyN+5gTU0jHqMSvzEVoZz+OEvsnjxu9Svv+9/bRzV\n2rXw0kvwwgvwzTf7r09NhX79oG/fICAiSZIK7aetPzF4zmCGzh0aNfDR8LCG3N/hfi454RLKJpXN\n93jZ2dlUrVo1+Jc7OXRWpuwAHgl+zMrKokqVKgltR4WT6OehTgSRJEmSJEmSpFKkfv36DB06FID7\nCdaqFFRRhkAg8mSQVRwJQDWyuImnWE5TXqAfqXwV8RhbqQnczZYtX/HAA/VZtqwQDSQnw223weLF\n8NFHMHAgHHZY9PrFi4P6hg3h97+HyZNh+/ZCnFCSJNWsVJPBZw7m22u+5fITLycptO8j6e9++Y7L\nXruMVs+2YsriKTi7QCpaBkEkSZIkSZIkqZTp06fPf1fE/BH4sQDfKeoQyG75hUEAypNDP8bwJcfx\nGl05hTkRj5OTU5YRI+Doo+GPf4T09EI0EQpBu3bw3HOwfj2MGwdnnBG8H0leHvz739CzZxAmueYa\nWLDA1TGSJBVCw8MaMrLbSBZduYgeqT0i1iz+YTF/mPgHTh51Mu+ueDfOHUqll0EQSZIkSZIkSSpl\nQqEQzz33HMnJySwGzgE251MfqxDIbvsLgwAkEaYrbzCH9szkFKozLeKx8vJg4kRo0ybIcrz9diHz\nGZUqQe/ewRdXrIAHH4RmzaLX//QT/N//QevW8JvfwN//DpmZhTihJEmHthZHtGDyRZP55PJP6Ni4\nY8Saj7/7mA5jOnDOuHP4bP1nce5QKn0MgkiSJEmSJElSKVS/fn1mzpxJzZo1mQd0JXIYJNYhkN0K\nEgZhV48P8SGbuIDDDz+Z7t03Uq5c5GPOmgVnnRVkNP71L9i5s7BNNYK774Zvv4X33oP+/aFKlej1\nCxfCjTcGU0K6d4dp0yAnp5AnlSTp0PTbBr9l1iWzeOvitzix3okRa2YsncGJz51I71d6s+ynwuyD\nk7QngyCSJEmSJEmSVEode+yxzJgxg2rVqvEu0Jm918TEKwSy2/7CID8AnYD3gGrVqvH220N49dUa\nLF8ON90EVatGPu6nn0KvXsHamGHDYMuWQjYWCkH79jBqVLA6ZvRoOP306PU7d8LUqXDBBdCwYdDc\nF18U8qSSJB16QqEQZzU7i/kD5zOhxwSa1Yg8lWvClxNoMawFV//7ar7P+j7OXUolXygcdqmhpPjK\nzMykTp06e723YcMGateunaCOJEmSJEmSSrd58+bRpUsXfvrpJ1KBl4HD4xwC2VOkAMomVvMnYDFQ\nq1YtZsyYQZs2bfb63qZN8OyzMGQIfJ/PM6EjjoBrroGrroJatQ6i0WXL4MUXg2DIqlX7r2/dOpgq\n0qsX1Kx5ECeWJOnQkJObw/MLnueB9x5gfdb6iDWVw5XZcv+ulOedQPn49ZdQO4BHgh+zsrKokt/U\nMhU7iX4eahBEUtwl+sYnSZIkSZJ0KPrqq68488wzWbt2LWU5kmqksTEBIZDd9gyD1GAZm+nITlaT\nnJzM22+/TcuWLaN+d9u2IJ/x+OOwdGn0c1SuDAMGwA03QErKQTSblwdpaUEg5JVXYOvW/OvLl4fz\nzw9CIWeeCWXLHsTJJUkq/bJ3ZDPkkyEM/mAwv2z/Ze8P9whEGARRSZHo56GuhpEkSZIkSZKkQ0DL\nli2ZP38+Z5zxZ3buCoGUZxkjEhACgWBNzLN0pDzL2EgzdpLGGWf8mfnz5+cbAgGoWBEGDoSvv4bJ\nk6Ft28h1W7YE00OaNYO+fQ9ie0tSEnTuDC+9BOvWwT/+ASefHL1+xw6YNAnOPTdIoNx+e9CsJEmK\nqEr5KtzZ/k6WX7ucm393MxXKVEh0S1KJZhBEkiRJkiRJkg4ROTn1Wb78eaAZSUkZ7KAjv2c1DwK/\n7O/LRegX4EHgPFazg44kJWUAzVi+/HlycuoX+DhlykCPHvDJJzB7NnTpErkuNxfGjoVWrYJsxrvv\nwgHPyj788GDMyAcfBOGO22+H5OTo9WvXwuDBkJoKv/tdECL5+ecDPLkkSaVbrcq1ePysx/n2mm/5\n82/+TFLIx9nSgfB/OZIkSZIkSZJ0CFi1Cjp2hOXLQzRtCh9/XJmuXX9DDvBXoAFwJXCgQzMK4gvg\nil3n+iuQA3TrdiIff1yZpk2D3jp2DHotjFAouLbp0+Gzz6B37yAkEsn06dChA7RrB6++GoREDtgx\nx8Df/hY0PH06XHRRsBYmmo8/hkGDoF496NMH3nknWDsjSZL2cuThR/LP8//Jl1d8Sdejuya6HanE\nMQgiSZIkSZIkSaXc/0Ig0LQppKVB27Z1mTZtGuPGjSM1NZUs4FmgFXAaMAHYXgTn3r7rWO13HXsE\nkAWkpqYybtw4pk6dStu2dUlLY1cYhAMKg+x2wgkwbhwsXQrXXAOVKkWumzs3mCbSsiWMHAnbth3Y\n+YAgddKlC7z8crA6ZtgwaNMmev22bTB+PJx5JjRuDPfcA8uWHUQDkiSVTqm1U5lw4YREtyGVOKFw\n+IAH4EnSAcnMzKROnTp7vbdhwwZq166doI4kSZIkSZJKr0ghkEaN9q4Jh8P85z//Yfjw4UyZMoXc\nXWMyygPHA633eB2/6/1IdhBM/Ujf47WQYPIHQNmyZenevTtXXnklp59+OqFQqNC9FtYPPwS5jGee\ngR9/jF5Xrx5cdx1ccUWw/aVIfPkljB4NL70EGzbsv/6006BfP+jZE6pWLaImJEkq2bKzs6m6+/fF\nO4n+B5HSZgfwSPBjVlYWVapUSWg7KpxEPw81CCIp7hJ945MkSZIkSTpUHEiwYu3atYwcOZKRI0ey\nZs2afT4vB9QHKgEVd723DdgKrON/oY89NWjQgAEDBjBgwACSk5OLvOeCyM6GF16AJ5+EFSui11Wr\nBn/5C1x/Peyn1YLLyYEZM4IGXn8ddu7Mv75KlSAM0q9fEA75VWBGkqRDiUEQgyAlUaKfhxoEkRR3\nkW58GRkZEW98/qYmSZIkSZJ0YA42UBEOh1mxYgXp6enMnz+f9PR00tPT2bhxY77fq1GjBm3atKF1\n69b/fTVu3Hif6R+x7D0/O3fCxInw2GPw+efR68qVg7594ZZboEWLojk3AJmZwVqYF17Iv4HdmjYN\nAiGXXAIpKUXYiCRJJYNBEIMgxV12dvY+72VmZtKkSZO93jMIIqlUixQEicZblCRJkiRJUuHFKkgR\nDodZuXIlmZmZbN26la1btwJQqVIlKlWqRO3atUlJSSlU6COaWIZBAMJhmDkTBg8Ojp2f88+H226D\n3/2u6M4PwKefBqtjxo3Lf28NBFNBOnWC/v2he3eoXLmIm5EkqXgyCGIQpLgr6J99DYJIKtUMgkiS\nJEmSJMVOrAMU8RSva5k3L5gQ8sorQUAkmvbt4dZb4dxzISmpCBvYvh3eeCMIhUyfDrm5+dcfdhj8\n8Y9BKKRdO1fHSJJKNYMgBkGKO4MgkoSrYSRJkiRJkmKlNIVAdovnNS1dCk88EeQxtm+PXnfsscHK\nmF69oHxRP4xatw7Gjg1WxyxevP/6Y44JVsf07QsNGhRxM5IkJZ5BEIMgxZ2rYSSJyEGQeN74JEmS\nJEmSSqPSGALZLd7Xtn49PPMMDB8OmzZFr2vYEG68ES6/HKpVK+ImwuFgVMno0TBhQv6NQDCi5Kyz\ngikh3bpBxYpF3JAkSYlhEMQgSEmU6OehRTm8TpIkSZIkSZKUAKU5BALBtaSlBde2fHlwratWxe58\n9erBww8H53jyyeiDNr77LgiCNGoEd98NGzYUYROhEPz2t0EaZd26IAxy9tnR18Dk5cGMGcHKmORk\nuOoqmD8//103kiRJKpUMgkiSJEmSJElSCVbaQyC7xTsMAsGUjxtvDM73wguQmhq5btOmIDiSkgJX\nXAHLlhVxIxUrwp/+FAQ9Vq0KTnbUUdHrN24MAiRt20KrVkGa5fvvi7gpSZIkFVcGQSRJkiRJkiSp\nBJsypfSHQHb7dRhkypT4nLd8eejXD778El57DU45JXLdtm0wYgQcfXQwmCM9PQbNNGwId94J33wD\nc+bAZZfB7nH5kXz5Jdx8czDWpFu34Bdtx44YNCZJkqTiwiCIJEmSJEmSJJVg110HTz9d+kMgu+0O\ngzz9dHDt8ZSUBF27BvmLOXOCXEUkeXkwcSK0aQNnnAFvvx2DDS2hUJBIef55WL8eXnwROnWKXp+b\nC6+/Dn/4QxAKuf56+PzzIm5KkiRJxUEoHHZBoKT4yszMpE6dOnu9t2HDBmrXrp2gjiRJkiRJkqQD\n89VX8MQTMHYs5ORErzvxRLj1VrjwQihbNoYNrVgBY8bA6NHBz/tz4onBuJPeveGII2LYmCRJByY7\nO5uqu6df3QmUT2g78bMDeCT4MSsriypVqiS0HRVOop+HOhFEkiRJkiRJkqQD1LIljBoVrKq5+ebo\nW1o+/RR69QrWxgwbBlu2xKihxo3h3nth2bJgdMoll0DlytHrP/00GK2SnAw9esAbb8DOnTFqTpIk\nSfFgEESSJEmSJEmSpIPUsCE8/jisXg2PPAJ160auy8iAq6+GlBR44AH48ccYNZSUBB06BNNB1q+H\nf/4TTj01en1ODrz6arD7pmFDuOWWYNyJJEmSShyDIJIkSZIkSZIkFZHq1eGOO4KtLM89B82bR677\n4YdgcEejRsFAjpUrY9hUtWrw5z/D++/Dt9/CXXcFYY9ovv8+2Hdz7LHw//4fPPssbNwYwwYlSZJU\nlAyCSJIkSZIkSZJUxCpWhIED4euvYfJkaNs2ct2WLTB0KDRrBn37whdfxLix5s3hoYeCpMrMmcG+\nmooVo9fPnQtXXgn16we1b70FubkxblKSJEkHwyCIJEmSJEmSJEkxUqYM9OgBn3wCs2dDly6R63Jz\nYexYaNUKzj0X3n0XwuEYN3bmmTB+PKxbByNGBNM/otm+Hf71r+ACGjcOpoosWRLDBiVJknSgDIJI\nkiRJkiRJkhRjoRB07AjTp8Nnn0Hv3kEWI5Lp06FDB2jXDl59NQ4DOKpXh0GD4OOPYdEiuPVWqFcv\nev1338Ejj8Axx8Cpp8I//wm//BLjJiVJklRQBkEkSZIkSZIkSYqjE06AceNg6VK45hqoVCly3dy5\nwTSRli1h5EjYti0OzbVsCYMHw+rV8MYbcOGFUK5c9PoPPoDLLw9Wx1xyCaSlQV5eHBqVJElSNAZB\nJEmSJEmSJElKgMaNYehQWLUK7rsPatWKXLdkCQwcCE2awKOPws8/x6G5smXh97+HSZOC1TFDh71/\nlsoAACAASURBVMJJJ0Wv37IFXnoJOnWCZs2CC8rIiEOjkiRJ+jWDIJIkSZIkSZIkJdARR8C998LK\nlfDMM0FAJJL16+GOO+DII4PtLWvWxKnBWrWC0SXp6fD553D99UHT0axYAfffD02bBvtwXnwRsrPj\n1KwkSZIMgkiSJEmSJEmSVAxUqQJXXw3ffgvjxwcrZCLZvBkefzyYEHLZZfD113FsslUr+PvfgxTK\nlCnQrRuUKRO9/j//gUsvhXr1gmbnzIFwOG7tSpIkHYoMgkiSJEmSJEmSVIyULQu9esGnn8KMGcFQ\njUhycmDUKEhNhQsugI8+imOT5csHJ502LQiFPPkkHHdc9PqsrKDZ9u3h6KPh4Ydh9er49StJknQI\nMQgiSZIkSZIkSVIxFArB2WfD7Nkwdy5ceGHwXiTTpsHJJwc5izfegLy8ODZaty7ceCMsXAjz58NV\nV0GNGtHrly6Fu++GlJTgAidMgK1b49evJElSKWcQRJIkSZIkSZKkYq5tW5g0CZYsgUGDoEKFyHVz\n5kDXrsEGlzFjYMeOODYZCkHr1vB//wdr18LEiXDOOZAU5VFEOAwzZ0Lv3lC/PlxxBXzyiatjJEmS\nDpJBEEmSJEmSJEmSSojmzWHECFixAu68E6pXj1y3aBH06wfNmsHf/w6bN8ezS6BiRejZE/7972AF\nzKOPwjHHRK//+efgwtq1g2OPhcceg3Xr4tevJElSKWIQRJIkSZIkSZKkEqZePXj4YVi1Cp58Eho0\niFz33XfB1pZGjYJtLBs2xLdPAJKT4bbbYPFi+OgjGDgQDjssev3ixUH9kUfCeefB5MmwfXv8+pUk\nSSrhDIJIKhays7MjviRJkiRJkiRFV61aEPRYvhxeeAFatoxct2lTEBxJSQk2sCxbFt8+gWB1TLt2\n8NxzwbSPcePgjDOC9yPJzYU33wwmiyQnw7XXwoIFro6RJEnFSnF8zhkKh/0Tk6T4yszMpE6dOgWq\n9RYlSZIkSZIkFVxeXpCdGDwYPvggel1SEvToEQzeaN06fv1FtGoVvPgijB5dsIRKq1bQvz/06QO1\na8e8PUlSYmVnZ1O1atXgX+4Eyie0nfjZATwS/JiVlUWVKlUS2o6iC0ULtf7Khg0bqB2nP7s4EUSS\nJEmSJEmSpFIiKQm6doU5c4JXt26R6/LyYNIkaNMmGMoxc2YCB23s3lvz7bfw7rtByCO/h10LF8IN\nNwRTQrp3h9deg5yc+PUrSZJUzBkEkVQsZGRkkJWVtc9LkiRJkiRJ0oE55RSYNg0WLQqyFeXKRa6b\nNQvOPhtOOgkmTICdO+Pb53+FQnDaaTBqFKxfH+y6Of306PU7d8LUqXD++dCwIdx0E3z5Zfz6lSRJ\ngojPODMyMhLak6thJMVdpNUw8RyFJEmSJEmSJB2KvvsOhgyBESMgv/8Gq0mTIFPRvz9Urhy//qJa\ntgzGjAleq1btv75166D5Xr2gZs3Y9ydJiilXw7gapiRK9PNQJ4JIkiRJkiRJknQIaNgQHn8cVq+G\nRx6BunUj12VkwNVXQ0oKPPAA/PhjfPvcR7NmQSMZGfDOO9CnD1SsGL0+PT24gPr14aKLYPp0yM2N\nX7+SJEkJZhBEkiRJkiRJkqRDSPXqcMcdsGIFPPccNG8eue6HH+Dee6FRI7juOli5Mq5t7ispCTp3\nhrFjg9Ux//gH/O530et37IBJk+Dcc4OLuP12+Oab+PUrSZKUIAZBJEmSJEmSJEk6BFWsCAMHwtdf\nw+TJ0LZt5LotW2Do0GAwR9++sHBhfPuM6PDDYcAA+PDD4AJuvx2Sk6PXr10LgwdDixZw8slBiOTn\nn+PXryRJUhwZBJEkSZIkSZIk6RBWpgz06AGffAJpadClS+S63NxgGMcJJwRDNt59F8Lh+PYa0THH\nwN/+BqtWBWtgLroIypePXv/RRzBoULA65uKLg3UzeXnx61eSJCnGDIJIkiRJkiRJkiRCIejQIchS\nfPYZ9O4dhEQimT49qG3XDl59NQiJJFyZMkGK5eWXYd06GDYM2rSJXr91K4wbB2eeCY0bwz33wLJl\ncWtXkiQpVgyCSJIkSZIkSZKkvZxwQpCRWLoUrrkGKlWKXDd3bjBNpGVLGDkStm2Lb59R1awJV14J\n8+bBF1/ATTdBnTrR61evhocegubN4fTT4YUXICsrfv1KkiQVIYMgkiRJkiRJkiQposaNYejQYOvK\nffdBrVqR65YsgYEDoUkTePRR+PnneHa5H8cdB088Ad99B9OmQffuULZs9Pr33oM//xnq1YP+/YvR\nDhxJkqSCMQgiSZIkSZIkSZLydcQRcO+9sHIlPPNMEBCJZP16uOMOOPJIuPVWWLMmrm3mr1w56NYt\n2GWzdi08/XQw+iSa7GwYPTrYgdO8OTz4YPALIEmSVMwZBJEkSZIkSZIkSQVSpQpcfTV8+y2MHx89\nR7F5Mzz+eDAh5LLL4Ouv49vnftWuDdddB599BgsWwLXXRh93ArB8Ofz1r8EFnXFGsDdny5b49StJ\nklQIBkEkSZIkSZIkSVKhlC0LvXrBp5/CjBnQqVPkupwcGDUKUlPhggvgo4/i22eBnHgiDBkSjC+Z\nPBnOOw/KlIlcGw7DrFlw8cVQv36wD+ejj1wdI0mSihWDIJIkSZIkSZIk6YCEQnD22UE2Yu5cuPDC\n4L1Ipk2Dk0+G9u3hjTcgLy++ve5XhQrQowe8/jqsXg2PPRYkWKL55RcYOTK4qNRUePTRYrYLR5Ik\nHaoMgkiSJEmSJEmSpIPWti1MmgRLlsCgQUGuIpI5c6BrV2jVCsaMgR074ttngdSvD7fcAosWwSef\nwBVXQPXq0eu/+QbuuAMaNYJzzoGJE2Hbtvj1K0mHih2H2Es6QKFw2HllkuIrMzOTOnXq7PXehg0b\nqF27doI6kiRJkiRJklTUvv8ehg6F4cNh06bodQ0bwg03wIABUK1a/PortG3bYOpUGD0aZs7c/zqY\nGjWC/Tn9+0Pr1tFHpUiS8pWdnU3VqlUT3UZCZWVlUaVKlUS3oUJI9PNQgyCS4i7RNz5JkiRJkiRJ\n8bN5c7BB5amn8t+cUr06XHUVXHst/OqvD4uf776DF18MQiHffrv/+uOOg3794OKLoW7dWHcnSaWK\nQRCDICVRop+HGgSRFHeJvvFJkiRJkiRJir8dO2D8eHj8cfjqq+h1FSsGmYmbb4ZmzeLW3oEJh+HD\nD+GFF+DllyErK//6MmXg3HODKSG//z2ULx+fPkuwcDjMypUr2bBhA1u3bmXbrpU7FStWpFKlStSp\nU4eUlBRCTlyRSq1wOMyWLVsS3UZCVa5c2ftcCZPo56EGQSTFXaJvfJIkSZIkSZISJy8P3nwTBg+G\nDz6IXpeUBD16wG23BZtVir3sbHj11SAUkpa2//ojjoA+fYJQyAknxL6/EiAcDpORkUF6ejrz588n\nPT2dBQsWsHHjxny/V6NGDVq3br3Xq0mTJj40lSQlTKKfhxoEkRR3ib7xSZIkSZIkSSoePvgAHnsM\nXnst/7rOneHWW+HMM6FEPNtfsQLGjAlWx6xYsf/6E08MxqD07h0ERA4xa9asYeTIkYwcOZK1a9fu\n83l5oD5QCai4671twFZgHbAjwjGTk5MZMGAAAwcOJDk5OUadS5IUWaKfhxoEkRR3ib7xSZIkSZIk\nSSpeFi8OVsaMHQs5OdHrfvObIBDSsyeULRu//g5YXh68914wJWTyZNjfaoNy5aBbtyAU0qVLCbnI\nAxMOh0lLS2P48OFMnTqV3NxcIAh9tAJa7/E6btf7kewAvgTSd73mA1/wv3BImTJl6N69O1deeSUd\nOnRwSogkKS4S/TzUIIikuEv0jU+SJEmSJElS8fTddzBkCDz3HGzeHL2uSRO46aZgq0rlyvHr76Bs\n3gyTJgWhkDlz9l9frx707RuEQlq2jHl78RIOh5kwYQIPPvggX3/99X/fPw24AugOVDjIc2wHpgDD\ngff3eL9Fixbcc8899OrVy0CIJCmmEv081CCIpLhL9I1PkiRJkiRJUvG2aROMGAFPPw3ffx+97ogj\n4Jpr4KqroFat+PV30L79NlgdM2ZMkH7Zn9/+Nki9/OlPUL167PuLkXXr1jFo0CBef/11AKoClxAE\nQI6L0Tm/AJ4FXgKydr3XrVs3RowYQf369WN0VknSoS7Rz0MNgkiKu0Tf+CRJkiRJkiSVDNu2wYsv\nBmtjli6NXle5Mlx+Odx4I6SkxK+/g5abC7NmwejR8OqrsH17/vUVKkD37kEopHNnKFMmLm0erHA4\nzNixY7n22mvZtGkT5YC/AtcB1eLUw2ZgCPAAkAPUqFGDoUOH0qdPH6eDSJKKXKKfhxoEkRR3ib7x\nSZIkSZIkSSpZcnNh6lQYPBjmzYteV6YM9OoFt9wCrVrFr78isWkT/OtfQSjkk0/2X9+wIVxySbA6\n5qijYt3dAfv1FJDWwGhiNwFkf74E+gHpu/7d6SCSpFhI9PNQgyCS4i7RNz5JkiRJkiRJJVM4DO++\nGwRCZszIv/acc+C22+C006DEDXz46qsgEPLSS7B+/f7rTzklmBJy0UVQLV4zNvZv0aJFnHXWWaxd\nu5ZywL3ArUC5BPeVAwzmf9NBkpOTefvtt2nZsmViG5MklRqJfh5qEERS3CX6xidJkiRJkiSp5Pv8\n82BlzL/+FUwMiea3vw0CIeefX2I2qfzPzp3w1lvwwgvw2muQk5N/feXK0KNHEAo5/XRISopPnxHM\nmzePLl268NNPP5EKvAwcn7BuIvsC+COwGKhVqxbTp0+nbdu2Ce5KklQaJPp5qEEQSXGX6BufJEmS\nJEmSpNJjxQr4+9/h+edhy5bodUcfDTffDH37QsWKcWuv6Pz4I4wfH4RCPv10//WNG8OllwavJk1i\n3t6e5s2bR+fOndm8eTNtgelArbh2UHA/AucA84Bq1aoxa9YswyCSpIOW6OehBkEkxV2ib3ySJEmS\nJEmSSp8ffoBhw+CZZ4LMRDT16sF118Ff/gLVq8evvyL1+efB6pixY4ML35+OHaFfv2BaSJUqMW1t\n0aJFnHbaafz000+cDrwOFJ9lNZFtBs4D3gNq1qzJ+++/75oYSdJBSfTzUIMgkuIu0o0vIyMj4o2v\nSoz/nxJJkiRJkiRJpcuWLTBqFDz5ZDAtJJpq1WDQILj+emjQIG7tFa0dO+Df/w6mhLz5Zv47ciC4\n6IsuCkIhp5wCoVCRtrNu3TratGnD2rVr+S3wDsU/BLLbZqAzwWSQ5ORk5s+fT/369RPclSSpJMjO\nzt7nvczMTJr8aiKXQRBJpVqkIEg03qIkSZIkSZIkHYidO2HSJBg8OBigEU25csG6mFtugRYt4tdf\nkfv+exg3LgiFfPnl/uubNw8CIZdcAkceedCnD4fDnH/++bz++uukAu9TfNfBRPMj0B5YDHTr1o2p\nU6cSKuKwjCSp9Cno7xUGQSSVagZBJEmSJEmSJMVLOAwzZ8Jjj8Hs2fnXnn8+3HYb/O538ektJsJh\nSE8PVseMHw8bN+ZfHwrBmWcGoZALLoBKlQ7otGPHjqVv376UA9KB4w/oKIn3BdAayAFeeuklLr74\n4gR3JEkq7gyCSBKuhpEkSZIkSZKUGPPmBYGQV14J8hLRnHpqEAg591xISopff0Vu2zZ47bUgFPLW\nW5CXl3/94YdDr15BKOS3vy3w6ph169Zx7LHHsnHjRh4C7jrYvhPsIeAeoEaNGixatMgVMZKkfLka\nRpKIHASJ541PkiRJkiRJ0qFt6VJ44okgH7F9e/S6Y48NVsb06gXly8etvdhYswZeeim46G++2X99\namoQCOnbF/IJQuy5EqY18DFQtohaTpQcoB2wAFfESJIOTKKfhxoEkRR3ib7xSZIkSZIkSRLA99/D\n0KEwfDhs2hS9rmFDuOEGGDAAqlWLX38xEQ7Dxx/DCy/Ayy/DL7/kX1+mDHTpEoRCunaFChX2+nj8\n+PH06dOH8gQrYY6LVd9xtueKmHHjxtG7d+8EdyRJKkkS/TzUIIikuEv0jU+SJEmSJEmS9rR5M4wc\nCU89FQzOiKZ6dbjqKrjmGqhbN379xcyWLTBlSjAlZNas/PflANSsCX36BKGQE08kDLRs2ZKvv/6a\nB4G7Y99xXD0I/BVITU1l0aJFTgWRJBVYop+HGgSRFHeJvvFJkiRJkiRJUiQ7dsCECfDYY/DVV9Hr\nKlSA/v3h5puhWbP49RdTK1fCiy8GoZDly/df36oVaaeeSqfhw6kKrAVK+rCUX/sFaABkAWlpaXTo\n0CGxDUmSSoxEPw9NistZJEmSJEmSJEmSirny5eHSS+GLL+C11+CUUyLXbd8OI0bA0UfDRRdBenp8\n+4yJlBS45x5YuhTefTeY+lGlSvT6hQsZNnw4AJdQ+kIgAIcBfXf9PGzYsES2IklSoRgEkSRJkiRJ\nkiRJ2kNSEnTtCnPmBK9u3SLX5eXBpEnQpg107gwzZ+5/u0qxFwrBaafBCy/A+vXBP087bZ+yNcDU\nXT9fEdcG42v3tU2ZMoW1a9cmtBdJkgrKIIgkSZIkSZIkSVIUp5wC06YFq2L694dy5SLXzZ4NZ58N\nJ50UrJfZuTO+fcZE1arBZJB33w0mhdxzDzRqBMBIIBdoDxyXwBZj7XjgVCA3N5eRI0cmuh1JkgrE\nIIgkSZIkSZIkSdJ+pKbCqFGwfDncfDNUi7IL5bPPoHfvYG3MsGGwZUt8+4yZZs3ggQcgI4Pw228z\nslIlAK5McFvxsPsaR44cSbjEj3yRJB0KDIJIkiRJkiRJkiQVUMOG8PjjsGoV/O1vULdu5LqMDLj6\nakhJCfITP/4Y3z5jJimJjKZNWbt1K+WB7onuJw7+AJQD1qxZw4oVKxLcjSRJ+2cQRJIkSZIkSZIk\nqZCqV4fbb4cVK+C55+CooyLX/fAD3HtvsFHluutg5cq4thkT6enpALQCKiS2lbioQHCt8L9rlySp\nODMIIkmSJEmSJEmSdIAqVoSBA2HxYpg8Gdq2jVy3ZQsMHRpsWLn4Yli4ML59FqXdYYjWCe4jnnZf\nq0EQSVJJYBBEkiRJkiRJkiTpIJUpAz16wCefQFoadOkSuS43F8aNgxNOgHPPhf/8B8LhuLZ60ObP\nnw8cmkGQ3dcuSVJxZhBEkiRJkiRJkiSpiIRC0KEDTJ8On30GffoEIZFIpk+Hjh2hXTt49dUgJFLc\nhcNhFixYAByaQZD09HTCJS25I0k65BgEkSRJkiRJkiRJioETToCxY2HpUrj2WqhcOXLd3LnBNJGW\nLWHkSNi2Lb59FsbKlSvZuHEj5YHjEt1MHB0HlAM2btzIypUrE92OJEn5MggiSZIkSZIkSZIUQ40b\nw5AhsHIl3Hcf1KoVuW7JEhg4EJo0gUcfhU2b4tllwWzYsAGA+kD5xLYSVxUIrhkgMzMzka1IkrRf\nBkEkSZIkSZIkSZLi4Igj4N57YdUqeOaZICASyfr1cMcd0KgR3HILrFkT1zbztXXrVgAqJbiPRNh9\nzbt/DSRJKq4MgkiSJEmSJEmSJMVR5cpw9dXw7bcwfnywQiaSzZvhiSeCCSGXXQaLF8e3z0i27dpb\nUzHBfSTC7ms2CCJJKu4MgkiSJEmSJEmSJCVA2bLQqxd8+im89RZ06hS5LicHRo2Cli3hggvgo4/i\n26ckSSpZDIJIkiRJkiRJkiQlUCgEZ50Fs2bB3LnQsyckRXmCM20anHwytG8Pb7wBeXnx7bVixWAu\nxlquZRVHxvfkCbSKI1nHtQBUqnQoLsaRJJUkBkEkSZIkSZIkSZKKibZtYeJE+OYbGDQIKlSIXDdn\nDnTtCq1awZgxsGNHfPoLQhDXsoEhdCTtkAiDrOJIOpLGBoYA1xoEkSQVewZBJEmSJEmSJEmSipnm\nzWHECFi5Eu68E6pXj1y3aBH06wfNmsFTT8HmzbHtq06dOsAUYBnLaVbqwyC7QyDLaQYsA6ZQu3bt\nRLclSVK+DIJIkiRJkiRJkiQVU3XrwsMPw6pV8OST0KBB5LrvvoObboJGjeDuu+H772PTT0pKCjVq\nZAEdaVDKwyB7hkAasAzoSI0aWaSkpCS6NUmS8mUQRJIkSZIkSZIkqZirVg1uvBGWL4fRo6Fly8h1\nmzYFwZGUFLjiCli2rGj7CIVCnHTSScBqrqYjTUtpGGTPEEhTlnE1HYHVtG7dmlAolOj2JEnKl0EQ\nSZIkSZIkSZKkEqJ8ebj0UvjiC3jtNTj11Mh127cHq2WOPhouugjS04uuhzZt2gCwgtWklcIwyK9D\nIGl0JIPVwP+uXZKk4swgiCRJkiRJkiRJUgmTlARdu8L778MHH0C3bpHr8vJg0iRo0wY6d4aZMyEc\nPrhzt27dGoB0oFEpC4NECoE0YjW7czS7r12SpOLMIIgkSZIkSZIkSVIJdvLJMG0afPUV9O8P5cpF\nrps9G84+G046CSZMgJ07D+x8u8MQC4HtlJ4wSLQQyHaCawWDIJKkksEgiCRJkiRJkiRJUimQmgqj\nRkFGBtx8M1SrFrnus8+gd2846ij4v/+DLVsKd54mTZqQnJzMDmDKrvdKehgkWggE4FUgB2jQoAGN\nGzdOZJuSJBWIQRBJkiRJkiRJkqRSpEEDePxxWLUK/vY3qFs3ct2KFXDNNZCSAg88AD/+WLDjh0Ih\nBgwYAMDwPd4vqWGQ/EIg8L9rHDBgAKFQKDFNSpJUCKFw+GA3wUlS4WRmZlKnTp293tuwYQO1a9dO\nUEeSJEmSJEmSVHpt2wYvvghPPAHffhu9rnJluPxyuPHGIBySnzVr1pCSkkJubi4LgeP3+Gx/wYri\nZH+9fgG0AsqUKcOqVatITk5OWK+SpJIj0c9DnQgiSZIkSZIkSZJUilWsCAMHwuLFMHkytG0buW7L\nFhg6FJo1g4svhoULox+zQYMGXHDBBQCM+NVnJWUySEECK8/u+mf37t0NgUiSSgyDIJIkSZIkSZIk\nSYeAMmWgRw/45BNIS4MuXSLX5ebCuHFwwglw7rnwn/9ApPnyV111FQAvApt/9VlxD4MUJATyC/DS\nrp93X6skSSWBQRBJkiRJkiRJkqRDSCgEHTrA9Onw+efQp08QEolk+nTo2BHatYNXXw1CIrt16NCB\nFi1akAUMifDd4hoGKejqmiFAFpCamsrpp58e9z4lSTpQBkEkFQvZ2dkRX5IkSZIkSZKk2GnVCsaO\nhaVL4dproXLlyHVz5wbTRFq2hJEjYds2CIVC3HPPPQA8AHwZ4XvFLQxS0BDIF8CDu36+++67CYVC\nce1TklRyFMfnnKFwONIwL0mKnczMTOrUqVOgWm9RkiRJkiRJkhQ/P/4Iw4bB0KHBz9HUqwfXXQeD\nBoW59NLzef3112kNfASUi1Bf0ABGLBW0hxygHbAA6NatG1OnTjUIIkmKqqC/R2zYsIHatWvHuJuA\nE0EkSZIkSZIkSZIEQK1a8Ne/wqpV8Mwz0Lhx5Lr16+GOOyAlJUSDBuM5/PCWpAOPRTluoieDFCaI\nMpggBFLjsMMYMWKEIRBJUonjRBBJcRdpIkhGRkbEBFyVKlXi1ZYkSZIkSZIk6Vd27oRJk2DwYPj8\n8+h1Zcrkkps7mrI8wQK+5vgodYmYDFKYcy4E2hBMBXmpfHkuHjMG/vSnmPYnSSrZIq2ByczMpEmT\nJnu950QQSYecKlWqRHxJkiRJkiRJkhKnbFno1Qs+/RTeegs6dYpcl5tbBriMnSzmZKYwg3YR6+I9\nGaQwIZAfgT8RhEC6AX127Agu/oYbICcnZj1Kkkq24vic0yCIJEmSJEmSJEmS8hUKwVlnwaxZMHcu\n9OwJSVGeMmVxAefwESfzHm/we/LYe7VKvMIghQmBbAbOARYDycAI+F/XTz8dJGDWrSvyHiVJigWD\nIJIkSZIkSZIkSSqwtm1h4kT45hsYNAgqVIhc9xHt6cobtGIhY7iEHZT772exDoMUNgRyHjAPqFWr\nFm/37En9XxfNmQMnnRT8U5KkYs4giCRJkiRJkiRJkgqteXMYMQJWroQ774Tq1SPXLeI4+jGGZizj\nKW5gM1WB2IVBChMC+QHoBLwHVKtWjenTp9Ny4kT45z/3TbisXw8dO8KQIRAOH3SfkiTFikEQSZIk\nSZIkSZIkHbC6deHhh2HVKnjySWjQIHLddxzJTTxFI1ZxFw/xPXWKPAxSmBDIQuA0YD7BJJDZs2fT\ntm3b4MM//xk++ABSUvb+0s6dcP310KsXZGUdcJ+SJMWSQRBJkiRJkiRJkiQdtGrV4MYbYflyGD0a\nmjXbFrFuEzV4hLtIYSVXMJwcyhVJGKSgIZAc4EGgDbAYSE5O5r333qNNmzZ7F7ZuDenpcPbZ+57s\n5ZehXTtYsqTQfUqSFGsGQSRJkiRJkiRJklRkypeHSy+FJUsqMnr0T9SsuShi3XYqMoIrOJol3MwT\nDOXaAw6DFDQE8gXQDvgrQSCkW7duzJ8/n5YtW0Y+cK1a8OabcM89+362aBG0aQNTphS4T0mS4sEg\niCRJkiRJkiRJkopcUhJcemlNfvihJffcM4Ny5f4dsS6PMkziIs7jTeqxjvqsLVQYpCAhkF8IpoC0\nBhYANWrUYOzYsUydOpX69evnf4IyZeCBB+D11+Hww/f+bPNm+MMf4Pbbg7UxkiQVAwZBJEmSJEmS\nJEmSFDOhUIgHHujCypUn0qHDlcAoYEfE2g85lXUkU57tBQqD7C8E8gVwBdCAvaeALFq0iD59+hAK\nhQp+IeedF6yKOeGEfT8bPDhYIZOZWfDjSZIUIwZBJEmSJEmSJEmSFHP169dn9uxhjBtXkebNzwIe\nJ5jVsa8dVABgOc1oTTrfcNQ+NdFCINuBCUB7oBUwAsgCUlNTGTduXMGmgETTrBl8+CH07bvvZ7Nn\nw0knwdy5B3ZsSZKKiEEQSZIkSZIkSZIkxUUoFKJ3794sWZLG7Nlt6NbtGkKhO4H1Ub/zA7VpyWJu\n5Al+pCawdwikAcsYQEceZjVtgGpAb2AOULZsWXr27ElaWhqLFi2id+/ehZsCEknlyjBmghqCqwAA\nIABJREFUDAwfDuXK7f3Zd99B+/YwYgSEwwd3HkmSDlAoHPZ3IUnxlZmZSZ06dfZ6b8OGDdSuXTtB\nHUmSJEmSJEmSEmXt2rUMHz6KYcN+YdOmy4Gjo9aG2EJ1/sVmOrGTxsAyoCPssQ4GoEGDBgwYMIAB\nAwaQnJwcu+Y//hguvBDWrNn3s0svhWefhUqVYnd+SVKxlOjnoQZBJMVdom98kiRJkiRJkqTiJxwO\ns2zZCkaMWM/48Q1Zt+7I/XxjA9CGGjWyaNOmDa1bt/7vq3Hjxgc/+aOgNmyAP/0J0tL2/ew3v4FX\nXoGmTePTiySpWEj081CDIJLiLtE3PkmSJEmSJElS8RYOw7vvwuDBYWbMiB7oOOOMLbz0UiXq1YtT\n6COanTvhrrvgscf2/axGDRg7Fs49N/59SZISItHPQ5PichZJkiRJkiRJkiSpgEIh6NABpk8P8fnn\ncMEFkeveeacyxx8f4pVX4trevsqWhcGDYfJkqFp17882boTzzoP77oO8vIS0J0k6tBgEkSRJkiRJ\nkiRJUrFVvTosXBj8nBThydYPP8CFF0LfvrBpU3x720ePHjBvHqSm7v1+OAz33x8EQn76KTG9SZIO\nGQZBJEmSJEmSJEmSVCytWgUdO8Ly5dC0KWRkwD/+ETkQMnYsHHcczJwZ/z730qIFzJ0LPXvu+9n0\n6dCmDXz6afz7kiQdMgyCSJIkSZIkSZIkqdj5dQgkLQ0aNYIBA4KhG1Wq7PudNWvg7LPhqqsgOzv+\nPf9X1arw8svw5JNQpszen2VkwMknw+jRCWlNklT6GQSRJEmSJEmSJElSsRItBLLbSSfBokVQp07k\n7w8fDr/5DXz4YXz6jSgUghtvhNmzoW7dvT/btg3694e//AW2b09Mf5KkUssgiCRJkiRJkiRJkoqN\n/YVAdktJCSaDRPoMYOlSaN8ebr89wVmL006DBQuCKSC/9txzweerV8e/L0lSqWUQRJIkSZIkSZIk\nScVCQUMguzVqBO+/H9RCMIRjT3l5MHgwtG0Ln38eu773Kzk5uJhrrtn3s7lzgxEns2bFvy9JUqlk\nEESSJEmSJEmSJEkJV9gQyG6NGgW1TZtC+P+zd6fhVpb124CvzSCIOCua5pBkOYAogxgmiiOlpqJl\nppL6lmM5NKClqWVqNjiVpvF3IE3LAc2hxBRUEgcGB0gtBwQVE5wQQZBhvx8eMRYPKmzWHtic53Hs\nI1rXeu77t/qwvqyr+65N2rQpv2fs2KIMcs45yZw51Z99saywQnLxxcmf/pS0a1eZvf56svvuyS9+\nUXwIAFgKiiAAAAAAAAA0qrqWQOZbsAwya1ayxhpJq1aV75k9Ozn11OK6mP/8p7rzL5FvfCN5+OHk\ns5+tfH3evORHP0r69UumTm2c2QBoFhRBAAAAAAAAaDRLWwKZb8EyyJtvJuuum2y2Wfl9Dz+cbL11\n8rvfFd2LRtG5czJqVPKVr5SzW28tji8ZN67h5wKgWVAEAQAAAAAAoFFUqwQy34JlkJdfLk4HOfbY\npMVCv4i9917y3e8Wt7G89NLSfYY6W3XV5JZbivtqFh7w2WeTnj2T669vnNkAWKYpggAAAAAAANDg\nql0CmW/BMsj48clddyU33VS+iSVJ7r036dQpGTQoqa1d+r2XWIsWxXUwd92VrLlmZTZjRnGNzIkn\nFvfaAMBiUgQBAAAAAACgQdVXCWS+BcsgL7yQ/OAHye23J8cdV37vO+8khx2W9OuXTJ5cvRmWyG67\nJWPGJN27l7OLLkp23jl59dWGnwuAZZIiCAAAAAAAAA2mvksg8y1cBtlzz2TAgOQf/0g+/eny+2+9\ntTgd5JZbqj/LYtlww2T48OTII8vZP/+ZdO1a5ADwCRRBAAAAAAAAaBANVQKZb+EySJ8+yec+l4wd\nm/TvX37/lCnFySD9+ydvv11/c32ktm2Tyy9PrrgiadOmMvvvf4sPcOGFjXSPDQDLCkUQAAAAAAAA\n6l1Dl0DmW1QZ5J13kkGDksGDk7XXLj9zzTVJ587F6SGN4ogjkhEjko02qnx97tzkpJOSgw5K3n23\ncWYDoMlTBAEAAAAAAKBeNVYJZL5FlUEmTkz22y8ZNy7Zd9/yMy+/nOy+e/Kd7yTTpzfcrB/q2jUZ\nPTrZY49y9pe/JD17Jv/+d8PPBUCTpwgCAAAAAABAvWnsEsh8H1UG6dChOBlk0KBklVXKz11ySbL1\n1slDDzX8zFlzzeTOO5PTTy9nTz2V9OiR3HJLw88FQJOmCAIAAAAAAEC9aColkPk+qgxSU5P075+M\nHZvsskv5ueeeS774xeTHP05mzWrgoVu2TH760+T225PVVqvMpk1L+vVLTjklmTOngQcDoKlSBAEA\nAAAAAKDqmloJZL6PKoPMz+6+O/ntb5MVV6x8bt685Nxzk223TZ58suHnzl57JaNGJV26lLPzziuu\nkJk8ueHnAqDJUQQBAAAAAACgqppqCWS+jyuDtGiRfOc7yeOPJ9ttV372ySeT7t2LUkiDH8LRsWMy\nYkRy6KHlbOjQpFu35JFHGngoAJoaRRAAAAAAAACqpqmXQOb7uDJIknzuc8nw4cnZZyetW1c+O3t2\ncU1M797Js8827Nxp1y4ZNCi59NLyYC+/nOywQ3LZZUltbQMPBkBToQgCAAAAAABAVSwrJZD5PqkM\n0qpVUfgYOTLp3Ln8/EMPJVtvnVxySXF1TIOpqUmOOSZ54IFk/fUrs9mzi+zww5P33mvAoQBoKhRB\nAAAAAAAAWGrLWglkvk8qgyRJly5FGeSUU4qrYxY0Y0ZxlcweeyQvvdRwcycp7q4ZM6YYemGDBiW9\nehUfCoDliiIIAAAAAAAAS2VZLYHMtzhlkDZtknPPLa6L6dixvMY99xSnhlxzTQPfytKhQ3L33cmA\nAeXs8ceTbt2Sv/2tAQcCoLEpggAAAAAAAFBny3oJZL7FKYMkxSEbTzyRHHtsOZs6NenfP9l//2TK\nlPqf+UOtWiXnnZfcdFPSvn1l9vbbyZ57Jmee2cD31wDQWBRBAAAAAAAAqJPmUgKZb3HLICutlFxy\nSTJkSLL++uX8lluSLbdMbr21/meusP/+xR02m29ezn7602SvvZI332zgoQBoaIogAAAAAAAALLHm\nVgKZb3HLIEmy++7J2LHJIYeUsylTkv32Sw47rDgppMFstlny6KPJ175Wzv7+9+KqmMcea8CBAGho\niiAAAAAAAAAskeZaAplvScogq6+eXHNNcvPNyVprlfNBg5LOnZN7763fmSu0b5/8+c/J+ecnLVtW\nZi++WNxvc/XVDTgQAA1JEQQAAAAAAIDF1txLIPMtSRkkSfr1S8aNS/bZp5y99FKy667Jd7+bzJhR\nfzNXqKlJTjopGTo0WWedymzmzOTww5Ojj05mzWqggQBoKIogQJMwffr0Rf4BAAAAANC03HJL8y+B\nzLdwGeSWWz7+/eusU7znqquSVVYp57/7XbLNNsnDD9fPvIvUu3cyZkxxCsjCLr882WGHj2+4APCx\nmuLvnDW1tbW1jToBsNyZMmVKOnTosFjv9RUFAAAAAND0XHRRst9+zbsEsqCJE4uCxwknLNkzhx9e\nHMixsBYtklNOSc44I1lhherN+bHefz/54Q+Tiy8uZ2utVVwls8suDTQMQPNRU1OzWO+bPHly1l57\n7XqepqAIAjQ4RRAAAAAAAJYH8+Yll1ySDBhQ3MaysC5dkj/+MdlqqwYc6rrrkm9/u3xHTYsWydln\nJyefXFwrA8BiaYpFEFfDAE3C+PHj8+6775b+AAAAAABgWdWiRfLd7yaPP55su205f+KJpHv35Lzz\nkrlzG2iob3yjuJvms5+tfH3evORHP0r69UumTm2gYQCWfYv6jXP8+PGNOpMiCNAkrLTSSov8AwAA\nAACAZd3nP588+GDy858nrVpVZrNnF9fE9O6dPPdcAw3UuXMyalSyzz7l7NZbkx49knHjGmgYgGVb\nU/ydUxEEAAAAAAAA6lmrVsmppyaPPpp06lTOR4woroq59NKkQW5NX3XVZPDg5JxziqNLFvTss0nP\nnsn11zfAIABUmyIIAAAAAAAANJBttikO4xgwIKmpqcxmzEiOOy7p2zd5+eUGGKZFi+I6mLvuStZc\nszzMN76RnHhicWwJAMsMRRAAAAAAAABoQG3aJOedlwwfnnTsWM7vvrs4NeTaaxvodJDddkvGjEm6\ndy9nF12U9OmTvPpqAwwCQDUoggAAAAAAAEAj2H775PHHk2OOKWdTpyaHHpoccEAyZUoDDLPhhkUz\n5cgjy9mDDyZduxY5AE2eIggAAAAAAAA0kvbtk0svLW5nWW+9cj54cHE6yG23NcAwbdsml1+eXHFF\ncWzJgv773+JkkAsvbKBjSgCoK0UQAAAAAAAAaGR77JGMG5ccfHA5mzw52Wef5PDDi5NC6t0RRyQj\nRiQbb1z5+ty5yUknJQcdlLz7bgMMAkBdKIIAAAAAAABAE7D66sm11yY33pisuWY5v/rqZKutkqFD\nG2CYrl2TUaOKhsrC/vKXpGfP5N//boBBAFhSiiAAAAAAAADQhBxwQHE6yN57l7OJE5NddklOOCGZ\nMaOeB1lzzeTOO5PTTy9nTz2V9OiR3HJLPQ8BwJJSBAEAAAAAAIAmZt11k7/+NbnyymTllcv5xRcn\n22yTPPJIPQ/SsmXy058mt9+erLZaZTZtWtKvX3LKKcmcOfU8CACLSxEEAAAAAAAAmqCamuTww5Ox\nY5Oddirn//lP0qtXctppyfvv1/Mwe+1VXBXTpUs5O++8ZPfdk8mT63kIABaHIggAAAAAAAA0YRtt\nlNx7b3LhhUnbtpXZvHnJ2WcnPXsW18nUq44dkxEjkkMPLWfDhiXdujXAESUAfBJFEAAAAAAAAGji\nWrRITjgheeyxpEePcv7440UP45e/TObOrcdB2rVLBg1KLr00ad26Mnv55WSHHZLLLktqa+txCAA+\njiIIAAAAAAAALCM226w4lOOss5JWrSqz999PTj452XHH5Pnn63GImprkmGOSBx5I1l+/Mps9u8gO\nOyyZMaMehwDgoyiCAAAAAAAAwDKkVavktNOKW1i23LKcP/hg0qVLAxzMsd12yZgxSZ8+5eyPf0x6\n9UpeeKEeBwBgURRBAAAAAAAAYBnUtWsyalTywx8Wh3QsaPr04mCOL30peeWVehyiQ4fk7ruTAQPK\n2RNPFPfV/O1v9TgAAAtTBAEAAAAAAIBlVNu2yS9/mdx/f7LJJuV8yJCkU6fkT3+qx9NBWrVKzjsv\nuemmZOWVK7O330723DM544xk7tx6GgCABSmCAAAAAAAAwDJuhx2KAziOOqqcvf12csghyde+lrz+\nej0Osf/+yaOPJptvXs5+9rNkr72SN9+sxwEASBRBAAAAAAAAoFlo3z657LLk739P1luvnN90U3E6\nyO231+MQm21WlEG+9rVydtddxVUxY8bU4wAAKIIAAAAAAABAM9K3bzJ2bHLQQeXstdeSr3wlOeKI\n5J136mmA9u2TP/85Of/8pGXLyuzFF5Ptt0+uuqqeNgdAEQQAAAAAAACamTXWSK67LrnhhmTNNcv5\nVVclW22VDBtWTwPU1CQnnZQMHZqss05lNnNm0UQ56qhk1qx6GgBg+aUIAgAAAAAAAM3UV7+ajBuX\n7LVXOZswIdl55+TEE5P33qunAXr3Lq6C6dWrnP3hD8kOOyQTJ9bT5gDLJ0UQAAAAAAAAaMbWXTe5\n7bbkiiuKW1sWdtFFyTbbJI8+Wk8DrLdecfTI8ceXs5Ejk27dknvuqafNAZY/iiAAAAAAAADQzNXU\nFLexjB2b7LhjOf/3v4tDO04/PXn//XoYYIUVisbJddcl7dpVZq+/nuyxR3Luucm8efWwOcDyRREE\nAAAAAAAAlhMbb5wMHZpccEHStm1lNnductZZyXbbFdfJ1IuDDkoefjj57GcrX583L/nxj5N+/ZKp\nU+tpc4DlgyIIAAAAAAAALEdatEhOPDEZMybp3r2cP/ZYcVvLr35VlEOqrnPnZNSoZJ99ytlf/5r0\n6FGPTRSA5k8RBAAAAAAAAJZDm2+ejBiR/PSnSatWldn77ycDBiQ77ZS88EI9bL7qqsngwck55xTN\nlAU9+2zSs2dy/fX1sDFA86cIAgAAAAAAAMup1q2T008vbmvZYoty/s9/JlttlVx+eVJbW+XNW7RI\nfvSjZMiQZM01K7MZM5JvfCM54YSilQLAYlMEAQAAAAAAgOVct27J6NHJ97+f1NRUZtOnJ0cfnXz5\ny8krr9TD5rvu+tH31Fx8cbLzzsmkSfWwMUDzpAgCAAAAAAAApG3b5Ne/Tu67L/nMZ8r5XXclnTsX\nN7ZU/XSQDTdMhg9PjjyynD34YNK1a/LAA1XeFKB5UgQBAAAAAAAAPtS7d/LEE4vuZLz1VnFjy4EH\nJq+/XuWN27Yt7qC58sqkTZvK7LXXipNBLrigHlooAM2LIggAAAAAAABQYeWVi07GnXcmn/pUOb/x\nxqRTp+SOO+ph88MPT0aMSDbeuPL1uXOT730v+frXk3ffrYeNAZoHRRAAAAAAAABgkb785WTcuKJ7\nsbDXXkv23jv51reSd96p8sZduyajRiV9+5azG25IevZM/v3vKm8K0DwoggAAAAAAAAAfaY01kuuv\nT/7yl+LfC7viimSrrZL77qvyxmuuWRw5csYZ5eypp5IePZLBg6u8KcCyTxEEAAAAAAAA+ERf+1px\nOsiXv1zOJkxI+vRJTjopee+9Km7asmVy5plFIWS11SqzadOS/fdPTj45mTOnipsCLNsUQQAAAAAA\nAIDF8qlPFZ2MgQOT9u3L+YUX/u9Wl6rac89i0S5dytkvf5nsvnsyeXKVNwVYNimCAAAAAAAAAIut\npib51reSJ59Mevcu5888k2y3XXGjy+zZVdy4Y8dkxIikf/9yNmxY0UB5+OEqbgiwbFIEAQAAAAAA\nAJbYZz5T9C9+85ukTZvKbO7c5Gc/Kwoh//pXFTdt1y65+urk0kuT1q0rs1deKZopv/99UltbxU0B\nli2KIAAAAAAAAECdtGiRfO97yZgxSbdu5Xz+67/5TVEOqYqamuSYY5IHHkjWX78ymz07OfbY5LDD\nkhkzqrQhwLJFEQQAAAAAAABYKltskTz0UHLmmUnLlpXZrFnJD36Q9OmTvPBCFTfdbruiadKnTzn7\n4x+TXr2S55+v4oYAywZFEAAAAAAAAGCptW6dnHFG8vDDyeabl/Phw5Ottkr+8Icq3tzSoUNy993J\ngAHl7Iknku7dkzvvrNJmAMsGRRAAAAAAAACgarp3T0aPLq6MqampzKZPT446Ktlzz2TSpCpt2KpV\nct55yU03JSuvXJm9/Xay115FQ6Vqd9MANG2KIAAAAAAAAEBVrbhi8pvfJMOGJRtvXM7//vekU6fk\nz3+u4qb775+MHFncU7Own/2sKIS8+WYVNwRomhRBAAAAAAAAgHqx447Jk08m3/pWOXvrreSgg5ID\nD0zeeKNKG37+88kjjyRf+1o5u+uupFu3ZMyYKm0G0DQpggAAAAAAAAD1ZuWVk4EDkzvuSNZdt5zf\ncENxOsjf/lalDdu3L44aOf/8pGXLyuzFF5NevZKrrqrSZgBNjyIIAAAAAAAAUO/23DMZN644AWRh\n//1vkX/728m0aVXYrKYmOemkZOjQZJ11KrNZs5IjjkiOOqr4N0AzowgCAAAAAAAANIg11ywO67j+\n+mT11cv5//1fstVWyf33V2nD3r2Lq2C2376c/eEPyQ47JBMnVmkzgKZBEQQAAAAAAABoUF//enE6\nyJe+VM5efDHp0yf5/veTmTOrsNl66yXDhiXHH1/ORo5MunZN7rmnChsBNA2KIAAAAAAAAECDW2+9\n5M47i4M52revzGprk/PPLzoao0ZVYbPWrZOLLkquuy5p164ye+ONZI89knPPTebNq8JmAI1LEQQA\nAAAAAABoFDU1ybe/nTzxRHFLy8KefjrZbrvkzDOT2bOrsOFBByWPPJJsumnl6/PmJT/+cdKvXzJ1\nahU2Amg8iiAAAAAAAABAo9pkk+L2ll//OmnTpjKbOzf56U+TL3wheeqpKmzWqVNxJcw++5Szv/41\n6d49GTu2ChsBNA5FEAAAAAAAAKDRtWyZfP/7yejRxZUwC5v/+vnnV+EGl1VXTQYPTs45J2mx0E+m\nzz1XHENy3XVLuQlA41AEAQAAAAAAAJqMLbdMHn44Of30ohyyoFmzirJInz7J+PFLuVGLFsmPfpQM\nGZKstVZlNmNGcvDByfHHJ++/v5QbATQsRRAAAAAAAACgSWndurgO5qGHks02K+cPPJBstVXyf/+X\n1NYu5Wa77locN9KjRzn77W+TnXdOJk1ayk0AGo4iCAAAAAAAANAk9eiRjBmTnHRSUlNTmb37bvLt\nbyd77528+upSbrThhkW75Mgjy9mDDxZ30jzwwFJuAtAwFEEAAAAAAACAJmvFFZPzz0+GDk022qic\n33ln0qlTcsMNS7lR27bJ5ZcnV16ZtGlTmb32WnEyyAUXVOEIEoD6pQgCAAAAAAAANHk77ZQ8+WTy\n//5fOXvzzeTAA5ODDir+vVQOPzwZMSLZeOPK1+fOTb73veTrXy+OIwFoohRBAAAAAAAAgGXCKqsk\n//d/ye23J+usU87//OfidJC//30pN+raNRk9Ounbt5zdcEOy7bbJM88s5SYA9UMRBAAAAAAAAFim\n7LVXMm5c8tWvlrNXX02+/OXkyCOTadOWYpM11kjuuCM544xy9vTTRRlk8OCl2ACgfiiCAAAAAAAA\nAMuctdZK/vKX5LrrktVXL+cDByZduiTDhy/FJi1bJmeeWRRCVlutMps2Ldl//+Tkk5M5c5ZiE4Dq\nUgQBAAAAAAAAlkk1NclBBxWngyzqFpfx45Mdd0x+8INk5syl2GjPPYurYrp0KWe//GWy++7J5MlL\nsQFA9SiCAAAAAAAAAMu09dZL/va35LLLkpVWqsxqa5Pf/Cbp1q3octTZJpskI0Yk/fuXs2HDkq5d\nk4cfXooNAKpDEQQAAAAAAABY5tXUJEcdlTzxRPLFL5bzp55Kttsu+dnPktmz67hJu3bJ1Vcnv/99\n0rp1ZfbKK0nv3smllxbtE4BGoggCNAnTp09f5B8AAAAAAMCS6Ngxue++5Fe/SlZYoTKbMyc544yk\nV6/k6afruEFNTXL00cnw4cn661dms2cnxx2XHHZYMmNGHTcAliVN8XfOmtpadTSgYU2ZMiUdOnRY\nrPf6igIAAAAAAOpq3LjiJpfHHitnbdsm556bHH980qKu//f5yZOTr3+9uBpmYVttlQweXDRTgGar\npqZmsd43efLkrL322vU8TcGJIAAAAAAAAECz1KlT8vDDyU9+krRsWZnNnJmcdFKyyy7Jiy/WcYMO\nHZK7705OPrmcPflk0q1bcscddVwcoG4UQYAmYfz48Xn33XdLfwAAAAAAAEtjhRWSn/0sGTEi+fzn\ny/l99xWHd1xxRVKng8pbtUp+8Yvk5puTlVeuzKZOTfbeu7iPZu7cuowPNHGL+o1z/PjxjTqTIgjQ\nJKy00kqL/AMAAAAAAKiGbbctrog54YRyNm1a8q1vJV/5SvLf/9Zxg379kpEjky22KGc/+1my557J\nG2/UcXGgqWqKv3MqggAAAAAAAADLhRVXTC68MBk6NNlww3J+xx3FdTI33ljHDT7/+eSRR5IDDyxn\nQ4Yk3bsnY8bUcXGAxaMIAgAAAAAAACxX+vRJxo5NjjiinL3xRvK1ryXf+Eby5pt1WLx9++T665ML\nLkhatqzMXnwx6dUrueqquowNsFgUQQAAAAAAAIDlziqrJFdckdx2W7LOOuX8+uuTzp2Tu+6qw+I1\nNcmJJybDhpUXnzWraKAceWQyc2adZgf4OIogAAAAAAAAwHJr772TceOSAw4oZ5MmJV/6UnL00cm7\n79Zh8R12KK6C2X77cjZwYJFPmFCHhQE+miIIAAAAAAAAsFxba63khhuSP/0pWW21cn755UmXLsk/\n/1mHxddbrzgZ5IQTytmoUUm3bsk//lGHhQEWTREEAAAAAAAAWO7V1CTf+EZxOsgee5TzF15IevdO\nBgyow40urVsnF16YXHdd0q5dZfbGG0nfvsk55yTz5tV5foD5FEEAAAAAAAAAPrD++snf/578/vfl\nzkZtbfKrXyXduyePPVaHxQ86KHnkkWTTTStfnzcvOfXUZL/9krffrvPsAIkiCAAAAAAAAECFmprk\n6KOTJ59Mtt++nP/rX8m22yZnnZXMmbOEi3fqlIwcmeyzTzm77bakR49k7Ng6zQ2QKIIAAAAAAAAA\nLFLHjsn99yfnnZessEJlNmdOcvrpSa9eyTPPLOHCq66aDB6cnHtu0mKhn2yfey7ZbrviGhmAOlAE\nAQAAAAAAAPgILVsmAwYko0YlW29dzkeOTLbZJrnoouKGl8XWokVyyinJkCHJWmtVZjNmJAcfnBx/\nfPL++0s1P7D8UQQBAAAAAAAA+ASdOyePPJKcdlr5EI+ZM5MTT0x23TWZMGEJF95112T06OJKmIX9\n9rdJnz7JpEl1nhtY/iiCAAAAAAAAACyGFVZIzjorGTEi+dznyvmwYUVh5KqrktraJVh4ww2T4cOT\no44qZyNGJF27FnfUACwGRRAAAAAAAACAJdCzZ/LYY8XNLQubNi054ohkn32S//53CRZt0ya57LLk\nyiuLfy/otdeSXXZJzj9/CRsmwPJIEQQAAAAAAABgCbVrl1x0UXLvvcWBHgu7/fakU6fkppuWcOHD\nDy9OAdl448rX585Nvv/95MADi7YJwEdQBAEAAAAAAACoo513Tp58MjnssHL2xhvJV7+aHHJI8tZb\nS7Bo167J6NFJ377l7MYbiyNJnnmmriMDzZwiCAAAAAAAAMBSWHXV5Kqrkr/+NenQoZz/6U9J587J\nkCFLsOgaayR33pmccUY5e/rppEeP5Oab6zwz0HwpggAAAAAAAABUwVe+kowbl/QmYo1SAAAgAElE\nQVTrV85eeaU44OOYY5J3313MBVu0SM48M7njjmS11Sqzd99NDjggGTAgmTNnaUcHmhFFEAAAAAAA\nAIAqWXvt5KabkmuuKU4KWdhllyVbb508+OASLLrnnsVVMV26lLNf/SrZbbdk8uQ6zww0L4ogAAAA\nAAAAAFVUU5McckhxOshuu5Xz559PdtghOfnkZNasxVx0k02SESOS/v3L2X33JV27Jg8/vDRjA82E\nIggAAAAAAABAPfj0p5MhQ5JLL03atavMamuTX/4y6d49efzxxVywXbvk6quT3/8+ad26MnvllaR3\n72Kz2tpqjA8soxRBAAAAAAAAAOpJTU1yzDHJE08kvXqV83Hjkh49krPPTubMWcwFjz46GT68aJos\naPbs5Ljjkm9+M5kxoyrzA8seRRAAAAAAAACAevbZzyYPPJD84hfJCitUZnPmJKedlnzxi8m//72Y\nC/bsmYwenfTpU86uuSb5wheKO2iA5Y4iCAAAAAAAAEADaNkyOfnkZNSopEuXcv7II8k22yQXX5zM\nm7cYC3bokNx9d7Howp58MunWLbnjjqWeG1i2KIIAAAAAAAAANKDOnZNHH01+/OOkxUK/2L73XnLC\nCcluuyUTJy7GYq1aFceM3HxzsvLKldnUqcneeyenn57MnVu1+YGmTREEAAAAAAAAoIGtsEJy9tnJ\ngw8mm25azocOLQojV1+d1NYuxoL9+iUjRyZbbFHOzjor2XPP5I03lnZsYBmgCAIAAAAAAADQSLbb\nLnn88eS73y1n77yTHH54su++yWuvLcZin/98cb/MgQeWsyFDiqtiRo9e6pmBpk0RBAAAAAAAAKAR\ntWuXXHxxcs89yQYblPPbbks6dSpuf/lE7dsn11+fXHBB0rJlZTZhQrL99smVV1ZlbqBpUgQBAAAA\nAAAAaAJ22SUZOzb55jfL2euvJwcckBx6aPL225+wUE1NcuKJybBhybrrVmazZiX/7/8lRx6ZzJxZ\ntdmBpkMRBAAAAAAAAKCJWHXV5Oqrk1tuSdZeu5xfe21xOsjddy/GYjvskIwZU5wCsrCBA4t8woSl\nHRloYhRBAAAAAAAAAJqYffdNxo1L9tuvnL3ySrLHHslxxyXTp3/CQp/6VHEyyAknlLNRo5Ju3ZJ/\n/KMqMwNNgyIIAAAAAAAAQBPUoUNy883JH/9YnBSysEsvTbbeOhkx4hMWat06ufDC5LrrknbtKrM3\n3ihaJeeck8ybV7XZgcajCAIAAAAAAADQRNXUJIcemowdm+y6azl/7rnihpdTTklmzfqExQ46KHnk\nkWTTTStfr61NTj21OH7k7berNjvQOBRBAAAAAAAAAJq4DTZIhgxJfve7ZMUVK7N585Lzzkt69Eie\neOITFurUKRk5Mtlnn3J2223FImPHVm1uoOEpggAAAAAAAAAsA1q0SI47rih7fOEL5Xzs2KLHcc45\nyZw5H7PQqqsmgwcn555bLLqg555LevZM/vSnqs4ONBxFEAAAAAAAAIBlyKabJsOHFz2O1q0rs9mz\ni1tedtgh+c9/PmaRFi2K+2SGDEnWWqsye++95JBDkuOPT95/v+rzA/VLEQQAAAAAAABgGdOyZdHj\nGDky2Wqrcv7ww8nWWxdXycyb9zEL7bprMnp0cZTIwn7726RPn2TSpKrNDdQ/RRAAAAAAAACAZVSX\nLsmjjyY/+lH5lpf33ku++91k992Tl176mEU23LA4YuSoo8rZiBFJ167J/fdXdW6g/iiCAAAAAAAA\nACzD2rRJzjkn+ec/k89+tpzfe2/SqVMyaFBSW/sxi1x2WXLVVUnbtpXZa68lu+yS/OY3H7MA0FQo\nggAAAAAAAAA0A1/4QvL448lxx5Wzd95JDjss6dcvmTz5YxY57LDiFJCNN658fe7c5Ac/SA48MJk2\nrXpDA1WnCAIAAAAAAADQTKy0UvK73yX/+Efy6U+X81tvLU4HueWWj1lkm22S0aOTvn3L2Y03Jj17\nJs88U7WZgepSBAEAAAAAAABoZnbdNRk7Nunfv5xNmVKcDNK/f/L22x+xwBprJHfemZxxRlJTU5k9\n/XTSo0dy881VnxtYeoogAAAAAAAAAM3QaqslgwYlgwcna69dzq+5JuncuTg9ZJFatEjOPDO5445i\nsQW9+25ywAHJgAHJnDnVHh1YCoogAAAAAAAAAM3Yfvsl48Yl++5bzl5+Odl99+Q730mmT/+IBb78\n5eKqmC5dytmvfpXstlvy2mtVnRmoO0UQAAAAAAAAgGauQ4fiZJBBg5JVVinnl1ySbL118tBDH7HA\nJpskI0Yk3/xmObvvvqRbt495GGhIiiAAAAAAAAAAy4GamqR//2Ts2GSXXcr5c88lX/xi8uMfJ7Nm\nLWKBdu2Sq65Kfv/7pHXryuyVV5IddywaJbW19TI/sHgUQQAAAAAAAACWIxtumNx9d/Lb3yYrrliZ\nzZuXnHtusu22yZNPLuLhmprk6KOT4cOTT3+6Mps9u7hjpn//ZMaMepsf+HiKIAAAAAAAAADLmRYt\nis7G448n221Xzp98MunevSiFzJmziAV69kxGj0523rmcXXtt8oUvJM8/X/W5gU+mCAIAAAAAAACw\nnPrc54rDPc4+u3zby+zZxTUxvXsnzz67iIc7dEiGDElOPrmcPflk0q1bcvvt9TI38NEUQQAAAAAA\nAACWY61aFYWPkSOTzp3L+UMPJVtvnVxySXF1TOnhX/wiufnmZOWVK7OpU5OvfCX5yU+SuXPrbX6g\nkiIIAAAAAAAAAOnSpSiDnHJKcXXMgmbMKK6S2WOP5KWXFvFwv37Fw1tsUc5+/vNkzz2TN96ol7mB\nSoogAAAAAAAAACRJ2rRJzj23uC6mY8dyfs89xakh11yT1NYuFH7+88kjjyQHHlh+cMiQ4qqY0aPr\nZW7gfxRBAAAAAAAAAKjQq1fyxBPJsceWs6lTk/79k/33T6ZMWShs3z65/vrkgguSli0rswkTku23\nT664ot7mBhRBAAAAAAAAAFiElVZKLrmkOMxj/fXL+S23JFtumdx660JBTU1y4onJsGHJuutWZrNm\nJd/6VnLkkcnMmfU2OyzPFEEAAAAAAAAA+Ei7756MHZscckg5mzIl2W+/5LDDipNCKuywQzJmTPLF\nL5YfHDiweH3ChPoYGZZriiAAAAAAAAAAfKzVV0+uuSa5+eZkrbXK+aBBSefOyb33LhR86lPJ0KHJ\nCSeUHxo9OunaNbn77nqZGZZXiiAAAAAAAAAALJZ+/ZJx45J99ilnL72U7Lpr8t3vJjNmLBC0bp1c\neGFy3XVJu3aVD735ZtK3b3L22cm8efU6Oywvampra2sbewhg+TJlypR06NCh4rXJkydn7bXXbqSJ\nAAAAAAAAWBK1tcUpICeckLzzTjn/3OeKfLvtFgrGjSvaJM8+W35o772TP/4xWW21epl5cdTW1mbC\nhAmZPHly3nvvvcycOTNJ0rZt26y44orp0KFDNtpoo9TU1DTajDR9jf17qCII0OAa+4sPAAAAAACA\n6pg4MTn88OL2l4W1aJGcckpyxhnJCissEEydmhx2WHLrreWHOnZMBg9Ottqqvkb+UG1tbcaPH5/R\no0dn1KhRGT16dMaMGZO33nrrY59bffXV061bt4q/z3zmM8ohfKixfw9VBAEaXGN/8QEAAAAAAFA9\n8+Yll1ySDBiQfHCARoUuXYqDPiq6HfPmJb/8ZXLqqeUrYVZcMRk4MDn44HqZ95VXXsnAgQMzcODA\nTJo0qZSvkORTSVZM0vaD12YmeS/Jq0neX8Sa6623Xr797W/nyCOPzHrrrVcvc7PsaOzfQxVBgAbX\n2F98AAAAAAAAVN+//5307588+mg5a906Oeus5Ac/SFq2XCC4997k619PXn+9/NB3vpP85jcLHSdS\nN7W1tRk2bFguvfTS3HrrrZk7d26SovSxVZJuC/x1+uD1RXk/ybgkoz/4G5VkbP5XDmnZsmX222+/\nHHvssdlpp52cErKcauzfQxVBgAbX2F98AAAAAAAA1I85c5LzzkvOPLP498J69UoGDUo++9kFXnzp\npeSAAxbdIPnCF5Ibb0zWX79O89TW1ub666/PWWedlWeeeebD13snOSbJfkna1Gnl/5mV5JYklyYZ\nvsDrm222WX7yk5/koIMOUghZzjT276EtGmQXAAAAAAAAAJq9Vq2K214efTTp1KmcjxhRXBVz6aXJ\nh0cWbLBB8sADyVFHlR946KGka9fk/vuXeJZXX301++yzTw4++OA888wzaZ/k2BQneNyf5OtZ+hJI\nPljj60keSPJkioJJ+yTPPPNMDj744Oy777559dVXq7ATLB5FEAAAAAAAAACqapttklGjkgEDkoUP\nw5gxIznuuKRv3+Tllz94sU2b5LLLkquuStq2rXxg8uRc1OfWTDztDwu0Rz5abW1trrnmmmyxxRa5\n/fbb0zrJWUkmJbkkxdUv9aVzipNBJn2wZ+skt912W7bccstce+21WdwLOyZOTC66qP7mpHlTBAEA\nAAAAAACg6tq0Ka6JGT486dixnN99d3FqyLXXLtDvOOyw4tiQz3zmw/ddlONzYu0F6XP2Lpm417HJ\ntGkfuef8U0D69++ft99+O92SjElyWpKVq/jZPsnKH+w5Jkm3JG+99VYOPfTQxTodZOLEpE+f5MQT\nlUGoG0UQAAAAAAAAAOrN9tsnjz+eHHNMOZs6NTn00OSAA5IpUz54cf5xIl/6UpJkv9ySTfJ8XkjH\n9PnbDzJxm32Sp58urfWvf/0r3bt3//AUkJ8neSj1ewLIJ+n0wQwLng7SvXv3PPXUU4t8//wSyAsv\nJJtskuy3XwMOS7OhCAIAAAAAAABAvWrfPrn00uSuu5L11ivngwcXp4P89a8fvLDGGskddyRnnJEN\na17OsPT5Xxnk+YGZ2L1fctNNHz4/cuTI9O7dO5MmTcrmSUYnOTVF+aKxtU5xOsjoJJsnmTRpUnr3\n7p2RI0dWvG/hEsiwYcmGGzbCwCzzFEEAAAAAAAAAaBB77JGMG5ccfHA5mzw52Xff4naYqVOTtGiR\nnHlmcscd2XC1aZVlkBl3ZOJXv5f88IcZ+dBD2WWXXfLmm2+mR5LhSTo36KdaPJ1TzNYjyRtvvJFd\ndtnlwzKIEgjVpAgCAAAAAAAAQINZffXk2muTG29M1lyznA8alHTunAwd+sELX/5yMnp0Ntx6zcoy\nSIblnl//JX179860adOyY5J7kyxiySZjzRQz9k4ybdq09O3bN/fc8x8lEKpKEQQAAAAAAACABnfA\nAcXpIHvvXc5eeinZZZfk+OOTGTNSNCQefDAbfnPnijJI3wzLm3M+lW2T3J5k5Qb+DHWxcpI7UpwM\n8uabK6Vv3xWUQKgqRRAAAAAAAAAAGsW66yZ//Wty5ZXJyotocfz2t8k22ySPPJKkXbvkqquy4WWn\nZmjL3dIuz2duOqZ1huUP2WCZKIHMt3KSgdkgrTMsc+dunHbtXs3QobVKIFSFIggAAAAAAAAAjaam\nJjn88GTs2GSnncr5f/6T9OqVnHZa8v7smuSoozL8tP6ZkT5Jns/sdEy/DMvEbNDQo9fZxGyQfhmW\n2emY5PnMmNEzw4f/qbHHoplQBAEAAAAAAACg0W20UXLvvcmFFyZt21Zm8+YlZ5+d9OyZDB06Jcdf\nfHGSl/KDBa6J6bOMlEEmZoP0ybC8kI7ZJM/n++mT5KUcf/zxefXVVxt7PJoBRRAAAAAAAAAAmoQW\nLZITTkgeeyzp0aOcP/54sttuq+Wtt76drmmRc/NShi1DZZCFSyDD0ifn5qV0TfLWW2/l6KOPTm1t\nbWOPyTJOEQQAAAAAAACAJmWzzZIRI5KzzkpatarM5s1rneS81Ob+vJiO2XAZKYMsqgSyYV5K6yRX\nJ2md5Lbbbsv111/fuIOyzFMEAQAAAAAAAKDJadUqOe205JFHki23LOeP5Yvpkify+xydDZp4GeSj\nSiDzdU7ykw/+/fOf/9ypICwVRRAAAAAAAAAAmqyuXZNRo5IDD5yYZF5FNiMr5dj8Pn1zV1pkXpMs\ng3xSCWS+E5K0T/L000/n/vvvb/A5aT4UQQAAAAAAAABo0tq2TebM+V6SHbNKni/ld2ePdM7YDM8O\nGdqEyiCLWwJJklWSHPrBvy+55JIGm5HmRxEEAFguTJ8+PTU1Nampqcn06dMbexxgOeB7B2hovneA\nhuZ7B2hovndg+fbKK6/k1ltvTfLP/CNdclQuK73n7ayeQ/KnfD/n56bsv9RlkOlJaj74q8u3zpKU\nQOY75oP/vOWWWzJp0qQ67AqKIAAAAAAAAAA0cQMHDszcuXOzQ5JtMz2X5Zj8PX2zXl4pvffmHJC+\nGZIf5+xGOxmkLiWQJOmc5ItJ5s6dm4EDB9b7nDRPiiAAAAAAAAAANFm1tbUfliKOXeD1vhmSsemc\ng3Jd6ZnJWSffypXpllHZOOMbtAxS1xLIfPM/48CBA1NbW1s/Q9KsKYIAAAAAAAAA0GSNHz8+kyZN\nygpJ9lsoWyNv5bocnBvy1ayZ10vP3pgD835a51N5pUHKIEtbAkmSfklap7gO58UXX6yPMWnmFEEA\nAAAAAAAAaLJGjx6dJNkqSZuPeM9Xc1PGpVP2yu2lbFI+nVezflbJ2/VaBqlGCSQpPuNWH/x7/meH\nJaEIAgAAAAAAAECTNb8M0e0T3rduXstt+UquyBFpn2ml/J2sltZ5v17KINUqgcw3/7MqglAXiiAA\nAAAAAAAANFmjRo1K8slFkCSpSXJErsrYdM6Oua+Uz84KSWrzQjpmpyqVQapdAkn+91nnf3ZYEoog\nAAAAAAAAADRJtbW1GTNmTJLFK4LMt3EmZGh2zgU5MW3z3kJpTZJkfDpm+zy4VGWQ+iiBJJUngtTW\n1i71eixfFEEAAAAAAAAAaJImTJiQt956Kysk6bSEz7ZIbU7MRRmTrumekYt8z8vZINvksYzPRks8\nW32VQJLis7ZO8tZbb2XChAlVWZPlhyIIAAAAAAAAAE3S5MmTkySfSrJCHdfYPM9kRHrlpzk9rTK7\nlL+ZNbNFns7wbL/Ya9ZnCSRJ2qT4zEkyZcqUqq3L8kERBAAAAAAAAIAm6b33imtdVlzKdVpnTk7P\nWXk422WL/KuUz8yK2TEP5Jyckk+6iKW+SyDzzf/M8/83gMWlCAIAAAAAAABAkzRz5swkSdsqrdct\nYzI63fL9/Do1mVeR1aZFTs256ZOheSXrLfL5hiqBJP/7zIogLClFEAAAAAAAAACWG20zK7/OD3Nf\ndspn8kIpvz99skX+lb/kqxWvN2QJBJaGIggAAAAAAAAATVLbtsW5GDPrYe3eGZ4n0iVH5vJS9k5W\ny//LVR/+95eyfoOXQOZ/5hVXXNqLcVjetGrsAYDlz7x580qvvf76640wCbA8mT59+of/njJlSmbM\nmNGI0wDLA987QEPzvQM0NN87QEPzvQPLp/lXw7ybZEq97PBufp6js1NuyIm5MJOz7gLZ/753emdw\npmSVbJRHc1P2y4qZVE/zLDhZYebMmZkypb53o5oW9dvnon4jrS81tbW1tQ22G0CSp59+OltssUVj\njwEAAAAAAADQIJ566qlsvvnmDbKXq2EAAAAAAAAAAJoJRRAAAAAAAAAAgGZCEQQAAAAAAAAAoJmo\nqa2trW3sIYDly5w5c/Lss89WvLbGGmukRQvdNAAAAAAAAGDZNm/evLz55psVr2266aZp1apVg+yv\nCAIAAAAAAAAA0Ez4v98DAAAAAAAAADQTiiAAAAAAAAAAAM2EIggAAAAAAAAAQDOhCAIAAAAAAAAA\n0EwoggAAAAAAAAAANBOKIAAAAAAAAAAAzYQiCAAAAAAAAAD/n737Do+qTN84fk8aJUCoKi0huNSo\nEEABBcEgCEgTUCysDWyroquCiyKKWNa1ropKFVYFURSlqQgoHSRUlR4SWkILLSQBUs7vD38zzDAp\nM8mUnJnv57rm0pw55z33xPGZcp68L4AAQSMIAAAAAAAAAAAAAABAgKARBAAAAAAAAAAAAAAAIEDQ\nCAIAAAAAAAAAAAAAABAgaAQBAAAAAAAAAAAAAAAIEDSCAAAAAAAAAAAAAAAABAgaQQAAAAAAAAAA\nAAAAAAJEmL8DAChbjh07pnXr1ikpKUmnT59WeHi4atSooebNm6tNmzYKCyu7ZSMpKUmbNm3S/v37\nlZmZqQoVKqhOnTq66qqr1Lx5c3/HA1AIM9cdAOZktrqTn5+vXbt2aevWrTpy5IhOnjypkJAQVatW\nTTVq1FDLli0VGxvr75gAimC2unP8+HElJSVp//79Onz4sDIzM3Xu3DlVqlRJVapUUd26dRUfH69a\ntWr5OyqAIpit9gAwP+oOAF8LhLqTlZWlDRs2aPfu3UpPT9fZs2dVoUIF1ahRQw0bNlSzZs1Us2ZN\nf8eECZX9Zz8An5g1a5bef/99rVy5UoZhFLhP5cqVddttt2nEiBFq1KiRjxMW7OzZs/roo480fvx4\n7dq1q9D96tWrpyFDhujJJ59UVFSUDxMCKIxZ686+ffuUmJhou61fv14nTpxw2Kdz585asmSJnxIC\nKIxZ6o5hGFq1apUWLVqkX375RWvXrtW5c+eKPKZWrVrq06ePHn30UbVs2dJHSQEUxwx1JysrS6tW\nrdLKlSu1Zs0abdmyRWlpaS4dGxMTo0GDBunee+9V06ZNvZwUgKvMUHvcdfToUTVv3lzp6elO9730\n0ksaPXq0H1IBsDJL3WnQoIH27dvnkbH+/e9/a8SIER4ZC4D7zFJ3CpObm6sZM2Zo2rRpWr58uXJy\ncorcPzY2Vp06dVLPnj3Vv39/hYSw6AeKZzEK+78DQFBITU3VnXfeqWXLlkmSLBaLJDm8cFq3WbdH\nRERo1KhRGjVqlG/DXmTlypW66667tG/fPqeMVhdvr1WrliZNmqTevXv7NCuAC8xWdxYtWqRly5bZ\nGj+OHTvmcL99VqtOnTrRCAKUIWapOykpKXr77bf17bffOlyELex9TmH39e3bV5988okuvfRSLycG\nUBiz1B1JGj9+vB555JECc1mz2Svo/pCQEA0dOlSvvfaaqlev7r2wAIpkptrjrgEDBmj27NkFfv56\n8cUXaQQB/MRsdSc2NtZjjSCvv/46jSCAH5it7hRk3rx5+uc//6mkpCRJ7n3vY7FYtH//ftWpU8c3\nYWFqtAsBQWznzp1q06aNli1bJovFIovFIsMwbC8m1pskh+05OTkaPXq0Bg8eXGinpbd9++23SkhI\n0P79+51e6IvKfvToUfXr108ff/yxX3IDwc6MdWf48OF65ZVX9OOPPyo9Pd0hp31+a2YAZYuZ6s7S\npUs1btw4HTp0qMBckpxq0MW5LRaLvv/+e8XFxWn16tU+yQ3AkZnqjr2CvkC1br84t3U/a3bDMDRh\nwgRdc8012rNnj09zA/iLWWuPK6ZPn25rAuHzF1B2mL3uWDOV5AbAP8xed/Lz8zVs2DD16dNHe/bs\nKbSJpbDHAriLpWGAIHX8+HF17dpVhw8fdngxsVgsat26tfr27avY2FhlZ2dr586dmj59ulJTUx1e\nUGfMmKFLLrlE77zzjk+zr1q1SnfccYdyc3Nt2wzDUGhoqHr16qUOHTqofv36Onr0qDZv3qwZM2Yo\nKyvL4UvKxx9/XHXq1FHfvn19mh0IZmauO8VdGOGNOFA2mbnu2GcIDQ1VfHy87T3OJZdcotDQUB0+\nfFhr167V/PnzlZGR4XDM8ePH1bNnTy1evFitWrXyaXYgmJm57kh/vbcpV66cWrZsqaZNm6pRo0a6\n9NJLVblyZVksFp0+fVpJSUn67bfftHTpUuXl5Tlk37Nnjzp37qwtW7aoatWqPs8PBCuz156iHD58\nWMOGDbN97uLzF1A2BELdsVgsqlatmqKjo0t0PDMwAr5l9rqTn5+v2267Td9++61T/oiICHXq1Ekd\nOnTQpZdequrVqysrK0vHjh3TH3/8ocTERP3xxx8+z4wAYAAISv379zcsFosREhJihISEGBaLxYiK\nijLmzZtX4P65ubnGyy+/bNvfekxISIjx448/+ix3ZmamER0d7ZSjefPmxo4dOwo85sSJE0a/fv2c\nHm+1atWMw4cP+yw7EOzMWndatmzpkNt6q1q1qnHDDTcYQ4cOtd1v/ecNN9zgs3wACme2ujN16lTb\n+UJDQ40bb7zR+OKLL4wzZ84UedypU6eMp59+2ggNDXWqV02bNjVycnK8nh3AX8xWdwzDMCZNmmRc\nd911xiuvvGKsXbvW5Zpx6NAhY8iQIQVmv/vuu72cGoA9M9YeV/Xp08fhsbVv397p89eYMWP8HRMI\nOmatOw0aNHA493333eezcwMoHbPWHauHHnrIKX/FihWN0aNHGxkZGcUef+DAAeP99983rrjiCuPg\nwYM+SIxAQCMIEIQWLlzo9IJTvnx5Y8OGDcUe+9///tfpAkPjxo2NvLw8HyQ3jOeee84pe5MmTYyT\nJ08WeVx+fr4xcOBApy8LeLMP+IaZ607Lli2NypUrGx07djT++c9/Gl988YVD41lKSgqNIEAZZMa6\nM3XqVCMiIsIYOnSosWfPHrePnzZtWoFfcLzzzjteSAvgYmasO57wxhtvOD3u8PBw48iRI/6OBgSF\nQK4906ZNc8jXuXNnh8ZZGkEA/zBz3aERBDAnM9cdwzCM6dOnO+WvV6+esX37dp9lQHAK8feMJAB8\nb+zYsbZ/N/5/6qmXXnpJ8fHxxR47bNgwde3a1WE91t27d2v69Oley2t16tQpjRs3zmHarNDQUH36\n6aeKiooq8liLxaLx48fbpuyzTiX6+eefKyUlxdvRgaBn1rojSXPmzNGpU6e0bNkyvfPOO7rzzjvV\nuHFjn5wbQMmZse60adNG27dv18SJExUbG+v28XfffbceffRRh+nSDcPQ//73P0/GBFAIM9YdTxgx\nYoTatWvnUHvy8vI0d+5cP6YCgkeg1p60tDQ9+eSTtu9vKlSooEmTJvk7FpbPurYAACAASURBVAAF\nbt0BUHaZue6cOHHCtsyd9fw1atTQ0qVL1aRJE59kQPCiEQQIMlu3btWKFStsLzqSVLNmTT399NMu\nj/H66687bfv44489kq8on3/+uU6fPi3pwot9r1691L59e5eOr169uoYPH+70BeXEiRO9khfAX8xc\ndySpfv36DtkBlH1mrTtxcXElagCxN3r0aIWGhkqS7fFv2bJFBw8eLHU+AIUza93xlLvuustp2549\ne/yQBAgugVx7hg4dqpMnT9q+/xk7dqwuv/xyf8cCgl4g1x0AZZPZ686rr76q9PR0SReua7399ttq\n2LChT86P4EYjCBBkvvzyS9u/W1907r//foWFhbk8RqtWrdS6dWvb8YZhaM2aNdq7d683ItvMnDnT\nadvDDz/s1hj33HOPypUrJ+nCrCAzZszwSD4ABTNz3QFgTsFcd2rWrKk2bdo4NL5KXJAFvC2Y646k\nAi/OWr/sBOA9gVp7pkyZoh9++MF2wadt27Z68skn/ZYHwAWBWncAlF1mrjunTp3ShAkTbOe0Zrn7\n7ru9el7AikYQIMj8+OOPTtsGDBjg9jgDBw50aWxPOX36tFavXu3Q9Vm5cmV169bNrXFq1Kihzp07\nO1wc2bt3r3bs2OGxrAAcmbXuADCvYK870dHRTtsOHTrkhyRA8Aj2unP27FmnbdWqVfNDEiC4BGLt\nOXjwoJ5++mnbBZNy5cppypQpzNIIlBGBWHcAlG1mrjszZ87UmTNnbD9bm1gAX6ERBAgiWVlZ2rBh\ng8OH54oVK6pVq1Zuj9WxY0enbcuXLy9VvqKsXr1aeXl5ki50fbZr165EXwT4OjsQzMxcdwCYE3Xn\nr9/BxSpUqOCHJEBwoO5I69atc9rWpk0bPyQBgkeg1p4hQ4bo1KlTtu9+XnjhBTVt2tQvWQA4CtS6\nA6DsMnvd+frrrx1+tlgsGjRokFfPCdijEQQIIps2bVJ+fr6kC80Ubdq0UUiI+6Xg6quvVnh4uKQL\nS6ysX7/eo3ntFTR2+/btSzTWtdde69L4AErPzHUHgDlRd6Tdu3c7NcvWrl3bT2mAwBfsdef48eOa\nPHmyQ92pUaOGevTo4cdUQOALxNozceJELVy40FZPWrZsqWeffdbnOQAULBDrDoCyzcx15+zZs1qx\nYoXD56TLL79c1atX99o5gYvRCAIEke3btztt+9vf/laiscLDw1WvXj2HbUlJSbYXZU/zZPaC1q9m\naRjAO8xcdwCYU7DXna1btzq9r6lQoYLi4uL8lAgIfMFcd44eParevXvryJEjki58Ofvqq68yExHg\nZYFWe/bt26dnnnnGdmEmPDxcU6ZMUWhoqM8yAChaoNUd6zlHjhypTp06KSYmRhUrVlSlSpUUExOj\nVq1a6b777tOnn36qAwcO+DQXgL+Yue6sX79e586dk3Thc1LLli0d9klOTtaYMWN0/fXX65JLLlFE\nRISqV6+uxo0b66abbtIbb7yh33//3Sv5EBxoBAGCSEpKitO2mJiYEo8XHR0twzBsP+fl5Wnfvn0l\nHq8onsxet25d2xcJ1i8Y9uzZU5p4AAph5roDwJyCve588skntn+3ftHQtWtXlS9f3o+pgMAWbHUn\nLy9PW7Zs0QsvvKAmTZpo9erVki7UnEcffVQPPPCAn1MCgS/Qas+QIUOUkZFhqyXDhw9XixYtfHZ+\nAMULpLpj/Qv95cuX64033tDy5ct14MABnTt3TtnZ2Tpw4IA2b96sadOmaciQIYqNjdWdd96pzZs3\n+yQfgL+Yue4U1MDRqFEjSX/NFvLEE0+oUaNGGjNmjFasWKH09HTl5eXp1KlTSkpK0s8//6yRI0eq\nRYsW6tWrlzZt2uSVnAhsNIIAQeTQoUNO2+rXr1/i8Qo69vDhwyUeryiHDh1ymuK8pNlDQkKcpkf3\nVm4g2Jm57gAwp2CuOzt27NCECROc3jM9+OCDfkoEBIdArDvbtm1TfHy8w+2qq65Sw4YNFRkZqZYt\nW+rVV1/VqVOnZLFYZLFYVLlyZY0bN07vv/++T7MCwSqQas/HH3+sxYsX297DNGvWTC+++KJPzg3A\ndYFUdwzDcLgYbL/N/mZ9n5Ofn68vv/xSbdq00WuvveaTjADMXXcK+uPjqKgopaSkqEWLFvrggw8c\n6tDF9UeSrQYtWLBAbdu21aRJk7ySFYErzN8BAPjO8ePHnbZVqlSpxOMVdGx6enqJxyuKt7OfP39e\nWVlZqlixYonHBODMzHUHgDkFa93Jzc3V3//+d+Xk5EiS7UuDjh07qkePHv6MBgS8QKw7WVlZ2rx5\ns1NjmZX99quvvloDBw7UAw88oKioKF9FBIJeoNSe5ORkPfvss7YZW0NDQzV58mSFh4d7/dwA3BMo\ndcfa4GEVEhKiSy65RFWqVFFISIjS09OVnp5uWy7C/oJsfn6+Ro0apfXr12vWrFmFvlcC4Blmrjtp\naWlO286dO6fu3btr165dtvc+FotF4eHhuuyyyxQZGamjR4/aMtk3pOXm5urBBx/UiRMnNHz4cK9k\nRuBhRhAgiGRmZjptK826zQUdm5WVVeLxiuKN7Bd3fXsrOxDMzFx3AJhTsNadp556SomJiQ7bKlSo\noPHjx/spERA8ArnuFPSXsRf/ldr+/fu1c+fOMrV8DRAMAqX23H///Tpz5oztQsewYcPUtm1br58X\ngPsCpe6EhYUpISFBb775ptatW6eMjAwdPHhQ27Zt059//qlDhw4pPT1d8+bN08CBAxUaGmq7YCv9\n1RDy3Xff6fHHH/d6ViDYmbnunDhxwmnb66+/rp07d9p+jouL01dffaXjx48rJSVFf/75p44cOaJd\nu3Zp1KhRqlixotN1rOeee05LlizxSmYEHhpBgCBi/QtRe6VZL76gF83z58+XeLyimDk7EMz4fxeA\nrwVj3fnkk0/04Ycf2v4azXoh5a233lKTJk38nA4IfIFad6x/eVbYTfqr3qSlpWnSpElq0aKF7rvv\nPmVkZPg8KxCMAqH2fPDBB1q6dKmtplx++eV69dVXvXpOACUXCHVnxIgRSk5O1s8//6ynnnpKrVq1\nKvAxVKlSRT169NDMmTO1ceNGNW3a1OF+wzD08ccfa/bs2V7NCwQ7M9edc+fOOfxsGIbOnj0r6a/P\nWnfffbc2b96sAQMGOM1U37BhQ40ZM0YbNmxQ/fr1HRrR8vLydP/99ysvL88ruRFYaAQBglxppq8r\n6NiLuxO9yczZgWDG/7sAfC2Q686cOXP0+OOPOzWBDB48WI888oif0wHBy+x1p3Xr1srLy3O4nT17\nVocOHdLy5cv1n//8R1dddZUtq7U5ZNq0aerYsWOBf/0GwPvMVHuSkpI0cuRI21/Zh4SEaOLEiaW6\nuAPA98xUdyTpkUceUd26dd065oorrtBvv/2mFi1aOOV7/vnny9TnQyAYmKXuXDyu/VIwXbp00aef\nfqqQkKIv0zdu3Fg//PCDypUr57B9//79+uyzzzyeGYGHRhAgiBS0vmp2dnaJxyvo2IiIiBKPVxQz\nZweCGf/vAvC1YKo7S5Ys0e233+6wdrXFYlHXrl01adIkP6cDgkew1J3w8HDVqlVL1157rZ5++mlt\n2rRJX331lWrVquXwF2q///67+vfv7+e0QOAzc+0xDEP33XefsrOzbe9fHnzwQXXq1Mkr5wPgGWau\nO6UVGRmpuXPnKjIyUtKFC7o7duzQ3Llz/ZwOCFxmrjv22e0bUEJDQzVx4kSXx2nevLmGDx/u1Fgy\nYcKE0odEwKMRBAgiF08vJXn+RdP6ZtjTvJH94u5Pb2UHgpmZ6w4AcwqWurNq1Sr169fPNtWo9SJK\nx44dNXv27AK/LAHgHcFSdwoyYMAALV26VDVr1rRtMwxDy5Ytc+vLTQDuM3Ptee+997RixQrbz/Xq\n1dN//vMfr5wLgOeYue54Qr169fTkk086XYz94Ycf/JQICHxmrjsXj2v93qZnz56KiYlxa6xHHnnE\nNnuItRFt/fr1ysrK8lheBCYaQYAgUqNGDadtZ86cKfF4BR1b0Dk8wdvZIyIiCnxTAaB0zFx3AJhT\nMNSddevWqWfPnsrMzJR04cuEtm3bat68eQWueQvAe4Kh7hSladOmGjdunMOsIIZh6O233/ZzMiCw\nmbX27Nq1S6NGjXKYHn3ChAmqVKmSx88FwLPMWnc86c4777T9u7WOLV682I+JgMBm5rpT2LjdunVz\ne6zatWvriiuucGhEy83N1Zo1a0qcD8GBRhAgiFx66aVO2w4cOFDi8fbv3+/SOTzh0ksvdeq2Lmn2\n/Px8paWlOY0PwPPMXHcAmFOg152NGzeqe/fuysjIkHRhzdnWrVvrxx9/5CIK4AeBXndcceutt6px\n48YO23bt2qUdO3b4KREQ+Mxae5544gmHJWEGDx6sm266yePnAeB5Zq07ntSsWTPVqlXLYVtBjwOA\nZ5i57tSuXbvA7fHx8SUar6DjUlNTSzQWgkeYvwMA8J3Y2FinbXv37i3xePv27XNa2yw6OrrE4xUl\nNjZWK1eudNi2d+9eXXfddW6PlZqaqtzcXIe/PinodwOg9MxcdwCYUyDXnc2bN6tr1646efKkpAtN\nIPHx8Vq4cKGqVKnil1xAsAvkuuOOHj16aOfOnQ7Z161bpyZNmvgxFRC4zFp7rH+YYz3X6tWr3bog\ncvz4cadtH3/8sWbPnu2w7eqrr9aECRNKkRTAxcxadzytdu3aOnr0qC37+fPnlZGRocqVK/s5GRB4\nzFx3GjZsWOD2ks5AUtBx6enpJRoLwYNGECCIFPQF3O7du0s0Vk5OjlP35OWXX25bp8zTPJk9KSnJ\naVvTpk1LNBaAopm57gAwp0CtO3/88Ye6du2qEydOSLrQBNKiRQv9/PPPqlq1qs8zAfhLoNYddzVo\n0MBp25EjR3wfBAgSZq499hdgdu/e7fCzq6zvhQzD0JEjR5zqTbVq1UoXEoATM9cdT4qMjHTalp2d\nTSMI4AVmrjvNmjUrcHu5cuVKNF758uWdtp09e7ZEYyF4lP1XVQAeEx8fb3tRs86GkZiYqPz8fLfH\nSkxMVE5OjqQL69K3atXKo3nttW7d2mnb6tWrSzTWqlWrnLZ5MzsQzMxcdwCYUyDWnT///FNdunSx\n/aWH9cLHlVdeqUWLFql69eo+zwTggkCsOyVR0BeTFy/vCcBzzFx7DMOw3S7+2ZVbUeMVtg+A0jNz\n3fEk+9lArEr6F/4AimbmutOiRQtFREQ4bT916lSJxrPODmuP2oPi0AgCBJGKFSsqPj7e4QNxZmam\nNm7c6PZYK1ascNp2/fXXlypfUdq3b6/Q0FBJF17wV69eXaIP977ODgQzM9cdAOYUaHVn27ZtuvHG\nG3Xs2DFJFy6qNm/eXIsWLeJDP1AGBFrdKamCZv/w1nrbAMxdeywWS6luro4HwLPMXHc8JSsrS/v2\n7XPYVrVqVdv31gA8y8x1JyIiQu3atXO6hpWcnFyi8VJSUpy21apVq0RjIXjQCAIEme7duzttmzVr\nltvjFHRMQWN7SlRUlNOLZkZGhhYuXOjWOCdOnNAvv/zi8IVAdHQ061YDXmTWugPAvAKl7uzcuVNd\nunSxXVy1vg9q1qyZlixZwgd+oAwJlLpTGmvWrHHaVqdOHT8kAYKHGWvPxo0blZeXV+LblClTJF1Y\nXsZisejFF1902m/x4sVeyQ8EOzPWHU9atGiRzp8/L+nCjAItWrTwcyogsJm57tx8881O2wqasb44\nhmFozZo1To2u8fHxJc6G4EAjCBBkbr/9dtu/W2fW+PTTT5Wbm+vyGBs3btS6detsx0tS27ZtFRMT\n4/G89uyzW40fP96tMaZOnWpbN836Zv3OO+/0SD4ABTNz3QFgToFQd3bv3q0bbrhBhw8flnShCaRJ\nkyZasmSJLrnkEp/kAOCaQKg7pXH48GGnhvsKFSro2muv9WMqIPAFe+0B4HvBXnfeeOMNp209evTw\nQxIgeJi57txxxx1OS9vMmDHD7aVt5s2bp+PHjztsa9iwoaKjoz2WFYGJRhAgyMTFxalDhw4OM2sc\nPXpU7777rstjjBw50uFni8Wif/zjHx7LWJjBgwercuXKtnMahqG5c+cW+JdnBTlx4oTeeusthy8n\nQ0NDNXToUK/kBfAXM9cdAOZk9rqTnJyshIQEHTp0SNKFJpBGjRppyZIlLLUAlEFmrzul9dRTTzk1\n3Hft2lXly5f3czIgsAV77QHge8Fcd8aNG6fVq1c7fLccEhKiW265xY+pgMBn5rpTr1499evXzyH7\nwYMHNWHCBJfHyMvL09ixY20/Wz9v3XrrrR7NigBlAAg6P/30k2GxWIyQkBAjJCTEsFgsRoUKFYyN\nGzcWe+wHH3zgdGyjRo2M3Nxcl87dqVMnw2KxONymTZvmcvaRI0fazm89vmnTpsaJEyeKPC4/P9+4\n9dZbHY4NCQkx7r33XpfPDaDkzFx3ipOSkuJUW2644QaPjQ+gZMxad/bt22c0aNDAdm7rrVGjRsbB\ngwddGgOAf5ix7nzxxRfG119/7dI5CpKfn2889dRTTtlDQ0ONtWvXlnhcAK4zY+0pjalTpzp9/hoz\nZoxXzwnAkRnrzsKFC40ff/zRpXMUZMqUKUZYWJhD7pCQEGPo0KElHhOA68xYd6y2bNniVD8qV65s\nJCYmunR8QZ+3KlWqZBw7dszlDAhezAgCBKFu3bqpb9++ti5Ei8Wis2fPqnPnzpo3b16Bx+Tm5mrs\n2LEaNmyYrevZ+P/Ow/fff1+hoaEundtisTjd3PH888+rXr16tnNL0o4dO3Tttddqx44dBR5z8uRJ\n3XLLLZo1a5bD+apUqaLXX3/drfMDKBkz153iGHYd3QDKDjPWnbS0NCUkJGjfvn22bYZhqEGDBlqy\nZInq1Knj0jgA/MOMdWfXrl267bbbdOWVV+qtt95yqD9FMQxDP//8s6655hq9++67TtnvvfdeXXPN\nNS6NBaB0zFh7AJibGevO1q1b1aNHD7Vu3VoffPCBUlNTXTpu27ZtGjRokIYMGeK0lEPNmjX18ssv\nuzQOgNIxY92xuvLKK/XEE084ZD9z5owSEhI0ffr0Qo87fvy47r333gI/b40aNUo1atRwKweCU5i/\nAwDwj4kTJ2r9+vU6cOCApL9efDIyMtSnTx+1adNGffv2VWxsrLKzs7Vr1y598cUXOnjwoNMLzuOP\nP67u3bu7dW7rsfbNHK6KjIzU9OnTlZCQoNzcXNvx27dvV1xcnHr37q2OHTuqbt26OnbsmDZv3qwZ\nM2YoMzPTKfuUKVN02WWXuXV+ACVn1rqTlpamHj16FHrc+fPnnbatW7dO8fHxhY5Zp04dzZ8/360c\nANxntrrz4osvKikpyen8ubm56t27t1vnv9gjjzyiBx98sFRjACie2eqO1datWzVixAiNGDFCf/vb\n39SqVStdccUVqlmzpqpWraqwsDBlZGTo8OHD2rx5s1asWKGDBw/aHqP9+RMSEjRu3Di3zg+gdMxa\newCYl1nrzqZNm/TEE0/oySefVLNmzdSiRQvFxcWpZs2aioqKksVi0fHjx7V7924tX75ciYmJDuex\nXsiNjIzU/PnzVbt2bbfOD6DkzFp3JOn111/XqlWrtGbNGlv2M2fOaPDgwXr11VfVt29fNW7cWJGR\nkTp69KhWr16tuXPn6vTp0075+/Xrp2effdbtDAhONIIAQapmzZpauHChunTpokOHDjl0IyYmJiox\nMdFhf2uno/1+gwYNcmsdNk/p0KGDpk+frrvuuku5ubkOL8Lff/+9vv/++yKzh4SE6L///S/rNwI+\nZta6c/78eW3ZsqXIN/nW+6z/zMrK0pYtWwrc1zAMnTp1yvNBATgxW93JyclxyiNJ+/fvt33R4S7r\n+6RDhw6VOh+A4pmt7ljZf6GZlJSk3bt366uvvip0f/vc9tlvueUWff755ypXrpxPcgP4i1lrDwDz\nMnPdsb7n2bZtm7Zu3Vrsvhfnrl+/vr744gu1adPG61kBXGDmuhMeHq758+frpptu0vr16x0ybd++\nXdu2bXM6pqD8ffv21WeffebT7DA3loYBgljTpk3122+/qUOHDk4vKtKFN8WSbF/wWSwWRURE6KWX\nXtL06dNL/NcepV1KYeDAgVq8eLHq16/v9AVkUdlr1qypb7/9Vo8++mipzg+gZMxcd6x5SnsD4Ftm\nrDsF1Q1qDmAeZqo7kZGRDtMbF1Q7Cpr+2D639YLIV199pVmzZql8+fIlyg6gdMxUezyB9zmA/5mt\n7hSU5+L7i3rPEx4ernvuuUebN2/WddddV6LcAErHbHXHXrVq1bRs2TI98MADCgkJKbCxvrD8FStW\n1NixY/Xtt9+qYsWKpcqB4EIjCBDk6tatq6VLl2rmzJm69tprbS9A9n/dbr1VrlxZ999/v7Zs2aIX\nXnihxOe0H7M0OnTooO3bt+vNN99Uo0aNnMa1/7levXoaPXq0du3apT59+pTqvABKx4x1x/54T90A\n+I6Z6g71BggMZqk7zzzzjPbs2aNx48bp1ltvVUxMTKE15OLtl156qQYOHKi5c+cqJSVFAwYMKHF2\nAJ5hltpTWrzPAcoOs9SdoUOHas6cOXrqqafUvn17VapUyaX3PKGhobrqqqv0wgsvKCUlRVOmTFFU\nVFSJswMoPbPUnYKUL19en3zyiRITE3XXXXc5NeZffK7Y2FjbZ7bnnnuuVOdGcLIYtE8DsHPs2DH9\n9ttv2rNnj06fPq2wsDDVrFlTzZo109VXX62wsLK7otTu3bu1adMm7d+/X1lZWSpfvrzq1Kmjq666\nSnFxcf6OB6AQZq47AMyJugPA18xUd44fP67du3crJSVFR48eVWZmpnJzc1WlShVFRUWpZs2aatGi\nherUqePvqACKYabaAyAwmKnuJCcna+/evdq/f79OnDihrKwsSVJUVJSqVaumOnXqqE2bNvz1PVDG\nmanuXCw3N1fr1q3T9u3bdezYMeXl5al69eqqVauWWrRooYYNG/o7IkyORhAAAAAAAAAAAAAAAIAA\nwdIwAAAAAAAAAAAAAAAAAYJGEAAAAAAAAAAAAAAAgABBIwgAAAAAAAAAAAAAAECAoBEEAAAAAAAA\nAAAAAAAgQNAIAgAAAAAAAAAAAAAAECBoBAEAAAAAAAAAAAAAAAgQNIIAAAAAAAAAAAAAAAAECBpB\nAAAAAAAAAAAAAAAAAgSNIAAAAAAAAAAAAAAAAAGCRhAAAAAAAAAAAAAAAIAAQSMIAAAAAAAAAAAA\nAABAgKARBAAAAAAAAAAAAAAAIEDQCAIAAAAAAAAAAAAAABAgaAQBAAAAAAAAAAAAAAAIEDSCAAAA\nAAAAAAAAAAAABAgaQQAAAAAAAAAAAAAAAAIEjSAAAAAAAAAAAAAAAAABgkYQAAAAAAAAAAAAAACA\nAEEjCAAAAAAAAAAAAAAAQICgEQQAAAAAAAAAAAAAACBA0AgCAAAAAAAAAAAAAAAQIGgEAQAAAAAA\nAAAAAAAACBA0ggAAAAAAAAAAAAAAAAQIGkEAAAAAAAAAAAAAAAACBI0gAAAAAAAAAAAAAAAAAYJG\nEAAAAAAAAAAAAAAAgABBIwgAAAAAAAAAAAAAAECAoBEEAAAAAAAAAAAAAAAgQNAIAgAAAAAAAAAA\nAAAAECBoBAEAAAAAAIDb9u7dq5CQEJdv+/bt83dkAAAAAACCQpi/AwAAAAAAAMC8LBZLkfcbhlHs\nPgAAAAAAwHNoBAEAAAAAAECpGIZR4HYaQAAAAAAA8D2WhgEAAAAAAAAAAAAAAAgQNIIAAAAAAAAA\nAAAAAAAECBpBAAAAAAAAAAAAAAAAAgSNIAAAAAAAAAAAAAAAAAGCRhAAAAAAAAAAAAAAAIAAQSMI\nAAAAAAAAAAAAAABAgKARBAAAAAAAAAAAAAAAIEDQCAIAAAAAAAAAAAAAABAgwvwdAAAAAAAAAOZm\nsVj8HQEAAAAAAPw/GkEAAAAAAABQYoZh+DsCAAAAAACwQyMIAAAAAAAASsTVmUCYMQQAAAAAAN+x\nGPzZBgAAAAAAAAAAAAAAQEAI8XcAAAAAAAAAAAAAAAAAeAaNIAAAAAAAAAAAAAAAAAGCRhAAAAAA\nAAAAAAAAAIAAQSMIAAAAAAAAAAAAAABAgKARBAAAAAAAAAAAAAAAIEDQCAIAAAAAAAAAAAAAABAg\naAQBAAAAAAAAAAAAAAAIEDSCAAAAAAAAAAAAAAAABAgaQQAAAAAAAAAAAAAAAAIEjSAAAAAAAAAA\nAAAAAAABIszfAQAAAAAAAIKBYRj6888/tWXLFu3YsUO7du1SWlqajhw5ovT0dJ09e1bnzp1TTk6O\nypUrp4oVKzrcKleurHr16qlBgwaKiYlRgwYNbLfw8HB/PzwEoH379mn16tXasWOHkpOTtWfPHqWl\npSkzM1NZWVnKzMxUSEiIIiMjFRkZqWrVqik2NlYNGzZUkyZN1L59e1155ZWyWCz+figAAAAAEFQs\nhmEY/g4BAAAAAAAQiFJTU/X9999r3rx5WrVqlU6dOuW0jysXyYv6+iYiIkLx8fFq166d7RYTE1Oq\n3GVZSkqKJk+e7O8YHjd8+HBVqVLFrxkyMzM1d+5cfffdd1q5cqUOHjzotE9Rz9eCnqdRUVG6/vrr\nNWjQIPXt21eRkZEezQwAAAAAcEYjCAAAAAAAgAfl5+drzpw5+uijj7R48WLbxXFvzopw8dc7devW\n1S233KJbb71VHTp08Mq59+7dq9jYWJf3T0lJUXR0dKnPu3TpUt1www2lHqcssVgsSk5O9sjvpySW\nLVumDz/8UPPnz1d2drYtk6dYn58VK1bUbbfdpmeffVZNmjTx2PgAAAAAAEch/g4AAAAAAAAQKGbP\nnq0rrrhC/fv316JFiyT9dUHdelHdMAyP3+zPYb2lpqbqww8/VKdOnVSvXj0NGzZM+/fv98pjvvjc\nF9+s+/j6vGa5+dOcOXPUvn17de7cWbNmzdLZs2c9/nyVLvy3ys7Ony1/ZgAAIABJREFU1tSpUxUX\nF6dBgwYpOTnZnw8fAAAAAAIWjSAAAAAAAACllJqaqu7du2vAgAHasWNHoRfTvaG4i+9paWkaN26c\nVq9e7ZXzF5bBF5PQeqOxxpc3f9m+fbsSEhLUr18/rV271qvP14Kel4Zh6Ouvv9aVV16pN998U3l5\neR45FwAAAADgLzSCAAAAAAAAlMKiRYt05ZVXauHChT5r/iiOvxsNUDbl5+frpZdeUsuWLfXrr7/a\nGkB89Xy9uCEkOztbzz77rDp27KhDhw559dwAAAAAEExoBAEAAAAAACihadOmqWfPnjp58qTDBXVX\nmXE5EZjTsWPH1LVrV7388svKycnx6vO1OBc3hKxZs0atW7fWmjVrSvz4AAAAAAAX0AgCAAAAAABQ\nAt98842GDBliW9bClQvqhV0wd3cpEZpD4I6NGzcqPj5ev/zyi8OsNcUp6DnmynPU1eel/f5paWnq\n0qWLfvnll9I8VAAAAACAaAQBAAAAAABw2+bNmzV48GDbheziLqoXdyHd1ZkWPHHxPZCUdEYVX9zK\ninXr1qlLly5KTU11eRaQop6vxT3mwp6Xhbl4qZg+ffrQDAIAAAAApRTm7wAAAAAAAABmcv78ed11\n1106f/68JNeaQOz3s78oHhERodjYWEVHR6tWrVqqVq2aypcvr4iICOXl5encuXPKzs5Wenq6jhw5\norS0NKWkpCg3N9fhHAXNFhLo3FnSJFitWbNG3bt3V0ZGhiT3n6v22ySpfv36atiwoerXr6+oqChV\nrFhRFotFmZmZOnbsmJKSkrR161ZlZWU5jHNxo8jF7BtMMjMz1a9fP61du1ZNmzYtxaMHAAAAgOBF\nIwgAAAAAAIAb3n//fW3dutU2u0JR7PexWCwqX768unbtqh49eqhjx45q2rSpQkLcm7A1Ly9PycnJ\n2rx5sxITE7V27VqtXr26wMaUQG0IMcPj8nejSlJSknr16lWiJhDrv9euXVt9+vRRr1691K5dO1Wv\nXr3Y8+bl5WnDhg367rvvNGPGDO3du9epIaS4ZpAzZ86oX79+WrdunSpXruzW4wYAAAAASBbD359K\nAQAAAAAATCIzM1MxMTE6ceKEpKIvrlsveFssFtWoUUPPPvushg4dqqioKI/nOnv2rJYuXaq5c+fq\nm2++0ZEjRxzyWSwWzZgxQ7fddpvHzrl3717FxsYW2RBj/ztITk5WdHS0x85fVh09elTt27dXcnKy\nJNefI578/WRkZKhdu3bavn27Sxns97FYLLruuuv01FNPqU+fPm43KtkzDENffvmlXnrpJe3evduh\nycSV58wtt9yiWbNmlfj8AAAAABCsSv5JDgAAAAAAIMjMmDFDx48fl+T6Bf7bb79du3bt0tNPP+2V\nJhBJKl++vG666SZ9+OGHSk1N1c8//6xbb71VERERppg9I1BkZ2fr5ptv1p49eyS51oAhSU2bNtUl\nl1zisRx///vftW3btmIzWFmfqzExMfruu++0bNky9evXr1RNINJfj/GOO+7Q77//rpEjRyo0NLTA\nJZIKymIYhmbPnq1vvvmmVBkAAAAAIBjRCAIAAAAAAOCi//3vf8XuY98E8q9//UtffPGF1xpACjt/\nQkKCvvzyS+3fv1/PP/+8qlat6rPzB6v8/HzdfvvtSkxMLHbZIPtZMWrXrq0ffvhB5cuX90iO//3v\nf5ozZ45bSxdZLBYNHjxYv//+u3r37u2RHPYiIiL0yiuvaO7cuYqKinKpOcWabdiwYTp16pTHMwEA\nAABAIGNpGAAAAAAAABdkZGSoevXqys/Pl1TwTAtldVmLM2fOKCMjQ7Vr1/bYmCwN4+ixxx7TRx99\n5FYTSGRkpJYtW6b4+HiPZDh8+LDi4uKKXbrIPkNISIhee+01jRgxwiMZirNu3Tp169ZNp06dcvm5\n8+yzz+q1117zST4AAAAACATMCAIAAAAAAOCClStXKi8vT1LhTSBWERER+uCDD3yWrTiVKlXyaBMI\nHL355ptuN4GEhYVp5syZHmsCkaSnnnrKpaWLrPdbLBa99957PmsCkaSrr75ac+fOVXh4uKTCl4ix\n3mcYhsaNG2d7XAAAAACA4tEIAgAAAAAA4II///yz2H2sF9f79+9P40WQmDlzpv71r38V2dBgz/oc\n+eCDD9SzZ0+P5fjjjz80c+bMYnPYz7QxcuRIPfbYYx7L4KoOHTro3XffLbJZxf6+M2fO6J133vFF\nNAAAAAAICDSCAAAAAAAAuGD37t0u79u9e3cvJkFZsXz5ct177722n4ubDcR+qZOHHnrIo1leeOGF\nIpctss8gSV26dNHYsWM9msEd//jHP5SQkGD7nRTGmnny5Mm2GXkAAAAAAEWjEQQAAAAAAMAFR48e\ndXnfuLg4LyZBWbB9+3bdcsstOn/+vCTXm0DuuOMOvfbaax7NsnXrVn3//fdFLk1j32wRGRmpKVOm\nuDyLibeMGzdOoaGhkgpeIsb+sRw5ckTz5s3zWTYAAAAAMDMaQQAAAAAAAFxw5swZl/etWrWqF5PA\n3w4fPqyePXvqxIkTklxvAunUqZM+/fRTj+cZP368S/tZc4waNUr16tXzeA53NWnSRHfddVeRvz97\nU6dO9W4gAAAAAAgQNIIAAAAAAAC4IDc31+V9MzIyvJgE/pSVlaVevXopJSVFUvFNIFbNmzfX7Nmz\nFR4e7tE8586d0+eff17s8ipWNWrU0OOPP+7RDKXxxBNPFLuPtZlm0aJFysnJ8UEqAAAAADA3GkEA\nAAAAAABcUKFCBZf33bdvnxeTwF/y8/M1aNAgrV+/vshlWKQLzReGYahOnTpasGCBoqKiPJ7pu+++\nc2lmEutsII899pgqVqzo8RwlFR8fr5YtW9ryXcz+MWVlZWn58uW+jAcAAAAApkQjCAAAAAAAgAtq\n1Kjh8r7z58/3YhL4y2OPPab58+e71QRSqVIlzZs3T/Xr1/dKprlz5xZ5v31zhcVi0b333uuVHKXR\nu3dvl/dduHChF5MAAAAAQGCgEQQAAAAAAMAF0dHRxe5jbRD4+uuvdezYMR+kgq+88cYb+uSTT9xq\nAgkLC9PXX3+tli1beiWTYRj66aefilwWxrqfxWLRtdde69Lz2Nduuukml/ddu3atF5MAAAAAQGCg\nEQQAAAAAAMAFcXFxRd5v3xxw8uRJ/eMf//B2JPjIl19+qeeee67Yhgsra+PFxx9/7FaTg7t+++03\npaen285ZnB49engtS2nEx8crNDRUkgr9HVsbcDZv3uzLaAAAAABgSjSCAAAAAAAAuKBdu3bF7mNt\nADAMQ998843uv/9+5efn+yAdvGXp0qUOy6kUNxuI9Tnw3HPPaciQIV7Ntnz5crf279q1q5eSlE6F\nChXUuHHjQu+3/52fOnVKe/fu9UUsAAAAADAtGkEAAAAAAABcEBMTo+bNm0sqfNYC6UIziCRNnTpV\n7du3ZzkLk9q2bZv69++vnJwcSa43gQwePFhjx471er6NGzcWeb/98zQ8PFwtWrTwdqQSi4mJcWlW\nE0nasWOHl9MAAAAAgLnRCAIAAAAAAOCiO+64w6WL1YZh2JoC1q1bp/bt26tr166aM2eOcnNzfZAU\npXX48GH17NlTJ0+elOR6E0hCQoImT57sk4wbNmwodrkaa+7mzZsrPDzcF7FKpG7dui7ve/DgQS8m\nAQAAAADzoxEEAAAAAADARQ8++KDKlSsnqehZQayszQEWi0WLFy9Wv379VKdOHT388MP66aefdO7c\nOW9HRglkZWXp5ptvti1BUlwTiNUVV1yhb775RmFhYV7PmJ2drV27drm0r8Vi0eWXX+7lRKVTpUoV\nl/elEQQAAAAAikYjCAAAAAAAgItq1aqlJ5980tYY4GoziH1DSHp6uiZMmKAePXqoRo0a6tmzp95+\n+20lJiYqLy/P2w8BxcjPz9dtt91mm23DlSYQwzBUt25dLViwwK2GhtLYt2+f8vPzbecvTnR0tLcj\nlUqFChVc3jc1NdWLSQAAAADA/CyGq4tvAgAAAAAAQJmZmWrZsqWSkpIcGgFcdXHziP2xFStW1DXX\nXKNrr71W7du3V7t27VSjRg3PBPewvXv3KjY2tshmCfslU5KTk8t8M4IkPfzww5owYYJbTSCVK1fW\n8uXLddVVV/kqphYvXqyuXbsWmzNQ2D+X7rzzTn322Wf+jgQAAAAAZZb356kEAAAAAAAIIJGRkZo5\nc6auv/56ZWVl2Wb6cPVivP1+1mOtsrOz9euvv+rXX3+1bWvSpIk6dOigjh07qkuXLqpbt67HHgsc\nvf766243gYSHh2vWrFk+bQKRpAMHDri1vyuz1/ibq/8PZWdnezkJAAAAAJgbjSAAAAAAAABuatWq\nlWbNmqX+/fvr7NmzklSi2UEu3vfixhBJ2rlzp3bs2KHJkydLkuLi4tS9e3cNHDhQbdu2Lc3DgJ3p\n06dr1KhRLjdMWGenGD9+vLp27erldM7S0tLc2j+QZg2hEQQAAAAAihbi7wAAAAAAAABm1L17d/38\n88+qWbOmwwwSBTVzuMowDKeb/ZgWi0Vbt27V22+/rfbt2ysmJkbPPfeckpKSPPa4gtGvv/6q+++/\n3/ZzcbOBWJtARo8erXvvvdcHCZ2dOXPGL+ctC6zNVwAAAACAgtEIAgAAAAAAUELXXXedNm/erC5d\nutgaBKw3++aN0iiqMeTAgQP697//rcaNG6t79+4OS8rANVu3blX//v2Vk5MjyfUmkHvuuUcvvvii\nr2I6CeZZMQJpdhMAAAAA8AYaQQAAAAAAAEqhdu3aWrhwoaZPn66YmBiHJWIKmtGjtApqCpGkhQsX\nKiEhQZ07d1ZiYmKpzxMM0tLS1LNnT506dUqS600gN954oyZOnOirmAViVgwAAAAAQGFoBAEAAAAA\nAPCAQYMGadeuXZowYYKaNWtma/y4eEYP+6aQ0jaHFNRssmzZMrVt21aPPvqosrKyPPXwAk5mZqZ6\n9eqlffv2SSq+CcTqqquu0qxZsxQaGur1jEU5d+6cW/sX9Lwz0836GAAAAAAAxaMRBAAAAAAAwEPC\nwsI0ZMgQ/fnnn1qyZInuueceVa1a1eFidlFLvZS0MeTiRhNJ+vjjj9WqVSvt3LnTcw8wQOTl5enW\nW2/Vxo0bbc06hbH/71a/fn0tWLBAlStX9lXUQoWHh7u1/8XPOzPfAAAAAABFoxEEAAAAAADACzp1\n6qQpU6boyJEj+uGHHzRs2DCHmUIKmzFEKl1jiP0YO3fuVLt27bRu3TqPPz4ze+SRR/Tjjz+61QQS\nFRWlBQsWqHbt2r6KWaSKFSu6tb+/Z/TwxgwhAAAAAICChfk7AAAAAAAAQCALCwtTt27d1K1bN0nS\n8ePHtXLlSi1fvlzLly/Xhg0blJuba9v/4saEiy98uzIjgv0SNCdPnlSPHj20cuVKNWnSxEOPyrxe\nffVVTZo0ya0mkIiICH3zzTeKi4vzVcxiVahQodh9rI/RYrHo+eef18svv+yDZAAAAAAAf6MRBAAA\nAAAAwIeqV6+u3r17q3fv3pKk7OxsrV69WitWrNCqVau0du1anT592ra/fbPCxUvMFMW+GeTEiRMa\nMGCA1q1b51IDQaD64osv9MILLxTbBGJl/R1OnDhRCQkJPkjoukqVKrm1/9mzZ72UBAAAAABQ1tAI\nAgAAAAAA4EcVKlRQQkKCrdHAMAytX79ev/zyi3766SetWLFCOTk5tvsk1xtCrI0MhmFo27ZtGjNm\njP797397+RGVTb/88ouGDBni0rIi9jNpjBkzRn//+999kNA9devWdWv/rKwsLyUBAAAAAJQ1If4O\nAAAAAAAAgAssFovatGmj4cOHa9GiRUpPT9eMGTM0YMAAlS9f3takYN8U4sqYhmHovffe0/79+739\nEMqcP//8U/3793dqqCmIfRPI/fffr1GjRvkqpluio6Pd2v/w4cNeSgIAAAAAKGtoBAEAAAAAACjD\nIiMjddttt+mrr75Samqq3nrrLUVHRzssb1JUM4h900NOTo7ee+89r2cuS9LS0tSzZ0/bcjuuNoHc\ndNNNGj9+vK9ius3dRpADBw54KQkAAAAAoKyhEQQAAAAAAMAkqlatqn/+85/atWuX3njjDVWoUKHI\nxgZ71iaHzz//3OVjzC4zM1M333yzbRaU4ppArFq2bKmvv/5aISFl96uz+vXrKyIiQlLRjUDW/+7J\nycm+igYAAAAA8LOy+2kWAAAAAAAABQoPD9czzzyjX3/9VVWqVJHk+qwgx44d0/Lly72e0d/y8vI0\ncOBAbdq0yWH2lIJYf3eGYSg6Olrz589XZGSkr6KWSFhYmFq0aFHk47K/7+jRo0pNTfVFNAAAAACA\nn9EIAgAAAAAAYFJXX3215s+fb2tkKKoZxF4wNII8/PDD+umnn9xqAqlatap++OEHXXbZZb6KWSrX\nXHONW/snJiZ6KQkAAAAAoCyhEQQAAAAAAMDErrvuOj3wwANuLfeyfv16Lybyv7Fjx2ry5MluNYFE\nRERo9uzZatasma9illrbtm3d2n/RokVeSgIAAAAAKEtoBAEAAAAAADC5ESNGuLyvYRhKTk72Yhr/\n+uyzz/Tiiy8W2wRiZRiGLBaLJk+erE6dOvkgoefceOONLs0GY/1dzJkzx1fRAAAAAAB+RCMIAAAA\nAACAycXGxiouLk5S8Q0BkpSamuqTXL62ZMkSDR061KUlcqzNERaLRa+88oruuusuHyT0rMsuu0zX\nXHNNkQ0v9vft379fq1at8kU0AAAAAIAf0QgCAAAAAAAQAFq0aOHy8jBnzpzxchrf++OPPzRgwADl\n5uZKUrFLwlibQB544AGNHDnSVzE97pZbbnFr/3HjxnkpCQAAAACgrKARBAAAAAAAIABceumlLu+b\nk5PjxSS+l5qaqp49e+r06dOSXG8C6dGjhz766CNfxfSKQYMGKSTkr6/4XFke5ptvvgnopYEAAAAA\nADSCAAAAAAAABITy5cu7vG+lSpW8mMS3zpw5o549e+rgwYOSim8CsWrVqpW++uorWxOFWcXExKhX\nr14uLw+Tk5OjESNG+CIaAAAAAMBPzP1JFwAAAAAAAJKkI0eOuLxvVFSUF5P4Tl5engYMGKAtW7ZI\ncq0JxDAMNWjQQPPmzVPFihV9ktPbhg0bVuw+1llQDMPQt99+qwULFvggGQAAAADAH2gEAQAAAAAA\nCAAbNmwodh9rM8Dll1/ug0Te9+CDD+rnn3+2NTgUxr4JpFq1alqwYIFbS+mUdQkJCWrVqpXtv29R\nrL+r++67T4cOHfJRQgAAAACAL9EIAgAAAAAAYHLJycnauHFjsQ0RVs2aNfNBKu8aM2aMPv30U7ea\nQMqVK6fvvvtOTZs29VVMn3n77beL3cf+93Ts2DHdfPPNysjI8GYsAAAAAIAf0AgCAAAAAABQjFWr\nVmno0KFKSkryd5QCvf76627tf/3113spiW9MmzZNY8aMcasJJCQkRFOnTlXHjh19FdOnOnXqpL59\n+xY7K4j9EjGbNm1Sz549dfLkSR8mdd/p06f12muvKS0tzd9RAAAAAMAUaAQBAAAAAAAoRk5OjqZM\nmaKmTZvq7rvv1ubNm/0dyeann37S5MmTi7z4b39faGiounXr5otoXrFo0SI9+OCDxS6BYmVtfHjt\ntdc0aNAgL6fzr3fffVeVK1eWJJeaQSRp5cqVat++fZlscjp69KhGjx6tmJgYvfDCC8rOzvZ3JAAA\nAAAwBRpBAAAAAAAAXJSfn6/PP/9c8fHxuv766/X1118rNzfXb3mWL1/u0NxQ1OwY1ov/N998s6Ki\nonwRz+N+//13DRw40PY7L242EOtjfuihhzRixAhfxfSbBg0a6IMPPrD9XoprBrHus2PHDrVq1UoT\nJ070Sc7irF27VoMHD1b9+vX1yiuv6NSpU/6OBAAAAACmQiMIAAAAAACAGywWiywWi1asWKFBgwap\ndu3aevzxx/Xbb7/5LENeXp7ee+89devWTRkZGZKKboqw9/jjj3szmlc988wzOn36tCTXm0Buvvlm\njRs3zlcR/e7uu+/W7bff7nIziPX3dObMGT300EPq2LGjVqxY4au4NikpKXr11VcVFxen9u3ba/r0\n6crJyXF55hcAAAAAwAVh/g4AAAAAAABgJhdfYD9+/LjGjRuncePGKTo6Wr169VLv3r3VqVMnlS9f\n3qPnts5I8sorr2j37t22DK40RUhS586dlZCQ4NFMvnT+/Pli97FvHAgJCVGjRo00evRob8byiOHD\nh6tKlSoeGWvSpEnavXu3EhMTbY1LrswWY7FYtHLlSl1//fXq1KmTHnroIfXv318REREeyWUvPz9f\na9eu1YIFC7RgwQJt3LhR0oVGKwAAAABAyVkMV/9cBAAAAAAAIEgtXbpUN9xwQ4EX1C++aG29Pzw8\nXK1bt1aHDh3Upk0bxcXFqXHjxgoPD3fr3AcPHtTq1as1d+5cLViwQOnp6Q7nLK4JxLpPeHi4NmzY\noLi4OLfOX5i9e/+vvft7zfn9Azj+uv24t7Ihw2q0mINJHCAiLU0cbOVIpJRDOVDO/AdSzpxMDsSh\ns1GI4sDK0JDVZKxwMyG/DmzGhn2Ptu9tNrv32WZcHo+6T9z3/b6u+961A+/rufc7F0uXLv1lZJB/\nZY4nT55EZWXluMasra2Na9eujRo2/G0m6vvJ9/bt29i0aVN0dHQUFAzlzyX/taWlpbF169aoq6uL\n9evXx4oVK2LGjLH9bVlvb290dHREe3t73L17N27cuBEtLS3R3d3907hD55m/hjo6OqKqqmpMYwMA\nAPyLXBEEAAAAYByGbloPbGh//fo1bt68GTdv3hx8fsaMGbF48eJYtGhRVFRUxLx586K4uDiKi4uj\nv78/uru7o6urK7q6uuLJkyfx6NGj6OrqGvb4hYYQA5voR48enbAI5G/xN1xZYrKClvnz58fly5dj\ny5YtkcvlBtfBaGMOveJNV1dXNDY2RmNjY0REZLPZqKqqGlzHpaWlUVxcHNlsNr58+RKfP3+Onp6e\nePPmTbx+/TpevXoVnZ2d8f379x/GGXrlj5TCHgAAgKkmBAEAAACYICNFIQO+ffsWuVwunj59WtDx\nhjvGWK/qkMlkYs+ePXHw4MGCxkzJnx4XTHaosmTJkrhx40bU1dVFa2vrD7eAGe27yQ9C8ufZ19cX\nDx8+jPb29oLmMPDe4T7rn/7zAQAA+FtNm+oJAAAAAKSov7//p8eAgc310R7DHWc0QyOQHTt2xOnT\npyflM/LnKy8vj6ampti2bdtgAJIfhIxmItbwcMcRgQAAAEweIQgAAADAGBS6gT6c4TbDR3uMdV75\nG/0HDhyIM2fOxLRpTgH9y0pKSuLSpUtx5MiRyGazP1wRZKzr+b+s4bFGH8OFJAAAABTOWQAAAACA\nAuVvbI905YPfKX/8/HnNnj07Tp06FceOHROBMOjQoUPR3NwcK1eu/GHNRExtfDH0d2loQJLJZKK0\ntDSKi4t/+9wAAAD+Rs4EAAAAAIyirKwsKioqRrxlS8Twt8qYaL+6dczA8/X19dHW1hZ79+6d8PEL\nndfvCAoKvTXJn/yYCmvWrIl79+7F8ePHo7y8fMTwYjLnONotkPJfs3bt2jhx4kS8ePEiKioqJmU+\nAAAAqZkx1RMAAAAA+NOtXLkyOjs749atW3H27Nm4cOFC3L9/f/D54W59MVkb6UPHGhhj48aNcfjw\n4di8efOEjzmW+aQ6ZkoymUzs27cv9uzZEw0NDdHQ0BDPnj2LiB+/28mMQUZaxxERy5cvj927d8eu\nXbuiurp6UsYHAABIWabf/5wBAAAAxuzly5dx+fLluHr1ajQ1NUVnZ+cPz492ymW0DfZfvX/gvbNm\nzYqdO3fG/v37Y926dQXOfGLkcrmoqqoq6LWZTCYeP34clZWV4xqztrY2mpqaxnWMP9FEfT//VX9/\nf5w7dy5OnjwZV65cid7e3sF/H8l41u/Q9xcVFcWmTZuivr4+6uvrxR8AAADjJAQBAAAAmAC5XC6u\nX78et2/fjjt37kRra2t8/Phx2NcWcjpmuI32TCYT1dXVUVNTE9u3b49t27ZFNpsd99xhQHd3d1y8\neDHOnz8fzc3N8fjx459eU+jpxJFikcWLF8fq1atjw4YNUVNTE+vXr4+ZM2eOa94AAAD8nxAEAAAA\nYJJ0dnbGgwcPoqOjI3K5XDx79ixevXoV7969i/fv38fHjx+jt7c3+vr6Yvr06VFUVBRFRUUxZ86c\nWLhwYZSXl0dlZWVUV1fH8uXLY82aNTF37typ/lj8Qz58+BAtLS3R1tY2uIafP38e79+/j0+fPkVP\nT0/09PREREQ2m42ioqIoKSmJsrKyWLBgQZSXl8eSJUuiqqoqli1bFqtWrbKGAQAAJpkQBAAAAAAA\nAAAgEdOmegIAAAAAAAAAAEwMIQgAAAAAAAAAQCKEIAAAAAAAAAAAiRCCAAAAAAAAAAAkQggCAAAA\nAAAAAJAIIQgAAAAAAAAAQCKEIAAAAAAAAAAAiRCCAAAAAAAAAAAkQggCAAAAAAAAAJAIIQgAAAAA\nAAAAQCKEIAAAAAAAAAAAiRCCAAAAAAAAAAAkQggCAAAAAAAAAJAIIQgAAAAAAAAAQCKEIAAAAAAA\nAAAAiRCCAAAAAAAAAAAkQggCAAAAAAAAAJAIIQgAAAAAAAAAQCKEIAAAAAAAAAAAiRCCAAAAAAAA\nAAAkQggCAAAAAAAAAJAIIQgAAAAAAAAAQCKEIAAAAAAAAAAAiRCCAAAAAAAAAAAkQggCAAAAAAAA\nAJAIIQgAAAAAAAAAQCKEIAAAAAAAAAAAiRCCAAAAAAAAAAAkQggCAAAAAAAAAJAIIQgAAAAAAAAA\nQCKEIAAAAAAAAAAAiRCCAAAAAAAAAAAkQggCAAAAAAAAAJAIIQgAAAAAAAAAQCKEIAAAAAAAAAAA\niRCCAAAAAAAAAAAkQggCAAAAAAAAAJAIIQgAAAAAAAAAQCLzHoS+AAAAr0lEQVSEIAAAAAAAAAAA\niRCCAAAAAAAAAAAkQggCAAAAAAAAAJAIIQgAAAAAAAAAQCKEIAAAAAAAAAAAiRCCAAAAAAAAAAAk\nQggCAAAAAAAAAJAIIQgAAAAAAAAAQCKEIAAAAAAAAAAAiRCCAAAAAAAAAAAkQggCAAAAAAAAAJAI\nIQgAAAAAAAAAQCKEIAAAAAAAAAAAiRCCAAAAAAAAAAAkQggCAAAAAAAAAJCI/wEvWkVs8TVQTgAA\nAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_compression_experiments(res_smt, comp_ratios, \"figs/compression_small_traffic.png\", 4)\n", - "Image(filename=\"figs/compression_small_traffic.png\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### FSWT x GWT" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 1.37420233, 2.25282744, 2.45563924, 4.13498675, 3.74994093,\n", - " 5.76065338])" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "numpy.divide(res_smt['GWT'], res_smt['FSWT'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### SWT x GWT" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 1.19979191, 2.75735034, 3.38438616, 4.34140944, 4.56971652,\n", - " 5.93517785])" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "numpy.divide(res_smt['GWT'], res_smt['SWT'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Traffic" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "G = read_graph(traffic[\"path\"] + \"traffic.graph\", traffic[\"path\"] + \"traffic.data\")\n", - "F = read_values(traffic[\"path\"] + \"traffic.data\", G) " - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "#vertices = 1923\n", - "#edges = 2659\n" - ] - } - ], - "source": [ - "print(\"#vertices = \", G.number_of_nodes())\n", - "print(\"#edges = \", len(G.edges()))" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "algs = [OptWavelets(n=20), GRCWavelets(), Fourier()]\n", - "\n", - "comp_ratios = [0.1, 0.20, 0.30, 0.40, 0.50, 0.60]\n", - "\n", - "res_t, time_t = compression_experiment_static(G, F, algs, comp_ratios, 10)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACMMAAAadCAYAAADQ6BhSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAuIwAALiMBeKU/dgAAIABJREFUeJzs3Xl4lNX9///XZCErQZYEwRAIskgsIjERBCFBREBtXVqr\nrQvggh9rhavLp3WpWrffR6tfW7VauZAiiBtaigsiRYXIIiQhLJYdCQGSCGETspGF+f0R7zjJrElm\n5p7l+biuuYR7Zs5533MwmTnzus+xWK1WqwAAAAAAAAAAAAAAAIAQEGF2AQAAAAAAAAAAAAAAAIC3\nEIYBAAAAAAAAAAAAAABAyCAMAwAAAAAAAAAAAAAAgJBBGAYAAAAAAAAAAAAAAAAhgzAMAAAAAAAA\nAAAAAAAAQgZhGAAAAAAAAAAAAAAAAIQMwjAAAAAAAAAAAAAAAAAIGYRhAAAAAAAAAAAAAAAAEDII\nwwAAAAAAAAAAAAAAACBkEIYBAAAAAAAAAAAAAABAyCAMAwAAAAAAAAAAAAAAgJBBGAYAAAAAAAAA\nAAAAAAAhgzAMAAAAAAAAAAAAAAAAQgZhGAAAAAAAAAAAAAAAAIQMwjAAAAAAAAAAAAAAAAAIGYRh\nAAAAAAAAAAAAAAAAEDIIwwAAAAAAAAAAAAAAACBkEIYBEDZ27typBQsWaObMmRo1apTi4+MVERFh\nd5s/f77ZpQIAAAAAAAAAAAAA2inK7AIAwBf279+vgoKC5tuGDRt08uTJFo+xWCyyWCwmVQgAAAAA\nAAAAAAAA8AXCMABCzh//+Ec9++yzLY45C75Yrdbm+61WK+EYAAAAAAAAAAAAAAhyhGEAhJy6ujpJ\nchpsMQIwAAAAAAAAAAAAAIDQQxgGQEhzFnwxgjIEYwAAAAAAAAAAAAAgtBCGARCybLdAMnTq1ElD\nhw5Vdna2Kisr9cYbb7A1EgAAAAAAAAAAAACEEMIwAEKSxWJRZGSkhgwZouzsbGVlZSk7O1vDhg1T\nVFTTj7558+bpjTfeMLlSAAAAAAAAAAAAAIA3EYYBEHJuuukm3XDDDcrMzFRsbKzZ5QAAAAAAAAAA\nAAAA/IgwDICQM2LECLNLAAAAAAAAAAAAAACYJMLsAgAAAAAAAAAAAAAAAABvIQwDAAAAAAAAAAAA\nAACAkEEYBgAAAAAAAAAAAAAAACGDMAwAAAAAAAAAAAAAAABCBmEYAAAAAAAAAAAAAAAAhAzCMAAA\nAAAAAAAAAAAAAAgZhGEAAAAAAAAAAAAAAAAQMgjDAAAAAAAAAAAAAAAAIGQQhgEAAAAAAAAAAAAA\nAEDIIAwDAAAAAAAAAAAAAACAkBFldgEAgktdXZ127dqlgwcP6tSpU6qurlZ8fLw6d+6s1NRUDR48\nWNHR0WaXCQAAAAAAAAAAAAAIU4RhALi1fv16LV68WEuXLtXWrVvV2Njo9LGRkZE6//zzdeWVV+qa\na67RiBEj/FgpAAAAAAAAAAAAACDcEYYBvGzPnj0qLCxUYWGhCgoKtHHjRlVWVjp9fL9+/bR3714/\nVui5d955R88995yKioqaj1ksFlksFqfPOXPmjLZs2aItW7bo6aef1kUXXaT//d//1c9//nN/lAwA\nAAAAAAAAAAAACHOEYYAOOHDggAoKCpqDLxs2bNCJEydaPMZdeCQQ7dixQ3fffbdWrVrlsH6r1er0\nua0fv2HDBt1000169dVX9eqrr2rQoEE+qxsAAAAAAAAAAAAAAMIwgIcOHz6sgoKCFuGXioqKFo9x\nFnxpHR4xHuMqVGKWRYsWaerUqaqsrHRYpyfhntaPl6SVK1cqKytL8+fP17XXXuuDygEAAAAAAAAA\nAAAAIAwDeOyKK67Qli1bmv/uafAlmLz88suaMWOGpKbzcxRq8eT8bB9rtVqbX6vKykr99Kc/1d//\n/nfdc889PjgDAAAAAAAAAAAAAEC4izC7ACBYGIEO2xCMEfawvTl6fDCYN29ecxBGsl/dpXWwxdXN\neG7rAI1x33333acFCxb48ewAAAAAAAAAAAAAAOGCMAzQBkaoo3XwRXIclrF9TiDLz8/X9OnTm//u\nKAhj/HnUqFH6+9//rqKiIh07dkz19fU6duyYCgsL9eKLL2rEiBF24RnbNi0Wi86cOaO77rpLGzZs\n8ONZAgAAAAAAAAAAAADCAWEYoB0crYYiOV4pJtBXhjl16pRuuukmNTQ0SHIchLFYLBo8eLA+//xz\nrVq1Svfcc4+GDRumLl26KCIiQl26dNHw4cN17733au3atVq2bJkGDBjQfO6OAjF1dXW68cYbVVlZ\n6eczBgAAAAAAAAAAAACEMsIwQBu0XvHFUfDFuEVERGjQoEEaO3as3XMDycMPP6x9+/ZJch6EmTBh\ngvLz85Wbm+tRm5dffrkKCws1btw4u5VxbFfXKS4u1p///GdvnAYAAAAAAAAAAAAAAJIIwwBt4iz4\nYrFYlJ6erhtuuEHPPPOMPv/8cx0/flw7duwI6LDH9u3b9corr9gFdWy3Rho1apQWL16szp07t6nt\npKQkffjhh7r44osdrpBj9PHSSy9p586dHTsRAAAAAAAAAAAAAAC+F2V2AUAwMQIdqampysrKanHr\n2rWrydW13Z///Gc1NDS0CL/Yhla6d++ud999V7Gxse1qPz4+XgsXLtSFF16o7777rrkf23BMQ0OD\nHn/8cb355psdPyEAAAAAAAAAAAAAQNgjDAN4aMaMGerZs6eys7OVnJxsdjkdVlxcrEWLFjncvskI\nqzz11FPq3bt3h/pJS0vTY489ppkzZzpdHea9997T//3f/yktLa1DfQEAAAAAAAAAAAAAwDZJgIem\nTZumK6+8MiSCMJL097//XY2NjZLkcFWYgQMH6q677vJKX7/61a/Uv3//Fn0YfUpSY2OjXn75Za/0\nBQAAAAAAAAAAAAAIb4RhgDB05swZvfPOOy5Xhfntb3/r8P72iIyM1IwZM1oEYAzG6jBvvfWWV/oC\nAAAAAAAAAAAAAIQ3wjBAGPriiy9UXl4uyfGqMLGxsbr55pu92ueUKVPUqVOnFn3ZhmPKysq0cuVK\nr/YJAAAAAAAAAAAAAAg/hGGAMPTRRx85PG6sCnPVVVcpISHBq3126dJFkydPdrg6jLu6AAAAAAAA\nAAAAAADwFGEYIAx99tlnLrdAuuqqq3zSr6t2rVarli9f7pN+AQAAAAAAAAAAAADhgzAMEGa+/fZb\nbd++XZKcrtJy+eWX+6TvCRMm2B0zVqORpK1bt+rQoUM+6RsAAAAAAAAAAAAAEB6izC4AgH/l5+fb\nHbNdJaZPnz4655xzfNJ337591atXL3377beyWCwOwzgFBQW6+uqrO9zXggULVFJS4vIxGzdudHj8\nww8/1IEDB1w+t2/fvrrlllvaXR8AAAAAAAAAAAAAwDcIwwBhpqioyOFxY4WWzMxMn/aflZWljz76\nyOk2TRs3bvRKGGbOnDnKy8vz6LG2oRyr1apFixZp0aJFLp+Tm5tLGAYAAAAAAAAAAAAAAhDbJAFh\nZtOmTS7vv+CCC3zav7v23dXXFhaLxWc3AAAAAAAAAAAAAEBgYmUYIMzs2rXLZZhj4MCBPu1/wIAB\nTu+zWq3avXu31/pytA0TAAAAAAAAAAAAACC0EYYBwsy+fftc3u8qrOINztq3WCyyWq1u62sLX67g\nwuowAAAAAAAAAAAAABCYCMMAYeTQoUOqra1tDp440rt3b5/W4Kh9q9XaHC6pqqrSkSNH1KNHjw71\ns2LFig49HwAAAAAAAAAAAAAQnCLMLgCA/5SVlbl9zNlnn+3TGjxpv7S01Kc1AAAAAAAAAAAAAABC\nF2EYIIwcPXrU7pjtdj9JSUmKjo72aQ1xcXFKTEy069vWsWPHfFoDAAAAAAAAAAAAACB0EYYBwoij\nMIytpKQkv9Thrh93dQIAAAAAAAAAAAAA4AxhGCCMnDhxwuFxq9UqSercubNf6nDXz/Hjx/1SBwAA\nAAAAAAAAAAAg9BCGAcJITU2Ny/sTEhL8UkdiYmJzAMeR2tpav9QBAAAAAAAAAAAAAAg9hGGAMFJf\nX+/0PovFoqioKL/U4a6furo6v9QBAAAAAAAAAAAAAAg9hGGAMOIuZEIYBgAAAAAAAAAAAAAQ7AjD\nAGHkzJkzLu+PjIz0Sx3u+nFXJwAAAAAAAAAAAAAAzhCGAcKIuxVZGhoa/FKHu36io6P9UgcAAAAA\nAAAAAAAAIPT4Z08UAAGhU6dOLu/3Vximvr7e5f3hEIZpaGjQ7t27Wxzr1q2bIiLIKAIAAAAAAAAA\nAAAIbmfOnNGxY8daHBs4cKDbBRy8hTAMEEZchWGsVqvq6ur8Uoe7MIy70E4o2L17tzIyMswuAwAA\nAAAAAAAAAAD8Ytu2bRoyZIhf+mIJAiCMJCQkODxusVgkSZWVlX6p49SpU819OpKYmOiXOgAAAAAA\nAAAAAAAAoYcwDBBGunXr5vL+kydP+qUOd/24qxMAAAAAAAAAAAAAAGcIwwBhpHv37i7vP3HihF/q\n+O6771ze765OAAAAAAAAAAAAAACciTK7AAD+06NHD7tjVqu1ecui06dP6+TJk0pKSvJZDcePH1dd\nXZ0sFousVqvHdYYaR6vfbNu2LSzOHYB5qqqqlJ6eLkkqLi52un0eAHgLP3cA+Bs/dwCYgZ89APyN\nnzsA/I2fO2iPI0eOKCMjo8Uxf+4QQhgGCCNpaWluH3Po0CGfhmEOHTrk9jF9+vTxWf+BIiLCfmGu\nHj16KDk52YRqAISL+Pj45j8nJyfzgQWAz/FzB4C/8XMHgBn42QPA3/i5A8Df+LkDb3H0HanP+vJb\nTwBMl5CQ0LwFkbEaTGslJSU+rWHfvn12x2xrSUlJUVxcnE9rAAAAAAAAAAAAAACELsIwQJhJT093\nuj2RJO3evdun/e/Zs8fhcWO7JmOJNQAAAAAAAAAAAAAA2oMwDBBmzj//fJf379y506f9u2vfXX0A\nAAAAAAAAAAAAALhCGAYIM5mZmS7v37hxo0/7Lyoqcnn/8OHDfdo/AAAAAAAAAAAAACC0EYYBwoyz\nMIzFYpHVatWmTZtcbqPUEY2Njdq8ebMsFovTxxCGAQAAAAAAAAAAAAB0BGEYIMxkZWUpNjZWkppD\nKbbhl8rKSm3YsMEnfefn56u6urpFn7bBmLi4OGVlZfmkbwAAAAAAAAAAAABAeCAMA4SZmJgYjR49\n2uXqL8uXL/dJ35999pnD41arVRaLRWPGjFF0dLRP+gYAAAAAAAAAAAAAhAfCMEAYuuKKK5zeZ7Va\ntWjRIp/0+/7777u8f8KECT7pFwAAAAAAAAAAAAAQPgjDAGHopz/9qd0xY3UWSSoqKtLu3bu92ufW\nrVv19ddfy2KxONwiyWKx6Gc/+5lX+wQAAAAAAAAAAAAAhB/CMEAY6t+/v0aOHNkiANPaSy+95NU+\nX3jhBYfHjRpGjRqltLQ0r/YJAAAAAAAAAAAAAAg/hGGAMHX77bc7PG6s3DJ37lwdOnTIK32VlpZq\nwYIFToM3kjRt2jSv9AUAAAAAAAAAAAAACG+EYYAwdeuttyolJUXSD9sVGdsXSVJ1dbXuv/9+r/T1\nhz/8QbW1tS36sA3G9OzZU7fccotX+gIAAAAAAAAAAAAAhDfCMECYiomJ0cyZM1sEYKQfti2yWq2a\nP3++Pvjggw71s3DhQr399tvNbTrq6ze/+Y2io6M71A8AAAAAAAAAAAAAAJJksbb+dhqAV+Xl5Wnc\nuHEtwiC2K7H069dPe/fuNaW2mpoanXfeeTpw4IDT+pKSkrR8+XJlZ2e3uf1169bpiiuuUFVVVXN7\nrdvv16+ftm/frpiYGG+cUtCoqKhoXpnHUFxcrOTkZLvHJiQk+KssAAAAAAAAAAAAAGgT4/tgWxUV\nFUpPT29x7PDhww6/D/UFVoYBwlhcXJyef/755r+33i7JYrHo5MmTuuKKK7RkyZI2tf3BBx9o0qRJ\ndkEYg7EqzPPPPx92QRhn0tPTlZiYaHcDAAAAAAAAAAAAgEDl6DvO1kEYf4sytXcgyKxatUq7du1q\n03N27tzp8v7KykrNmTOnzbXk5ubq3HPPbfPzWvvpT3+qX/7yl3rrrbdksViaV4gxwipGIOYnP/mJ\nfvGLX+jhhx/W4MGDnba3fft2PfbYY1q4cKFduEZSc/sWi0W33HKLrr322g6fAwAAAAAAAAAAAAAA\nBrZJAtpg2rRpmjdvntllyGKxaO7cubrtttu80l5VVZWysrK0c+dOpwEW22PDhw/XqFGjmlcyOXXq\nlIqLi7VmzRpt3rzZ4XOMY8bfMzIylJ+fr/j4eK+cQ7BhmyQAAAAAAAAAAAAAoSAQt0liZRigHYyg\nh6dcZc682VZ7JSQkaNmyZRozZowOHDjQoq7Wq8RI0saNG7Vx40aHbXkSpunXr5+WLVsWtkEYZxIS\nEgi+AAAAAAAAAAAAAAgqjr7jrK6uNqGSH0SY2jsQxIyQiCc3f7TTUWlpaVqxYoUGDBjQYgWX1lsn\n2QZjHN1sa7UN0BjPGzRokL744gudc845Pj0fAAAAAAAAAAAAAEB4IgwDtJOrQIivbr7Wv39/FRQU\naOLEiS4DMJ6+Lq2fP3nyZOXn56tfv34+PxcAAAAAAAAAAAAAQHgiDAO0Q1tWc/H2zde6dOmiTz75\nRK+//rp69uxpt12SqzocPcZisahnz56aP3++Pv74YyUlJfn8HAAAAAAAAAAAAAAA4YswDNBGZqwI\n4+8VYiTp1ltv1d69e/Xyyy8rIyPDrn9nQR3bx51//vl65ZVXVFxcrJtvvtkvdQMAAAAAAAAAAAAA\nwpvF6o+lJgAEvT179ujTTz9VUVGRtm7dqtLSUp06dUrV1dWKj49X586dlZqaqoyMDGVmZmry5Mk6\n99xzzS47YFVUVCglJaXFscOHDys5OdmkigAAAAAAAAAAAADAO8z+PjTKL70ACHoDBgzQr3/9a7PL\nAAAAAAAAAAAAAADAJbZJAgAAAAAAAAAAAAAAQMggDAMAAAAAAAAAAAAAAICQQRgGAAAAAAAAAAAA\nAAAAIYMwDAAAAAAAAAAAAAAAAEIGYRgAAAAAAAAAAAAAAACEDMIwAAAAAAAAAAAAAAAACBmEYQAA\nAAAAAAAAAAAAABAyCMMAAAAAAAAAAAAAAAAgZBCGAQAAAAAAAAAAAAAAQMggDAMAAAAAAAAAAAAA\nAICQEWV2AQAABLMzZ87o6NGjZpcBAAAAAAAAAAAQkrp3766ICNb5QNsQhgEAoAOOHj2qlJQUs8sA\nAAAAAAAAAAAISYcPH1ZycrLZZSDIEIYBgABRVVWl+Ph4u+MJCQkmVAMAAAAAAAAAAAAA7lVVVXl0\nzJ8IwwBAgEhPT3d43Gq1+rkSAAAAAAAAAAAAAPBMYmKi2SXYYWMtAAAAAAAAAAAAAAAAhAxWhgGA\nAFFcXMx+hyFi27Zt6tGjh9llAAAAAAAAAAAABJUjR44oIyPD7DLQRpWVlXbHKioqnO6M4Q+EYQAg\nQCQkJCghIcHsMuAFPXr0INgEAAAAAAAAAACAsODoO87q6moTKvkB2yQBAAAAAAAAAAAAAAAgZBCG\nAQAAAAAAAAAAAAAAQMggDAMAAAAAAAAAAAAAAICQQRgGAAAAAAAAAAAAAAAAIYMwDAAAAAAAAAAA\nAAAAAEIGYRgAAAAAAAAAAAAAAACEDMIwAAAAAAAAAAAAAAAACBmEYQAAAAAAAAAAAAAAABAyCMMA\nAAAAAAAAAAAAAAAgZBCGAQAAAAAAAAAAAAAAQMggDAMAAAAAAAAAAAAAAICQQRgGAAAAAAAAAAAA\nAAAAIYMwDAAAAAAAAAAAAAAAAEIGYRgAAAAAAAAAAAAAAACEDMIwAAAAAAAAAAAAAAAACBmEYQAA\nAAAAAAAAAAAAABAyCMMAAAAAAAAAAAAAAAAgZBCGAQAAAAAAAAAAAAAAQMggDAMAAAAAAAAAAAAA\nAICQQRgGAAAAAAAAAAAAAAAAISPK7AIAAE2qqqoUHx9vdzwhIcGEagAAAAAAAAAAAADAvaqqKo+O\n+RNhGAAIEOnp6Q6PW61WP1cCAAAAAAAAAAAAAJ5JTEw0uwQ7bJMEAAAAAAAAAAAAAACAkMHKMAAQ\nIIqLi5WcnGx2GQAAAAAAAAAAAADgscrKSrtjFRUVTnfG8AfCMAAQIBISEpSQkGB2GQAAAAAAAAAA\nAADgMUffcVZXV5tQyQ/YJgkAAAAAAAAAAAAAAAAhgzAMAAAAAAAAAAAAAAAAQgZhGAAAAAAAAAAA\nAAAAAIQMwjAAAAAAAAAAAAAAAAAIGYRhAAAAAAAAAAAAAAAAEDIIwwAAAAAAAAAAAAAAACBkRJld\nAAAACFxWq1UlJSU6fPiwampqVFtbK0mKjY1VXFycUlJS1LdvX1ksFpMrhacYUwSSuro67d+/X+Xl\n5Tpy5Ihqa2t1+vRpxcTEKCEhQYmJiUpISFBKSorS0tIUGRlpdskAAAAA4JDValV1dbXZZZgqPj4+\nZOYTGM/QGs9AVldXpwMHDujgwYOqrKxUdXW1ampqJDXN18XGxqpbt27q2bOnzj77bHXu3NnkigEg\neBCGAQAAkpo+5BcXF2vDhg0qLCzUhg0bVFRUpOPHj7t8XteuXXXRRRe1uKWnp/NhOQAwpgg0Bw4c\n0LJly7RixQoVFRVpz549amxs9Oi5kZGRSk1NVXp6ugYMGKCsrCxlZWXpggsuUFQUH2sAoCMaGhq0\nePFiSdK1117Lz9UQwJgCgP9VV1crMTHR7DJMVVlZqYSEBLPL8ArGM7TGM1BUVVXpyy+/1Pr167V+\n/Xpt3rxZhw4dktVq9biN5ORknXfeeTr//PM1YsQIjRo1SgMHDvRh1QAQvCzWtvyEBQB4RUVFhVJS\nUlocO3z4sJKTk02qCO0VCmNZWlqq2bNna/bs2SorK7O7v5OkXpLiJMV+f6xWUo2kckl1Dtrs3bu3\n7rrrLk2fPl29e/f2UeVwhjENXgsXLtSpU6fMLkOSNGXKFK98cdbQ0KA333xTr732mtauXds8wdPe\ncFXrjy8xMTEaNmyYxo0bp0mTJmn06NFtrnvevHmaNm2a0/tTUlL07bfftqvetrjwwgu1ZcsWl4+5\n4YYb9O677/q0juPHj6t79+4uH7Ns2TJNmDBBp06d0sKFC31ajz/95Cc/Carf4YC3fPbZZ5owYYIk\nafny5br88stNrggdxZgGnkB9n7dr1y6tWrXK5Iq8IyIiwuV7OsDXqqqqCE+EUHiC8Qyt8TRTTU2N\nFi5cqEWLFmn58uXNqzRL3psb6dWrl6688kr9+Mc/1qRJk9SpU6cO1XzXXXdpzpw5Tu+/7rrr9K9/\n/atDfbhz8uRJdevWTWfOnHH5uBdeeEH33XefT2tZsmSJfvzjHzu9PyoqSseOHVNiYqL27NmjvLw8\nn9bjT3fccYcp/YbC9y5oYvZYEoYBABOY/cMf3hOsY2m1WrVixQq98sorWrx4cfPKDJ0kXSDpIpvb\nj74/7kidpP9K2vD9rVDS1/ohTBEZGanrrrtOv/rVr5Sbm8vKIj7EmIaG9PR0lZSUmF2GLBaLjh8/\nrqSkpA6188Ybb+ihhx7SwYMHm9ttzdOPI67+rdm20blzZ40fP14PPvigsrKyPGp737596t+/v9P6\nLBaLtm7dqvPOO8+j9trjxIkT6tGjh9vXIyUlReXl5T6rQ5I+/PBDXXvttU5fj+joaJ04cUJxcXH6\n5ptvQuYKNIvFolWrVmnUqFFmlwL43fTp0zV79uzmP8+aNcvkitBRjGngCdT3eXPmzNFdd91lclXe\nERUVpbo6R9F+wD9ahCd+L+cfvENNnaTnmv4YSuEJxjO0xtMMpaWlevHFF/Xaa681r9LsbG6jLV/V\numuja9euuvHGG3XnnXcqMzOzjVU3WbBggW677TanfXXv3l2HDx9uV9ue+uSTT3T11Ve7nXu87rrr\n9P777/u0lj/84Q967rnnnNaSlZWl9evXS3J/wVUwsVgsHq/o7G3B+r0L7Jk9lhF+6QUAAAQEq9Wq\nt956SxkZGRo/frz+9a9/qbGxUWMlvS3ppKQCSa9KuktSplx/1u/0/WPu+v45hd+38bakMZIaGxv1\n/vvv67LLLlNGRobeeuutNn24g3uMaeixWCym3rzh4MGDysnJ0ZQpU1RaWtqibavV2uLfTHvqMtqw\nXWXGuFVWVuqDDz7Q2rVrPa63X79+6tu3r137tlauXNnWl6FNVq1a1Xy1k+352dZitVp1+PBh7dix\nw6e12F7B1Lp/i8WirKwsxcXFtXiO2f9uA+HfPRCsGhoa9O9//7v574sWLVJDQ4OJFaGjGNPAFci/\n78yujd/lCDmdwuwW6sx+fRnPoFJdXa2HH35YAwcO1LPPPqsTJ060+H3laM6hvb/zHM2NnDhxQq++\n+qqysrI0fvx4ffrpp20+h9zcXLs+bOcGjh49qv/+979tbrctHM1NtH7trFarvvzyS5/W4awW489S\ny9fLYPZ7I95bAU0IwwAAECbKy8t1zTXX6Oabb9aOHTuUKOlXalr1I0/STZJivNBPzPdtfSlpi6R7\nJCVK2rFjh26++WZde+21Pl/VIFwwpqHNUSDC1zdvWL16tYYPH65Vq1bZTfQYYQpHx9tSY+sP544m\nItoqJyfH5XN9vcRtW9o3uxZHkzySOf9mA+XfPRDMVq5cqSNHjkhdukhduujIkSM+DwDCtxjTwBeo\nv+/M/p3M73EAQLBbvny5Bg8erKeeekqnT5/2ybyI7e9AZ3MjxvEVK1boyiuv1NixY5tXLvFEamqq\n+vfv39yWI2bOTdi+Bzh69Ki2bt3qszoqKytVVFTkMiDCPAkQuAjDAAAQ4qxWq9544w1lZGToo48+\nUrSkJySVSXpZTVvm+MpQSa9839cTkqLVtP3G+eefrwULFvDmup0Y0/AV6Fd9LF++XBMnTtSxY8dk\nsVjcTtC0p0Z3kz/t5WziwujT15M8bfmS0pdfaJ48eVKbNm1q1ySPP/89BtK/eyDYLVy4sOkPY8ZI\nl14qSXrvvfdMrAgdxZgGp0B4nxeMv8sBAAgEjY2NeuCBBzRp0iSVlZXZzX9IP/zuczan0dbff87a\ncRS8Wb2BwcLeAAAgAElEQVR6tUaNGqWamhqPzyk3N9flPJ8v5yY8CaD4q5bVq1c3bxVk+1obIiMj\nNWbMGIfPDcb3Vry/QqiJMrsAAADgO+Xl5br77rv10UcfSZIukvS6fBuWcKSzpD9JulbSVEkbjh/X\nrbfeqvfee0+vvvqqevXq5eeKghdjGt4COWy0ZcsW/exnP1Ntba2klrXaTtQYf4+KitJll12miy++\nWEOHDtWQIUN01llnKSkpSYmJiaqrq1N1dbXKy8t14MABbd26VVu2bNGaNWu0d+/e5rYd9dMejgIe\nxsSRJB06dEi7du3SoEGD2t2HM84CKI5eN6vVt0sAG9s1GX3Z1iFJUVFRuvT7L1Zt+fvfZiD/vwAE\nkxbb6Rg/B5cs0aJFi/Tyyy8rKoppo2DDmAYvs3+38bscAID2qa2t1fXXX69PP/3U7nO85PizvdT0\n+frCCy/UxRdfrMzMTPXt21d9+/ZV165dFRcXp7i4ONXU1KiyslInTpzQ3r179c033+jrr7/WqlWr\ntGPHjuY23V2IZGjL79/c3Fz985//tDvuj7mJNWvWqKGhocXchG3freXl5enee+/1SS3OLo4y6hg+\nfLgSExOd3u8vvLcCHOMTMAAAIWrr1q264oorVFZWpmhJj0r6g5pW8jDLjyR9JekZSY+raUWRwsJC\nLV++XBkZGSZWFhwYU/jr6oy29nP69GndeOONqqyslOT4A7gxAdOnTx898MADuuGGG9StWzenbcbE\nxCgmJkZdu3ZVRkaGJk6c2HxfeXm5lixZoo8//ljLli1TXV2d03491a9fP/Xt21f79+93OrmycuVK\nn4RhVq9ebRdAkWT3Z2Ncvv32W58Fc1xN8lgsFmVlZSkuLq7Ffb76d+lqPH3RJ1c/IRy12E7nwgub\nDtpsq3P55ZebWyDajDENXma+z+N3OQAA7XPy5EldddVVWrNmjdsgjPHnyy67TLfccot+8pOfqGvX\nri7bN0IxycnJGjhwYIv7jh07pg8++EDvvvuuVqxYoYaGBoerxLSXu4uGjhw5om3btvlk/s/d3IQ/\nLxpytVKwxWJx+Drx3goIHGyTBABACCooKNDYsWNVVlamIZI2SHpI5oYmDNFqWlFkg6QhksrKyjR2\n7FgVFBSYW1iAY0zDl/HB02KxaO7cuWpsbPT5raGhQUlJSR7X+MQTT2jnzp2S7Cd9jImJyMhIPfLI\nI9q5c6fuvvtul0EYd3r16qU777xTixcv1qFDhzR79myNGDGiw8u55uTkuJxY8NVWSc7adXU+/q7F\n0HqS59xzz/XJv8EHH3xQUsuJF9v/F8aPH++Tf/ejRo3y7gsKBLgW2+lERjbd2FYnqDGmwSUQ3ufd\ncccdPunH+J3q7Hf5E0884fU+T58+7cfRAwCEu/r6el199dXNQRjbLYsktThmsVh03XXXadOmTVq+\nfLmmTJniNgjjTrdu3TRt2jR9+umnKikp0QMPPKDu3bvb9dteqamp6t+/f/O5OGLGPEnr1XAkqaKi\nQtu3b/d6HdXV1SosLHT5OraeJ5kyZYpP3luNHTu2+TUw2L63evTRR33yvhEIdoRhAAAIMQUFBRo/\nfryOHTumbEmrJA01uygHhqqptmxJR48e1fjx4wlPOMGYIpAdOXJEL774osstfmJiYvTuu+/q0Ucf\nVUxMjFf7T0pK0u233661a9eqqKhIU6dOVXR0+2JiOTk5Do8bky2+muSx3dvadiIjNTVVqampLY47\neo63eLInt6MrngAEJ4fb6UjSuHGSpEWLFjH5GWQYUwAAAP+5/fbbtXr1aocrsBjHLBaL0tLStGzZ\nMr3//vsaOtQ3M3pnn322nnzySR04cEBPPPGEkpKSOrwyjOT+oiFfzE20DqDY/nfkyJEtjvm6FmO7\nJsl+mytJioyM1JgxY7zeLwDvIQwDAEAI2bp1qyZNmqRTp04pR9LnkrqbXZQL3dVU41hJp06d0qRJ\nk7Rt2zaTqwosjCkC3Zw5c5xuj2RM/PzjH//Q9ddf7/Nahg0bpjlz5qi4uFiXXXZZm5/vbAlgQ3l5\nufbs2dOREu24CqDk5OTo0u+v5jf4MpizevVqNTY2SnI8yRMVFWVXD4Dg5XA7Hanpzzbb6iB4MKYA\nAAD+8be//U1vvvmm2yDM+PHjVVRU5LetKmNjY/Xggw9q9+7dmjp1qk+2SpJ8uz3R2rVrVV9fL8l+\nnmnKlCnq06ePw1VvfDFP4mq7JkkaPny4EhMTvd4vAO8hDAMAQIgoLy/XFVdcoWPHjuliSR9J6mx2\nUR7oLOljNa0mcuzYMU2YMEHl5eUmVxUYGFMEA2Pyx5btxM+ECRM0depUv9bUq1cv/ehHP2rz89LT\n05WWlibJ+RLA3v4Scc2aNXYBFMPYsWNbXGHk62COuz25s7KyFBcX59U+AZjHbjsdA9vqBC3GFAAA\nwPd27NihBx980OG8ge18yDXXXKOlS5d2aJvo9kpOTtacOXP08ccfq3fv3u1ux91FQ4cPH9aOHTva\n3b4jrkItredJJN9eNOSqTYvFwuq5QBAgDAMAQAiwWq26++67VVZWpiGSPlFwhCYMnSUtlTREUllZ\nmf7nf/6nw8t4BjvGFMHg0KFD+u9//yvJPshh+O1vf+vPkjrM3RLA3p5ccdVeTk5O857QZtcisUUS\nEEqcbqdjYFudoMOYAgAA+MfUqVN1+vRpSS3nQmyDMJdffrkWLlyoSNuAsgkmT56sr7/+ut0r0/Tp\n00fp6emSnF805Mu5Cds+k5OTdd5557WYJ2kdzNm5c6fX6qitrVVBQQFbSQNBjjAMAAAh4M0339RH\nH32kaEnvKrC30XGmu5pqj5b04Ycf6s033zS5InMxpggG69atsztmO0nQtWtXjR8/3p8ldZi7JYD9\nNcnTs2dPDRw4UBkZGerRo4fd/a2f21Gt9+R2hEkeIHQ43U7HwLY6QYcxBQAA8L133nlH+fn5kuyD\nMIbU1FS9/fbbioqK8nt9jnTt2lWffvqpfve737n8zO9Mbm6u3y4aqq2tVX5+fos6jYCRsSKMvy4a\n+uqrr1RXV9dcg9RynCMjI+1WqQEQeAjDAAAQ5MrLyzVjxgxJ0qOShppbTocMlfTI93+eMWNG2G6t\nw5giWOzatcvhcWOiIiMjw/SroNrK3RLApaWl2rt3r1f6chRAMV4728mdSy+91OHVZt6c5FmzZk3z\nSgGOJnmioqJ06fdbbAAIfk630zGwrU7QYUwBAAB8q7GxUY888ojTQInxeX7u3LmmbI3kSkREhP7y\nl7+0a+tjf1405CiAYsjJyZEknXfeeUpOTm6uwZY3Q9/O2jLqGj58uBITE73WHwDfIAwDAEAQM7bS\nOX78uC6S9EezC/KCP0rKlHT8+PGw3FqHMUUwKS0tdXl/r169/FSJ96SnpystLU2S75cAXrt2rerr\n6yXZT/LYhmGcLQF88OBBFRcXe6UWZ+dkTOZlZWW1a9IMQOBxu52OgW11ggZjCgAA4Htvv/229uzZ\nI8n59kg33nijLrvsMrNK9Al3Fw19++232r17t1f6cjXfYjs3MmbMGJ9fNOSqLYvFwuq5QJAgDAMA\nQBB7++239dFHH6mTpNclBcbimx0TraZzMbbWefvtt80tyM8YUwSTyspKl/fHxsb6qRLvysnJcRna\n8taVRq4mVowrniTXSwD7oxZJGvf9F6gAgp/b7XQMbKsTNBhTAAAA35s1a5bdMduLaCIiIvTEE0/4\nsyS/6NOnj9LT0yU5v2jIF3MTtn2dddZZuuCCC5r/7uyiIW8Fc06fPq3169e73FaKeRIgOBCGAYAA\nUVVV5fAGOGO1Wps/YD0s6UfmluNVQ9V0TpL05JNPhs1KIowpgk1jY6PL+48cOeKnSrzLNohiy9tX\nGjmb5OnWrZvOP//85r9feOGFSkpKsntc6zbaq7a2VgUFBS4nebjiCQgdbrfTMbCtTtBgTAEAAHxr\n27ZtWrNmTfO8gC1jVZjrr79e5557rkkV+pa7i4a8MTdRV1dnF0AxXtvW2za7umjIG7WsX79ep0+f\nbq5BajkfExkZqTFjxnS4HyDUBOL3nIRhACBApKenKzEx0e4GOLNy5Urt2LFDiZJmml2MD8yUlChp\n+/btXl3iMpAxpgg2zrbNMSaHtm3b5ueKvMPdEsAHDhzQvn37OtRHbW2t8vPzHU7ytJ5QiYiI0KhR\no3y2BPDatWvt9uS2rSs6OlqjR4/ucD8AzOfxdjoGttUJeIwpAACA773zzjtuH3P33Xf7oRJzOLtA\nxptzE+vWrVNtba0k+62kW1+0NGzYMHXp0qW5BlveWKXGWRtGXZmZmUpISOhwP0CocfQdp7GylFkI\nwwAAEKRefvllSdJtkjqbW4pPJEm69fs/G+ca6hhTBJuUlBS7Y7YTFvv379f27dv9WZJX9O/fX336\n9JHkfAngjk70fPXVV3YBFIOjlWmcLQG8f/9+lZSUdKgWZ+dihHOysrKcBp8ABBePt9MxsK1OwGNM\nAQAAfG/JkiV2x2znC3r27BnS2+a4u2iorKxM33zzTYf68HQraanptR89erTPLhpy1YbFYmH1XCCI\nRJldAACgSXFxsZKTk80uA0GitLRUixcvliTdY3ItvnSPpH9I+ve//62ysjL17t3b7JJ8hjFFMOrf\nv7/bxzz99NOaN2+eH6rxrpycHC1YsMDlfthTpkxpd/uuJlYcLffraglgX9YisUUS4G9Wq1XV1dU+\nabv5ilZ32+kYjG11lizRO++8o0suucQndcXHx7vcqi3YMaYAAADB69tvv9XGjRtdbpF0zTXXhPR7\nn7S0NPXr108lJSUOXwepaW6iI9tEOdtKOjExUZmZmXaPHzt2rD755BNJP4yD9EMwp7211NfXa926\ndWwlDbRDZWWl3bGKigpTV4chDAMAASIhIYGl9eCx2bNnq7GxUWMk/cjsYnxoqKRLJa1ubNTs2bP1\n6KOPml2SzzCmCEZZWVlO7zMmR9566y1de+21uu666/xYWcfl5uZqwYIFdse9daWRs0mepKQkXejg\nyv7s7GzFxcWptrbWbkImLy+v3WGY06dP2+3J3RqTPIB/ff311xo2bJhvO2nL/9fjxklLlmjOnDma\nM2eOT8rZsmWLhg4d6pO2AwFjCgAAELy+/PJLt48Jh8/Nubm5ev31112uoHvHHXe0q+36+np99dVX\nDreSHj16tMM+XV00lJeX1+4wTH5+vmpqalqEfmz7j4yMtNveGkATR99x+urCEE+xTRIAAEHGarVq\n9uzZkqRfmVyLPxjnOHv2bIdXHYQCxhTBKiMjQ7169ZIkuwkL41hjY6N++ctf6o033jClxvZytwRw\nSUmJ9u/f36626+rq7AIo7iZ5oqOjNWLECIdLAHdkm4v169fr9OnTzTUY7dr2O3r06Ha3D6DtPvjg\nA992MGaMZ9vpGC68sGklER/y+TmbjDEFAAAIXkVFRW4f42i741DjLPDjjYuGCgoKVFNTI8l+K2ln\noZesrCzFx8c312CrI/MkrraSlqTMzEwuagaCCCvDAAAQZIqLi1VWVqZOkoJrnYX2uV5StJq2Edq3\nb5+pS+r5CmMaemMaTn72s5/ppZdespt4sA1W1NXVacqUKXr99df1pz/9KSj20e7fv79SU1NVWlrq\ndAngvLw83XrrrW1ue926dc0rvNgu5Su5nkAbO3Zs84SO7fNKSkp04MAB9enTp821OJsgMtrPyspS\nXFxcm9sF0H733Xefvv76a7333ntNBy68UPrjH6UuXbzTQWys1JYl3CMjpccfl2prvdP/d99JTz8t\nbd4sSbrhhht03333eaftAMWYAgAABC9HYRjbz/EpKSk6++yz/VmSKZxdNGS8FgcPHlRxcXG75vlc\nhVeczZNERUVp5MiR+uKLL5pr8EYwx1UtFoslLFYBAkIJK8MAABBkNmzYIEm6QFKMuaX4RYyazlX6\n4dxDDWOKYHbvvfcqIqLpY4WjFU1sQzErVqzQ+PHjNWjQID3yyCPKz88P6NWBcnJyXNbX3skVV89z\ntcyvuyWAvV2LFB5LPQOB5qyzztK7776rWbNmKTY2Vtq0Sfr1r6UdO6S4uI7f2hKaMFgs3ul7x46m\nc9m8WbGxsZo1a5beffdddfFWKCRAMaYAAADBa+vWrU7nOywWizIyMkyoyv/S0tLUt29fSY7nfyTv\nzE3Yth0XF6fs7Gynz7OdJ7Gdvzl48KD27dvX5joaGhq0du1atpIGQghhGAAAgowRHrjI5Dr8yTjX\nUA1OMKYIZoMGDdK0adMcbrFjsFqtzZNEFotF33zzjZ588kmNHDlS3bp101VXXaXHHntMn3zyiSoq\nKvx9Ck65WwK4vcvuOpvkiY+PV1ZWltPnXXLJJYqOjrZ7ntS+JYDr6+u1bt06JnmAAGSxWDR9+nTl\n5+dryJAh0tGj0u9+J82dKzU2ml1e2zU2Sv/8Z9M5HD2qIUOGKD8/X9OnT3f5MyiUMKYAAADBp6Gh\nQYcOHXL5mMGDB/upGvPl5ua6vGioPXMTjY2NdgEUYw5p5MiRiopyvsmJq4uG2lNLYWGhqqurm2uQ\nWs6/REZGasyYMW1uF4B52CYJAIAgU1hYKCk8gxPGuYcaxhSeysvLU319vc/av+SSS9p1RdOzzz6r\n//znPzpw4EBz4MXR5IjtRIIxmXDy5EktXbpUS5cubX5cWlqasrOzlZ2drYsvvljZ2dmm7Mfsbgng\n4uJilZaW6pxzzvG4zfr6en311VcOJ3kuueQSRUZGOn1uXFycLrroohYBlo4sAZyfn6+ampoW42Vb\nV3R0tEaPHt3mdgF4z9ChQ1VQUKCZM2dqzpw50vz5TauK/OlPUnKy2eV5pqJCevJJacsWSdIdd9yh\nF154wZSf64GAMYUzgfo+DwCAcFZWVqYzZ844neeQpF69evm5KvPk5uZq3rx5dsc7MjdRWFioqqoq\nh1tJuwq7SNLIkSPVqVMn1dfX2wWy8/LyNHXq1DbV4qx+Y+wzMzN5zwsEGcIwAAAEEavV2rxPbTgG\nJzZs2GD3oSjYMaahN6beZnzgtlqtmjt3rubOneuzvv72t7+160uSs846S4sXL9a4ceN08uRJST+E\nKlyFYozHtR7/AwcOaP/+/frXv/4lSYqIiNDQoUM1YcIETZ48WTk5Oc1bM/nSueeeq9TUVJWWljqd\n+Fq5cqVuvvlmj9tsHUCxPXdn+2DbGjt2rNatWyepZTBn7969bQ7mOLtKymg3KytLcXFxHrcHwDcS\nEhL02muvafz48Zo+fboqt2yR7rxTuv9+6ZJLzC7PtbVrpWeekU6eVOfOnTVr1iz94he/MLsq0zGm\nMATD+zwAAMJZaWmp28ecffbZfqgkMLi7aGj//v0qKSlp3k7JE65WcHE3TxIbG6usrKwWK8t0JJjj\nqhaLxcLquUAQYpskAACCSElJiY4fP65Okn5kdjF+9CNJ0ZKOHz+ukpISs8vxKsY09MbUl4zgiLdv\nRtsdMXz4cC1fvlw9e/a0W2nEVdvGFkq2t9bnarVatXnzZj333HMaP368evfurZkzZ2rbtm0dqtkT\nOTk5LpcAbuvkiqvHu7viSZLL5Xi9WYvEFklAoPnFL36hjRs3KjMzUzp5UnrwQenll6W6OrNLs1dX\n11TbQw9JJ0/qoosuUlFREaGJVhhT2Ark93kAAISrU6dOuX1M9+7d/VBJYOjbt29z0MXZ+4uOzE3Y\nttmpUyeNHDnS7fNt50ls529KSkq0f/9+j+tobGzUmjVr2EoaCDGsDAMAQBA5fPiwJKmXpE7mluJX\nMWo65/2SKnbtUr8QWo7y8M6dksJ8TCsq1K9fP3MLChKuQhnt5c0vR7Kzs1VYWKjbbrtNK1eutFsB\nxuDuPFrf3zpQU1FRoZdeekkvvfSSJk6cqMcff1zZ2dleOouWcnNz9eabb9odN0I6bd2D2tkkT0xM\njEaMGOH2+ZdeeqkiIiIcrqi0cuVK/fKXv/SojoaGBrs9uVtjkgcIPAMGDNDatWt1//33629/+5v0\n/vtNW9U88ojUhpWhfKq0VHrsMWn3bknS3TNm6OGnnlKnTp1UEYghD5N1SUvTBytX6smHHtKsl14K\nijH9zW9+o6efflqdOoXTu1ffC/T3eQDgiYqqClWr2uwyvKKqqsrsEhAAampq3D4mNjbWD5UEDmOr\nJGfvM1auXKnbbrvNo7bOnDljF0Ax5juys7MVExPjto2xY8fqmWee6XAtRUVFqqysdLqVdGRkpMsL\nlAAEJsIwAAAEEeMDWDhuWmGcc83EiabW4W3GR+qwHlMPJhbQJBi+0DjnnHP0+eefa/78+XrooYdU\nVlbmcMUXWx0JxyxbtkzLli3TlClT9Nxzz3n9iix3SwB/8803Ki8v92iP8MbGRrsAitHWiBEjPPpS\nsUuXLho6dKg2b97coSWACwsLVV1d7XSSJzo6WqNHj/a4PQD+ExMTo7/+9a+67LLLNHXqVB3btUua\nPl367W+l8ePNLe6zz6Tnn5dqaqSkJOn++zXrkks0q7DQ3LqCwfXXS2ef3bQFUYCOaffu3fX666/r\n6quvNremEBUM7/MAwJ30F9JD50ofMryQZ3NWngQ22qtHjx46duyYV9ucOnWq/vnPf7b7+UYYprX2\nzE0UFRXp1KlT7d5KWnJ90VBeXp7HYRhndRtzJpmZmUoIoQs0gXDBNkkAAASR2tpaSVJ4XW/QxDjn\nUItN1H7/37AeU8IwHnO0pZA3br5w2223ae/evZo1a5aGDh3aYssjV1siudtWqfXrYDx+3rx5GjZs\nmFavXu3V8zj33HN1zvdX5ru66skThYWFzVcXtn7dPdkiydFjbdvZs2ePysvLPWrD1SSPcQVWXFw4\nxvSA4PHjH/9Ymzdvbro6sbpaevJJ6S9/aQqi+FtNTVPfTz3V9OcLLpBee0265BL/1xLMRo1qet0u\nuCDgxnTs2LHatGkTQRgfCqb3eQAAhIuGhga3j4mK8t26A77aQrEjnF00ZNi3b58OHDjgUVsd3Upa\nkjp37qxhw4bZrU7c1tV8XdVisVg0btw4j9sCEDgIwwAAAABBwheTIN6aDHEkOjpad955pzZv3qyv\nvvpKM2fOVN++fVv06+xLG0/rs318WVmZLr/8cr3//vtePY+cnByXXyZ5etWTq0kYT694klxPCHmj\nFoktkoBgkZqaqi+++EIPP/xw08/KpUule+6R9u71XxF79zb1uXSpZLFIt93WtJJIcrL/agglyclN\nr9+ttza9niaPqcVi0SOPPKLPP/9cqamp/qshDAXb+zwAAMKBJ6u+nD592g+VdCw4azzfG/r27au+\nfftKcn7RUHvmJmzbioqKatNqtc4uGtq3b58OHjzo9vlnzpzR6tWr2UoaCEGEYQAACCLGHrS1bh4X\nioxzDrV1CozVUcJ6TFl9wiXbrXDmzp2rxsZGn91mzJjhs/O4+OKL9fzzz6u4uFjbtm3Tiy++qJ//\n/Od24Rh3q8c4YvuYuro63XzzzfrPf/7jtdqdTXi09Uoj28mg1lsSXdKG1RNchWE8qaWxsdFuT+7W\nmOQBgkdUVJQef/xxff75501btpWUNAUZPvxQ8uWqEFZrUx/33NPUZ/fu0v/7f9K0aVJkpO/6DQeR\nkdLttze9nt27mzamvXr10ueff67HHnvMp1c8h7NQeZ8HAECo8mTOyl9hmEAKwrq7aMiTuQmr1WoX\nQDHaHD58uOLj4z2up6PzJJs2bdJ3333XoobW4ZxLL73U43oABA4+yQIAEESMD2DhuKmMcc5xy5ZJ\nw4ebWos3xRUVSZMmhfeYEoYJO4MHD9bgwYN17733SpKOHDmiDRs2qKioSEVFRdqwYYNKSkqaH996\nqdvWx4y/G5M+9fX1uvHGG7V582alpaV1uF5nSwAbtezevVuHDh1Sz549nbZx5swZuwCK0cZFF13U\npv8PkpOTNXjwYO3atavFl2ie7s1dVFSkysrK5ucYzzdER0e36QosAIFh3Lhx2rRpk6ZMmaJPP/1U\n+utfpaIi6fe/lxITvdtZZaX03HPS9z9zxk+cqJfmzFEPVoPxrlGjVHHDDbrvjjv0xX/+49cxnTx5\nsubNm6dkxhQA0AbFM4uVkJBgdhleUVVVpfT/L93sMmAyTz6rV1dX+7SGQNz2MDc3V/Pnz7c73pa5\nCSOAYjzHdn6jLavnSmraOtaJvLw83XLLLS6f724r6czMzJD52QaEG8IwAAAEkZSUFElSuaQ6SZ1M\nrcZ/TqvpnCUpedCgkFp2P2XwYElhPqYhNJ5onx49emjixImaOHFi87Hy8nLl5eVpxYoVWrx4sY4c\nOSKp5RU6zgIxknTy5EndcccdWr58eYfrGzBggM455xyVlZU57Fdqmjj5+c9/7rSNoqIinTp1ym6S\nR/J8H2xbY8eO1c6dO+3a27Vrlw4fPtz8+8IRd5M82dnZzSuRAQguKSkpWrJkiZ5//nk98MADasjL\nk2pqpGee8W5HTzwh5ecrKipKTz/9tH7zm98oIoLFh30hOTVVy5cuZUwBAEEhOSE5ZL4wjpfnq1Ig\ndHXv3t3tYw4dOuTTGtqz0ouvAzTuLhrau3evysrK1Lt3b6dtuArMtHWepEePHhoyZIh27NjRrouG\n3D2G1XOB4EUYBgCAINK3b1917dpVx48f138lZZpdkJ/8V1K9pK5duzbvSRsqGNPQG1N4R69evXTT\nTTfppptu0j/+8Q8tW7ZMr7zyij755BNJP0yyOAvEWK1WffHFF1q6dKkmT57c4XpycnL01ltvOZ2E\nWrlypcswjKtledt6xZPUNDE0e/Zsr9ciMckDBLuIiAj9/ve/V5f/n707D8+zrvPF/36aNGmbsnRJ\nk9ICLVsXKFupQCkFB2fmqAMH1MFTGGAcBy9w9yj4O6gz54yDZxREZVTcGEcKAqKAcnQY0RFZCgIV\nKJRCAUtZapOUUrrv+f0RUtM2S1uS50mevF7Xlcv0yb187n7x6ZPv/b6/n332yQc+8IHk+ee7/yRv\nHIkRZlsAACAASURBVPOb3/xmLrzwwu4/PtsxpgAApTF27Ngut+nJMMzXvva1rF+/e83Vf/rTn+aO\nO+7o8GGe7jBu3LgceOCBefHFFzs8z913351zzjmnw2O0nZtoO9cyYMCATld66cjMmTOzYMGCnR4a\nev755zsN5jQ3N+fee+/VShrKlEc8AKAPaV2WMUnmlriWYmq91qlTpxal720xGdPyG1O634ABA/L2\nt789d9xxR+bMmZPjjjuu3RVW2nPFFVd0Sw2dTXzsypNGbX++4yTPnvSd7uwpqc5q2bp16049uXdk\nkgfKw8MPP9zyzYkndv/BTzghSfLII490/7HpkDEFACiukSNHprq6OknHK7S89NJLPXb+c845J3/3\nd3+3W1+t84w97ZRTTuk0bNPZ3ER7AZTWY02ZMiV77733btezp/Mk8+bNy2uvvbZdDW3rqqys3KN5\nG6B3EIYBgD7muOOOS9I/gxOt115ujCnsuuOPPz73339/Lr744g63abs6zG9/+9u88MILb/q8XS0B\n/PTTT6epqanDenYMoLROsBx99NEZOnTobtez//77b1tVacfjdrbyy2OPPZaVK1duV0Pb/QcOHJiT\nTjppt+sBepfNmzfntttua/lDTwTc3jjmrbfems2bN3f/8dmJMQUAKI1x48Z1+LPm5uY89dRTxSum\nF+noQZrW+ZjO5iaeeOKJnQIorfvuyeq5SedhmM5q6aqV9LHHHls27d+gPxKGAYA+ZurUqUn6Z3Ci\n9drLjTGF3VNZWZmvf/3red/73rdLq8Pccccdb/qchxxyyLYldTs6X0cTKI899lhef/31JDtP8uxu\nH+y2Zs6cue14uxrM6WqSZ9q0aRk0aNAe1wT0DnfffXeWLVuW7LNPcvTR3X+CY45J9t47y5Yt63Jl\nLLqHMQUAKI2jjjqq3RVQ2v4O3h919NBQq+eeey5Lly5td9/OPm/u6TzJmDFjMn78+CR/Gpu2D0p1\npKvPvlbPhb5NGAYA+pjW8MC8JBtKW0pRbEjLtSblG5wwprBnvv3tb+fggw9O0nFAJUnuv//+bjlf\nV0sAd/SkUWcTK3v6xFOyZ0sAm+SB/uFHP/pRyzcnn5xUVHT/CSoqWo7d9lz0KGMKAFAa7bUdajs3\nsG7dusybN2+nbcrduHHjcsABByTpeE5mT+ZJuvOhoVbPPvtsh8Gce+65RytpKGPCMADQx4wfPz77\n7bdfNia5rdTFFMGtSTalJd3f2bKkfZkxhT1TWVmZ//2//3eHAZXWJ4Aee+yxbjlfZxMgnT1p1Hby\np+0ES6FQyMlv3HjcE7sbhmmvJ/eOTPJA39fj7XRaaatTNMYUAKB0dqXFd2dteMpZVw8NdTRP0jaA\n0jp3kySTJ0/OiBEj9rie3Z0nefLJJ/Pqq68mab+VdGVlZWbMmLHH9QClJwwDAH1MoVDIhRdemCT5\nZolrKYbWa7zwwgu7bIXSVxlT2HPvete7Ul1dnaTjJ5FeeumlbjlXR0sAt573qaee2jaJ0vbnOwZQ\nWidYDj/88AwbNmyP6zn00ENTX1+fJDsdv72JuHnz5u3Uk7vtfgMHDsxJJ520x/UAvUOPt9Nppa1O\n0RhTAIDSOemkkzJkyJAkHc87/PKXvyxmSb1GRw/UtAZc2pubmD9/fstn23RvK+mk8zBMe7V01Ur6\n2GOPTU1NzZuqCSgtYRgA6IMuvPDCVFRU5N4kT5S6mB70RJL7klRUVGwLi5QrYwp7ZvDgwTnxxBN3\nehKp7Z/Xr1+f1atXv+lzHXroodlvv/2SdDwBtuNEyhNPPLFTAKV1/zfTIqnVySefvN0SwJ0Fc7qa\n5Jk2bVoGDRr0pmsCSmuP2unMn59cfHHL11NP7do+2uoUjTEFACid6urqnHbaae2ugNIa+vjVr36V\nFStWlKC60urooaFWCxcuTGNj43Y/76lW0kly8MEH7zRv0zpG7Z1XK2kof8IwANAHjRkzJmeeeWaS\n5FslrqUnXfPG/5511lnbfpEpV8YU9tyBBx7Y5Tbr1q3rlnN1tQTwjk8a9VQf7F05xo7nNskD5W+3\n2+ls2ZLMnp187GPJ00+3fH30o8n117f8rCva6vQ4YwoAUHqnn376Tq+1nRvYtGlTbrnllmKW1CuM\nHz8+BxxwQJKOHxoq9jzJjg8NtXrmmWd2Cua0bdfUHvMk0PcJwwBAH/WhD30oSXJdklWlLaVHrEwy\n+43vW6+13BlT2DO1tbVdblOxq0/Sd6GziZD2njTqrG94d03ydGTHWkzyQPnbrXY6jY3JJz+Z/Nu/\nJVu2ZNasWZk1a1ZLYOLaa5NPfSppaur8GNrq9DhjCgBQemeffXanrZKam5vzta99rdhl9QpdPTTU\n3oM6bVdtaXXIIYdsawX9ZuzqPMmCBQu2hWPaayVdWVmZGTNmvOl6gNIShgGAPurUU0/NxIkTszpJ\nOf6q9bUkq5NMmjSpW1qJ9AXGFPbM2rVru9ymu3o8d9YPO2npfb18+fJtr7cNoLSdVDnssMMyatSo\nN13PlClTsu++++50/B17cz/55JPb2ia1N8lTVVWVk0466U3XA5TWLrfTuffe5O//Pnn88QwdOjQ/\n+MEPcsMNN+SGG27Iv//7v7e8Zz72WPL+97ds2xFtdXqcMQUAKL299947733ve9tt0dz6u/WCBQvy\n05/+tBTllVRXDw21nZt4+umndwqgtP4ddscDQ0nnDx61raWrVtJTp07ttrkkoHSEYQCgjyoUCvnc\n5z6XJPmnJE+Wtpxu9USSz7/x/Wc/+9lOVzIoJ8YU9sySJUt2eq3tf2N77bVXqquru+Vchx56aEaP\nHr3dOdpOhjU3N+eee+5J0hKM2TGA0jqp0l2BsEKhkBkzZmxXQ9tgzmuvvZak60meadOmZdCgQd1S\nE1Aau9ROZ/365Kqrkn/4h2TVqhx33HF59NFHc/7556dQKKRQKOSCCy7Io48+muOOOy5Ztapl26uu\natm3Pdrq9BhjCgDQe3S2ynGhUEhzc3MuvfTSbNq0qYhVlV578xttQ0JPP/10mt5YnbCzlQe7a57k\niCOOyPDhw5Ps/NBQ2/NrJQ39gzAMAPRhs2bNyumnn55NSf42STn8qtX2Ws4444yWpd37EWMKu2/B\nggUdLlOcJAcffHC3nm9XlwDu6T7Y7R2ro2COSR4of12203nuueSii5I77kiSXHrppbn//vtzyCGH\n7LTpoYcemvvvvz+XXnppywt33NGy7/PP73xcbXV6jDEFAOg9jj322Jx11lnbBT2S7X8Pf+6553L5\n5ZeXorySOeigg7L//vsnab+FVJJdmpvoznmStg8N7bh6z7Jly7bVopU0lD9hGADowwqFQr797W9n\n2LBhmZvkS6UuqBt8McnvkwwbNizf+ta3+t0KIsYUds9TTz2VZ555JknaDagUCoUcddRR3XrOXV0C\nuBhPPCW7tgRw23ZN7THJA31fh+10mpuTn/wk+dCHksWLM3r06Nx111354he/mKqqqg6PV1VVlS9+\n8Yu56667Ul9fnyxenHzwg8mtt7Ycs5W2Oj3GmAIA9C6XX355Kt74XLbj79itq8Ncfvnl+fWvf12K\n8kqmq4eG2s6TtNdK+oADDsgBBxzQbfV0Nk/y29/+Ns8++2yWLl2apP1W0pWVlZkxY0a31QOUjjAM\nAPRxo0ePztVXX50k+T9paUfTV81LS3ugJLn66qu3tSLpb4wpfUVvaJ3wve99r8ttujN4knQcHGmd\nOHniiSeyfPnyDid5xo0blzFjxnRbPW37WLe3BPCCBQt26snddruqqqpMnz692+oBiq/DdjorViSX\nXZZ8/evJxo35q7/6qzz++ON529vetsvHftvb3pZ58+blne98Z7JxY/Kv/5p85jMtx26lrU63M6YA\nAL3PxIkT8/GPf3yn363b/nnLli2ZNWtW5s+fX7I6i62rh4ZaAyh//OMft73W+r+FQqFbV4VJug7D\ntIZz2qu1UChk6tSpGTJkSLfWBJSGMAwAlIFzzz13W2ud9yZ5tdQF7YFXk/yP/KmVzrnnnlviikrL\nmNIXXHfddTn77LPz3HPPleT8jz76aL7+9a+3+zRWq8rKypabfd3osMMO2xbs2nHiq/X773znOzsF\nUFonVbo7nFNRUZETTzxxuxpa65o3b96fbqbuoLWeadOmZdCgQd1aE1Bc7bbTeeSR5P3vTx58MNXV\n1fnXf/3X/OxnP0ttbe1uH7+2tjZ33HFHrr766lRXVycPPJD8/d8nc+e2bKCtTrczpgAAvdM///M/\nZ9KkSTuthNI2ELNs2bKcdtppeeKJvvyI267r6qGhp556Kj/+8Y873L+750mOPfbYDB06dLsaWt19\n991aSUM/IgwD0EusWbOm3S/YFa2tdfbbb78sSPL2JKtKXdRuWJWWmhck2W+//bTSiTGlb2hubs6P\nf/zjTJ48Oe9///uzcOHCop17yZIlOeecc7Jly5ZttexYW6FQyDve8Y6MHDmy28/f1RLAX/7ylzvd\nt7u1feppx2DOV77ylU73NckDfd927XS2bk2+9a3kkkuS5cszefLkPPTQQ/nwhz/8pv4tLhQK+chH\nPpKHHnookyZNSl59NfnUp1rOtXWrtjrdzJgCAPRO1dXVmT17dgYNGrRt7qG9FWIaGxszffr03Hzz\nzaUstygOOuig7L///kk6fmjoqquu6nD/7p4nGTBgQKZPn77TQ0PNzc2ZP39+7rzzzk73N08Ce6Y3\n3ucUhgHoJcaPH5+hQ4fu9AW7avTo0fnlL3+Z4cOH5+Ekp6dvhCdWJfmrJA8nGTFiRO666y6tdN5g\nTOkrtmzZku9///uZPHly3vOe9+Q3v/lNj55v4cKFmTFjRp555pkkOwdh2rrssst6pIb2JkbargCz\nfPnyDmvr7uV/2ztm2/N2Vktikgf6uu3a6RxySPLhDydvTLhfdNFFefjhh3PkkUd22/mOPPLIPPLI\nI7noootaXrj55uQjH0kOPTSJtjrdwZgCAPRuxx57bGbPnr0tYJFsHwJpDcmsXbs2s2bNyqxZs7Jk\nyZIer2vRokW55557evw87WnvoaGO5ibaBrpHjx6dgw8+uNvr2fGhoc7mSXZcYXjGjBndXg/0B+3d\n4xw/fnxJaxKGAYAycvjhh+fOO+/MXnvtld8mOS29u73OsiR/luSeJHvttVf+4z/+I5MnTy5xVb2L\nMaWvaJ0AuvXWW3Paaadl4sSJ+b//9//m+eef77ZzrF27Np/73Ody9NFHZ/HixdtNOu1YR6FQyNln\nn51p06Z12/nb2p0ASdtJlTFjxvTIL4HHH398S5uLHc7XXgCm7c+rqqoyffr0bq8HKJ5t7XSS5Jvf\nTBYuzPDhw3Pbbbflmmuu6ZFe90OGDMk111yTW2+9NcOGDUueeabl3Im2Ot3AmAIA9H7vfve7c8UV\nV7QbiEm2D1rcfPPNmTBhQj7+8Y9n0aJF3V7LwoUL8/73vz8TJkzIb37zm3bnS3paZ/Mk7dXSOnfT\nEw8MJZ0/iNTe6oqt9UydOrVHPm8DpSEMA9BLLFq0KKtXr97pC3bXtGnT8utf/3rbaiInJ+mN3Wnn\nJZmZ5JG0rB7yX//1Xz1207qvM6b0BW0neQqFQp599tl85jOfyaGHHpqjjz46l1xySf7zP/8zK1as\n2K3jbtmyJffcc08uuuiiHHjggbn88suzYcOG7c7Zqu1kRn19fb7xjW+8yavq2GGHHZb6+vqdztuq\no7ZNPTXJU11dnWnTpnU4wdTea4VCIdOmTcugQYN6pCagOLZrYbNxY0499dQ8/vjjOfPMM3v83Ged\ndVbmzZvXsqz5xo3t18RuM6YAAH3D//yf/zNf/epXM2DAgO1WhOlolZirr746hx56aGbOnJmvfvWr\nefLJJ7N169bdPu+6devy4IMP5rOf/WymTJmSiRMn5vvf/362bNmyUxCmWG3Lu2p11FE4p6fmSd7y\nlrdsm+/YMaTUWVDI6rmw59q7x9kTAcDdUVnSswOwTU1NTWpqakpdBmVi2rRpuffee/Pnf/7nWbBk\nSaYm+Yckn04ysMS1bUryL0k+/8b3++23X+666y6rh3TBmNIX7DjZ0jrZMG/evMybNy9f/vKXkyQH\nHnhgJk+enAMOOCBjx47N0KFDM3jw4GzatCkrV67MqlWrsmTJksybNy8LFizYFn5prw936+tta6ip\nqcnPfvazDB8+vEev95RTTsnNN9+8WxNL3d0Hu62ZM2fmvvvu2619TPJA39e6DHpFRUX+6Z/+KZ/+\n9KdTUVFRtPOPHTs2v/71r/Mv//Iv+cd//MdtIUb2nDEFAOg7PvKRj2TEiBG58MILs379+k4DMa1B\nlfvuu2/b7+81NTU58sgjM27cuBxwwAEZPnx4Bg8enOrq6qxfvz6rVq3K6tWrs2rVqvzhD3/IggUL\nsnjx4p0eSmrV1So13dlus62DDz44Y8eOzSuvvLJbK9P01DxJVVVV3vKWt+See+7ZrXkb8ySw59q7\nx7l27doSVPInwjAAUKYmT56cRx55JBdddFF+9rOf5XNJbkvygyRHlKimJ5L8bZLfv/HnM844I9/6\n1rcyevToElXUtxhTerPOnrLZcdLhxRdfzOLFi3f5uB21/Wnv9X333Te33357pk6dunsXsAdOPfXU\n3Hzzzbu1T0898dR67C984Qu7tY9JHuj7fvWrX+WSSy7Jxz72sZxwwgklqaGioiKf+cxn8md/9me5\n+uqrc8UVV5SkjnJhTAEA+pZzzjknU6ZMyXvf+94888wz7QZVOgqvrF27Ng888EAeeOCBXTpX674d\nhV06eojoyCOPzDXXXNOjny9POeWU3HDDDZ2GT9r+bOTIkZk0aVKP1TNz5swuQ91t66msrMyMGTN6\nrB6g+LRJAoAyNnr06Nx+++2ZPXt2hg0blt8nOTYtK3isLGIdK98459S0hCaGDRuW66+/PrfffrvQ\nxG4ypvRGreGXHZ92au9JqB0naLr62nHfjn5WKBQyZcqUzJkzp0cDJ23tSpCk7aTKqFGjMmHChB6r\n56STTtq2ckBHE09tX6+qqsr06dN7rB6gOMaOHZsbb7yxZKGJtk488cTceOONGTt2bKlL6dOMKQBA\n3zNlypTMnTs3n/jEJ1JVVbVtdZSOgip7MkfS2cNCOx679fVx48bl2muvzdy5c3v88+WuPnDTOo9z\n8skn92g9uzo/1FrP1KlTM2TIkB6tCSguYRgAKHOFQiF/8zd/k/nz5+f000/PprS01xmT5INpWdmj\npzyR5OI3zvUPaWmhc8YZZ2T+/Pk599xzi9azttwY0/5hx0mO3uitb31rPvzhD2f//ffvcFKnvYmd\n3dVVOGbw4MG57LLL8vDDD2fixIndd4FdmDBhQurr63eqsb16izHJU1NTk2OOOWbbnzubNCsUCpk2\nbdq2/tm9Wdvae/v/JwBgV/SFz3ndqb9dLwD91+DBg3PllVdm3rx5Of300zNgwIDtQjHdMUfSqqM5\nmNbjHnPMMfne976XhQsX5m//9m8zYEDP3xJuG4bpKsyT9OzquUkyffr0VFZW7nI9fWX1XJ+tYNcJ\nwwBAPzF69Oj89Kc/zQ033JBJkyZldZJrkhyZZGaSG5Ns6IbzbHjjWCe/cexvJVmdZNKkSbnhhhus\nHNKNjGl52nESY1d7LJfCQQcdlKuvvjqLFy/OQw89lMsuuyxHHHFEp+GV3bm2jvZpPfa+++6bj33s\nY3n22Wfz+c9/PlVVVcW47O2ccsopnV5f22vsqT7Ybc2cObPLelpr6guTPHvy3w0A9Fb98d+0/na9\nAJAkhx12WG6//fbMnz8/F110UYYOHbptLmNPf8/tao6kUChk1KhR+cAHPpD7778/c+fOzfve975t\nYZBiOPjggzN27NheM08yZMiQHHvssbtcT1+cJwE6V7x3QACg5AqFQs4555zMmjUrd999d775zW/m\ntttuy71btuTeJFVJpqSl9U3r15Q3Xm/PxrSsFDK3zde8tKwWkrT0WT3rrLPywQ9+MKeccorEeg8w\npuWnr/6dTp06NVOnTs3nP//5LFu2LPfdd9+2r0cffTSbN2/eaZ+ufnFv7+9i2LBh+fM///OceeaZ\nOeOMMzJ48OBuvY7ddeqpp+ZHP/pRl9sVCoWitG+aOXNmvvKVr+xSPb19kmdXe4wDQF/R3/796m/X\nC9vZWOoCiqg/XGt/uMZW/elai2DChAn5xje+kauuuip33nlnbr311tx1111paGjYaduugg3t/bs6\ncODATJ06Naecckr+8i//MjNnziz5v7+nnHJKfvjDH3a53b777pujjjqqx+uZOXNmHn744S63Gzhw\nYGbMmNHj9bwZpR5b6IsKzWJjAEXX1NSUUaNGbfdaY2NjamtrS1QRe6ocxnLJkiX57ne/m+9+97t5\n5ZVXdvr5wCSjkwxO0tpMY32SdUn+mD+FJNoaM2ZMLrzwwlx44YXZb7/9eqhyOmJM6W02bNiQZ555\nJgsXLtz2tWjRoqxYsSIrV67MqlWrsmrVqjQ3N6e6ujqDBg3K8OHDU1tbm/322y+HHnpoJk6cmLe8\n5S2ZMGFCqS8HAABgJ2vWrMnQoUNLXUZJrV69OjU1NaUuo1sYz/Iaz97mxRdfzEMPPZR58+blhRde\nyIsvvphXXnklq1evztq1a7Nu3bokLW2XBg0alH322SejR4/O6NGjc+CBB2by5Mk54ogjcsQRR6S6\nurrEVwPdrxzuu9Ci1GMpDANQAqV+86f7lNNYNjc354UXXsjcuXPzyCOPZO7cuZk7d25ee+21Tvcb\nNmxYjjvuuG2rQkydOjXjxo2TVO8FjCkAAAAUh/BEeYUnjGd5jSfQt5TTfZf+rtRjqU0SAJCkZZnF\n8ePHZ/z48XnPe96TpCVMsXjx4jQ1NWXdunXbPZUwePDg1NbW5sADDxSS6KWMKQAAABTHkCFDsnr1\n6lKXUVJDhgwpdQndxniW13gC0D8JwwAAHSoUChk3blzGjRtX6lLoJsYUAAAAul+hULCKRhkxngDQ\n9w0odQEAAAAAAAAAANBdhGEAAAAAAAAAACgbwjAAAAAAAAAAAJQNYRgAAAAAAAAAAMqGMAwAAAAA\nAAAAAGVDGAYAAAAAAAAAgLIhDAMAAAAAAAAAQNkQhgEAAAAAAAAAoGwIwwAAAAAAAAAAUDaEYQAA\nAAAAAAAAKBvCMAAAAAAAAAAAlA1hGAAAAAAAAAAAyoYwDAAAAAAAAAAAZUMYBgAAAAAAAACAsiEM\nAwAAAAAAAABA2RCGAQAAAAAAAACgbAjDAAAAAAAAAABQNoRhAAAAAAAAAAAoG8IwAAAAAAAAAACU\nDWEYAAAAAAAAAADKhjAMAAAAAAAAAABlQxgGAAAAAAAAAICyIQwDAAAAAAAAAEDZEIYBAAAAAAAA\nAKBsCMMAAAAAAAAAAFA2hGEAAAAAAAAAACgbwjAAAAAAAAAAAJQNYRgAAAAAAAAAAMpGZakLAKDF\nmjVrMmTIkJ1er6mpKUE1AAAAAAAAAF1bs2bNLr1WTMIwAL3E+PHj2329ubm5yJUAAAAAAAAA7Jqh\nQ4eWuoSdaJMEAAAAAAAAAEDZsDIMQC+xaNGi1NbWlroMAAAAAAAAgF22evXqnV5ramrqsDNGMQjD\nAPQSNTU1qampKXUZAAAAAAAAALusvXuca9euLUElf6JNEgAAAAAAAAAAZUMYBgAAAAAAAACAsiEM\nAwAAAAAAAABA2RCGAQAAAAAAAACgbAjDAAAAAAAAAABQNoRhAAAAAAAAAAAoG8IwAAAAAAAAAACU\nDWEYAAAAAAAAAADKhjAMAAAAAAAAAABlQxgGAAAAAAAAAICyUVnqAgCg3CxbtqzUJQAAAAAAAPQ5\n7rHQXYRhAKCbTZ48udQlAAAAAAAAQL+lTRIAAAAAAAAAAGVDGAYAAAAAAAAAgLIhDAMAAAAAAAAA\nQNmoLHUBANCXjRgxIo2NjaUuAwAAAAAAoCyNGDGi1CXQBwnDAMCbMGDAgNTW1pa6DAAAAAAAAOAN\n2iQBAAAAAAAAAFA2hGEAAAAAAAAAACgbwjAAAAAAAAAAAJQNYRgAAAAAAAAAAMqGMAwAAAAAAAAA\nAGVDGAYAAAAAAAAAgLIhDAMAAAAAAAAAQNkQhgEAAAAAAAAAoGwIwwAAAAAAAAAAUDaEYQAAAAAA\nAAAAKBvCMAAAAAAAAAAAlA1hGAAAAAAAAAAAyoYwDAAAAAAAAAAAZUMYBgAAAAAAAACAsiEMAwAA\nAAAAAABA2RCGAQAAAAAAAACgbAjDAAAAAAAAAABQNoRhAAAAAAAAAAAoG8IwAAAAAAAAAACUDWEY\nAAAAAAAAAADKhjAMAAAAAAAAAABlQxgGAAAAAAAAAICyIQwDAAAAAAAAAEDZEIYBAAAAAAAAAKBs\nCMMAAAAAAAAAAFA2hGEAAAAAAAAAACgbwjAAAAAAAAAAAJQNYRgAAAAAAAAAAMqGMAwAAAAAAAAA\nAGVDGAYAAAAAAAAAgLIhDAMAAAAAAAAAQNkQhgEAAAAAAAAAoGwIwwAAAAAAAAAAUDYqS10AAC3W\nrFmTIUOG7PR6TU1NCaoBAAAAAAAA6NqaNWt26bViEoYB6CXGjx/f7uvNzc1FrgQAAAAAAABg1wwd\nOrTUJexEmyQAAAAAAAAAAMqGlWEAeolFixaltra21GUAAAAAAAAA7LLVq1fv9FpTU1OHnTGKQRgG\noJeoqalJTU1NqcsAAAAAAAAA2GXt3eNcu3ZtCSr5E22SAAAAAAAAAAAoG8IwAAAAAAAAAACUDWEY\nAAAAAAAAAADKhjAMAAAAAAAAAABlQxgGAAAAAAAAAICyIQwDAAAAAAAAAEDZEIYBAAAAAAAAAKBs\nCMMAAAAAAAAAAFA2hGEAAAAAAAAAACgbwjAAAAAAAAAAAJQNYRgAAAAAAAAAAMqGMAwAAAAAAAAA\nAGVDGAYAAAAAAAAAgLIhDAMAAAAAAAAAQNkQhgEAAAAAAAAAoGxUlroAAACKY/Pmzbn99tuTLb8L\n0wAAIABJREFUJGeeeWYqK30UBAAAAAAAyo87IAAA/cTdd9+dv/7rv06S3HXXXXnb295W4ooAAAAA\nAAC6nzZJAAD9xI9+9KNt399yyy0lrAQAAAAAAKDnCMMAAPQDmzdvzm233bbtz7feems2b95cwooA\nAAAAAAB6hjAMAEA/cPfdd2fZsmXJPvsk++yTZcuW5e677y51WQAAAAAAAN1OGAYAoB/Y1iLp5JOT\nGTOSaJUEAAAAAACUJ2EYAIAyt12LpFNPTd761iRaJQEAAAAAAOVJGAYAoMxt1yLp6KNbvrRKAgAA\nAAAAypQwDABAmduuRVJFRcuXVkkAAAAAAECZEoYBAChjO7VIaqVVEgAAAAAAUKaEYQAAythOLZJa\naZUEAAAAAACUKWEYAIAytlOLpFZaJQEAAAAAAGVKGAYAoEx12CKplVZJAAAAAABAGRKGAQAoUx22\nSGqlVRIAAAAAAFCGhGEAAMpUhy2SWmmVBAAAAAAAlCFhGACAMtRli6RWWiUBAAAAAABlRhgGAKAM\nddkiqZVWSQAAAAAAQJkRhgEAKENdtkhqpVUSAAAAAABQZoRhAADKzC63SGqlVRIAAAAAAFBGhGEA\nAMrMLrdIaqVVEgAAAAAAUEYqS10AAEB/1NzcnLVr1/bIsW+66aaWb7pqkdSqtVXSz3+em266KSee\neGKP1DVkyJAUCoUeOTYAAAAAAEArYRgAgBJ44oknctRRR/XsSXalRVKrt741+fnPc+211+baa6/t\nkXLmzZuXKVOm9MixAQAAAAAAWmmTBABQRM3NzVmzZk1uueWWnj3R9OnJhAnJunW79jVhQtJDK8K0\nuuWWW7JmzZo0Nzf36HkAAAAAAID+rdDsbgRA0TU1NWXUqFHbvdbY2Jja2toSVQQUy5o1azJ06NBS\nl1FSq1evTk1NTanLAAAAAAAAekip74daGQYAAAAAAAAAgLJRWeoCAAD6rU8lqSp1EUWyMcmVpS4C\nAAAAAADoD4RhAABKpSr9JwwDAAAAAABQJNokAQAAAAAAAABQNoRhAAAAAAAAAAAoG8IwAAAAAAAA\nAACUDWEYAAAAAAAAAADKhjAMAAAAAAAAAABlQxgGAAAAAAAAAICyIQwDAAAAAAAAAEDZEIYBAAAA\nAAAAAKBsCMMAAAAAAAAAAFA2hGEAAAAAAAAAACgbwjAAAAAAAAAAAJQNYRgAAAAAAAAAAMqGMAwA\nAAAAAAAAAGVDGAYAAAAAAAAAgLIhDAMAQFH9y+LFWbRuXanLAAAAAAAAypQwDAAARfXPixfnoN/9\nLjMffTTfXbIkKzZtKnVJAAAAAABAGRGGAQCgJO59/fV8YOHC1M+Zk7Pnz88dy5Zl09atpS4LAAAA\nAADo4ypLXQAAAP3bhubm3NLUlFuamlI7cGD+x6hROa+uLsfttVcKhUKpywMAAAAAAPoYK8MAAFBU\n+1Z2nMdu2rQp//rKK3nL73+fyQ8/nC8sXpwX168vYnUAAAAAAEBfJwwDAEBRPX/CCbn18MNz1siR\nGdjJyi9Pr12bzyxalAMffDBvfeyx/Nsf/5iVmzcXsVIAAAAAAKAv0iYJAICiqh4wIGfV1uas2tq8\numlTftTYmNkNDXlg5coO97l7xYrcvWJFPvTsszlz5MicV1eXvxg2LJUDZLsBAAAAAIDtCcMAAFAy\nIwYOzMVjxuTiMWPy7Nq1ub6hIbMbGrKog9ZI67duzU2NjbmpsTF1AwdmVl1dzquryzFDh6bQySoz\nAAAAAABA/+FRWgAAeoVDhwzJ/xk/Ps8ff3zuO+aYfGD06Oxb2XF2u2HTpnz15Zczde7cHPHww/ni\niy/m5Q5CNAAAAAAAQP8hDAMAQK9SKBRy0j775NsTJuSPJ56YHx9+eM4YMSKVnaz88tTatfn//vCH\nHPDggzntscfyg6VLs2rz5iJWDQAAAAAA9BbaJAEA0GsNqqjIu2tr8+7a2izbuDE3NzXluqVL89Cq\nVe1u35zkv1asyH+tWJGLBwzIWSNH5vz6+py2776pHCAHDgAAAAAA/YEwDAAAfcLIqqp8aMyYfGjM\nmDyzdm2ub2jI7KVLs3jDhna3X7d1a37Y2JgfNjamvqoq544alfPq63PU0KFFrhwAAAAAACgmj8cC\nANDnTBgyJJ8fPz5/OOGE/Pboo/P++vrsXVHR4fZLN27Ml19+OUc/8kiOfPjhXPnii1nSQYgGAAAA\nAADo24RhAADoswYUCpm577753sSJWTp9em6ePDnvHD48HcdikifWrMklf/hD9n/ggfzF44/n+qVL\ns2bLlqLVDAAAAAAA9CxtkgAAKAuDKypy9qhROXvUqDRu3JibGhtz3dKlmbt6dbvbb01y12uv5a7X\nXkvNwoV5V21tzq+ry1uHDUtFoVDc4gEAAAAAgG4jDAMAQNkZVVWVj44dm4+OHZsFa9ZkdkNDrm9o\nyEsdtEZas3VrZjc0ZHZDQ/arqsq5dXU5v64uRwwdWuTKAQAAAACAN0sYBqCXWLNmTYYMGbLT6zU1\nNSWoBqB8TKqpyRcOOij/PH58frtiRWY3NOSWpqas7qA10pKNG3PFSy/lipdeytFDh+a8urqcM2pU\n6quri1w5AAAAAAD0fmvWrNml14qp0Nzc3FzSCgD6oaampowaNWqXtvU2DeVlzZo1Gdq62shlSapK\nWk7xbEzyhZZvV69eXfKg39otW/LTZctyXUNDfrl8ebZ2sf2AJH8xfHjOr6vLfx85MkMqKopRJgAA\nAAAA9HqFQmGXtmtsbExtbW0PV9PCyjAAAPQ7QyoqMquuLrPq6rJ0w4bc2NiY6xoa8tjq1e1uvzXJ\nncuX587ly7NXRUXeXVub8+vqcsq++2bALn7IBwAAAAAAisPKMAAl0N7KMIsWLWo3CVnq1ROA7mVl\nmN6xMkxHnly9OrMbGnJ9Q0OWbNzY5fb7V1fn3Lq6nFdXl8m99JoAAAAAAKAntdcSqampKePHj9/u\ntWKuDCMMA1AC7YVhivnmD5SOMEzvDsO02tLcnN+89lpmNzTkJ01NWbO1q0ZKydShQ3NefX1mjRqV\nUVX9ZWABAAAAAGBnpb4fOqAoZwEAgD6kolDI24YPzw8mTUrDSSdl9sSJ+Ythwzr98Dx39ep8/Lnn\nst+cOfmrefNyc2Nj1m3ZUrSaAQAAAACAFpWlLgAAAHqzmoqK/E19ff6mvj5LNmzIDxsacl1DQ55o\nZ9nHJNmS5OfLl+fny5dn74qK/HVtbc6vr8+MffbJgEKhuMUDAAAAAEA/ZGUYAADYRftVV+dTBxyQ\nedOm5bHjjssnx45NfSctkVZu2ZJrly7NKY89loMefDCf/cMf8szatUWsGAAAAAAA+h9hGAAA2ANH\nDR2aKw85JC+dcELuPPLInDtqVAYP6Pjj9eING3L5iy9m4kMP5fi5c/P1l1/Oso0bi1gxAAAAAAD0\nD9okAQDAm1A5YED+cvjw/OXw4Vm1eXNuXbYss5cuzX+tWJHmDvZ5aNWqPLRqVT7x/PN5x/DhOa+u\nLn81YkQGVVQUtXYAAAAAAChHwjAAABTVs68+m6Nrji51GT1ir8rKXFBfnwvq6/Py+vW5obExs5cu\nzfwOWiNtbm7Oz159NT979dXsW1mZs2trc15dXU7aZ58UCoUiVw8AAAAAAOVBmyQAAIrqmG8fk3f/\n6N353cu/K3UpPWrsoEH59AEH5Ilp0/L7qVPz8bFjM2rgwA63X7F5c77zxz/m5Mcey8G/+13+cdGi\nPNdBiAYAAAAAAOiYMAwAAEV364Jbc8K1J+TUfz81v3j2F2lu7qihUN9XKBRyzF575SuHHJJXTjwx\nv5gyJf9j1KgMGtDxR/FF69fnnxYvzqEPPZTpv/99rnnllSzftKmIVQMAAAAAQN8lDAMAQMn8dvFv\n884fvjNHfuvIXPf4ddm4ZWOpS+pRlQMG5O0jRuTGyZPTMH16rp0wIafuu2+n+zywcmU++OyzqZ8z\nJ+968snc1tSUDVu3FqliAAAAAADoe4RhAAAouScbn8wFt1+Qg68+OFc9cFVWbVhV6pJ63N6Vlfm7\n0aPzm6OPzgsnnJDLx4/PxCFDOtx+U3Nzblu2LO+aPz+j58zJBxcuzAOvv17Wq+oAAAAAAMCeEIYB\nAKCoLv+zy7PfXvu1+7OXV76cT/7yk9n/K/vnsl9flqWrlxa5utI4cNCgXHbggXlq2rQ8fOyx+ciY\nMRk5cGCH27+2eXOuWbIk0x99NIc99FD+6YUX8od164pYMQAAAAAA9F6FZo+SAhRdU1NTRo0atd1r\njY2Nqa2tLVFFQLGsWbMmQ4cObfnDZUmqSlpO8WxM8oWWb1evXp2Bgwbmh0/8MF+6/0tZsGxBh7tV\nVVTlgqMuyKemfyqHjTisOLX2Epu2bs1/Ll+e6xoa8rNly7JhFz62n7T33jm/vj5/XVubYZ2EaQAA\nAAAAoCeV+n6oMAxACZT6zR8oHWGYljBMTU1NkmRr89b8fOHP86U5X8p9L97X4e6FFHLmxDPz6ZM+\nnePHHl+EgnuXFZs25cdNTbmuoSH3vv56l9tXFQo5Y+TInFdXl/82fHiqBlgQEgAAAACA4in1/VBh\nGIASKPWbP1A6wjDbh2HamvPSnFwx54rc/vTtnR5q5oEzc+n0S/P2Q9+eAYX+F/JYtG5drm9oyOyG\nhjy7C62RRlRWZlZdXc6rq8u0vfZKoVAoQpUAAAAAAPRnpb4fKgwDUAKlfvMHSkcYpuMwTKunlz2d\nL8/5cq6bd102btnY4XaH1x6eS6ZfkllTZqWqor/8Rf5Jc3NzHlq1KtctXZqbGhuzfPPmLvc5bPDg\nnF9fn7+pq8uBgwYVoUoAAAAAAPqjUt8PFYYBKIFSv/kDpSMM03UYptWSVUty9e+uzjWPXJOVG1Z2\nuN3YvcfmEyd8Ihcee2H2qt6rmwruWzZu3Zr/WL481y1dmv/36qvZuAsf8Wfus0/Or6/Pe2prs09l\nZRGqBAAAAACgvyj1/VBhGIASKPWbP1A6wjC7HoZptXLDynxn7nfylQe/kiWrlnS43T7V++SD0z6Y\njx7/0dQPrX+TBfddyzdtyi1NTblu6dLMWdlxiKjVoAEDcsaIETm/vj5/MWxYBg7of62nAAAAAADo\nXqW+HyoMA1ACpX7zB0pHGGb3wzDbDrFlY374xA9zxZwr8lTTUx1uV1VRlQuOuiCfPPGTmTBywh4W\nXB6eX7cu1zc05LqlS/OH9eu73L524MDMGjUq59fX59ihQ1MoFIpQJQAAAAAA5abU90OFYQBKoNRv\n/kDpCMPseRim1dbmrfnFs7/Il+7/Uu598d4OtyukkDMnnplLT7o0J4w9YY/PVw6am5vzwMqVuW7p\n0tzc1JQVmzd3uc+kIUNyfl1dzq2ry/6DBhWhSgAAAAAAykWp74cKwwCUQKnf/IHSEYZ582GYth54\n6YFcMeeK3P707WlOxx9rTz7g5Fx60qV5x6HvyIBC/24DtGHr1vz81Vdz3dKl+cXy5dnUxa8DhSSn\n7rtvzq+ry7tra7NXZWVxCgUAAAAAoM8q9f1QYRiAEij1mz9QOsIw3RuGafXMsmdy5Zwrc92867Jx\ny8YOt5tcOzmXTL8k50w5J1UV/eUvv2OvbtqUmxsbc93SpfndqlVdbj94wICcOXJkzq+ry9uGDUvl\ngP4dLAIAAAAAoH2lvh8qDANQAqV+8wdKRximZ8Iwrf646o+5+ndX55pHrsnrG17vcLsxe43JJ074\nRC6cemH2rt67R2rpaxauXZvrGxoyu6EhL6xf3+X2dQMH5py6upxfV5ejhg5NoVAoQpUAAAAAAPQF\npb4fKgwDUAKlfvMHSme7MMyn0r/CMFe2fNuTYZhWKzeszHfnfjdfefAreWXVKx1ut0/1Prn4uIvz\n0eM/mtF7je7RmvqKrc3Nuf/11zO7oSE/amzM61u2dLnPETU1Oa+uLufW1WVMdXURqgQAAAAAoDcr\n9f1QYRiAEij1mz9QOtuFYfqpYoRhWm3csjE3PnFjvjTnS3mq6akOt6uqqMr5R56fT03/VCaMnFCU\n2vqC9Vu25I5XX811DQ25c/nybO7iV4dCktOGDct5dXV518iRGVpZWZxCAQAAAADoVUp9P1QYBqAE\nSv3mD5SOMExxwzCttjZvzX88+x/50pwv5Z7F93S4XSGF/PeJ/z2XTr80J+5/YhEr7P2aNm7MTY2N\nua6hIY+sWtXl9kMGDMi7amtzXl1dThs2LBXaKAEAAAAA9Bulvh8qDANQAqV+8wdKp7m5Oddff33O\nP//8HJPk3lIXVCQzkjyWZPbs2Tn33HNTKGEw4sGXH8wVc67IbQtuS3M6/ig844AZuXT6pXnnYe/M\ngMKAIlbY+z29Zk1mNzRkdkNDXtqwocvt96uqyjl1dTmvri5H9vMwGAAAAABAf1Dq+6HWLQcAKKJC\noZD58+cnSd6SpLjro5TOW9IShpk/f35JgzBJcsLYE/KTs3+SZ5Y9ky8/8OX84PEfZOOWjTttd9+L\n9+W+F+/L5NrJuWT6JTlnyjmpqqgqQcW9z8Samlx+0EH5/PjxuWfFisxuaMgtTU1ZtWVLu9sv2bgx\nV770Uq586aUcVVOT8+rrc86oURldXV3kygEAAAAA6A884goAUGSPPPJIkmRqiesoptZrbb323mDC\nyAn5zunfyeKPL87/mvG/sk/1Pu1u91TTU3nfT9+X8V8bnyvnXJmVG1YWudLea0ChkFOHDcu1Eydm\n6fTpuXHSpLxj+PBUdLLP42vW5FPPP5+xDzyQ//b447mhoSFrOgjRAAAAAADAntAmCaAESr0sGFA6\nzc3NGTFiRF577bXMTXJsqQsqkrlJjksybNiwvPrqqyVfHaY9qzasynd//91c9cBVeWXVKx1ut3f1\n3rn4uIvzseM/ltF7jS5ihX1Hw8aNufGNNkq/X726y+2HVlTk3SNH5rz6+py6776p6IX/fQAAAAAA\nsOtKfT9UGAagBEr95g+UzgsvvJDx48enKsmqJP2l6c6GJHsl2ZRk0aJFGTduXGkL6sTGLRtz4xM3\n5oo5V2R+0/wOt6uqqMp5R56XS6ZfkgkjJxSxwr5l/po1mb10aW5obMzLGzZ0uf3Y6uqcO2pUzquv\nz+E1/aWRGAAAAABAeSn1/VBtkgAAiqixsTFJMjr9JwiTJNVpueak5QNwb1ZVUZULjr4g8y6el/83\n6/9l5oEz291u45aNufbRazPpG5Ny1s1n5YGXHihypX3D4TU1+ZeDD84LJ5yQXx11VC6oq8vQio4b\nKb28YUO++NJLOeLhhzP1kUfy1ZdeSsPGjUWsGAAAAACAvk4YBgCgiNatW5ckGVziOkqh9Zpb/w56\nuwGFAXnnYe/Mb//2t3ng/Q/kXZPelUJ2bt/TnObc/vTtmf5v03Py90/OHc/cka3NW0tQce9WUSjk\ntGHD8u+TJmXp9Om5ftKk/OWwYZ3+QvL71avzieefz5g5c/LOefNyU0ND1m3ZUrSaAQAAAADom4Rh\nAACKaP369UmSQSWuoxRar7mvhGHaOmHsCfnJ2T/J0x9+Oh849gOprqhud7v7XrwvZ9x0Ro745hH5\n/qPfz4bNXbcF6o9qKipybl1d7jzqqLx84om58uCDc1QnLZG2JPnF8uWZtWBB6ubMyfuffjp3v/Za\ntur4CgAAwP/P3p3HRV1vfxx/DZsgICoK7goq7uaCopilpWWWtlqp0e56cyu1e7Ptmt5yLU0tb2nm\nlmWaV1sstWwREwSX3AUFXFgFFZCd+f0x4U9lBlRgRuD9fDzmEXznzOdzhuDrwPfMOSIiIiJmqBhG\nREREROQ6+Xn6sXjAYqLGR/Ha7a9R3bm62bjDSYd5fuPz+M73ZdaOWVzIvGDlTMuPulWq8ErDhuzt\n0oV9/v5MbNiQuk6Wh4il5uWxNC6O3vv24fPnn0w5cYIj6elWzFhEREREREREREREbnUqhhERERGx\nImdnU3+UTBvnYQsFz9nFpfwPiarjVofpd08nZnwMc++ZS4NqDczGnU09y+Stk2n0QSNe3fIqZ1PP\nWjnT8qW9mxuzmjblVPfu/NS+PU95e1PVzvKvLDFZWfwnJoZWoaF0DQvjw9OnSczOtmLGIiIiIiIi\nIiIiInIrUjGMiIiIiBUVFIKUv0FBJVfwnCtCMUwB9yruTOg+gcixkXz+0Oe0qd3GbNzFrIvMDJ6J\nzzwfXtz4IkeSjlg50/LF3mCgb82arGjVivjAQD5v2ZI+NWpgKOIxoampjI2IoN7OnQz86y/WJiSQ\nmZdntZxFRERERERERERE5NZhMBqNRlsnISJS2SQmJuLl5XXVsYSEBGrXrm2jjETEWqKiovDx8cEJ\nSAUsD4OpWLIAdyAHOHnyJE2aNLFtQmXEaDTyQ8QPzNwxk1+jfy0y9sEWDzK5x2QCGwZaKbvy73Rm\nJqsTElgRH8+B6xiN5GFvz+NeXgR5e9PDwwM7Q1HlNCIiIiIiIiIiIiJSWmx9PVTFMCIiNmDrk7+I\n2I7RaMTT05OUlBTCgE62TshKwgB/oEaNGpw7dw5DJShK2HV6F7OCZ7H+8HqMWH7J3aNhDyb3mMwD\nfg9gZ1DjxuthNBrZl5bG8vh4VsfHE5+TU+xjmjg7E+TtTZC3N82rVrVCliIiIiIiIiIiIiKVl62v\nh+qv7SIiIiJWZDAY6NTJVAITZuNcrKnguXbu3LlSFMIABDQI4OvHv+boS0cZ0XkEVeyrmI3bcWoH\nD655kDaL2rB0z1KycrOsnGn5YzAY6ODuztxmzTjdvTs/tGvHYC8vXOws/3oTlZnJO9HR+IWE0C0s\njEVnznDuOopoRERERERERERERKT8UTGMiIiIiJX5+/sDlbMYpuC5VybNPZvz8QMfEz0+mik9p1Dd\nubrZuCNJR3hh4wv4zPNh5o6ZXMi8YOVMyycHOzv6eXqyunVr4gID+axFC3pXr05RJVe7UlP5x/Hj\n1A0O5uEDB1ifmEhWfr7VchYRERERERERERGRsqViGBEREREr69y5M1A5i2EKnntl5O3mzbS7phEz\nPoa598ylQbUGZuNi02J5deurNPqgEa9ueZWzqWetnGn5Vc3BgWfr1uXnDh2I6taN//j40KqIkUg5\nRiMbkpJ49OBB6gYHM+rYMYIvXECTZEVERERERERERETKN4NRf+kVEbE6W8/IExHbOnHiBE2bNsUJ\nuAiYH55TcWQB7kAOpufu4+Nj44xuDTl5Oaw5sIaZwTM5kHDAYpyjnSNB7YOYGDiRVrVbWTHDisFo\nNBKelsbyuDi+SEgg8TpGIzV1diaoTh2e8vamqYuLFbIUERERERERERERqVhsfT1UxTAiIjZg65O/\niNiW0WikQYMGnD17li+AJ22dUBn7AhgC1K9fn1OnTmEwFDXApvIxGo1sjtjMzOCZbI/aXmTswBYD\nmRw4mR6NelgnuQomJz+fn1JSWB4Xx/+Sksi6jl+FAqtVI8jbm8e9vKjp6GiFLCuW3NxcNmzYAMBD\nDz2Eg4ODjTMSERERERERERERa7D19VCNSRIRERGxMoPBwLBhwwBYZONcrKHgOQ4bNkyFMGYYDAbu\na34fvzzzC3++8CePtnoUA+a/ThuPbuT2z26nx9IebDy6kXxjvpWzLd8c7ey439OTL9u0Ib5HDz5t\n0YI7PDyKfEzwxYuMOn6cusHBPHrgABsSE8nO19f9em3fvp1BgwYxaNAgtm/fbut0RERERERERERE\npJJQZxgRERuwdSWkiNjemTNnaNy4MXl5eewH2tk6oTLyF9AesLe3JyYmhnr16tk6pXLh+LnjzNk5\nh2V7l5GVl2UxrmWtlkwKnMTQdkOp4lDRB26VnaiMDFYlJLA8Lo5jGRnFxns6OPCElxdB3t4EVKum\nIq8iDB8+nE8++eTyx4sXL7ZxRiIiIiIiIiIiImINtr4eqmIYEREbsPXJX0RuDY899hjr1q1jNLDQ\n1smUkdHAR8Bjbm6snT8fnnoKNGrmusWnxfNhyIcsDF3I+czzFuPqutVlfLfxjOg8Ag/nojudiGVG\no5HQ1FSWx8WxJiGBc7m5xT6muYsLQd7ePOXtjY+LixWyLD9yc3OpW7cuSUlJANSqVYvY2FiNShIR\nEREREREREakEbH09VMUwIiI2YOuTv4jcGn755Rfuuusu3ICzgLutEyplF4H6QBrwC9ALoHFj+Oc/\n4bnnoIo6mVyv1KxUluxZwtydczl18ZTFOHcnd0b6j2RcwDjqV6tvxQwrnuz8fDYnJ7MiPp6NSUlk\nX8evTT09PAjy9mZQ7dpUV9EXW7dupW/fvlAwiurCBbZs2UKfPn1sm5iIiIiIiIiIiIiUOVtfD7Wz\nyi4iIiIiUkivXr1o2bIlacA8WydTBuZhKoRpBdxZcDA6GkaNAl9f+OADuHTJZvmVJ+5V3BnfbTyR\nYyNZ8fAK2nmZH6yVmp3KrOBZ+Mzz4fn/Pc+hxENWzrTicLKzY2CtWqxt04a4wEAW+/lxu0fRXXd+\nv3CB4ceOUSc4mMcPHmRTUhI5+flWyvjW89VXX5k+6NkTbr8dgLVr19owIxEREREREREREaks1BlG\nRMQGbF0JKSK3jtWrVzN06FAcgXCgra0TKiV/AZ2BHGAVMMRSYO3a8MorMHo0uFe03jhlx2g08mPk\nj8zYMYPtUduLjB3gN4DJPSZze6PbrZNcBXciI4OV8fGsiI8nIiOj2Pjajo486eVFkLc3/u7uGAwG\nK2Rpe1eNSJo923Rw4kSNShIREREREREREakkbH09VJ1hRERERGxo8ODBDBgwgBzgWUzFI+Xdlc9l\n4MCBDP7uO+je3XxwYqJpbFLjxvDvf0NKivUSLccMBgP9mvXjl2d+YdeLu3is9WMYMF9ksenYJnp+\n1pMeS3vwvyP/I99YeTuVlAZfFxfebNKEY127EtyxI6Pq1aNGEYUdiTk5fHjmDF3Dw2kdGsp/oqOJ\nycy0Ysa2sX37dlMhjIcHdOhgunl4kJSUxPbt222dnoiIiIiIiIiIiFRwKoYRERERsSFeOeYKAAAg\nAElEQVSDwcDixYupUaMGYcBMWydUCmZg6nJTo0YNPv74Ywz9+8OOHbBtG/Tubf5BKSnw9tumopjX\nXjMVych16Vq/K2sHreXYmGOM7DySKvZVzMYFnwrmoS8fovXC1iwJX0JWbpaVM61YDAYD3T08WOTn\nR2xgIOvbtOHhWrVwLKLzy5FLl5hy8iSN//yT3nv3sjQ2lou5uVbM2nquGpFkb2+6aVSSiIiIiIiI\niIiIWInGJImI2ICt24KJyK1n5cqVBAUF4QiEAe1sndBN2g/4Y+oKs2LFCp566qnCQTt2wPTp8MMP\nlhdycYGRI2HiRKhXr4yyrZji0+JZELKAhaELScm03GmnjlsdxgeMZ6T/SDycPayYYcV2LieHrxIS\nWBEfz86LF4uNd7az46FatQjy9uaeGjVwsCv/71coNCKpc2fTHWFhGpUkIiIiIiIiIiJSSdj6eqiK\nYUREbMDWJ38RufUYjUYefPBBNm3aRCvgd8DT1kndoHNAT+AwpvFIGzZswFBElwx27zYVxWzYYDmm\nShV44QWYPNnUNUauW1p2GkvClzD3z7nEXIixGOfu5M5I/5GMCxhH/Wr1rZhhxXf80iVWxsezIj6e\nk9cxGsnb0ZHB3t4EeXvT0c2t6J+fW9jWrVvp27evaUTSunWmrjAAeXnw6KNw4QJbtmyhT58+tk1U\nREREREREREREyoytr4eW/7cdioiIiFQABeOS6tWrx2HgPiDV1kndgFRMOR8G6tWrZxqPVNyFfH9/\n+OYb2L8fnnwSzMVnZcGiRdCsmakoJiKiDLKvmNyc3BjXbRwRYyJY+fBK2nu3NxuXmp3KrOBZ+Mzz\n4fn/Pc+hxENWzrTial61Kv/28SEyIIDfO3RgeN26VC+iG0p8Tg4fnD5N57Aw2oWGMiMmhtPXUURz\nqyk0IqmARiWJiIiIiIiIiIiIlagzjIiIDdi6ElJEbl0HDx7kjjvuIDk5mTuBTYC7rZMqRirwAPAb\n4OnpyW+//Ubr1q1vfKGjR+Hdd2HlSlMHCXPs7GDwYHjtNbiZPSoxo9HIT5E/MWPHDH6J+qXI2AF+\nA5jcYzI9GvYot91JblWZeXl8e+4cK+Lj+T45mdxifh0zAHdVr05QnTo8UqsW7rf4aCGLI5IKaFSS\niIiIiIiIiIhIpWDr66EqhhERsQFbn/xF5NYWGhrK3XffTWpqKl2AH7h1RyYlYeoIsxtwd3dn27Zt\ndOnSpWSLnjwJM2bA0qWQk2M57tFHYcoU6NixZPtVQqFnQpkVPIt1h9eRb8y3GNe9QXcm95jMwBYD\nsTOoqWRpS8zO5suEBFbExxOSWnwvqKp2djxcqxZBderQp0YN7G/BQiWLI5IKaFSSiIiIiIiIiIhI\npWDr66H6i7aIiIjILaZLly5s27aNmjVrEgr0BP6ydVJm7AfuwFQI4+npyc8//1zyQhgAHx/4+GM4\ncQLGjgVnZ/Nx69ZBp04wYAD8+WfJ961EutTvwleDvuLoS0cZ5T8KZwfzX+Odp3fy8JcP03phaz4N\n/5Ss3CwrZ1qx1XZy4qUGDdjVuTNHunZlSqNGNK5SxWL8pfx8ViUk0G//fhru3MnEiAj2paVZMePi\nWRyRVECjkkRERERERERERMQK1BlGRMQGbF0JKSLlw6FDh+jbty9nz57FEXgTeBVwtHFeOcB7wDt/\nf1yvXj22bNlyc6ORrkd8PMydCwsXQnq65bg+feD11+GOO+AW7JhxK0tIT2BByAIWhCwgJTPFYlwd\ntzqMCxjHSP+RVHeubsUMK498o5HfL1xgRVwcaxMTuWhpZNgV2ru6EuTtzRBvb+oVUUxT1oodkVRA\no5JEREREREREREQqPFtfD1UxjIiIDdj65C8i5UdsbCwjR45k48aNAHQCPgfa2iifv4BngfC/Px84\ncCAff/wxdevWLfvNz52DefNg/ny4cMFy3O23m4pi7rlHRTE3KC07jSXhS5j751xiLsRYjHN3cmdE\n5xGM6zaOBtUaWDHDyiUjL4+N586xIi6OzcnJFFcWYwf0qVGDIG9vHq5dG1dznVnKULEjkgpoVJKI\niIiIiIiIiEiFZ+vroRqTJCIiInILq1u3Lhs2bGDFihXUqFGDcEwFMe8AF62Yx8W/9+yMqRCmRo0a\nrFy5kg0bNlinEAbA0xOmToXoaJg+3fS5OX/8Af36QUAAbNwIqv2+bm5ObozrNo6IMRGsfHgl7b3b\nm41LzU5l9s7Z+M7z5bn/PcfBhINWzrRycLG35wkvL75t356zgYF80KwZnd3cLMbnAz+lpBB05Aje\nO3bwzOHDbE1OJs9KPwPFjkgqoFFJIiIiIiIiIiIiUsbUGUZExAZsXQkpIuVTbGwsI0aMYNOmTQC4\nAUHAKKBdGe35F7AIWAmk/X3Mqt1gipKeDosXw6xZEBdnOa59e5gyxdSJwsqdMso7o9HIT5E/MTN4\nJj+f/LnI2Af8HmBy4GRub3Q7BnXkKVOH0tNZER/Pyvh4TmdlFRtf38mJod7eBHl707aIYpqSuO4R\nSQU0KklERERERERERKRCs/X1UBXDiIjYgK1P/iJSfhmNRr744gumTZvG4cOHLx/viako5hGgSgn3\nyALWYyqC+eOK461ateL1119n8ODBt1axQ0YGLF0KM2bAqVOW41q2hNdeg8GDQRfeb9jus7uZFTyL\nrw99Tb4x32JctwbdmBw4mQdbPoidQY0oy1K+0civ58+zPD6erxMTScsrbpASdHBz42lvbwZ7eVGn\nSknPFv/vukckFdCoJBERERERERERkQrN1tdDVQwjImIDtj75i0j5ZzQa2b59O4sWLeKbb74h7++L\n4E6YusR0vuLW7u/j5mRj6v4SdsVtP5Dz9/0ODg48/PDDjB49mjvvvPPWKoK5VnY2rFgB//kPnDhh\nOc7XF/75T3j6aSjFYoDKIjI5krk757J071IyczMtxvl5+jGx+0SCbgvC2cHZihlWTpfy8tiQlMSK\n+Hh+Sk7GbLmS0QiZpv9nBuDuGjUY4uXFA7VqUbWEXZPGjRvHkiVL4IEH4JVXru9Bs2fDd9/xwgsv\nMG/evBLtb0nVqlVv7fOWiIiIiIiIiIhIBWXr66EqhhERsQFbn/xFpGI5e/Ysn3zyCZ988glnzpwp\ndL8jUBdwAQpKEjKBDCCW/y98uVL9+vUZNmwYw4YNo169emWUeRnJzYU1a2D6dDhyxHJcgwYweTK8\n+CK4uFgvvwoiIT2BBSELWBCygJTMFItxddzqMC5gHCP9R1LduboVM6y8YrOy+CIhgRXx8exNS/v/\nOyIjTd/vZel6RiQV+HtUUlnav38/7dqV1SA5ERERERERERERscTW10NVDCMiYgO2PvmLSMVkNBqJ\niooiLCyM3bt3ExYWRlhYGCkplgsVAGrUqIG/vz+dO3e+fGvSpEn576aQnw/r18O0abBvn+U4b2/T\nBfmRI8HNzXr5VRBp2Wks3bOUOTvnEHMhxmKcm5MbIzqPYHy38TSo1sCKGVZuf6WlsSI+nlXx8Zz9\n9FP47LOy26xnT3jrreJHJBXIy4O334Y//ig29Ga98847vP7662W2voiIiIiIiIiIiJhn6+uhKoYR\nEbEBW5/8RaTyMBqNREdHk5iYSEZGBhkZGQC4uLjg4uJC7dq1ady4cfkvfCmK0QjffmsqigkJsRxX\nsyZMmABjxoCHh/XyqyBy8nJYe2gtM3fMZF+85eIjBzsHhrYbyqTASbTxamPFDCu3PKORTVFRjB81\niugffzQd7NABXn219L7fnZ3hRs8lV4xuKrELF+C99y4Xvw0aNIhPPvkED/08i4iIiIiIiIiIWJ2t\nr4eqGEZExAZsffIXEamUjEbYutVUFPPbb5bjPDxMBTHjxkGtWtbLr4IwGo1sObGFmTtmsu3ktiJj\n729+P6/2eJXbG91esQuybiFGo5EPP/6YiS+/TE5mJnh6wpQp0LGjrVMrmT17TKPRzp3D2dmZefPm\nMWzYMH1fiYiIiIiIiIiI2Iitr4eqGEZExAZsffIXEan0fvvNVBSzZYvlGFdXGDUKXnkF6tSxXm4V\nSNjZMGYFz2LtobXkG/MtxnVr0I3JgZMZ2GIg9nbXOWJHSuSvv/7iiSee4PDhw6ZuLkFB8PTT1z/i\n6FaRlweffw4rV4LRSKtWrfjyyy9p166drTMTERERERERERGp1Gx9PVTFMCIiNmDrk7+IiPxt1y5T\nN4lNmyzHODvDsGEwaRI0bGi93CqQEyknmBM8h6V7l5KZa3kkjp+nHxO7TyTotiCcHZytmGHllJ6e\nzrhx41iyZInpQPv28PrrUF5ejyQmmora9u8H4IUXXmDevHm4urraODERERERERERERGx9fVQFcOI\niNiArU/+IiJyjb17TUUx69aZximZ4+gIzz4L//wn+PpaNb2KIjE9kQUhC1gQuoDkjGSLcd6u3owL\nGMdI/5HUcKlhxQwrpy+++ILhw4eTlpYG1aqZvse7d7d1WkULDoYZM+DiRdzd3Vm8eDGDBw+2dVYi\nIiIiIiIiIiLyN1tfD1UxjIiIDdj65C8iIhYcOgTvvgurV0O+hbE+9vYwdCj861/QsqV186sg0rPT\nWbpnKXN2ziH6QrTFODcnN4Z3Gs74buNp6KGuPGUpIiKCJ554gvDwcNOBxx4zdURycrJtYtfKzoZP\nPoGvvwagc+fOrFmzhmbNmtk4MREREREREREREbmSra+H2lllFxERERGR8qB1a1ixAo4ehRdfNHWD\nuVZeHixfbop94onLI1rk+rk6uTImYAwRYyNY/chqOtTpYDYuLTuNuX/OxXe+L89seIYDCQesnGnl\n0axZM4KDgxk/frzpwNdfw5gxcOaMbRO70pkz8NJLlwthJkyYQHBwsAphREREREREREREpBB1hhGR\nSuXQoUMcPHiQ+Ph40tPTcXFxoXbt2rRq1Yp27dphb29vlTxsXQkpIiLXKSYGZs6ETz+FrCzLcQMH\nwuuvQ5cu1sutAjEajWw9sZUZO2aw7eS2ImPvb34/k3tMpmejnhgMBitlWLls2rSJZ599luTkZKha\nFV5+Ge6+27ZJbd0Kc+dCRgaenp4sW7aMBx54wLY5iYiIiIiIiIiIiEW2vh6qYhgRqfAOHz7MvHnz\n2LBhAwkJCRbjPDw8GDBgAGPGjKFLGV/MtPXJX0REblBsLMyZAx99BJcuWY67915TUcztt1svtwom\n7GwYs4JnsfbQWvKNFkZVAQH1A5jcYzIPtngQezvrFLNWJqdPn2bIkCH8/vvvpgP33WfqFOPiYt1E\nMjLgww/hhx8AuOOOO1i1ahUNGjSwbh4iIiIiIiIiIiJyQ2x9PVTFMCJSYaWmpjJ58mQ++eQT8vPz\nr+vd4wWnxMcff5z58+cXOkGXFluf/EVE5CYlJcH775suzqemWo6780544w246y5Q95KbciLlBHN3\nzmXpnqVk5GZYjGteszkTAyfy9G1P4+zgbMUMK77c3FymTp3KtGnTTK+RGjeGN98EX1/rJHDiBEyd\nCtHRGAwG3njjDd544w0cHByss7+IiIiIiIiIiIjcNFtfD1UxjIhUSCdOnOCBBx7gyJEjVxXBFHXK\nuzauQYMGbNy4kQ4dOpR6frY++YuISAmlpMCCBfDBB5CcbDmuWzdTp5j+/VUUc5MS0xNZGLqQD0M+\nJDnD8tfa29WbsQFjGeU/ihouNayYYcX3yy+/MHToUGJjY8HJCf7xDxgwoOy+p41G2LQJFi6E7Gzq\n1q3LqlWr6N27d9nsJyIiIiIiIiIiIqXO1tdDVQwjIhXOqVOnuP322zl9+vRVx41GY5HdYa6932g0\n4unpya+//krr1q1LNUdbn/xFRKSUpKbCxx/D7NlQxCg+OnY0FcU89BDY2VkvvwokPTudz/Z+xpyd\nc4g6H2Uxzs3JjeGdhjO+23gaejS0XoIVXEJCAs888wybN282HbjzTpg4EdzcSnejtDTTz9OvvwLQ\nr18/li9frtdIIiIiIiIiIiIi5Yytr4fqL/EiUqHk5OTw8MMPc+rUqauOG41G7OzsePLJJ/n+++9J\nSEggJyeHc+fOsW3bNl588UWcnJyu6hxjMBg4d+4cAwcOJLWoURgiIlJ5ubvDpElw8iTMmwf165uP\n27MHHn0U2rWD1ashN9e6eVYArk6uvNT1JY6POc7qR1bToY75zm1p2WnM/XMuvvN9eWbDMxxIOGDl\nTCsmLy8vvvvuO2bNmmUaU/Trr/DOO6W/0TvvmNa2t4dRowh/7TWmnT9PyMWLRXb4ExERERERERER\nEbmSOsOISIUyZcoU3n333UIdXry8vFi7di09e/a0+NgDBw7w8MMPExkZefnxBd1inn76aT777LNS\ny9PWlZAiIlJGsrLg88/h3XchKspyXLNm8K9/QVAQODpaLb2KxGg0svXEVmYGz2Tria1FxvZv3p/J\ngZO5o/EdRXaJk+vzySefMHz4cPD0hK+/Lt3FH3sMzp2DV16BBx646q6mzs4M8fZmqLc3LapWLd19\nRUREREREREREpFTZ+nqoOsOISIVx4sQJ5s6dW6gQxs3Nja1btxZZCAPQtm1bfvnlF+rUqXP5mMFg\nwGg0smLFCkJCQsosdxERqSCqVIHhw+HYMVi2DPz8zMdFRMALL5iKYj76CDIzrZpmRWAwGOjbtC9b\ngrYQNjyMJ9s+iZ3B/K833x//nl6f96Lbkm6sO7SOvPw8K2dbsYSGhpo+6N699Bfv1s3036NHC90V\nmZnJO9HRtAwJofPu3cw9dYozWVmln4OIiIiIiIiIiIiUeyqGEZEK47333iPrigsiBV1d5syZQ9u2\nba9rjQYNGrB06dJCbfiNRiPvlMUoABERqZgcHeGZZ+DQIVizBiz9OxQTA6NHg68vvP8+pKdbN88K\nolPdTnzx6BdEjIngpS4v4eLgYjYu5EwIj619jFYLW/HfsP+SmasipBuVm5vLN998Y/qkV6/S3+Dv\nNR3++APyLBcthael8UpkJA137uSuvXtZEhvL+Zyc0s9HREREREREREREyiWNSRKRCiElJYV69eqR\nnZ0NcLmYpU2bNvz11183vN59993Hjz/+WGhc0pEjR2jevHmJ87V1WzAREbGy/HzYuBGmTYOwMMtx\ntWvDyy+bCmSqVbNefhVM0qUkFoYs5MOQDzmXcc5inJerF+MCxjHKfxQ1XGpYMcPya+vWrfTt2xc8\nPGDdOrC3L90N8vLgkUfg4kU++/ZbTrZuzar4eCKvo3uSk8HA/Z6eDPHy4n5PT1xKOzcRERERERER\nERG5bra+HqrOMCJSIaxdu/aqrjBgGp/w8ssv39R6lh63cuXKm1pPREQqOTs7eOghCA2FH36AwEDz\ncYmJ8K9/QePG8PbbkJxs1TQrilpVa/FWr7eImRDDgvsW0KR6E7NxCekJTPl5Cg3fb8jLP75MzIUY\n6yZaDn311VemD3r2LP1CGDCt+fdoy50bN/JvHx+OBwSwq1MnxtWvj7ejo8WHZhuNfJOUxKBDh6gT\nHMxzR46wJTmZPL3/Q0REREREREREpNJRZxgRqRDuuecetm7delUnF2dnZxISEnBzc7vh9YxGIw0a\nNCAuLu6qYy1btuTQoUMlztfWlZAiImJjRiNs327qFPPzz5bj3N3hH/+ACRPgmn835Prl5ufy9aGv\nmbljJnvi9liMc7BzYHDbwUwKnEQ773ZWzLB8yM3NpW7duiQlJcHs2dC5c9lstHs3TJpErVq1iI2N\nxcHB4f9zyM/nl/PnWZ2QwLrERFKLGKVUoI6TE0/Urs1Qb2/83d0vv14UERERERERERGRsmPr66Hq\nDCMi5V5WVhZ//PFHoZFGd9xxx00VwoCpq0z//v25tl7w6NGjnDlzpsQ5i4hIJWcwQO/esG0b7NgB\n/fubj0tNhffegyZNTAUx+jfopjjYOfBk2ycJGx7GlqAt9PXtazYuNz+XFftX0P7j9vRf1Z/tUdsL\nvRaozLZv324qhPHwgA4dym6jjh2hWjWSkpL49ddfr7rLwc6OvjVr8lnLlsQHBrK2dWserlULpyIK\nXOKys5l35gxdw8PxCwnhrZMnOXbpUtnlLyIiIiIiIiIiIjanYhgRKfdCQ0PJzMwsdLx3794lWtfS\n46+9KCMiIlIigYHw3XembhgPP2w+JiMDPvgAfH1h9GiIirJqihWFwWCgj28ffgr6ifDh4QxuOxg7\ng/lfiX6I+IHen/cm4NMAvj70NXn5xXcgqehuakTSwYMwapTpdr3d9a4YlXR5TzNc7O15zMuL9W3b\nEhcYyKctWtC7enWK6vsSkZHB1OhoWoSE4L97N++fOsXZa0ZtioiIiIiIiIiISPmnYhgRKffCw8PN\nHu9cwtb9/v7+Zo/v2WN5vIKIiMhN69wZ1q+Hv/6CwYPBzsxL9exs+OgjaN4cnn8ejh+3fp4VRMe6\nHVn96GoixkQwpusYXBxczMaFng1l0NpBtFzYksW7F5ORk2HlTG8Nubm5fPPNN6ZPevUq/gF5ebBi\nBYwbB0eOmG5jx8LKlab7ivP3HuvXryc3N7fY8BqOjrxQty4/d+jAqe7dmdO0KZ2K6RAYlpbGy5GR\nNNi5k7v37mVpbCznc3KKz01ERERERERERERueSqGEZFyb//+/WaPt27dukTrNmvWDCcnp0LH//rr\nrxKtKyIiUqS2bWH1ajh8GJ591nwHjtxc+OwzaNkShgwxdd+Qm+JTw4f5980nZkIMb9/5Np4unmbj\nIpIjGPndSJrMa8L036aTnJFs5Uxt64ZGJCUkwCuvwNKlkJfH4MGDGTx4sKkIZskSmDgREhOLXqOI\nUUnFqV+lCi83bEiYvz+Hu3ThjcaNaersbDHeCPx8/jwvHD1KneBgHj1wgHWJiWReT9GOiIiIiIiI\niIiI3JJUDCMi5d6JEycKHXNxcaFevXolWtfOzo4mTZpc/txgMGA0Gs3uJyIiUur8/EwFLxERMHIk\nmCnQJD8fvvjCVEDz6KNgoVuaFK9W1Vq81estYibEsOC+BfhU9zEbl5CewOu/vE6j9xsxYfMEYi7E\nWDlT27juEUm//w4vvgj79uHm5sbnn3/OqlWrWLVqFcuWLcPV1RX27oUXXjDFWnKdo5KK09LVlak+\nPhwPCGBXp06MrV8fL0dHi/FZRiPrk5J47OBBvIODef7IEbYmJ5NnNN50DiIiIiIiIiIiImJ9BqNR\nf9UTkfKtadOmREVFXf7caDTStGlTjpfC6Ii77rqL7du3YzAYLq/t5OREZmZmidZNTEzEy8vrqmMJ\nCQnUrl27ROuKiEgFduYMzJ4NixdDRhGjevr3h9dfh+7drZdbBZSbn8u6Q+uYsWMGe+Isj0h0sHNg\ncNvBTAqcRDvvdlbM0Hpyc3OpW7euqTPM7NmmkV7XysyERYtg0ybANG7yiy++oFmzZleFHT9+nCFD\nhrB7927TgQEDYPRoMNe5ZfdumDSJWrVqERsbi4ODQ+k8n/x8fj5/ntXx8axPSiL1OjrA1HFy4kkv\nL4Z4eeHv7n75taGIiIiIiIiIiIiYZ+vroeoMIyLlXkJCwuWPjUYjBoOBOnXqlMra5tbJycnh/Pnz\npbK+iIjIdatfH95/H06ehFdfBTc383Hffw+BgdCnD2zfDqp9vykOdg480fYJwoaHsTVoK/c0vcds\nXG5+Liv2r6D9x+3pv6o/26O2U9Heb1DsiKSC7kV/F8JMnjyZHTt2FCqEAWjevDk7duxg8uTJpgOb\nNpkeGxlZeN0SjEoqioOdHffUrMmyVq2IDwzkq9ateahWLZyKKHCJy87mg9On6RoeTouQEN4+eZJj\nly6VWk4iIiIiIiIiIiJSulQMIyLlWk5ODunp6YWOe3h4lMr6ltZJTk4ulfVFRERumLc3vPceREfD\nW29B9erm47Ztg969TaNmNm9WUcxNMhgM3O17Nz8+9SPhw8MZ3HYw9gbzY4J+iPiB3p/3JuDTAL4+\n9DV5+cV3HCkPLI5IMhph3Tr4xz8gOpq6deuyZcsWZsyYgZO5sV5/c3JyYsaMGWzZssVUeBwdbeoO\ns3791d+npTQqqSgu9vYM8vLim7ZtiQsM5BM/P3pXr05RfV+OZ2Tw7+hoWoSE0CUsjPdPnSI2K6tM\n8hMREREREREREZGbozFJInJdsrOzOXbsGKdPnyY1NZVLly5RtWpV3N3dadCgAS1atMDR0dHqeSUn\nJ1OrVq2rxhgZDAYGDRrEmjVrSrz+5MmTmT17dqH1w8PDue222256XVu3BRMRkQrkwgXTeJq5cyEp\nyXKcv79pfNKAAWCnmviSOJlykvf/fJ9Pwz8lI9fyyKqmNZoyMXAiz9z2DC6OLlbM8GpGo5FLN9nF\nJDc3l6ZNm3Lu3DmYPt3UrQVM33dz50JoKAD9+vXjo48+uuHXMomJiYwcOZIff/zRdKBrV5gwwdSF\nBmDPHpgyBU9PTyIjI296VFLVqlVvaLTR6cxMvkxMZFV8PHvS0oqNtwN6V6/OUG9vHqldG49SGukk\nIiIiIiIiIiJSXtn6eqiKYUTEol27drFhwwZ++OEHDh48SF6e5Xc329vb06ZNG/r378+DDz5IQECA\nVXKMi4ujXr16hYpVhg4dyvLly0u8/pQpU3j33XcLrb9z5066du160+va+uQvIiIVUHo6/Pe/MGsW\nxMZajmvXDqZMgcceu7rLh9ywpEtJLApdxIchH5J0yXIhUu2qtRkbMJbRXUZT06WmFTM0SU9Px83S\nWK1KIi0tDVdX15t67OH0dL5ISGBVfDwnMjOLja9iMHC/pydDvb3pX7Mmzvo5ExERERERERGRSsjW\n10P1llCRUhIREcGaNWuYOHEid955J9WqVcPOzs7izdfX19YpW7RmzRr8/f3p3r07M2bMYP/+/eTn\n52MwGCze8vPz2b9/P++99x7du3enS5cuZdbO/ko5OTlmj9/su4avZanbjaV9RUREbMbV1dRR48QJ\nWLgQGjUyH/fXX/Dkk9CmDSxfDvo37abVqlqLN+98k+jx0SzsvxCf6j5m4xIvJVALgxQAACAASURB\nVPLGL2/Q6P1GjN88npgLMVbOVEqilasrU318iAgI4M9OnRhTvz5eRXREzDIaWZ+UxKMHD1InOJgX\njhxhW0oKeXofioiIiIiIiIiIiNWoM4zITTh16hShoaHs3r2b0NBQwsLCOH/+/FUxxbVhb9y4MSdO\nnCjLNG/YkSNHGDFiBL///rvZ/Is6XVwbXxDbq1cvPv74Y/z8/Eo32b+dOXOGhg0bFurcEhQUxLJl\ny0q8/ptvvsm0adMKrf/HH3/QvXv3m17X1pWQIiJSCWRnw8qV8J//QGSk5TgfH/jnP+GZZ6BKFevl\nVwHl5uey/vB6ZuyYQXhsuMU4e4M9g9sNZlLgJNp7ty/zvK7qDDMRcCrzLW8N2cBs04cl6QxjTm5+\nPtvOn2d1fDzrk5JIK6KDYoG6Tk486eXFEC8vOru739DYJhERERERERERkfLG1tdDNchcpBgJCQmE\nhoZeVfySmJh4VUxBd5RrXVs8cmVBxa1m/fr1PPvss6SlpZnN09JzvNK18QDbt2/H39+f5cuX89BD\nD5V63k5O5q/m5Obmlsr6ltaxtK+IiMgtw8kJnn8enn4avvwSpk+Hw4cLx508CSNGwDvvwOTJ8OKL\n4OJi/XwrAAc7Bx5v8ziDWg/il6hfmLFjBj9F/lQoLs+Yx8r9K1m5fyX9mvVjcuBkejXpZZ3iCCcq\nTzFMGXKws+PemjW5t2ZNPsrL49tz51gdH8/3ycnkWHitH5udzfunT/P+6dP4ubgwxNubIV5eNK9a\n1crZi4iIiIiIiIiIVHwakyRSjHvuuYcBAwYwdepUvv/+e5KSkgqNCAJTIci1t/Ji4cKFDBo0iPT0\ndAwGw1X5FzxHc8/v2tu1X4+Cx6elpfHoo4/y0UcflXruzs7OZo9nZGSUyvqXLl0ye9xFFwlFRKS8\ncHCAoUPhwAH4+mvo0MF83OnTMHasqVPMrFmQmmrdPCsQg8HAXT538eNTP7JnxB6GtBuCvcHebOzm\niM3ctfwuun7albUH15KXX3yHEbm1VLW353EvLza0a0dcYCD/9fOjV/XqFFXadCwjg7ejovALCaFr\nWBgfnDpFXFaW1XIWERERERERERGp6FQMI1KMGy18uTb2Vvf5558zduzYy59f+1yuLXQp6nZlAcyV\naxXcN2bMGFauXFmq+bu7u2NvX/jiUmopXcCztE6NGjVKZX0RERGrsbODRx+F8HD49lsICDAfFx9v\n6hDTpImpW8w1oyDlxnSo04FVj6wiYmwEY7uOpaqj+S4gu8/u5vGvH6fFghZ8FPoRGTmlU9gr1lXT\n0ZFh9erxS4cORHfrxixfXzoUjKiyIDQ1lQmRkdTfuZO++/axLDaWC6XU5VBERERERERERKSyUjGM\nyHUoKOow1/HFXLHMlY+5lYWEhDB8+PDLn5srhCn4ODAwkAULFhAeHk5ycjI5OTkkJyeze/du5s+f\nT0BAQKHimSvXNBgM5OfnM2zYMMLCwkr1edSsWfOqz41GI0lJSaWytqV1rt1TRESk3DAY4P77YedO\n2LIF7rzTfFxyMrz5JjRuDK+/DqX0b2tl1aR6E+bdN4+Y8TFM7TWVWlVrmY2LTIlk9PejafxBY6b9\nNo3kjGQrZyqlpaGzMxMbNWKPvz8Hu3Th9caN8bXQ1RAgH9iaksJzR4/ivWMHjx04wDeJiWTmqVuQ\niIiIiIiIiIjIjTIYy8MVexEb6tixI/v27Suy04u5H6Mri0muPFYQ36RJE06cOFG6yd6A1NRUbrvt\nNqKjoy/nVKAgd4PBgJ+fHx999BG9evUqds2tW7cyevRoIiMjLx+7tlsMgI+PD3v37sWtmHfJXq9O\nnTqxd+/eq76+derU4ezZsyVeu1u3boSEhFy1tqenJ4mJiSVaNzExES8vr6uOJSQkULt27RKtKyIi\nclN+/x2mT4cff7QcU7UqjBoFr7wCdetaL7cK6lLOJT7f+zmzd87mRIrl14Sujq682OlFJnSbQOPq\njW9qr/T09P9/3fUa4HRTy5Q/2cB/TB+mpaXh6upq03TA9Fpy18WLrEpI4MuEBBJzcop9jIe9PY/V\nrs0Qb2/urF4d+3LSgVJERERERERERCo3W18PVWcYketwbceXa29Xdoaxs7PDz8+PO+64o9BjbyVv\nvPEGUVFRgOVCmL59+xISEnJdhTAAffr0Yffu3fTu3btQIdCV3XVOnjzJ22+/XRpPA4AmTZoUOpaQ\nkEBWVlaJ1z558mShLjc+Pj4lXldEROSW0rMnbN4Mu3bBwIHmYy5dgjlzwMcHxoyBU6esm2MFU9Wx\nKqO6jOLYS8f48rEv6Vy3s9m49Jx05u2aR9P5TXlq/VPsi9tn5UylNBkMBrp5ePBh8+ac7d6dze3b\nE+TtjZuZsZ8FLuTlsSQujrv37aPRzp28EhFBWGpquehEKSIiIiIiIiIiYisqhhG5DpYKXwwGAz4+\nPgwaNIgZM2awbds2UlJSOHLkSKkWe5S2w4cPs2jRokKFOld2swkMDGTDhg24u7vf0NrVqlVj48aN\ndO3a9apxSdfu8eGHH3L06NGSPZG/tWjRotAxo9HI8ePHS7TuxYsXC3WAKeiWIyIiUiF17Qr/+x/s\n3QuPP24aqXStrCxYsACaNoVhw+CKjnBy4+zt7Hm8zeOEDgtl29PbuLfpvWbj8ox5rPprFR0Wd6Df\nyn78fPJnFUOUcw52dtxbsybLW7UiPjCQNa1bM9DTE8ciiunPZmcz9/Rp/MPCaBUSwtSoKCIuXbJi\n1iIiIiIiIiIiIuWDimFErkNB4UvDhg156KGHmDZtGps3byYpKYnIyEjWrFnDxIkT6dWr1w0Xj9jC\n22+/TW5uLmB+jJGnpydffvklzs7ON7V+1apV+eqrr6hevfpVa195wSY3N5epU6fe1PrX6tixo9nj\n+/aV7J3Te/bsuaH9REREKozbboMvv4RDhyAoCMx1rcjJgU8/hRYt4Omn4fBh6+dZgRgMBu7yuYvN\nT21m74i9DG03FHuD+W4hP0b+yN3L76brp11Ze3Atefl5Vs5WSltVe3ue8PLif+3aERcYyGI/P+70\n8CjyMUczMngrKormISEEhIUx7/Rp4kqhM6KIiIiIiIiIiEhFoGIYkWKMHTuWTZs2ERcXR3R0NOvW\nreNf//oXffv2pUaNGrZO74adPHmS9evXmx3fVNDJZfr06dSrV69E+zRq1Ih///vfZt+xXNAdZu3a\ntcTExJRoH4CuXbuaPb5z584Srfvnn3/e0H4iIiIVTsuWsHw5HD1q6gLj6Fg4Ji8PVqyANm1M3WRK\nWIwqcFud21j5yEoix0YyLmAcVR2rmo3bfXY3j3/9OH4L/Pgo9CMycjKsnKmUhZqOjgyvV4/tHTsS\n060bM3196eDmVuRjQlJTGR8RQf2dO7ln3z6WxcZy8e/idxERERERERERkcpIxTAixXjuuefo378/\ntWvXtnUqpWLBggXk5ZnePWyuK0zz5s0ZNmxYqew1evRofH19r9rjyuKYvLw8Fi5cWOJ9mjRpQpMm\nTS5/XlBss2XLlhKta+7xVatWpXv37iVaV0REpNxp2hT++1/TSKQxY8Bc9zijEdauhQ4dYOBACAmx\nfp4VTOPqjfmg3wfEjI9haq+p1Kpay2zciZQTjP5+NI0/aMw7v77DuUvnrJyplJWGzs5MatSIPf7+\nHOzShSmNGuFTRPfGfGBLSgrPHT2K144dDDp4kA2JiWTl51svaRERERERERERkVuAimFEKpH8/HzW\nrFlTZFeYl19+2ez9N8Pe3p6xY8cW2R1m9erVpbJX//79C+0TERHB/v37b2q9xMREfv3116uKeAwG\nA3369MHBwaHE+YqIiJRLDRvC/Plw8iRMnAiurubjNm2CgAC49174/Xfr5lgBeVb15I073yBmfAyL\n+i/Ct4av2bjES4m8uf1NGn3QiHE/jCPqfJR1E5Uy1drVlWm+vkQGBBDcsSMv1a9PbXPdmv6WZTTy\ndWIiDx88iPeOHbx45Ai/pKSQZ+a1uYiIiIiIiIiISEWjYhiRSuTnn38mNjYWMN8VxtnZmaFDh5bq\nns888wxOTk5X7XVl0crZs2fZvn17ifcZMmSI2eOLFy++qfU+/fTTyx10rmcfERGRSqVOHZg1C6Ki\n4PXXoVo183E//QR33AF33glbt5q6x8hNc3F0YVSXURx76RhfPfYVnet2Nht3KecS80Pm02x+M4au\nH8r++JsrDpZbk8FgoLuHBx82b86Z7t35oV07nvL2xtXO8q/3F/LyWBIXx1379tFo505eiYggPDXV\nbNG6iIiIiIiIiIhIRaBiGJFKZNOmTWaPF3Q9uf/++3G19A7vm+Th4cF9991X5B/aLeV1IwIDA2nd\nuvVVRT5Go5Fly5Zx6tSpG1orNTWVefPmFeqQ4+XlxYMPPljiXEVERCqMWrXgnXcgOtr035o1zcf9\n9hv07Qvdu8O336oopoTs7ewZ1GYQocNC+fnpn+nXrJ/ZuDxjHqv/Wk3gkkArZyjW4mhnRz9PT1a0\nakVCjx580aoVAzw9cSii0+PZ7Gzmnj5N57AwWoWE8E5UFJEZGVbMWkREREREREREpOypGEakEtm6\ndWuRI5Duv//+Mtm3qHWNRiNbtmwplX0mTZpU6FhmZiYjRoy4oXVeeeUVEhISLn9eUCw0bty4y11u\nRERE5ArVq5s6xERHmzrGeHubj9u1CwYMgE6dYN06yM+3bp4VjMFgoLdPb34Y+gN7R+zlqfZPYW+w\nt3VaYiNV7e150tubje3aERcYyMd+ftzh4VHkY45mZPBmVBTNdu2iW1gY80+fJj4720oZi4iIiIiI\niIiIlB0Vw4hUEnFxcRw+fBjAYpeWPn36lMneffv2LXSsoMAE4ODBg8THx5d4n6CgINq3b1+oO8yP\nP/7I+PHjr2uNOXPm8OmnnxYqGmrQoAHjxo0rcY4iIiIVmpsbTJwIJ0/C/PnQoIH5uL174bHHoG1b\nWLUKcnOtm2cFdFud21jx8Aoix0YyPmA8ro6l2+1PyhdPR0dG1KvHrx07Et2tGzN8fbmtmA6Qu1JT\nGRcRQb3gYO7dt4/P4+K4qJ9NEREREREREREpp1QMI1JJhISEFDp2ZcFHw4YNqV+/fpns3bhxY+rW\nrVtozyuFhoaWeB87OzsWL16Mg4PD5WMF+82fP5/+/fsTGRlp9rGxsbEEBQUxadKkq3IsKNpZsGAB\nLi4uJc5RRESkUnBxgTFjICIC/vtf8PExH3f4MDz1FLRsCUuWgDpSlFjj6o15v9/7xEyI4Z3e71C7\nam1bpyQ21sjZmcmNGrG3SxcOdOnCa40a0cTZ2WJ8PvBTSgrPHjmCd3Awjx88yP+SkshSJycRERER\nERERESlHVAwjUkmEh4ebPV5Q7NGpU6cy3d/f399iRxqAPXv2lMo+AQEBvPfeexiNxqv2MxgMbN68\nGT8/P3r27MmECROYOnUqEydOpG/fvjRu3JhVq1aZLYSZMGECAwYMKJX8REREKpUqVWDYMDh6FD7/\nHFq0MB8XGQkvvgjNm8OiRZCZad08K6CaLjV5/Y7XiR4fzQf9PrB1OnKLaOPqynRfX04EBLCjY0f+\nUa8etRwdLcZn5uezNjGRhw4coE5wMMOOHmV7Sgr5RbyuFxERERERERERuRWoGEakkti7d2+R97dv\n375M9y9u/eLyuxEvv/wyr7766uUxSVeOTQLYsWMH8+bN4+2332bu3Lls27aNvLy8y/cXPMZgMBAU\nFMTs2bNLLTcREZFKydERnn4aDh6EL7+Edu3Mx8XEwD/+YeokM3cupKdbN88KyMXRhRc7vWjrNOQW\nYzAYCPTwYIGfH2e7d+f7du0Y6uWFq53lPxGcz83l09hYeu/bR6OdO5kUGcme1NQiC95FRERERERE\nRERsRcUwIpXEsWPHLI4oAmjevHmZ7t+sWTOL9xmNRo4fP16q+7377rssWrQIZ2fnq4piCopcrr1d\neT+Ag4MDb7/9NsuWLSvVvERERCo1e3t4/HHYuxc2bAB/f/NxcXHwyivQpAm8+y5cvGjVNEUqE0c7\nO+7z9GRl69bE9+jBF61a8YCnJw5F/O5wJjub2adO0SksjNahoUyLiiIyI8OKWYuIiIiIiIiIiBRN\nxTAilURUVFSR9xdVrFIaLK1fUKBTXH43Y8SIERw4cIBHHnkEe3t7s4Uv5gpk7rnnHnbv3s0bb7xR\n6jmJiIgIYGcHDz4IISGweTP06GE+LikJXnsNGjeGt96C5GTr5ilSybja2/Oktzeb2rUjLjCQj5o3\np6eHR5GPOXLpEm9ERdFs1y66h4fz4enTxGdnWyljERERERERERER81QMI1IJxMfHk5mZCWCxjXm9\nevXKNAdz61+ZS3p6OklJSaW+r6+vL2vXriUyMpI5c+YwcOBAmjdvjru7Ow4ODri5udGkSRP69evH\n9OnTOXjwIJs3by7zsVEiIiICGAxw773w+++wfTvcfbf5uPPnYepUU1HMq69CQoJV0xSpjDwdHRlZ\nvz6/dexIdLduvOfrS3tX1yIf8+fFi4yNiKB+cDD99u1jeVwcF3NzrZSxiIiIiIiIiIjI/zMYNeBb\npEz8+uuv9O7d+3InEvj/LihGo5EmTZpw4sQJq+SyZ88eOnfufFUuBfkUdEXJzMzE0dGxzHLIyMjA\n1dW1yBzCw8O57bbbyiyHW0liYiJeXl5XHUtISKB27do2ykhEROQWsXMnTJ8O331nOcbFBYYPh0mT\noH596+VWTqWnp+Pm5mb65DXAyabpWE828B/Th2lpabgWU8gh1+dAWhqrExJYHR9PdFZWsfHOdnYM\n9PRkiLc399WsiZOd3pMjIiIiIiIiIlIZ2Pp6qP4KJVIJnDt3rtCxgsIcgGrVqpVpIQyAi4vL5Ysw\nV+59pWSNPhAREZHu3eHbbyE8HB55xHxMRgbMmwe+vjByJJTBuEURMa+tmxv/8fXlZLdu/NGxI6Pr\n1aNWEb9LZObn81ViIg8dOECd4GCGHz3K9pQU8vW+HBERERERERERKUMqhhGpBMwVw1ypWrVqVsmj\nuH2Ky1NEREQqkY4dYd06OHAAhgwBc90ksrNh8WJo1gyeew6OHbN+niKVlMFgoIeHBwv9/DjbvTvf\ntWvHUC8vXIvo/JKSm8snsbH03rePRjt3Mikykr2pqRZHuYqIiIiIiIiIiNwsFcOIVALnz583e7zg\nj87u7u5WyaO4fVJSUqySh4iIiJQjbdrAqlVw5Ag8/zw4OBSOycuDZcugVSsYPNhUQCMiVuNoZ0d/\nT09Wtm5NfI8erG7Vivtr1sTBQkdIgDPZ2cw+dYqOYWG0CQ1lWlQUJzIyrJi1iIiIiIiIiIhUZCqG\nEakEMor5o7Krq6tV8nBzcyvyXZ+ZmZlWyUNERETKoebNYckSiIiAUaPAyalwTH4+rFkD7dqZRiyF\nhVk/T5FKztXensHe3nzbvj2x3buzqHlzbvfwKPIxhy9d4o2oqP9j777Do6rTNo5/Jz2EUEMKNQGk\ng5SgEIpYEAtiA6UqiqCICyJE2dd1XdfGCoKIoICNrqiAsioKCoiG3qWXUCSkQ0IKSSaZ948hLGUm\nCZCck2Tuz3XNZXLmmTn3icm5mDnP/B4abNhAx61b+eCvv4jPzjYosYiIiIiIiIiIlEdqhhFxATk5\nOU7vs1gseDj6hHUJKGw/2XrDW0RERApTrx5Mnw7R0TB6NPj6Oq5bsgTCw+GeeyAqytiMIgJAgJcX\nw2vVYm2bNhzt0IG3w8JoWUgj/vrUVP526BA1o6K4a8cO5sbGctZqNSixiIiIiIiIiIiUF2qGEXEB\nhTWZqBlGREREypyaNWHSJDh6FMaNg4oVHdf9+CN06gS33QarVkEBq9SJSMmp5+PDuHr12Nm+PTvD\nwxlXty51vb2d1ucCP50+zWP79hEUFUXf3bv5LjGR7Lw840KLiIiIiIiIiEiZpWYYEReQV8gbxu7u\n7obkKGw/heUUERERuUJgILz9Nhw7Bv/6F1Sp4rhu1Sp7Q0znzvYGGTXFiJimZcWKvF2/PtEdOrC2\ndWuG16xJ9QIa5zPz8vgyIYH7//yT4Kgont6/n9/OnCFPf8ciIiIiIiIiIuKEmmFEXEBhK7JYDVp2\nvLD9eHp6GpJDREREyqFq1eDVV+1NMePHQ40ajuuiouyjk9q3h6VLQc24IqZxs1joXKUK0xs14lRE\nBP9t2ZL+gYFUcHP+VsVpq5WZp05xy/bt1Fu/nhcPH2ZHWho2NcaIiIiIiIiIiMhF1Awj4gK8vLwK\nvN+oZpicnJwC71czjIiIiFy3SpXgpZcgOhomT4aQEMd1W7bAgw/CjTfCF19Abq6xOUXkEp5ubtxb\nvTrzmzUjLiKC+U2bcm+1anhYLE4f81dWFhNOnKD15s202LSJN48dIzoz08DUIiIiIiIiIiJSWhW8\nXISIlAsFNcPYbDays7MNyVFYM0xhTTvlXXp6OhUqVLimx/r5+RVzGhERkTLOzw+efx6eeQY+/9y+\nWsyxY1fW/fkn9OtnX1Xm73+HAQNADboipqro4UH/oCD6BwWRkJ3N1wkJzI+L44/UVKeP2ZORwT+i\no/lHdDQdK1ViQFAQfWrUINDFX2OIiIiIiIiIiFyv9PR0Qx9XXNQMI+ICnDVKWCwWbDYbaWlphuQ4\ne/YslgI+2VmxYkVDcpRWYWFh1/xYLQsvIiLihI+PvSFmyBCYNw/eegsOHbqy7sABeOIJeO01GDcO\nBg8Gb2/D44rIpWp4eTG8Vi2G16rF0cxMvoiPZ358PH8W8GbKutRU1qWmMurgQbpXq8aAwEDuDwjA\nv5DxsSIiIiIiIiIicqWyeg1XY5JEXEC1atUKvD+1gE9YFqfC9lNYThEREZFr5ulpb3bZuxcWLIDm\nzR3XHT1qb55p0ACmTIGMDENjiohzob6+jKtXj13t27MzPJyX6tShbgFNa7nA8uRkBu3bR1BUFP32\n7GFZYiLZeXnGhRYREREREREREVPoY1EiLqB69eoF3n/mzBlDcqSkpBR4f2E5y7vo6Ghq1KhhdgwR\nEZHyzcPDPhbp0Udh6VJ44w3Ytu3KupMn7WOW3noLxoyB4cPB39/4vCLiUMuKFRlfsSJv1a9PVEoK\n8+PjWRQfT7LV6rA+My+PL+Lj+SI+nmoeHvSpUYP+QUF0rlwZtwJWrxQRERERERERcXXXOmUkISHh\nuiZjXK9y2QwTExPDypUri1TbtGlT2rdvX8KJRMwVEBBwxTabzXZhZFFWVhapqalUqlSpxDKcPn2a\n7OzsC6OZiprTlfj5+TkdaSUiIiLFzM0NHnoIHnwQfvwRXn8d1q+/si4+Hl56CcaPtzfH/O1vULWq\n8XlFxCE3i4XOVarQuUoVpjRsyM/JySyIj+fbxEQynKwAk2y1MuPUKWacOkUdb2/6BQbSPyiIVn5+\nBY51FRERERERERFxRdd6/TLD5FW3y2UzzNdff83o0aOLVLt69eqSDSNSCtStW7fQmri4uBJthomL\niyu0pk6dOiW2fxERERGHLBa45x64+25YtcreFOPoNcLp0/Dqq/Duu/Dcc/bGGK3oJlKqeLm50TMg\ngJ4BAaRZrXyblMSCuDh+Sk4m18ljTmRl8c6JE7xz4gTNK1Sgf1AQ/QMDCfX1NTS7iIiIiIiIiIgU\nLzezA5SE7du3Y7PZCr117NiRLl26mB1XpMT5+fldGEHk7JOOx44dK9EMR48evWLbxVkCAwPx1RvO\nIiIiYhaLBW67zd4Qs3Yt3HWX47rUVPvopNBQ+/ikU6cMjSkiRVPRw4MBQUF836oVpyIimHbDDUQU\n0vy/OyODl6OjCduwgU5btzLt5EkSsrMNSiwiIiIiIiIiIsWpXDbDHDhwALBfaHd0y7/v0UcfNTOm\niKHCwsKcjicCOHjwYInu/9ChQw63549rMnNenIiIiMglOne2j07atAnuv99xTUYGTJoEYWH2lWKO\nHzc2o4gUWQ0vL56tVYs/2rblyM0382ZYGM0qVCjwMVGpqTx38CAhUVHcs3Mn8+PiSLNaDUosIiIi\nIiIiIiLXq1w2wxw/fvxC08vlq8FcrFevXmbEEzFF8+bNC7x///79Jbr/wp6/sHwiIiIihgsPh6VL\nYccOePRR++oxl8vKgmnToEEDeOopcNIALCKlQ5ivL/9Xrx5/tm/PjvBwXqxThzre3k7rc4Efk5MZ\nuHcvgVFR9Nuzh/8mJpKdl2dcaBERERERERERuWrlshkmMTHR4faLR7IEBARQr149oyKJmK5t27YF\n3r9t27YS3f/WrVsLvL9NmzYlun8RERGRa9aqFXzxBezZA489Bu7uV9ZYrfDJJ9C4MQwaZK8VkVLL\nYrHQqmJF/tOgAUc7dOC31q15OiSEah4eTh+TmZfHF/Hx3Pfnn9SMimL4gQOsPXOGvAJW4BQRERER\nEREREXOUy2aYnJwcp/flj2TRKhTiapw1w1gsFmw2G9u3by9wjNL1yM3NZceOHZc0pF1OzTAiIiJS\n6jVpArNnw4EDMGwYeHpeWZOXB/PmQYsW0KcPbN9ufE65wnf7viM3L9fsGFJKuVksdKlShY8aN+ZU\nRATftWhB38BAfN2cv2WSZLXyUUwMXbdvJ2z9esYdPszOtDQDU4uIiIiIiIiISEHKZTOMn59foTWh\noaElH0SkFAkPD8fHxwfgkjFi+dLS0tiyZUuJ7Hvjxo1kZGRcss+LG2N8fX0JDw8vkX2LiIiIFLv6\n9WHGDDhyBEaOhPP/xrqEzQZffw1t2kCvXrBhg/E55YL+i/vTdFpTZmyeQWZOptlxpBTzcnPjvoAA\nFjZrRnxEBHObNOHuatVwsB7UBcezsvjPiRPcuHkzLTdt4u1jxziaqd8zEREREREREREzlctmmIoV\nKxZa4+/vb0ASkdLD29ubTp06Fbj6y4oVK0pk3ytXrnS4PX+lpi5duuDp6JPVIiIiIqVZ7dowZQpE\nR0NkJDhryl+2DDp0gDvvhN9+MzajXHAw+SDPfP8MoVNCeeO3N0jKSDI7mAoeUgAAIABJREFUkpRy\nFT08GBgczA+tWhETEcEHN9xARKVKBT7mz/R0/i86mrANG+i8dSvTT54kMTvboMQiIiIiIiIiIpLP\nZZthilIjUt7ceeedTu+z2WwsXry4RPb79ddfF3h/9+7dS2S/IiIiIoYIDoZ33oFjx+CVV6ByZcd1\nK1bALbdA167w88/21WPEcPHp8byy6hXqvleXkT+OJPp0tNmRpAwI9PJiRK1a/NG2LUduvpk3w8Jo\nVqFCgY/5IzWVEQcPErJuHffu3MmCuDjSrFaDEouIiIiIiIiIuLZy2QwTEBBQ4OoXANn6ZJa4oIcf\nfviKbfmrswBs3bqVgwcPFus+d+/eza5du7BYLA5HJFksFnr37l2s+xQRERExRfXq8O9/w9Gj8MYb\n9u8dWbsWevSwrxazbJmaYkySkZPB1I1TaTi1IX2/7suWmJIZGSrlT5ivL/9Xrx5/tm/P9vBwXqxT\nh9re3k7rrTYbPyQnM2DvXoKioui/Zw/fJyWRk5dnYGoREREREREREddSLpthGjVqVGhNenq6AUlE\nSpf69evToUOHSxpgLjd16tRi3eeUKVMcbs/PEBERQd26dYt1nyIiIiKmqlIFXn7Z3hQzcSIEBTmu\n27gRevWCNm3gq69AF8ZLzLd9v6V7fcerEebZ8vhy95eEzwrnttm3sfzQ8kI/XCEC9sb+GytW5D8N\nGnCsQwfWtG7NsJAQqnp4OH1MRl4eC+Pj6blrFyFRUTx74AC/nzlDnn7nRERERERERESKlcs2w8TF\nxRmQRKT0efLJJx1uz1+55bPPPiu2v4+TJ08yb948p403AE888USx7EtERESk1KlYEcaMgehomDoV\natd2XLdjBzzyCLRoAfPmgcaoFLvb69/Oz4N+ZtvT2xjQcgDuFneHdauOruLu+Xdz40c3MmfHHLJz\ntaKoFI2bxULXKlWY0bgxsRERfNeiBY/WqIGvm/O3XZKsVj6MiaHL9u3UX7+evx85wq60NANTl09W\nq5Wvv/6ar7/+GqvOpyIiIiIiIiIuq1w2wzRu3LjA+202G4cPHzYojUjpMmjQIAIDA4H/jSu6+JOv\nGRkZjBs3rlj29eKLL3Lu3LlL9nFxY0xQUBADBw4sln2JiIiIlFq+vvDcc3D4MMyaBfXrO67buxcG\nDYLGjeHjj0GjXYtd6+DWzHtoHkdGHWF0h9H4efo5rNsVv4vHlz5O/Sn1mRg1kdSsVIOTSlnm5ebG\nfQEBfNG8OXEREcxp0oS7qlXDcQuW3bGsLMYfP06rzZtptWkT448d49j511JydVavXk2fPn3o06cP\nq1evNjuOiIiIiIiIiJikXDbDREREOL0v/0L8wYMH9QkhcUne3t6MGjXqiqXf88cW2Ww25syZw7ff\nfntd+1m0aBELFy688JyO9jV69Gg8PT2vaz8iIiIiZYaXFzz1FOzfD3PnQpMmjuuOHIGhQ6FhQ/jg\nA8jMNDanC6hbuS6TekzixOgTvHXbWwRXDHZYd/LsSSJXRFJnch1eXPEiJ1NPGpxUyjp/Dw8GBQfz\nY6tWxEREMLVhQzpWqlTgY3alp/P36GhC16+ny7ZtfHjyJIlqjiuyRYsWXfj6q6++MjGJiIiIiIiI\niJjJYiunw9DbtGnDjh07rrgQn/+9xWLh999/p2PHjiamlPJszZo13HrrrZf8Dl68EktoaChHjhwx\nJVtmZiZNmjThxIkTTvNVqlSJFStW0L59+6t+/vXr13PnnXeSnp5+4fkuf/7Q0FD27t2Lt7d3cRxS\nmZOQkHBhhZ588fHx1KhRw6REIiIiYrjcXFi8GN54A3budF4XHAxjx8LTT9tHL12l9PR0KuY/7v8A\nr2uLW+ZkA2/Zv0xLS8PPz/EqMABZ1izm7ZzHxHUT2Ze4z2mdp5snA1oNYGzHsTQPbF7MgcWVHMnM\nZGF8PPPj4tibkVFovYfFQo+qVekfFMT9AQH4uRe0zozrslqthISEkJiYCEBAQACnTp3Cw8PD5GQi\nIiIiIiIirsfs66HlcmUYgDvvvLPQmuXLlxuQRKT08fX1ZdKkSRe+v3xcksViITU1lTvvvJPvv//+\nqp7722+/5a677rqiESZffjPapEmTXLYRxpn09HSHNxERESmn3N2hTx/Yvh2++w6cNSHHxtqbYUJD\n4c03ISXF0JiuwNvDmyFth7D72d181/c7utTt4rAuJy+Hz7d/TosPW3DvgntZfXT1Ff/eFSmK+r6+\nvFyvHrvbt2dbu3ZE1qlD7QJeH1ltNr5PTmbA3r0E/vEHA/bs4YekJHLy8gxMXfqtXr3a3ghTuTJU\nrkxiYqJGJYmIiIiIiIgYoDRe5yy3K8Ns3ryZm266yeHKMGC/IN+gQQMOHjxoVkQpQ9auXcuBAweu\n6jH79+9n4sSJTldeCQgI4O23377qLN26daNBgwZX/ThHBg4cyIIFCxw2w1ysX79+vPLKKzRu3Njp\nc+3du5fXXnuNRYsWXfF8+c+Z3wgzcOBAZs+eXSzHUFY56oR0ppyepkVERORyNhusWAGvvw6//+68\nrnJlGDkSRo2C6tULfVqtDFP4yjCOrP9rPROiJrBk7xJsOP/3WHjNcCIjInmo6UN4uGn1Cbl2eTYb\na1NSmB8Xx1cJCZwpwmjn6h4ePBIYyICgIDpWqoTbZa/lXM2wYcOYNWsW9OxpP6d+/z3Dhg1jxowZ\nZkcTERERERERKdcuv77sjJErw5TbZhiADh06sHHjxgJHJf3www/06NHDxJRSFjzxxBOlonnDYrHw\n2Wef8dhjjxXL86WnpxMeHs7+/fudNrBcvK1NmzZEREQQFhZGxYoVOXv2LNHR0fzxxx/s2LHD4WPy\nt+V/36xZMzZu3EiFChWK5RjKKjXDiIiISIF++80+PmnFCuc1fn7w7LMwZgwEBTktUzPMtTXD5DuY\ndJBJ6ybx+Y7POWc957QurEoYYzqO4Yk2T1DB07X/rSvXLysvj5+Sk5kfF8d3SUmcK8IKMPW8vekf\nFET/wEBaXMNItbLukhFJEyfaN44dq1FJIiIiIiIiIgZQM4zB5s6dy+OPP+60GQbsDTNRUVFmRZQy\nIr8Zpqh/xPkK+vO6lucq7mYYgOPHj9OlSxdOnDhxSS5Hq8QU5XgKaqYJDQ1l7dq11KpVq9jyl1WO\nmmGio6Mdnvyv9cKNiIiIlAPr19tHI/33v85rfHxg2DCIjITata+4W80w19cMky8+PZ5pG6cxbdM0\nkjKTnNZV963OiPYjeO6m56jhZ8wLeynfzlqtLElMZEFcHCtOn6Yog5Fa+fnRPyiIfoGB1PXxKfGM\npcHKlSvp3r27ffWsb76xb3z4YUhJYcWKFdxxxx3mBhQREREREREpxxyNREpISCAsLOySbUY2w7gZ\nsheT9O3blxtuuAG48oJ+/vcbNmzg008/NSWflE02m63INyOe53rVrVuXVatW0bBhwytGOuV/n3/L\n3+bodnHW/G35x2mxWGjUqBG//vqrGmEK4Ofn5/AmIiIiLqxDB1i2DLZuhd69wVFD9blz8P77UL8+\nPP00HDlifE4XEOgXyGu3vsax54/xwd0fUL9qfYd1SZlJ/Pu3f1P3vboM/+9wDiUfMjiplDf+Hh48\nFhzM8htvJCYigvcbNqRDpUoFPmZnejrjjhyh3vr1dN22jY9OniQpJ8egxOZYtGiR/YsuXcDd3X7r\n3BmAr776ysRkIiIiIiIiIuVfabzOWa6bYTw9Pfnggw+cNhPkX8AfM2YM0dHRBqeTsqqghpCSupW0\n+vXrs2nTJnr06FFgA0xRfy6XP/7uu+9m48aNhIaGlvixiIiIiJRLbdrAV1/Bn3/CgAHg5uClXE4O\nzJwJjRrB4MGwf7/hMV2Bn5cfI24awf7n9vNl7y8JrxnusO6c9RwfbfmIRlMb8fCih9nw1waDk0p5\nFOTlxd9q12Zd27YcuvlmXg8NpUkhI2jXpqQw/OBBgqOiuG/XLhbGxZGem2tQYmNYrVaWLFli/6Zb\nt//dceutACxevBir1Wp8MBERERERERExTbluhgHo3r07ffr0uWQ1GLh0BExKSgr33nsvZ86cMSum\nlBFXs5pLcd9KWuXKlfnhhx/4/PPPCQoKumRll8JyOKqxWCwEBQUxZ84c/vvf/1KpkE8uioiIiEgR\nNGsG8+bZG12GDAEPjytrcnNh9mxo2hT69rU30Eix83Dz4JHmj7DxqY2senwV99xwj8M6GzYW711M\nh0860PWzrizbv4w8W1EG3YgUrIGvL/8IDWVP+/ZsbdeOsXXqUMvL+Rw0q83Gf5OS6L93L0F//MHA\nPXv4MSmJnLyy//u4evVqEhMT7SOSWrf+3x2tW0PlyiQmJrJ69WrT8omIiIiIiIiI8cp9MwzAzJkz\nnY5Lyrdv3z5uv/124uPjDc8nZYMZK8IYvUIMwKBBgzhy5AjTpk2jWbNmV+zfWaPOxXXNmzdn+vTp\nREdHM2DAAENyi4iIiLiUhg3h44/h0CEYMQK8va+ssdngyy/to5byZbvYzQAWi4Vuod34vv/3/Dn8\nTwa3Hoynm6fD2rXH19Lri140n96cT7Z+QpY1y5iQUq5ZLBba+PszoUEDjnXsyKobb2RoSAhVHDXL\nnZeel8f8+Hju2bWLmuvWMeLAAaJSUgz5IEZJuGJEUj6NShIRERERERFxWRZbWX2n4yodOHCADh06\nkJKSAlzaCJM/1gXs42K++uor2rRpY0pOkdLm0KFDLF++nK1bt7J7925OnjzJ2bNnycjIoEKFCvj7\n+1O7dm2aNWtG27Ztufvuu2nQoIHZsUu9hIQEAgMDL9kWHx9PjRo1TEokIiIiZVpMDLz7Lnz0EWRk\nXHJXOlDRnFSlRlpamqEzik+mnmTKhinM2DKD1KxUp3XBFYMZedNIngl/hqq+VQ3LJ64hKy+P5cnJ\nzI+LY1lSEueKsAJMqI8P/QMD6R8URHOT53oXldVqJSQkxL4yzMSJ0K7dpQVbtsDYsQQEBHDq1Ck8\nCmgSEhEREREREZHiY/b1UJdphgH47bff6NWrF2fPngWubIjJ3+bl5cWrr77K2LFj8fR0/Ik+EZHr\nYfbJX0RERMqphAR47z2YOhXOv+5RM4zxzTD5UrNSmbllJu+tf4+TZ086ravoVZGhbYfyfIfnqVu5\nroEJxVWkWq0sTUxkflwcK0+fpiiDkVr5+TEgKIi+gYHU9fEp8YzXauXKlXTv3t0+Iumbby5dGQbs\no+MefhhSUlixYgV33HGHOUFFREREREREXIzZ10NdYkxSvq5du7JmzRqCg4MBrhj9kr8tOzubf/zj\nHzRp0oT58+djtVpNyywiIiIiIlJkNWrAm2/CsWPw2mtQtSoVgLTzt7NAo/Olr1y0vbzc/nH+2Bo3\nbszZs2dJS0sjLS2NChUqXOcP9tpU8q7E2IixHBl1hNkPzKZFYAuHdWnZaUxeP5n6U+ozcPFAdsTu\nMDiplHeVPDx4LDiYn268kZiICKY0bMjN/v4FPmZnejovHTlCvfXruWXbNmbExJCUk2NQ4qJzOiIp\nn0YliYiIiIiIiLgkl1oZJt/Ro0fp3bs3W7duvWREEuCwOSYkJIQhQ4bQp08fWrRw/OaliMjVMLsT\nUkRERFzE2bPw4Yf2EUrx8awCbsO+UkwMUPCl8LInFaiFvTFm1apVdOvWzdxAl7HZbPx0+CcmRE3g\n1+hfC6ztXr87kRGR3FH/jguvU0WK2+HMTBbExTE/Lo79mZmF1ntaLNxVrRr9AwPpFRBABUfNJwYq\ndERSPo1KEhERERERETGc2ddDXbIZBiA3N5c333yTN99888LKLxc3wOS7fFtYWBi33HILnTt3plWr\nVjRp0sSU5bZFpGwz++QvIiIiLiYjA2bNove4cXxz7hzPAtPMzlRCngU+BHr37l2qV4HYErOFCVET\n+GrPV+TZnA+taR3cmrEdx/JI80fwdNcYXykZNpuNbWlpLIiLY2F8PDHZ2YU+xs/NjQdr1KB/YCB3\nVK2Kp5vxiw8XOiIpn0YliYiIiIiIiBjO7Ouh5boZ5sknnyy0ZufOnQ5XiAHHTTGXbwcIDAwkKCiI\noKAg/P398fb2xsvLq1R9es9isfDJJ5+YHUNEzjP75C8iIiKu5+TJk9SrV4/c3Fx2AeV1zctdQCvA\n3d2d48ePU7NmTbMjFSj6dDST10/mk22fkJGT4bSubuW6jO4wmqfaPkVFr4oGJhRXk2uz8duZMyyI\nj+frhATOFGF0dA1PTx6pUYP+QUF0rFTJsPdDhg0bxqxZs6BnTxgzpuDiiRPh++8ZNmwYM2bMMCSf\niIiIiIiIiCsz+3pouW6GcXNzK9IbMIX9CC5/Dmf1pan55WI2mw2LxUJubq7ZUUTkPLNP/iIiIuJ6\n/vWvf/Haa6/RBfjN7DAlrAvwO/ZjfvXVV82OUyRJGUl8uPlDpm6cSnx6vNO6Kj5VGB4+nJE3jyS4\nYrCBCcUVZeXl8WNSEvPj41mWmEhWEd5CCvXxoX9gIAOCgmhWgivpFnlEUj6NShIRERERERExlNnX\nQ12iGaY4D9FZw0tp/zGqGUakdDH75C8iIiKuxWazUbt2bWJiYlgI9DU7UAlbCPQHatWqxYkTJ0rt\nBxccyczJZO7OuUyMmsjB5INO67zcvRjUahBjI8bSJKCJgQnFVaVarSxJTGR+XBy/nD6N8+Fe/3Oj\nnx8DgoLoGxhIHR+fYs1T5BFJ+TQqSURERERERMRQZl8PdYlmmMJc74+gtL+xqpVhREofs0/+IiIi\n4lqOHDlCgwYN8AJSAW+zA5WwLMAfyMF+7GFhYSYnunq5ebl8t/87JkRNYN1f6wqs7dW4F5ERkXSq\n06nUvz6V8iE2K4svExJYEBfHxrNnnRfabHDuHACdK1fmkcBAHggIoJqn53VnGDVqlH0cdFFGJOU7\nPyppyJAhTJky5bozOFKhQgX9HYqIiIiIiIhg/vVQl2iGKceHWKj841czjEjpYvbJX0RERFzLV199\nxSOPPEI4sMnsMAYJB7ZgP/bevXubHee6/HH8DyZETeDb/d8WWNehdgciIyK5v/H9uLsVskqGSDE5\nlJHBgvh45sfFcSAz89I7Dx+Gp54q2QBFGZGU7/yopJK0c+dOWrZsWaL7EBERERERESkLzL4e6mbI\nXkRERERERMQ0W7ZsAaCIl4vLhfxjzT/2sqxT3U4s7buUvSP28lSbp/By93JYt/6v9Ty86GGaTmvK\nR5s/IjMn02GdSHFqWKEC/wwNZd9NN7G5XTteqF2bEK/zv6N//FGyO+/SBVq3Lnp969bQuXPJ5QG+\n/bbgpjURERERERERMYZWhinntDKMSOlkdiekiIiIuJY77riDX375hZnAULPDGGQm8DT2Y1+xYoXZ\ncYpVbFosUzdMZfrm6Zw5d8ZpXY0KNfjbTX/j2fbPUr1CdQMTiqvLtdlYc+YMnx08yJfjxpGzapX9\njtat4aWXoHLl4tmRjw9c7Uiii0Y3XbeUFBg/HnbsAKBPnz7MmjWLysV1fCIiIiIiIiJlmNnXQ9UM\nU86pGUakdDL75C8iIiKuw2azUb16dU6fPs0WoK3ZgQyyBfuopKpVq5KUlITlai+YlwFp2Wl8svUT\nJq+fzLGUY07rKnhW4MnWT/JCxxcIqxpmYEIRyLRaeWHKFGa+/DJ5WVlQvTq8/DK0aWN2tOuzbRu8\n+SYkJeHj48OUKVMYOnRouTzXiIiIiIiIiFwLs6+HqhmmnFMzjEjpZPbJX0RERFzH0aNHCQsLwws4\nCzgesFP+ZAH+QA4QHR1NaGiouYFKkDXPyle7v2JC1AS2xW5zWudmcaN3s95ERkQSXjPcwIQisGvX\nLvo8+ij79+61r+YyaBA89hi4u5sd7erk5sLs2TBvHthsNG3alC+//JKWLVuanUxERERERESkVDH7\neqibIXsxmcVicdmbiJQd6enpDm8iIiIi1yM+Ph6AEFynEQbAG/sxg/2Fd3nm4eZBv5b92DJsCysG\nreDOBnc6rMuz5bFo9yLaz2rPrbNv5YeDP7j0h0fEWC1btmTLpk0MGTLEPqpozhx44QUoS3+fCQn2\nzHPngs3GkCFD2LRpkxphRERERERExOWVxuuc5X5lGLHTyjAipYujTkhnyvFpWkRERAywZs0aunXr\nRhNgr9lhDNYE2I/9Z9C1a1ez4xhqR+wOJq6byBd/foE1z+q0rkVgC8Z2HEu/lv3wcneldikx08KF\nCxk2bBhpaWlQqRKMGwcdO5odq2BRUfCf/0BqKv7+/syYMYN+/fqZnUpERERERESkVCjqQh0ak1RM\nnnjiCbMjlCqfffaZ2RFE5Dw1w4iIiIhRfvrpJ+666y5aA84H6JRPrYEdwPLly+nRo4fZcUxxIuUE\n761/j5lbZ5KWnea0rpZ/LUbdPIph7YZR2aeygQnFVR06dIhHH32UrVu32jf07g1Dh4JXKWvKys6G\nWbPg668BaNeuHV988QUNGzY0OZiIiIiIiIhI6aFmGBERARw3w0RHRzs8+fv5+RkVS0RERMohNcO4\ndjNMvjPnzjBj8wze2/AesWmxTuv8vfx5ut3TjOowitqVahuYUFxRVlYW48aN47333rNvaNQI/vlP\nqFXL3GD5Tp6E116DgwcBGD16NOPHj8ertDXsiIiIiIiIiJjM0UikhIQEwsLCLtlmZDOM5giJiJQS\nfn5+Dm8iIiIi18PHxweAcybnMEP+Mfv6+pqaozSo4lOFlzq/xNFRR/mk1yc0DWjqsO5s9lkmrptI\n2JQwHl/6OLvidhmcVFyJt7c3kydP5rvvvqNatWpw4AAMGwa//GJ2NFi50r5SzcGDVK9enWXLljFp\n0iQ1woiIiIiIiIg4UBqvc6oZRkREREREpBzLbwTJNDmHGfKPWc0w/+Pt4c2TbZ7kz2f/ZFm/ZXSt\n19VhnTXPypwdc2j1USvumX8Pq6JXaXynlJj77ruPHTt20KVLF8jIgDfegHfegUwTzlyZmfZ9v/km\nZGbStWtXtm/fTs+ePY3PIiIiIiIiIiLXTM0wIiIiIiIi5Vj+aMZTQLa5UQyVhf2YAcOWXi1L3Cxu\n9GzUkzWD17B+yHp6N+uNm8XxWwQ/HvqR2+bcRvtZ7fnyzy+x5lkNTiuuoHbt2vz666+88sor9jnj\nP/4Iw4fDkSPGhThyxL7PH3/EYrHwz3/+k19++YXatTUyTERERERERKSssdj00S4REcMlJCRcuDCV\nz8gZeSIiIuI6bDYb1atX5/Tp02wB2podyCBbgHCgatWqJCUl2S+uS4EOJR9i0rpJfLb9M85ZnQ/W\nCqsSxugOo3myzZP4eWmspxS/VatWMWDAAE6dOgVeXjBiBNx3H5TU37HNBsuWwbRpkJ1NSEgI8+fP\n59Zbby2Z/YmIiIiIiIi4ALOvh2plGBERERERkXLMYrHQtq29BWaLyVmMlH+s7dq1UyNMETWs1pDp\n907n+PPHefWWV6nuW91hXfSZaEYuH0nd9+ryz1X/JD493uCkUt7deuutbN++nbvuuguys2HyZHjt\nNUhLK/6dpaXZn3vyZMjO5u6772bHjh1qhBEREREREREp49QMIyIiIiIiUs6Fh4cDrtkMk3/sUnQ1\n/Grwr27/4vjo40y7Zxr1q9Z3WJecmczrv71Ovffq8cx/n+Fg0kGDk0p5FhgYyPfff8+ECRPw8PCA\nNWvg9deLf0evv25/bnd3PJ59lqrvvMMOd3dytZCyiIiIiIiISJmmZhgREREREZFyrl27doBrNsPk\nH7tcvQqeFXi2/bMceO4Ai3ovon3N9g7rzlnPMWPLDBp/0JiHvnyIdSfWGZxUyis3NzfGjh3L9OnT\n7RsOHy7+neQ/5/PPY+3ThwWJiXTfuZOw9et5+cgRDmRkFP8+RURERERERKTEqRlGRERERESknMtv\nCNkJZJkbxRBZ2I8V1AxTHNzd3OnTvA8bntrA6sdXc+8N9zqss2Fjyb4lRHwaQedPO/Pd/u/Is+UZ\nnFbKo02bNtm/6Nix+J+8Qwf7f/fvv2Tziaws3jp+nMYbN9Jp61ZmxcSQYrUW//5FREREREREpESo\nGUZERERERKScCwsLo2bNmmQDS8wOY4DFQA5Qq1YtQkNDTU5TflgsFm4JvYX/9v8vfw7/kydaP4Gn\nm6fD2j9O/MH9X9xP8+nN+Xjrx5yznjM4rZQXVquVJUvOn7m6dSv+HeQ/59q1kJvrsCQqNZVhBw4Q\nHBVF/z17+Dk5WWOUREREREREREo5NcOIiIiIiIiUcxaLhaFDhwIw3eQsRsg/xqFDh2KxWEzNUl41\nD2zOp/d/ytHnj/JSp5eo5F3JYd2+xH0MXTaU0PdCeWvtW5zOPG1wUinrVq9eTWJiIlSuDK1bF/8O\n2rSBSpUgJYXh8fHc6OfntPRcXh4L4+PpsXMn9dat4/+OHGG/xiiJiIiIiIiIlEpqhhEREREREXEB\nQ4cOxd3dnbXALrPDlKBdwO+Au8XC0Hsdj/OR4lPTvybj7xjPidEnmNh9IrUr1XZYF5cex8u/vkyd\nyXV4fvnzHDtzzOCkUlYtWrTI/kWXLuDuXvw7cHe3PzeQu3o129u3Z1u7djxfuzYBno5XPgI4mZ3N\n28eP02TjRjpu3cqMmBjO5OQUfz4RERERERERuSZqhhEREREREXEBtWrV4oEHHgDgI5OzlKQPz//3\nQZuNmhERMGQI7NtnaiZXUMm7EmMixnBk5BHmPDCHloEtHdal56QzZcMUGrzfgAGLB7A9drvBSaUs\nKfERSfnOP/fixYuxWq209vdncsOGnOzYkaUtWvBgQAAeBawytT41lWfOj1Hqu3s3y5OSNEZJRERE\nRERExGQWm02vzkVEjJaQkEBgYOAl2+Lj46lRo4ZJiURERMQVrFq1ittuu42KQAzgb3agYpYK1ALS\ngFVAt/w7LBZ48EEYNw7atzcpnWux2Wz8fPhnJkRN4JfoXwqsvaP+HURGRNK9fneNtZJLrFy5ku7d\nu9tHJH3zTcmsDAOQmwsPPQSpqaxcuZLbb7/9ipKE7GwWxsfzeWym9H7DAAAgAElEQVQs29LSCn3K\nml5eDAoK4vHgYJoWMHpJREREREREpLwy+3qoVoYRERERERFxEd26daNJkyakAVPMDlMCpmBvhGkK\n3HLxHTYbLF4MN90Et98OK1bYt0mJsVgs9GjYg5WPrWTLsC30bdEXd4vjRoaVR1bSY14P2sxow7yd\n88jJ1agZsbumEUm7d8Pw4fbbnj1Fe8xFo5Iu7PMyNby8GFm7NlvDw9kRHs4LtWsTWMAYpZjsbP5z\n4gTNNm3i5i1b+PDkSU5rjJKIiIiIiIiIYbQyjIiICczuhBQRERHXtWDBAgYMGIAnsBVoYXagYrIL\naAfkAPPvuIP+v/8O5845f0DbtvaVYh56qORWm5BLHD1zlMnrJvPxto/JyMlwWlenUh1GdxjNU22f\nwt+7vK1fJEVltVoJCQkhMTERJk6Edu0KfkBuLixYALNn278G+9/24MHQr1/hf+ebN0NkJAEBAZw6\ndQoPD49CM+bk5bE8OZnPY2NZlpRETiFvsXlZLNwfEMDg4GDurFoVDzd9Rk1ERERERETKL7Ovh6oZ\nRkTEBGaf/EVERMR12Ww27r//fpYtW0Y7YB3gfG2DsiEH6IC9uadXr14sXboUS3w8vP8+TJsGKSnO\nH9ywIbz4Ijz2GHh7G5TYtSVnJvPhpg95f+P7xKfHO62r7F2Z4eHDGXnzSEL8QwxMKKXBVY1Iio+H\nt96CHTsA6NevHwALFy6039+6Nfzf/0FBr7eKMCqpIEk5OSyMi+Pz2Fi2FGGMUvBFY5Saa4ySiIiI\niIiIlENmXw9VM8x1stlsnDx5kpiYGGJiYjh16hRnzpzh3LlzF24APj4++Pj44OvrS+XKlalZs+aF\nW61atUw+ChExmtknfxEREXFtp06donnz5pw+fZo3gJfNDnSd3gBeAapWrcru3bsJCbmocSI1FWbM\ngEmTIDbW+ZOEhMDo0fD001CpUklHFuCc9Rxzd8xl4rqJHEg64LTOy92LgS0HMjZiLE1rNDUwoZhp\n2LBhzJo1C3r2hDFjnBeuXQsTJsDZs1SsWJFp06YxaNAgAObMmcOIESNIT08Hf3+IjLwwDsmhiRPh\n++8ZNmwYM2bMuObsf6alMTsujrmxscQVYTRSuL8/g4OD6RcYSLUCRi+JiIiIiIiIlCVmXw9VM8xV\n2rVrF6tXr2bHjh3s3LmT3bt3X2h4uVa+vr40b96cG2+8kdatW9OtWzeaNWtWTIlFpDQy++QvIiIi\nMm/ePAYNGoQnsAVoaXaga7QTCMe+OszcuXMZOHCg48Jz52DuXHjnHTh0yPkTVq4MI0bAyJEQFFQC\nieVyebY8vtv/HROiJhB1IqrA2p6NevJixIt0rtsZi8ViUEIxWpFGJJ07B9Onw7JlAISHh7Nw4UIa\nNmx4SdnBgwfp378/mzdvtm+47z549lnw8bnyOa9hVFKBx5GXx0+nT/N5bCzfJSaSXYQxSr0CAng8\nKIi7qlXTGCUREREREREp08y+HqpmmEJkZ2fz7bffsnTpUn799Vfi4/+3hHNx/+gufiMvODiY22+/\nnQcffJD77rvvut+AEZHSxeyTv4iIiMjF45KaAmuB6maHukpJQBdgLxeNRyqsQSI3FxYvhrffhm3b\nnNf5+MCTT8LYsRAWVoyppSBRJ6KYEDWBb/d9iw3nr7lvrnUzkRGRPNDkAdzdChifI2VSoSOSDh2C\nN96AY8cAePHFF3n99dfx8vJy+HzZ2dm88sorvPPOO/YN9erBK69AgwaXFl7nqKSCJOfk8EV8PJ/H\nxrLp7NlC64M8PRl4foxSy4oViy2HiIiIiIiIiFHMvh6qZhgntm7dysyZM1m0aBEp5+fLO/pRFdcn\n0Qp67mrVqtG3b1+GDRtGy5Zl9fOaInIxs0/+IiIiImAflxQeHk5MTAztgV8Af7NDFdFZ4HZgE1Cz\nZk02b9586XikwthssHIljB8Pv/7qvM7dHR59FF56CVq1us7UUlT7E/czad0kZu+YTVZultO6htUa\n8kKHFxjcejC+nr4GJpSS5HREks1mb2abOROyswkJCWHOnDnccccdRXrelStXMmjQIGJjY8HLyz4W\n7cEH4eL3doppVFJB9qSnMzs2lrlxcZzKzi60vm3FihfGKAU4afgRERERERERKW3Mvh6qZpjLREVF\n8frrr/Pzzz8DlzapOGt8ud4fYVGeN7/mvvvu4+WXX6Z9+/bXtU8RMZfZJ38RERGRfLt376Zr164k\nJydzC7CM0t8QcxboCfwGVK9end9+++36Rs1u3Aj/+Q8sWWK/2O7MPffAuHHQufOlF8+lxMSlxTF1\n41Smb5rO6XOnndYFVAjgufbPMeKmEQRUCDAwoRQ3pyOSzpyx/52uXw9Az549+fTTT6/6NVRCQgJP\nPPEE33//vX1Dx47w4otQpYr9+2IelVQQa14eK86PUfo2MZGsQt5f8rRY6Fm9OoODg7m7WjU8NUZJ\nRERERERESjGzr4eqGea8Y8eOMWLECH788Ufgf40olzeqGPXjcrbf/O0PPPAA77//PrVq1TIkj4gU\nL0cn/+joaIcnfz8/P6NiiYiIiIvatGkTt99+O2fPnqU98COld2RSInA3sBnw9/fnl19+Kb4PC+zb\nBxMmwNy5kJPjvC4iwt4Uc++9oIvRhkjLTuPTbZ8yad0kjqUcc1rn6+HLk22e5IWOL1C/an0DE0px\ncTgiafNm+2iz5GS8vb2ZOHEiI0aMuObVem02Gx988AGRkZFkZWVB9erw97/bG29KcFRSQU7n5PDl\n+TFKG4owRqnG+TFKg4ODaaUxSiIiIiIiImKy9PT0K7YlJCQQdtn4cTXDGMhmszFhwgT+/e9/k5mZ\n6bAJxuwfkaMsFosFPz8/Xn/9dUaNGmVWNBG5Ro6aYZwx+xwkIiIirmHTpk3cddddJCcn0xT4Eiht\nQ1p3An2BvdhXhFm+fDnh4eHFv6O//oLJk2HGDHDwQv6C5s3t45P69gVPz+LPIVew5ln5es/XTIia\nwNZTW53WuVnceLjpw0RGRNK+llZWLUsuGZE0ciR88gl8+SUAzZo1Y+HChbQqppFlO3fupG/fvuzd\nu9e+4dFHYcgQmDKlxEclFWRfejqz4+KYExtLTBHGKLU+P0apf2AgNTRGSURERERERExQ1A+sqBnG\nIImJifTt25dVq1Zd0QRTWn8sl+ezWCz06NGD+fPnU7VqVTOjichVUDOMiIiIlEZ79uyhe/fuxMTE\n4An8E3gJMLvNIwcYD7x+/uuaNWuyYsWK6xuNVBTJyTBtmv3CeFKS87q6dWHsWPtF9AoVSjaTAPZ/\nI686uop3/niHnw7/VGDtLfVuITIikrtvuBs3i1byKc0uGZH0/PPwww9w4AAAzzzzDO+++y4Vivlv\nLCMjgzFjxvDRRx/ZNzRuDHffDe+9Z8iopILk2mysPD9GaWliIufy8gqs9zg/RunxoCDuqV4dL61c\nJSIiIiIiIgZRM0wpsnnzZh5++GH++usvbDZbqW+CudzFeS0WC6GhoSxevJgbb7zR5GQiUhQakyQi\nIiKl1alTp3jmmWf47rvvAGgLzAZamJRnFzAYyF8DpFevXnz00UeEhIQYFyI9HT79FCZOhOPHndcF\nBNhXshgxAqpVMy6fi9sZt5OJURNZ+OdCrHlWp3XNajRjbMex9G/ZH28PbwMTSlFdGJEE4OUF2dlU\nq1aNTz75hAceeKBE971kyRKGDBnC6dOnL+w7P5NRo5IKciYnh0UJCXweG8u61NRC6wM8PRkQGMjg\n4GBa+/sbkFBERERERERcmcYklRJr166lZ8+enD0/g7msNcLkuzx35cqVWb58OTfffLOZsUSkCBw1\nwxh58hcREREpiM1mY/78+YwcOZLTp0/jCbwCjAIqGZQhFZjC/1aDqVq1KlOnTqV///5F/qRJscvJ\ngS++gPHjYc8e53V+fvD00zB6NNSubVw+F3ci5QRTNkxh5paZnM0+67Supn9NRt08iqfbPU1ln8oG\nJpTCXBiRdF63bt2YO3cutQ36O/rrr78YOHAga9asuSSTGaOSCrI/I4M5sbHMiYvjr6ysQutb+fkx\nODiYAUFBBGqMkoiIiIiIiBjE7OuhLtcMs2rVKnr16kV6enqxNMEU15uwxZHBZrPh7+/PDz/8QKdO\nnYoll4iUDLNP/iIiIiJFcerUKZ5++mmWLVsGQEVgEDAcaFlC+9wFTAfmAWnnt5myGkxB8vLg++/h\n7bdh3TrndZ6eMGgQvPiiffSKGOLMuTPM3DKTKRumEHM2xmmdv5c/w9oN4/kOz1O7kpqWSoMmTZqw\nf/9+3N3d+fe//81LL72Eu7u7oRlyc3MZP348r776Krm5uTRp0oS9e/camqGocm02fj0/RmlxEcco\n3VOtGoODg7lXY5RERERERESkhJl9PdSlmmF2795Nx44dSUtLu+ZGGGfNL9f6Yyyu57v4eCpVqsSG\nDRtorDdbRUots0/+IiIiIkVls9lYuHAhb7zxxiUXhLtgb4p5CLjegTNZwGLsTTC/X7S9adOm/OMf\n/6Bfv37mrQZTEJsNfv/dvlLMDz84r7NY4MEHYdw4aN/euHwuLsuaxYJdC5i4biJ7Epyv5OPh5kG/\nFv2IjIikZVBJtXlJUfz1119ERkYyatQoOnToYGqWdevW8f777zNhwgTDVqa5HilWK1/Fx/N5bCx/\nFGGMUnUPD/oHBTE4OJg2FSuWznOsiIiIiIiIlGlmXw91mWaY5ORkbrrpJo4cOXJNjTAXvylw8eM8\nPT2pX78+TZo0oX79+gQFBREYGEjlypXx9vbGx8cHm81GVlYWWVlZpKSkEB8fT3x8PIcPH2b//v0c\nPnyYnJycQvdV1Iw2m41GjRqxYcMGKlfWks8ipZHZJ38RERGRq2Wz2Vi9ejXTp09nyZIl5ObmAuCF\nfZWYdhfdWp7f7kg29tVftlx024l9FBKAh4cHDz74IM8++yy33HJL2blAu2MHvPOOfYxSQasz3HYb\n/P3vcPvt9iYZKXF5tjx+PPgjE6ImsObYmgJr72p4F5ERkdwaemvZ+d0TuczBjAxmnx+jdKIIY5Ra\n5I9RCgwk2Pt62xtFRERERERE7My+HuoyzTD33HMPy5cvv+pGmMvrPTw86Nq1Kz169KBTp06Eh4fj\ndZ3zlnNycti8eTNRUVH89NNPrFmz5kJzzLXktdlsWCwWevbsybfffntd2USkZJh98hcRERG5HjEx\nMcyaNYtZs2Zx8uTJK+73BEIAX8Dn/LZzQCZwiv81vlysVq1aDB06lKFDh1KzZs0SSm6AI0dg4kT4\n9FMo6CJ0u3b2lWIefBAMHgPjyjad3MSEqAl8s/cb8mzOm5bahrQlMiKS3s164+HmYWBCkeKTZ7Ox\n6swZPo+N5ZuEBDILGaPkDtxdvTqPBwVxX0AA3hqjJCIiIiIiItfB7OuhLtEMM2/ePB577LGraiy5\nvLZNmzYMHz6chx9+mKpVq5ZcWCAlJYXFixfz4YcfsnnzZod5CnJxQ8yCBQt49NFHSzSviFw9s0/+\nIiIiIsXBZrNx9OhRtmzZwubNm9myZQtbtmzh9OnTBT6uatWqhIeH065duwu30NDQ8rUSR1wcTJkC\n06ZBQSNLbrgBXnwRBg0CrchgmMPJh5m0bhKfbf+MTGum07rQKqGM7jCaIW2G4OflZ2BCkeKVarXy\ndUICn8fGsjYlpdD6qh4e9A8MZHBwMO38/cvX+VlEREREREQMYfb10HLfDJOUlETTpk1JSkoCrr4R\npmvXrrzxxht07ty5RHM6s379el555RV++eWXIjfEXFwXGBjI3r17S7yBR0SujtknfxEREZGSYrPZ\nOHbsGAkJCWRmZpKZaW808PX1xdfXlxo1alCvXj3XubCakgIzZsDkyRAb67wuJAReeAGGDYNKlYzL\n5+ISMxKZtnEaH2z6gMSMRKd1VX2q8mz7Z/nbTX8jqGKQgQlFit/hzEzmxMYyOzaWY0UYo9S8QgUe\nDw5mYFAQIWraExERERERkSIy+3pouW+GiYyM5N13372wWkpBLm4iqV27NtOnT6dnz55GxCzUzz//\nzDPPPMPRo0eL1BRz8eowkZGRjB8/3qioIlIEZp/8RURERMRg587BnDnwzjtw+LDzuipVYMQIGDkS\nLvv3opScjJwMZm+fzbvr3uXwaef/f7zdvXn8xscZEzGGRtUbGZhQpPjl2WysOT9G6euEBDIKGaPk\nBtxVrRqDg4O5r3p1fDTiTURERERERApg9vXQct0Mk5ycTL169cjIyAAKbx7Jrxk4cCDTpk3D39/f\nkJxFlZ6ezsiRI/nss88KbYi5+H5/f3+OHj2q1WFEShGzT/4iIiIiYpLcXPjmGxg/HrZtc17n4wND\nhsCYMRAWZlw+F5ebl8vSfUt5J+odNp7c6LTOgoX7m9xPZEQkEXUiDEwoUjLOWq18c36M0poijFGq\n4uFBv/NjlNprjJKIiIiIiIg4YPb1UDdD9mKSKVOmkJ6eDhTcNHLxKioTJ05kzpw5pa4RBsDPz49P\nPvmEKVOm4OZm/1/n7M2Gi483LS2NqVOnGpJRRERERERECuDuDo88Alu2wE8/wa23Oq47dw6mTYMb\nboABA2DnTmNzuih3N3cebvYw64esZ83gNfRs5Hi1WBs2lu5bSqdPO9Hp004s3beUPFvBq2qIlGb+\nHh4MDglhdZs2HL75Zl6tV49QHx+n9WesVj6MieHmrVtpvmkT7xw/TkwRRi6JiIiIiIiIGKVcrwxT\nt25dTp48CThuhrl49RQ3Nzc+/vhjBg8ebGTEazZ//nwef/zxC8dV2PHVrVuXo0ePGhlRRApgdiek\niIiIiJQiGzbAf/4DS5YUXHfPPTBuHHTpYkwuAWBPwh7ejXqXebvmkZ2b7bSuUfVGjOk4hsdufAwf\nD+dNBCJlRZ7NxtqUFD6PjeWr+HjSizBG6c7zY5Tu1xglERERERERl2f29dBy2wzz+++/07Vr1wur\nvjhy8Yow7777Ls8//7zBKa/P9OnTee6554p8jGvWrKFz584GpxQRR8w++YuIiIhIKbR3L0yYAHPn\ngtXqvK5TJ3tTzD33gFu5XvC1VDl19hTvb3ifDzd/SEqW8zEyQX5B/O2mvzG8/XCq+VYzMKFIyUmz\nWvkmMZHZsbGsOnOm0PrK7u70PT9G6eZKlTRGSURERERExAWZfT203DbDPPfcc0yfPt1po8jFTSKP\nPPIICxcuNCHl9Rs4cCALFiwo0nE+88wzTJs2zYSUInI5s0/+IiIiIlKKnTgBkyfDzJlwfvSvQy1a\nwEsvwaOPgqencflc3Nmss3y89WMmr5/MidQTTuv8PP0Y0mYIozuOJrRKqHEBRUrY0cxM5sTFMTs2\nliPnzhVa39jXl8eDgxkUFETtAkYviYiIiIiISPli9vXQctsM07RpUw4cOABcOULo4vFBAQEBHDhw\ngCpVqhiesTikpqZyww03kJiYCBR8rI0aNWLfvn2GZxSRK5l98hcRERGRMiApCaZNg/fft3/tTL16\nMHYsPPkkVKhgXD4Xl5Obw5e7v2RC1AR2xu10WuducadP8z5ERkTSNqStgQlFSpbNZuP382OUFiUk\nkJabW2C9BehetSqDg4N5ICAAX41REhERERERKdfMvh5aLpthEhISCAoKKtJqKdP+n707j4uqUP84\n/hlAdgUV2VLBfd8yFzTLrkubmZam3tIsSy2t9KqldW+39Zpp2mJlmqWVS5lp+SszsfSWiPu+p4AZ\nDKLiArIzvz9GvJozgAXnwPB9v17zujA8cL6Hm+elc555nnffZeTIkSakLDkffPABjz32WLHONzk5\nmaCgIBNSisjlzL74i4iIiEg5kp4Oc+fCtGn2qTHOBAXBU0/BqFFQtapx+So4m83G6qOrmRozleij\n0YXWdqvTjQmdJtCzXk+tjRGXkp6Xx7KUFOZZrfx45gxFvdhYxd2dARfXKEVpjZKIiIiIiIhLMvt+\nqEs2wyxfvpx77rnHYXPIH6fCHD9+HE9PTzNilpjs7Gxq1apV6HSYgmaYpUuX0qdPHzNiishlzL74\ni4iIiEg5lJMDixbBlCmwb5/zOn9/GDECxo6F664zLp+wPWk70zZM4/M9n5Nncz4lo2VIS8ZHjWdg\n84FUcteKK3EtCZmZfGq1Ms9q5Ugx1ig18PFh6MU1SrW0RklERERERMRlmH0/1M2Qoxhsz549hX69\noDFk6NCh5b4RBsDT05OhQ4c6nArzR0X9bkRERERERKSMqlQJhgyB3bvh66+hY0fHdWlp8MYbUKcO\nPPIIHDxobM4KrE1YGxbcs4AjTx7hqQ5P4VfJz2HdruRdDFk+hLpv1+WNmDc4l3XO4KQipSfC25t/\nRkZyuEMHfmnThkfCwqhcyEqkwxkZPBcXR0RsLD127mRBcjIXili5JCIiIiIiIlIUl2yGOXr0aLHq\n7rrrrlJOYpy77767WHXF/d2IiIiIiIhIGeXmBr17Q0wMrFsHt9/uuC4nx75eqUkT6NcPNm82NmcF\nFhEYwZu3vcmxscd49W+vEuIX4rDu+LnjjF89ntozajMxeiKJ5xMNTipSeiwWC50DApjTqBHWTp34\nrEkTelStirOFSDYgOjWVB/bvJzQmhkcOHOCXM2eK9eYvERERERERkT9yyTVJt9xyC+vWrbtqTdLl\nK5L8/Pw4e/Ysbm6u0Q+Un59PYGAg6enpAFedd8E0nC5durB27VqTUopIAbPHgomIiIiIi9m5074+\n6fPPIT/feV23bjBxov1/Lc5uSUtJy8zN5LNdnzEtZhoHTzmf1FPJrRIPtHyA8Z3G07RGUwMTihjn\nt8xMPk1OZp7VyuGMjCLr63l729cohYYSoTVKIiIiIiIi5YbZ90NdoxPkD37//fdLjS9/VNAk0rhx\nY5dphAFwc3OjSZMmTt8tU9AQk5iod5mJiIiIiIi4nFatYOFCOHwYHnsMvLwc161ZAz16QLt28OWX\noFUkhvD28OaR6x9h36h9LB+wnM61Ojusy8nP4eMdH9PsvWb0WtiLdfHrNBVDXE4tb2+ejYjgYPv2\nxLRpw/CwMKoUskbpSGYm/4qPJzI2lm47dvCp1Uq6rl0iIiIiIiJSBNfpBrlMwXQUZywWC40aNTIo\njXEaNmxYZE1aWpoBSURERERERMQUdevCe+9BQgJMmgRVqjiu27oV+ve3r1D68EPIyjI2ZwXlZnHj\n7sZ388vDvxDzcAx9G/fF4mRpzLeHv6Xr/K50+LADS/YuIS9fN//FtVgsFqICAvjg4hqlhU2acGsh\na5QAfjxzhiEHDhAaE8PDBw7wX61REhEREREREScqZDMMQNWqVQ1IYqzinFNxfjciIiIiIiJSzoWE\nwH/+A8eO2dcnhYY6rjt8GB59FOrUgWnT4Px5Y3NWYFG1ovhqwFccGH2AEW1H4OXueJrP5sTN3Pfl\nfTSa2Yj3Nr/HhZwLBicVKX0+7u4MCgnh+1atONaxI5Pr1KGRj4/T+rS8PD62Wrl5xw7qb9zIS/Hx\nxBdj5ZKIiIiIiIhUHBW2GaZy5coGJDGWv79/kTUZemFARERERESk4ggIgKefhrg4+OADqFfPcV1S\nEkyYALVrwz//CSdOGJuzAmtYvSGzes3i2Nhj/Oumf1HNp5rDuiOpRxj13Sgi3ozghbUvkJKeYnBS\nEWPU9PZmYkQE+9u3J/b66xkZHk5AIWuUjmZm8u/4eOps3MgtO3Yw32olLTfXwMQiIiIiIiJSFrlk\nM0ylSpWKrMnOzjYgibGKc04eHh4GJBEREREREZEyxdsbhg+Hgwfh88+hTRvHdWfOwKuvQkQEjB4N\n8fGGxqzIgv2CeemWlzg25hhv3/Y2kYGRDutOXjjJi+tepPabtXn828f59fSvxgYVMYjFYqFDlSq8\n37Ah1k6dWNy0KbdXq1boi5lrz5xh6MU1SkP372dtair5WqMkIiIiIiJSIblkM4yfn1+RNeddcPRz\nWlpakTW+vr4GJBEREREREZEyyd0d7rsPtm6FVavgllsc12VmwrvvQv368MADsHu3sTkrMD9PP57o\n8ASHnzjM4nsX0zasrcO6zNxM3t/yPg3faUj/Jf3Z9Psmg5OKGMfb3Z0BwcF817Ilv0VFMaVuXZoU\n8hpXen4+85OTuWXnTupt3MgLcXEc1bRkERERERGRCsVis7ne2yMiIyP57bffALj89CwWCzabDYvF\nwq233sp3331nVsRS0atXL7777rtL51nAYrEA9t9FrVq1SEhIMCuiiFyUkpJCcHDwFc+dOHGCGjVq\nmJRIRERERCqsjRthyhRYtqzwujvvhIkT4cYbjcklgP3f8mvj1zI1Ziorf11ZaO1NETcxodME7mhw\nB24W897/ZLPZuHDhgmnHLwt8fX0vvR4jpcNms7Hl/HnmWa0sPHGCM8VYjXRTQABDQ0PpV6MGlTU9\nWUREREREpFSZfT/UJZthWrduza5duwptComIiCAuLs6siKWiXr16xF8cYe2oCQigRYsW7Ny504x4\nInIZRxf/uLg4hxf/4ky7EhERERH5y/bvh6lT4dNPobCbyp0725ti7rgD3Fxy4GyZtTt5N9M2TGPh\n7oXk5jv//6hJUBPGdxrP/S3ux8vDy8CEdunp6fj7+xt+3LIkLS1N/5YzUGZeHitOnWKe1cr3p0+T\nX0S9r5sb99aowdDQULoGBuKmxiUREREREZG/JD09/arnUlJSqFOnzhXPqRnmL+rTpw/ffPPNVc0w\ncOV0mMTEREJCQkxKWbJSUlIIDQ299LmziTi9evXi66+/NiOiiFzGUTOMMy54mRYRERGRsuy332D6\ndJg9Gwqb7tG8OTzzDAwYAJUqGZdPOH7uOG/FvsUHWz/gfLbzNdBh/mE81eEpRtwwgkDvQMPyqRlG\nzTBmSsrKYkFyMvOsVvYWY0JRbS8vHgwN5cHQUOr5+BiQUERERERExPUUdzqqmmH+orFjx/LWW28V\n2Qzz8ccfM2TIEJNSlqwFCxYwePDgIs/5ySefZMaMGSalFO2rxqIAACAASURBVJECaoYRERERkTLv\n1CmYORPefhtOn3ZeFxEB48fDww+Dr69x+YSzmWeZvXU2b258k8TziU7r/D39GX79cMZ0HEOtgFql\nnuuKZpjxgGepH7JsyAam2T9UM4z5bDYbW8+fZ35yMguTkzldjDVKN15co9S/Rg2qaI2SiIiIiIhI\nsZXFZhiXnGdcr169YtUtWLCglJMYZ9GiRcWqq1+/fiknEZE/Ky4ujrS0tKseIiIiIiKmqF4d/v1v\nOHYM3nwTajlpokhIgCeesDfFvPIKpKYam7MCC/AOYELnCcQ9FcfHd39MsxrNHNalZacxPXY6dd+u\ny+Blg9mVvMu4kJ4V7CFlhsVi4YYqVXinQQMSO3Xiy2bN6FW9Ou6FfM8vZ8/yyMGDhMbEMHj/fqJP\nnyZfb1AREREREREpkqN7nHFxcaZmcsnJMJs2baJjx45Op6SA/d0hbm5u7N+/nwYNGpgRs8QcPXqU\nhg0bXjrXwibDxMTE0KFDBzNiishlHE2GMbITUkRERETkmmVnw6JF8PrrsG+f8zp/fxgxAsaOheuu\nMy6fYLPZWPnrSqbGTGVt/NpCa3vW68mEThPoVqdbsd+9VVxXTIZ5lorTJJIN/Mf+oSbDlF3J2dks\nSE7mY6uVPQ522v9RLS8vhoSE8GBoKA00/UpERERERKTYzL4f6pLNMLm5uQQGBpKRkQEU3hzSr18/\nPv/8czNilpjBgwezYMGCIpt/fH19OXv2LO7uhb0HRkSMYPbFX0RERETkT8vPh//7P5g8GWJjnddV\nqgRDhsCECdCokXH5BIAtiVuYGjOVL/d9Sb4t32ldm9A2TOg0gf7N+uPhVjJrYdQMo2aY8sBms7E9\nLY35VisLkpM5VYw1Sp2qVGFoaCj3BQcToDVKIiIiIiIihTL7fqhLrkny8PCgQ4cOVzWGFChohLHZ\nbHz55Zf89NNPBicsOevXr2fhwoWFvour4Hw7dOigRhgRERERERH5a9zcoHdviImBdevg9tsd1+Xk\nwNy50KQJ9OsHW7YYm7OCuyH8Bj7v9zmHnzjM6Haj8fHwcVi33bqdv3/1d+q/XZ+3Yt8iLVurWqVi\nsFgsXF+5Mm9dXKP0VbNm9K5eHY9CXmOLOXeO4YcOERoTw/379rH69GnyXO99hiIiIiIiIi7BJZth\nAHr37l1kTUFDzODBg0lJSTEgVclKTU3l/vvvd7oe6Y/uuusuI2KJiIiIiIhIRWCxwE03wXffwfbt\nMGiQvVHmj2w2WLoU2rWD7t0hOtr+nBiibtW6vHPHOxwbe4wXu75IDV/H775KOJvAmFVjqD2jNs+t\neQ5rmtXgpCLm8XRzo2+NGnzdogW/R0Uxo149WhYy2SczP5+FJ07Qc9cuIjZs4NmjRzl44YKBiUVE\nRERERKQoLrkmCSApKYlatWoV2ihy+VqhG2+8kVWrVuHj4/idUmVNVlYWd9xxBz/99JPD9Uhw5Yok\nd3d3fvvtN0JDQ42OKiIOmD0WTERERESkVBw5Am+8AR99BFlZzuvatoWJE6FvX9AEU0Nl5GQwf+d8\n3tjwBr+e/tVpnZe7F4NbDmZ8p/E0Crq2NVdak6Q1Sa5ix/nzzLNaWXDiBCdzcoqs73hxjdKAGjUI\nrFTJgIQiIiIiIiJll9n3Q112MkxYWBg333xzodNSCtYHgX3d0F133cWFcvAujqysLO69995LjTCF\nKTjHrl27qhFGRERERERESle9evDeexAfb292qVLFcd3WrdC/PzRtal+lVFjjjJQon0o+jLxhJAdG\nHWDpfUvpWLOjw7qsvCw+3P4hjd9tTJ/FfVh/bL3BSUXM17pyZd5s0IDfo6JY3rw5fYKCCl2jFHvu\nHCMvrlEatG8f3586pTVKIiIiIiIiJnHZyTAAX3/9NX379nU6OaVAwdctFgstW7bkm2++oVatWgYm\nLb6kpCT69OnDlst2rTs7t8vP6+uvv6ZXr15GxRSRIpjdCSkiIiIiYoizZ2HWLJgxA5KTndeFh8M/\n/gHDh0PlysblE2w2G+t/W8/r619nxaEVhdZG1YxiQqcJ9G7UG3c35xN9NBlGk2FcWUp2NotOnGCe\n1cr2tLQi68M9PRkcEsKDoaE00X8TIiIiIiJSgZh9P9Slm2EAWrVqxZ49ewDnTSNw5cqkatWq8dZb\nb3H//fcbkrG4li5dyqhRo0hJSbnU5FKcRpiWLVuyfft2g9OKSGHMvviLiIiIiBgqMxPmz4fXX4ej\nR53XBQbC6NHw5JOgvxsbbn/Kft7Y8Aaf7vqU7Lxsp3UNqjVgXNQ4hrQagk+lq9dNqxlGzTAVxa60\nNOZbrXyWnMyJYqxR6lC5Mg+GhjIwOJiqWqMkIiIiIiIuzuz7oS7fDLNkyRIGDBhQ5HQY4NLKoYIm\nkltvvZXXX3+d5s2bGxHVqQMHDjBp0iS++eabS+dwLdNulixZwj333GNUXBEpBrMv/iIiIiIipsjN\nhaVL4bXXYMcO53U+PjBsGIwbB5GRhsUTu6TzSbyz6R3e3/I+ZzLPOK0L9gvmifZP8NgNj1Hdt/ql\n59UMo2aYiiYnP5/vT59mntXKilOnyCniNUgvi4W7g4J4MDSUnlWr4uHmspvsRURERESkAjP7fqjL\nN8MA9OjRgzVr1vyphhiLxUL//v0ZPXo0nTt3NiLuJRs3bmTmzJksXryY/Pz8S5kK8jlzeSNMz549\nWblypVGRRaSYzL74i4iIiIiYymaDH36wN8WsXeu8zt0dBg2Cp5+GFi0Miyd257POM3f7XGbEzuDY\n2WNO63wr+TKszTDGdhxLnap11AyDmmEqspPZ2Sy+uEZpazHWKIVetkapmf6bERERERERF2L2/dAK\n0Qxz9OhRWrRoQWZmJlB4IwlwVcNJwefNmjWjf//+9O3bt9Smxezbt4/ly5ezZMkSdu3a5TBHUY0w\nBTX+/v7s2bOH2rVrl0pWEfnzzL74i4iIiIiUGbGxMGUKLF9eeF2vXjBxIhj8RhWBnLwcvtj7BVNj\nprIzeafTOjeLG/2b9md069F0adDF/qSaYaQC233ZGqXkYqxRandxjdKg4GCqaY2SiIiIiIiUc2bf\nD60QzTAAs2bN4vHHHy/WdJgCjppPCp4LCQmhU6dOdOzYkaZNm9KoUSMiIyNxd3cv1s/Oy8sjISGB\ngwcPsm/fPmJjY4mJicFqtTo9ZnFyXz4VZs6cOTz88MPFyiMixjL74i8iIiIiUubs3w+vvw6ffWZf\np+TMjTfam2LuuAMu/ntZjGGz2Yg+Gs3UmKmsPrraeeFlTSFqhhGB3Px8VqWmMs9q5ZuTJ8ku4jU+\nT4uF3kFBDA0N5VatURIRERERkXLK7PuhFaYZBmDkyJHMnj37TzXEwNXNKJY/vOhmsVioWrUqwcHB\nBAQE4OXlhZeXFzabjezsbLKysjh79iwnTpwgNTX1qp9X2M+/1kaYxx9/nHfeeadY5ygixjP74i8i\nIiIiUmb99htMnw6zZ8OFC87rmje3N8UMGAAeHsblEwB2WHcwLWYai/csJs+Wd+UX1QyjZhhx6nRO\nzqU1SpvPny+yPqRSJR4ICWFoaCjNC9aPiYiIiIiIlANm3w+tUM0wubm59OzZk7Vr115TQ0yBPza/\nFGdd0R9dy/dcS77Lp8f06NGDlStX4qZ3jYiUWWZf/EVEREREyrxTp2DmTHj7bTh92nldZCSMHw8P\nPQS+vobFE7uEMwm8Gfsmc7bNIT0n3f6kmmHUDCPFsjc9nflWK58mJ2PNzi6yvq2//6U1SkGeFeUP\nloiIiIiIlFdm3w+tUM0wABkZGfTq1YuffvrpTzXEFHDW7AJFN7H8le8t7OfZbDZuvfVWli1bhre3\n9zX/HBExjtkXfxERERGRciM9HT78EKZNg+PHndfVqAFPPQWPPw5VqxqXTwBIzUhl1pZZvL3pbayn\nrWqGUTOMXIPc/HxWX1yjtLwYa5QqWSzcVb06Q0NDua1aNSrpDXEiIiIiIlIGmX0/tMI1wwBkZmbS\nt29fVq1adUUjyV9VWJOLIyV5TJvNRu/evfniiy/w1DtDRMo8sy/+IiIiIiLlTnY2LFoEU6bA/v3O\n6/z9YeRIGDsWwsONyycAZOVmMXfjXEbdOMr+hJphRK5Jak4On19co7SxGGuUgitV4v6La5Raao2S\niIiIiIiUIWbfD62Qbxvw9vbm22+/Zdy4cZcaUq61kcURm812TY+/wmKxXDHZ5rnnnmPZsmVqhBER\nERERERHX5OkJDz4Ie/bA8uXQoYPjurQ0+xSZOnXg0Ufh0CFjc1ZwXh5ePNj6QbNjiJRbVStVYuR1\n1xHbti372rXjmVq1CC/k9b4TOTnMOH6cVlu2cP2WLbx1/DgpxVi5JCIiIiIi4uoqZDMMgJubG1On\nTmXJkiUEBARgs9kuNZiUdZdPg6lWrRpff/01L7/8crnILiIiIiIiIvKXuLnB3XfDhg2wdi3cdpvj\nuuxs+3qlxo2hf3/YssXQmCIif1UTPz9eq1ePY1FRfN+yJQODg/Eq5PW/7WlpjPn1V8I3bKDvnj18\nffIkOfn5BiYWEREREREpOypsM0yBe++9lwMHDjBw4MArpsSUxcaSy6fB2Gw2hgwZwoEDB+jVq5fZ\n0URERERERESMZbHAzTfDypWwbRsMHGhvlPkjmw2+/BLatYMePWDNGvtzIiLlhLvFwq3VqrGoaVOs\nnToxq2FDoqpUcVqfa7Ox/ORJ+uzZw3UbNjDm8GF2FGPlkoiIiIiIiCup8M0wAMHBwSxcuJAffviB\ntm3bXmo2KWg+MbMx5vIMBbmioqJYt24d8+bNIygoyLRsIiIiIiIiImVCmzawaJF9JdLIkeDl5bgu\nOhq6d4f27WHpUsjLMzaniMhfFFipEiPCw4m5/noOtG/PpNq1ua6QNUopOTm89fvvtNm6ldabN/Pm\nb79xQmuURERERESkAlAzzGW6d+/Opk2bWLlyJV26dLnUfAJXNqWUZnOMo+MU5OjWrRs//vgj69ev\np0uXLqWWQURERERERKRcqlcP3n8f4uNh4kRwNjlhyxbo1w+aNoW5cyEry9CYIiIloZGvL/+pW5eE\nqCh+aNmSvwcH4+1oQtZFO9PTGXvkCNdt2MDdu3ezLCWFbK1REhERERERF2Wx2TQb2JlDhw4xf/58\nFixYwLFjxy49X1QzTFG/0mv5/rp16/LAAw8wePBg6tWrV4zUIlIepKSkEBwcfMVzJ06coEaNGiYl\nEhERERFxQWfPwqxZMGMGJCc7rwsPh3/8A4YPh8qVjcvnotLT0/H397d/8izgfGiFa8kG/mP/MC0t\nDT8/P1PjSMV0NjeXL06cYL7Vyvpz54qsr+7hwd9DQhgaGkobf/8yuTpeRERERETKJ7Pvh6oZppi2\nb9/O6tWriY6OZv369WRkZFxVc63/WHT0q/f19aVLly50796dHj160LJlyz+dWUTKLrMv/iIiIiIi\nFUpmJsyfD6+/DkePOq8LDITRo+HJJ0F/N//T1AyjZhgpGw5duMAnViufJCfzWzEmYLXw82NoaCj3\nh4QQUsjqJblabm4uy5cvB6BPnz54eHiYnEhERERExHxm3w9VM8yfkJ+fz8GDB9m9eze7d+/m119/\nJTExkcTERJKSkrhw4UKh3+/n50dYWBjh4eFcd9111KtXj5YtW9KiRQsaNGiAWyHjTEXENZh98RcR\nERERqZByc2HpUnjtNdixw3mdjw8MGwbjxkFkpGHxXIWaYdQMI2VLvs3GT2fOMM9qZWlKChlFrEZy\nB26vXp2hoaH0ql4dL71WWaTo6Gh69OgBwOrVq+nevbvJiUREREREzGf2/VA1w5SCvLw8MjIyyMzM\nJOviuy68vb0vPdzd3U1OKCJmM/viLyIiIiJSodls8MMP9qaYtWud17m7w6BB8Mwz0Ly5YfHKOzXD\nqBlGyq5zubksSUlhvtXKz2fPFllfzcODQcHBDA0NpW3lylqj5MTw4cOZM2fOpY8/+OADkxOJiIiI\niJjP7PuhaoYRETGB2Rd/ERERERG5KDYWpkyBi+stnOrVCyZOhM6djclVjqkZRs0wUj78euECnyQn\nM99q5Vgx1ig18/W9tEYpzMvLgITlQ25uLmFhYZw8eRKAoKAgkpKStCpJRERERCo8s++HasaliIiI\niIiIiFRcHTvCsmWwdy8MHQrObl7+3//BjTdCly7w7bf26TIiIuVYfV9fXqpTh7iOHfmxVSuGhITg\nW8hKpL0XLjDh6FFqbdjAnbt2seTECTLz8gxMXDatXbvW3ggTEAABAZw8eZK1hU0dExERERERQ6gZ\nRkRERERERESkaVP4+GM4cgTGjAFfX8d1v/xinxLTqhUsWAC5ucbmFBEpYW4WC7dUrcr8Jk2wdurE\nR40acVNAgNP6POC706e5b98+wjds4PFDh9h07hwVdQD5F198Yf+gSxd70ySwZMkSExOJiIiIiAio\nGUZERERERERE5H9q14YZM+DYMfj3v6FaNcd1u3fDAw9Agwbw7rtw4YKxOUVESkFlDw8eCgtjXZs2\nHOnQgX9HRBDp7e20PjU3l/cTE+mwbRvNNm/m9WPHSCzGyiVXkZuby7Jly+yfdO0Kt9wCwFdffUWu\nmiVFREREREylZhgRERERERERkT+qXh1eeAESEuzNMTVrOq6Lj4fRoyEyEl59FVJTDQwpIlJ66vr4\n8EKdOhzp0IGfWrViaGgofoWsUdp/4QLPXFyjdPuuXXxeAdYoXbEiqXVr+0OrkkREREREygQ1w4iI\nlBHp6ekOHyIiIiIiYiJ/f/vapCNH7GuUGjd2XJeSAv/8p32yzIQJkJhobE4RkVLiZrHQtWpVPm7c\nGGunTsxr3JhbAgOd1ucD358+zcB9+wjbsIHHDh0i9uxZl1yjdMWKJHd3+0OrkkRERESkAiqL9zkt\nNhf8V0hiYiLR0dHFqm3SpAnt2rUr5UQiIldKSUkhODi4WLUueJkWERERESm/8vPhm29g8mTYtMl5\nnacnDBlib4xp2NC4fGVAeno6/v7+9k+eBTxNjWOcbOA/9g/T0tLw8/MzNY5IaYvPyOCT5GTmWa3E\nZWYWWd/Ix4ehoaEMDg3lOi8vAxKWrtzcXMLCwuyTYaZNg7Zt7V/YuhXGjycoKIikpCQ8PDzMDSoi\nIiIiYgCLxVKsuhMnTlCjRo1STmPnks0wb7/9NmPHji1W7dq1a+nSpUspJxIRuZKaYUREREREyjmb\nDdatg9deg1WrnNdZLHDvvTBx4v9ulLo4NcOoGUYqlnybjV/OnmW+1coXKSmkFbEayQL0qFqVoaGh\n9AkKwsfd3ZigJSw6OpoePXrYVyQtXWqfCgOQl2e/7p89y+rVq+nevbu5QUVEREREDFAWm2Fcck3S\njh07sNlsRT6ioqLUCCMiZUZcXBxpaWlXPUREREREpAyyWKBrV/j+e9i2DQYMADcHL7PYbPDll3DD\nDdCjB6xZY39ORMRFuFks3BQYyNyLa5Q+adyYvxWyRskG/JCayt/37yc0JoYRBw+yoRyuUbpqRVIB\nrUoSERERkQrI0T3OuLg4UzO5ZDPMoUOHAHv3kaNHwdcGDBhgZkwRkSv4+fk5fIiIiIiISBnXpg0s\nXgwHD8KIEfYVSY5ER0P37tC+vX2KQBHTE0REyhs/d3cGh4aypnVr4jt25OXISOp5ezutP5eXx+yk\nJDpt306jTZv4T0ICvxVj5ZLZcnNzWbZsmf2Trl2vLrjlFgC++uorcnNzjQsmIiIiImKSsnif0yWb\nYY4dO3ap6eWP02Au17t3bzPiiYiIiIiIiIgrql8fZs2C+Hh45hmoXNlx3ZYt0K8fNG0Kc+dCVpah\nMUVEjBDh7c0/IyM53KEDP7duzbDQUCoXshLpcEYGz8XFEREbS4+dO1mQnMyFMto0uHbtWk6ePGlf\nkdS69dUFrVtDQAAnT55k7dq1hucTEREREREXbYY5efKkw+cv31MVFBRERESEUZFEREREREREpKII\nC4PXXoNjx2DyZAgJcVx36BA88gjUqwfTp8P588bmFBExgMVi4cbAQD68uEbpsyZN6F61KhYn9TYg\nOjWVBy6uUXr04EF+OXOmTK1RcroiqYBWJYmIiIiImM4lm2FycnKcfs1ms2GxWGjWrJmBiURERERE\nRESkwgkMhIkTIS4O3n8f6tZ1XPf77zBuHEREwPPPQ0qKsTlFRAzi6+7O/SEhrG7VioSOHXm1Th0a\n+Pg4rT+fl8eHSUl02bGDhps28Up8PMdMXqNU5IqkAlqVJCIiIiJiKpdshinO7qnIyMjSDyIiIiIi\nIiIi4uMDI0fCwYOwaBG0auW4LjUVXn7Z3hTz5JOQkGBsThERA9Xy9ubZiAgOtm/P+jZtGB4WRpVC\n1ij9mpHBv+LjiYyNpfuOHXxqtZJuwhqlIlckFdCqJBERERERU7lkM4y/v3+RNZWd7e0WERERERER\nESkNHh4wcCBs3w4rV8LNNzuuy8iAd96xr08aMgT27DE2p4iIgSwWC50CAvigUSOsnTqxsEkTehax\nRmnNmTMMOXCA0JgYhh04wH8NXKNU5IqkAlqVJCIiIiJiqgrbDFOcGhERERERERGREmexwG23wdq1\nEBMDd9/tuC4vDz79FFq0gN697bVSLqRlp5kdQaRc8nF3Z1BICKtateJYx45MrlOHRoWsUUrLy+Mj\nq5Wbd+yg/saNvBQfT3xGRqnlK/aKpAJalSQiIiIiYhqXbIYJCgoq8p0A2dnZBqUREREREREREXEi\nKgqWL4e9e+HBB+3TYxxZsQI6d4abboLvvgODJiDIn9N4ZmP+/dO/OXXhlNlRRMqtmt7eTIyIYH/7\n9mxo04YRYWEEFDKJ5WhmJv+Oj6fOxo3csmMH861W0kq4AaXYK5IKaFWSiIiIiIhpXLIZpmHDhkXW\npKenG5BERERERERERKQYmjaFefPgyBF46inw9XVc9/PPcOed0KoVLFwImjRQJp3JPMNL/32J2m/W\n5h+r/sHxc8fNjiRSblksFjoGBDCrUSOSOnVicdOm3FatmvMXtm021iYlMXT7dkLWrOGBbdv4/vff\nOZ+WRnp6+l96LF682H6MolYkFbhsVdLixYv/8vGdPYxaESUiIiIiUp5YbC74N+XXXnuNZ599FovF\ncsU/BAo+t1gs9OnTh6VLl5qYUkQqspSUFIKDg6947sSJE9SoUcOkRCIiIiIiUqacPAkzZ8I778Dp\n087rIiNhwgR46CEoZJWIkdLT0/+3nvpZwNPUOMbJBv5z8eM/nHclt0oMaTWEpzs/TcPqRb+JS0SK\nlpiVxWfJycyzWtl/4cL/vnDkCDzySOkefNo0aNu2eLVbt8L48aUaZ9euXbRo0aJUjyEiIiIicq3M\nvh/qkpNhGjVqVOjXbTYbR44cMSiNiIiIiIiIiMg1CgqCF16AhASYMQNq1nRcFx8Po0ZBRAT85z9w\n5oyRKaWYcvJzmLt9Lo1nNua+JfexPWm72ZFEyr1wLy+erl2bve3asfH663ksPJxADw9Yv750D9yl\nS/FWJBVo3frSdJjS8vXXX5fqzxcRERERKY9ccjJMcnIyYWFhDifDgL0ZxsfHh7Nnz+LhbBe3iEgp\nMrsTUkREREREypnsbPtapClT4MAB53WVK8PIkTBmDISHG5fvMpoMAwMXDmTJ4SXk2fKclt9a71Ym\n3TiJmyJuuvSalYj8NZl5eSw+epRJo0dj/eEH+5OtW8Mzz0BAQMkcxNsbrvXPrM0GmZklc/yzZ+G1\n12DnTgD69+/PnDlzCCip8xMRERERKSFm3w91yckwISEhtGrV6tJKpAKXN8ZkZmayefNmM+KJiIiI\niIiIiFwbT08YOhT27oVly6B9e8d158/D1KlQpw4MHw6HDxsaU+w+7P0hh584zOM3PI6Xu5fDmlVH\nVtF1flc6f9SZFQdX4ILvVxMxnLe7O0MbNCDx++95feZMPLy8YMcOGD3a3kjo4/PXH3+mec1iKZlj\nHzhgP5edO/H29uaDDz7g888/VyOMiIiIiIgDLtkMA9CzZ88ia77//nsDkoiIiIiIiIiIlBA3N+jT\nB2Jj4aef4NZbHddlZ8OcOdCoEdx3H2zdamxOoU7VOrx757skjElgYueJVPGq4rBuw/EN9F7cm5az\nWrJw90Jy83MNTirieiwWCxNGjWLb5s00adIETp2CcePg448hz/nEpjIrLw8++sh+DqdO0aRJEzZt\n2sTw4cM1WUpERERExAmXbYbp37+/068VrE9auHChgYlEREREREREREqIxQJdu8L338O2bTBggL1R\n5o9sNliyBG64AXr2hB9/tD8nhgnxD2Fy98kkjEng1b+9Sg1fx+Og95zYw/1f3U+jmY2YtWUWmbkl\ntFJFpAJr0aIFmzdvZtiwYfZr3yefwD/+ASkpZkcrvpQUe+ZPPwWbjWHDhrF582ZatGhhdjIRERER\nkTLNZZthbrjhBtq3b1/oqqSjR4+yatUqM+KJiIiIiIiIiJSMNm1g8WI4eBBGjLCvVHJk9Wro1g06\ndICvvoL8fGNzVnCB3oE82+VZ4sfE887t71A7oLbDuqOpR3ns28eo81YdXl//OueyzhmcVMS1+Pn5\n8eGHH7Jw4UL8/f1h1y545BHYsMHsaEWLibFn3bWLypUrs3DhQj788EP8/PzMTiYiIiIiUua5bDMM\nwKhRowr9us1m48UXXzQojYiIiIiIiIhIKapfH2bNgvh4eOYZqFzZcd3mzXDvvdC0qX3tRna2oTEr\nOt9KvoxuP5pfn/iV+X3m0ySoicM6a5qVZ6KfIeLNCP754z9JSS9HkyxEyqBBgwaxfft2rr/+ejh3\nDp59Ft59t2xeA7Oz7dmeew7OnaNt27Zs27aNQYMGmZ1MRERERKTccOlmmIEDB9KgQQOAq6bDFHy+\nceNGPvroI1PyiYiIiIiIiIiUuLAweO01OHYMJk+G4GDHdQcPwrBhULcuTJ8O588bm7OCq+ReiSGt\nhrDn8T0sG7CM9te1d1h3JvMMr/78KhFvRvDkyic530M01wAAIABJREFUdvaYwUlFXEf9+vWJiYlh\nzJgx9ie+/BKeeAJ+/93cYJf7/XcYPdqeDRg7diwxMTHUr1/f5GAiIiIiIuWLSzfDVKpUiZkzZ16x\nGulyFosFm83GuHHjiIuLMzidiIiIiIiIiEgpCgyEiRPtk2Leew/q1HFc9/vvMG4cRETA889DiiaQ\nGMnN4kafxn2IHRbLmiFr6F63u8O6jNwM3tn0DvXersfQ5UPZn7Lf4KQirsHLy4sZM2bwzTffUK1a\nNTh0CIYPhzVrzI4G0dHw6KNw+DDVq1dnxYoVTJ8+HU9n6+9ERERERMQpl26GAejRowf9+/e/YhoM\ncKlBxmKxcPbsWe68807OnDljVkwRERERERERkdLh4wOPPWa/4btwIbRq5bguNRVeftneFPPkk5CQ\nYGzOCs5isfC3On9j9eDVbHpkE30b93VYl5ufy/yd82n2XjPu+fweNv++2eCkIq7hrrvuYufOnXTp\n0gUuXIBXXoHXX4eMDOPDZGTYj/3qq5CRwU033cSOHTvo1auX8VlERERERFyEyzfDAMyePdvpuqQC\nBw4coFu3bpw4ccLwfCIiIiIiIiIipc7DAwYNgu3bYeVKuPlmx3UZGfDOO1CvHgwZAnv2GJtTaHdd\nO74a8BX7Ht/Hg60exMPN46oaGzaWHVhG+w/b0+PTHvwY96PT6cgi4ljNmjX58ccf+de//mV/3Xjl\nSnvz4NGjxoU4etR+zJUrsVgsPP/886xZs4aaNWsal0FERERExAVViGaYgIAAVqxYQUBAAHB1Q0zB\n59u3b6dTp05s377dlJwiIiIiIiIiIqXOYoHbboO1ayEmBu6+23FdXh58+im0aAG9e9trxVBNajRh\nXp95HHnyCE+0fwIfDx+HddFHo+n2STc6zu3I8gPLybflG5xUpPzy8PDgpZdeYs2aNYSFhdmnYj32\nGHzzDZRmg5nNZj/GY49BQgJhYWGsWbOGF198EQ+PqxvgRERERETk2lSIZhiAhg0bsnz5cipXrgw4\nboixWCwcPXqUqKgoJk+eTE5OjllxRURERERERERKX1QULF8Oe/fCgw/ap8c4smIFdO4MN90E331X\nujeI5Sq1A2rz9u1vkzAmgee6PEeAV4DDuk2/b6Lv531p8X4LPtn5CTl5em1LpLhuueUWduzYwW23\n3QbZ2TBjBrz4IqSllfzB0tLsP3vGDMjO5vbbb2fnzp3ccsstJX8sEREREZEKymKrYPNTd+7cyR13\n3IHVar30XMGvoKBBpqA5JjIykpdeeokBAwaoG19ESlRKSgrBwcFXPHfixAlq1KhhUiIRERERERHg\n2DGYPh3mzIELF5zXtWwJzzwD9913VQNNeno6/v7+9k/GA56lF7dMyQam2T9MS0vDz8+v1A51Lusc\ns7bMYvqG6SSnJzutiwiIYHyn8QxrMwyfSo6nyojIlfLz85k+fTqTJk0iNzcX2reHKVNK9iDPPAOb\nNmHx8ODxf/+btyZNwt3dvWSPISIiIiJiMrPvh1a4ZhiA+Ph4+vXrx7Zt27BYLFfsU768Iabg87Cw\nMIYNG0b//v1p3ry5KZlFxLWYffEXEREREREp1MmTMHMmvP02pKY6r6tTB8aPh4ceAh97s8UVzTAV\nVGk3wxTIzM3k4+0fMzVmKnFn4pzW1fCtwZiOY3i83eMEegeWei4RVzBnzhyGDx8O1avDl1+W7A/v\n1w9OnYJx46BXL5r5+jIyPJzBoaEE6E2ZIiIiIuIizL4fWmHWJF0uMjKSjRs38sILL+Dh4XFpRRJc\n2QRT0CiTmJjIK6+8QqtWrahfvz7Dhg3j448/ZuvWraSnp5t5KiIiIiIiIiIiJS8oCF544X+TYq67\nznFdXByMGgWRkTB5Mpw5Y2TKCs/bw5vH2j3GoScO8Vnfz2ge7PhNXCkXUnjux+eIeDOCSdGTSE5z\nPk1GROw2b95s/yAqquR/eMeO9v89eBCAvRcu8MSvvxIeE8MjBw6w5dy5kj+miIiIiEgF49KTYR5+\n+OEia3bt2uVwQgz8b0oM4HB6TIHg4GBCQkIICQmhcuXKeHl54enpeVWdmSwWC3PnzjU7hohcZHYn\npIiIiIiIyDXJzoYFC+yrQi7evHWocmVsI0dyYcQICA299LTVauWGG27gzJkzPA88XfqJS9UU4GUg\nMDCQLVu2EHrZuQL4+vqa8rpQvi2fbw99y+RfJrPh+Aandd4e3jzc+mEmdJ5AZGCkcQFFyonc3FzC\nwsI4efIkTJsGbduW7AG2bIEJEyAgAJYuBQcrktr6+zMyPJxBISH4aYWSiIiIiJRDZt8PdelmGDc3\nt2K98FDUr+CPP8NZfVlqfrmczWbDYrGQl5dndhQRucjsi7+IiIiIiMifkp8PX38Nr70GmzY5r/P0\nhAcfhAkTsNWvz913382KFStoC8QC5X0JSA7QEdgG9O7dm+XLl5ep14VsNhv/Tfgvk3+ZzKojq5zW\nuVvcGdRiEBM7T6RZcDMDE4qUbdHR0fTo0aPQZpW/JC8P7rkHzp0rstmmirs7g0NCGBEeTosKvoJO\nRERERMoXs++HVog1STabrdDHtXw//G+F0uWP4hzHrIeIiIiIiIiISIlwc4O+fSE2Fn78EXr2dFyX\nnQ1z5kCjRiyKimLFihV4AvMo/40wAJWwn0sl4JtvvmHRokXmBvoDi8XCzZE38/0D37N1+Fb6N+2P\nhaubdfJseXy26zOav9+cuxffTezxWBPSipQ9X3zxhf2DLl1KvhEG7D+zSxcA7ty9m3uDgnB2lHN5\nebybmEjLLVu4cds2PrNaydSbHkVEREREiqTJMBQ9GaYoZemdP45oMoxI2WN2J6SIiIiIiEiJ2bbN\nvj7pyy/tk2MuYwOaAgewrxX6pwnxStPLwPNAkyZN2Lt3b5l+jejQqUO8vv51Ptn5CTn5OU7rukZ2\nZdKNk+hRt0eZPh+R0lLqK5IKXFyVFBQURFJSEify8vgoKYnZSUn8lpVV6LdW8/DgodBQRoSH08DX\nt3TyiYiIiIj8RWbfD60QzTAufIpFKjh/NcOIlC1mX/xFRERERERK3OHD9hvH8+bZJ8MAPwF/A/yB\nRKCyeelKxTngOiAN+Omnn+jatau5gYrh+LnjTN8wnQ+2fsCFnAtO69qGtWXijRPp27gv7m6lMBlD\npIwq9RVJBS5blRQdHU23bt3sT9tsrDx1ilmJiXx3+jRFvbLdLTCQkeHh3B0URCW3CjEIXkRERETK\nCbPvh+pvxyIiIiIiIiIi8tc1aAAffADx8fD001C5Mu9e/NIQXK8RBqAKMPjix++++25hpWVGzSo1\nmX7rdBLGJPD8Tc9T1buqw7qtSVvpv6Q/zd5rxsfbPyY7L9vgpCLm+FMrkvbuhccesz/27Sve91y2\nKunSMQF3i4VeQUH8X8uWxHXsyHO1axNSqZLTH7PmzBn679tH7dhY/nn0KAmZmcU7voiIiIiIi9Nk\nGBenyTAiZZPZnZAiIiIiIiKl7fd9+4ho0YK8/Hx2A83NDlRKdgMtAXd3d44dO0Z4eLjZka7J+azz\nzN46mzc2vEFSWpLTuppVajI+ajyPXP8Ifp5+BiYUMc41r0jKy4OFC2H+fPvHYG9yGToUBg0qupnm\nD6uSPDw8HJbl5Ofz9cmTzEpMZM2ZM4X+SAtwR7VqjAwP5/bq1XHXujMRERERMYnZ90M1GUZERERE\nRERERErcnC++IC8/ny64biMMQAvgRiAvL485c+aYHeeaVfaqzLhO44h7Ko7ZvWZTv1p9h3XHzx1n\nzKoxRLwZwcvrXiY1I9XgpCKlb+3atfZGmIAAaN268OITJ2DcOPjoI8jLY9CgQQwaNMjeFDN3Lowf\nDykphf+MNm2gShVOnjzJunXrnJZVcnOjX3Aw0a1bc7B9e8bVrEk1J40zNuDb06e5a88e6sbG8kp8\nPElZWUWcuYiIiIiI61EzjIiIiIiIiIiIlCibzXapMeRxk7MYoeAc58yZU24nFHt5ePFo20c5MOoA\ni+9dTKuQVg7rTmWc4vm1z1P7zdpM+GECSeedT5MRKW+KvSLp55/hkUdg5078/f2ZP38+CxYsYMGC\nBcybNw8/Pz/YsQOGDbPXOuNkVVJhGvr6Mq1+fX6PiuLTxo3pXKWK09pjWVn8Kz6e2rGx9Nuzh+jT\np8kvp9coEREREZFrVSHWJFV0WpMkUvaYPRZMRERERESkNB09epR69erhCZwDvMwOVMqygMpADvZz\nr1OnjsmJ/jqbzcb3v37P5F8m8/Mx5zfzPd09GdpqKE93fpp61eoZmFCkZBVrRVJmJrz3HqxYAcAN\nN9zAokWLqF//yolKhw8f5u9//ztbtmyxP3HXXfD44+DtffXPLOaqpMLsTkvjg8REPklO5nwRrwHX\n9/FhRFgYQ0NDCfL0vOZjiYiIiIgUl9n3Q11+MozNZqvwDxERERERERERI23duhWAlrh+IwzYz7Hl\nxY8Lzr28s1gs3N7gdv770H/5+aGfuaPBHQ7rsvOymb1tNg1nNmTQ0kHsSt5lcFKRklHkiqRff4WR\nIy81wjz99NOsX7/+qkYYgAYNGrB+/Xqefvpp+xMrVti/98iRq39uMVclFaaFvz8zGzYkMSqKOQ0b\ncr2/v9PaXzMymHD0KDU3bGDw/v2sP3tWryGLiIiIiEu69jbzcuTBBx80O4KIiIiIiIiISIVT0BDi\nYK6Cy2oLbMV+7v369TM7Tom6sfaNfPv3b9lp3clr61/ji71fkG/Lv6Im35bP4j2LWbxnMXc2uJNJ\nN06ic+3OJiUWuXZOVyTZbPDVVzB7NmRnExYWxieffEL37t0L/Xmenp5MmTKFHj16MHjwYKwJCfbp\nMCNGQN++UDDRvGBV0rff8sUXX9CtW7c/fQ7+Hh48Eh7OI+HhbDl3jlmJiSw8cYKM/PyrarNsNj5L\nTuaz5GSa+/kxMjycB0JCCPgTk2lERERERMoil16TJCJSVjkaCxYXF+dwLJifn59RsUREREREREpE\n9+7dWbNmDbOBR80OY5DZwAjs57569Wqz45SqX0//ytT1U5m3cx7ZedlO67rU7sKkGydxW/3btMpc\nyjSnK5LOnIEpUyA2FoBevXrx0UcfXfNY95SUFB566CG+/fZb+xNRUfD00xAYaP+8BFYlOXMmJ4fP\nkpOZlZjI3gsXCq31dXNjUHAwI8PDuaFKlRLLICIiIiKuLz09/arnUlJSrlojbOSaJDXDiIiYwFEz\njDO6TIuIiIiISHlis9moXr06qampbAWuNzuQQbYCNwBVq1bl1KlTFaL5I/F8IjM2zGDW1lmkZac5\nrWsd2pqJnSfSr2k/3N3cndaJmCU6OpoePXrYVyQtXWqf1rJlC0yeDKdP4+XlxbRp0xg1atSf/rNt\ns9mYOXMmEyZMICsrC6pXh0mT7I03eXlwzz1w7hzR0dF/aTpMYcdff/YssxITWZKSQnYRrze19fdn\nZHg4g0JC8HPXn1sRERERKVxx/55sZDOMmyFHERERERERERGRCiEhIYHU1FQ8geZmhzFQc6ASkJqa\nSkJCgtlxDBFeOZypPaeSMCaBl7q+RHWf6g7rdlh3MHDpQBq/25g5W+eQlZtlcFKRwl2xIik/H2bN\nggkT4PRpmjZtyqZNmxg9evRfanKzWCw88cQTbNq0iSZNmsCpUzB+vP1Y+fn2Y1+epYRZLBZuDAzk\ns6ZN+T0qiql161LP29tp/da0NB49dIjwmBhGHzrEnjTnDW8iIiIiImWRJsOIiJhAa5JERERERMRV\nbdq0iQ4dOhABxJsdxmARwDHsv4N27dqZHcdw6dnpfLjtQ6ZtmMbxc8ed1oVXDmdc1DiGtx2Ov6e/\ngQlFrnbFiqQxY+C77+DQIQBGjhzJG2+8ga+vb4ke88KFC4wbN45Zs2bZn2jUCG6/Hd58s1RWJTmT\nb7PxY2oqsxITWX7yJHlF1HeuUoWR4eH0q1EDb02LEREREZHLaE2SiIgAjpthjLz4i4iIiIiIlJZ1\n69bRtWtXGgP7zQ5jsMbAQey/g5tuusnsOKbJzstmwa4FvLb+NQ6dOuS0rppPNZ5o/wRPtH+C6r6O\np8qIlLZLK5IAPD0hO5tq1aoxd+5c+vTpU6rHXrZsGcOGDSM1NfXSsQsylcaqpMIkZmXxUVISs5OS\n+C2r8OlN1T08eCgsjOFhYTQo4UYhEREREXEdZt8P1ZokEREREREREREpMZmZmQA4X77hugrOOSMj\nw9QcZvN09+ShNg+x7/F9LOm/hOvDrndYdzrjNC+ue5GINyP4x6p/FDpNRqS0XLGWKDubrl27snPn\nzlJvhAHo27cvu3bt4uabb77UCHNVJoOEe3nxz8hI4jp2ZEXz5txZrRrOlkKdys1l2m+/0XDTJnrs\n3MnSlBRy8vMNzSsiIiIiUhQ1w4iIiIiIiIiIiEiJc3dzp1/Tfmx5dAurHlhF18iuDuvSc9KZETuD\num/V5ZFvHil0moxISfvvf/8LgLu7O6+++irR0dHUrFnTsOPXrFmTNWvW8Morr+B+cfVQQSYzuFss\n9AoK4v9atiSuY0eeq12bkEqVnNZHp6bSb+9easfG8q+4OI5dbIgUERERETGbmmFERERERERERKTE\neHvb56NUxNuhBefs4+Njao6yxmKx0LNeT3568Cc2DNtA70a9Hdbl5Ocwd/tcGs9szH1L7mN70naD\nk0pFFB0dzcCBA/nll1949tlnLzWkGMnd3Z3nnnuOn3/+mYEDB7J69WrDMzgS4e3NK3Xr8ltUFEua\nNqVbYKDTWmt2Nq8kJFAnNpa7du/m21OnyLPZDEwrIiIiInIli82mv5GKiBjN7B15IiIiIiIipWXT\npk106NCBCCDe7DAGiwCOYf8dtGvXzuw4ZdqeE3uYsn4Ki3YvIs+W57Tu1nq38myXZ+lSuwsWi7Ol\nLSJilEMXLjA7MZGPrVZO5+YWWlvby4vh4eE8HBpKmJeXQQlFREREpKww+36ommFERExg9sVfRERE\nRESktMTHx1OnTh08gfOAp9mBDJIFVAZygLi4OCIjI80NVE7EpcYxLWYac7fPJSsvy2ldp1qdmNh5\nIr0a9lJTjEgZkJmXx5cpKcxKTGT9uXOF1npYLPQJCmJkeDi3BAbipj/DIiIiIhWC2fdDXbIZJjEx\nkejo6GLVNmnSRO/UERHDmX3xFxERERERKS02m43q1auTmprKVuB6swMZZCtwA1C1alVOnTqlho1r\nZE2z8mbsm7y3+T3OZ593Wtc8uDmTbpzEfc3uw8PNw8CEIuLM7rQ0PkhM5JPkZM7nOZ/0BNDAx4cR\n4eE8GBJCkGdFaZcUERERqZjMvh/qks0wb7/9NmPHji1W7dq1a+nSpUspJxIRuZLZF38REREREZHS\n1L17d9asWcNs4FGzwxjk/9m787ioy/X/469hRwQXFGE03M09F1wwtWyzrDRPi8cWy13brOOW1en8\nOnUyNdssQ83SLFtscamsTLNSNHFDU3PfB1kUERTZZn5/TPjVnAFM+Hxg5v18POYRzFzM5z1Utzj3\nxX3NBIbjfO3Lli0zO06FdfLsSaYnTOf1ta+TeibVbV2Dag0Y22UsD7V5iCC/IAMTiog7Wfn5fJKS\nwjs2GxuzsoqsDbRYuDsighFWK13CwtRAKCIiIuKBzN4P9THkKgbbvHkzDoej2FtsbKwaYURERERE\nRERESllMTAzgPC3FWxS+1sLXLn9P1aCqPN3taQ48cYBpt0wjukq0y7p96fsY+c1I6r9Rn8mrJ3Mq\np+gxLSJS9ir7+THEamVDTAwJ7doxODKSYB/XWxA5DgcfJifTddMmWq9fz9tHj5KRn29wYhERERHx\nZB7ZDLNr1y4ALBaLy1vhY/369TMzpoiIiIiIiIiIR2rfvj3gnc0wha9dLk8l/0o82vFR9jy2h7l3\nzKVZjWYu645lHWP8j+Op+3pdnl3xLKmn3Z8mIyLGiQkL492mTbHFxjKtUSNaVKrktvb306d5dPdu\nrPHxDN25kw2Z7keliYiIiIiUlEeOSYqOjubo0aOAc071+SwWCw6HA4vFwr59+6hbt64ZEUXEy5l9\nLJiIiIiIiEhZ2rdvHw0bNiQAOAUEmh2ojOUAoUAeztdev359kxN5HrvDzuKdi3np15dIsCW4rQv2\nC2ZIuyGM6TLG7akyImI8h8PB6owM4mw2FqSmklvMtkRMaCgjrFb+GRFBiK+vQSlFREREpDSZvR/q\nkc0wlSpVIicnB7iwGabwVBiHw0HNmjVJTk42JZ+IiNmLv4iIiIiISFlyOBzUqVMHm83Gx8A/zQ5U\nxj4G7gVq167N4cOHz70HJaXP4XCwYv8KJq6ayPL9y93W+fn4cX/r+xl/9Xia1mhqYEIRKU5abi5z\njh0jzmZj79mzRdaG+foyIDKS4VFRtKxc2aCEIiIiIlIazN4P9cgxSXl5eW4fKzwVpkWLFgYmEhER\nERERERHxHhaLhaFDhwIw3eQsRih8jUOHDlUjTBmzWCxc3+B6fhzwI+uGrKNv074u6/Lt+czZPIfm\nbzfnzs/uZL1tvcFJRcSdGgEBjImOZlenTixr3Zo7a9TA3dkvpwoKeOvoUVqtX0+3TZv4KDmZswUF\nhuYVERERkYrJI5thQkJCiq2pV69e2QcREREREREREfFSQ4cOxdfXl1+BrWaHKUNbgVWAr8XC0B49\nzI7jVTrU7sCX/b5k+8PbefCqB/Hz8buoxoGDL3d8SYdZHbhx3o2s2L/iorHqImIOH4uFG6pX5/OW\nLTkUG8sL9epxRaD7wXqrMjK4f8cO6qxZw9i9e9l95oyBaUVERESkovHIZpjKJTguMTQ01IAkIiIi\nIiIiIiLeqXbt2txxxx0AxJmcpSy98+c/+zocWK+9Fvr2hTVrzIzkdZrVbMacO+aw57E9PNbxMYL9\ngl3W/bjvR67/4Ho6z+7Mwj8WYnfYDU4qIu5YAwN5tl499nfuzJKWLbm1enXcnbN1PD+fVw4fpsm6\nddyYmMgXqank2fX/s4iIiIhcyGubYUpSIyIiIiIiIiIif98jjzwCwAdAprlRysQpYN6fHz8C4HDA\nwoXQpQt07w7ffOO8TwxRt2pd3rzlTQ48cYBnuj1DlcAqLuvWHV1H30/70uqdVnyQ+AF5Be5HrouI\nsXwtFm6rUYOvW7dmX6dOPBMdTS1/f7f1P6anc9e2bUSvXcu/9+/n0NmzBqYVERERkfLMI5thatSo\nUexxp7m5uQalERERERERERHxTtdeey1NmzYlC3jD7DBl4A0gC2gGXPPXB3/9FW67DVq3hg8+gDw1\nXBglIiSCF697kUNPHuLl61+mVkgtl3XbU7fz4MIHaTytMW+ve5vsvGyDk4pIUeoFB/NigwYcio1l\nQfPmXF+1qtvaY7m5vHjwIPXXruX2rVv55vhxCtSMKCIiIuLVPLIZpkmTJsXWnD592oAkIiIiIiIi\nIiLey2Kx8O9//xuA/wK/mxunVG0FXvjz42f79MHibpP299/hwQehYUN4/XXIyjIqotcLCwxjfNfx\nHHjiANN7Tad+1fou6w5mHOTRpY9S7416TPx1IhlnMwxOKiJFCfDx4a6ICH5s04adHTvyrzp1qO7n\n57LWDnx9/Di3bd1Kg7Vr+d/BgyTl5BgbWERERETKBa9thklOTjYgiYiIiIiIiIiId+vfvz+33347\necBDgCecj3L+a+nduzf9v/oKDh2CV16B2rVdf9Hhw/DkkxAdDc89B6mpxgX2ckF+QYzsMJJdj+3i\nw74f0jKipcu6lNMpPL3iaaJfj2bCjxNIztL7hyLlTZNKlZjaqBFHYmP5oGlTuoSFua09lJPDs/v3\nE712LXdv28by9HTsOi1GRERExGtYHMXNE6qAvvrqK+68804sFssF45LO/7x169Zs3rzZrIgi4uVS\nU1OJiIi44L6UlBRq1qxpUiIREREREZGyk5SURIsWLUhPT+dF4BmzA12mF4F/A9WqVWPbtm1ERUX9\n34O5uTB/PkyeDDt2uH+SoCAYNAhGj4YGDco6spzH7rDzza5vmLhqImuOrHFbF+QXxKA2gxh79Vjq\nVa1nXEARuSRbs7KYYbPxQXIymQUFRdY2Dg5muNXKQ5GRhPv7G5RQRERExDuZvR/qkc0wycnJREVF\nuWyGAXA4HAQHB5ORkYGfm+MURUTKktmLv4iIiIiIiNE+/PBDHnjgAfyBDUArswP9TVuAGJynwsyb\nN4/777/fdaHdDl9/DZMmQXy8+yf08YF77oFx46Bt2zJILO44HA5+OfgLE1dN5Pu937ut87X40r9V\nf566+ilaRLQwMKGIXIqs/Hw+SUnhHZuNjcWMpAu0WLg7IoIRVitdwsLO7R2IiIiISOkxez/UI5th\nANq2bUtiYqLb02EsFgurVq0iNjbWxJQi4q3MXvxFRERERESM5nA46NOnD0uWLKEZ8CsQbnaoS3Qc\n6AbswDkeaeHChSXbQF21ynlSzJIlRdfdeCOMHw/XXQfamDXUxqSNvLzqZT7f/jkO3L9d2vvK3kzo\nOoHOdTobmE5ELtX6U6eIs9mYn5JCtt1eZG3LkBBGWK3cX6sWVfTLsyIiIiKlxuz9UB9DrmKCm266\nqdia7777zoAkIiIiIiIiIiJisViYMWMGVquVHcAtQKbZoS5BJs7MOwCr1UpcXFzJTxLo2hUWL4bf\nf4cHHwR3m63LlsENN0CHDvDZZ1DMuA8pPe2i2vHZ3Z+x45EdDGozCH8f1+NTFu9cTOzsWHrM7cEP\ne3/AQ3/PUKTCiwkL492mTbHFxjKtUSOaV6rktvb306d5dPdurPHxDN25kw2ZFelPJxERERFxx2NP\nhlm/fj0dO3YsclRSw4YN2b17t1kRRcSLmd0JKSIiIiIiYpZt27bRvXt3Tpw4wTXAEiDU7FDFyARu\nA34BwsPD+eWXX2jevPnff8LDh+H112HmTChqlEfDhjBmjLOBJjj4719PLtmRU0eYGj+VmRtncibv\njNu69lHtmdB1An2b9cXH4rG/dyhS4TkcDlabsOYEAAAgAElEQVRnZBBns7EgNZXcYrZFYkJDGWG1\n8s+ICEJ8fQ1KKSIiIuJZzN4P9dhmGIDOnTuzbt26Ikclffvtt/Ts2dPElCLijcxe/EVERERERMyU\nkJDA9ddfT2ZmJh2ApZTfkUlpOE+EWQ+EhoayfPlyOnToUDpPnp4O06fDG29Aaqr7uogIePxxePhh\nqFatdK4tJZJ2Jo1pv01j2rpppJ9Nd1t3ZfiVjL96PPe1vo8A3wADE4rIpUrNzWXOsWPMsNnYe/Zs\nkbVhvr4MiIxkeFQULStXNiihiIiIiGcwez/Uo5th5s2bx4MPPui2GQacDTPx8fFmRRQRL2X24i8i\nIiIiImK2hIQEbr75Zk6cOEEz4FOgldmh/mIL8E+co5HCw8P57rvviImJKf0LZWfD3Lnwyiuwd6/7\nusqVYdgwePJJqFOn9HOIW5k5mczcMJOpa6aSlJXktu6KsCsYHTuaIe2GEBIQYmBCEblUdoeD5enp\nxNlsLEpLo7jBdF2rVGGE1cqdNWoQpNNiRERERIpl9n6oRzfD5OXl0bJlS/bs2QPg9nSYWbNmMWjQ\nILNiiogXMnvxFxERERERKQ+2b9/OjTfeiM1mwx94DhgP+JucKw94GXjhz4+tVivLli27vNFIJVFQ\nAF98AZMmwcaN7uv8/eG++2DsWCjrTHKBnPwcPkj8gEmrJ7E33X3jUnhwOKM6jeLRjo9SLVin+YiU\nd7acHGYnJTEzKYkjOTlF1ob7+TEwKophUVE0rlTJoIQiIiIiFY/Z+6Ee3QwDsGzZMnr27OnydBhw\nNshUqVKFjRs3Ur9+fbNiioiXMXvxFxERERERKS+SkpIYMWIEixcvBqAdMBdoaVKercBDQGErSu/e\nvYmLiyMqKsq4EA4HrFjhbIpZtqzo2ttvh/Hj4eqrjckmABTYC/h8++dMXDWRxOREt3WVAyozov0I\n/hX7L6JCDfxvSET+lny7naUnThBns7H0xAmK2zy5oVo1Rlit9A4Px9/Hx5CMIiIiIhWF2fuhHt8M\nA9CvXz8WLFhQZENM06ZNiY+Pp2rVqmbFFBEvYvbiLyIiIiIiUp44HA4++ugjHn/8cdLT0/EH/g2M\nAsIMynAKeIP/Ow2mWrVqTJs2jXvvvffce0im2LgRJk+GBQvAbndf16WLsynmtttAG7KGcTgcLN2z\nlImrJrLq0Cq3dQG+AQxsM5CxXcbSsHpDAxOKyN91IDubWUlJzE5KIjkvr8jayIAAhkRFMTQqiuig\nIIMSioiIiJRvZu+HekUzTEZGBh07dixyXBJA27ZtWbp06UX/QkRESpvZi7+IiIiIiEh5lJSUxPDh\nw1myZAkAlYEHgJFAqzK65lZgOvAhkPXnfaacBlOcfftg6lR47z04e9Z9XfPmzvFJ994LAQHG5RNW\nHVrFxFUT+Xb3t25rfCw+9GvRj6e6PkXrWq0NTCcif1eu3c7itDTibDaWnzxZZK0P0Cs8nBFWKzdX\nr46vmc2UIiIiIiYzez/UK5phAHbt2kXnzp3JyMgA3DfENGjQgAULFtC2bVtTcoqIdzB78RcRERER\nESmvHA4HH3/8MS+++CI7duw4d383nE0x/wACL/MaOcCXOJtgzj/Lo1mzZjz77LP079/f3NNgipKS\nAtOmwdtvQ3q6+7rateHJJ2HYMAgNNS6fkHgskZdXv8xn2z7D7nB/ms+tjW9lQtcJXB2tEVciFcWu\nM2eYYbMx59gxTuTnF1kbHRjIMKuVwZGRRAZe7p9cIiIiIhWP2fuhXtMMA/DLL7/Qu3dvMjMzgYsb\nYgrvCwgI4D//+Q9jxozB39/flKwi4tnMXvxFRERERETKO4fDwcqVK5k+fTpfffUVBQUFAATgPCWm\n/Xm3Vn/e70ouztNfNpx324JzFBKAn58fffv25eGHH+aaa64pv00wf5WVBe++C6++CocPu6+rWhUe\nfhgefxxq1TIun7DnxB6mrJ7CnMQ55Bbkuq3rFt2NCV0ncHOjmyvOf38iXi67oIDPU1OJs9mIP3Wq\nyFo/i4U7atRghNVKj6pV8dH/5yIiIuIlzN4P9apmGIDExER69erFsWPHzt1X+C04vyHGYrFQr149\n/vvf/9KvXz/8/PxMySsinsnsxV9ERERERKQisdlszJo1i1mzZnH06NGLHvcHooBgIOjP+84C2UAS\n/9f4cr7atWszdOhQhg4ditVqLaPkBsjLg48/hsmTYds293WBgfDQQzBmDDRqZFg8AVumjdfWvEbc\nhjiycrPc1rWJbMNTVz/FXc3vwtfH18CEInI5tmRlMcNmY15yMpl/Nm660zg4mOFWKw9FRhKuX8QV\nERERD2f2fqjXNcMAHDhwgLvuuouNGzdeMCIJLmyIKfw8KiqKwYMHc/fdd9OyZUtTMouIZzF78RcR\nEREREamIHA4HBw4cYMOGDaxfv54NGzawYcMG0osaFwRUq1aNmJgY2rdvf+5Wr149zzqFw+GAb7+F\nSZPg11/d11kscOedMH48xMQYl084kX2Ct9e9zRu/vcHx7ONu6xpVb8S4LuMYcNUAAv00WkWkosjK\nz+fjlBTesdnYlOW+8Q0g0GLh7ogIRlitdAkL86w/j0RERET+ZPZ+qFc2wwAUFBTwv//9j//973/k\n/znb868nxLi6r379+lxzzTV07dqV1q1b07RpU0JCQgxOLyIVndmLv4iIiIiIiKdwOBwcPHiQ1NRU\nsrOzyc7OBiA4OJjg4GBq1qxJ3bp1vWujcc0a50kxCxcWXXfddc6mmBtvdDbJiCFO555m1sZZTF0z\nlSOnjrits4ZaGR07mmHth1E5oLKBCUXkcjgcDtZnZhJns/FxSgrZdnuR9S1DQhhhtXJ/rVpU0Qn1\nIiIi4kHM3g/16GaYQYMGFVuzZcsWlyfEgOummL/eDxAREUGtWrWoVasWoaGhBAYGEhAQUK7eZLFY\nLMyePdvsGCLyJ7MXfxEREREREfECf/wBU6bAvHnOcUrutGkD48bB3XeDNmINk1uQy4dbPmTS6kns\nOr7LbV314Oo81vExHuv4GOGVwg1MKCKX62ReHvOSk4mz2dh+5kyRtZV8fLi3Vi1GWK20Dw01KKGI\niIhI2TF7P9Sjm2F8fHxK1JBS3Lfgr8/hrr48Nb+cz+FwYLFYKChmXqmIGMfsxV9ERERERES8iM0G\nr78OcXGQmem+rn59GD0aBg6ESpWMy+flCuwFfPXHV0xcNZGNSRvd1oX4hzCs/TBGx46mdlhtAxOK\nyOVyOBysysggzmbj89RUcovZk4gJDWWE1co/IyII8fU1KKWIiIhI6TJ7P9QrmmFK8yW6a3gp799G\nNcOIlC9mL/4iIiIiIiLihU6edDbEvP46JCe7r6tRAx57DB55BMJ1EolRHA4Hy/YtY+Kqiaw8sNJt\nnb+PPwOuGsC4q8fRJLyJcQFFpFSk5uYy59gxZths7D17tsjaMF9fBkRGMjwqipaVNS5NREREKhaz\n90O9ohmmOJf7LSivJ8IU0skwIuWP2Yu/iIiIiIiIeLGzZ52jk6ZMgd273ddVqgRDh8K//gXR0cbl\nE9YeWcvEVRNZvHOx2xoLFu5qfhcTuk6gbVRbA9OJSGmwOxwsT08nzmZjUVoaxb1737VKFUZYrdxZ\nowZBOi1GREREKgCz90O9ohnGg19isQpfv5phRMoXsxd/EREREREREQoKYOFCmDQJEhLc1/n6Qv/+\nMG4ctGplXD7h95TfeXnVy3zy+ycUONy/t9ezYU+e7vY03aK7lftf3BORi9lycpidlMTMpCSO5OQU\nWRvu58fAqCiGRUXRWCPtREREpBwzez9UzTAeTs0wIuWT2Yu/iIiIiIiIyDkOB/z8s7Mp5rvviq7t\n1cvZFNO9O6jpwjD70/czJX4K7216j5wC9xvlXa7owoSuE7i18a1qihGpgPLtdpaeOEGczcbSEyco\nbmfjhmrVGGG10js8HH8fH0MyioiIiJSU2fuhaobxcGqGESmfzF78RURERERERFxKTITJk+HTT50n\nx7jTqROMHw99+oA2YA1zLOsYr699nekJ08nMzXRb1yqiFU91fYp7WtyDn4+fgQlFpLQcyM5mVlIS\ns5OSSM7LK7I2MiCAIVFRDI2KIjooyKCEIiIiIkUzez9UzTAeTs0wIuWT2Yu/iIiIiIiISJEOHIBX\nX4V334XsbPd1V14JY8fC/fdDYKBh8bzdybMnmZ4wndfXvk7qmVS3dQ2qNWBsl7E81OYhgvy0QS5S\nEeXa7SxKSyPOZmPFyZNF1voAt4aHM8JqpWf16vjqhCgRERExkdn7oWqG8XBqhhEpn8xe/EVERERE\nRERKJC0N3n4bpk2D48fd10VFwRNPwPDhUKWKcfm83Jm8M7y36T2mxE/hUMYht3WRlSN5svOTjIgZ\nQVhgmIEJRaQ07Txzhpk2G+8fO0Z6fn6RtXUDAxlmtTIoMpJINSuKiIiICczeD/WKZhhvp2YYkfLH\n7MVfRERERERE5JKcPg3vvQdTp8LBg+7rwsJg5EgYNcrZICOGyCvIY/7W+UxaPYkdaTvc1lUNqsoj\nHR5hVKdR1AzRexAiFVV2QQGfp6YSZ7MRf+pUkbV+Fgt9a9RghNVKj6pVtWciIiIihjF7P9Tjm2HE\nSc0wIuWL2Yu/iIiIiIiIyN+SlweffQaTJ8OWLe7rAgJgwADnCKUmTYzL5+XsDjuL/ljExFUTSbAl\nuK0L9gtmaLuhjO4ymugq0QYmFJHStiUrixk2G/OSk8ksZg+gSXAww61WHoyMJNzf36CEIiIi4q3M\n3g/16GaYgQMHmh2hXHn//ffNjiAifzJ78RcRERERERG5LA4HfP89TJoEK1e6r7NYoG9fGDcOOnUy\nLJ63czgcrNi/gomrJrJ8/3K3dX4+ftzf+n7GXz2epjWaGphQREpbVn4+H6ek8I7NxqasrCJrAy0W\n7omIYLjVSpewMJ0WIyIiImXC7P1Qj26GEREpr8xe/EVERERERERKzbp1zpNivvzS2STjzjXXwPjx\ncPPNziYZMUTC0QQmrprIV3985bbGgoW+zfoyoesEYqwxBqYTkdLmcDhYn5lJnM3GxykpZNvtRda3\nDAlhhNXK/bVqUcXPz6CUIiIi4g3M3g9VM4yIiAnMXvxFRERERERESt2uXfDKKzB3LuTmuq9r1cp5\nUky/fqAxHYbZkbqDSasn8dHWj8i357utu6HBDUzoOoEe9XrotAiRCu5kXh7zkpOJs9nYfuZMkbWV\nfHy4t1YtRlittA8NNSihiIiIeDKz90PVDCMiYgKzF38RERERERGRMpOUBG++CdOnw6lT7uuio2H0\naBg8GEJCjMvn5Q6ePMjUNVN5d+O7ZOdnu63rWLsjE7pOoPeVvfGx+BiYUERKm8PhYFVGBnE2G5+n\nppJbzLZQh9BQRlit9IuIIMTX16CUIiIi4mnM3g9VM4yIiAnMXvxFREREREREytypUzBjBrz2mrNB\nxp3wcHj0UeetRg3j8nm5lNMpvPnbm7y17i0ycjLc1jWv2ZzxV4+nf8v++PvqJB+Rii41N5c5x44x\nw2Zj79mzRdZW8fVlQGQkw61WWqhpUURERC6R2fuhaoYRETGBq8V///79Lhf/EP1FU0RERERERCqy\nnBz46COYPBl27nRfFxzsPCVm9GioV8+weN7uVM4p3kl4h9fWvkby6WS3dXWr1GVsl7EMajuIYP9g\nAxOKSFmwOxwsT08nzmZjUVoaBcXUd6tShRFWK3fWrEmgj06LEhERkQudPn36ovtSU1OpX7/+Bfep\nGUZExMO5aoZxR8u0iIiIiIiIeAS7HRYvhkmTYO1a93W+vtCvH4wbB1ddZVw+L5edl82czXOYHD+Z\nAycPuK2LCIngiU5P8HCHh6kSVMW4gCJSZmw5OcxOSmJmUhJHcnKKrK3h78/AyEiGRUXRqFIlgxKK\niIhIeWexWEpUp2YYEREPp2YYERERERER8VoOB/z6q/OkmG++Kbq2Z08YPx6uvRZK+OaqXJ58ez6f\n/v4pL69+md9TfndbFxYYxsMxD/NE5yeoVbmWgQlFpKzk2+0sPXGCOJuNpSdOUNy7kjdWq8YIq5Xb\nw8Px12kxIiIiXk3NMCIiAmhMkoiIiIiIiAgAW7fClCnw8ceQn+++rkMH50kxffs6T46RMmd32Plm\n1zdMXDWRNUfWuK0L8gtiUJtBjL16LPWq1jMu4F84HA7OnDlj2vXLg0qVKpV4E0KkOAeys5mVlMS7\nSUmk5OUVWRsVEMCQqCiGREURHRRkUEIREREpTzQmSUREANfNMEYu/iIiIiIiIiLlyqFD8NprMGsW\nuHgT9ZzGjWHMGBgwALThagiHw8EvB39h4qqJfL/3e7d1vhZf+rfqz1NXP0WLiBYGJnQ6ffo0lStX\nNvy65UlWVpZ+qUpKXa7dzqK0NOJsNlacPFlkrQ9wa3g4I6xWelavjq+as0RERLya2fuhaoYRETGB\n2Yu/iIiIiIiISLl04gS8/Ta8+Sakpbmvq1ULRo2CkSOhalXj8nm5DbYNvLz6Zb7Y/gWOIgao9Lmy\nDxO6TqBTnU6GZVMzjJphpOztPHOGmTYb7x87RnpRp3kBdQMDGWa1MigyksjAQIMSioiISHli9n6o\nmmFERExg9uIvIiIiIiIiUq6dOQNz5sArr8D+/e7rQkNh+HB44gmoXduweN5uZ9pOJq+ezLwt88iz\nux+f0qNeDyZ0ncANDW4o8/E9FzTDjAECyvRy5Ucu8IrzQzXDiFGyCwr4PDWVOJuN+FOniqz1s1jo\nW6MGI6xWelStqlFeIiIiXsTs/VA1w4iImMDsxV9ERERERESkQsjPh88/h8mTYdMm93X+/nD//TB2\nLDRrZlw+L3fk1BGmxk9l5saZnMk747aufVR7JnSdQN9mffGx+JRJlguaYZ7Gu5phXnJ+qGYYMcOW\nrCxm2GzMS04ms6CgyNomwcEMt1p5MDKScH9/gxKKiIiIWczeD1UzjIiICcxe/EVEREREREQqFIcD\nfvwRJk2C5cuLru3TB8aPh9hYY7IJaWfSmPbbNKatm0b62XS3dVeGX8n4q8dzX+v7CPAt3W4VNcOo\nGUbMlZWfz8cpKbxjs7EpK6vI2kCLhXsiIhhhtRIbFqbTYkRERDyU2fuhaoYRETGB2Yu/iIiIiIiI\nSIW1YYOzKeaLL8Bud1/XtauzKaZXL/Apm9NI5EKZOZnM3DCTqWumkpSV5LbuirArGB07miHthhAS\nUDrNG2qGUTOMlA8Oh4P1mZnE2Wx8nJJCdlHrNNAqJIQRViv316pFmJ+fQSlFRETECGbvh6oZRkTE\nBGYv/iIiIiIiIiIV3p49MHUqvP8+5OS4r2vRwjk+qX9/CPCWDglz5eTnMDdxLpNXT2Zv+l63dTUq\n1WBUp1E80uERqgVXu6xrqhlGzTBS/pzMy2NecjJxNhvbz7gfpQYQ4uPDvbVqMcJqpV1oqEEJRURE\npCyZvR+qZhgREROYvfiLiIiIiIiIeIzkZHjzTZg+HU6edF9Xpw78618wdCgUNk1ImSqwF/D59s+Z\nuGoiicmJbusqB1RmZMxInuz8JFGhUX/rWmqGUTOMlF8Oh4NVGRnE2Wx8nppKbjHbUh1CQxlhtdIv\nIoIQX1+DUoqIiEhpM3s/VM0wIiImMHvxFxEREREREfE4mZkwaxa8+iocPeq+rlo1ePhhePxx+Mvf\nzaVsOBwOlu5ZysRVE1l1aJXbugDfAAa2GcjYLmNpWL3hJV1DzTBqhpGKITU3lznHjjHDZmPv2bNF\n1lbx9WVAZCTDrVZa6L/tC+Tn57Nw4UIA7rjjDvw0YkpERMohs/dD1QxTSlJSUsjMzCQ7O5vs7GzO\nnj2Lq29t9+7dTUgnIuWN2Yu/iIiIiIiIiMfKzYWPP4bJk2H7dvd1QUEwcCCMHg0NL63xQv6+VYdW\nMXHVRL7d/a3bGh+LD/1a9OOprk/RulbrEj2vmmHUDCMVi93hYHl6OnE2G4vS0igopr5blSqMsFq5\ns2ZNAn18DMlYnv3444/ceOONACxbtowbbrjB5EQiIiIXM3s/VM0wlyArK4sNGzawefNmNm/ezM6d\nOzl69CjHjh0jPz+/2K+3WCwlqhMRz2f24i8iIiIiIiLi8ex2+OYbmDQJVq92X+fjA3fdBePHQ7t2\nxuXzconHEnl59ct8tu0z7A6727pbG9/KhK4TuDr66iKfT80waoaRisuWk8PspCRmJiVxJCenyNoa\n/v4MjIxkWFQUjSpVMihh+TNs2DBmzZp17uMZM2aYnEhERORiZu+HqhmmGImJiXz99dd8//33/Pbb\nbxc1s1zKt89isVBQUFx/s4h4A7MXfxERERERERGvsnq186SYxYuLrrvhBmdTzPXXg8ViTDYvt+fE\nHqasnsKcxDnkFuS6resW3Y0JXSdwc6Obsbj4d6NmGDXDSMWXb7ez9MQJ4mw2lp44QXG7LzdWq8YI\nq5Xbw8Px96LTYvLz84mKiiItLQ2AGjVqkJSUpFFJIiJS7pi9H6pmGBdOnjzJvHnzeP/990lMTDx3\nv6tvlau/eLnicDhKrRkmLi6O+Pj4YusiIiJ45ZVXLvt6IlL6zF78RURERERERLzS9u3wyivw4YeQ\nl+e+rl07GDcO7rwTtLloCFumjVfXvErc+jhO5512W9cmsg1PXf0UdzW/C18f33P3qxlGzTDiWQ5k\nZzMrKYl3k5JIKWq9BqICAhgSFcWQqCiig4IMSmiecyOSqlRx3pGRoVFJIiJSLpm9H6pmmPOcOHGC\nV155hbfffpusrKyLml+Kanwp6ttosVhKtRlm1apVdO/evdg8FouFhIQE2ul4V5Fyx+zFX0RERERE\nRMSrHTkCr78OM2ZAVpb7ugYNYMwYeOghCA42LJ43O5F9grfWvcWbv73J8ezjbusaV2/MuKvH8UDr\nBwj0C1QzDGqGEc+Ua7ezKC2NOJuNFSdPFlnrA9waHs4Iq5We1avj66EnfJ0bkXTbbeBwwDffaFSS\niIiUS2bvh6oZBrDb7UyZMoWXXnrpoiaYvzac/J1vV2k3wwBce+21/PLLL8Ved9iwYbzzzjulck0R\nKT1mL/4iIiIiIiIiAqSnwzvvwBtvQEqK+7qaNeHxx+Hhh6F6dePyebHTuaeZtXEWU9dM5cipI27r\nrKFWRseO5r6m9xFZPdJ5p5phRDzSzjNnmGmz8f6xY6Tn5xdZWzcwkGFWK4MiI4kMDDQoYdm7YERS\n4WSAMWM0KklERMols/dDvb4ZZuPGjQwZMoTExMRzjS7nN8CUxrenLJphvv/+e2655ZZiT4cJCwsj\nOTmZQA/6YU/EE5i9+IuIiIiIiIjIebKz4YMPYMoU2LvXfV1ICAwbBk8+CVdcYVw+L5ZbkMuHWz5k\n0upJ7Dq+y21dNd9qpP873fmJmmFEPFp2QQGfp6YSZ7MRf+pUkbV+Fgt9a9RghNVKj6pVi9xTqQgu\nGJH0xRfOO++8U6OSRESkXDJ7P9THkKuUU3FxcXTp0uVcI4zFYjn3g5DD4SiVRpiy0rNnT5o0aXLu\n88K8f82dmZnJ119/bUZEERERERERERGRiiE4GIYPh5074bPPoH1713WnT8NrrznHJz34IGzbZmxO\nLxTgG8CgtoPY/vB2Fty9gHZRrkfCp2enG5xMRMwS7OvLA5GRrG7XjsSYGB62Wgn19XVZm+9wsCA1\nlesTE2m6bh2vHj7M8bw8gxOXns8++8z5Qbdu4OvrvHXtCsCCBQtMTCYiIlL+eGUzTH5+PkOHDuWR\nRx4hNzf3XCMMlP8mmPM9/PDDJcr66aefGpBGRERERERERESkgvP1hbvvhoQEWL4cbrrJdV1+vvMk\nmZYt4fbb4ddfoYK8p1hR+fr4clfzu1g/dD3f3/8919S9xuxIIlIOtK5cmbebNMEWG8uMJk1oW7my\n29pd2dmM3ruX2vHxDNixg/iMjAqzHwTOva2vvvrK+cm11/7fAz16APDll1+SX8z4KBEREW/idc0w\neXl53H333bz33nsXnAZTkZpgCg0cOJDg4GAAl0f7Fb6ub7/9luzsbKPjiYiIiIiIiIiIVEwWC1x3\nHXz/PWzcCP37g4+bt1K//hq6d4err4ZFi8BuNzarl7FYLNzU8CZWPrSS+EHx3N7kdrMjiUg5UNnP\nj2FWKxvat+e3du0YGBlJsJt1O8fhYF5yMldv2sRV69cz/ehRTlWAJpKVK1eSlpbmHJHUps3/PdCm\nDVSpQlpaGitXrjQtn4iISHnjVc0whY0wixYtuug0mJIobJxxdzNaaGgovXv3dpn//Puys7NZvny5\nkdFEREREREREREQ8Q9u2MH8+7NkDjzziHKnkypo1cMcdztNi3n8fcnONzemFYq+IZXH/xWwZsYV+\nLfqZHUdEygGLxULHsDDea9qUo7GxvNGoEc0qVXJbv/X0aR7ZvRtrfDzDdu5kY2amgWkvzUUjkgpp\nVJKIiIhLXtUM8+ijj7J48eJLOg3mr80uhV/j6maGe++9t0R13377bRknERERERERERER8WD168Nb\nb8HBg/Dcc1C9uuu6HTtg0CBn/SuvwKlTxub0Qq1qtWJ2n9lmxxCRcqaavz+P16nDtg4d+LlNG/pH\nRODv5hebT9vtzEpKov2GDXTcsIH3kpI4U1BgcGL33I5IKqRRSSIiIhfxmmaYmTNnMmvWrBKfBuOq\nASYgIIAbbriBp556ik8//ZS1a9dy+PBhMjIyyMnJOfd1RrrllluoWrWq22sXNv189913huYSERER\nERERERHxSDVrwvPPO5tiXn8drrjCdZ3NBmPHQnQ0PP00HDtmbE4REQGc+yTdq1ZlfvPmHImNZVKD\nBjQMCnJbn5CZyeCdO7HGx/P47t1sO33awLSuuR2RVEijkkRERC7iFc0w27dv5/HHH7+kRpjCOh8f\nH26//XYWLlzIiRMn+OGHH3jppZe4++676dixI7Vr1yY0NBR/f/8yfx2u+Pn5cdNNNxU7KungwYMc\nPnzYyGgiIiIiIiIiIiKeq3JlGDUK9ggnaCsAACAASURBVO6FDz5wjkdyJSMDJk6EevVg+HDYvdvQ\nmCIi8n8iAgIYFx3Nrk6d+KF1a/5Rowa+bmozCgqYdvQoLRMS6L5pE/OTk8mx2w3NW8jtiKRCGpUk\nIiJyEa9ohhk2bBi5f87oLaoR5vzxSQD33XcfO3bsYNGiRfTu3Ztgd/OATdarV68S1f36669lnERE\nRERERERERMTL+PvDAw/Ali3wzTfQvbvrupwcmDkTrrwS7roLEhKMzSkiIuf4WCzcWL06X7RsyaHY\nWP5brx51AgPd1v+akcF9O3ZQZ80axu3dy54zZwzLWuyIpEIalSQiInIBj2+GmTVrFvHx8Rc0ubhy\n/mkwDRs25KeffmLevHk0atTIqKh/280331yiutWrV5dxEhERERERERERES9lsUCvXvDzz7BmDfTt\n67zvrxwO+OIL6NgRrrsOvv/eeZ+IiJjCGhjIv+vVY3+nTixq2ZJbqlfHxeoNQFpeHlMOH6bxunXc\nlJjIl6mp5JXxaTHFjkgqpFFJIiIiF/DoZpj8/HxefPHFc40u7pzfCNOrVy82bNhAd3e/wVEORURE\nnGvacfdaHQ4H69evNzKWiIiIiIiIiIiId+rcGb78EnbsgMGDISDAdd1PP8HNN0PbtjB/Pug3+UVE\nTOPn40PvGjX4tnVr9nbqxIToaCL8/d3WL0tP585t26i7di3P7d/P4bNnyyRXsSOSCmlUkoiIyAU8\nuhlm3rx5HD58GHA/Hun8E2MeeOABlixZQlhYmGEZS0tsbGyRrxFg27ZtRZ6OIyIiIiIiIiIiIqXo\nyivh3Xdh/34YNw7cve+YmAj33QeNG8Nbb4GB4zdERORi9YODealBAw7HxvJp8+b0qFrVbW1Sbi4v\nHDxIvbVr6b11K98eP05BKe3FlHhEUiGNShIRETnHo5thXn311SIfL2yEsVgs9O3bl7lz5xZ7ikx5\n1alTJ5f3n9/8kp2dza5du4yKJCIiIiIiIiIiIgBWK0yaBIcOwcsvQ2Sk67oDB+CxxyA6Gp5/Ho4f\nNzSmiIhcKMDHh3siIljRpg07OnTgyTp1qObn57LWDiw5fpxbt26l4dq1vHTwIMdyci7r+iUekVRI\no5JERETO8dhmmK1bt7Jt27YLTn453/mNMM2bN+eDDz4wIWXpadGiRYnqduzYUcZJRERERERERERE\nxKUqVWD8eGfTy6xZ0KSJ67rjx+H//T9nU8yoUXDwoJEpRUTEhaYhIbzaqBFHY2OZ27QpsYWnfTkc\nkJ19we3gyZM8s307dX76iX8kJPDNkSNkZWVx+vTpS7p98sknzmsUNyKp0Hmjkj755JNLvl5Jb5pC\nICIiFYHr9lUPMH/+fLePnX/6i4+PD++//z6VKlUyIlaZufLKK0tUt3///jJOIiIiIiIiIiIiIkUK\nDIQhQ2DgQFi0yHlqzLp1F9edOQNvvglvvw3//Kdz1FLr1sbnFRGRc4J9fRkQGcmAyEgSs7J4acUK\nPuvTx2VtAfDVn7fLUpIRSYV69IBvvmH27NnMnj37cq/s0pYtW2jVqlWZPLeIiEhp8diTYZYsWVLk\nyKPCU2EGDRpETEyMgcnKRmRkJGF/diEX9brVDCMiIiIiIiIiIlJO+PrCP/4Ba9fCypVwyy2u6woK\n4KOP4KqroFcv+Pln50kEIiJiqqsqV6ZlYmLZXqRbt5KNSCrUps2502HKyqJFi8r0+UVEREqDR54M\nk56e7nYc0PmNIn5+fjz99NNGxSpzderUKXYM0pEjRwxKIyIiIiIiIiIiIiViscA11zhvW7bA5Mnw\nySfOJpi/WrrUeevY0TlyqU+fko3OEBGRMvHYY4+xdetWFixY4LyjTRvn+lylSulcICjI+edESfn6\nwn//C2fPls71MzLg5Zfhz6afu+++m8cee6x0nltERKQMeeTJMKtXrz43r9DV3MLCU2F69uxJ3bp1\njY5XZmrVqlXsnMbU1FSD0oiIiIiIiIiIiMgla90aPvwQ9u6Fxx8Hd+Pd162DO++E5s1h1izIyTE2\np4iIAFC1alU+/fRTZsyYQVBQEGzeDI8+Cn/8AcHBl3+7lEaYQhZL6Vz7jz+cryUxkaCgIGbMmMGn\nn35KldJq9BERESlDHtkMs2nTphLV9e/fv4yTGCsyMtLtYxaLBYfDoWYYERERERERERGRiqBuXXjj\nDTh0CJ5/HsLDXdft2gXDhkG9ejBpkvM3+EVExFAWi4Vhw4axbt06mjVrBsePw+jR8P77rk/5Ku8K\nCuC995yv4fhxmjVrxrp16xg2bNgFExhERETKM49shtm3b1+J6q677royTmKssLCwYmtOnjxpQBIR\nEREREREREREpFeHh8NxzzqaYadOcTS+uHDsGTz0FV1wB48aBzWZoTBERgVatWpGQkMDgwYPB4YAP\nPoB//Qsq0i8qp6Y6M8+bBw4HgwcPJiEhgVatWpmdTERE5JJ4VTPM+d2q9erVo1atWkZFMkRQUFCx\nNWdLa0akiIiIiIiIiIiIGKdSJeeoit27Yf58uOoq13WZmTBlCtSvD0OGwM6dxuYUEfFyISEhvPvu\nu8yfP5/KlSvDli3O9XjNGrOjFS8+3pl1yxZCQ0OZP38+7777LiEhIWYnExERuWQe2Qxz9OhRt8e0\nORwOLBYLjRs3NjhV2StJM0yOZgeLiIiIiIiIiIhUXH5+0L8/bNoE330HPXq4rsvNhdmzoVkz+Mc/\nYO1aY3OKiHi5/v37s2nTJtq1awenTsHTT8PbbzvX5/ImN9eZ7Zln4NQp2rdvz8aNG+nfv7/ZyURE\nRP42j2yGycrKKrambt26BiQxVknmNObl5RmQRERERERERERERMqUxQI9e8KKFbBuHdx1l/O+v3I4\n4KuvIDYWrrkGvv3WeZ+IiJS5Ro0aER8fzxNPPOG84/PP4bHH4OhRc4Od7+hR58ljn38OwJNPPkl8\nfDyNGjUyOZiIiMjl8chmmDNnzhRbExoaakASY5VkBFJAQIABSURERERERERERMQwHTrAggXOkUjD\nhkFgoOu6X36BW2+F1q1h3jzQL86JiJS5wMBAXnvtNRYvXkz16tVh1y7nWr18udnR4McfYehQ2L2b\n8PBwlixZwquvvqq9JBER8Qge2QyTnZ1dbE1JRgpVNCV53cHBwQYkEREREREREREREcM1bgwzZsCB\nAzBhAlSp4rru999hwABo1AjeeANKcNK2iIhcnttvv53ExES6desGZ87Aiy/C5MlQgr2dUped7bz2\n//4H2dl0796dzZs3c9tttxmfRUREpIx4ZDNMSTpWS9I4UtGkpqYWW1OpUiUDkoiIiIiIiIiIiIhp\nIiPhpZfg0CGYMgWsVtd1hw7BE09A3brw3HNQgvcXRUTk76tTpw4rVqzg3//+NxaLBZYuhZEjYd8+\n40Ls2+e85tKlWCwWnnvuOZYvX06dOnWMyyAiImIAj2yGCQkJKbamJKOUKpojR44UW1O5cmUDkoiI\niIiIiIiIiIjpwsJgzBjnxud770HTpq7rTpyAF15wNsU8+qixm7IiIl7Gz8+P//73vyxfvpyoqCg4\neNDZnLJ4MTgcZXdhh8N5jZEj4eBBoqKiWL58Oc8//zx+fn5ld10RERGTeG0zTFJSkgFJjHXw4EFn\nJ7ELDocDi8Xi/MFKREREREREREREvEdgIAwcCNu2wcKFEBvrui47G95+2zluqX9/2LzZ2JwiIl6k\nR48ebN68mZtvvhlyc+G11+D558tmdF1WlvO5X3sNcnO55ZZbSExMpEePHqV/LRERkXLCI5thqlSp\ngqOI7lmHw8Hhw4cNTFT2UlJSSE5OBijytUdHRxsVSURERERERERERMoTHx/o0wfi4+HXX+G221zX\n2e3wySfQti307AkrVpTtaQUiIl4qIiKCb775hilTpjhPZ/n5Z+dJXaXthRfg55+x+Pkx9qWX+Prr\nr6lZs2bpX0dERKQc8chmmHr16rl9rPDklJ07d2K32w1KVPY2bdpUojo1w4iIiIiIiIiIiAhdu8KS\nJbB1Kzz4ILgbkfHDD3D99dCxIyxYAAUFxuYUEfFwPj4+jBkzhunTpzvv2Lu39C/y53M6Ro1iSmws\nd27fTsKpU6V/HRERkXLEI5thGjRo4PL+809Myc7OZvv27UZFKnM//fRTieoaNmxYxklERERERERE\nRESkwmjZEubMgX374Mknwd0I+vXr4Z57oGlTmDEDzp41NKaIiKdLSEhwfuBulN3l6NzZ+c+dOwFY\nmJZGx40buWHzZlakpxc5cUBERKSi8shmmPr165eobvny5WWcxDjffvttiepiYmLKOImIiIiIiIiI\niIhUOFdcAa++CocOOcdpuBufsWcPjBgBdevCSy9BerqxOUVEPFB+fj5fffWV85Nrry39CxQ+56+/\nXnDC1/KTJ7k+MZHOGzeyMDUVu5piRETEg3hkM0zbtm1LVLdkyZIyTmKMXbt28fvvv2OxWC7q3i0c\nCwUQEhJC8+bNjY4nIiIiIiIiIiIiFUX16vDss3DwIEyfDm5O4SYlBZ55BqKjYcwYOHLE2JxykXcS\n3iEnP8fsGCLyN6xcuZK0tDSoUgXatCn9C7RtC2FhkJEBmzdf9PC6zEz6bttGq4QE5h07Rp7dXvoZ\nREREDOaRzTAdOnQgICAAuLAZpFBh08jPP//MoUOHjI5X6mbNmlXk4w6HA4vFQrt27Vx+P0RERERE\nREREREQuEBwMI0c6R2p88olzI9WVrCyYOtXZNDNwIHjQaPqKZuyysVz51pV8kPgBBfaC4r9ARMqN\nzz77zPlBt27g61v6F/D1dT430GnjRiL/3EP7q+1nzjDgjz9osm4d048eJbtAa4mIiFRcHtkMExgY\nSLt27VzOODz/PrvdzowZM4yMVuqysrJ4//33S9Tkcv311xuQSERERERERERERDyGnx/06wcbNsCy\nZXDDDa7r8vJgzhxo0QJ694bVqw2NKU4HMw7y4MIHuSruKhb9scjle+QiUr6U+YikQn8+994ffmB3\n+/a807gx9YOCXJYeOHuWR3bvpv7atUw6dIhT+flll0tERKSMeGQzDBTf+FF4Osxbb73lPHqugpo6\ndSonTpwAKPYvNnfccYcRkURERERERERERMTTWCzORphly5yNMf36gY+bt5eXLIGuXZ23JUtA4zYM\nty11G3d8egdd3uvCygMrzY4jIkUo8xFJhf4clZSWlsZvq1YxonZtdnXsyIfNmtEyJMTllyTn5fHU\nvn1Er1nDs/v2kZqbW3b5RERESpnHNsPcc889bh87v2kkKyuLZ5991ohIpe7w4cNMnTrV7akw599f\nv359WrVqZVQ0ERERERERERER8VTt2jlHJ+3a5Ryl5OZkAVavdp4S06oVzJ0L2kQ13Noja+kxtwc9\nP+zJBtsGs+OIiAt/a0TStm3O9XfkyJKPpztvVFLhNf18fLivVi0SY2JY1LIlncPCXH5pRkEB/zt0\niLpr1zJq924OnT1bsmuKiIiYyGObYVq1akWzZs0AXDaLOByOc6fDzJo1i2XLlhkd8bINHjyYrKws\nwP2pMIWvs1+/fkZGExEREREREREREU/XsCFMnw4HD8Kzz0K1aq7rtm+Hhx5y1r/6KmRmGhrTW3xx\nzxe0rtXa5WM/7P2BmFkx3LPgHnam7TQ4mYi4c8kjkgoKYN48GDUK/vjDeXv8cfjwQ+djxfnzGl9+\n+SX5540+8rFY6F2jBvFt2/LTVVdxo5v1PNtu582jR2n4228M/OMP/jh9uvhrioiImMRjm2EAHnjg\ngWJHBxU2xDzwwAMcOnTIoGSX78UXX+THH388l/+vzm8A8vX1ZeTIkUbGExEREREREREREW8REQEv\nvACHDjmbXerUcV135AiMHg3R0fDMM5CcbGxOD9ezUU82Dd/E/H/Mp0G1Bi5rFmxfQIvpLRi6eChH\nTh0xOKGI/NUljUhKSXGuoe+9BwUF9O/fn/79+zubYGbPhjFjIDW16Oc4b1TSzz//fNHDFouFa6tV\n44erriKhXTvurFEDV7MJ8h0O5hw7RvOEBO76/Xc2qMlRRETKIY9uhhk5ciShoaGA+9NhCh9LSUmh\nV69ezh86yrn58+fzn//8x+14pEKFp8L07t2bOu7+AioiIiIiIiIiIiJSGipXhiefhH37nGORWrRw\nXXfyJLz0EtSt6xzxsXevsTk9mI/Fh/6t+rPjkR1M7zWdyMqRF9UUOAp4d9O7NHqzEWN+GMPxM8dN\nSCoicAkjkn79FYYMgcREKleuzNy5c/noo4/46KOPmDNnDiEhIbB5Mwwe7Kx1x8WoJHdiwsL4vGVL\ntnfowEORkfi52mcDvkhLI2bDBnomJvLzyZPF/pK6iIiIUTy6GaZKlSoMHz68yD94z2+I2b59O9dc\ncw02m82oiJds7ty5PPTQQ+c+L8kPFaNHjy7DRCIiIiIiIiIiIiLn8feHAQNgyxZYsgS6dnVdl5MD\ncXHQpAnccw9s2GBsTg8W4BvAyA4j2fv4Xl6+/mWqBlW9qCanIIepa6bS4M0GvPDzC2TlZpmQVMR7\nlWhE0tmzzhO3nnsOMjOJiYlh06ZNDBgwAIvFgsVi4cEHH2TTpk3ExMQ4x9A995zza86edf2cbkYl\nudM0JIT3mzZlT6dOPFa7NkE+rrcWf0hP59rNm7l60yaWpKWpKUZEREzn0c0w4GwEKep0GLiwIWbH\njh20a9eOlStXGhWxROx2O88++yyDBw8+98OJux8kCkcnWSwW+vTpQ2xsrJFRRURERERERERERMDH\nB267zXlKwerV0KeP6zq7HRYsgJgYuOEGWLYMtIlaKir5V2J81/Hse3wfE7pOINgv+KKaUzmneG7l\nczR8syFv/vYmOfk5JiQV8T7FjkjaswdGjHA2FQLjxo1j9erVNGrU6KLSxo0bs3r1asaNG+e8Y8kS\n59e6OnmrmFFJ7tQNCuLNxo052LkzT0dHU8XNSTZrTp2i9++/c9X69cxPTibfbi/xNUREREqTxzfD\n1KpVi+eff77YDtS/jky68cYbGTVqFJnlYM7h1q1b6datGxMnTsRutxc5Hun8x/z9/ZkyZcr/Z+++\nw6Mq8/eP3zNppECAECBtQhEhKIiAEFyRqrKrS1VRV0AUsWAHVwOo8btIrKggiCKooD8L0kRsFGEt\nhC6wSG9DQiChJyFlJjm/P8YgITMRJJmT8n5dV64Nh0/m3AO7Z4HnzvN4IyIAAAAAAAAAeHb11dL8\n+dJvv0lDh7p2j3Fn6VLp+uuldu2kTz+VzmPXAvy5OoF1NL7HeO1+ZLcebP+gfK2+JWbSs9P16LeP\nqvlbzTVz40wVFBaYkBSoPjwekWQY0pw50ogR0v79ioiI0OLFi/XSSy/J39/f4+v5+/vrpZde0uLF\ni9WwYUNp/37pwQeluXOLFwwv4Kgkd+r7++uFJk20v1MnJTVurPoenuebs7P1r61b1Xz1ar1z8KBy\nC3imAAC8q8qXYSTpkUceUZvfW7WlFUnOLsQUFBTorbfe0iWXXKJXXnlF2dnZXsl6th07dmjYsGFq\n27atkpOTz+z2cnZWd4rmnnjiCTVt2tRbcQEAAAAAAACgdHFx0owZ0t690qhR0u+7epewYYN0++2u\nI5SmTJFycrybs4qKqBmhyTdO1rYR2/SvVv+SRSX/vXz/yf0aMn+Irph6heZvm89RJ0A58HhE0okT\n0ujR0ltvSfn5uummm7Rx40b17NnzvF+7Z8+e2rRpk2688UYpP1+aNEkaM8b12kUu8Kgkd0J9ffV0\nbKz2xcdrcrNmig0IcDu3JzdX9+/YocarVulVu12ZlBwBAF5iMarJn2Q3bdqkTp06Kff3MxJLe9vn\nFk4sFotCQkJ066236vbbb9e1114rX9+SzXmr1XrmiKJzX6+ooFLwJ83XI0eOaOHChfrkk0+0dOnS\nEjlKy372fdq2bauVK1e6zQnAfBkZGapfv36xa+np6QoPDzcpEQAAAAAAgAlOnJCmTpXeeEM6fNjz\nXHi49PDDrp0S6tYt8dPZ2dkKCQlx/WC0JM+bJ1Qt+ZLGuz7NyspScHDwBX35psObNGbZGH214yuP\nMx2jOiqpR5K6Ne52EUEBnG3JkiW67rrrXEckzZnj2q1l7VopKUk6dkwBAQF69dVXNWLEiFK/ybs0\nhmHorbfe0pNPPqm8vDwpLExKSHDtvFVQIPXvL506pSVLlqhHjx4X/Z4chYX6ND1dSXa7tp4+7XGu\njq+vHo6K0iPR0QrztEsYAKBKMHs9tNqUYSRp1qxZGjJkiNvCyrnO/sPFuWWU4OBgXXvttWrfvr3a\ntm2rpk2bymazKTQ09E/LME6nUzk5OTp9+rQOHz6slJQU7d27V+vXr9fatWu1efNmFf5+fuL5lmDO\nnQkODtb69evVrFmzC/nlAeBFZj/8AQAAAAAAKpTcXGnmTOmVV6RduzzPBQdL994rPf64ZLOduUwZ\n5q+VYYr8ZP9JCUsT9JP9J48z1ze9XuO7j1e7yHZ/6R4A/jB8+HBNmzZNuukm6ZFHpOnTpc8+kyS1\nbNlSn3zyiVq3bl0m99q0aZNuu+02bd261XVh4EDpnnukN9+UFi3S8OHD9c4775TJvSSp0DD05ZEj\nGm+3a01mpse5IKtVwyMjNTI6WtE1apTZ/QEAFYfZ66HVqgwjuY5Meuutt86rECO5L8Wce93dz5/P\n6/3Z13u6t6fXNAxDPj4++uyzz9S/f/8/zQLAPGY//AEAAAAAACqkggJp/nzppZekNWs8z/n6uo5R\n+ve/pcsvL16GGaXqVYZ51fXpxZRhJNe/L3+z6xuNXjpaGw9v9Dh3S8tb9J9u/1Hzes3/8r2A6szp\ndCoiIkJHjhyRHntM+vpraccOSdL999+v1157TUFBQWV6z9OnT2vkyJGaOnWq60Lz5tLf/y698Ybq\n1auntLS0Mj9pwDAMLTtxQuP379eys49oOoefxaLBDRroKZtNzcr4fQMAzGX2emi1K8MYhqEhQ4bo\no48+Ou9CjFSyxFJev2znW4A592uKdp6ZNGmSHnzwwXLJBqDsmP3wBwAAAAAAqNAMQ1q+3FWK+e67\n0mdvvFHZDz+skF69vBKtorrYMkyRQqNQn/3vMz3zwzPafXy32xkfi4+Gthmq57o+p+ha0Rd9T6A6\nOXNEkiT5+0v5+apbt66mT5+uvn37luu9582bp3vuuUfHjx8/c++iTGVxVJInq0+dUpLdrvlHjnic\nsUq6OTxcCTab2tSsWW5ZAADeY/Z6qNUrd6lALBaLPvjgA912221nCiTnc96iYRhnPope59yP871/\naR9n3+t8X6/Is88+SxEGAAAAAAAAQOVnsUjduknffitt2CDdcYfk4+N+dtEiqZoXYcqS1WLV7a1u\n19YRW/X2jW8rIiSixEyBUaD3NrynSyZeolHfj9KR054XuAEU9/nnn//xg/x8de3aVRs3biz3Iowk\n9evXT5s2bVKXLl3OFGFKZCoHHWrV0rzLL9f/rrpKgxo0kLuneaGkzzMydOW6dfrHpk36sZTdZAAA\nOB/VbmeYIoWFhXr88cc1adKkYiWUyuLc8s2ECRP06KOPmpQGwIUyuwkJAAAAAABQ6ezdK02YIE2f\nLuXkFPspQ9Lpoh80a6bP/vY33fPBB/KT9JOky7ybtNz8T9I1kpySpk+froEDB575uaCgoPP+ps0L\ncdpxWpNWTdKLP7+oE7nuF6dr+tfUk1c/qcc7Pa4Q/5AyzwBUJS1atND27dvl4+Oj//u//9NTTz0l\nH09lv3JSUFCgF198Uc8995wKCgrUokULbd261Wv335eTo1cOHND0tDTllbI2d01oqBJsNv29bt1y\neb4BAMqX2euh1bYMU+S9997TQw89JIfDceZaRf8lObu8ExAQoA8++KDYX3oAVHxmP/wBAAAAAAAq\nrYwMafJkadIk6dixEj9tSGopaZuk/0ga6+V45e0/kp6VFBcXpy1btnhtgfh4znG98ssrenPVmzrt\nOO12JjwoXGOvHav72t2nAN8Ar+QCKpuUlBQ9+eSTevTRRxUfH29qlpUrV2rixIl65ZVXFB3t/SPP\nDuXl6Y2UFE05eFCZBQUe564IDlZCbKxuDg+XD6UYAKg0zF4PrfZlGElavXq17rrrLm3btq3YXxwq\n4i/N2UWYli1b6pNPPlGrVq1MTgXgQpn98AcAAAAAAKj0srNdu8S89ppkt5+5/IOk7pJCJB2UVNOk\neOXllKQoSVmSfvjhB3Xt2tWr90/LTNO4/47Tu+vflbPQ6XYmNjRWz3d9Xne2vlM+Vu/ueAGg8jnh\ncGjywYN6IyVFR8765vVzXRIYqKdiYjSoYUMFWK1eTAgA+CvMXg/l/ykkdejQQb/++quefvpp+fj4\nnCnBWCyWCrPtWlGWomwjRozQ2rVrKcIAAAAAAAAAqJ6Cg6VHHpF27ZI++kj6/d9KJ//+04NV9Yow\nklRL0qDfP588eXJpo+UiomaEJt84WdtGbNO/Wv1LFpX8N/T9J/frrgV3qfXU1pq/bX6F/MZTABVH\nbT8/jYmN1f74eE285BLFBLjfWWpXTo7u3bFDTZKTNeHAAWU53RfyAACQ2BmmhG3btumZZ57R3Llz\nZRiGqTvFuLt3165d9dprr+nKK6/0ahYAZcvsJiQAAAAAAECVYxhK/egjxQ4erAJJmyVdbnamcrJZ\nUmtJPj4+stvtioyMNC3LpsObNGbZGH214yuPMx2jOiqpR5K6Ne7mxWQAKqv8wkL9v8OH9aLdru05\nOR7n6vr66pHoaD0cFaW6fn5eTAgAOB9mr4eyM8w5WrRoodmzZ2v9+vUaMGCAfH19S+wUU547xpz7\n+oZhyDAMXXPNNVqwYIGWLVtGEQYAAAAAAAAAzmWxaNru3SqQ1FlVtwgjSa0kXSOpoKBA06ZNMzVL\n6wattfD2hfpp6E/qbOvsdmZV6ip1n9ld18+6XmsPrvVyQgCVjb/VqrsiIrSlQwd9cdllahcS4nbu\nmNOpxH37FJucrFG7dulgXp6Xo2kbwAAAIABJREFUkwIAKjJ2hvkTGRkZev/99/X+++9r+/btZ67/\nWRmmtF/W8/3aWrVq6eabb9ZDDz2kNm3aXEBqABWd2U1IAAAAAACAqsYwDEVHR+vgwYP6RNJtZgcq\nZ59IukNSVFSUDhw4UG7fwHkhDMPQt7u+VcLSBG08vNHj3M0tb9a4buPUvF5zL6YDUFkZhqHFx48r\nyW7X8hMnPM75Wyy6q2FD/dtmU9PAQC8mBAC4Y/Z6KGWYC7Br1y59/fXX+uabb/TLL78oMzOzxMyF\n/IXD3S99kyZNdN1116lv377q3r27/NjWDaiSzH74AwAAAAAAVDV79uxR06ZN5S/plKQAswOVszxJ\nNSU55HrvjRs3NjnRHwqNQn2+5XONXTZWu4/vdjvjY/HRXW3u0nNdnlNMaIyXEwKorFaePKkku10L\njx71OGOVNLB+fT1ts6m1h11lAADlz+z1UMowF2Hnzp1av369Nm7cqL179yolJUUpKSlKS0tTfn6+\nx6/z9/dXVFSUbDabbDabLrnkErVv314dOnRQWFiYF98BALOY/fAHAAAAAACoambPnq1bb71V7SWt\nMTuMl7SXtE6u937zzTebHacER4FDMzbM0PMrnldaVprbmQCfAI24aoQSOieoXlA9LycEUFltzsrS\ni3a7Pk1PV2EpczfWravRsbG6OjTUa9kAAC5mr4dShiknTqdTOTk5ys3NVV5envz8/BQUFKTAwED5\n+vqaHQ+Aydw9/Pfu3ev24R8cHOytWAAAAAAAAJXW008/rZdeekn3SZpqdhgvuU/Su3K996SkJLPj\neHTacVpvrX5LL/70oo7nHnc7U9O/pkZdPUqPxz+umgE1vZwQQGW1OydHr9jtev/QIeWXsuR5bWio\nRsfG6vo6dSrEsXIAUNVkZ2eXuJaRkVFi90LKMABQxbkrw3jCYxoAAAAAAODP9ezZU0uXLtW7ku41\nO4yXvCtXIaZnz55avHix2XH+1IncE3rl51f0xqo3dNpx2u1MeFC4xnQeo/vb368A36p+2BWAspKW\nl6fXU1L09sGDyioo8DjXNiRECTab+oWHy4dSDACUmfMtGlKGAYAqjjIMAAAAAABA2TEMQ2FhYTp+\n/LjWSWprdiAvWSfXUUl16tTR0aNHK81uB4eyDmncf8fpnXXvyFnodDtjC7Xp+a7Pa1DrQfKx+ng5\nIYDK6pjDocmpqXozJUVHne6fL5J0aWCgnrLZdGeDBvK3Wr2YEACqJsowAABJHJMEAAAAAABQlvbt\n26fGjRvLX1KmJH+zA3lJnqSakhxy/dtSo0aNzA10gfYc36Pnlj+njzd9LEPulypahrfUuG7j1LdF\n30pT9gFgvuyCAk07eFCvHjig1Px8j3PRAQEaFROjYRERCvaheAcAf1VFPCaJqiMAVBDBwcFuPwAA\nAAAAAFC69PR0SVKEqk8RRpIC5HrPkmuxobJpUqeJZvWbpY33b9Q/L/2n25nfMn5T/8/7K356vJbt\nXeblhAAqq2AfHz0WE6Pd8fF6r3lzNQsMdDuXkpenx3btUqPkZI3bt0/HHQ4vJwWAqqEirnNShgEA\nAAAAAAAAVGo5OTmSJPdLnVVb0Xsu+jWojFo1aKUvb/9SP9/9szrbOrudWZ26Wj1m9tD1s67X2oNr\nvZwQQGUVYLXqnogIbe3QQZ+1bKk2ISFu5444HHpm3z7FJifrqd27dSgvz8tJAQBljTIMAAAAAAAA\nAKBSy83NlSTVMDmHGYrec2UuwxS5OuZqrbhrhb6+42u1adjG7cziPYt11bSrdMvsW7TtyDYvJwRQ\nWflYLLq1fn2tb9dO37Rqpc6hoW7nMgsK9PKBA2qUnKwHd+zQ3irwbAWA6ooyDAAAAAAAAAAAqBAs\nFov+3uzvWjd8nT4Z8IkuqXuJ27kvfvtCl025TMO+HKYDJw94OSWAyspisahXWJj+e+WV+rFNG/2j\nbl23c3mGobcPHlSzVas0aOtWbcnO9nJSAMDFogwDAAAAAAAAAKjUatRw7Y+Sa3IOMxS958DAqnVI\nlNVi1W2X36bfHvxN79z0jiJrRpaYKTQKNX3DdDWb1EwjvxupI6ePmJAUQGV1Te3aWtS6tTa0a6eB\n4eFuF00LJH10+LAuX7NGfTZvVvLJk96OCQD4iyjDAAAAAAAAAAAqtaIiSHU8zKLoPVe1MkwRPx8/\nDW83XLse3qWXe76sOjXqlJjJK8jThOQJavJmE/3fiv9TZl6mCUkBVFZtatbUp5ddpu0dOujeiAj5\nWSxu5748elSdNmxQ919/1ZJjx2QYhpeTAgAuBGUYAAAAAAAAAEClVr9+fUlSmqR8c6N4VZ5c71mS\nwsPDzYxS7gL9AvXk357Unkf3aPQ1oxXkF1RiJjM/U88tf05NJzbVm8lvKs+ZZ0JSAJXVJUFBerd5\nc+2Nj9cT0dEKtrpfRv3hxAldt2mTOqxfr3kZGSqkFAMAFZLFoLYIAF6XkZFx5h9piqSnp1f5f7QA\nAAAAAAAoD4ZhKCwsTMePH9c6SW3NDuQl6yS1l1SnTh0dPXpUFg+7GVRFh7IO6YX/vqB31r0jR6HD\n7Ywt1KbELokadMUg+Vp9vZwQQGV31OHQpJQUTUxN1XGn0+NcXFCQnrLZdEf9+vLzUKABgOrI7PVQ\nnsgAAAAAAAAAgErNYrGobVtXBWadyVm8qei9tmvXrloVYSSpYUhDTfrHJG1/aLsGtR4ki0q+f/tJ\nu+7+8m61fru15m6dy5EmAC5ImJ+fEhs31v74eL3atKki/P3dzm09fVp3bdumS1at0lspKcopKPBy\nUgCAO5RhAAAAAAAAAACVXvv27SVVzzJM0XuvjhrXaayZ/WZq4/0b9c9L/+l2ZuuRrRrw+QDFT4/X\nsr3LvJwQQGVX09dXI2NitDc+Xu9ceqma1qjhds6el6eHd+1SbHKykvbv18lSdpMBAJQ/yjAAAAAA\nAAAAgEqvXbt2kqpnGabovVdnrRq00pe3f6mf7/5Z18Ze63Zmdepq9ZjZQ9fNuk5rUtd4OSGAyi7A\natXwyEht69BBn8TFqXVwsNu5DIdDo/fulW3lSo3es0fp+fleTgoAkCSLwb6AAOB1Zp+RBwAAAAAA\nUNXs2bNHTZs2lb+kU5ICzA5UzvIk1ZTkkOu9N27c2OREFYdhGPpu93cavXS0Nhza4HFuQNwAjes+\nTi3qtfBiOgBVhWEY+vrYMY3fv1+/nDrlca6G1aphEREaFROjWA+7ygBAVWT2eig7wwAAAAAAAAAA\nKr3GjRsrMjJS+ZLmmR3GC+bKVYSJiopSo0aNTE5TsVgsFvW6pJfWDl+rTwd8qmZ1m7mdm7N1ji6b\ncpnuWXCP7CftXk4JoLKzWCy6MSxMP115pVa0aaMb6tRxO5dbWKi3UlN1yapVGrJ1q7ZmZ3s5KQBU\nT5RhAAAAAAAAAACVnsVi0b333itJmmJyFm8oeo/33nuvLBaLqVkqKqvFqoGXD9SWB7fonZveUWTN\nyBIzhUahZvw6Q5dOulRPfPeEMrIzTEgKoDKzWCy6tnZtfXvFFVrXrp1uCQ+Xu6ey0zA08/BhXbZm\njfr/739aU8puMgCAi8cxSQBgArO3BQMAAAAAAKiKUlNTFRsbq4KCAm2S1MrsQOVks6TWknx8fGS3\n2xUZWbLkgZJyHDl6a/VbSvopScdzj7udCfEP0ahOo/REpydUM6CmlxMCqCq2nz6tl+12zTx8WM5S\nlmJ71qmjBJtN3WrXptgIoMoxez2UnWEAAAAAAAAAAFVCVFSU+vbtK0maanKW8vT27//Zr18/ijAX\nINAvUE/+7UnteXSPxnQeoyC/oBIzWflZSlyRqCYTm+iN5DeU68w1ISmAyq55UJCmt2ihPR076tGo\nKAVa3S/JLjl+XD02blSn9eu14MgRFbKHAQCUGXaGAQATmN2EBAAAAAAAqKp++OEHde/eXSGSDkqq\nant7nJIUJSlLrvfatWtXcwNVYoeyDumF/76gd9a9I0ehw+2MLdSmxC6JGnTFIPlafb2cEEBVkZGf\nr4mpqXorNVUnnE6Pc5cFBelpm0231a8vXw8FGgCoLMxeD+UpCgAAAAAAAACoMrp27aoWLVooS9Kb\nZocpB2/KVYSJi4tTly5dzI5TqTUMaahJ/5ik7Q9t16DWg2RRySNK7CftuvvLu9Xq7Vaau3Wu+P5i\nAH9FuL+//tO4sfbHx+vlJk3UwM/P7dyW06c1aNs2Xbp6td5OTVVuQYGXkwJA1UEZBgAAAAAAAABQ\nZVgsFj3zzDOSpP+T9D9z45SpzZL+8/vnY8eOlcVSsryBC9e4TmPN7DdTG+/fqN7Ne7ud2XZkmwZ8\nPkAd3+uopXuWejkhgKqilq+vnrTZtC8+XlOaNVOjGjXczu3NzdWDO3eqUXKyXrbbdaqU3WQAAO5x\nTBIAmMDsbcEAAAAAAACqMsMw1KdPHy1cuFDtJK2U5P578CsPh6R4Sesl9e7dW/Pnz6cMU05WHlip\nhKUJWrF/hceZHo17KKlHkq6KusqLyQBUNc7CQn2WkaGk/fu15fRpj3O1fX01IjJSj0ZHK9zf34sJ\nAeCvM3s9lDIMAJjA7Ic/AAAAAABAVZeWlqbLLrtMx48f1zhJY8wOdJHGSXpGUp06dbRlyxZFRESY\nHalKMwxD3+/+XglLE7Th0AaPc/3j+mtct3GKC4/zYjoAVU2hYeiro0c1fv9+rcrM9DgXaLXq3ogI\njYqJUYyHXWUAoKIwez2UY5IAAAAAAAAAAFVORESEJk6cKEl6Xq4jhiqrTXId+SRJEydOpAjjBRaL\nRTdccoPWDl+rTwd8qmZ1m7mdm7t1ri5/+3LdveBu2U/avZwSQFVhtVjUu149rWzbVsuuuELX1anj\ndi6nsFATU1PVdNUq3b1tm7aXspsMAFR37AwDACYwuwkJAAAAAABQHZx9XFKcpB8lhZkd6gIdldRZ\n0lZxPJKZHAUOffDrB0pckaiDmQfdzvj7+OvB9g9qdOfRCg/m3/kAXJy1p04pyW7X3CNHPM5YJA0I\nD1eCzaa2NWt6LxwAnAez10MpwwCACcx++AMAAAAAAFQXaWlpat++vQ4ePKirJC2VVFmWCzMl9ZC0\nRlJkZKTWrl3LrjAmy3HkaPKayUr6KUnHco65nQnxD9HITiP1RKcnVCuglpcTAqhqtmZn6yW7XR+n\np8tZyrLuDXXqKCE2VteGhlKaBFAhmL0eShkGAExg9sMfAAAAAACgOtmyZYuuvfZaHTt2TF0kLVTF\nL8RkSrpJ0n8lhVks+u9nn6nlLbeYnApFTuae1Ku/vKoJyRN02uH+mJJ6QfU0pvMY3d/+ftXwreHl\nhACqmv25uXr1wAG9l5am3MJCj3NX16qlBJtNN4aFUYoBYCqz10MpwwCACcx++AMAAAAAAFQ3a9as\nUY8ePZSZmamrJH2jintk0hFJf5e0Vq7SzlJJV9WuLS1eLLVvb2o2FHc467Be+PEFTV07VY5Ch9uZ\nmFoxSuyaqMFXDJav1dfLCQFUNen5+XojJUWTU1N1qqDA41zr4GA9bbPplvBw+VqtXkwIAC5mr4dS\nhgEAE5j98AcAAAAAAKiO1qxZo169eunYsWOKk/SZpFZmhzrHJkm3SdoqV1nnW0ln6i8UYiqsvcf3\nKnFFomZtnCVD7pddWtRroXHdxql/XH92awBw0U46nXo7NVWvp6Qo3eG+jCdJTWrU0FM2m4Y0bKgA\nSjEAvMjs9VCeeAAAAAAAAACAauGqq67Sjz/+qMjISG2V1E7SOEmelxC9xyHpP3IVX7ZKioyI0H/j\n41Ws9nLihNSzp7R2rRkRUYrGdRrrw74fatMDm9SneR+3M9uObNPNs29Wx/c6aumepV5OCKCqCfX1\n1dOxsdoXH6+3mjWTLSDA7dye3Fzdt2OHGicn61W7XZlOp5eTAoA5KMMAAAAAAAAAAKqNli1bau3a\nterdu7cckp6RFC/pfyZm2vx7hmflKsX07t1ba9etU8tly1zll7OdPOm6tmaN94PiT11e/3LNv22+\nfrn7F3WJ7eJ2Zs3BNeo5q6d6zuypNan8PgK4OIE+PhoRFaVdHTvqwxYtFBcU5HYuLT9fT+7Zo9jk\nZD23d6+OlrKbDABUBRyTBAAmMHtbMAAAAAAAgOrOMAx9/PHHeuSRR3T8+HH5yVWMeVRSLS9lOCXp\nTbl2hHFIqlOnjiZNmqQ77rjjj2N0cnKk3r2lJUuKf3FoqPT991KHDl5KiwtlGIa+3/29Ri8brfVp\n6z3O9Y/rr3HdxikuPM6L6QBUVYWGoQVHjijJbteazEyPc8FWq4ZHRmpkTIyiPOwqAwAXw+z1UMow\nAGACsx/+AAAAAAAAcElLS9N9992nhQsXSpJCJA2S9ICkVuV0z82Spkj6SFLW79d69+6tqVOnKiIi\nouQX5ORIffpIixcXv04hplIoNAr1xW9faOyysdp5bKfbGavFqiFXDFFi10TZQm1eTgigKjIMQ0uP\nH1eS3a5lJ054nPOzWDSkYUP9OyZGzTzsKgMAf4XZ66GUYQDABGY//AEAAAAAAPAHwzD0ySefaNy4\ncdq6deuZ653lKsX0l3Sx3zOfJ2muXCWYn866HhcXp7Fjx+r222//YzcYd3JypL59XeWXs9Wq5SrJ\nUIip8BwFDn3w6wd6fsXzSs1MdTvj7+OvB9s/qNGdRys8mH8rBFA2Vp06paT9+7Xg6FGPM1ZJt4SH\n62mbTW1q1vReOABVltnroZRhAMAEZj/8AQAAAAAAUJJhGFq+fLmmTJmiefPmqaCgQJLkL9cuMe3O\n+mj1+3V38uXa/WXdWR+b5DoKSZJ8fX3Vr18/Pfjgg+rSpUvpJZizlVaI+f57qWPH836vME+OI0eT\n10xW0k9JOpZzzO1MiH+IRnYaqSc6PaFaAd46uAtAVbclO1sv2u365PBhFZQy94+6dZVgs+ma2rW9\nlg1A1WP2eihlGAAwgdkPfwAAAAAAAJTu4MGDmjZtmqZNm6bU1JK7ePhJipAUKKnG79dyJeVIStMf\nxZezRUVF6d5779W9996ryMjIvxYsJ0fq10/67rvi1ynEVDonc0/q1V9e1evJryvbke12JiwwTGM6\nj9EDVz2gGr413M4AwIXam5OjVw4c0Iy0NOWVslR8TWioRtts6lW37vkXNwHgd2avh1KGAQATmP3w\nBwAAAAAAwPkxDEP79u3TunXrtHbtWq1bt07r1q3T8ePHS/26OnXqqH379mrXrt2Zj0aNGpXNYmJu\nrmuHGHeFmO++k+LjL/4e8JrDWYf1wo8vaOraqXIUuqtRSTG1YpTYNVGDrxgsX6uvlxMCqKoO5eXp\njZQUTTl4UJkFnveKaRMSogSbTQPCw+VDKQbAeTJ7PZQyDACYwOyHPwAAAAAAAP46wzC0f/9+ZWRk\nKCcnRzk5OZKkwMBABQYGKjw8XLGxseX7XfSeCjE1a7p2iKEQU+nsO7FPzy1/TrM2zpIh90s3Leq1\n0Lhu49Q/rj+7NAAoMyccDk0+eFBvpKToiMN9KU+SmgUG6imbTYMaNJC/1erFhAAqI7PXQynDAIAJ\nzH74AwAAAAAAoArIzXUdmfTtt8WvU4ip1P6X/j+NXTZWC7Yv8DjTPrK9knokqWeTnl5MBqCqO11Q\noPfS0vTqgQM6kJfncS7K318jY2I0PDJSwT4+XkwIoDIxez2UMgwAmMDshz8AAAAAAACqiNxcqX9/\n6Ztvil+vWdO1a0ynTubkwkVLTklWwtIELd+33ONM98bdldQjSR2iOngvGIAqL7+wUB8fPqyX7HZt\n/333M3fCfH31SHS0HoqKUl0/Py8mBFAZmL0eShkGAExg9sMfAAAAAAAAVUhurjRggPT118Wv16zp\n2jXm6qvNyYWLZhiGFu9ZrISlCVqftt7jXL8W/TSu+zi1DG/pxXQAqroCw9C8jAwl2e1an5XlcS7E\nx0f3R0bqiehoRQQEeDEhgIrM7PVQyjAAYAKzH/4AAAAAAACoYijEVGmFRqHm/DZHY38Yqx1Hd7id\nsVqsGnzFYCV2SVRs7VgvJwRQlRmGocXHj2v8/v1acfKkxzl/i0VDGzbUv202NQkM9GJCABWR2euh\nlGEAwARmP/wBAAAAAABQBeXluY5MOrcQExLiOjKJQkyl5yx06oNfP1Di8kSlZqa6nfH38dcD7R/Q\n6M6jVT+4vtsZAPirfjl5Ukl2u746etTjjFXSbfXr62mbTa1CQrwXDkCFYvZ6KGUYADCB2Q9/AAAA\nAAAAVFF5ea4dYhYtKn49JMS1Q8zf/mZOLpSpHEeOpqyZovE/jdexnGNuZ0L8Q/RE/BMaefVI1Qqo\n5eWEAKq6zVlZetFu16fp6SosZe6msDCNttnUKTTUa9kAVAxmr4dShgEAE5j98AcAAAAAAEAVRiGm\n2jiZe1KvrXxNE1ZOULYj2+1MWGCYRncerQevelA1fGt4OSGAqm53To5esdv1/qFDyi9l2blLaKgS\nYmN1fZ06slgsXkwIwCxmr4dShgEAE5j98AcAAAAAAEAVl5cn3Xyz9NVXxa+HhEjffCNdc405uVAu\n0rPT9cJ/X9Dba9+Wo9Dhdia6VrQSuyRqSJsh8rX6ejkhgKruYF6eXk9J0dSDB5VVUOBxrm1IiEbH\nxqpfvXqyUooBqjSz10MpwwCACcx++AMAAAAAAKAayMuTbrlFWriw+PXgYNcOMRRiqpx9J/YpcXmi\nZm2apULD/cElzcOaa1z3cRoQN4DdGQCUuWMOh95KTdWbKSk65nR6nGseGKinbDb9q0ED+VutXkwI\nwFvMXg+lDAMAJjD74Q8AAAAAAIBqgkJMtbQlfYvG/jBW87fN9zjTPrK9xncfr55NelKKAVDmspxO\nTUtL02sHDig1P9/jXExAgEbFxGhYRISCfHy8mBBAeTN7PZQyDACYwOyHPwAAAAAAAKqR0gox33wj\nde5sTi6Uu+SUZCUsTdDyfcs9znRv3F1JPZLUIaqD94IBqDbyCgv10eHDetFu166cHI9z9fz89Fh0\ntEZERqq2n58XEwIoL2avh1KGAQATmP3wBwAAAAAAQDWTn+8qxHz5ZfHrwcHS119L115rTi6UO8Mw\ntHjPYo1eOlrr0tZ5nOvXop/GdR+nluEtvZgOQHVRYBiak5GhJLtdv2ZleZyr6eOjByMj9Vh0tBoG\nBHgxIYCyZvZ6KGUYADCB2Q9/AAAAAAAAVEMUYqo1wzA0Z+scjVk2RjuO7nA7Y7VYNfiKwUrskqjY\n2rFeTgigOjAMQ98eO6Yku10/njzpcS7AYtE9ERF6MiZGjQIDvZgQQFkxez2UMgwAmMDshz8AAAAA\nAACqqfx86dZbpQULil+nEFNtOAud+vDXD5W4IlEpp1Lczvj7+Ov+dvdrzLVjVD+4vtsZALhYP504\noSS7XV8fO+ZxxkfSHQ0a6CmbTZcFB3svHICLZvZ6KGUYADCB2Q9/AAAAAAAAVGP5+dLAgdL8+cWv\nBwW5CjFdupiTC16V48jRlDVTlPRTko7mHHU7E+wXrJGdRmrk1SNVK6CWlxMCqC5+zczUi3a7Zmdk\nqLCUuT5hYUqIjVXHWjyPgMrA7PVQyjAAYAKzH/4AAAAAAACo5ijE4Hen8k7ptV9e02srX1O2I9vt\nTFhgmBKuSdCIDiNUw7eGlxMCqC52nj6tlw8c0IeHDslRyhJ299q1lWCzqUedOrJYLF5MCOBCmL0e\nShkGAExg9sMfAAAAAAAAUH6+dNtt0rx5xa8HBUmLFkldu5oSC+ZIz07X+B/H6+21byu/IN/tTHSt\naD3X5Tnd1eYu+Vp9vZwQQHWRkpurCSkpeufgQZ0u9LxXzFU1ayrBZlOfevVkpRQDVDhmr4dShgEA\nE5j98AcAAAAAAAAkSQ6Ha4cYCjH43b4T+5S4PFGzNs1SoeF+Ebp5WHON6z5OA+IGsCsDgHJz1OHQ\npJQUTUxN1XGn0+NcXFCQnrbZdHv9+vKzWr2YEEBpzF4PpQxTgTidTv32229KT0/XiRMnVFBQoNDQ\nUNlsNjVv3lw+Pj5lfs9NmzapoKBALVq0UGBgYJm/PgD3zH74AwAAAAAAAGd4KsQEBrqOTKIQUy39\nlvGbxi4bq3nb5nmcaRfRTuN7jNd1Ta6jFAOg3GQ6nXo3LU2vHTigtHz3O1dJUmxAgJ602XR3w4YK\nLId1VQAXxuz1UMowJktNTdVHH32kefPmadOmTcrLy3M75+/vr86dO6tv37668847VatWrTK5/8MP\nP6wpU6bIYrEoJiZGLVq0UFxcXLGPsLCwMrkXgD+Y/fAHAAAAAAAAinE4XEcmzZ1b/HpgoGuHmG7d\nzMkF061KWaWEpQn6Yd8PHme6NeqmpB5J6hjd0YvJAFQ3uQUFmnn4sF6y27UnN9fjXH0/Pz0eHa0H\noqIU6suRboBZzF4PpQxjkpSUFI0dO1Yff/yxCgsLdT6/DUWt6qCgIN1333169tlnL7oU8/DDD2vy\n5Mkl7nG2sLAwtyUZm812UfcGqjOzH/4AAAAAAABACQ6HdPvt0pw5xa8HBkpffSV1725OLpjOMAwt\n2bNECUsTtC5tnce5vi36aly3cbqs/mVeTAegunEWFmp2RoaS7HZtzs72OFfLx0cjoqL0WHS06vv7\nezEhAMn89VDKMCaYOnWqRo4cqdzc3GIlmD/bQvDc2Xr16mn8+PG65557/nKWXbt26ZdfftFvv/2m\nzZs3a/369Tp8+HCJOXfZgoKClJmZ+ZfvDVRnZj/8AQAAAAAAALcoxKAUhmFoztY5GrtsrLYf3e52\nxmqxalDrQUrsmqhGtRt5NyCAasUwDC06elRJdrt+OXXK41wNq1XDIiI0KiZGsTVqeDEhUL2ZvR5K\nGcaLnE6nhgwZok8//fRMseXckomn3w5PcxaLRfHx8Zo9e7YiIyPLJKfdbteKFSu0YMECLVy4UE6n\n020ui8WigoKCMrknUN2Y/fAHAAAAAAAAPHI4pDvukL74ovj1wEBp4UKpRw9zcqHCcBY69eGvHypx\nRaJSTqW4nfGz+umB9g8Pnow9AAAgAElEQVRozLVjVD+4vtsZACgLhmHox5MnNX7/fn13/LjHOV+L\nRf+qX19P2WyKCw72YkKgejJ7PZQyjJc4HA7dfPPN+uqrr2QYRrFyy4X+Frj72oYNG2rOnDnq1KlT\n2QT+3Y8//qguXbq4LeNQhgH+OrMf/gAAAAAAAECpHA7pX/+SZs8ufr1GDdcOMRRiICnXmaspa6Zo\n/I/jdTTnqNuZYL9gPdHpCY3sNFKhNUK9nBBAdbMuM1Mv2u2ak5EhTyuwFkn96tVTgs2m9rVqeTMe\nUK2YvR5KGcZLhgwZolmzZl1UCeZc576Wv7+/3n77bQ0dOvSiXvdsJ0+eVJ06dWSxWIrtRkMZBrg4\nZj/8AQAAAAAAgD9FIQbn6VTeKb32y2uakDxBWflZbmfCAsOUcE2CHrzqQQX6BXo5IYDqZvvp03rJ\nbtesw4flLGVN9ro6dZRgs6lr7dolNgcAcHHMXg+lDOMFM2bM0LBhw848QM/9Jb/QB6unry8qqLz5\n5pt66KGHLiLxHxwOhwICAijDAGXM7Ic/AAAAAAAAcF5KK8QsXCj17GlOLlRI6dnpGv/jeL299m3l\nF+S7nYmqGaXErom6q81d8rX6ejkhgOrmQG6uXjtwQO+mpSmnsNDjXHytWkqw2XRTWJislGKAMmH2\neihlmHKWnp6uZs2aKSvL1YQ+u1Bytgv5bXC3u8y5hZiJEydqxIgRF5W9iNVqpQwDlDGzH/4AAAAA\nAADAeXM6XYWYzz8vfr1GDenLL6XrrjMnFyqs/Sf2K3FFomZunKlCw/3i86Vhl2pct3Ea0HKArBar\nlxMCqG4y8vM1MTVVk1JSdLKU9c3LgoKUEBurgeHh8rXybAIuhtnroZRhytnw4cP13nvvlSiTSH8U\nWZo2baobbrhBnTt3VvPmzWWz2VSzZk1ZLBZlZWUpNTVVO3fu1OrVq/X9999r/fr1xV6n6LXOLcS8\n++67uueeey76PVCGAcqe2Q9/AAAAAAAA4IJQiMFf8FvGbxq7bKzmbZvncaZdRDuN7zFe1zW5jiNK\nAJS7U06nph48qAkHDuiww+FxrnGNGvp3TIzuathQNXx8vJgQqDrMXg+lDFOOUlJS1LhxYxWes+WW\nYRjy8fHRrbfeqkcffVQdOnS4oNfdt2+fpkyZohkzZujYsWNu/3BYdI9PP/1UAwYMuKj3QRkGKHtm\nP/wBAAAAAACAC+Z0SnfeKX32WfHrNWpICxZI119vTi5UeKtSVmn0stFatneZx5mujboqqUeS4qPj\nvZgMQHWVU1CgDw4d0ssHDmhfbq7HuYb+/noiOlr3R0aqpi9HuwEXwuz1UPZ2KkfvvPNOibKIYRjq\n0KGDfv31V3388ccXXISRpEaNGunll19WSkqKpkyZovr165c4ZqmoqHLnnXfqhx9+uKj3AQAAAAAA\nAACAfH2ljz6Sbrut+PXcXKl3b+n7783JhQqvY3RHLR28VIsHLVa7iHZuZ5bvW65O0zup76d9tSV9\ni5cTAqhuAn189EBUlHZ26KBZLVrosqAgt3OH8vP17z17ZEtO1jN79+pIfr6XkwL4q9gZphzFxMTo\n4MGDkv44Eumee+7R1KlT5VOG22llZWVp3LhxevPNN5WXl1fi+KTQ0FD9+OOPuvzyy//S67MzDFD2\nzG5CAgAAAAAAAH+Z0ykNGiR9+mnx6wEBriOT2CEGpTAMQ3O3ztWYZWO0/eh2tzMWWTToikF6vuvz\nalS7kXcDAqiWCg1DC48eVdL+/VqVmelxLshq1b0RERoZE6OYGjW8mNBcTqdT8+fPlyT17dtXvuyS\ng/Ng9nooZZhysmnTJrVp06ZYceTuu+/WtGnTyu2eO3fu1JAhQ5ScnFyiEBMdHa3k5GRFRkZe8OtS\nhgHKntkPfwAAAAAAAOCiOJ3S4MHSJ58Uvx4Q4Doy6YYbzMmFSsNZ6NTMjTP13PLnlHIqxe2Mn9VP\n97e/X2M6j1GDkAZeTgigOjIMQ8tPnNB4u11Ljh/3OOdnsWhQgwZ6ymbTpR52lalKlixZouuuu06S\ntHjxYvXs2dPkRKgMzF4P5ZikcvL9WdtBWiwWtWvXTlOnTi3XezZr1kw//fSTxo8fLz8/v2L3T0lJ\n0T/+8Q9lltJkBAAAAAAAAADgvPj6SjNnSnfcUfx6Xp7Up4/07bfm5EKl4Wv11d1X3q2dD+/UhOsn\nKCwwrMSMo9ChSasnqenEpnpm2TM6mXvShKQAqhOLxaJudepo8RVXaHXbtupXr57bOYdhaMahQ2qx\nerVu3bJFG6r4Guznn39+5vPZs2ebmAQ4f+wMU04GDx6sjz76SJLrobl69Wq1a+f+HMzysHr1ag0Y\nMECpqanFdnLp2bOnvv766ws6pomdYYCyZ3YTEgAAAAAAACgTTqc0ZIj0//5f8esBAdL8+VKvXubk\nQqVzKu+UJqycoNdWvqas/Cy3M3UD6yrhmgSNuGqEAv0CvZwQQHX1W3a2XrLb9fHhwyptZbRX3bpK\nsNnUOTS02CkelZ3T6VRERISOHDkiSapXr57S0tI4Kgl/yuz1UHaGKSdbtmyR5CqOdO7c2atFGEnq\n0KGDNmzYoC5dupwprhiGoSVLlmjYsGFezQIAAAAAAAAAqKJ8faUPP3S/Q0zfvuwQg/NWK6CWErsm\nas8je/RYx8fk7+NfYuZYzjE9ufhJNZvUTNPWTZOz0GlCUgDVTcvgYH0YF6fd8fF6KCpKNazul9i/\nPXZMXX79Vdds2KBFR4+qquxJsXz5clcRJjRUCg3VkSNHtHz5crNjAX+KMkw5OXTo0JnPBw4caEqG\nevXqafHixRo6dGixQszMmTP1zDPPmJIJAAAAAAAAAFDFFB2Z9K9/Fb9edGTSN9+YkwuVUnhwuF7v\n9bp2PLRDQ9sMldVScikrNTNVw78arsumXKbPt3yuQqPQhKQAqpvYGjU0qVkz7YuPV4LNploeTuL4\n5dQp3bR5s9qsXatPDh+Ws7ByP6POHJHUubN0zTWSOCoJlQNlmHJy6tSpM5/Hx8eblsPX11fTp0/X\ns88+W6wQM378eE2ePNm0XAAAAAAAAACAKsTHx7VDzLmFmPx81w4xFGJwgWJrx2pGnxna/MBm9Y/r\n73Zmx9EdGvjFQF017Sp9t+u7KrMLA4CKrYG/v8Y3aSJ7p04a37ixwv383M5tys7WHVu3qsXq1Zp2\n8KDyKmEpxul0at68ea4fdO0qdesmSZo7d66cTnbnQsVGGaac5Obmnvk8NjbWxCQuiYmJevfdd2W1\nWs8UYh599FF98MEHZkcDAAAAAAAAAFQFRYWYO+8sfr2oEPP11+bkQqXWMryl5tw6R6uGrVKPxj3c\nzqxPW69eH/dS95ndlZyS7OWEAKqrUF9fJcTGal98vCZdcolsAQFu53bn5mr4jh1qkpys1w4cUFYl\nKpEUOyKpTRvXB0cloZKwGNRky0VoaKgyMzNlsVjkcDhk9XB2nLctWLBAt99+u/Ly8mQYhnx8fPTx\nxx/r1ltv9fg1ZxdoJJ353GKxqKCgwFvRgYu2fft2rVmz5szHr7/+Wqy4VuSDDz7Q4MGDyzVLRkaG\n6tevX+xaenq6wsPDy/W+AAAAAAAAQLkrKJCGDpVmzSp+3d9fmjtXuvFGc3KhSliyZ4kSliZo7cG1\nHmf6NO+jcd3H6fL6l5dbDsMwdPr06XJ7/cogKChIFovF7BhAheEoLNT/S0/Xi3a7tpXyfKjr66uH\no6L0cHS0wjzsKlNRDB8+XNOmTZNuukkaOdJ18dVXpUWLNHz4cL3zzjvmBkSFZvZ6KGWYctKiRQvt\n2LFDFotFR48eVe3atc2OdMaKFSvUp08fZWZmyjAM+fn5afbs2erdu7fbecowqIzsdnux4su6deuK\nHV8myeMf0t9//33KMAAAAAAAAMDFoBCDcmQYhuZtm6cxy8Zo25FtbmcssmjQFYP0fNfn1ah2ozLP\nkJ2drZCQkDJ/3cokKytLwcHBZscAKpxCw9CCI0c03m7X2sxMj3PBVqvui4zUEzExivKwq4yZnE6n\nIiIiXDvDvPqq1K6d6yfWrZNGjVK9evWUlpYmX19fc4OiwjJ7PbRibFdSBV166aVnPk9LSzMxSUld\nunTRihUr1KBBgzM71wwcOFCLFy82OxpQJp566ik1atRIt9xyi15++WX98MMPZ3ZqOvtDcv2lqajo\nRTcQAAAAAAAAKCM+PtL770vnftNZfr7Uv7/01Vfm5EKVYLFY1D+uvzY/sFnTe09XTK2YEjOGDM3c\nOFOXTrpUj3zziA5nHTYhKYDqyGqxqF94uFa3bavFrVuru4dNE7ILCzUhJUVNkpM1fPt27apgu02V\nOCKpCEcloZKgplVOOnXqpK9+/8P8ypUrFRcXZ3Ki4q644gr9/PPPuuGGG7R7927l5eWpX79++vrr\nr3XttdeaHQ+4KPn5+ZI87/xC6QUAAAAAAADwAh8facYMyWKRPvzwj+tFhZi5c13HLgB/ka/VV3df\nebfuaHWHpq6dqhd+fEFHTh8pNuModGjS6kmasWGGHo9/XKOuHqXQGqFlG2SUJP+yfckKK1/Sq2aH\nACoHi8WinnXrqmfdulp16pSS9u/XgqNHS8zlG4ampaVpelqabq1fX0/bbLqiAuw89fnnn7s+6dzZ\n9f/pRXx8pGuukRYt0uzZs9WzZ09zAgJ/gp1hykmvXr3OfL5o0SITk3jWuHFj/fLLL2rbtq0k6fTp\n0/rnP/+p1atXm5wMKDtFO7+c/SGp2O4wAAAAAAAAAMqJj480fbo0ZEjx6w4HO8SgzNTwraHH4h/T\n7kd2K7FLokL8Sy4iZzuyNe7HcWoysYle/eVV5Thyyi6AfzX7AHDBOtaqpfmtWmlz+/a6s0ED+biZ\nKZT0aXq62qxdq5s2bdLPJ096O+YZTqdT8+bNc/2ga9eSA926SZLmzp0rp9PpvWDABaAMU06uvPJK\nNW/eXIZhaOHChTpw4IDZkdyqV6+eli9ffqaxl5mZqV69emnjxo0mJwMu3rnFF4vFooCAALVv3173\n33+/7rzzzjM/DwAAAAAAAKCcFBVi7rqr+PWiQszChabEQtVTK6CWnuv6nPY8skePdXxM/j4lmxvH\nco7pycVPqtmkZpq2bpqchSziAvCey0NCNCsuTjs7dtQDkZEK8LBGtejYMV2zYYOu3bBB3x496vVT\nDzwekVSEo5JQCVCGKUePPPKIJKmgoEBPPfVUqbO5ubkaM2aMmjRposDAQDVv3lxJSUkqKCgo95zB\nwcFatGiRBg4cKEk6ceKErrvuOm3btq3c7w2UF4vFIl9fX7Vq1UpDhw7V5MmTtXr1amVmZmr16tWa\nPHmyunfvbnZMAAAAAAAAoHrw8ZHee08aOrT4dYdDGjBA+vJLc3KhSgoPDtfrvV7Xzod36u42d8tq\nKbkclpqZquFfDVfLyS31+ZbPVWgUmpAUQHXVODBQUy69VPvi4/XvmBjV9HG3V4z048mT+vvmzWq3\nbp0+T09XgZdKMR6PSCpSdFSSpNmzZ3slE3ChLIa3a2TVSF5enuLi4rRv3z5ZLBbNmTNHffv2LTHn\ncDjUo0cP/fzzz8VafRaLRX//+9+1cOFCr+1c8dhjj2nixImSpMjISK1YsULNmjWTxWIptsuGYRiy\nWCxeKesAF2rVqlUqKChQ27ZtVaNGDY9zH374oYYOHXrmf19F/71+//33NXjw4HLNmJGRofr16xe7\nlp6ervDw8HK9LwAAAAAAAGCqwkJp2DDp/feLX/fzk774Qurd25xcqNK2ZmzVMz88ozlb53icubLh\nlUrqkaTrm15/Xmsy2dnZCgn5/Tim0ao+xwflSxrv+jQrK0vBwcGmxgGqiuMOhyanpurN1FQdcTg8\nzjULDNRTNpsGNWggf2v57HvhdDoVERHh2hnm1Veldu3cD65bJ40apXr16iktLU2+vr7lkgeVl9nr\noewMU44CAgL0+uuvS3Itsg8aNEjr168vMTdhwgT99NNPkoof52IYhr755htNmjTJa5nfeOMNvfDC\nC5KktLQ0ds5ApdSxY0ddffXVpRZhAAAAAAAAAJjAavW8Q8zNN0sLFpiTC1VaXHicvrj1C60atko9\nGvdwO7Ph0Ab1+riXun3YTSsPrPRyQgDVXR0/P41t1Ej74uP15iWXKDogwO3czpwcDdu+XU1XrdIb\nBw4ouxw2LvjTI5KKcFQSKjjKMOWsT58+GjZsmCRXS7hHjx5asmRJsZlZs2a5/dqiQsz06dPLPefZ\nEhISNH36dPn4+CglJaXYrjAAAAAAAAAAAFyUokLM3XcXv+5wSLfcQiEG5aZDVActGbxESwYt0VWR\nV7mdWbF/ha6ecbX6fNpH/0v/n5cTAqjugn189Eh0tHZ37KgZzZvr0sBAt3MpeXl6fPduxa5cqf/s\n26fjpewmc6H+9IikIhyVhAqOMowXTJ48WZ07d5YknTx5Uv/4xz80atQo5eTkSJJ27dpV7JiWc4sn\nO3fu9G5gSUOHDtXcuXPP7KzhrWOaAAAAAAAAAADVgNUqTZvmvhDDDjEoZz2a9NCqYas059Y5alGv\nhduZL7d/qdZvt9bgeYO19/heLycEUN35W60aGhGh3zp00OyWLXVl0bFs5zjqdOrZfftkS07Wv3fv\nVlpe3kXd1+l0at68ea4fdO3651/QrZskae7cuXI6nRd1b6CsUYbxAj8/Py1atEh/+9vfJEkFBQV6\n/fXXFRsbqzFjxvzp1wcFBZV3RLduuukmLV68WLVr15ZEIQYAAAAAAAAAUIaKCjH33FP8utPpKsTM\nn29OLlQLFotF/eP6a/MDmzWj9wzF1IopMWPI0KxNs/T/2bv7+Jrrxo/j7+82w+YmNCQ3ERMuam4K\nJUQkkq7k/t4wZnOTSm4KJVzEpZmbJK3ITVGSIhS5ubS5XZdiXORSfrHkdthsO78/znW07ZzNsHO+\nZ+e8no/HeWw+n+/5ft4Hba7rvPf5VJ9TXRFfRej05dMmJAXgzXwNQx1Ll9aeevW0vk4dNS1e3OF1\nl9PSNP3kSVXetUthhw/r2P82ZbhVuT4iyYajkuDGKMO4SJEiRbRp0yb17Nnzxs4vf/zxh6ZOnarr\n16873BHGYrHIMAw9/vjjZkSWJDVu3Fjbtm1TuXLlJFGIAQAAAAAAAADkIR8f6d13pdDQzOOpqdYj\nk2w/nQ44iZ+Pn/qG9FVCRIJmtZ6luwPutrvmevp1zYmbo/vfuV/jvh2nC9cumJAUgDczDEOtS5bU\nlpAQbX/oIT1VuLB09ardI/nKFS04dkxVt2xR59279cPp00pKSsr1Y/ny5dYFb3ZEkk2Go5KWL19+\nS2vdyiPr++hAbviZHcCbFCxYUDExMXrmmWc0cuRI/frrrzcKL9mVTAoUKKBx48a5OGlmNWvW1M6d\nO9W6dWsdOnSIQgwAAAAAAAAAIO/4+EgLFlg/f++9v8ZTU6VOnaSVK6XnnjMnG7xGIb9CGt5wuPqH\n9NfMf83UjH/N0OWUy5muSbqepMnbJmve7nkaWXekSUkBeLui//2v1jdsmOM1Fkkr//e4Lbk5Ismm\neXNp3TotWrRIixYtut0VcxQfH6/atWs75d7wXOwMY4KOHTvq6NGjmjt3rurWrXtjV5isj4CAAC1Z\nskR169Y1O7IqVKigHTt2qGHDhjTvAAAAAAAAAAB5y1aIGTAg87itELN6tTm54HWKFiyq15u9rmOR\nxzSi4Qj5+/rbXfPn1T817jtzf5AZgPdas2aNcxdo0iR3RyTZPPTQjd1hnMXprxkeiZ1hTOLv76+w\nsDCFhYXp1KlT2r59u37++WedOXNGqampqlq1qnr06KF77rnH7Kg3lChRQps3b9akSZP0+++/mx0H\nAAAAAAAAAOBJfHyk+fMlw7AenWSTmip17iwtXy49/7x5+eBVggKDNLP1TA1vOFwTt0zUBwc+ULol\n3exYAKCIiAj9+OOP+uSTT6wDDz0kvfKKVLx43ixQqJD1e3Fu+fpKkyZJ167lzfoXLkhTp0oHDkiS\nXnjhBUVEROTNveFVKMO4gXLlyqlTp05mx8iVwoULa8qUKWbHAAAAAAAAAAB4Ih8fad486+dZCzFd\nulCIgctVLF5Ri55dpFGNR2n8d+O16udVZkcC4OXuuusurVixQi1bttSwYcN0bf9+aehQaexYKSTE\nnFCGIRUufOf32bdPmjxZOntWhQoV0uzZszVgwAAZt1LOAf6HY5IAAAAAAAAAAID7sBViBg3KPG7b\nIWYVZQS4Xo2gGvq006eKDY1VyyotzY4DwMsZhqGBAwcqNjZWNWrUkM6elV58UVq8WEpLMzverUtL\nk95/3/oazp5VjRo1FBsbq4EDB1KEwW2jDAMAAAAAAAAAANyLj480d64UFpZ5PC3NWoj59FNzcsHr\nNbi3gTb23Ki1XdeaHQUAVLt2bcXFxal///6SxSJ9+KE0cqSUmGh2tNxLTLRm/ugjyWJR//79FRcX\np9q1a5udDPkcxyQBHiwlJUUJCQn69ddfdenSJV25ckUBAQEqWrSoypcvr+rVq6tAgQJmxwQAAAAA\nAAAAez4+UnS09fP58/8aT0v768ikjh3NyQav17xyc7MjAIAkKTAwUO+9955atGihgQMH6nJ8vBQa\nKo0eLTVqZHa8nO3cKU2bJl28qKJFi2rBggXq2rWr2angISjDAB7mhx9+0Oeff66vv/5aBw8eVFoO\nW6H5+vqqVq1aevrpp/Xss8/qkUcecWFSAAAAAAAAALgJWyHGMKxHJ9nYCjHLlkkvvGBePgAA3ETX\nrl3VoEEDde7cWXv37pXGjLGWRgcMkPz9zY6XWUqKtHDhjZ3e6tWrp+XLl6tq1aomB4Mn4ZgkeLWj\nR49q+fLlGjVqlJo2bapixYrJx8cn20eVKlXMjpyt5cuXq379+mrUqJGmTZum+Ph4paenyzCMbB/p\n6emKj4/X1KlT1ahRIzVo0EArV640+6UAAAAAAAAAwF9shZjBgzOPp6VJXbtK/H+aAABIkqpWraqd\nO3dq+PDh1oFPP5UiIqTffjM3WEa//SYNHXqjCDNixAjt3LmTIgzyHDvDwGucPHlScXFx2r17t+Li\n4rRnzx6dP38+0zW2kkh+cujQIQ0aNEjbtm1zmN9isWT73KzX79mzR126dNH8+fM1f/58BQcHOy03\nAAAAAAAAAOSaYfx1ZFLWHWK6dbN+3qmT63MBAOBmChYsqFmzZumJJ55Qnz599GdCgjRwoDRypNSi\nhbnhNm2SZs6Url5VqVKl9MEHH6hdu3bmZoLHogwDj3TmzBnFxcVlKr8kJiZmuia74kvW8ojtmpxK\nJWZZvXq1+vTpo8uXLzvMmZtyT9brJWnLli2qX7++PvzwQ3Xo0MEJyQEAAAAAAADgFtkKMYYhzZ37\n17itEGOxSJ07m5cPAAA38swzz+jAgQPq1q2btm3bJr35prRnj3WnmMKFXRvm6lUpKkr6+mtJ0uOP\nP66lS5eqfPnyrs0Br0IZBh6pVatWio+Pv/Hr3BZf8pPo6GhFRkZKsr4+R6WW3Ly+jNdaLJYbv1eX\nL1/W888/rzlz5mhw1u1H78DFixcVFRV128/v1auXKlSokGd5AAAAAAAAAOQjhiHNmZN5pxjJWojp\n3t36OYUYAAAkSeXLl9e3336rSZMm6c0335Tl66+ln36SXntNqlLFNSGOHZMmTZJOnJBhGBo/frzG\njx8vPz+qCnAu/obBI93OcUG5uc5dxMTE3CjCSPa7u9h+nZsjnzIWYLIWYiwWiyIiIlS0aFH16NEj\nT7KfO3dO48ePv63nGoahJk2aUIYBAAAAAAAAvJlhWH+6XLIvxNiOTKIQAwCAJMnPz0+TJk1S8+bN\n1b17d/3fiRPS4MFSeLj0zDPW76vOYLFIa9dav1enpOiee+7R0qVL1bx5c+esB2RBGcYDlCxZ8qbX\nGIahs2fPuiCN+7CVOhyVW7IrieSHIkxsbKwGDhx449c5FWEaN26sbt26qXHjxrrvvvtUtGhRXbp0\nSceOHdPOnTu1dOlS/fDDD5mek7UQk56ergEDBqhGjRqqV69enr2O3BR1MsoPfzYAAAAAAAAAXMRW\niLHtFGOTnv7XkUldupiXDwAAN9O8eXPt379fvXv31vr166VZs6S9e6VRo6QiRfJ2scuXpRkzpK1b\nJUlt2rRRTEyMgoKC8nYdIAeUYTzA+fPnsy192Nxq8cCT3Erx5Wa/j2a7dOmSunTpotTUVEmOizCG\nYSg4OFjz5s1Ts2bN7O5RvHhxhYSEKCQkROHh4dq0aZOGDBmi//znP5nuk7EQk5KSos6dO2v//v0q\nkkffDN359xkAAAAAAABAPmAY0jvvZN4pRrIWYrp3txZiunY1Lx8AAG6mdOnSWrdunWbOnKlXX31V\nqVu3SlevStOm5e1Cb7whxcbKz89PU6dO1YgRI+Tj45O3awA3wd84D2IrLmR9eKusRx9lfWT8PfLx\n8VFwcLAef/xxu+e6k/Hjx+uXX36RlH0R5sknn1RsbKzDIowjLVu21O7du9W8eXO7gort1xaLRceP\nH9eECRPy4mVk+3c1Nw8AAAAAAAAAuMEwpNmzpYiIzOPp6VKPHtKyZebkAgDATfn4+GjUqFGaO3eu\ndeB/PzCfp/53z7lz5+rFF1+kCANT8LcOHiu74othGKpcubJeeOEFTZs2TZs3b9a5c+d06NChPCt7\nOMPPP/+suXPn2hVCMu5m07hxY33++ecqWrToLd27WLFi+uKLL/Twww/f+P1ytEZUVJQOHz58R6+j\nUqVKSktLu61HamrqjcISAAAAAAAAAEj6qxATGZl53FaI+fhjc3IBAODG4uLirJ80apT3N2/YUJK0\ne/fuvL83kEsck+RBsjv2x1vZXnv58uVVv379TI8SJUqYnO7WTZgwQampqZnKLxn/fEuVKqUVK1ao\nUKFCt3X/gIAArVy5Ug899JAuXLhgd1ySJKWmpmrSpElaunTpnb8gAAAAAAAAAMgrhiH9859/FWNs\n0tOlnj2tRyZ177zRiMYAACAASURBVG5ePgAA3Ehqaqo+++wz6y9yedrELWnWTFq3TqtXr1Z0dLT8\n/KglwPX4WwePFBkZqTJlyqhBgwYKCgoyO84dO378uFavXu2w3GQrq0yePFnlypW7o3UqVqyoiRMn\natiwYdnuDvPJJ59oypQpqlix4h2tBQAAAAAAAAB5yjCkWbOsn2ctxPTqZf2cQgwAANqyZYv++OMP\nqXhx6aGH8n6BkBCpWDH98ccf2rp1q1q0aJH3awA3wTFJ8Eh9+/bV008/7RFFGEmaM2eO0tLSJMnh\nrjDVqlXTgAED8mStIUOGqEqVKpnWyLjrUFpamqKjo/NkLQAAAAAAAADIU7ZCzPDhmcdthZglS8zJ\nBQCAG1m5cqX1kyZNJF/fvF/A19d674xrAS5GGQZwc+np6Vq+fHmOu8KMHDkyz47E8vX1VWRkZLbH\nblksFn3MGbsAAAAAAAAA3JVhSDNnSiNGZB5PT5d696YQAwDwak4/Isnmf/devXq1UlNTnbcOkA3K\nMICb+/bbb/V///d/khzvClOoUCF1z+OtPXv37i1/f/9Ma2Usx5w6dUpbtmzJ0zUBAAAAAAAAIM8Y\nhvT2244LMewQAwDwYk4/Iskmy1FJgKtRhgHc3Nq1ax2O23aFadu2rQIDA/N0zeLFi6tNmzYOd4e5\nWS4AAAAAAAAAcAu2QszIkZnHLRZrIeajj8zJBQCAiW7riKSDB6XBg62Pn37K3XM4KgkmowwDuLlN\nmzbleARS27ZtnbJuTve1WCzauHGjU9YFAAAAAAAAgDxjGNKMGdKLL2Yet1isRyZ9+KE5uQAAMMEt\nH5GUlmYtjw4bJh06ZH1ERlp3WEtLu/nzOSoJJqIMA7ix33//XT///LMkZbtLS8uWLZ2y9pNPPmk3\nZtuNRpIOHjyo06dPO2VtAAAAAAAAAMgzhiFNn+64ENOnD4UYAIDXuKUjks6csX7vfP99KS1NXbt2\nVdeuXa0lmEWLpFGjpMTEnO/BUUkwkZ/ZAQBkLzY21m4s4y4xFSpU0L333uuUtStVqqR77rlHv//+\nuwzDcFjGiYuLU7t27Zyy/p1asmSJTpw4keM1+/btczj+xRdf6OTJkzk+t1KlSurRo8dt5wMAAAAA\nAADgQrZCjG2nGBtbIca2UwwAAB4s10ckbdtm/b556ZKKFCmi6Oho9ezZU5LUunVrhYeHK2n/fql/\nf+mll24ch2THdlTSunVauXKlWrRokcevCMgeZRjAje3du9fhuG2Hlrp16zp1/fr162vt2rXZHtO0\nb98+ty3DLFq0KNcN04xFH4vFotWrV2v16tU5PqdZs2aUYQAAAAAAAID8xDCkf/zjr2KMjcUi9e37\nVzEGAAAPlKsjkq5dk+bOldaulWR9r3DZsmWqWrXqjUt69+6txo0bq1u3btq9e7f02mvSM89IQ4ZI\nhQrZ37NZM2ndOq1evVrR0dHy86OiANfgmCTAje3fvz/H+Tp16jh1/Zvd/2b5zGYYhtMeAAAAAAAA\nAPIhw5CmTbP+FHtGFovUr5/0wQemxAIAwNluekTS0aNSWNiNIszLL7+sHTt2ZCrC2FSrVk07duzQ\nyy+/bB1Yu9b63P/8x/6+HJUEk1CGAdxYQkJCjsWLatWqOXV9R9/cbCwWi44cOeLU9e+UxWJx2gMA\nAAAAAABAPmUrxNjewLOxFWIWLzYnFwAATpTtEUkWi7RqlRQeLp04oXvuuUcbN27UtGnT5O/vn+39\n/P39NW3aNG3cuFFly5aVTpyw7g6zerX1nja2o5IyZgBcgDIM4MZ++eWXHOdzKqvkhezubyvo3Cyf\n2Zy5Mwy7wwAAAAAAAAD5mGFIU6dKr7ySedxikfr3l95/35xcAAA4QbZHJJ0/L40ZI82ZI6WkqF27\ndjpw4IBatmyZ63u3bNlS8fHxatu2rZSSIkVFSWPHWu9t8781V69erdTU1Dt/QUAuUIYB3NTp06d1\n7do1Scp2J5Jy5co5NYOj+2fMkpSUZN1OzQ199913SktLc9pj8+bNZr9EAAAAAAAAAHfCMKQpUxwX\nYkJDKcQAADyGwyOSdu+2FkB37VLBggUVFRWlL774QkFBQbd8/6CgIK1du1bvvPOOChYsKP3rX9bv\npXv2WC/gqCSYgDIM4KZOnTp102vKli3r1Ay5uf9vv/3m1AwAAAAAAAAA4DS2Qszo0ZnHKcQAADxI\npiOS0tOl+fOll16S/vxTNWvWVGxsrIYOHXpHJyMYhqGIiAjFxsaqRo0a0tmz0qhR1rXS0zkqCS5H\nGQZwU2fPnrUby/gNqFixYipQoIBTMxQuXFhFihSxWzujP//806kZAAAAAAAAAMCpDEN66y3p1Vcz\nj9uOTFq0yJxcAADkgUxHJFWtKg0dKq1YIUkKCwtTXFyc6tSpk2fr1alTR7t371ZYWJh1YMUKKSJC\nqlZNEkclwXUowwBuylEZJqNixYq5JMfN1rlZTgAAAAAAAABwe4YhTZ5sX4iRrDvEUIgBAORTN45I\nkqS5c6WEBJUsWVKfffaZ5s2bp4CAgDxfMyAgQPPmzdPq1atVokQJ6fBh69oSRyXBZSjDAG7q/Pnz\nDsctFoskqWjRoi7JcbN1zp0755IcAAAAAAAAAOBUtkLMmDH2c6Gh0nvvuT4TAAB3KNOxRCkpatas\nmQ4cOKAOHTo4fe3nnntO8fHxatq0qZSS4jgT4CSUYQA3dfXq1RznAwMDXZKjSJEiNwo4jly7ds0l\nOQAAAAAAAADA6QxDevNNaexY+7kBA6SFC12fCQCAO/D9999Lknx9fTV58mRt2rRJ5cuXd9n65cuX\n1+bNm/Xmm2/K19c3UybAmSjDAG7q+vXr2c4ZhiE/Pz+X5LjZOikZWpwAAAAAAAAAkO8ZhvTGG44L\nMQMHSu++6/pMgBuK+y3O7AgAcmHTpk3q0qWLtm/frjFjxtwopLiSr6+vxo4dq23btqlLly7auHGj\nyzPA+7jm3XQAt+xmJRPKMAAAAAAAAADgJLZCjG2nmIwGDbJ+HDjQ9bkAN9I8prn6PNxHU1pMUdki\nZc2OAyAb5cuX17Jly8yOIUlq1KiRGjVqZHYMeAl2hgHcVHp6eo7zrmpt3mydm+UEAAAAAAAAgHzJ\nMKRJk6Tx4+3nBg2SFixwfSbAzXyw/wMFRwXr7Z1vKyWNH54FALgPyjCAm7rZjiypqakuyXGzdQoU\nKOCSHAAAAAAAAADgcoYhTZzouBATFibNn+/6TICbuZRySaM2jtKD8x/UN//5xuw4AABIogwDuC1/\nf/8c511Vhrl+/XqO85RhAAAAAAAAAHg0WyHmtdfs5wYPphAD/M+hPw6p9ZLW6rC8g46dO2Z2HACA\nl8t56wkApsmpDGOxWJSS4prtBm9WhrlZaQe5l5SUpICAgNt6bmBgYB6nAQAAAAAAAHCDrRBj+5jR\n4MGSxWL9CHiR7nW6a+mhpXbjaw6v0fqj6/VS45c0+rHRCvTn/78GgPwsKSnJpc/LK5RhADeVXbnB\nMAxZLBZdvnzZJTkuXbokwzCynS9SpIhLcniDypUr3/ZzLRZLHiYBAAAAAAAA4NCECdaPWQsxQ4ZY\nCzFDhrg8EmCWBe0WaOijQxXxdYR2n9qdaS45LVlvbntTMQdiNKPVDL1Q84Uc32sAALiv/Pp+MMck\nAW6qZMmSOc5fvHjRJTluts7NcgIAAAAAAACAR5kwQXr9dfvx8HBp7lyXxwHM1LB8Q/0Q+oMWtV+k\noIAgu/mTF0+q86ed1TymueJPx5uQEADgrdgZBnBTpUqVynH+/PnzLslx4cKFHOdvlhO5d/z4cQUF\n2f+PBQAAAAAAAABuZsIE65FJtp1ibMLDrTvEhIebkQowhY/ho34h/fT3Gn/XxC0TFRUbpTRLWqZr\ntp7YqpAFIRpSf4gmNp+okoX5QVsAyC9u98SSxMTEOzoZ405RhgHc1N133203ZrFYbmwjmJycrIsX\nL6pYsWJOy3Du3DmlpKTcOJoptzlxewIDA7M9HgsAAAAAAACAm7HtDpO1EDN0qPUjhRh4mbsK3aVZ\nT81SaN1QRa6P1LfHv800n25J15y4OVr272V6q8Vb6h/SX74+vialBQDk1u2+f3nlypU8TnJrOCYJ\ncFMVK1a86TWnT592aobc3L9ChQpOzQAAAAAAAAAAbuv116WJE+3Hhw6VoqNdnwdwA7VK19Kmnpu0\nqtMqVSpeyW7+7NWzGvTlIDVY2EA7/rvDhIQAAG9AGQZwU4GBgTeOILLtBpPViRMnnJrhl19+sRvL\nmKV06dIqXLiwUzMAAAAAAAAAgFt77TVp0iT78aFDpTlzXJ8HcAOGYejvNf6un8J/0oSmE1TIr5Dd\nNft+36fHFj+mnp/11KlLp0xICQDwZJRhADdWuXLlbI8nkqQjR444df2jR486HLcd12TmGW8AAAAA\nAAAA4DbGj3dciImIkKKiXJ8HcBMBBQL0erPXdSj8kJ6v8bzDa5bEL1FwVLCmbZ+m5NRkFycEAHgq\nyjCAG6tVq1aO84cPH3bq+je7/83yAQAAAAAAAIDXGD9eeuMN+/HISAoxni7Fyx63odJdlfRpp0+1\nqecm1QyqaTefdD1JozePVu15tfXVka9ubxEAADLwMzsAgOzVrVtXMTEx2c7v27fPqevv3bs3x/mQ\nkBCnrg8AAAAAAAAA+cq4cZJhWD9mFBkpWSzWj/A8M8wOkH+0qNJC+wft19y4uXp9y+u6kHwh0/yR\nP4+o7cdt1bZaW/3zqX+qasmqJiUFAOR37AwDuLG6des6HDcMQxaLRfv378/xGKU7kZaWpgMHDsgw\njGyvoQwDAAAAAAAAAFmMHSu9+ab9+LBh0uzZrs8DuJkCvgU0rOEwJUQkKDQkVIbs34dYd2Sdas2t\npVc3varLKZdNSAkAyO/YGQZwY/Xr11ehQoWUnJx8owBjsVhuFFQuX76sPXv2qH79+nm+dmxsrK5c\nuXJjXUmZijGFCxd2yroAAAAAAAAAkO+NHWvdIWbs2Mzjw4dbPw4b5vpMyFMBAQG6fNm7SxoBAQF3\n9PzSgaW1sP1CDaw3UJHrI7Xr112Z5lPSUjR1x1R9GP+hpj85XV3/1jXHH+AFACAjyjCAGytYsKAe\nffRRbd68Odt/4G3cuNEppZRNmzY5HLeVcZo0aaICBQrk+boAAAAAAAAA4BHGjLEWYsaMyTw+fLj1\nyCRbMQb5kmEYCgwMNDuGR2hwbwPt6LdDS+KX6OWNL+t00ulM86cunVL31d01N26uotpEKeQedq0H\nANwcxyQBbq5Vq1bZzlksFq1evdop63766ac5zj/55JNOWRcAAAAAAAAAPMarr0pTptiPjxghzZrl\n+jyAm/IxfNTrwV5KiEjQqEaj5Odj//P8O07uUL136ynsyzD9ceUPE1ICAPITyjCAm3v++eftxjIe\nlbR3714dOXIkT9c8ePCgfvzxx2yPSDIMQx07dszTNQEAAAAAAADAI40e7bgQM3IkhRggi2IFi2l6\nq+n6cfCPanW//Q8LW2TRgj0LFBwVrOjYaKWmp5qQEgCQH1CGAdxclSpV1LBhw0wFmKyioqLydM3Z\ns2c7HLdlaNy4sSpWrJinawIAAAAAAACAxxo9Wpo61X585Ehp5kzX5wHc3AN3P6D13ddrTZc1qlKi\nit38uWvnNPTroar3bj1t/WWrCQkBAO7Ofo8xF+vXr5/ZEQC3169fP+3atctu3LZzy+LFizV27FiV\nKVPmjtf67bfftGTJkmyLN5LUt2/fO14HAAAAAAAAALzKK69IhmH9mNGLL0oWi/UjgBsMw1D76u3V\n6v5Wenvn23pr+1u6cv1KpmviT8erWUwzdflbF/2j5T9UoXgFk9ICANyNYbGdgWISHx+fHN90x83l\n9EdoK0sYhqG0tDQXpsqftm7dqubNmzs8Hshisei+++7TsWPHXJ4rOTlZlSpVUmJi4o0stmy2P99e\nvXpp8eLFd7xW9+7dtWzZsmx/D8qWLasTJ06oQIECd7yWN0tMTFTp0qUzjZ05c0ZBQUEmJQIAAAAA\nAADgEv/4h30hRpJmzKAQA+Tg5IWTemnjS1pxcIXD+YACARrz2Bi92PhFFfIr5OJ0AICszH4/1G2O\nSbJYLDxu8wHPV7BgQQ0bNszuz9tWhLFYLPrwww+1Zs2aO1pn5cqVdkWYrGuNGDGCIgwAAAAAAAAA\n3K6XX7YWYrIaNcpaiAHgUIXiFbS843Jt6b1FtUvXtpu/cv2Kxn03TrXm1tIXh7/gPTQA8HJuU4Yx\nDIPHbT7gHYYPH64KFSrcKKVkZCuv9O7dW3Fxcbd1/127dik0NNThvW0qVaqkyMjI27o/AAAAAAAA\nAOB/XnpJmj499+MAbmh6X1PtHbRXc9rMUYlCJezmj507pmeXP6s2S9vo0B+HTEgIAHAHblOGMXt3\nlfz8gHcoXLiwZs6ceePXGY8usv364sWLatWqldatW3dL916zZo2eeuopJSUlZbqnja2AM3PmTBUs\nWPBOXgZykJSU5PABAAAAAAAAwAONGuW4+PLyyxRigJvw8/FT+MPhSohIUFi9MBmy/+HxDf/ZoNrz\nauulb17SxeSLJqQEAO/hju9zGhaT2xQ+Pj4Oj2RB3rD93hqGobS0NLPjuNS2bduUkJBwS885fPiw\nZsyYkenvZMbSyd13360pU6bccpZmzZrp/vvvv+XnOdKjRw99/PHHDsswGXXt2lXjx49X9erVs73X\nzz//rIkTJ2rlypV297Pd0/b3p0ePHoqJicmT1wDHZ+Rlh6+PAAAAAAAAgAd7+21rMSaradOsxRgA\nN7Xv//Ypcn2ktv93u8P5MoFlNK3lNPV8sKd8DLfZKwAAPEZuT7Q5c+aMgoKCnJzGijKMh/PmMkzf\nvn3dorxhGIYWL16sXr165cn9kpKSVL9+fR0+fDjbAkvGsZCQEDVu3FiVK1dWkSJFdOnSJR0/flw7\nduzQgQMHHD7HNmb7dc2aNRUbG6uAgIA8eQ2gDAMAAAAAAAAgg5kzpRdftB+fOlV65RXX5wHyIYvF\nomX/XqaXNr6kU5dOObymYfmGimoTpfrl6rs4HQB4Nncsw/i5ZBXARLn9D88mp+JBXt7rdgUGBmrD\nhg1q0qSJTp48mSmX7egswzBujO3bt0/79u1zeK/clGnuu+8+bdiwgSKMCxw/ftxlX/wBAAAAAAAA\nuJGRI60fsxZiRo+2fqQQA9yUYRjqVrub2ldvr8nfT9bb/3pb19OvZ7pm16+79PDCh9UvpJ/eavGW\nSgfm7odWAQA5u3z5st1YYmKiKleubEIaK/YBg1ewlURy83DFfe5UxYoV9d1336lq1ap2RzrZfp21\nGOPokTFrxgKN7XnBwcH69ttvde+99zr19cAqMDDQ4QMAAAAAAACAFxg50rpDTFajR1t3iAGQK0X8\ni2hKyyk6OOSg2lZrazdvkUWL9i1ScFSwZu+aretp1x3cBQBwK9zxfU7KMPAKORVCnPVwtipVqigu\nLk6tW7fOsQCT29+XrM9v06aNYmNjdd999zn9tQAAAAAAAAAAJI0Y4bgQ8+qr0pQprs8D5GPVSlXT\nl92+1Jddv1TVklXt5i8kX9DwDcMVsiBE3x7/1oSEAABncpsyjBllBW944NZ2c8nrh7MVL15cX331\nlT744AOVKVMm084uN8vh6BrDMFSmTBl9+OGH+vLLL1WsWDGnvwYAAAAAAAAAQAYjRkizZtmPjxlD\nIQa4DW2D2+rfg/+tqS2mKrCA/S4FBxMPqsWHLdRxZUedOH/ChIQAAGdwmzKMmYUFT394M7PLSK4q\nJPXs2VPHjh1TdHS0atasabd+dn8vMl5Xq1YtzZ07V8ePH1f37t1dkhsAAAAAAAAA4MDw4dkXYt56\ny/V5gHyuoF9BvfLYK0qISFCPOj0cXrPq51V6IPoBTdwyUVevX3VxQgBAXjMsJrclmjVrxg4mLvLd\nd9+ZHQEucvToUa1fv1579+7VwYMH9dtvv+nSpUu6cuWKAgICVLRoUZUvX141a9ZU3bp11aZNG91/\n//1mx/YqiYmJKl26dKaxM2fOKCgoyKREAAAAAAAAANzO7NnWYkxWb74pjR3r+jyAh9jx3x2K+DpC\n+37f53C+UvFKmtl6pp574DnexwSA22T2+6Gml2EAwBuZ/cUfAAAAAAAAQD7xzjvSsGH24xRigDuS\nlp6mRfsWaczmMTp79azDa1pUbqHZT81WrdK1XJwOAPI/s98PdZtjkgAAAAAAAAAAAJBFZKR1h5is\nxo2zFmIA3BZfH18NrDdQCREJGtpgqHwM+7dNNx/frAfnP6gR60fo/LXzJqQEANwuyjAAAAAAAAAA\nAADuLDLSukNMVuPHS2+84fo8gAcpWbikop6O0r5B+9S0UlO7+TRLmv75wz8VHBWsRXsXKd2SbkJK\nAMCtogwDAAAAAAAAAADg7iIipKgo+/HXXqMQA+SBOmXq6Lve32lFxxUqX6y83XzilUSFrg3VI+89\nol2/7jIhIQDgVlCGAQAAAAAAAAAAyA+GDs2+EDNpkuvzAB7GMAx1qtVJh8IPaVyTcSroW9Dumt2n\ndqvRokbq83kf/X75dxNSAgBygzIMAAAAAAAAAABAfjF0qDRnjv34669LEye6Pg/ggQL9A/XGE2/o\np/Cf9Gz1Zx1eE3MgRsFRwXp759tKSUtxcUIAwM1QhgEAAAAAAAAAAMhPwsMdF2ImTKAQA+ShKiWq\n6PMun2t99/WqXqq63fyllEsatXGU6syro2/+840JCQEA2aEMAwAAAAAAAAAAkN+Eh0vR0fbjEyZY\nHwDyTOuqrRU/OF4znpyhov5F7eYPnz2s1ktaq8PyDjp27pgJCQEAWVGGAQAAAAAAAAAAyI+GDJHm\nzrUfnziRQgyQx/x9/fVi4xeVEJGgPg/1cXjNmsNrVDO6psZ/O15JKUmuDQgAyIQyDAAAAAAAAAAA\nQH41eDCFGMCFyhYpq8XPLta/+v9L9cvVt5tPTkvWm9veVI3oGlp5cKUsFosJKQEAlGEAAAAAAAAA\nAADys8GDpXnz7McnTpRef13izXggzzUs31A/hP6gRe0XKSggyG7+5MWT6vxpZzWPaa740/EmJAQA\n70YZBgAAAAAAAAAAIL8LC5Pmz7cfnzSJQgzgJD6Gj/qF9FNCRIKGPzJcvoav3TVbT2xVyIIQRXwV\noT+v/mlCSgDwTpRhAAAAAAAAAAAAPMGgQY4LMW+8QSEGcKK7Ct2lWU/NUvzgeLWo3MJuPt2Srjlx\ncxQcFawFuxcoLT3NhJQA4F0owwCAm0hKSnL4AAAAAAAAAIBcGzRIWrDAfvyNN6TXXqMQAzhRzaCa\n2thzo1Z1WqVKxSvZzZ+9elZh68LUYGED7fjvDhMSAoBzuOP7nIbFwr96AMDVEhMTVbp06Vxdy5dp\nAAAAAAAAALfs3XetxZisxo61FmMMw/WZAC9y9fpVTd85XVO2T9G11GsOr+leu7umtZyme4vd6+J0\nAJC3jFz+u+LMmTMKCgpychordoYBAAAAAAAAAADwNAMHWgsxWU2eLI0fzw4xgJMVLlBYrzV9TYfC\nD+n5Gs87vGbpj0tVfU51Tds+TcmpyS5OCACejZ1hAMAEjnaGOX78uMMmZGBgoKtiAQAAAAAAAPA0\nCxdaizFZjRkjvfkmO8QALrL52GZFro/UT4k/OZyvWrKq/tn6n2ob3NbFyQDgzjk6EikxMVGVK1fO\nNObKnWEowwCACRyVYVz5xR8AAAAAAACAF3nvPWnAAPvxV1+17hRDIQZwietp1zU3bq5e3/K6LiRf\ncHhN22ptNav1LFUrVc3F6QAgb5n9fijHJAEAAAAAAAAAAHiy0FBrISarKVOksWM5MglwkQK+BTSs\n4TAlRCQoNCRUhuyLaOuOrNPf5v1Nr256VZdTLpuQEgA8A2UYAAAAAAAAAAAAT9e/v7UQk3UXmClT\nrEcmUYgBXKZ0YGktbL9QP4T+oIblG9rNp6SlaOqOqao+p7o+/vFjcdAHANw6yjAAAAAAAAAAAADe\nILtCzNSp1iOTeMMdcKkG9zbQjn47FNMhRmUCy9jNn7p0St1Xd1eTxU207//2mZAQAPIvyjAAAAAA\nAAAAAADeol8/x4WYadMoxAAm8DF81OvBXkqISNCoRqPk5+Nnd82OkztU7916CvsyTH9c+cOElACQ\n/1CGAQAAAAAAAAAA8Cb9+kmLFjkuxIweTSEGMEGxgsU0vdV0/Tj4R7W+v7XdvEUWLdizQMFRwYqO\njVZqeqoJKQEg/6AMAwAAAAAAAAAA4G369pXef9++EPOPf0ivvEIhBjDJA3c/oK+7f601XdaoSokq\ndvPnrp3T0K+Hqt679bT1l60mJASA/IEyDAAAAAAAAAAAgDfq08dxIWb6dAoxgIkMw1D76u11cMhB\nTX5isgIKBNhdE386Xs1imqnLp1108sJJE1ICgHujDAMAAAAAAAAAAOCt+vSRFi92XIh5+WUKMYCJ\nCvkV0pgmY3Qo/JA61+rs8JoVB1fogegHNPn7ybqWes3FCQHAfVGGAQAAAAAAAAAA8Ga9ezsuxMyY\nIb30EoUYwGQVilfQ8o7LtaX3FtUuXdtu/sr1Kxr33TjVjK6pNYfWyMJ/swBAGQYAAAAAAAAAAMDr\n9e4tffCBfSHm7bcpxABuoul9TbV30F7NaTNHJQqVsJs/fv64OqzooDZL2+jQH4dMSAgA7oMyDAAA\nAAAAAAAAAKRevbIvxIwaRSEGcAN+Pn4KfzhcCREJCqsXJkOG3TUb/rNBtefV1kvfvKSLyRdNSAkA\n5qMMAwAAAAAAAAAAAKtevaSYGPtCzMyZ0osvUogB3MTdAXdrXrt52jNwjx6r+JjdfGp6qmb8a4aC\no4IVsz9G6ZZ0E1ICgHkowwAAAAAAAAAAAOAvPXtKH35oX4iZNYtCDOBmQu4J0fd9vtfSvy9VuaLl\n7OZPJ51WnzV99Oj7j2r3qd0mJAQAc1CGAQAAAAAAAAAAQGY9elgLMT5Z3kqaNUsaOZJCDOBGDMNQ\nt9rddHjoWGPauAAAIABJREFUYY1+dLT8ff3trtn16y49vPBhhX4RqjNJZ0xICQCuRRkGAAAAAAAA\nAAAA9rIrxPzzn9KIERRiADdTxL+IprScon8P/rfaBbezm7fIokX7Fik4Klizd83W9bTrJqQEANeg\nDAMAAAAAAAAAAADHund3XIiZPZtCDOCmqpWqprVd12pdt3WqVrKa3fyF5AsavmG4QhaEaPOxzSYk\nBADnowwDAAAAAAAAAACA7HXvLn30EYUYIJ95utrT+nHwj5rWcpqK+Bexmz+YeFAtP2qpjis76pfz\nv7g+IAA4EWUYAAAAAAAAAAAA5Kxbt+wLMcOHU4gB3FRBv4J6+dGXdXjoYfWo08PhNat+XqUa0TU0\ncctEXb1+1cUJAcA5KMMAAAAAAAAAAADg5rp1k5YssS/EvPOONGwYhRjAjZUrWk4fPfeRtvfdrpCy\nIXbz11KvacLWCaoRXUOrflolC/89A8jnKMMAAAAAAAAAAAAgd7p2dVyIiYqiEAPkA49WfFRxA+K0\noN0ClSpcym7+xIUT6vhJRz350ZM6eOagCQkBIG9QhgEAN5GUlOTwAQAAAAAAAABupWtXaelSx4WY\nyEgKMYCb8/Xx1cB6A5UQkaChDYbKx7B/y3jz8c16cP6DGr5+uM5fO29CSgD5iTu+z2lY2OMKAFwu\nMTFRpUuXztW1fJkGAAAAAAAA4JZWrLAenZSennk8PNxajDEMc3IBuCXxp+MV+XWktp7Y6nA+KCBI\nU1pMUd+Qvg6LMwBg5PJ7/pkzZxQUFOTkNFZ8tQIAAAAAAAAAAMCt69xZ+vhjydc383h0tBQRwQ4x\nQD5Rp0wdfdf7O63ouELli5W3m0+8kqjQtaF65L1HtOvXXSYkBIBbx84wAGACRzvDHD9+3GETMjAw\n0FWxAAAAAAAAAODWrVxp3SEmLS3z+JAh0pw57BAD5CNJKUmaun2qpu+cruS0ZIfX9H6wt6a2nKqy\nRcq6OB0Ad+XoSKTExERVrlw505grd4ahDAMAJnBUhnHlF38AAAAAAAAAyFPZFWIGD7buFEMhBshX\njp07phe/eVGfH/rc4XxR/6J6venringkQv6+/i5OByA/MPv9UI5JAgAAAAAAAAAAwJ3p1Elatsz+\nyKR586TwcCk93ZxcAG5LlRJV9Fnnz7ShxwZVL1Xdbv5SyiWN2jhKdebV0YajG0xICAA5owwDAAAA\nAAAAAACAO/fCCxRiAA/T6v5Wih8cr7dbva2i/kXt5g+fPaynlj6lDss76Ni5YyYkBADHKMMAAAAA\nAAAAAAAgb7zwgrR8uX0hZv58CjFAPuXv66+RjUYqISJBfR7q4/CaNYfXqGZ0TY37dpySUpJcGxAA\nHKAMAwAAAAAAAAAAgLzTsWP2hZghQyjEAPlU2SJltfjZxdrVf5calGtgN5+clqzJ2ybrgegHtOLf\nK2SxWExICQBWlGEAAAAAAAAAAACQtzp2lFaskPz8Mo8vWCANHkwhBsjHHin/iHaF7tKi9osUFBBk\nN//rxV/VZVUXNY9prvjT8SYkBADKMAAAAAAAAAAAAHCG55+37hCTtRDz7rsUYoB8zsfwUb+QfkqI\nSNDwR4bL1/C1u2bria0KWRCioV8N1Z9X/zQhJQBvRhkGAAAAAAAAAAAAzvH88453iHn3XSksjEIM\nkM/dVeguzXpqluIHx6tF5RZ28+mWdEXHRSs4KlgLdi9QWnqaCSkBeCPKMAAAAAAAAAAAAHCev/9d\nWrnSvhCzcKE0aBCFGMAD1AyqqY09N2pVp1WqVLyS3fzZq2cVti5MDRY20I7/7jAhIQBvQxkGAAAA\nAAAAAAAAzvXcc44LMe+9RyEG8BCGYejvNf6un8N/1sRmE1XIr5DdNft+36fHFj+mHqt76LeLv5mQ\nEoC3oAwDAAAAAAAAAAAA56MQA3iFwgUK67Wmr+lQ+CF1rNnR4TVLf1yq6nOqa9r2aUpOTXZxQgDe\ngDIMAAAAAAAAAAAAXOO556RPPnFciBk4kEIM4EEq3VVJn7zwiTb32qxaQbXs5pOuJ2n05tH627y/\naV3COhMSAvBklGEAAAAAAAAAAADgOh06SJ9+al+IWbRIGjCAQgzgYZ6o/IT2Ddqn2U/NVvGCxe3m\nj/55VO2WtVO7j9vpyNkjJiQE4IkowwAAAAAAAAAAAMC1nn3WWogpUCDz+PvvU4gBPFAB3wKKfCRS\nRyKOKDQkVIYMu2vWHVmnWnNrafSm0bqcctmElAA8CWUYAAAAAAAAAAAAuF5OhZjQUAoxgAcKCgzS\nwvYLFTsgVg3LN7Sbv55+XdN2TFP1OdW1NH6pLBaLCSkBeALKMAAAAAAAAAAAADBH+/aOCzGLF1OI\nATxY/XL1taPfDsV0iFGZwDJ286cunVKPz3qoyeIm2vd/+0xICCC/owwDAAAAAAAAAAAA87RvL61a\n5bgQ07+/lJZmTi4ATuVj+KjXg72UEJGgUY1Gyc/Hz+6aHSd3qN679RT2ZZj+uPKHCSkB5FeUYQAA\nAAAAAAAAAGCuZ55xXIj54AMKMYCHK1awmKa3mq4fB/+o1ve3tpu3yKIFexYoOCpY0bHRSk1PNSEl\ngPyGMgwAAAAAAAAAAADM98wz0urV9oWYmBgKMYAXeODuB/R196+1pssaVSlRxW7+3LVzGvr1UNV7\nt562/rLVhIQA8hPKMAAAAAAAAAAAAHAP7dpZCzH+/pnHY2Kkfv0oxAAezjAMta/eXgeHHNTkJyYr\noECA3TXxp+PVLKaZunzaRScvnDQhJYD8gDIMAAAAAAAAAAAA3Ed2hZgPP5T69qUQA3iBQn6FNKbJ\nGB0KP6Quf+vi8JoVB1fogegHNPn7ybqWes3FCQG4O8owAAAAAAAAAAAAcC9t2zouxHz0EYUYwItU\nKF5By55fpq19tqpOmTp281euX9G478apZnRNrTm0RhaLxYSUANwRZRgAAAAAAAAAAAC4n7Ztpc8+\noxADQI9Xelx7Bu5R9NPRKlGohN388fPH1WFFB7VZ2kaH/jhkQkIA7oYyDAAAAAAAAAAAANzT009n\nX4jp04dCDOBF/Hz8NKTBEB2JOKKwemEyZNhds+E/G1R7Xm2N+maULiZfNCElAHdBGQYAAAAAAAAA\nAADu6+mnpc8/ty/ELFki9e5NIQbwMqUCSmleu3naM3CPHqv4mN18anqq3v7X2wqOClbM/hilW9JN\nSAnAbJRhAAAAAAAAAAAA4N7atLEWYgoWzDy+dCmFGMBLhdwTou/7fK+lf1+qckXL2c2fTjqtPmv6\nqPGixor7Lc6EhADMRBkGANxEUlKSwwcAAAAAAAAAQDkXYnr1klJTzckFwDSGYahb7W46PPSwRj86\nWv6+/nbX/PDbD3rkvUcU+kWoziSdMSEl4Pnc8X1Ow2KxWExNAABeKDExUaVLl87VtXyZBgAAAAAA\nAIAM1q+XOnSQkpMzj3frJsXESH5+5uQCYLojZ49o5Dcj9WXClw7nixcsrgnNJii8QbgK+BZwcTrA\ncxmGkavrzpw5o6CgICensWJnGAAAAAAAAAAAAOQfTz0lrVljv0PMxx+zQwzg5aqVqqa1XddqXbd1\nqlaymt38heQLGrFhhB5a8JA2H9tsQkIArsLOMABgAkc7wxw/ftxhEzIwMNBVsQAAAAAAAAAg/9iw\nQXr2WfsdYrp0kT76iB1iAC+XnJqs2T/M1hvfv6HLKZcdXvN8jec1o9UM3XfXfa4NB3gYR0ciJSYm\nqnLlypnGXLkzDGUYADCBozKMK7/4AwAAAAAAAIBH+OYbqX17CjEAsnXq0im9sukVLYlf4nC+kF8h\njX50tF5+9GUVLlDYxekAz2X2+6EckwQAAAAAAAAAAID8qVUr6YsvpEKFMo8vXy717MmRSQBUrmg5\nffTcR9red7tCyobYzV9LvaYJWyeoRnQNrfppldhLAvAMlGEAAAAAAAAAAACQf+VUiOnRg0IMAEnS\noxUfVdyAOC1ot0ClCpeymz9x4YQ6ftJRT370pA6eOWhCQgB5iTIMAAAAAAAAAAAA8rcnn3RciFmx\nQurenUIMAEmSr4+vBtYbqCMRRxTxcIR8DPu3yzcf36wH5z+o4euH6/y18yakBJAXKMMAAAAAAAAA\nAAAg/3vySWntWvtCzMqVFGIAZFKicAm90+Yd7R+0X00rNbWbT7OkafYPsxUcFaxFexcp3ZJuQkoA\nd4IyDAAAAAAAAAAAADxDy5bZF2K6dZOuXzcnFwC3VLtMbX3X+zut6LhC5YuVt5tPvJKo0LWheuS9\nR7Tr110mJARwuyjDAAAAAAAAAAAAwHO0bCl9+aV9IeaTT6w7xFCIAZCBYRjqVKuTDoUf0rgm41TQ\nt6DdNbtP7VajRY3U5/M++v3y7yakBHCrKMMAAAAAAAAAAADAs7RoYS3EFC6cefyTT9ghBoBDgf6B\neuOJN/RT+E/q8EAHh9fEHIhRcFSwZuycoZS0FBcnBHArKMMAAAAAAAAAAADA82RXiPn0U6lrVwox\nAByqUqKKPuv8mTb02KDqparbzV9KuaSXNr6kOvPqaMPRDSYkBJAblGEAAAAAAAAAAADgmZ54wnEh\nZtUqCjEActTq/laKHxyvt1u9raL+Re3mD589rKeWPqVnlz+rY+eOmZAQQE4owwAAAAAAAAAAAMBz\nUYgBcJv8ff01stFIJUQkqM9DfRxe88XhL1QzuqbGfTtOSSlJrg0IIFuUYQAAAAAAAAAAAODZnnhC\nWrfOcSGmSxcKMQByVLZIWS1+drF29d+lBuUa2M0npyVr8rbJeiD6Aa349wpZLBYTUgLIiDIMAAAA\nAAAAAAAAPF/z5tJXX9kXYlavljp3phAD4KYeKf+IdoXu0qL2ixQUEGQ3/+vFX9VlVRc1j2mu+NPx\nJiQEYGNYqKUBgMslJiaqdOnSmcbOnDmjoCD7fzgBAAAAAAAAAPLQli1S27bSlSuZx597Tlq+XPL3\nNyUWgPzl/LXzmrR1kt754R2lWdLs5n0MHw2uP1iTmk9SycIl73g9i8WiK1m/bnmZgIAAGYZhdgzk\nktnvh1KGAQATmP3FHwAAAAAAAAC82tat0tNP2xdiOnSQVqygEAMg135K/EmRX0dq8/HNDudLFS6l\nyU9MVmjdUPn6+N72OklJSSpSpMhtP98TXL58WYGBgWbHQC6Z/X4oxyQBAAAAAAAAAADAuzRtaj0y\nKSAg8/jnn1uPTEpJMScXgHynZlBNbey5Uas6rVKl4pXs5s9ePauwdWGqv7C+tv93uwkJAe/EzjAA\nYAKzm5AAAAAAAAAAAEnffy+1aWO/Q8yzz0orV7JDDIBbcvX6VU3fOV1Ttk/RtdRrDq/pXru7prWc\npnuL3XtL9860M8woSd7y5SlF0gzrp+wMk7+Y/X4oO8MAAAAAAAAAAADAOz3+uPT111LWN1fXrJE6\ndWKHGAC3pHCBwnqt6Ws6FH5IHWt2dHjN0h+Xqvqc6pq6faqSU5NvbyF/L3sAt4EyDAAAAAAAAAAA\nALxXToWYF16gEAPgllW6q5I+eeETbe61WbWCatnNJ11P0qubX9Xf5v1N6xLWmZAQ8HyUYQAAAAAA\nAAAAAODdmjRxXIj54gsKMQBu2xOVn9C+Qfs0+6nZKl6wuN380T+Pqt2ydmr7cVsdOXvEhISA56IM\nAwAAAAAAAAAAAORUiOnYUUq+zeNMAHi1Ar4FFPlIpI5EHFFoSKgMGXbXfHXkK9WaW0ujN43W5ZTL\nJqQEPA9lGAAAAAAAAAAAAECyFmLWr5eKFMk8vnatdYcYCjEAblNQYJAWtl+o2AGxali+od389fTr\nmrZjmqrP+X/27jXcyrJAH/i9OChHFREKrJSc8lyNeEgzdcoC1BA0S0JNy2Oa1kyHaUwbRzs3WZam\nUlYqeUxQQEDTzCwtgQ5KWv0btBSUrWIKgiCs/4cN6iuoHPbez9p7/37XtS529z6s++3D6sN797zb\nZvwfx6derxdoCR2HMQwAAAAAAACssvfezSfErGkQ44QYYAPtOnjX/Oojv8qPR/04r+3z2tW+P/fp\nuTliwhF55w/fmd/N+12BhtAxGMMAAAAAAADAi+2995pPiJk8OTn0UIMYYIN0qXXJUW89Kn8+5c/5\n9F6fTvcu3Vf7mV/941cZevHQnDj5xDz2zGMFWkL7ZgwDAAAAAAAAL/WOd6x5EDNlikEM0CI22XiT\nfO09X8s9J92TYdsMW+379dRz0cyL8qbvvCkXzriwQENov4xhAAAAAAAAYE3e8Y5k+nSDGKBVbbvF\ntpk6dmquP/z6vLHfG1f7/pNLnsynbvpUgWbQfnUrXQAAAAAAAAAa1l57NQ9ihg9Pnn76hXzKlOSQ\nQ5Kf/jTp0aNVK9Tr9Tz44IOZP39+Fi9enCVLliRJevTokZ49e2bgwIHZaqutUqvVWrUH0HpqtVpG\nbjsy793mvfnmnd/MF3/5xTyz7JnStaDdMoYBAAAAAACAV7JqEDNsWHUQc+ONzSfEtOAgpl6vZ86c\nOZk5c2ZmzJiRmTNnZtasWVmwYMEr/l6/fv0ydOjQymvIkCEGMtDO9OjWI//1zv/KkW85Mp/52Wdy\n5b1Xlq4E7VKtXq/XS5cA6GyampoycODASjZ//vwMGDCgUCMAAAAAAF7VnXeuPohJkhEjkuuu26BB\nzMMPP5xx48Zl3LhxmTt37mrf3yjJoCQ9k6x6lyVJFieZl2TpGv7m4MGDc9xxx+X444/P4MGD17sb\nUM7tD96ej0/9eP74jz8mX1oZ/leaPxQ6g6V5/roXLlyY3r17F63D2it9P9QYBqCA0h/+AAAAAACs\np5cbxAwfnkyYsE6DmHq9np///Oe54IILMnHixCxfvjxJ8z3utyQZ+qLXTnn5e99Lk9ybZObK14wk\n9+SFgUzXrl0zevTofOxjH8t+++3ntBhoZ55b8Vy+c8d38u/7/ntzYAxDO1D6fqgxDEABa/rwnzNn\nzho//P2POgAAAABAg7nrruZBzFNPVfO1HMTU6/VcccUVOfvss3P//fc/n++T5KQko5NsvIEVn00y\nIckFSX75ony77bbLGWeckTFjxhjFQDuyaNGi9OnTp/k/GMPQYBYtWrRa1tTUlCFDhlQyYxiADm5N\nY5iX42MaAAAAAKABvdwgZtiwZOLElx3EzJs3LyeccEImTZqUJOmT5Kg0j2B2aqWq9yT5XpLLkixc\nmY0cOTIXXnhhBg0a1ErvCrQkYxhjmEa2tuPKthzDdGmTdwEAAAAAAICO5O1vT266Kdlkk2o+fXoy\nalSyZEklrtfrueyyy7LDDjtk0qRJ6Z7k7CRzk5yf1hvCJMnOaT4hZu7K9+ye5IYbbsiOO+6Yyy+/\n3P8pE4AOxxgGoEHMmTMnCxcuXO0FAAAAAECD2mOPlx/EHHxwsnhxkubTYA4++OAcddRRefLJJzM0\nyawkn0/Stw3r9l35nrOSDE2yYMGCHHnkkRk1alTmzZvXhk0A6EjWdI9zzpw5RTsZwwA0iN69e6/x\nBQAAAABAA9tjj+Tmm1cfxNx0UzJqVGbPnJldd931+dNgzklyZ1r3JJhXs9PKDi8+JWbXXXfNn/70\np4KtAGivGvE+pzEMAAAAAAAAbIjdd28exGy6aSW++6abss+ee2bu3LnZPsnMJKeneYBSWvc0nxIz\nM8n2SebOnZt99tknd999d9liANACjGEAAAAAAABgQ71kEHN3kncneWLZsuyW5JdJdi5Y7+XsnOZu\nuyV5/PHH8+53v9sgBoB2zxgGAAAAAAAAWsJuuyU335zZffpkeJKnk+yb5JYk/cs2e0X909xxnyRP\nP/10hg8f7pFJALRrxjAAAAAAAADQQua97nV5b8+eeSLJ7kkmJelbuNPa6JtkcppPiHniiSfynve8\nJ/PmzSvcCgDWjzEMAAAAAAAAtIB6vZ4TTjghc5uasn2SG9M+hjCr9E0yNcn2SebOnZsTTzwx9Xq9\ncCsAWHfGMAAAAAAAANACxo8fn0mTJqV7kqvS2I9Gejn909y9e5Ibbrgh48ePL9wIANadMQwAAAAA\nAABsoHnz5uXUU09Nknwhyc5l62yQnZOcufLrU0891eOSAGh3jGEAAAAAAABgA6x6PNKCBQsyNMln\nSxdqAZ9NskuSBQsWeFwSAO2OMQwAAAAAAABsgCuuuCKTJk3KRkl+lKRb4T4toXuar2XV45KuuOKK\nsoUAYB0YwwAAAAAAAMB6qtfrOfvss5MkZyTZqWydFrVzmq8pSc455xynwwDQbhjDAAAAAAAAwHq6\n7bbbcv/996dPktNKl2kFpyXpk+S+++7LL37xi9J1AGCtGMMAAAAAAADAejr//POTJEcl6Vu2SqvY\nJMmRK79eda0A0OiMYQAAAAAAAGA9PPzww5k4cWKS5KTCXVrTqmubMGFC5s6dW7QLAKwNYxgAAAAA\nAABYD+PGjcvy5cvzziQ7lS7TinZOsneS5cuXZ9y4caXrAMCrMoYBAAAAAACAdVSv158fhnyscJe2\nsOoax40bl3q9XrQLALwaYxgAAAAAAABYR3PmzMncuXOzUZLRpcu0gUOSdE/zo6EeeOCBwm0A4JUZ\nwwAAAAAAAMA6mjlzZpLkLUk2LlulTWyc5mtNXrh2AGhUxjAAAAAAAACwjlYNQoYW7tGWVl2rMQwA\njc4YBgAAAAAAANbRjBkzknTOMcyqaweARmUMAwAAAAAAAOugXq9n1qxZSTrnGGbmzJmp1+tFuwDA\nKzGGAQAAAAAAgHXw4IMPZsGCBdkoyU6ly7ShnZJ0T7JgwYI8+OCDpesAwMsyhgEAAAAAAIB1MH/+\n/CTJoCQbla3SpjZO8zUnSVNTU8kqAPCKjGEAAAAAAABgHSxevDhJ0rNwjxJWXfOq/w4AoBEZwwAA\nAAAAAMA6WLJkSZKkR+EeJay6ZmMYABqZMQwAAAAAAAAAAB2GMQwAAAAAAACsgx49ms9HWVK4Rwmr\nrrlnz874kCgA2gtjGAAAAAAAAFgHq4YgnfFBQauu2RgGgEZmDAMAAAAAAADrYODAgUmSeUmWlq3S\npp5N8zUnyYABA0pWAYBXZAwDAAAAAAAA62CrrbZKv379sjTJvaXLtKF7kyxL0q9fv2y11Val6wDA\nyzKGAQAAAAAAgHVQq9Wyyy67JElmFu7SllZd69ChQ1Or1Yp2AYBXYgwDAAAAAAAA62jXXXdN0jnH\nMKuuHQAalTEMAAAAAAAArKOhQ4cm6ZxjmFXXDgCNyhgGAAAAAAAA1tGqQcgfkzxbtkqbeDbN15oY\nwwDQ+IxhAAAAAAAAYB0NGTIkgwcPztIkE0qXaQPXJVmWZMstt8zWW29duA0AvDJjGAAAAAAAAFhH\ntVotxx13XJLkgsJd2sKqazzuuONSq9WKdgGAV2MMAwAAAAAAAOvhuOOOS9euXfPLJPeULtOK7kly\nR5KuXbs+PwACgEZmDAMAAAAAAADrYcstt8yoUaOSJBcW7tKavrfy39GjR2fw4MFFuwDA2jCGAQAA\nAAAAgPV08sknJ0kuTfJ02Sqt4qkkl638etW1AkCj61a6AADNFi1alF69eq2W9+7du0AbAAAAAADW\nxn777Zftttsu999/f76d5POlC7WwbydZmGT77bfPvvvuW7oOAA1o0aJFa5W1JWMYgAYxZMiQNeb1\ner2NmwAAAAAAsLZqtVrOOOOMjB07Nv+TZFSSnUqXaiH3JDl75def//znU6vVStYBoEH16dOndIXV\nGMMAAAAAAADABhgzZkyuvPLKTJo0KUcnuTNJ98KdNtSyJEev/HfkyJEZM2ZM2ULAC5aWLtCGOtO1\n0qJqdUcOALS5pqamDBw4sJLNmTMnAwYMWO1nPSYJAAAAAKDxzZs3LzvuuGMWLFiQc5KcXrrQBjon\nyRlJ+vXrl9mzZ2fQoEGlK0GntmjRooY8faMtLVy40H2zBrWmRyI1NTWt9mSM+fPnr/F+aGvo0ibv\nAsCr6t279xpfAAAAAAA0vkGDBuW8885LkpyV5kcMtVd/TPI/K78+77zzDGEAeEWNeJ/TY5IAAAAA\nAACgBYwdOzZXX311Jk2alA8m+WWS/qVLraPHkxyeFx6PNHbs2MKNgCTp1atXFi5cWLpGUb169Spd\ngXbEGAYAAAAAAABaQK1Wy0UXXZSZM2fmvrlzMyLJLUn6li62lp5OMiLJfUkGDx6cCy+8MLVarXAr\nIGn+fCl90ga0Jx6TBAAAAAAAAC1k0KBBuemmm7L55pvn7iTvS/PIpNE9neSgJHcn6d+/f26++WaP\nRwKg3TKGAQAAAAAAgBa04447Ztq0aenbt29+keTdaX78UKN6LMm7ktyepO9GG2Xq1KnZYYcdCrcC\ngPVnDAMAAAAAAAAtbLfddsstt9zy/Akx70xyT+lSa/DHJPskmZGkf5Jbly7NbjNmlC0FABvIGAYA\nAAAAAABawW677ZZf/vKXGTx4cO5LMjTJOUmWFe6VNHc4O8muSe5LMjjNJ8PsmiQnn5z89KflygHA\nBjKGAQAAAAAAgFayww47ZMaMGRk5cmSWJTkjyduT3Fuw0z0rO5yZ5lHMyLe8JTOSPP9gpHo9+dCH\nkl/8olBDANgwxjAAAAAAAADQigYNGpSJEyfmsssuS79+/TIryS5pPpnlqTbs8dTK9xyaZFaSfv36\n5fLLL8/E3/8+g77wheoPL12ajByZ/PGPbdgQAFqGMQwAAAAAAAC0slqtliOOOCKzZ8/O+973vixL\n88ksWyb5WJpPa2kt9yQ5aeV7PX8azMiRmT17dsaOHZtarZZ84QvJ8cdXf/Gpp5Lhw5MHHmjFdgDQ\n8oxhAAAAAAAAoI0MGjQo119/fcaPH5/tt98+C5N8L8lbkuyT5Iokz7bA+zy78m+9c+XfvjDJwiTb\nb799xo8fn4kTJ2bQoEEv/EKtllxwQTJqVPUPzZuXDBuWPPZYC7QCgLZRq9fr9dIlADqbpqamDBw4\nsJLNnz8/AwYMKNQIAAAAAIC2Vq/Xc9ttt+WCCy7IhAkTsnz58iTJRkl2TvPjjFa9dl6Zr8nSNJ/+\nMvNTUWUfAAAgAElEQVRFrz+m+QSYJOnWrVtGjx6dj33sY9l3332bT4J5OYsXN49ffvnLar777smt\ntya9e6/XtQLQuZS+H2oMA1BA6Q9/AAAAAAAay9y5czNu3LiMGzcuDz/88Grf755kUJKeSXqszJYk\nWZxkXl4YvrzYlltumeOOOy7HHXdcBg8evPZlFixI9tknuffeaj5iRHL99Un37mv/twDolErfDzWG\nASig9Ic/AAAAAACNqV6v54EHHsjMmTMzY8aMzJw5MzNnzsyCBQte8ff69euXXXfdNUOHDn3+tfXW\nW7/yKTCv5KGHkr32Sv7xj2r+4Q8nP/xh82OVAOBllL4fagwDUEDpD38AAAAAANqPer2eBx98ME1N\nTVm8eHEWL16cJOnZs2d69uyZAQMGZKuttlr/4cvLue++ZO+9kyeeqOaf/Wzyla+07HsB0KGUvh/a\nrU3eBQAAAAAAAFgvtVotW2+9dbbeeuu2fePtt08mT07e/e5k5QAnSfLVryaDBiWnnda2fQBgLXUp\nXQAAAAAAAABoUHvumVx9ddK1azX/xCeSK68s0wkAXoUxDAAAAAAAAPDyDjooGTdu9fyoo5Kf/azt\n+wDAqzCGAQAAAAAAAF7ZMcckX/xiNVu2LBk9Opk1q0wnAHgZxjAAAAAAAADAq/vc55JTTqlmCxcm\nI0Ykf/tbmU4AsAbGMAAAAAAAAMCrq9WSb30rOeywaj5/fjJsWPO/ANAAjGEAAAAAAACAtdO1a3LZ\nZcm//Vs1/9vfkgMOSJ5+ukwvAHgRYxgAAAAAAABg7W28cTJhQvLWt1bzmTOTQw9Nli4t0wsAVjKG\nAQAAAAAAANbNppsmU6cmW29dzW++OTnmmGTFiiK1ACAxhgEAAAAAAADWx6BByfTpyRZbVPOf/CT5\n9KfLdAKAGMMAAAAAAAAA6+vNb06mTEl69arm3/xm8o1vlOkEQKdnDAMAAAAAAACsv913T37606Rb\nt2r+6U8nl11WphMAnZoxDAAAAAAAALBhhg9PLrlk9fwjH0mmTWv7PgB0asYwAAAAAAAAwIY78sjk\na1+rZs89l7z//cndd5fpBECnZAwDAAAAAAAAtIxPfSr55Cer2aJFyQEHJH/5S5lOAHQ6xjAAAAAA\nAABAy6jVkm98I/nQh6r5Y48lw4Yl8+aV6QVAp2IMAwAAAAAAALScLl2SH/4wec97qvkDDyQjRiT/\n/GeRWgB0HsYwAAAAAAAAQMvaaKPkpz9Nhg6t5n/4QzJqVPLss2V6AdApGMMAAAAAAAAALa9v3+TG\nG5Nttqnmt92WHHlksnx5kVoAdHzGMAAAAAAAAEDrGDgwmT69+d8Xu+aa5BOfSOr1Mr0A6NCMYQAA\nAAAAAIDWs802ydSpSZ8+1fy7302+/OUynQDo0IxhAAAAAAAAgNa1yy7JhAlJ9+7V/PTTk0suKdMJ\ngA7LGAYAAAAAAABoffvvn1x66er58ccnkye3fR8AOixjGAAAAAAAAKBtHH548q1vVbPly5MPfCC5\n884ynQDocIxhAAAAAAAAgLZz2mnJZz9bzRYvTg46KLnvvjKdAOhQjGEAAAAAAACAtvXlLycf/nA1\ne+KJZNiw5KGHynQCoMMwhgEAAAAAAADaVq2WjBuXHHBANf/HP5Lhw5MFC8r0AqBDMIYBAAAAAAAA\n2l737snVVyd77FHNZ89ORo5sfnQSAKwHYxgAAAAAAACgjN69k8mTk223reZ33JF86EPJc8+V6QVA\nu2YMAwAAAAAAAJSzxRbJ9OnJoEHVfOLE5OSTk3q9TC8A2i1jGAAAAAAAAKCsrbZKpk1LNt20ml98\ncXLWWWU6AdBuGcMAAAAAAAAA5b3lLcn11ycbb1zNzzorufDCMp0AaJeMYQAAAAAAAIDGsO++yfjx\nSa1WzU8+OZkwoUwnANodYxgAAAAAAACgcRx6aHL++dVsxYpkzJjk9tvLdAKgXTGGAQAAAAAAABrL\nSSclZ5xRzZ59Nhk5MrnnnjKdAGg3upUuAECzRYsWpVevXqvlvXv3LtAGAAAAAAAKO+us5JFHknHj\nXsj++c9kxIjk179O3vCGct0AeN6iRYvWKmtLtXq9Xi/aAKATampqysCBA9fqZ31MAwAAAADQaT33\nXPNjk264oZpvt11yxx1J//5legHwvFqttlY/N3/+/AwYMKCV2zTzmCQAAAAAAACgMXXrllx5ZbLX\nXtX8/vuTgw5KnnmmTC8AGpoxDECDmDNnThYuXLjaCwAAAAAAOrWePZNJk5Iddqjmd92VfPCDzafH\nAFDMmu5xzpkzp2gnYxiABtG7d+81vgAAAAAAoNPbfPNk2rTkda+r5pMnJyeckNTrZXoB0JD3OY1h\nAAAAAAAAgMb3+tc3D2I226yaX3JJ8vnPl+kEQEMyhgEAAAAAAADahx13bD4NpkePav6lLyXf+U6Z\nTgA0HGMYAAAAAAAAoP14xzuSq65KurzkVudppyVXX12mEwANxRgGAAAAAAAAaF9Gjkwuuqia1evJ\nkUcmP/95mU4ANAxjGAAAAAAAAKD9OfbY5H/+p5otXZocfHDy+9+X6QRAQzCGAQAAAAAAANqnz38+\n+djHqtnTTycjRiRz5pTpBEBxxjAAAAAAAABA+1SrJeedlxx6aDV/5JFk2LCkqalMLwCKMoYBAAAA\nAAAA2q+uXZPLL0/23bea//WvyYEHJgsXlukFQDHGMAAAAAAAAED71qNHMnFisvPO1fzuu5P3vz9Z\nurRMLwCKMIYBAAAAAAAA2r/NNkumTUu22qqaT5+efPSjyYoVZXoB0OaMYQAAAAAAAICOYfDg5vFL\n//7V/PLLk89+tkwnANqcMQwAAAAAAADQcWy7bTJlStKrVzX/xjeSb36zTCcA2pQxDAAAAAAAANCx\n7LFHcu21Sdeu1fw//iMZP75MJwDajDEMAAAAAAAA0PGMGJH84Aer50cfndx0U5vXAaDtGMMAAAAA\nAAAAHdOHP5x85SvV7LnnkkMOSWbMKNMJgFZnDAMAAAAAAAB0XJ/5THLaadVs0aLkgAOSv/61TCcA\nWpUxDAAAAAAAANBx1WrJN7+ZHH54NW9qSoYNSx55pEwvAFqNMQwAAAAAAADQsXXpkvzoR8m7313N\n58xJRoxInnqqSC0AWocxDAAAAAAAANDxbbxxct11yb/+azX//e+T0aOTZ58t0wuAFmcMAwAAAAAA\nAHQOm2ySTJ2avPGN1fzWW5OjjkpWrCjTC4AWZQwDAAAAAAAAdB6veU0yfXoycGA1v/rq5JOfTOr1\nMr0AaDHGMAAAAAAAAEDn8i//ktx4Y9KnTzU/77zkq18t0wmAFmMMAwAAAAAAAHQ+Q4cm112XdO9e\nzT/3ueRHPypSCYCWYQwDAAAAAAAAdE7veU/y4x+vnh97bPPJMQC0S8YwAAAAAAAAQOc1ZkzyzW9W\ns+XLk8MOS37zmzKdANggxjAAAAAAAABA5/bJTyaf/nQ1e+aZ5MADkz//uUwnANabMQwAAAAAAADA\nV76SHHlkNXv88WTYsGTu3DKdAFgvxjAAAAAAAAAAXbokP/hBMnx4NX/wwebsySfL9AJgnRnDAAAA\nAAAAACRJ9+7JNdcku+1Wze+5Jzn44GTJkjK9AFgnxjAAAAAAAAAAq/Tpk0yZkrzpTdX89tuTsWOT\n5cvL9AJgrRnDAAAAAAAAALzYgAHJ9OnJa19bza+7Lvn4x5N6vUwvANaKMQwAAAAAAADASw0Zkkyd\nmvTtW82/973knHPKdAJgrRjDAAAAAAAAAKzJ296WXH99stFG1fzMM5Nx48p0AuBVGcMAAAAAAAAA\nvJx/+7fk8suTWq2an3hi81AGgIZjDAMAAAAAAADwSg47LDnvvGq2YkVy+OHJr35VphMAL8sYBgAA\nAAAAAODVnHJK8l//Vc2WLEkOOiiZPbtMJwDWyBgGAAAAAAAAYG2cc07ykY9UsyefTIYPT/7xjzKd\nAFiNMQwAAAAAAADA2qjVkosuaj4N5sUeeigZNix54okyvQCoMIYBAAAAAAAAWFvduiVXXZXsuWc1\nv+++5H3vS555pkwvAJ5nDAMAAAAAAACwLnr1SiZNSrbfvpr/+tfJ4Ycnzz1XphcASYxhAAAAAAAA\nANZd//7JtGnJlltW80mTkhNPTOr1Mr0AMIYBAAAAAAAAWC9veEPzIGazzar5D36QnHlmmU4AGMMA\nAAAAAAAArLeddkpuuCHZeONqfs45yQUXlOkE0MkZwwAAAAAAAABsiHe+M7nyyqTLS26/nnJKcu21\nZToBdGLGMAAAAAAAAAAbatSo5Hvfq2b1ejJ2bHLbbUUqAXRWxjAAAAAAAAAALeH445P//u9qtnRp\ncvDByR/+UKQSQGdkDAMAAAAAAADQUs48MznhhGr21FPJ8OHJAw8UqQTQ2RjDAAAAAAAAALSUWi05\n//xk9Ohq/sgjybBhSVNTmV4AnYgxDAAAAAAAAEBL6to1+clPkne+s5r/5S/JQQclixaV6QXQSRjD\nAAAAAAAAALS0Hj2SG25Idtqpmv/2t8lhhyXLlpXpBdAJGMMAAAAAAAAAtIbNNkumTUve8IZqPnVq\ncuyxSb1ephdAB2cMAwAAAAAAANBattwymT492Xzzan7ppcnnPlemE0AHZwwDAAAAAAAA0Jq22y6Z\nMiXp2bOaf/Wrybe/XaYTQAdmDAMAAAAAAADQ2t7+9uSaa5KuXav5Jz6RXHllmU4AHZQxDAAAAAAA\nAEBbOPDAZNy41fOjjkp+9rO27wPQQRnDAAAAAAAAALSVY45JvvSlarZsWTJ6dDJrVplOAB2MMQwA\nAAAAAABAW/rP/0w+/vFqtnBhMmJE8re/lekE0IEYwwAAAAAAAAC0pVot+da3kg98oJrPn58MG5Y8\n+miZXgAdhDEMAAAAAAAAQFvr0iW59NLkXe+q5n/7W3LAAcnTT5fpBdABGMMAAAAAAAAAlLDxxsmE\nCclb31rNZ81KDjkkWbq0TC+Ads4YBgAAAAAAAKCUTTZJpk5Ntt66mv/sZ8nRRycrVpRoBdCuGcMA\nAAAAAAAAlDRoUDJ9erLFFtX8iiuST30qqdfL9AJop4xhAAAAAAAAAEp785uTG29Meveu5ueem3zj\nG2U6AbRTxjAAAAAAAAAAjWC33ZKf/jTp1q2af+YzyWWXlekE0A4ZwwAAAAAAAAA0imHDkh/+cPX8\nIx9Jpk1r+z4A7ZAxDAAAAAAAAEAjOeKI5Otfr2bPPZccemjy29+W6QTQjhjDAAAAAAAAADSaT30q\n+fd/r2bPPJMceGDyl7+U6QTQThjDAAAAAAAAADSir389GTu2mj32WPOjlObNK9MJoB0whgEAAAAA\nAABoRF26JJdckrz3vdX8gQeSESOSf/6zSC2ARmcMAwAAAAAAANCoNtooufbaZOjQav6HPySjRiVL\nlpTpBdDAjGEAAAAAAAAAGlnfvsmNNyb/8i/V/LbbkiOPTJYvL1ILoFEZwwAAAAAAAAA0uoEDk+nT\nk9e8pppfe21y2mlJvV6mF0AD6la6AADNFi1alF69eq2W9+7du0AbAAAAAACg4bzxjcnUqcm++yZP\nP/1Cfv75yaBByemnl+sGdFqLFi1aq6wt1ep1E0GAttbU1JSBAweu1c/6mAYAAAAAACpuvTUZPjxZ\ntqyaf//7yUc/WqYT0GnVarW1+rn58+dnwIABrdymmcckAQAAAAAAALQn73pXctllyUtvQB9/fDJp\nUplOAA3EY5IAGsScOXPabAkJAAAAAAC0cx/8YPLoo8lpp72QrViRfOADyS23JHvtVa4b0KksXLhw\ntaypqSlDhgwp0KaZMQxAg+jdu3d69+5dugYAAAAAANBenHpqMm9e8pWvvJAtWZIcdFByxx3JDjuU\n6wZ0Gmu6x/nMM88UaPICj0kCAAAAAAAAaK++9KXk6KOr2YIFybBhyUMPFakEUJoxDAAAAAAAAEB7\nVaslF1+cHHBANX/ooWT48OZhDEAnYwwDAAAAAAAA0J51755cfXWyxx7VfPbsZOTIZPHiMr0ACjGG\nAQAAAAAAAGjvevdOJk9Ott22mt9xRzJmTPLcc2V6ARRgDAMAAAAAAADQEWyxRTJ9ejJ4cDW//vrk\n5JOTer1ML4A2ZgwDAAAAAAAA0FFstVUybVqy6abV/OKLk7POKtMJoI0ZwwAAAAAAAAB0JDvvnNxw\nQ7LxxtX8rLOSCy8s0wmgDRnDAAAAAAAAAHQ0++yT/OQnSZeX3BI++eRkwoQynQDaiDEMAAAAAAAA\nQEd0yCHJ+edXsxUrkjFjkttvL9MJoA0YwwAAAAAAAAB0VCeemJx5ZjV79tlk5MjknnvKdAJoZcYw\nAAAAAAAAAB3Zf/93cvzx1eyf/0yGD08efLBIJYDWZAwDAAAAAAAA0JHVas2PSzr44Go+d24ybFjy\n+ONlegG0EmMYAAAAAAAAgI6uW7fkiiuSvfeu5n/+c3LQQcmiRWV6AbQCYxgAAAAAAACAzqBnz+SG\nG5Idd6zmd92VfPCDybJlZXoBtDBjGAAAAAAAAIDOol+/ZOrU5HWvq+ZTpiQnnJDU62V6AbQgYxgA\nAAAAAACAzuT1r0+mT28exrzYD3+YnH56mU4ALcgYBgAAAAAAAKCz2WGHZPLkpEePav7lLyff+U6Z\nTgAtxBgGAAAAAAAAoDPaa6/kqquSLi+5bXzaacnVV5fpBNACjGEAAAAAAAAAOquRI5OLLqpm9Xpy\n5JHJrbeW6QSwgYxhAAAAAAAAADqzY49Nzj67mi1dmowalfzud2U6AWwAYxgAAAAAAACAzu7005OT\nT65mTz+djBiR/N//lekEsJ6MYQAAAAAAAAA6u1ot+fa3k/e/v5o/+mgybFgyf36ZXgDrwRgGAAAA\nAAAAgKRr1+Syy5J9963m/+//JQcemCxcWKYXwDoyhgEAAAAAAACgWY8eyfXXJ295SzWfMSM59NBk\n6dIyvQDWgTEMAAAAAAAAAC/YdNNk6tRkq62q+U03JR/5SLJiRZleAGvJGAYAAAAAAACAqsGDk+nT\nk/79q/n48clnPlOmE8BaMoYBAAAAAAAAYHXbbptMmZL06lXN//d/m18ADcoYBgAAAAAAAIA122OP\n5Nprk27dqvmnPpVcfnmZTgCvwhgGAAAAAAAAgJc3YkTygx+snh9zTPOjlAAajDEMAAAAAAAAAK/s\nqKOSr361mj33XHLoocndd5fpBPAyjGEAAAAAAAAAeHWf/nTyiU9Us0WLkgMOSP761zKdANbAGAYA\nAAAAAACAV1erJf/7v8mYMdX8sceSYcOSRx4p0wvgJYxhAAAAAAAAAFg7XbokP/pRsv/+1XzOnGTE\niOSpp4rUAngxYxgAAAAAAAAA1t5GGyXXXZfssks1//3vk9Gjk2efLdMLYCVjGAAAAAAAAADWTd++\nyY03JttsU81vvTU56qhkxYoyvQBiDAMAAAAAAADA+njNa5Lp05OBA6v51Vcnn/xkUq+X6QV0esYw\nAAAAAAAAAKyfbbZJpk5N+vSp5uedl3z1q2U6AZ2eMQwAAAAAAAAA62+XXZIJE5Lu3av55z6X/OhH\nRSoBnZsxDAAAAAAAAAAbZv/9k0svXT0/9thkypS27wN0asYwAAAAAAAAAGy4ww9Pzj23mi1fnhx2\nWHLXXWU6AZ2SMQwAAAAAAAAALeMTn0g+85lqtnhxcuCByf33l+kEdDrGMAAAAAAAAAC0nK98JTnq\nqGr2xBPJsGHJww+X6QR0KsYwAAAAAAAAALScWi35/veTESOq+d//ngwfnjz5ZJleQKdhDAMAAAAA\nAABAy+rePbnmmmT33av5vfcmBx+cLFlSphfQKRjDAAAAAAAAANDyevdOpkxJ3vzman777cnYscny\n5WV6AR2eMQwAAAAAAAAArWOLLZJp05LXvraaX3ddcsopSb1ephfQoRnDAAAAAAAAANB6hgxpHsRs\nskk1v/DC5Oyzy3QCOjRjGAAAAAAAAABa11vfmlx/fbLRRtX8C19ILr64TCegwzKGAQAAAAAAAKD1\n7bdfMn58UqtV85NOSiZOLFIJ6JiMYQAAAAAAAABoG+9/f/Kd71SzFSuSMWOSO+4o0wnocIxhAAAA\nAAAAAGg7J5+cnH56NVuyJHnf+5J77y3TCehQjGEAAAAAAAAAaFtnn5189KPV7Mknk+HDk7//vUwn\noMMwhgEAAAAAAACgbdVqyYUXNp8G82IPP9w8iHniiTK9gA7BGAYAAAAAAACAttetW3Lllcmee1bz\n++5LDjooeeaZMr2Ads8YBgAAAAAAAIAyevVKJk9Ott++mt95Z/LBDybPPVemF9CuGcMAAAAAAAAA\nUM7mmyfTpydbblnNJ09OTjghqdfL9ALaLWMYAAAAAAAAAMp6/eubBzGbbVbNL7kkOeOMMp2AdssY\nBgAAAAAAAIDydtwxmTQp6dGjmn/xi8l3v1umE9AuGcMAAAAAAAAA0Bj23ju58sqky0tuZZ96anLN\nNWU6Ae2OMQwAAAAAAAAAjePgg5MLL6xm9XpyxBHJz39ephPQrhjDAAAAAAAAANBYjjsuOeusarZ0\naTJqVPKHP5TpBLQbxjAAAAAAAAAANJ4zzkhOPLGaPfVUMnx48sADRSoB7YMxDAAAAAAAAACNp1ZL\nvvvd5JBDqvkjjyTDhiVNTWV6AQ3PGAYAAAAAAACAxtS1azJ+fLLPPtX8L39JDjooWbSoTC+goRnD\nAAAAAAAAANC4evRIrr8+2Xnnav7b3yaHHZYsW1amF9CwjGEAAAAAAAAAaGybbZZMm5a84Q3VfOrU\n5Nhjk3q9TC+gIRnDAAAAAAAAAND4Bg9Opk9P+vev5pdemvznf5bpBDQkYxgAAAAAAAAA2ofttksm\nT0569qzmX/ta8q1vlekENBxjGAAAAAAAAADaj7e/PbnmmqRr12r+yU8mV1xRphPQUIxhAAAAAAAA\nAGhfDjww+f73V88//OHk5pvbvg/QUIxhAAAAAAAAAGh/jj46+fKXq9myZckhhyQzZxapBDQGYxgA\nAAAAAAAA2qfPfjY59dRqtnBhcsAByd/+VqYTUFy30gUA2srjjz+e2bNn56GHHsqTTz6ZhQsXpk+f\nPtl8883Tv3//vO1tb8uAAQNK1wQAAAAAAGBt1WrJuecmjz6aXHXVC/n8+cl735v8+tfJa15Trh9Q\nhDEM0GH96U9/yi233JJbbrklv/nNb/Loo4++6u9ss8022W+//XLiiSdm6NChbdASAAAAAACADdKl\nS/LjHyePPZbccssL+f/9X/MJMbfdlvTtW6we0PZq9Xq9XroEQEuZNWtWrrrqqlx99dV58MEHn89r\ntdpa/41VH4t77rlnzj333Oy+++4t3rOpqSkDBw6sZPPnz3cyDQAAAAAAwPp66qlkv/2S3/2umu+/\nfzJlSrLRRkVqQWdU+n5olzZ5F4A2cO6552bXXXfN17/+9fz9739PrVZ7/pU0j1xe7ZXk+d+58847\n8453vCNnnnlmli9fXvLSAAAAAAAAeDWbbJLceGMyZEg1/9nPkqOPTlasKFILaHvGMECHsXTp0iTV\nU2BePHR58Tjm5V4vPiyrVqtlxYoVOeecc3LMMce0+fUAAAAAAACwjl772mT69OSlp09ccUXyH/+R\neHAKdArGMECH9NIBzA477JCTTjopV155ZWbNmpWHH344zz77bJ544onMnj07F198cfbff//nBzEv\nHcWMHz8+p5xySsErAgAAAAAAYK286U3NJ8T07l3Nv/Wt5OtfL9MJaFPdShcAaA21Wi2vf/3rc/zx\nx+dDH/pQtt566zX+3KabbppNN9002223XT760Y/mrrvuyhFH/H/27js+qir///h7EhICCYkIhJ7Q\nWSnSYgNBFAEBFRQb0mS/UsQVXcV11wqoa+Ona0EUdkVQiiBIEQXpxUJHMJSghIgk1ISQhBKS3N8f\nccJMMjNpM/dOwuv5eMwjzLl37vmcmwefuTP3k3MG6eDBg5KUV1BjGIYmT56s/v376+abbzZxJAAA\nAAAAAAAAACi2mBhpwQKpTx8pK+tS+zPP5M4eM2SIdbEB8DlmhgFQrthsNrVu3Vpz5sxRfHy8nn32\nWbeFMK5cf/312rZtm1q3bp1XCOPo8ccf93LEAAAAAAAAAAAA8IkePaRPPy3Y/te/St9+a3o4AMxD\nMQyAciMqKkozZszQzp07de+99xYoZCmqiIgIffPNNwoPD89rs88OExsbqx9++MFbIQMAAAAAAAAA\nAMCXBg6UJk50bsvOlu65R9q0yZqYAPgcxTAAyo0BAwZo4MCBXjlW3bp19cwzz8gwjALbFi5c6JU+\nAAAAAAAAAAAAYIKnnsp9ODp7NncJpf37rYkJgE9RDAMAbgwePNhl+8aNG02OBAAAAAAAAAAAAKXy\n5pu5s8Q4OnVK6tlTSky0JiYAPkMxDAC4Ua9ePUVFReU9ty+VdPToUQujAgAAAAAAAAAAQLEFBEif\nfCL16OHcnpAg9eolpaZaExcAn6AYBgA8qFWrVoGlko4dO2ZRNAAAAAAAAAAAACix4GBp/nwpJsa5\nfdcuqW9f6fx5a+IC4HUUwwCABzk5OQXaQkJCLIgEAAAAAAAAAAAApRYWJi1dKjVp4ty+bp00aJCU\nnW1NXAC8imIYAPDg4MGDstlskpQ3Q0zt2rWtDAkAAAAAAAAAAAClERkpLV8u1azp3D5/vjRmjJRv\n1QAAZQ/FMADgxi+//KLk5GSnNpvNpoYNG1oUEQAAAAAAAAAAALyiUSPp22+lKlWc2z/8UHr1VWti\nAuA1FMMAgBszZsxw2d6rVy+TIwEAAAAAAAAAAIDXtWsnLVwoBQc7t7/wgvTf/1oTEwCvoBgGAFxI\nTk7W1KlT85ZIcnTHHXdYEBEAAAAAAAAAAAC87pZbpM8+k/LfExo5Ulq82JqYAJQaxTAA4MJzzz2n\n1NTUvOeGYchms6lPnz6qX7++hZEBAAAAAAAAAADAq+67T3r3Xee2nBzp/vulH36wJiYApUIxDHPM\n6OcAACAASURBVADks3r1ak2ZMqXArDABAQGaMGGCRVEBAAAAAAAAAADAZx57TPrXv5zbzp+Xbr9d\n2rPHmpgAlFgFqwMA4DuZmZmKi4vTH3/8obS0NJ09e1aVK1dWlSpVVK9ePTVv3lxBQUFWh+lXjh07\npkGDBjm12WeFGTlypNq2bWtRZAAAAAAAAAAAAPCpV1+Vjh6Vpk271JaSIvXsKf34o1SvnnWxASgW\nimGAcmbTpk1auHChvv32W8XGxio7O9vtvoGBgWrZsqV69+6tvn376rrrrjMxUv9z8eJF3XvvvTp6\n9GiBWWEaNmyoN99806LIAAAAAAAAAAAA4HM2mzRlinT8uLR06aX2P/6QbrtN2rBBqlrVuvgAFJnN\nMAzD6iAAq/z666/aunWrtm7dqi1btmjHjh1KT093u3+DBg108OBBEyMsujlz5mjixInavn17Xlv+\ngg5XHFNAhw4d9PTTT+u+++7zSYz+7v/+7/80bdo0p/NmGIYqVqyoDRs2KCYmxmt9nThxQpGRkU5t\nx48fV40aNbzWBwAAAAAAAAAAAErg7FmpWzfpp5+c22+8UfruO6lSJWviAsoQq++HMjMMLhuHDx/W\nli1b8gpftm3bptOnTzvtY7PZilRA4k/27dunkSNHasOGDS7j91Tvln//bdu26YEHHtBHH32kjz76\nSM2aNfNZ3P5m/PjxeYUw9mWR7D/fffddrxbCAAAAAAAAAAAAwI9Vrix9/XVu8cu+fZfaN26UBgyQ\nvvxSqsCtdsCf8T8U5dLx48e1ZcsWp+KXEydOOO3jrvAlf/GIfR9/nERpwYIFeuihh5Senu4yzqIU\n9+TfX5LWrl2rmJgYzZgxQ/369fNB5P7lww8/1Pjx410Wwjz77LMaMWKE1SECAAAAAAAAAADATNWq\nScuXSzfcICUmXmpftEgaPVr6+OPcZZUA+CWKYVAu9ejRQ7t27cp7XtTCl7Jk0qRJGjNmjCTlFW/Y\nFaeAx3FfewGIzWZTenq6+vfvrw8++ECPPPKI1+I+c+aM3n///RK/fsiQIapfv77X4pk5c6bGjBmT\ndx4cC2FGjRqll19+2Wt9AQAAAAAAAAAAoAyJipKWLZM6d5ZSUy+1T50q1a4tjR9vXWwAPKIYBuVS\nSZYLKsp+/mL69Ol5hTBSwdld7M+LsuSTYwFM/oIYwzD02GOPqUqVKho0aJBXYk9JSdELL7xQotfa\nbDZ17tzZa8UwCxcu1LBhw5zOn338Dz74oCZNmuSVfgAAAAAAAAAAAFBGtW4tLV4s9eghXbhwqX3C\nhNyCmFGjrIsNgFsBVgcA+Iq9wMFe4OHIXuyRv2imLBTCbN682WnZHk+FMB07dtQHH3yg7du3Kzk5\nWRcvXlRycrK2bt2q9957T9ddd12BIhjHY9psNuXk5Gj48OHatm2bV8eR/3dQ2MPbvvvuOw0YMEDZ\n2dl5bfZz0K9fP02fPt3rfQIAAAAAAAAAAKAM6tJFmj1bCsh3e330aGnBAmtiAuARxTAo99wVVtgL\nQBwfvii68Ka0tDQ98MADysrKkuS6EMZms6l58+ZatWqVNmzYoEceeURt2rRRRESEAgICFBERoXbt\n2unRRx/VDz/8oOXLl6tJkyZOywQ5HttmsykzM1P333+/0tPTvTYWV+ff08Ob1q9fr7vvvluZmZlO\n8dhsNvXo0UNz5sxRQP6LGQAAAAAAAAAAAFy+7rpL+vBD5zbDkB58UFq3zpqYALjF3V6UW/lnfHFV\n+GJ/BAQEqFmzZurSpUuB1/qTF154QYcOHZLkvhCme/fu2rx5s7p27VqkY956663aunWrbr755gJF\nJ46z68THx2vcuHHeGEaxZ4Xx5gwxmzZt0h133KFz587ltdnPXZcuXfTVV18pKCio1P0AAAAAAAAA\nAACgnBk5UnrpJee2Cxekvn2l3butiQmASzajLKwLAxRTu3bt9PPPP+c9z19E0aBBA11zzTWKiYlR\nTEyMOnTooCpVqmjdunW6+eabCyw3JOUWTDRo0EAHDx40byAO9u7dqzZt2uQt6+MYn/3fnTp10ooV\nKxQSElLs4589e1a33HKLNm/e7Hb8QUFB2rVrl5o3b+6NIZlux44d6tatm1JTU/Pa7IUw1157rVas\nWKGwsDBTYjlx4oQiIyOd2o4fP64aNWqY0j8AAAAAAAAAAABKwDCkUaOkKVOc2+vUkX74QYqOtiYu\nwM9YfT+0gim9ABawF3HUq1cvr+jF/qhatarF0RXfuHHjlJWV5bJQRZKqVaumL774okSFMJJUuXJl\nzZ07V23btlVqampeP47LR2VlZWnChAmaOXNm6QdkstjYWPXs2bNAIYwktWnTRsuWLTOtEAYAAAAA\nAAAAAABllM2Wu1zS8ePSwoWX2hMTpZ49pY0bperVrYsPgCSKYVBOjRkzRjVr1tQ111xTLmbaiI+P\n14IFC1wuE2QvVnn11VdVp06dUvUTFRWl8ePH6/HHHy/Ql704Zt68eXrttdcUFRVVqr7MFBcXp+7d\nu+vUqVN5bfZCmBYtWui7775TRESEVeEBAAAAAAAAAACgLAkMlGbNyi1+2bDhUvv+/dLtt0urVkmh\nodbFB0ABVgcA+MKwYcPUu3fvclEII0kffPCBy+WR7Jo2barhw4d7pa/Ro0erUaNGTn04rqaWnZ2t\nSZMmeaUvM8THx6tbt246duxYgW1NmzbVqlWrVJ3qXAAAAAAAAAAAABRHpUrSokVSq1bO7Zs2Sffd\nJ128aE1cACRRDAP4vZycHM2ZM8fjrDBPPvmky+0lERgYqDFjxjgVwNjZZ4eZNWuWV/rytSNHjqhb\nt25KTEx0ajcMQw0aNNCqVatUs2ZNi6IDAAAAAAAAAABAmVa1qvTtt1L9+s7t33wjDR8uubjfBsAc\nFMMAfm716tVKSkqS5HpWmJCQEA0cONCrfQ4dOlTBwcFOfTkWxyQmJmrt2rVe7dPbjh8/rm7duikh\nIcGp3TAM1a1bV6tWrVK9evUsig4AAAAAAAAAAADlQr160vLluYUxjqZPl5591pqYAFAMA/i7JUuW\nuGy3zwrTp08fhXp5zcGIiAj16tXL5ewwhcXlD06fPq3u3bsrLi7Oqd0wDEVGRmrlypVq2LChRdEB\nAAAAAAAAAACgXLnqKunrr3OXTnL0+uvSe+9ZExNwmaMYBvBzK1eu9LgEUp8+fXzSr6fjGoahFStW\n+KTf0kpPT1ePHj20e/dup/NmGIaqVaumlStXqnnz5hZGCAAAAAAAAAAAgHKnY0fpiy+kwEDn9iee\nyG0HYCqKYQA/dvToUe3du1eS3M7Scuutt/qk7+7duxdos89GI0mxsbE6duyYT/ouqfPnz+v222/X\n1q1bCxTCREREaNmyZWrVqpWFEQIAAAAAAAAAAKDcuuMO6eOPndsMQxo8WFq1ypqYgMtUBasDAODe\n5s2bC7Q5FnnUr19fdevW9Unf0dHRql27to4ePSqbzeayGGfLli26/fbbfdJ/SYwaNUrr16/Pi9fx\nZ5cuXbRs2TItW7bMK30NGTJE9evX98qxAAAAAAAAAAAAUE783/9JR49Kzz9/qe3iRemuu6R166R2\n7ayLDbiMUAwD+LHt27e7bLcXeLRv396n/cfExGjJkiVul2nasWOHXxXDJCQkOD23F/AYhqElS5Zo\nyZIlXunHZrOpc+fOFMMAAAAAAAAAAACgoGeflZKSpEmTLrWlpUm9ekk//CA1amRdbMBlgmWSAD+2\nc+dOj9uvvvpqn/Zf2PELi89KNpvNJw8AAAAAAAAAAADAI5tNevdd6Z57nNuPHZN69pSOH7cmLuAy\nQjEM4Mfi4uI8FmA0bdrUp/03adLE7TbDMHTgwAGf9l9ShmH47AEAAAAAAAAAAAAUKjBQ+uwzqWtX\n5/Zff5V6986dKQaAz1AMA/ixQ4cOedzuqVjFG9wd316gU1h8VvDVjDDMEAMAAAAAAAAAAIBiCQmR\nFi6U2rRxbt+2TerfX8rMtCYu4DJQweoAALh27NgxnT9/Xjabze2MJHXq1PFpDK6ObxhGXjFIRkaG\nTp48qerVq/s0jqJas2aN1SEAAAAAAAAAAAAAl0RESN9+K3XsKDn+ofmKFdKwYbmzxwQwhwXgbfyv\nAvxUYmJiofvUqlXLpzEU5fhHjhzxaQwAAAAAAAAAAABAmVa7trR8uZT/D8xnzZKeftqamIByjmIY\nwE+dOnWqQJvj8jzh4eEKCgryaQyVKlVSWFhYgb4dJScn+zQGAAAAAAAAAAAAoMxr1kxaulSqXNm5\n/e23pf/3/6yJCSjHKIYB/JSrYhhH4eHhpsRRWD+FxQkAAAAAAAAAAABA0rXXSvPnSxUqOLePHSt9\n/rk1MQHlFMUwgJ86ffq0y3bDMCRJVapUMSWOwvpJSUkxJQ4AAAAAAAAAAACgzLvtNumTTwq2DxuW\nu5QSAK+gGAbwU+fOnfO4PTQ01JQ4wsLC8gpwXDl//rwpcQAAAAAAAAAAAADlwuDB0ptvOrdlZUn9\n+0tbtlgTE1DOUAwD+KmLFy+63Waz2VQh//RpPlJYP5mZmabEAQAAAAAAAAAAAJQbY8dKf/+7c1tG\nhtS7t3TggDUxAeUIxTCAnyqsyIRiGAAAAAAAAAAAAKCMstmkiROlBx90bj95UurZUzp61Jq4gHKC\nYhjAT+Xk5HjcHhgYaEochfVTWJwAAAAAAAAAAAAAXAgIkKZNk7p3d26Pj5d69ZLOnLEmLqAcoBgG\n8FOFzciSlZVlShyF9RMUFGRKHAAAAAAAAAAAAEC5ExwszZ8vdejg3L5zp3TXXdKFC9bEBZRxFMMA\nfio4ONjjdrOKYS5evOhxO8UwAAAAAAAAAAAAQClUqSJ9843UuLFz++rV0pAhEis1AMXmeeoJAJbx\nVAxjGIYyMzNNiaOwYpjCinZQdBkZGapcuXKJXhsaGurlaAAAAAAAAAAAAGCayEhp+XKpY0fp+PFL\n7XPnSjVrSu++K9ls1sWHy1ZGRoapr/MWimEAP+WuuMFms8kwDKWnp5sSR1pammwe3ljDwsJMieNy\n0LBhwxK/1jAML0YCAAAAAAAAAAAA0zVuLH37rXTTTZLjvcD335dq15b+9S/rYsNlq6zeD2aZJMBP\nXXnllR63nzlzxpQ4CuunsDgBAAAAAAAAAAAAFFH79tJXX0lBQc7tzz4rTZtmTUxAGcTMMICfqlat\nmsftp0+fNiWO1NRUj9sLixNFFx8frxo1algdBgAAAAAAAAAAAKx0663SjBnSgAHO7cOHSzVqSLff\nbk1cuCyVdMWSEydOlGpljNKiGAbwU9WrVy/QZhhG3pJFFy5c0JkzZxQeHu6zGFJSUpSZmZm3NFNR\n40TJhIaGul0eCwAAAAAAAAAAAJeRBx6Qjh2TnnjiUlt2tnTffdKqVdINN1gXGy4rJb1/efbsWS9H\nUjwskwT4qaioqEL3OXbsmE9jKMrx69ev79MYAAAAAAAAAAAAgMvS449Lzzzj3HbuXO7MMHv3WhMT\nUEZQDAP4qdDQ0LwliOyzweSXkJDg0xgOHTpUoM0xlsjISFWqVMmnMQAAAAAAAAAAAACXrddek4YO\ndW5LTpZ69pSOHLEmJqAMoBgG8GMNGzZ0uzyRJB04cMCn/f/6668u2+3LNVm5xhsAAAAAAAAAAABQ\n7tls0tSpUu/ezu2HD0u33SalpFgTF+DnKlgdAAD3WrZsqa1bt7rdvn//fp/2X9jxW7Zs6dP+AQAA\nAAAAAAAAgMteUJA0d67UrZu0adOl9l9+kfr2lZYvl7y8moNhGEpISNDx48d17tw5nT9/XpIUEhKi\nSpUqKTIyUtHR0W5XuACsRjEM4Mfat2+v6dOnu92+Y8cOn/a/fft2j9vbtWvn0/4BAAAAAAAAAAAA\nSAoNlb7+WrrxRsnxD9o3bJAGDpTmzZMCA0t0aMMwFB8fr23btmnr1q3atm2btm/frpRCZp2pWrWq\nOnTo4PRo2LAhBTLwCxTDAH6sffv2LtttNpsMw9DOnTvzlizytuzsbP38888ej00xDAAAAAAAAAAA\nAGCS6tWlZcukjh2lpKRL7V99JT36qDR5cu6ySkV05MgRTZ06VVOnTlViYmKB7cGSakuqJCnkz7bz\nks5JSpKUkpKilStXauXKlXmvqVOnjoYPH64RI0aoTp06xR8j4CUBVgcAwL2YmBiFhOS+tdiLUgzD\nyNuenp6ubdu2+aTvzZs36+zZs059OhbGVKpUSTExMT7pGwAAAAAAAAAAAIALDRrkFsSEhzu3f/yx\nNGFCoS83DEOrV6/WPffco+joaI0fP16JiYkKlhQjaaSkKZK2SUqTdEjSXkk7/nzs/bMt7c99pvz5\nmg7KLZ5JTEzU+PHjFRUVpXvvvVdr1qxxur8JmIViGMCPVaxYUZ06dfL4BrFixQqf9O1YwenIPhNN\n586dFRQU5JO+AQAAAAAAAAAAALhx9dXSokVScLBz+7hxuUUxLhiGoVmzZqlFixbq1q2b5s+fr+zs\nbHWRNFvSGUlbJH0kabik9sotbnEn+M99hv/5mq1/HmO2pM7KXYXiyy+/1C233KIWLVpo1qxZFMXA\nVBTDAH6uR48ebrcZhqEFCxb4pN8vv/zS4/bu3bv7pF8AAAAAAAAAAAAAhejaVZo5s+CySKNHSwsX\nOjUlJSWpb9++GjhwoPbt26cwSaMl7Za0TtIDkip6IaSKfx5rvaRdkh6RFCZp3759GjhwoPr166ck\nx+WdAB+iGAbwc/379y/QZp+dRZK2b9+uAwcOeLXP2NhY7d69WzabzeUSSTabTffcc49X+wQAAAAA\nAAAAAABQDPfcI33wgXNbTo70wAPShg0yDEOfffaZWrRooSVLlihI0suSEiVNktTKh6G1lvThn329\nLClI0uLFi9WyZUt9/vnnzBIDn6MYBvBzjRo10vXXX+9UAJPf+++/79U+3333XZft9hg6duyoqKgo\nr/YJAAAAAAAAAAAAoJhGj5aef9657cIFJd1+u/recouGDBmi06dPq4Ok7ZKel1TFxPCq/Nnndkkd\nJKWkpGjw4MHMEgOfoxgGKAP++te/umy3z9wybdo0HTt2zCt9HTlyRJ9//rnbwhtJGjZsmFf6AgAA\nAAAAAAAAAFBKEyZIDz+c9zRWUsyZM1qydq2CJL0i6Uf5diaYwrT6MwbHWWJiYmK0Z88eC6NCeUYx\nDFAGDB48WJGRkZIuLVfkOHXY2bNn9c9//tMrff3jH//Q+fPnnfpwLIypWbOmBg0a5JW+AAAAAAAA\nAAAAAJSSzSZNnizdeae2SOqi3OWJrpK0TdJzyi1AsVqQcmeJ2abc2BITE9WlSxdt2bLF2sBQLlEM\nA5QBFStW1OOPP15g7Tz7skWGYWjGjBlatGhRqfqZO3euZs+enXdMV339/e9/V1CQP7xdAgAAAAAA\nAAAAAJAkVaigLWPHqltgoJIlXSNpg6TWFoflSmvlxnaNpFOnTqlbt24UxMDrKIYByognnnhC9evX\nzytKcWQvXhk6dGiJ3yh++uknPfzwwy6PbRcdHa0xY8aU6PgAAAAAAAAAAAAAfCM2Nla39euntOxs\n3SRplaRqVgflQTXlxthFUlpamm677TaWTIJXUQwDlBGVKlXS22+/nfc8/3JJNptNZ86cUY8ePbR0\n6dJiHXvRokW67bbblJGR4XRMO3sBzttvv62KFSuWZhjwICMjw+UDAAAAAAAAAAAAcCcpKUk9evRQ\ncnKyrpW0RFIVq4MqgiqSvlbuDDHJycnq3r27kpKSLI4KJeGP9zltRv673kA5sWHDBsXFxRXrNfv3\n79fEiROdlglyLDqpXr26XnvttWLH0rVrVzVu3LjYr3Nl0KBBmjVrlstiGEcDBgzQCy+8oObNm7s9\n1t69ezV+/HjNnTu3wPHsx7QXwgwaNEjTp0/3yhggnThxQpGRkUXalzQNAAAAAAAAAAAAVwzDUN++\nfbVkyRJdpdzlh/x5RhhXTknqLGmvpDvvvFMLFy4scO8T/q2ov6/jx4+rRo0aPo4mF8UwKLeGDRvm\nF8UbNptN06ZN05AhQ7xyvIyMDMXExGj//v1uC1gc29q1a6eOHTuqYcOGCgsLU1pamuLj4/X999/r\n559/dvkae5v9eYsWLbR582ZVrlzZK2MAxTAAAAAAAAAAAAAovc8//1yDBw9WkKRtklpbHVAJ7ZbU\nQdJFSZ999pkGDRpkcUQoDn8shqlgSi+AhYpbNeip8MCbxyqp0NBQLV++XJ07d9bhw4ed4jIMI28m\nF3vbjh07tGPHDpfHKkoxTYMGDbR8+XIKYUwQHx9vWvIHAAAAAAAAAABA2ZaUlKQxY8ZIkl5S2S2E\nkXJjf1HSC5LGjBmjbt26qXbt2hZHhaJKT08v0HbixAk1bNjQgmhyBVjWM2Aie5FIUR5mHKe0oqKi\ntGbNGjVp0qTAkk725/kLY1w9HGN1LKCxv65Zs2ZavXq16tat69PxIFdoaKjLBwB4S0ZGRl6+t3qt\nTgCXB/IOALORdwBYgdwDwGzkHQBS7v28kSNHKiUlRR0kPePDvjIk2f58+DLrPCOpvaSUlBSNGjWK\n1RPKEH+8z0kxDC4LngpCfPXwtUaNGmnLli3q2bOnxwKYop6X/K/v1auXNm/erAYNGvh8LAAAAAAA\nAAAAAACKbvbs2VqyZImCJX2q8rEkTJByxxIkafHixZo9e7a1AaFMoxgG5V5xZnPx9sPXIiIi9M03\n3+jTTz9VzZo1CyyX5CkOV/vYbDbVrFlTM2bM0Ndff63w8HCfjwEAAAAAAAAAAABA0RmGoZdffllS\n7rJCrawNx6taK3dMkvTKK68wOwxKjGIYlGtWzAhj9gwxkjR48GAdPHhQkyZNUosWLQr0765Qx3G/\nli1b6sMPP1R8fLwGDhxoStwAAAAAAAAAAAAAimft2rXat2+fwiQ9bnUwPvC4pDBJe/fu1bp166wO\nB2VUeZgtCXBp2rRpmjZtmtVhmKZSpUoaNWqURo0apV9//VXLli3T9u3bFRsbqyNHjigtLU1nz55V\n5cqVVaVKFdWrV08tWrRQ+/bt1atXLzVu3NjqIQAAAAAAAAAAAAAoxKRJkyRJQyRVsTYUnwiXNFjS\nZOWOtWvXrtYGhDKJYhigHGrSpIn+9re/WR0GAAAAAAAAAAAAAC86cuSIFi5cKEl6xOJYfOkR5RbD\nfPXVV0pMTFSdOnWsDgllDMskAQAAAAAAAAAAAABQBkydOlXZ2dnqLKmV1cH4UGtJN0rKzs7W1KlT\nrQ4HZRDFMAAAAAAAAAAAAAAA+DnDMPIKQ0ZbHIsZ7GOcOnWqDMOwNBaUPRTDAAAAAAAAAAAAAADg\n5+Lj45WYmKhgSXdZHYwJ7pYUpNyloQ4dOmRxNChrKIYBAAAAAAAAAAAAAMDPbdu2TZJ0taSK1oZi\niorKHat0aexAUVEMAwAAAAAAAAAAAACAn7MXhHSwOA4z2cdKMQyKi2IYAAAAAAAAAAAAAAD83Nat\nWyVdnsUw9rEDRUUxDAAAAAAAAAAAAAAAfswwDG3fvl3S5VkMs23bNhmGYWksKFsohgEAAAAAAAAA\nAAAAwI8lJCQoJSVFwZJaWR2MiVpJCpKUkpKihIQEq8NBGVLB6gAA4HKUk5NToO3kyZMWRALgcpKR\nkZH37xMnTujs2bMWRgPgckDeAWA28g4AK5B7AJiNvANcnvbv3y9JipSUanLfGQ7/PiHJ7KwTKemI\npLi4OIWGhprcO0rK1b1PV/dIfcVmMJcQAJhu7969atGihdVhAAAAAAAAAAAAAIAp9uzZo6uuusqU\nvlgmCQAAAAAAAAAAAAAAAOUGxTAAAAAAAAAAAAAAAAAoNyiGAQAAAAAAAAAAAAAAQLlhMwzDsDoI\nALjcZGVl6cCBA05tV155pQICqFEEAAAAAAAAAAAAULbl5OQoOTnZqa1p06aqUKGCKf1TDAMAAAAA\nAAAAAAAAAIBygykIAAAAAAAAAAAAAAAAUG5QDAMAAAAAAAAAAAAAAIByg2IYAAAAAAAAAAAAAAAA\nlBsUwwAAAAAAAAAAAAAAAKDcoBgGAAAAAAAAAAAAAAAA5QbFMAAAAAAAAAAAAAAAACg3KIYBAAAA\nAAAAAAAAAABAuUExDAAAAAAAAAAAAAAAAMoNimEAAAAAAAAAAAAAAABQblAMAwAAAAAAAAAAAAAA\ngHKDYhgAAAAAAAAAAAAAAACUGxTDAAAAAAAAAAAAAAAAoNygGAYAAAAAAAAAAAAAAADlBsUwAAAA\nAAAAAAAAAAAAKDcqWB0AAHhbZmam4uLi9McffygtLU1nz55V5cqVVaVKFdWrV0/NmzdXUFCQ1WH6\npWPHjikuLk4pKSk6c+aMJCk8PFxVq1ZVs2bNVLNmTYsjBPwTeQeA2cg7AKxA7gFgNvIOALORdwCY\njbwD+A7FMADKhU2bNmnhwoX69ttvFRsbq+zsbLf7BgYGqmXLlurdu7f69u2r6667zsRI/Utqaqrm\nz5+vb775RmvWrFFKSorH/a+88kp17dpVffr00d13362IiAiTIgX8D3kHgNnIO0V34sQJ7d69W7/8\n8otiY2O1f/9+nTp1SqdPn9bp06d1/vx5hYSEKDQ0VLVq1VLdunXVokULtWnTRjfddJPq169v9RAA\nv0HuKZqMjIy8nJOQkKDff/9dhw8f1pEjR5Senq6zZ8/q7NmzysrKUsWKFVW5cmVFRkaqdu3aat68\nuVq2bKmOHTvq6quvls1ms3o4gKXIOwDMRt4BYDbyjvekp6dr3bp1+umnn7R//37FxcXp5MmTeYVF\nFStWVFhYmMLCwlS/fn01atRIjRs3Vtu2bXXdddepWrVqVg8BPmQzDMOwOggAKKk5c+Zo4sSJ2r59\ne15bUb44dEx9HTp00NNPP6377rvPJzH6oyNHjujf//63ZsyYoYyMDElFO2/SpXMXGhqqhx56SP/8\n5z9Vt25dn8UK+BvyTumkp6dr+/bt2rp1q7Zs2aKtW7fqt99+8/iaTz/9VEOGDDEpQsD/uR0BTwAA\nIABJREFUkHcKl5ycrDVr1mjVqlVavXq14uLiCuzj7py5+kjcvHlzDRgwQEOHDlV0dLTX4wXKAnKP\nexcuXNDmzZv1/fffa9OmTdq1a5cOHTrkMp8Uds7yv+bKK69Uv379NGjQIHXt2tWbYQN+j7xjjn//\n+996/vnni7TvoUOHFBUV5eOIAOuQd1wbP368xo8fb1n/N954o9avX29Z/4AvkXe848KFC/ryyy/1\nySefaMOGDcrKynLaXpzvgJo0aZL3R+C33nqrQkNDfRIzrEExDIAyad++fRo5cqQ2bNjg8k3NU2rL\nv799365du+qjjz5Ss2bNvBusHzEMQ2+//bbGjx+v9PR0t+fCHVf7h4WFafz48XriiSf4C0aUa+Sd\n4rtw4YJ27tyZV/SyZcsW7d+/Xzk5OXn7FCVvTJs2jWIYXJbIO5798ccfmjdvnubOnavNmzfnjdFb\n1yOGYSgwMFD333+/XnrpJTVt2tQrxwX8HbnHvV27dmnkyJHasWOHMjMz89q9/TnIft5at26tcePG\n6a677vLq8QF/Q94xT1xcnNq2basLFy543M8wDNlsNsXHx1MMg3KJvOOZvRjGqu96O3XqRDEMyh3y\njndcuHBB7733nt544w0lJydL8s7nMfs5DQ4O1rRp0zRgwIBSHxP+IcDqAACguBYsWKBrr73W6aLB\nMIy8h5T75ufukX9/e/vatWsVExOjhQsXWjY2Xzpz5oz69Omjp59+WhkZGQXOheT5vLnbPyMjQ089\n9ZTuvPNOnTlzxprBAT5G3ilcVlaWduzYoalTp2rEiBFq3769qlSpohtuuEFjxozRjBkztG/fPqfx\nuzo3jueUmm1czsg77r3//vvq1KmToqOj9dRTT2nTpk2S5HbsReXq/Obk5GjWrFl5N6Q9TVsMlAfk\nHs8OHz6sTZs26eLFiwXGLanYeSf/6/Kf4927d6t///7q1q2bfv/9d6+NA/An5B1zjRgxQufPn5fk\n+nMYn8FwOSDvFI+7XOHth70voDwi73jH0qVL1axZMz3zzDNKSUlxe9+qKNyd/4sXL+rEiRM+iR/W\noBgGQJkyadIk3XvvvXnFHK7erIpycZ3/TdL++vT0dPXv31+TJ0+2bIy+cPLkSd1www1atmxZgYuD\nwm5Iu7oocNzX3rZ06VLdeOONedW4QHlB3imapUuXqkOHDho5cqT++9//aufOncrOzvZ4o4gvWwHX\nyDue/eMf/9BPP/0kyXUBjGN7ca9x3B3r4sWLmjBhgrp27aqkpCRTxwuYhdxTPK6uY4qTd9zlLFfn\ncs2aNbr66qv17bffmj5OwJfIO+aaMmWK1q9fn3degcsRecc7PN20L+nDflygvCHvlN6FCxf06KOP\n6o477tAff/zh8Xsgx/aifgaz4/qofKIYBkCZMX36dI0ZMybvueMbk+MFQ1Eurl0Vdjge57HHHtPn\nn39u4uh858yZM+rRo4f27t3r8mJLKlgY4+m8ebrw+uWXX9SjRw+lpaVZM1jAy8g7xVeUG9Du9gVA\n3ikuT18MudpW2DWOu+NIueft+++/V6dOnRQfH2/ZmAFfIPcUX1Gud4p6vlx9RrMf19525swZ3Xnn\nnZo5c6bJIwV8g7xjrqNHj+qZZ55xyjF8DsPlhrzjPUW5cV+aB1BekHdKLzU1Vd27d9fkyZPd3s8q\nzXdA5Jzyr4LVAQBAUWzevFkjRozIe+7qosH+744dO+rBBx9Ux44d1aBBA1WpUkVpaWk6ePCgfvjh\nB82cOVObNm0qcLHg+CaZk5Oj4cOH66qrrlKHDh3MHayXDR06VDt37nQ6T5LzRZPNZtMVV1yhAQMG\nqHfv3mrbtq2qV68uwzB08uRJ7dy5U0uXLtWcOXOUmpqa9xo7x+c7duzQsGHD9OWXX5o7UMDLyDsl\n5+pDhLsvWvnAAVxC3ik+VzeN87dXr15d7dq1U6NGjVS/fn1VqVJFQUFBSklJ0alTpxQbG6vvv/9e\n6enpecfJ/2WTY9uhQ4fUrVs3bdq0STVq1DBppIDvkHtKxl3OkaTw8HA1bdpUzZs3V61atRQeHq7w\n8HBVqlRJ6enpOnPmjE6cOKGff/5Zu3fvdso/9uO5yj/Z2dn661//qsjISHXv3t2kkQLeR94x3+jR\no5WamlogvwCXC/KOd1FMBxSOvFN6J06c0C233KLY2FiP97ccnzdr1kxt2rRRkyZNVK1aNYWGhur8\n+fM6ffq0UlJS9Ntvv2nHjh1KTEzMOxbXROWbzeA3DMDPpaWlqU2bNkpISJDk+qLBZrOpWbNmmjx5\nsrp27VroMVeuXKnRo0frt99+y2tz9Zd4DRs21M6dOxUWFual0Zjrvffe0xNPPOHxQiEgIEBPPPGE\nXnzxRYWHh3s8Xmpqql566SW9//77eefd3e/jvffe06OPPuqbgQE+Rt4pvkWLFumuu+7y+IWIpyKZ\n/Nscz/O0adM0ZMgQ7wYM+BnyTtFVqlRJmZmZec/zj6lSpUrq2bOnevXqpVtvvVUNGjQo9Jg5OTla\ns2aN3nzzTa1cudLlDWnHPiSpY8eOeUsNAGUVuad4li5dqjvuuEPSpbEEBQWpffv26ty5s2688UZd\ne+21qlmzZrGOu27dOk2fPl1z587VuXPn3H7WknLPZWRkpHbt2qXIyEgvjQwwD3nHfAsWLNA999xT\n4Mabu9sCjr+H+Ph4RUVFmRku4HXkneIbP368xo8f7zJv2Gw2TZ061af916pVS7179/ZpH4AvkXdK\n7+zZs7rpppu0bds2t/eh7P9u06aNHn74YfXv37/In8VOnjypjRs3atGiRVq6dKlOnTqVt+2dd95x\nmtEHZZwBAH7u8ccfN2w2mxEQEGDYbLa8h/15QECA0bNnT+PMmTPFOm5qaqrRrVu3Qo/91FNP+Whk\nvnXkyBEjLCzMCAgIcBqf4/OQkBBj0aJFxT72/PnzjYoVK3o8dnh4uJGUlOSDkQG+R94pvoULFxbI\nA/kf9m32xxVXXGHcfPPNRu3atQucE8fzMX36dKuHB/gceafoQkJCXF5/dO7c2fjss8+M9PT0Uh1/\n3bp1Rr169Zzylbvz9tZbb3lpVIA1yD3F8/XXXxsBAQFGzZo1jYcffthYsmSJce7cOa8dPyEhwbjz\nzjudzpG7czds2DCv9QuYibxjrtTUVKNOnToFrmsCAgKMJk2aFHq+EhISrB4CUGrkneIbN26cx+9p\nAHhG3im922+/vdBxNmzY0Pjqq69K3VdOTo6xcuVK46677jKCgoKMd9991wsjgL+gGAaAX9uzZ48R\nFBTksujC/u8bb7yxxF9AZmRkGNddd53Li3v78+DgYGPfvn1eHpnvDRgwwOO4AgMDjYULF5b4+PPm\nzSv0YmTQoEFeHBFgDvJOydiLYdwVvoSFhRmdO3c2/v73vxszZ8409u/fn/farl27UgyDyxp5p3hC\nQkLy4g8ODjaGDRtm/Pzzz17t4+TJk8aNN97o9lrH3hYREWGcOnXKq30DZiH3FF98fLyxceNGn/fz\n/PPPF5p/KlSoYPz2228+jwXwJvKO+YYPH17g85X953fffUcxDMo98k7JUAwDlBx5p/TefPPNQq9R\nHnzwQSMtLc3rfR8+fNj45ZdfvH5cWCfA6plpAMCTcePGKSsrS5LrKd+qVaumL774QiEhISU6fuXK\nlTV37lxdccUVTsc2HKZcy8rK0oQJE0p0fKvs3btXX3zxhctp+40/p+AbO3as+vbtW+I+7rnnHj3x\nxBN5x3Nk+3OautmzZysuLq7EfQBWIO+Ujs1mU0hIiK699lqNHj1an3zyiXbt2qUzZ85o/fr1evvt\nt/Xggw+qWbNmVocK+A3yTvEFBQVpxIgRiouL0yeffKKrr77aq8evVq2aFi9erL/85S8FrnUcz1ta\nWpreffddr/YNmIXcU3wNGjRQp06dfN7Pyy+/rEcffdRj/snJydH//vc/n8cCeBN5x1zr1q3T//73\nv7zzYHNYlmHAgAHq3r27xRECvkfeAWA28k7p7NixQy+88ILbe042m01PPvmkZs6c6ZOloOrVq6eW\nLVt6/biwDsUwAPxWfHy8FixY4LGg49VXX1WdOnVK1U9UVJTGjx/vcq1k+xvsvHnz9Pvvv5eqHzO9\n+eabeeNxdcEVHR3tlYuhV199VfXq1XM6vuN5NAxDb731Vqn7AcxC3im5Zs2aacqUKdq2bZvS0tL0\n448/6v3339fQoUPVsmVLl+cUAHmnJO6++27FxsZq8uTJio6O9lk/VatW1aJFixQUFCRJbr+ImT59\nus9iAHyF3OP/Xn/9ddWtW1dSwfwj5f6eFi9ebHZYQImRd8x14cIFjRgxwuW2K664Qv/5z39Mjggw\nH3kHgNnIO6U3atQoXbx4UZLzvS37+XvooYe454RioRgGgN/64IMPlJ2dLcl1QUfTpk01fPhwr/Q1\nevRoNWrUyKkPxwuJ7OxsTZo0ySt9+VpycrJmz57t8YLr5ZdfVnBwcKn7qlSpUqEXXZ9//rlOnz5d\n6r4AM5B3Su6qq67Sww8/rLZt2yowMNDqcIAyg7xTfDNnzlSTJk1M6atp06YaPXp0gWsdx+eHDx/W\n9u3bTYkH8BZyj/8LDQ3Nm4nTkeNsMXv27OGzFsoM8o65JkyYoAMHDki6NHZ7/njjjTdUvXp1K8MD\nTEHeAWA28k7pzJgxQ1u2bJFUsBBGklq3bq2PPvrIsvhQNlEMA8Av5eTkaM6cOR4LOp588kmvzTQQ\nGBioMWPGeCzqmDVrllf68rU5c+YoMzNTkusLrrp16+qBBx7wWn8DBw5UzZo1nfpxPI+ZmZmaN2+e\n1/oDfIW8A8Bs5J2yYezYsYXus3btWt8HAngJuafs6NevX6H77N+/34RIgNIh75hr165dmjhxYoHl\nkSSpY8eOevjhh60MDzAFeQeA2cg7pZOVlVVgeSTHfwcEBOjTTz/Nm70XKCqKYQD4pdWrVyspKUmS\n64KOkJAQDRw40Kt9Dh06NG+2FFdFHYmJiWXiRoe7Cxz7BdewYcO8OmtDcHCwhg4d6vKiy27mzJle\n6w/wFfIOALORd8qGunXrqk2bNk6zMeS3e/duk6MCSo7cU3Y0btw4b/YGd/nn6NGjZoYElAh5xzyG\nYWj48OHKysoqsC0oKEgff/yxBVEB5iPvADAbead0Zs+ercOHD0tyHoP9u5iBAweqbdu2VoWHMoxi\nGAB+acmSJS7b7W98ffr0UWhoqFf7jIiIUK9evTwWdbiLy18kJyfrxx9/9FhdfP/993u93wEDBrhs\nt1cgf//990zfDb9H3gFgNvJO2dGlSxeP2w8ePGhSJEDpkXvKFvssnO6cPXvWpEiAkiPvmOc///lP\ngeUF7Od57NixatGihZXhAaYh7wAwG3mndN555x2P97WeffZZE6NBeUIxDAC/tHLlSo9vfH369PFJ\nv56OaxiGVqxY4ZN+vWXVqlVOX3ZIztXHUVFRPvnio02bNqpbt65Tf44XYDk5OVq9erXX+wW8ibwD\nwGzknbKjVq1abrcZhkHRL8oUck/ZEh4e7vHL7bCwMBOjAUqGvGOOQ4cO6cUXX3RaHsmuUaNGevHF\nF60KDTAdeQeA2cg7Jbdz507t3LlTkvN9LXshUZcuXdS8eXMrQ0QZRjEMAL9z9OhR7d27V5Lcful3\n6623+qTv7t27F2hznBI/NjZWx44d80nf3rBq1SqX7fYx+Oq8Sbm/E09f0q5cudJnfQOlRd4BYDby\nTtlSo0YNl+32c3bu3DkzwwFKjNxT9hw/ftzjl+rVqlUzMRqg+Mg75hk1apQyMjIkFZwV5sMPP1TF\nihWtDA8wDXkHgNnIO6Uza9Ysj9sffPBBkyJBeUQxDAC/s3nz5gJtjl/+1a9fP28WEm+Ljo5W7dq1\nC/TpyD7drD9yde4cderUyWd9d+zY0e02wzAKjQ2wEnkHgNnIO2WLu2VI7F9yhYSEmBkOUGLknrIl\nJydHSUlJHvdp2rSpSdEAJUPeMcdnn32m7777zumvqO0/H3jgAZc3yoDyirwDwGzkndKZN2+exz8A\nuP32202MBuUNxTAA/M727dtdtts/xLdv396n/cfExHic4WTHjh0+7b+kLl68qNjYWI8XDb48dzEx\nMS7bHSuQs7OzfdY/UBrkHQBmI++ULX/88YfbbTabTVWrVjUxGqDkyD1ly4YNG/KK8Vwtg9u8eXO3\nM1cB/oK843unTp3SU0895XJ5pIiICL3zzjtWhQZYgrwDwGzknZI7cOCAEhISJLn/zGMv9gFKgmIY\nAH7HvjagO1dffbVP+y/s+IXFZ5XY2FhdvHhRkuuLhsDAQLVo0cJn/bdq1UoBAQFO/TpegGVmZmrP\nnj0+6x8oDfIOALORd8oWd19s2TVu3NikSIDSIfeULe6mC7d/qc5fSKIsIO/43pgxY3Ty5ElJBZdH\nev311xUZGWlleIDpyDsAzEbeKbm1a9e6bLdfy1x33XXmBoRyp4LVAQBAfnFxcR5nN/H1NNBNmjRx\nu80wDB04cMCn/ZdUXFycx+3R0dGqUMF3aT8oKEj169fX77//7nafAwcOqHXr1j6LASgp8g4As5F3\nyo60tDRt3LjR4++rVatWJkYElBy5p+zYuXOnPvnkE6ffV/4/dvjb3/5mRWhAsZB3fGvZsmWaPXt2\ngeWRJOmGG27QiBEjLI4QMB95x1wnTpxQfHy8EhMTlZ6eruzsbFWqVEmVK1dW7dq1Va9ePdWsWdPq\nMAGfIu+U3Pr16z1uL+qsOsnJydqzZ49OnDihtLQ0BQYGKjQ0VDVq1FCDBg18tkwV/B/FMAD8zqFD\nhzxu9/TG7g3ujm//QqGw+KwSHx/vst3+ZYivz5uUe+4SEhLcXvi5ixGwGnkHgNnIO2XHl19+qczM\nTKebS/nddNNNJkcFlAy5p2w4evSoBgwYoJycHEnOM27aP9899NBDioqKsipEoMjIO76TkZGhRx55\nxOXySEFBQZoyZYpVoQGWIu/43pQpU7RixQr9+OOPSkxMLHT/K664Qu3bt1fHjh3Vu3dvXXfddR4L\nB4CyhrxTcjt37vSYDzydu/Xr12vevHlaunRpoWOMiIjQ9ddfr+7du6t///6Kjo4uacgoY1gmCYBf\nOXbsmM6fPy9Jbm821KlTx6cxuDq+YywZGRl508/6k8Le7H193orSB8Uw8EfkHQBmI++ULe+9916B\nNscvaurUqaMOHTqYGRJQIuSesmH37t266aabtH//fkmul8CNjo7W22+/bUl8QHGQd3zrueeeU0JC\ngqSCyyM99dRTPl0qG/BX5B3fccwzo0aN0vz585WUlCSbzVboIzU1VatXr9Yrr7yijh07qn79+nrp\npZeUlJRk8aiA0iPvlFxWVlahKx64WpZ68eLFat++vbp27apJkybl/YG2p8eZM2e0fPlyjR07Vg0b\nNtRtt92mNWvW+Gpo8CMUwwDwK0WpJK9Vq5ZPYyjK8Y8cOeLTGEqisHPn6/NWlD788bwB5B0AZiPv\nlB1ffPGFfv75Z5ezwthvNg0cONCi6IDiIff4t4SEBD311FPq0KGDfv31V6clT+z/NgxDVatW1YIF\nCxQWFmZ1yEChyDu+s3nzZn3wwQcuZ4Vp2LChXnzxRatCAyxF3jGH/fpEUt41iqeH42tsNpuSkpL0\n8ssvq3HjxvrHP/6h1NRUK4cDlAp5p+QOHDigixcvSnJfSOS4zNqxY8fUp08f9evXL++7mqLmIsk5\nD3333Xfq1q2b+vXrp99//93HI4WVKIYB4FdOnTpVoM3xA314eLiCgoJ8GkOlSpXyvlh0Nz1bcnKy\nT2MoCVfnzlFkZKTPYyhs/Vd/PG8AeQeA2cg7ZcO5c+f0r3/9q8D5cXxeoUIFPfroo2aHBpQIucc/\nnD9/XsePH1dcXJwWLlyocePGqUuXLmrUqJHeeecdZWdn5+3rWAQj5X6mW7lypdq2bWtV+ECxkHd8\nIysrSw8//LDTLA32nzabTZMmTVJISIiVIQKWIe/4luON5/xtnh7ubkpfuHBBEydOVKtWrbR8+XIr\nhgSUGnmn5A4fPlygLf93LhEREZKkn376Se3bt9e3337rVADj+DpPD/v+9oe9ffHixWrXrp2+/vpr\nXw4VFqIYBoBfKaygIzw83JQ4CuunsDitcOrUKY9rK5px7jz1YRiGX543gLwDwGzknbLhmWeeyVuG\n0t2sMEOHDlX9+vUtiA4oPnKPOQYNGqSAgAC3j8qVK6tWrVr6y1/+orvvvlsTJkzQxo0bJcnll7T2\n9l69eunnn39Wu3btLBsbUFzkHd94/fXX9csvv0i6dE1i/3nfffepZ8+eFkcIWIe8432ebiYX9eHu\nGPbjHzlyRL1799Zrr71m2TiBkiLvlFxhS6VVqVJFkvT999+rR48eOnr0qNPMvSWZocrOsS0lJUX9\n+vXTlClTvD5GWI9iGAB+5fTp0y7b7W9M9jc/Xyusn5SUFFPiKA53587OjHPnrg/7RYY/njeAvAPA\nbOQd/7dq1SpNmjTJ46wwVapU0SuvvGJ2aECJkXvM4bhkSXEeklzeMIqJidFXX32lpUuXFjoTJ+Bv\nyDvet3//fr366qsul0eKiIjQf/7zH6tCA/wCecc33BW2FPcaRyp4M9p+TEl67rnn9Nhjj5k/QKAU\nyDslV1gxTHBwsOLi4tS7d29lZGRIklPOKE5eyp9v8r8+JydHjzzyiD799FOfjRfWqGB1AADg6Ny5\ncx63h4aGmhJHWFhYgTdGR+fPnzcljuLwh3NX2Lr1/njeAH/4vyOVzbwDoGTIO/4tKSlJAwcOzHvu\nblaYl19+2ZRlKAFvIfeYz92696443tiuV6+e7rvvPvXv31/XX3+9r8IDfI68433Dhw/XhQsXnGaD\nsf987bXXKJrDZY+84135C1jCw8PVqVMntW7dWq1bt9Zf/vIXXXnllYqIiFB4eLjOnTunU6dOKTk5\nWQcOHNC6deu0fv167dmzp8DxHK+THG9mf/jhh6pSpYr+/e9/mzxaoGTIOyWXmprqst2xQKV///5K\nS0srcO0j5eaSpk2bqm/fvurZs6eioqJUs2ZNBQcH6+jRo0pKStLatWu1ePFibd682an4Jf9nNXvb\nqFGj1LRpU3Xq1Mnn44c5KIYB4FcuXrzodpvNZlOFCuakrcL6yczMNCWO4vB07qTCx+QNZfG8AeQd\nAGYj7/ivrKws3X///Tp+/HiBL0ccn9900038xSLKHHKP+TwtY+so/42h48ePa8eOHapdu7bq1aun\nevXq+TJMwGfIO9710UcfaePGjS5vBl1//fUaOXKkxREC1iPveJfNZlN0dLT69++vPn36qHPnzgoM\nDHS7f1hYmMLCwhQdHa127drpvvvukyTFxsbqzTff1Jw5c5SVleXyZrRj2xtvvKF27drp3nvv9fkY\ngdIi75Scq0Iie16wfy5y/H7G8WdUVJQmTpyo/v37uzx2dHS0oqOjdf311+uf//yntm7dqsceeyyv\nKMYxBzkW5GVmZmrw4MHavXu3aYVM8C2WSQLgVwp7Q+bCwT1/OHdl8bwB/vB/pyj98P8HKD/IO/5r\n1KhRTjeZ7PIvQcC0uSiLyD3mKsq69a6WC5CkCxcuaPXq1Ro7dqwaN26shx56SHv37rViGECpkHe8\nJykpSf/6179cLo8UFBSkjz/+2KrQAL9C3vGOwMBA9e7dW0uWLNHBgwf11ltvqWvXrh4LYTxp2bKl\npk+frn379umaa65xuqGdn33b8OHDC11CBfAH5J2SK2y2Gscljhx/3nnnndq7d6/bQhhXYmJi9OOP\nP+r55593eT3l+B1QQkKCXnzxxWKOBv6KYhgAfiUnJ8fj9pJecBdXYf0UFqcV/OHclcXzBvjD/52i\n9MP/H6D8IO/4p7fffluffPKJy+lypUt/KTR9+nRFRUVZECFQOuQe8xRlzfr8a9c7FsY4PrKysjRj\nxgy1adNGr7zySrk4P7h8kHe8Z/To0XlLCeT/K+a///3vatWqlZXhAX6DvOMdzz77rL7++mv17t3b\nq8dt2LChNm7cqDFjxhR6MzotLU1PPvmkV/sHfIG8U3KFrXaQf1kjm82m+++/X/Pnz1dISEiJ+hw/\nfrxef/11t0va2vuaPHmyDh8+XKI+4F9YJgmAXymsejUrK8uUOArrJygoyJQ4iqNChQoe4zbj3JXF\n8waQdwCYjbzjf7744gs9/fTTHv8y0WazaezYsbrzzjstiBAoPXKPOYYPH66bb77Z5bacnBylpqbq\n9OnTSk5O1q5du7Rjx4686cHzzxTjOF13dna2XnzxRS1btkxLly5VRESEOQMCSoG84x1ffvmlFi1a\n5HImhejoaI0bN8664AA/Q97xjoAA3/0dfYUKFfTOO++oatWqGjduXIHPYI43vufOnavnnnuOgj/4\nNfJOyRWlUMjxD5ZatGihTz/9tNQ56umnn9b27dv1xRdfuFwuScqdrfO9997TW2+9Vaq+YD2KYQD4\nleDgYI/bzbpwKKwi1R8vHIKDgy0vhimL5w0g7wAwG3nHv6xYsUJDhw7Ne55/eST7lyF333233njj\nDStCBLyC3GOOLl26qEuXLkXePycnR9u2bdN///tfzZ49WxkZGU5FMPlnjPnhhx/Uo0cPrVixQuHh\n4b4aBuAV5J3SS01NdZpBwc6eJz788P+zd9/hUZX5+8fvCWkkhBIUBCQQ3AUkKkWQDtIhgNJRQVcF\nEb+rYlnLYgEsbHF1dRV20c2CqIBIEZW4IFKlGQiwNCkSQgk1tDQgJPP7Y3+TnSTTM3Om+H5d11yX\nzJyc53NOxs+czNzzPNM9/mY0EIroO8Hj1Vdf1Z49ezR//ny7s3NK0ltvvaWPP/7Y4OoA19F3POfs\n3Flf/4SHh+vjjz92+jOumjZtmlavXq3Tp0/bXCrbbDZr1qxZmjp1akCeO7iOZZIABBRHL2Rms9mw\ndQ2dXTh46wXXm5zVZMS5C8bzBtB3ABiNvhM4Nm7cqCFDhpScC3tBmO7du2vOnDmt1B11AAAgAElE\nQVT+KhPwCnpPYAoLC1ObNm00Y8YMZWVl6YknnlBYWFi5D4SsQzFbtmzR4MGD/VEu4Bb6TsU9++yz\nOnnypCSVWyZg2LBh6tu3r58rBAILfSe4/OMf/9B1110nSeVCf5Z+t3DhwpJZ9IBARN/xnCs1WX9B\nqVWrVl4bOz4+Xs8++6zdv7sk6dy5c1q9erXXxoR/EIYBEFBiY2Nt3m+5GM7NzTWkjpycHJvT5FtU\nqVLFkDrcYe/cWRhx7nJychw+HojnDaDvADAafScw7NixQwMGDFB+fr4k20EYSWrbtq2WLFnCN4EQ\n9Og9ga9KlSp69913tXr1atWqVavccijW03evXr1a7733nr9KBVxC36mY1atXa+bMmSW1Wx9D1apV\n6QGADfSd4FK9enW99NJLDj+MLigoUGpqqtGlAS6j73jO2Wda1saPH+/18R9++OGSGfbsnTv6T/Aj\nDAMgoMTHxzt8/NKlS4bU4WwcZ3X6Q3x8vN3pJCVjzp29MSx1BeJ5A+g7AIxG3/G/ffv2qU+fPrpw\n4YIk+0GY5s2bKzU1VTExMX6pE/Amek/w6NSpk5YvX64aNWpIsv9N6YkTJ5bMGAEEIvqO565cuaJx\n48aV/Ns6DGcymTR16lTdcMMN/ioPCFj0neAzduzYkg/E7X0YzcwMCGT0Hc85qsm6HyQkJOjOO+/0\nyfgDBw60+7ma2WzWxo0bvT4ujEUYBkBAqVmzpsPHLR9Y+NrFixcdPu6sTn8IhHPnaAyTyRSQ5w0I\nhP93pODsOwA8Q9/xr8OHD6tnz546c+aMpPJBGIsmTZpo+fLlql69uuE1Ar5A7wkut912mxYsWODw\nm9KXL1/W+++/b3RpgMvoO56bPHmyDh48KKn08kjSf2ete+yxx/xZHhCw6DvBJzY2VsnJyXwYjaBF\n3/Gcs5os10AdOnTwWQ329m15f2jnzp0qLi722fjwPcIwAAKKZY1Qa9YXwleuXPF5kvb8+fMl6zja\nuwi3Vae/OavJiG8MOhsjEM8bQN8BYDT6jv9kZWWpR48eysrKkmQ7CGM2m5WYmKgVK1bo+uuv90ud\ngC/Qe4JPt27dNGLEiHLLJUn/mx3mww8/VGFhoZ8qBByj73hmx44devvtt20ujxQREaEZM2b4qzQg\n4NF3glO3bt1s3m/pf/v27TOyHMAt9B3PuVpTu3btfFZD27Zty91X9gsIx48f99n48D3CMAACSkJC\ngtNtTp065dMaXNl//fr1fVqDJ5ydO1+fN1fGcOX3CxiNvgPAaPQd/zhz5ox69Oihw4cPS7IfhKlX\nr56+//571atXzx9lAj5D7wlOb7zxRrn7rPvXuXPntHnzZiNLAlxG33FfcXGxxo4dq6KiIknll0d6\n6qmndOutt/qzRCCg0XeCU8uWLcvdZ329k5+fXzKzJxBo6Duec/XzombNmvmsBlf2fezYMZ+ND98j\nDAMgoMTGxpZMjWZvjdDMzEyf1mD5gMSadS21atVS5cqVfVqDJxo2bOjwcV+fN8n2ubOWmJjo8xoA\nd9F3ABiNvmO88+fPq2fPniXfKLQXhKlVq5a+//57p9dVQDCi9wSnX/3qVyVv0Nr7va1bt87IkgCX\n0XfcN3fuXG3dulWSys0KlZCQoMmTJ/upMiA40HeCkyt/f50+fdr3hQAeoO94ztXPi3y5fHXVqlUV\nFvbfuIS93192drbPxofvhfu7AAAoKzExUdnZ2XZfeA4cOKCePXv6bHzLmsxlWd6ECNRAh726LNNn\nHzhwwOc1HDx40O7vTSIMg8BF3wFgNPqOcS5duqRevXpp586dJddFFtZBmPj4eK1YsUKNGzf2V6mA\nz9F7glP//v21Z88eu7+39PR0gysCXEffcc/Zs2fL3WeptWPHjpozZ47XxrK3jIK1efPmlXzAZ0tc\nXJxGjBjhtZoAb6DvBJ9q1ao53SY/P9+ASgDP0Hc8Exsbq+uvv15nz54t936NNV+GYaT/9qALFy7Y\nfZz+E9wIwwAIOElJSdqyZYvdx329Rqiz/SclJfl0fE/Zqsv6W0Rnz57VhQsXfHbhkJ2drXPnzjm8\naAnUcwfQdwAYjb5jjLy8PPXr10/p6ekOgzBVq1bVsmXLdMstt/irVMAQ9J7g5OzNa1sfngOBgr5T\nMdbLJM2ZM8erYZiyY9ga88UXX3T4sw0bNiQMg4BD3wk+kZGRTrcpLCw0oBLAM/Qdz91yyy1atWqV\nwy9Z+3pWm8qVKzsMw9B/ghvLJAEIOK1atXL4+LZt23w6vrNv1dlawzQQNGjQQPHx8ZLsT+fmy3Nn\n67xZ11GzZk3Vq1fPZ+MDFUHfAWA0+o7vXb58WQMGDNDGjRsdBmFiY2OVmpqq22+/3V+lAoah9wSn\n2rVr233MbDYzbTcCGn3He0wmk9dvFR0TCET0neDjyqwLgbjEC2BB3/GcK+/FXLx40ac1ONs//Se4\nEYYBEHDsXThYPsTYvn27S1O5eqKoqEg7duxw+Ad9IF84tGzZ0uG5saw77Qv29m2ZnSaQzxtA3wFg\nNPqOb129elV333231qxZ4zAIEx0dra+++kodOnTwV6mAoeg9walq1ao277ecy6tXrxpZDuAW+o73\nmM1mr988GdP6MSAQ0XeCz6lTp5xuU6VKFQMqATxD3/Fc69atnW7jaNaWirp27Zry8vIk2b+2of8E\nN8IwAAJO69atFR0dLan0hxUWubm5Pgt1/PjjjyVJdMuY1hcRlStXdunF2V86derk8PHVq1f7bOxV\nq1Y5fLxz584+GxuoKPoOAKPRd3zn2rVrGj58uL777juHQZjIyEgtWrRI3bp181epgOHoPcHJ8uZs\nWZbzGBsba2Q5gFvoO57zxUww3pgZBgh09J3gc/DgQafbMOM4Ahl9x3POPtOSpNOnT/tsfFf2Tf8J\nboRhAAScqKgodezY0WFS9rvvvvPJ2CtWrLB5v2V2k86dOysiIsInY3tDz549bd5v+SBo7dq1unbt\nmtfHvXLlin744QeHb4r06tXL6+MC3kLfAWA0+o5vFBcX67777tPXX3/tMAgTERGhzz//XH379vVX\nqYBf0HuC09GjR+0+ZjKZSpbLBQIRfcczvpgFxlszw7j6s4C/0HeCz+bNm8vdZ/0+c82aNRUTE2Nk\nSYBb6Dueq1u3rpKSkiTJ7udLaWlpPht/y5YtTrdp0KCBz8aH7xGGARCQevfubfcxs9msRYsW+WTc\nBQsWOHw80AMd7dq1U1xcnCTbCeS8vDwtW7bM6+OmpqaqoKCg1HjWFy7VqlXTHXfc4fVxAW+i7wAw\nGn3H+x566CEtWLDAYRCmUqVKmj17tu6++25/lQn4Fb0n+OzYscPh4zfddJNBlQCeoe+4x4gZYSoy\nMwwzxSAY0HeCy9KlS23eb/kwv3nz5gZXBLiPvuO5vn37OgwSbdq0yWdj29q39fVNYmIiyyQFOcIw\nAALS0KFDy91nufiVpPT0dB04cMCrY+7evVs7d+4s9eGJ9YueyWTSsGHDvDqmt1WqVEmDBg1yeOEw\nZ84cr49rb5+W39ngwYN5gwQBj74DwGj0He8aP368PvnkE4dBmLCwMH300UcaOXKkv8oE/I7eE3ws\ny77Z06xZMwOrAdxH33HdhAkTVFRUZNhNKv8tbMu/TSaTDh8+7PDnf/75Z8PPEeAK+k7w+Omnn5SW\nllbu7zhrHTp0MLgqwH30Hc+NGDHC5v2W49q8ebNyc3N9Mvby5ctt3m/53bVt29Yn48I4hGEABKRG\njRqpXbt2pS4Wynr//fe9OuZ7771n835LDR06dFBCQoJXx/SFUaNG2bzfcuGwcOFCnTx50mvjHT16\nVEuWLHH45qy9moBAQt8BYDT6jvc8/fTT+vDDD+2+gWo5vg8++EAPPvig8QUCAYTeE1xWrVqlzMxM\nSbL7AVGXLl2MLAlwG30neLEcEoIVfSd4TJ061ek2ffr0MaASoGLoO55r06aNmjZtKsn2igf5+fma\nPXu218dNS0tTenq6wzAe/Sf4EYYBELAefvhhm/dbXphmzpypU6dOeWWs48eP69NPP3UY6HjooYe8\nMpav9ezZU/Xr15dk+8KhsLBQb731ltfG+/Of/6xr166VGsf6PCYkJKh79+5eGw/wJfoOAKPRdyru\n5Zdf1nvvvWfzzQvLfSaTSW+//bbGjx/vpyqBwELvCR6TJ08ud5/1ubzhhhvUokULAysCPEPfAWA0\n+k7g27Bhgz777DO7M1RJUr169ZgZBkGDvuO5sWPH2g2kmM1mTZ8+3esh3b/97W/l7rM+n+Hh4Row\nYIBXx4TxCMMACFj333+/atWqJcl+GvTFF1/0yljPP/+8Ll++XGoM6xe92rVra/To0V4Zy9fCwsL0\n1FNP2bwwsFx0TZs2zStT8u3Zs0czZsywecFl+eDpmWeeqfA4gFHoOwCMRt+pmD/+8Y+aOnWq0yDM\nm2++qaeeespPVQKBh94THKZPn65169bZ7HGW/sa5Q7Cg7wAwGn0nsGVnZ+u+++4r+be9a51HHnnE\n6NIAj9F3PDdu3DjVqFFDUulzZ/nvvXv3evVL3itXrtScOXMcfrY1ZMgQxcfHe21M+AdhGAABKyoq\nShMmTLB7IWw2mzV79mwtWbKkQuPMnz9fc+fOdfgG49NPP62IiIgKjZOZmamwsDCHt9dee61CY1iM\nGzeu5EXa3uwwo0ePLpnRxRNXr17V6NGjS9aYtnXBFR8frzFjxng8BmA0+g4Ao9F3PPf+++9r4sSJ\nToMwL7/8stfebAJCBb3HPRcvXtS6desqVKO7li5dqqefftrhN6UjIiL02GOPGVoX4Cn6DgCj0Xfc\nc/XqVW3durVCNbrq/Pnz6tOnj44cOSKp9PvW1tc6sbGxevzxxw2pCfAG+o7nqlSpoieffNLhl7wn\nTZqknTt3VnisCxculPrcyt6MMxMmTKjwWPA/wjAAAtpTTz2l+vXr21xn0fIC+Jvf/EZpaWke7X/T\npk0aO3aswzcYGzRooCeffNKj/dtiMpns3rwlNjZWU6ZMcXjRtWXLFj300EMeTS1XXFysBx54QNu3\nby/Zr61x3njjDcXExHh+IIAf0HcAGI2+476ZM2fqqaeesrk/6yDM7373O02ZMsUrYwKhht7jugsX\nLqhr167q1auXNmzY4KVqbSsuLtZf//pXDR48uNxytBaW39mYMWPUsGFDn9YDeBN9B4DR6DuuKygo\nUJs2bTRs2DCfhmJ+/PFHtWrVSunp6TY/yJf+d63zyiuvlMwUAQQL+o7nnnvuuXLnzvpL2FeuXFHv\n3r0rFIg5d+6cevTooczMzFL7t4xhGXvQoEFq165dBY4GgYIwDICAVrlyZb3zzjsl/7b1Anjp0iX1\n7t1bS5cudWvfS5YsUd++fZWXl1dqnxaWF7133nlHUVFRFTmMcsxmc8nN1tje8Nhjj+m2224rd9Fl\nHYj57LPPNGzYMOXk5Li830uXLmnw4MGaP39+uT9YrMdp0aKFxo0b552DAQxE3wFgNPqOe+bPn1/q\nGsPeGxe//e1v9ac//ckrYwKhiN7jvpUrV6pTp07q1q2bPvroI2VnZ3tt35K0YcMGtW7dWs8++2y5\nGTil0n9v1atXT1OnTvXq+ICv0XcAGI2+475FixapTZs26tq1q2bPnl1yfBV14cIFTZkyRZ07d9aR\nI0dsBmGsr3WaN2+uZ555xitjA0ai73guJiZG7733Xsm/bZ27U6dO6c477/Rodp1t27apS5cu2rZt\nm8PPtqpUqaK//OUvnh4GAky4vwsAAGeGDh2q++67r2T9PsuLlOWF3XLxcNddd+nee+/VK6+8oiZN\nmtjd3969ezVlypSSMIdk/0OU0aNHa9CgQT4/Rl8ICwvTJ598orZt2+rKlSulXtytAzKLFy9WWlqa\nXn/9dd1zzz12L5IuX76szz77TJMnT9bx48ftXiyYzWbFxMTok08+4ZtQCFr0Hc/k5eVp3rx5bv/c\niRMnHD6+Zs0aFRYWurXPuLg4jRgxwu1aAH+h77hm8+bNuv/++1VcXCzJ9jFJUkJCgm677TalpKQY\nVtuAAQNUu3Ztw8YDvIHe4z6TyaQ1a9ZozZo1+u1vf6tu3bpp0KBB6tixo2699Va3/wY6ePCgFi1a\npE8//VS7du0q9Q1Le39vRUZG6tNPP1W1atW8d2CAQeg7AIxG33GP5ZjWrVundevW6bHHHlOPHj3U\nr18/derUSbfccovL1ztFRUXaunWr5s6dq5SUFOXm5to8Z9bjms1m1ahRQ4sWLVKlSpW8eGSAceg7\nnhs0aJDGjBmjlJSUcudO+u+xXrhwQYMHD1avXr308ssvq2PHjgoLsz//x549e/Tee+8pJSWl1JfF\ny7I89re//U2JiYk+O0YYy2Qmqg4gCOTl5al169bat2+f0zcGJally5bq0KGDEhMTVaVKFeXk5Cgj\nI0Pr16/Xjh07bP6M5T7Lv5s1a6Yff/zRa8v8ZGZmKjEx0WaIxPIiO2nSJL366qteGc8iJSVFjzzy\nSLnZYazHt9xXvXp1devWTc2bN9d1110ns9mss2fPaseOHVq5cqUuXbrk9PybTCalpKTowQcf9Opx\nAEaj73g+XiBo2LChDh065O8yALfQd5z7+OOP9dBDD9l948JfTCaTVq1apS5duvi7FMBt9B7392/v\nb6uYmBg1btxYv/71r1W3bl3Vrl1bVapUUVRUlK5evaqcnBxdunRJ586d0+7du/Wf//yn1Cydjs6/\n5f6wsDDNnj1b9913n0fHAgQC+k7gCAsLc3gMGRkZSkhI8GOFgHfQd5y7ePGiatSo4fR6JzY2Vk2a\nNFHjxo1Vt25d1apVSzExMYqKilJeXp7OnTun7OxsHThwQBs3biyZwcLZe9OW+6tUqaLU1FR16tTJ\no+MAAgV9x3NXrlxRp06dtHXrVpfO3XXXXaeePXsqISFBN9xwg8LDw3X69GmdOHFCq1ev1s8//2zz\n58reZzKZNGHChFIz+yD4MTMMgKAQGxurZcuWqXPnzjp69Kik0i9S1ola6b/TnW3bts3mvlx58WzY\nsKGWLVvmtYsGfxozZoyOHTumKVOmSPrf+o5lZ4kxmUy6ePGiFi9erMWLF5fbjyvfUDSZTJoyZQpB\nGIQE+o7nXP2GkDVHH2p7sj8gGNF3vMfIvhFIoRzAE/Qe91j/LWV9XiSpoKBA27dv1/bt213el6sf\nDElSVFSUPvnkEw0bNqxCxwD4G30HgNHoO+6zd72Tn5+v9PR0paenO92Hu9c68fHxWrJkiTp27Fjh\n+gF/o+94LioqSt9++626d++uXbt2SSp/7qzvy87Otjtbub0+VPY+k8mkBx54gCBMCLI/ZxAABJiE\nhAStWrVKv/rVr2y+AWl5EbS+iLB1K/tiWTbM0bhxY61cuVL16tXz27F626RJkzRp0qRSx+/snJS9\nSeUv0srub/LkyXr55Zf9eaiAV9F3PGd9bly5eWNf1tsDwYq+4x3u9iBPb0CooPe4x9Ybqs7+nnL2\nN1bZc2v9mMlk0q9//Wv98MMPBGEQMug7AIxG33Gdo+uVso9761qnRYsW2rJlC0EYhBT6jueuu+46\nrVq1Sm3btvXa51rWP299v8lk0rPPPquZM2f67XjhO4RhAASVRo0aKS0tTX369HF4seCIrRdLy8/3\n69dPP/74oxo2bOjT43C1Vm+aNGmSPv/8c8XFxTm8gHLE3oVCXFycFixYoFdeecWnxwD4A32n4uMZ\ndQNCBX3H/f376waEEnqPa2yF4ioynrM3aqOjo/XCCy9o27Ztuv322712HEAgoO8EjlA4BsAV9B3n\nHF3reDKes2udypUr6/XXXzfkvAH+QN/xXM2aNbV27VqNHz++3PFb1+SMvT5kMpkUHx+vBQsW6M9/\n/rNPjwX+QxgGQNCpVq2aUlNTNWvWLNWuXdvmhbS9b+rau5ivXbu2Zs+erW+++UZVq1b1af1la7BX\nqy8MGzZMe/fu1dChQ21ePDmqpex2lp8fPny49u7dq8GDBxt2HIDR6DsVH8/IGxAK6Dvu75+eA1Qc\nvce2OnXq6MMPP9Tdd99d8uUCe39PuTq2vZ+x7LdatWp6+umntX//fk2dOjUkpjsHbKHvBIZQOAbA\nVfQd26KiotSjRw/FxMQYcq0TGxurCRMm6ODBg5o4caLCw8O9chxAIKLveC4iIkLTpk3TmjVr1Lx5\n8wp/rmXpQ5GRkRo/frz279/PZ1shjjAMgKB1//3369ChQ5o2bZqaNWvmMGVe9kLBcktKStL06dOV\nkZGhUaNG+bzmQPhmcd26dTV//nxt3bpVo0ePdvkPHOttYmJi9MADDyg9PV3z5s1T3bp1Dasf8Cf6\nTsXGM/oGhAL6jnv7p+cA3kHvKS0yMlJjx47VokWLlJ2drRUrVuill15Sz549Vb16dbtjOvrwyNbP\n1KxZU8OHD9e8efOUlZWlv/zlL7rxxhsrXD8QDOg7/hUKxwC4i75TWnR0tL777jtduHBBa9as0eTJ\nk9W7d++SD+5t3ZwFZcpuHxsbq759+yolJUUnT57UO++8ozp16lS4diBY0Hc816lTJ6Wnp+ubb75R\nv379FBER4VI/KltzYmKiJk6cqIyMDE2bNk3x8fGGHgeMZzIT9QYQIg4ePKh///vfSk9P1+7du3X8\n+HHl5OQoPz9fMTExiouL04033qhmzZqpVatW6tevn2666SZ/l+13V65c0cqVK7VmzRrt2rVL+/fv\n1/nz55WTkyNJiouLU3x8vBo3bqykpCTdeeed6tatm6KiovxcOeB/9B0ARqPvAPAHeo9j+/fv1/bt\n23Xo0CFlZGQoIyNDWVlZysnJUV5envLy8nTt2jVFRUUpKipK1atXV+3atVW3bl01btxYN998s1q3\nbq2bb77Z34cCBAz6jjFee+01h48/9dRTPv+2ORAo6Dv2nTx5Utu3b9dPP/2ko0ePltzOnDmj/Px8\n5efnq6CgQGazWdHR0YqJidH111+vunXrKjExUbfeeqtatGihtm3bMgMMYIW+47mcnBytWLFC69ev\n1969e3Xw4MGSz7WKiopUuXJlVa9eXQkJCfrVr36lNm3aqFOnTrrtttv8XToMRhgGAAAAAAAAAAAA\nAAAAIYNlkgAAAAAAAAAAAAAAABAyCMMAAAAAAAAAAAAAAAAgZBCGAQAAAAAAAAAAAAAAQMggDAMA\nAAAAAAAAAAAAAICQQRgGAAAAAAAAAAAAAAAAIYMwDAAAAAAAAAAAAAAAAEIGYRgAAAAAAAAAAAAA\nAACEDMIwAAAAAAAAAAAAAAAACBmEYQAAAAAAAAAAAAAAABAyCMMAAAAAAAAAAAAAAAAgZBCGAQAA\nAAAAAAAAAAAAQMggDAMAAAAAAAAAAAAAAICQQRgGAAAAAAAAAAAAAAAAIYMwDAAAAAAAAAAAAAAA\nAEIGYRgAAAAAAAAAAAAAAACEDMIwAAAAAAAAAAAAAAAACBmEYQAAAAAAAAAAAAAAABAyCMMAAAAA\nAAAAAAAAAAAgZBCGAQAAAAAAAAAAAAAAQMggDAMAAAAAAAAAAAAAAICQQRgGAAAAAAAAAAAAAAAA\nIYMwDAAAAAAAAAAAAAAAAEIGYRgAAAAAAAAAAAAAAACEDMIwAAAAAAAAAAAAAAAACBmEYQAAAAAA\nAAAAAAAAABAyCMMAAAAAAAAAAAAAAAAgZBCGAQAAAAAAAAAAAAAAQMggDAMAAAAAAAAAAAAAAICQ\nQRgGAAAAAAAAAAAAAAAAIYMwDAAAAAAAAAAAAAAAAEIGYRgAAAAAAAAAAAAAAACEDMIwAAAAAAAA\nAAAAAAAACBmEYQAAAAAAAAAAAAAAABAyCMMAAAAAAAAAAAAAAAAgZBCGAQAAAAAAAAAAAAAAQMgg\nDAMAAAAAAAB4IDMzU2FhYS7fjhw54u+SAQAAAAD4RQj3dwEAAAAAAABAMDOZTA4fN5vNTrcBAAAA\nAADeQxgGAAAAAAAAqCCz2WzzfkIwAAAAAAAYj2WSAAAAAAAAAAAAAAAAEDIIwwAAAAAAAAAAAAAA\nACBkEIYBAAAAAAAAAAAAAABAyCAMAwAAAAAAAAAAAAAAgJBBGAYAAAAAAAAAAAAAAAAhgzAMAAAA\nAAAAAAAAAAAAQgZhGAAAAAAAAAAAAAAAAIQMwjAAAAAAAAAAAAAAAAAIGeH+LgAAAAAAAAAIdiaT\nyd8lAAAAAACA/48wDAAAAAAAAFABZrPZ3yUAAAAAAAArhGEAAAAAAAAAD7k6IwwzxwAAAAAAYByT\nma+uAAAAAAAAAAAAAAAAIESE+bsAAAAAAAAAAAAAAAAAwFsIwwAAAAAAAAAAAAAAACBkEIYBAAAA\nAAAAAAAAAABAyCAMAwAAAAAAAAAAAAAAgJBBGAYAAAAAAAAAAAAAAAAhgzAMAAAAAAAAAAAAAAAA\nQgZhGAAAAAAAAAAAAAAAAIQMwjAAAAAAAAAAAAAAAAAIGYRhAAAAAAAAAAAAAAAAEDIIwwAAAAAA\nAAAAAAAAACBkhPu7AAAAAAAAAPwymM1m7d69W//5z3+0b98+HThwQCdOnNDp06eVnZ2ty5cv68qV\nKyosLFRUVJRiYmJK3eLi4nTjjTeqYcOGatCggRo2bFhyi4iI8PfhIQQdOXJEGzdu1L59+5SRkaFD\nhw7pxIkTysvLU35+vvLy8hQWFqbY2FjFxsaqRo0aSkxMVKNGjdSkSRO1b99et956q0wmk78PBQAA\nAAB+UUxms9ns7yIAAAAAAAAQmrKysrRkyRJ988032rBhgy5evFhuG1eCAo7ewoqMjFTLli3Vrl27\nkluDBg0qVHcgO3z4sFJSUvxdhtc999xzqlq1ql9ryMvL09dff60vv/xS69ev1/Hjx8tt4+j5aut5\nWq1aNXXp0kUjR47U3XffrdjYWK/WDAAAAAAojzAMAAAAAAAAvKq4uFhfffWVpk+fru+//74kIODL\n2THKvsVVr149DR48WMOHD1enTp18MnZmZqYSExNd3v7w4cNKSEio8Lhr1pxcf8sAACAASURBVKxR\nt27dKryfQGIymZSRkeGV8+OJtWvX6oMPPtDSpUtVUFBQUpO3WJ6fMTExGjFihF544QU1adLEa/sH\nAAAAAJQW5u8CAAAAAAAAEDoWL16sW265RUOGDNGKFSsk/TdUYAkWmM1mr9+sx7DcsrKy9MEHH6hr\n16668cYb9eSTT+ro0aM+OeayY5e9WbYxetxgufnTV199pfbt2+vOO+/UggULdPnyZa8/X6X//a4K\nCgo0a9YsJSUlaeTIkcrIyPDn4QMAAABAyCIMAwAAAAAAgArLyspS3759NXToUO3bt89uoMAXnAUQ\nTpw4oWnTpmnjxo0+Gd9eDUZMyOyLcJGRN3/56aef1L17dw0aNEibN2/26fPV1vPSbDbriy++0K23\n3qq33npLRUVFXhkLAAAAAPBfhGEAAAAAAABQIStWrNCtt96q5cuXGxaAccbfYQsEpuLiYk2ePFkt\nWrTQ6tWrS0IwRj1fy4ZiCgoK9MILL6hz5846efKkT8cGAAAAgF8SwjAAAAAAAADw2Mcff6zk5GRd\nuHChVKjAVcG4tA6C09mzZ9WrVy+99tprKiws9Onz1ZmyoZhNmzbp9ttv16ZNmzw+PgAAAADA/xCG\nAQAAAAAAgEcWLlyoMWPGlCzx4kqowF5owN1ldQjIwB3btm1Ty5YttWrVqlKzFzlj6znmynPU1eel\n9fYnTpxQjx49tGrVqoocKgAAAABAhGEAAAAAAADggR07dmj06NElH+Y7CxY4CxO4OuOGNwIIocTT\nmXWMuAWKtLQ09ejRQ1lZWS7PBuPo+ersmO09L+0pu2zSXXfdRSAGAAAAACoo3N8FAAAAAAAAILhc\nvXpVo0aN0tWrVyW5FoSx3s46GBAZGanExEQlJCTo+uuvV40aNRQdHa3IyEgVFRXpypUrKigoUHZ2\ntk6fPq0TJ07o8OHDunbtWqkxbM0aE+rcWd7nl2rTpk3q27evcnJyJLn/XLW+T5Lq16+vRo0aqX79\n+qpWrZpiYmJkMpmUl5ens2fP6ueff9aePXuUn59faj9lwzJlWYds8vLyNGjQIG3evFlNmzatwNED\nAAAAwC8XYRgAAAAAAAC45W9/+5v27NlTMsuGI9bbmEwmRUdHq1evXurXr586d+6spk2bKizMvcmL\ni4qKlJGRoR07dmjLli3avHmzNm7caDOcE6qhmGA4Ln+HdX7++WcNGDDAoyCM5b/r1Kmju+66SwMG\nDFC7du0UHx/vdNyioiKlp6fryy+/1Ny5c5WZmVkuFOMsEJObm6tBgwYpLS1NcXFxbh03AAAAAEAy\nmf39VykAAAAAAACCRl5enho0aKDz589LchwwsHzobzKZVLNmTb3wwgsaO3asqlWr5vW6Ll++rDVr\n1ujrr7/WwoULdfr06VL1mUwmzZ07VyNGjPDamJmZmUpMTHQYCrI+BxkZGUpISPDa+IHqzJkzat++\nvTIyMiS5/hzx5vnJyclRu3bt9NNPP7lUg/U2JpNJHTt21DPPPKO77rrL7bCWNbPZrHnz5mny5Mk6\nePBgqaCNK8+ZwYMHa8GCBR6PDwAAAAC/VJ7/JQcAAAAAAIBfnLlz5+rcuXOSXA853HPPPTpw4ICe\nffZZnwRhJCk6Olp9+vTRBx98oKysLH333XcaPny4IiMjg2IWlVBRUFCg/v3769ChQ5JcC6FIUtOm\nTVWrVi2v1XH//fdr7969TmuwsDxXGzRooC+//FJr167VoEGDKhSEkf57jPfee6927typ3//+96pU\nqZLN5cJs1WI2m7V48WItXLiwQjUAAAAAwC8RYRgAAAAAAAC4bPbs2U63sQ7CvPjii/rss898FoKx\nN3737t01b948HT16VC+99JKqV69u2Pi/VMXFxbrnnnu0ZcsWp0toWc+OUqdOHX377beKjo72Sh2z\nZ8/WV1995dYyXiaTSaNHj9bOnTs1cOBAr9RhLTIyUm+88Ya+/vprVatWzaWAjqW2J598UhcvXvR6\nTQAAAAAQylgmCQAAAAAAAC7JyclRfHy8iouLJdmecSNQl3jJzc1VTk6O6tSp47V9skxSaY8//rim\nT5/uVhAmNjZWa9euVcuWLb1Sw6lTp5SUlOR0GS/rGsLCwjR16lQ9//zzXqnBmbS0NPXu3VsXL150\n+bnzwgsvaOrUqYbUBwAAAAChgJlhAAAAAAAA4JL169erqKhIkv0gjEVkZKTef/99w2pzpkqVKl4N\nwqC0t956y+0gTHh4uD7//HOvBWEk6ZlnnnFpGS/L4yaTSe+++65hQRhJatOmjb7++mtFRERIsr9c\nkuUxs9msadOmlRwXAAAAAMA5wjAAAAAAAABwye7du51uYwkYDBkyhPDJL8Tnn3+uF1980WGow5rl\nOfL+++8rOTnZa3Xs2rVLn3/+udM6rGdc+f3vf6/HH3/cazW4qlOnTvrrX//qMLBj/Vhubq7eeecd\nI0oDAAAAgJBAGAYAAAAAAAAuOXjwoMvb9u3b14eVIFCsW7dODz74YMm/nc0KY73sz6OPPurVWl55\n5RWHS3hZ1yBJPXr00Ouvv+7VGtzxf//3f+revXvJObHHUnNKSkrJzEwAAAAAAMcIwwAAAAAAAMAl\nZ86ccXnbpKQkH1aCQPDTTz9p8ODBunr1qiTXgzD33nuvpk6d6tVa9uzZoyVLljhcpsk6cBIbG6t/\n/etfLs9m4yvTpk1TpUqVJNleLsn6WE6fPq1vvvnGsNoAAAAAIJgRhgEAAAAAAIBLcnNzXd62evXq\nPqwE/nbq1CklJyfr/PnzklwPwnTt2lUzZ870ej0zZsxwaTtLHS+//LJuvPFGr9fhriZNmmjUqFEO\nz5+1WbNm+bYgAAAAAAgRhGEAAAAAAADgkmvXrrm8bU5Ojg8rgT/l5+drwIABOnz4sCTnQRiLZs2a\nafHixYqIiPBqPVeuXNGnn37qdKkhi5o1a+qJJ57wag0VMWHCBKfbWAJFK1asUGFhoQFVAQAAAEBw\nIwwDAAAAAAAAl1SuXNnlbY8cOeLDSuAvxcXFGjlypLZu3epwSSLpfwEUs9msunXrKjU1VdWqVfN6\nTV9++aVLM9RYZoV5/PHHFRMT4/U6PNWyZUu1aNGipL6yrI8pPz9f69atM7I8AAAAAAhKhGEAAAAA\nAADgkpo1a7q87dKlS31YCfzl8ccf19KlS90KwlSpUkXffPON6tev75Oavv76a4ePWwdMTCaTHnzw\nQZ/UUREDBw50edvly5f7sBIAAAAACA2EYQAAAAAAAOCShIQEp9tYQhJffPGFzp49a0BVMMqf/vQn\n/eMf/3ArCBMeHq4vvvhCLVq08ElNZrNZy5Ytc7hEkmU7k8mkDh06uPQ8NlqfPn1c3nbz5s0+rAQA\nAAAAQgNhGAAAAAAAALgkKSnJ4ePWAYkLFy7o//7v/3xdEgwyb948TZw40WnoxMISPvn73//uVtDD\nXT/++KOys7NLxnSmX79+PqulIlq2bKlKlSpJkt1zbAkh7dixw8jSAAAAACAoEYYBAAAAAACAS9q1\na+d0G0sIwmw2a+HChXr44YdVXFxsQHXwlTVr1pRaWsjZrDCW58DEiRM1ZswYn9a2bt06t7bv1auX\njyqpmMqVK6tx48Z2H7c+5xcvXlRmZqYRZQEAAABA0CIMAwAAAAAAAJc0aNBAzZo1k2R/9grpf4EY\nSZo1a5bat2/P0i5Bau/evRoyZIgKCwsluR6EGT16tF5//XWf17dt2zaHj1s/TyMiItS8eXNfl+Sx\nBg0auDS7jSTt27fPx9UAAAAAQHAjDAMAAAAAAACX3XvvvS59YG82m0uCEWlpaWrfvr169eqlr776\nSteuXTOgUlTUqVOnlJycrAsXLkhyPQjTvXt3paSkGFJjenq606WbLHU3a9ZMERERRpTlkXr16rm8\n7fHjx31YCQAAAAAEP8IwAAAAAAAAcNm4ceMUFRUlyfHsMBaWgITJZNL333+vQYMGqW7duho/fryW\nLVumK1eu+LpkeCA/P1/9+/cvWY7HWRDG4pZbbtHChQsVHh7u8xoLCgp04MABl7Y1mUy66aabfFxR\nxVStWtXlbQnDAAAAAIBjhGEAAAAAAADgsuuvv15PPfVUSTjC1UCMdSgmOztbH374ofr166eaNWsq\nOTlZb7/9trZs2aKioiJfHwKcKC4u1ogRI0pmXXElCGM2m1WvXj2lpqa6FeqoiCNHjqi4uLhkfGcS\nEhJ8XVKFVK5c2eVts7KyfFgJAAAAAAQ/k9nVhWgBAAAAAAAASXl5eWrRooV+/vnnUmEIV5UN0Fj/\nbExMjO644w516NBB7du3V7t27VSzZk3vFO5lmZmZSkxMdBgYsV4+KCMjI+ADGZI0fvx4ffjhh24F\nYeLi4rRu3TrddtttRpWp77//Xr169XJaZ6iwfi7dd999+uSTT/xdEgAAAAAELN/PVwoAAAAAAICQ\nEhsbq88//1xdunRRfn5+yYwvrgYSrLez/KxFQUGBVq9erdWrV5fc16RJE3Xq1EmdO3dWjx49VK9e\nPa8dC0r7wx/+4HYQJiIiQgsWLDA0CCNJx44dc2t7V2Yx8jdX/x8qKCjwcSUAAAAAENwIwwAAAAAA\nAMBtrVq10oIFCzRkyBBdvnxZkjyaJabstmXDMZK0f/9+7du3TykpKZKkpKQk9e3bV8OGDVPbtm0r\nchiwMmfOHL388ssuh0Yss5TMmDFDvXr18nF15Z04ccKt7UNp9hjCMAAAAADgWJi/CwAAAAAAAEBw\n6tu3r7777jtdd911pWYSsRVocZXZbC53s96nyWTSnj179Pbbb6t9+/Zq0KCBJk6cqJ9//tlrx/VL\ntHr1aj388MMl/3Y2K4wlCPPqq6/qwQcfNKDC8nJzc/0ybiCwBNAAAAAAALYRhgEAAAAAAIDHOnbs\nqB07dqhHjx4lIQnLzTrAUhGOwjHHjh3TH//4RzVu3Fh9+/YttbwSXLNnzx4NGTJEhYWFklwPwvzm\nN7/RpEmTjCqznF/y7CihNMsNAAAAAPgCYRgAAAAAAABUSJ06dbR8+XLNmTNHDRo0KLVckq2ZXSrK\nVjBGkpYvX67u3bvrzjvv1JYtWyo8zi/BiRMnlJycrIsXL0pyPQjTs2dPffTRR0aVaROzowAAAAAA\n7CEMAwAAAAAAAK8YOXKkDhw4oA8//FA333xzSfil7Mwu1sGYigZkbAVu1q5dq7Zt2+q3v/2t8vPz\nvXV4IScvL08DBgzQkSNHJDkPwljcdtttWrBggSpVquTzGh25cuWKW9vbet4F081yDAAAAAAA5wjD\nAAAAAAAAwGvCw8M1ZswY7d69WytXrtRvfvMbVa9evdQH+o6WPfI0HFM2bCNJf//739WqVSvt37/f\newcYIoqKijR8+HBt27atJLBkj/XvrX79+kpNTVVcXJxRpdoVERHh1vZln3fBfAMAAAAAOEYYBgAA\nAAAAAD7RtWtX/etf/9Lp06f17bff6sknnyw1Y4y9mWOkioVjrPexf/9+tWvXTmlpaV4/vmD22GOP\n6d///rdbQZhq1aopNTVVderUMapMh2JiYtza3t8zu/hiphgAAAAAgG3h/i4AAAAAAAAAoS08PFy9\ne/dW7969JUnnzp3T+vXrtW7dOq1bt07p6em6du1ayfZlwxllP/x3ZWYM6+WYLly4oH79+mn9+vVq\n0qSJl44qeL355pv65z//6VYQJjIyUgsXLlRSUpJRZTpVuXJlp9tYjtFkMumll17Sa6+9ZkBlAAAA\nAAB/IwwDAAAAAAAAQ8XHx2vgwIEaOHCgJKmgoEAbN27UDz/8oA0bNmjz5s26dOlSyfbWgY2yyy05\nYh2IOX/+vIYOHaq0tDSXQhSh6rPPPtMrr7ziNAhjYTmHH330kbp3725Aha6rUqWKW9tfvnzZR5UA\nAAAAAAINYRgAAAAAAAD4VeXKldW9e/eSsIXZbNbWrVu1atUqLVu2TD/88IMKCwtLHpNcD8VYwhxm\ns1l79+7VlClT9Mc//tHHRxSYVq1apTFjxri0xI71jCpTpkzR/fffb0CF7qlXr55b2+fn5/uoEgAA\nAABAoAnzdwEAAAAAAACANZPJpNatW+u5557TihUrlJ2drblz52ro0KGKjo4uCWpYB2Nc2afZbNa7\n776ro0eP+voQAs7u3bs1ZMiQcqEiW6yDMA8//LBefvllo8p0S0JCglvbnzp1ykeVAAAAAAACDWEY\nAAAAAAAABLTY2FiNGDFC8+fPV1ZWlv7yl78oISGh1FI/jgIx1sGPwsJCvfvuuz6vOZCcOHFCycnJ\nJUtPuRqE6dOnj2bMmGFUmW5zNwxz7NgxH1UCAAAAAAg0hGEAAAAAAAAQNKpXr66nn35aBw4c0J/+\n9CdVrlzZYbjDmiXo8emnn7r8M8EuLy9P/fv3L5kNx1kQxqJFixb64osvFBYWuG8f1q9fX5GRkZIc\nh6Esv/eMjAyjSgMAAAAA+Fng/jULAAAAAAAA2BEREaHf/e53Wr16tapWrSrJ9dlhzp49q3Xr1vm8\nRn8rKirSsGHDtH379lKz6NhiOXdms1kJCQlaunSpYmNjjSrVI+Hh4WrevLnD47J+7MyZM8rKyjKi\nNAAAAACAnxGGAQAAAAAAQNBq06aNli5dWhLmcBSIsfZLCMOMHz9ey5YtcysIU716dX377be64YYb\njCqzQu644w63tt+yZYuPKgEAAAAABBLCMAAAAAAAAAhqHTt21COPPOLW0kdbt271YUX+9/rrrysl\nJcWtIExkZKQWL16sm2++2agyK6xt27Zubb9ixQofVQIAAAAACCSEYQAAAAAAABD0nn/+eZe3NZvN\nysjI8GE1/vXJJ59o0qRJToMwFmazWSaTSSkpKeratasBFXpPz549XZoVyHIuvvrqK6NKAwAAAAD4\nEWEYAAAAAAAABL3ExEQlJSVJch6KkKSsrCxD6jLaypUrNXbsWJeWi7IEREwmk9544w2NGjXKgAq9\n64YbbtAdd9zhMPRj/djRo0e1YcMGI0oDAAAAAPgRYRgAAAAAAACEhObNm7u8VFJubq6PqzHerl27\nNHToUF27dk2SnC6PZAnCPPLII/r9739vVJleN3jwYLe2nzZtmo8qAQAAAAAECsIwAAAAAAAACAm1\na9d2edvCwkIfVmK8rKwsJScn69KlS5JcD8L069dP06dPN6pMnxg5cqTCwv77NqcrSyUtXLgwpJfJ\nAgAAAAAQhgEAAAAAAECIiI6OdnnbKlWq+LASY+Xm5io5OVnHjx+X5DwIY9GqVSvNnz+/JEgSrBo0\naKABAwa4vFRSYWGhnn/+eSNKAwAAAAD4SXD/pQsAAAAAAAD8f6dPn3Z522rVqvmwEuMUFRVp6NCh\n+s9//iPJtSCM2WxWw4YN9c033ygmJsaQOn3tySefdLqNZTYcs9msRYsWKTU11YDKAAAAAAD+QBgG\nAAAAAAAAISE9Pd3pNpZAxE033WRARb43btw4fffddyUhD3usgzA1atRQamqqW8tKBbru3burVatW\nJb9fRyzn6qGHHtLJkycNqhAAAAAAYCTCMAAAAAAAAAh6GRkZ2rZtm9NQiMXNN99sQFW+NWXKFM2c\nOdOtIExUVJS+/PJLNW3a1KgyDfP222873cb6PJ09e1b9+/dXTk6OL8sCAAAAAPgBYRgAAAAAAAA4\ntWHDBo0dO1Y///yzv0ux6Q9/+INb23fp0sVHlRjj448/1pQpU9wKwoSFhWnWrFnq3LmzUWUaqmvX\nrrr77rudzg5jvVzS9u3blZycrAsXLhhYqfsuXbqkqVOn6sSJE/4uBQAAAACCAmEYAAAAAAAAOFVY\nWKh//etfatq0qR544AHt2LHD3yWVWLZsmVJSUhwGIKwfq1Spknr37m1EaT6xYsUKjRs3zulyQBaW\n8MfUqVM1cuRIH1fnX3/9618VFxcnSS4FYiRp/fr1at++fUAGvc6cOaNXX31VDRo00CuvvKKCggJ/\nlwQAAAAAQYEwDAAAAAAAAFxWXFysTz/9VC1btlSXLl30xRdf6Nq1a36rZ926daUCHo5mSbEEIPr3\n769q1aoZUZ7X7dy5U8OGDSs5585mhbEc86OPPqrnn3/eqDL9pmHDhnr//fdLzouzQIxlm3379qlV\nq1b66KOPDKnTmc2bN2v06NGqX7++3njjDV28eNHfJQEAAABAUCEMAwAAAAAAALeYTCaZTCb98MMP\nGjlypOrUqaMnnnhCP/74o2E1FBUV6d1331Xv3r2Vk5MjyXEwxNoTTzzhy9J86ne/+50uXbokyfUg\nTP/+/TVt2jSjSvS7Bx54QPfcc4/LgRjLecrNzdWjjz6qzp0764cffjCq3BKHDx/Wm2++qaSkJLVv\n315z5sxRYWGhyzMAAQAAAAD+J9zfBQAAAAAAACC4lA0ZnDt3TtOmTdO0adOUkJCgAQMGaODAgera\ntauio6O9OrZlZpo33nhDBw8eLKnBlWCIJN15553q3r27V2sy0tWrV51uYx2eCAsL069//Wu9+uqr\nvizLK5577jlVrVrVK/v65z//qYMHD2rLli0l4S1XZg0ymUxav369unTpoq5du+rRRx/VkCFDFBkZ\n6ZW6rBUXF2vz5s1KTU1Vamqqtm3bJul/YTMAAAAAgOdMZle/MgMAAAAAAIBfrDVr1qhbt242QwVl\nP7i3PB4REaHbb79dnTp1UuvWrZWUlKTGjRsrIiLCrbGPHz+ujRs36uuvv1Zqaqqys7NLjeksCGPZ\nJiIiQunp6UpKSnJrfHsyMzOVmJjoMGhhPUNLRkaGEhISKjRmt27dtGbNGqfhjmDjrfNj7ezZs+rY\nsaMOHDjgUmjKuhbrbePi4tSzZ0/169dPd9xxh5o1a6bwcPe+Y3j16lUdOHBAP/30k9LT07Vx40al\npaUpLy+v3Lhl67R+Dh04cECNGjVya2wAAAAA+CViZhgAAAAAAABUSNkP7i0f6l+7dk2bNm3Spk2b\nSh4PDw/XjTfeqHr16qlu3bqKj49XdHS0oqOjZTablZeXp9zcXOXm5iojI0P79+9Xbm6uzf27Ggax\nBAn+/Oc/ey0IEyyCYYYRX4V6rrvuOi1btkzdu3dXZmZmyfPA2ZhlZz7Kzc3V4sWLtXjxYklSZGSk\nGjVqVPI8jouLU3R0tCIjI3XlyhVdvnxZBQUFOnPmjE6dOqWTJ0/q2LFjKi4uLjVO2RlgQincBAAA\nAAD+RhgGAAAAAAAAXmMvGGNRVFSkzMxMHT582KX92dqHu7N7mEwmjRo1ShMmTHBpzFAS6AELX4d1\nGjZsqI0bN6pfv37asWNHqeWQnJ0b61CMdZ2FhYXat2+ffvrpJ5dqsPysrWMN9N8PAAAAAASrMH8X\nAAAAAAAAgNBkNpvL3SwsAQNnN1v7caZsEGbo0KGaNWuWT44Rga927dpau3atevXqVRKCsQ7FOOON\n57Ct/RCEAQAAAADfIQwDAAAAAAAAt7gaIrDFViDA2c3duqzDDo8//rjmzZunsDDeBvslq1Kliv79\n73/rD3/4gyIjI0vNDOPu89mT57C7wRdbYRoAAAAAgOt4FwAAAAAAAAAus/5w394MGEayHt+6rqpV\nq2rmzJl67733CMKgxPPPP68NGzbolltuKfWckfwbQCn7/1LZEI3JZFJcXJyio6MNrw0AAAAAghHv\nBAAAAAAAAMCpmjVrqm7dunaXL5JsLxvjbY6WUbI8npycrF27dumBBx7w+viu1mVEqMLVZXoC+eYP\nrVq10vbt2/X3v/9dtWvXths+8WWNzpYDs97m9ttv14wZM3T8+HHVrVvXJ/UAAAAAQKgJ93cBAAAA\nAAAACHy33HKLjh07ps2bN+vLL7/U0qVLtXv37pLHbS0D46swQdmxLGO0b99eb775prp27er1Md2p\nJ1THDCUmk0njxo3TqFGjNH36dE2fPl1HjhyRVPrc+jIQY+95LElNmzbVPffcoxEjRqhJkyY+GR8A\nAAAAQpnJzF/OAAAAAAAA8MCJEye0bNkyff/991q7dq2OHTtW6nFnbzs5Cxk4+nnLz8bGxmr48OEa\nP3682rRp42Ll3pGZmalGjRq5tK3JZNKhQ4eUkJBQoTG7deumtWvXVmgfgchb58dTZrNZS5YsUUpK\nilasWKGrV6+W3G9PRZ6/ZX8+KipKHTt2VHJyspKTkwnAAAAAAEAFEYYBAAAAAACAV2RmZmr9+vXa\nsmWLtm7dqh07dignJ8fmtq68JWUrbGAymdSkSRN17txZAwcOVK9evRQZGVnh2gGLvLw8paam6ptv\nvtGGDRt06NChctu4+paqvcDMjTfeqJYtW6pdu3bq3Lmz7rjjDkVERFSobgAAAADA/xCGAQAAAAAA\ngM8cO3ZMe/fu1YEDB5SZmakjR47o5MmTys7O1rlz55STk6OrV6+qsLBQlSpVUlRUlKKiolStWjXV\nqlVLtWvXVkJCgpo0aaKmTZuqVatWql69ur8PC78g58+fV1pamnbt2lXyHD569KjOnTun/Px8FRQU\nqKCgQJIUGRmpqKgoValSRTVr1tT111+v2rVrq2HDhmrUqJFuuukm3XrrrTyHAQAAAMDHCMMAAAAA\nAAAAAAAAAAAgZIT5uwAAAAAAAAAAAAAAAADAWwjDAAAAAAAAAAAAAAAAIGQQhgEAAAAAAAAAAAAA\nAEDIIAwDAAAAAAAAAAAAAACAkEEYBgAAAAAAAAAAAAAAACGDMAwAAAAAAAAAAAAAAABCBmEYAAAA\nAAAAAAAAAAAAhAzCMAAAAAAAAAAAAAAAAAgZhGEAAAAAAAAAAAAAAAAQMgjDAAAAAAAAAAAAAAAA\nIGQQhgEAAAAAAAAAAMD/a9cOZAAAAAAG+Vvf4yuOAAA2ZBgAAAAAAAAAADZkGAAAAAAAAAAANmQY\nAAAAAAAAAAA2ZBgAAAAAAAAAADZkGAAAAAAAAAAANmQYAAAAAAAAAAA2ZBgAAAAAAAAAADZkGAAA\nAAAAAAAANmQYAAAAAAAAAAA2ZBgAAAAAAAAAADZkGAAAAAAAAAAAjixY0AAAAVtJREFUNmQYAAAA\nAAAAAAA2ZBgAAAAAAAAAADZkGAAAAAAAAAAANmQYAAAAAAAAAAA2ZBgAAAAAAAAAADZkGAAAAAAA\nAAAANmQYAAAAAAAAAAA2ZBgAAAAAAAAAADZkGAAAAAAAAAAANmQYAAAAAAAAAAA2ZBgAAAAAAAAA\nADZkGAAAAAAAAAAANmQYAAAAAAAAAAA2ZBgAAAAAAAAAADZkGAAAAAAAAAAANmQYAAAAAAAAAAA2\nZBgAAAAAAAAAADZkGAAAAAAAAAAANmQYAAAAAAAAAAA2ZBgAAAAAAAAAADZkGAAAAAAAAAAANmQY\nAAAAAAAAAAA2ZBgAAAAAAAAAADZkGAAAAAAAAAAANmQYAAAAAAAAAAA2ZBgAAAAAAAAAADZkGAAA\nAAAAAAAANmQYAAAAAAAAAAA2ZBgAAAAAAAAAADZkGAAAAAAAAAAANmQYAAAAAAAAAAA2Ai099t3I\nee7QAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_compression_experiments(res_t, comp_ratios, \"figs/compression_traffic.png\", 10)\n", - "Image(filename=\"figs/compression_traffic.png\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### FSWT x GWT" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 1.23442666, 1.27973632, 1.30163643, 1.28388523, 2.60036447,\n", - " 5.70455735])" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "numpy.divide(res_t['GWT'], res_t['FSWT'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Human" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "G = read_graph(human[\"path\"] + \"human.graph\", human[\"path\"] + \"human.data\")\n", - "F = read_values(human[\"path\"] + \"human.data\", G) " - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "#vertices = 845\n", - "#edges = 1272\n" - ] - } - ], - "source": [ - "print(\"#vertices = \", G.number_of_nodes())\n", - "print(\"#edges = \", len(G.edges()))" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "algs = [OptWavelets(n=20), GRCWavelets(), Fourier()]\n", - "\n", - "comp_ratios = [0.1, 0.20, 0.30, 0.40, 0.50, 0.60]\n", - "\n", - "res_h, time_h = compression_experiment_static(G, F, algs, comp_ratios, 10)" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACMMAAAadCAYAAADQ6BhSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAuIwAALiMBeKU/dgAAIABJREFUeJzs3Xl0VPX9//HXJQkhJARZwqJhCQhqENmCbJIEIohbXbr9\nFGVxwaVVTtvft61YtS49p/3Wn60LKgcpYkWEWoviAgUEZBFCCIuyIyFAEsIuJCGEhPn9Ee84yaxJ\nZubO8nycM0e4M/P5vO98MJn5zOt+PobNZrMJAAAAAAAAAAAAAAAAiADNrC4AAAAAAAAAAAAAAAAA\n8BfCMAAAAAAAAAAAAAAAAIgYhGEAAAAAAAAAAAAAAAAQMQjDAAAAAAAAAAAAAAAAIGIQhgEAAAAA\nAAAAAAAAAEDEIAwDAAAAAAAAAAAAAACAiEEYBgAAAAAAAAAAAAAAABGDMAwAAAAAAAAAAAAAAAAi\nBmEYAAAAAAAAAAAAAAAARAzCMAAAAAAAAAAAAAAAAIgYhGEAAAAAAAAAAAAAAAAQMQjDAAAAAAAA\nAAAAAAAAIGIQhgEAAAAAAAAAAAAAAEDEIAwDAAAAAAAAAAAAAACAiEEYBgAAAAAAAAAAAAAAABGD\nMAwAAAAAAAAAAAAAAAAiRqzVBQBAsJw4cULbt2/X4cOHdfr0aZWVlSkpKUlt27ZVu3bt1L9/f6Wk\npFhdJgAAAAAAAAAAAACgCQjDAIhYO3bs0PLly7V8+XJt2LBBpaWlXp/Ts2dPZWdn6+GHH9agQYOC\nUCUAAAAAAAAAAAAAwJ8Mm81ms7oIAPCX/Px8zZ8/XwsWLFBhYaH9uGEYPrdh/lgcNmyY/va3v+na\na6/1e50AAAAAAAAAAAAAgMAgDAMgYvztb3/Tb37zG0muwy++/LhzfJ7NZlNMTIyeeOIJPfPMM4qJ\nifFfsQAAAAAAAAAAAACAgGhmdQEA4C9VVVWSnAMt5s0wDK83x8CMYRi6ePGiXnjhBU2ePDno5wMA\nAAAAAAAAAAAAaLhYqwsAgEAwQy1mMOaqq65Sdna2srKy1Lt3b3Xs2FHt27dXeXm5SkpKtHbtWi1Y\nsEDLli1zeq5hGJo7d66Sk5P12muvWXNCAAAAAAAAAAAAAACfsE0SgIjxl7/8RU888YQ9xNKlSxdN\nmTJFd999t7p37+5TG+vXr9c999yj/fv321eKcfzvsmXLNGrUqACeBQAAAAAAAAAAAACgKdgmCUBE\nMQxDffv21fvvv6+CggJNmzbN5yCMJA0dOlSbNm1S37597QEYR1OnTvVzxQAAAAAAAAAAAAAAf2Jl\nGAARY968ebp48aLGjx/f5LaKiorUp08fnT171n7MDMesXr1aw4cPb3IfAAAAAAAAAAAAAAD/Y2UY\nABHjrrvu8ksQRpIuu+wy/e53v5OrvODChQv90gcAAAAAAAAAAAAAwP8IwwCAG/fee6/L42vWrAly\nJQAAAAAAAAAAAAAAXxGGAQA3UlNT1bVrV/vfDcOQzWbTkSNHLKwKAAAAAAAAAAAAAOAJYRgA8KBT\np05OWyWVlpZaVA0AAAAAAAAAAAAAwBvCMADgwcWLF52OtWjRwoJKAAAAAAAAAAAAAAC+IAwDAB7s\n379fhmFIkn2FmM6dO1tZEgAAAAAAAAAAAADAA8IwAODGN998o5MnT9Y5ZhiG0tLSLKoIAAAAAAAA\nAAAAAOANYRgAcOOdd95xefzGG28MciUAAAAAAAAAAAAAAF8ZNnPfDwCA3cmTJ9WzZ0+dOXPGfsxm\ns8kwDB04cEBdunSxsDoAAAAAAAAAAAAAgDusDAMALjz55JP67rvv7H83gzA333wzQRgAAAAAAAAA\nAAAACGGsDAMA9XzxxRcaM2ZMnWM2m00xMTHauHGj+vfvb1FlAAAAAAAAAAAAAABvYq0uAEB4qaqq\n0p49e3T48GGdPXtWFRUVatmypVq1aqXU1FRdccUViouLs7rMRistLdU999xT55i5KsxDDz1EEAYA\nAAAAAAAAAAAAQhwrwwDwasOGDVq4cKE+//xzbd++XTU1NW4fGxMToz59+uimm27SbbfdpiFDhgSx\n0qa5cOGCcnJytGbNGhmGYT9us9nUo0cPbdu2TS1btrSwQgAAAAAAAAAAAACAN4RhAD/bt2+f8vLy\nlJeXp40bN2rz5s0qKytz+/ju3btr//79QazQd++//75efPFF5efn2485hkTccfyxMmjQIP3P//yP\nfvaznwWkRn+6//77NXv2bKcgTHx8vFavXq2MjAwLqwMAAAAAAAAAAAAA+IIwDNAEhw4d0saNG+3B\nl02bNun06dN1HuMtPNKtW7eQC8Ps2rVLDz30kFavXu2yfk8/Nuo/3nxsdna23nzzTfXu3du/xfrJ\ns88+q2effVaGYdi3RTL/+8Ybb2jKlClWlwgAAAAAAAAAAAAA8AFhGMBHR48e1caNG+uEX44dO1bn\nMe6CL/X/NzMfZ7PZQm5lmA8//FCTJk1SWVlZnTpNDV0ZxrGNpKQkvfPOO7r99tv9XHXTvP766/rl\nL3/pMggzbdo0Pf/881aXCAAAAAAAAAAAAADwEWEYwEf9+/fXtm3b7H/3NfjiSqiGYaZPn67HH3/c\n/nd3oRZv6j/W8e+GYei1117TI4884re6m2Lu3LmaOHFinfMy63z44Yc1ffp0C6sDAAAAAAAAAAAA\nADRUM6sLAMKFYRh1blJtaKL+zdXjw8GcOXM8BmHM86v/Ori6uQrBOLbz2GOP6d133w3i2bm2cOFC\nTZ482WUQ5u677yYIAwAAAAAAAAAAAABhiDAM0ABmaKJ+8EVyHZZxfE4oy83N1ZQpU+x/dxWEMf88\nfPhwvfbaa8rPz9fJkyd14cIFnTx5Unl5eXrllVc0ZMgQp/CMY5uGYejixYt68MEHtWnTpiCeZV3/\n/e9/ddddd6mmpsZ+zKz39ttv15w5cyyrDQAAAAAAAAAAAADQeGyTBPhowIAB2rp1q8eVXlz97+QY\nJnE8Zj7e6m2Szp49q379+qmwsNBek8ms3TAM9e7dW2+88Yays7O9trls2TI9+uij+vbbb+3H6q8W\nI0lpaWnasmWLkpKS/HQ2vvnyyy9100036dy5c3XqMwxDY8eO1ccff6y4uLig1gQAAAAAAAAAAAAA\n8A9WhgEaoP6KL/VvjivDNGvWTL1791ZmZqbTc0PJU089pQMHDkhyH4QZM2aMcnNzfQrCSNL111+v\nvLw8jRo1yikI5Li6TkFBgf74xz/64zR8tmHDBt16660ugzCZmZn6z3/+QxAGAAAAAAAAAAAAAMIY\nK8MAPjJXhjHVD7d0795dgwcPVkZGhjIyMjRo0CC1atVKq1at0qhRo5y2G5KsXxlm586d6tevn32r\nIMf6zD+PGDFCS5cuVYsWLRrcfkVFhUaPHq3c3Fy35x8XF6dt27bpiiuu8McpebR582bl5OTou+++\nsx8zgzDXXnutli5dGvRVagAAAAAAAAAAAAAA/hVrdQFAODFDHKmpqfbQi3lr06aNxdU13B//+EdV\nV1e7DKpIUrt27TR//vxGBWEkqWXLllqwYIH69++v7777zt6PGUCRpOrqaj333HOaO3du00/Ig+3b\nt+uGG25wCsJIUr9+/bR48WKCMAAAAAAAAAAAAAAQAVgZBvDR7Nmz1bFjRw0ePFgpKSk+Py9UV4Yp\nKChQ7969dfHiRXstZm1mWOWNN97QlClTmtzXq6++qqlTp7p9DWJjY7Vv3z517dq1yX25smfPHmVn\nZ6u0tNR+zKwjPT1dK1euVPv27QPSNwAAAAAAAAAAAAAguJpZXQAQLiZPnqybbrqpQUGYUPbaa6+5\n3B7J1KtXLz344IN+6evRRx9Vjx496vThmMOrqanR9OnT/dJXfQUFBcrJyakThDH16tVLy5cvJwgD\nAAAAAAAAAAAAABGEMAwQhS5evKj333+/TvjFZK4K8+tf/9rl/Y0RExOjxx9/XK4WojJXi3nvvff8\n0pejoqIi5eTkqLi4uM5xc0We5cuXq2PHjn7vFwAAAAAAAAAAAABgHcIwQBT64osvVFJSIsn1qjAt\nWrTQ+PHj/drnxIkT1bx58zp9OYZjiouLtXLlSr/1d/ToUeXk5KiwsLDOcZvNpssuu0zLly9Xamqq\n3/oDAAAAAAAAAAAAAIQGwjBAFFq0aJHL4+aqMDfffLMSExP92mfr1q114403ulwdxltdDXX69GmN\nGTNGe/bsqXPcZrOpQ4cOWrZsmdLS0vzSFwAAAAAAAAAAAAAgtBCGAaLQsmXLPG6BdPPNNwekX0/t\n2mw2LV26tMl9lJWVaezYsfr666/rnKPNZlO7du20bNkyXXHFFU3uBwAAAAAAAAAAAAAQmgjDAFHm\nyJEj2rlzpyS5XaXl+uuvD0jfY8aMcTpmrkYjSdu3b1dpaWmj26+srNQtt9yivLw8pyBM69attXjx\nYl199dWNbh8AAAAAAAAAAAAAEPpirS4AQHDl5uY6HXMMjnTp0kWXXXZZQPru1q2bOnfurCNHjsgw\nDJdhnI0bN+qWW25pVPsPP/ywvvzyS3vbjv/NzMzU4sWLtXjx4qaehiRpwoQJ6tKli1/aAgAAAAAA\nAAAAAAD4D2EYIMrk5+e7PG6GRgYOHBjQ/jMyMrRo0SK32zRt3ry50WGYwsLCOn83wzY2m02LFi3S\nokWLGtVufYZhaOTIkYRhAAAAAAAAAAAAACAEsU0SEGW2bNni8f5rrrkmoP17a99bfb4yDCMgNwAA\nAAAAAAAAAABAaGNlGCDK7Nmzx2Ooo1evXgHt//LLL3d7n81m0969e5vch6vtlwAAAAAAAAAAAAAA\n0YEwDBBlDhw44PF+T2EVf3DXvmEYstlsXuvzJhirt7BCDAAAAAAAAAAAAACELsIwQBQpLS1VZWWl\nPXjiyqWXXhrQGly1b7PZ7AGT8vJyHT9+XO3bt29w2ytWrGhyfQAAAAAAAAAAAACA8NbM6gIABE9x\ncbHXx3Tq1CmgNfjSflFRUUBrAAAAAAAAAAAAAABELsIwQBQ5ceKE0zHHLX+Sk5MVFxcX0BoSEhKU\nlJTk1LejkydPBrQGAAAAAAAAAAAAAEDkIgwDRBFXYRhHycnJQanDWz/e6gQAAAAAAAAAAAAAwB3C\nMEAUOX36tMvjNptNktSqVaug1OGtn1OnTgWlDgAAAAAAAAAAAABA5CEMA0SRc+fOebw/MTExKHUk\nJSXZAziuVFZWBqUOAAAAAAAAAAAAAEDkIQwDRJELFy64vc8wDMXGxgalDm/9VFVVBaUOAAAAAAAA\nAAAAAEDkIQwDRBFvIRPCMAAAAAAAAAAAAACAcEcYBogiFy9e9Hh/TExMUOrw1o+3OgEAAAAAAAAA\nAAAAcIcwDBBFvK3IUl1dHZQ6vPUTFxcXlDoAAAAAAAAAAAAAAJEnOHuiAAgJzZs393h/sMIwFy5c\n8Hh/NIRhqqurtXfv3jrH2rZtq2bNyCgCAAAAAAAAAAAACG8XL17UyZMn6xzr1auX1wUc/IUwDBBF\nPIVhbDabqqqqglKHtzCMt9BOJNi7d6/S09OtLgMAAAAAAAAAAAAAgmLHjh266qqrgtIXSxAAUSQx\nMdHlccMwJEllZWVBqePs2bP2Pl1JSkoKSh0AAAAAAAAAAAAAgMhDGAaIIm3btvV4/5kzZ4JSh7d+\nvNUJAAAAAAAAAAAAAIA7hGGAKNKuXTuP958+fToodXz33Xce7/dWJwAAAAAAAAAAAAAA7sRaXQCA\n4Gnfvr3TMZvNZt+y6Pz58zpz5oySk5MDVsOpU6dUVVUlwzBks9l8rjPSuFr9ZseOHVFx7gCsU15e\nrrS0NElSQUGB2+3zAMBf+LkDINj4uQPACvzsARBs/NwBEGz83EFjHD9+XOnp6XWOBXOHEMIwQBTp\n2rWr18eUlpYGNAxTWlrq9TFdunQJWP+holkz54W52rdvr5SUFAuqARAtWrZsaf9zSkoKH1gABBw/\ndwAEGz93AFiBnz0Ago2fOwCCjZ878BdX35EGrK+g9QTAcomJifYtiMzVYOorLCwMaA0HDhxwOuZY\nS4cOHZSQkBDQGgAAAAAAAAAAAAAAkYswDBBl0tLS3G5PJEl79+4NaP/79u1zedzcrslcYg0AAAAA\nAAAAAAAAgMYgDANEmT59+ni8f/fu3QHt31v73uoDAAAAAAAAAAAAAMATwjBAlBk4cKDH+zdv3hzQ\n/vPz8z3eP2DAgID2DwAAAAAAAAAAAACIbIRhgCjjLgxjGIZsNpu2bNnicRulpqipqdHWrVtlGIbb\nxxCGAQAAAAAAAAAAAAA0BWEYIMpkZGSoRYsWkmQPpTiGX8rKyrRp06aA9J2bm6uKioo6fToGYxIS\nEpSRkRGQvgEAAAAAAAAAAAAA0YEwDBBl4uPjNWLECI+rvyxdujQgfS9btszlcZvNJsMwNHLkSMXF\nxQWkbwAAAAAAAAAAAABAdCAMA0ShsWPHur3PZrPpww8/DEi/H3zwgcf7x4wZE5B+AQAAAAAAAAAA\nAADRgzAMEIV+/OMfOx0zV2eRpPz8fO3du9evfW7fvl1ff/21DMNwuUWSYRj6yU9+4tc+AQAAAAAA\nAAAAAADRhzAMEIV69OihoUOH1gnA1Pfqq6/6tc+XX37Z5XGzhuHDh6tr165+7RMAAAAAAAAAAAAA\nEH0IwwBR6r777nN53Fy5Zfbs2SotLfVLX0VFRXr33XfdBm8kafLkyX7pCwAAAAAAAAAAAAAQ3QjD\nAFHq3nvvVYcOHST9sF2RuX2RJFVUVOj3v/+9X/r67W9/q8rKyjp9OAZjOnbsqHvuuccvfQEAAAAA\nAAAAAAAAohthGCBKxcfHa+rUqXUCMNIP2xbZbDa98847+uijj5rUz4IFCzRv3jx7m676+tWvfqW4\nuLgm9RMJysvLXd4AAAAAAAAAAAAAIFSF4vechq3+t9MA/GrVqlUaNWpUnTCI40os3bt31/79+y2p\n7dy5c7ryyit16NAht/UlJydr6dKlGjx4cIPbX79+vcaOHWv/Qefu/Hfu3Kn4+Hh/nFLYOHbsmH1l\nHm/4MQ0AAAAAAAAAAAAgVDnuCuLJ0aNHlZKSEuBqarEyDBDFEhIS9NJLL9n/Xn+7JMMwdObMGY0d\nO1affvppg9r+6KOPNG7cOKcgjMlcFeall16KuiAMAAAAAAAAAAAAACBwYq0uAAgnq1ev1p49exr0\nnN27d3u8v6ysTLNmzWpwLdnZ2erZs2eDn1ffj3/8Y91999167733ZBiGfYUYM6xiBmJ+9KMf6a67\n7tJTTz2lK664wm17O3fu1LPPPqsFCxY4hWsk2ds3DEP33HOPbr/99iafQ6QoKCgIWhISAAAAAAAA\nAAAAAPyhrKzM6dixY8eUlpZmQTW12CYJaIDJkydrzpw5VpchwzA0e/ZsTZgwwS/tlZeXKyMjQ7t3\n73YbYHE8NmDAAA0fPlxpaWlKSkrS2bNnVVBQoLVr12rr1q0un2MeM/+enp6u3NxctWzZ0i/nEG5c\nbZMUzGXBAAAAAAAAAAAAACBQrP4+lJVhgEbwdc8zk6fMmT/baqzExEQtWbJEI0eO1KFDh+rUVX+V\nGEnavHmzNm/e7LItX8I03bt315IlS6I2CAMAAAAAAAAAAAAACJxmVhcAhCszJOLLLRjtNFXXrl21\nYsUKXX755XVWcKm/dZJjMMbVzbFWxwCN+bzevXvriy++0GWXXRbQ8wEAAAAAAAAAAAAARCfCMEAj\neQqEBOoWaD169NDGjRt1ww03eAzA+Pq61H/+jTfeqNzcXHXv3j3g5wIAAAAAAAAAAAAAiE6EYYBG\naMhqLv6+BVrr1q312Wef6e2331bHjh2dtkvyVIerxxiGoY4dO+qdd97RJ598ouTk5ICfAwAAAAAA\nAAAAAAAgehGGARrIihVhgr1CjCTde++92r9/v6ZPn6709HSn/t0FdRwf16dPH73++usqKCjQ+PHj\ng1I3AAAAAAAAAAAAACC6GbZgLDUBIOzt27dPixcvVn5+vrZv366ioiKdPXtWFRUVatmypVq1aqXU\n1FSlp6dr4MCBuvHGG9WzZ0+ryw5Zx44dU4cOHeocO3r0qFJSUiyqCAAAAAAAAAAAAAD8w+rvQ2OD\n0guAsHf55Zfrl7/8pdVlAAAAAAAAAAAAAADgEdskAQAAAAAAAAAAAAAAIGIQhgEAAAAAAAAAAAAA\nAEDEIAwDAAAAAAAAAAAAAACAiEEYBgAAAAAAAAAAAAAAABGDMAwAAAAAAAAAAAAAAAAiBmEYAAAA\nAAAAAAAAAAAARAzCMAAAAAAAAAAAAAAAAIgYhGEAAAAAAAAAAAAAAAAQMQjDAAAAAAAAAAAAAAAA\nIGIQhgEAAAAAAAAAAAAAAEDEiLW6AABArfLycrVs2dLpeGJiogXVwFcXL17UiRMnrC4DAAAAAAAA\nAAAgIrVr107NmrHORygrLy/36VgwEYYBgBCRlpbm8rjNZgtyJWiIEydOqEOHDlaXAQAAAAAAAAAA\nEJGOHj2qlJQUq8uAB0lJSVaX4IT4FAAAAAAAAAAAAAAAACIGK8MAQIgoKCgg1QoAAAAAAAAAAAAg\nrJSVlTkdO3bsmNudMYKBMAwAhIjExEQlJiZaXQYAAAAAAAAAAAAA+MzVd5wVFRUWVPIDwjAAAPjZ\njh071L59e6vLAAAAAAAAAAAACCvHjx9Xenq61WUgAhCGAQDAz9q3b8+WVwAAAAAAAAAAAIBFmlld\nAAAAAAAAAAAAAAAAAOAvhGEAAAAAAAAAAAAAAAAQMQjDAAAAAAAAAAAAAAAAIGIQhgEAAAAAAAAA\nAAAAAEDEIAwDAAAAAAAAAAAAAACAiEEYBgAAAAAAAAAAAAAAABGDMAwAAAAAAAAAAAAAAAAiBmEY\nAAAAAAAAAAAAAAAARAzCMAAAAAAAAAAAAAAAAIgYhGEAAAAAAAAAAAAAAAAQMQjDAAAAAAAAAAAA\nAAAAIGIQhgEAAAAAAAAAAAAAAEDEIAwDAAAAAAAAAAAAAACAiEEYBgAAAAAAAAAAAAAAABGDMAwA\nAAAAAAAAAAAAAAAiBmEYAAAAAAAAAAAAAAAARAzCMAAAAAAAAAAAAAAAAIgYsVYXAACoVV5erpYt\nWzodT0xMtKAaAAAAAAAAAAAAAPCuvLzcp2PBRBgGAEJEWlqay+M2my3IlQAAAAAAAAAAAACAb5KS\nkqwuwQnbJAEAAAAAAAAAAAAAACBisDIMAISIgoICpaSkWF0GAAAAAAAAAAAAAPisrKzM6dixY8fc\n7owRDIRhACBEJCYmKjEx0eoyAAAAAAAAAAAAAMBnrr7jrKiosKCSH7BNEgAAAAAAAAAAAAAAACIG\nYRgAAAAAAAAAAAAAAABEDMIwAAAAAAAAAAAAAAAAiBiEYQAAAAAAAAAAAAAAABAxCMMAAAAAAAAA\nAAAAAAAgYhCGAQAAAAAAAAAAAAAAQMQgDAMAAAAAAAAAAAAAAICIQRgGAAAAAAAAAAAAAAAAEYMw\nDAAAAAAAAAAAAAAAACJGrNUFAACA0GWz2VRYWKijR4/q3LlzqqyslCS1aNFCCQkJ6tChg7p16ybD\nMCyuFL5iTBFKqqqqdPDgQZWUlOj48eOqrKzU+fPnFR8fr8TERCUlJSkxMVEdOnRQ165dFRMTY3XJ\nAAAAAOCSzWZTRUWF1WVYqmXLlhEzn8B4RtZ4hrKqqiodOnRIhw8fVllZmSoqKnTu3DlJtfN1LVq0\nUNu2bdWxY0d16tRJrVq1srhiAAgfhGEAAICk2g/5BQUF2rRpk/Ly8rRp0ybl5+fr1KlTHp/Xpk0b\nDRo0qM4tLS2ND8shgDFFqDl06JCWLFmiFStWKD8/X/v27VNNTY1Pz42JiVFqaqrS0tJ0+eWXKyMj\nQxkZGbrmmmsUG8vHGgBoiurqai1cuFCSdPvtt/NzNQIwpgAQfBUVFUpKSrK6DEuVlZUpMTHR6jL8\ngvGMrPEMFeXl5fryyy+1YcMGbdiwQVu3blVpaalsNpvPbaSkpOjKK69Unz59NGTIEA0fPly9evUK\nYNUAEL4MW0N+wgIA/OLYsWPq0KFDnWNHjx5VSkqKRRWhsSJhLIuKijRz5kzNnDlTxcXFTvc3l9RZ\nUoKkFt8fq5R0TlKJpCoXbV566aV68MEHNWXKFF166aUBqhzuMKbha8GCBTp79qzVZUiSJk6c6Jcv\nzqqrqzV37ly99dZbWrdunX2Cp7HhqvofX+Lj49WvXz+NGjVK48aN04gRIxpc95w5czR58mS393fo\n0EFHjhxpVL0N0b9/f23bts3jY376059q/vz5Aa3j1KlTateuncfHLFmyRGPGjNHZs2e1YMGCgNYT\nTD/60Y/C6nc44C/Lli3TmDFjJElLly7V9ddfb3FFaCrGNPSE6vu8PXv2aPXq1RZX5B/NmjXz+J4O\nCLTy8nLCExEUnmA8I2s8rXTu3DktWLBAH374oZYuXWpfpVny39xI586dddNNN+nWW2/VuHHj1Lx5\n8ybV/OCDD2rWrFlu77/jjjv073//u0l9eHPmzBm1bdtWFy9e9Pi4l19+WY899lhAa/n000916623\nur0/NjZWJ0+eVFJSkvbt26dVq1YFtJ5guv/++y3pNxK+d0Etq8eSMAwAWMDqH/7wn3AdS5vNphUr\nVuj111/XwoUL7SszNJd0jaRBDrervz/uSpWkbyRt+v6WJ+lr/RCmiImJ0R133KFHH31U2dnZrCwS\nQIxpZEhLS1NhYaHVZcgwDJ06dUrJyclNauef//ynnnzySR0+fNjebn2+fhzx9G/NsY1WrVopJydH\n06ZNU0ZGhk9tHzhwQD169HBbn2EY2r59u6688kqf2muM06dPq3379l5fjw4dOqikpCRgdUjSxx9/\nrNtvv93t6xEXF6fTp08rISFB3377bcRcgWYYhlavXq3hw4dbXQoQdFOmTNHMmTPtf54xY4bFFaGp\nGNPQE6rv82bNmqUHH3zQ4qr8IzY2VlVVrqL9QHDUCU/8X7n/4B1pqiS9WPvHSApPMJ6RNZ5WKCoq\n0iuvvKK33nrLvkqzu7mNhnxV662NNm3a6Oc//7keeOABDRw4sIFV13r33Xc1YcIEt321a9dOR48e\nbVTbvvoLFhr3AAAgAElEQVTss890yy23eJ17vOOOO/TBBx8EtJbf/va3evHFF93WkpGRoQ0bNkjy\nfsFVODEMw+cVnf0tXL93gTOrx7JZUHoBAAAhwWaz6b333lN6erpycnL073//WzU1NcqUNE/SGUkb\nJb0p6UFJA+X5s37z7x/z4PfPyfu+jXmSRkqqqanRBx98oNGjRys9PV3vvfdegz7cwTvGNPIYhmHp\nzR8OHz6srKwsTZw4UUVFRXXattlsdf7NNKYusw3HVWbMW1lZmT766COtW7fO53q7d++ubt26ObXv\naOXKlQ19GRpk9erV9qudHM/PsRabzaajR49q165dAa3F8Qqm+v0bhqGMjAwlJCTUeY7V/25D4d89\nEK6qq6v1n//8x/73Dz/8UNXV1RZWhKZiTENXKP++s7o2fpcj4jSPsluks/r1ZTzDSkVFhZ566in1\n6tVLf/3rX3X69Ok6v69czTk09neeq7mR06dP680331RGRoZycnK0ePHiBp9Ddna2Ux+OcwMnTpzQ\nN9980+B2G8LV3ET9185ms+nLL78MaB3uajH/LNV9vUxWvzfivRVQizAMAABRoqSkRLfddpvGjx+v\nXbt2KUnSo6pd9WOVpP8jKd4P/cR/39aXkrZJekRSkqRdu3Zp/Pjxuv322wO+qkG0YEwjm6tARKBv\n/rBmzRoNGDBAq1evdproMcMUro43pMb6H85dTUQ0VFZWlsfnBnqJ24a0b3UtriZ5JGv+zYbKv3sg\nnK1cuVLHjx+XWreWWrfW8ePHAx4ARGAxpqEvVH/fWf07md/jAIBwt3TpUl1xxRX605/+pPPnzwdk\nXsTxd6C7uRHz+IoVK3TTTTcpMzPTvnKJL1JTU9WjRw97W65YOTfh+B7gxIkT2r59e8DqKCsrU35+\nvseACPMkQOgiDAMAQISz2Wz65z//qfT0dC1atEhxkp6XVCxpumq3zAmUvpJe/76v5yXFqXb7jT59\n+ujdd9/lzXUjMabRK9Sv+li6dKluuOEGnTx5UoZheJ2gaUyN3iZ/GsvdxIXZZ6AneRryJWUgv9A8\nc+aMtmzZ0qhJnmD+ewylf/dAuFuwYEHtH0aOlK67TpL0r3/9y8KK0FSMaXgKhfd54fi7HACAUFBT\nU6MnnnhC48aNU3FxsdP8h/TD7z53cxoN/f3nrh1XwZs1a9Zo+PDhOnfunM/nlJ2d7XGeL5BzE74E\nUIJVy5o1a+xbBTm+1qaYmBiNHDnS5XPD8b0V768QaWKtLgAAAAROSUmJHnroIS1atEiSNEjS2wps\nWMKVVpL+IOl2SZMkbTp1Svfee6/+9a9/6c0331Tnzp2DXFH4YkyjWyiHjbZt26af/OQnqqyslFS3\nVseJGvPvsbGxGj16tK699lr17dtXV111lS655BIlJycrKSlJVVVVqqioUElJiQ4dOqTt27dr27Zt\nWrt2rfbv329v21U/jeEq4GFOHElSaWmp9uzZo969eze6D3fcBVBcvW42W2CXADa3azL7cqxDkmJj\nY3Xd91+sOgr2v81Q/n8BCCd1ttMxfw5++qk+/PBDTZ8+XbGxTBuFG8Y0fFn9u43f5QAANE5lZaXu\nvPNOLV682OlzvOT6s71U+/m6f//+uvbaazVw4EB169ZN3bp1U5s2bZSQkKCEhASdO3dOZWVlOn36\ntPbv369vv/1WX3/9tVavXq1du3bZ2/R2IZKpIb9/s7Oz9Y9//MPpeDDmJtauXavq6uo6cxOOfde3\natUq/eIXvwhILe4ujjLrGDBggJKSktzeHyy8twJc4xMwAAARavv27Ro7dqyKi4sVJ+kZSb9V7Uoe\nVrla0leS/iLpOdWuKJKXl6elS5cqPT3dwsrCA2OKYF2d0dB+zp8/r5///OcqKyuT5PoDuDkB06VL\nFz3xxBP66U9/qrZt27ptMz4+XvHx8WrTpo3S09N1ww032O8rKSnRp59+qk8++URLlixRVVWV2359\n1b17d3Xr1k0HDx50O7mycuXKgIRh1qxZ4xRAkeT0Z3Ncjhw5ErBgjqdJHsMwlJGRoYSEhDr3Berf\npafxDESfXP2EaFRnO53+/WsPOmyrc/3111tbIBqMMQ1fVr7P43c5AACNc+bMGd18881au3at1yCM\n+efRo0frnnvu0Y9+9CO1adPGY/tmKCYlJUW9evWqc9/Jkyf10Ucfaf78+VqxYoWqq6tdrhLTWN4u\nGjp+/Lh27NgRkPk/b3MTwbxoyNNKwYZhuHydeG8FhA62SQIAIAJt3LhRmZmZKi4u1lWSNkl6UtaG\nJkxxql1RZJOkqyQVFxcrMzNTGzdutLawEMeYRi/zg6dhGJo9e7ZqamoCfquurlZycrLPNT7//PPa\nvXu3JOdJH3NiIiYmRk8//bR2796thx56yGMQxpvOnTvrgQce0MKFC1VaWqqZM2dqyJAhTV7ONSsr\ny+PEQqC2SnLXrqfzCXYtpvqTPD179gzIv8Fp06ZJqjvx4vj/Qk5OTkD+3Q8fPty/LygQ4upspxMT\nU3tjW52wxpiGl1B4n3f//fcHpB/zd6q73+XPP/+83/s8f/58EEcPABDtLly4oFtuucUehHHcskhS\nnWOGYeiOO+7Qli1btHTpUk2cONFrEMabtm3bavLkyVq8eLEKCwv1xBNPqF27dk79NlZqaqp69Ohh\nPxdXrJgnqb8ajiQdO3ZMO3fu9HsdFRUVysvL8/g61p8nmThxYkDeW2VmZtpfA5Pje6tnnnkmIO8b\ngXBHGAYAgAizceNG5eTk6OTJkxosabWkvlYX5UJf1dY2WNKJEyeUk5NDeMINxhSh7Pjx43rllVc8\nbvETHx+v+fPn65lnnlF8fLxf+09OTtZ9992ndevWKT8/X5MmTVJcXONiYllZWS6Pm5MtgZrkcdzb\n2nEiIzU1VampqXWOu3qOv/iyJ7erK54AhCeX2+lI0qhRkqQPP/yQyc8ww5gCAAAEz3333ac1a9a4\nXIHFPGYYhrp27aolS5bogw8+UN++gZnR69Spk1544QUdOnRIzz//vJKTk5u8Mozk/aKhQMxN1A+g\nOP536NChdY4FuhZzuybJeZsrSYqJidHIkSP93i8A/yEMAwBABNm+fbvGjRuns2fPKkvSckntrC7K\ng3aqrTFT0tmzZzVu3Djt2LHD4qpCC2OKUDdr1iy32yOZEz9vvPGG7rzzzoDX0q9fP82aNUsFBQUa\nPXp0g5/vbglgU0lJifbt29eUEp14CqBkZWXpuu+v5jcFMpizZs0a1dTUSHI9yRMbG+tUD4Dw5XI7\nHan2zw7b6iB8MKYAAADB8fe//11z5871GoTJyclRfn5+0LaqbNGihaZNm6a9e/dq0qRJAdkqSQrs\n9kTr1q3ThQsXJDnPM02cOFFdunRxuepNIOZJPG3XJEkDBgxQUlKS3/sF4D+EYQAAiBAlJSUaO3as\nTp48qWslLZLUyuqifNBK0ieqXU3k5MmTGjNmjEpKSiyuKjQwpggH5uSPI8eJnzFjxmjSpElBralz\n5866+uqrG/y8tLQ0de3aVZL7JYD9/SXi2rVrnQIopszMzDpXGAU6mONtT+6MjAwlJCT4tU8A1nHa\nTsfEtjphizEFAAAIvF27dmnatGku5w0c50Nuu+02ff75503aJrqxUlJSNGvWLH3yySe69NJLG92O\nt4uGjh49ql27djW6fVc8hVrqz5NIgb1oyFObhmGwei4QBgjDAAAQAWw2mx566CEVFxfrKkmfKTxC\nE6ZWkj6XdJWk4uJiPfzww01exjPcMaYIB6Wlpfrmm28kOQc5TL/+9a+DWVKTeVsC2N+TK57ay8rK\nsu8JbXUtElskAZHE7XY6JrbVCTuMKQAAQHBMmjRJ58+fl1R3LsQxCHP99ddrwYIFinEMKFvgxhtv\n1Ndff93olWm6dOmitLQ0Se4vGgrk3IRjnykpKbryyivrzJPUD+bs3r3bb3VUVlZq48aNbCUNhDnC\nMAAQIsrLy13eAF/MnTtXixYtUpyk+QrtbXTcaafa2uMkffzxx5o7d67FFVmLMUU4WL9+vdMxx0mC\nNm3aKCcnJ5glNZm3JYCDNcnTsWNH9erVS+np6Wrfvr3T/fWf21T19+R2hUkeIHK43U7HxLY6YYcx\nBQAACLz3339fubm5kpyDMKbU1FTNmzdPsbGxQa/PlTZt2mjx4sX6zW9+4/EzvzvZ2dlBu2iosrJS\nubm5deo0A0bmijDBumjoq6++UlVVlb0Gqe44x8TEOK1SA0S7UPyekzAMAISItLQ0JSUlOd0Ab0pK\nSvT4449Lkp6R1Nfacpqkr6Snv//z448/HrVb6zCmCBd79uxxedycqEhPT7f8KqiG8rYEcFFRkfbv\n3++XvlwFUMzXznFy57rrrnN5tZk/J3nWrl1rXynA1SRPbGysrvt+iw0A4c/tdjomttUJO4wpAABA\nYNXU1Ojpp592GygxP8/Pnj3bkq2RPGnWrJn+93//t1FbHwfzoiFXARRTVlaWJOnKK69USkqKvQZH\n/gx9u2vLrGvAgAF8fwPU4+o7TnN1KasQhgEAIIyZW+mcOnVKgyT9zuqC/OB3kgZKOnXqVFRurcOY\nIpwUFRV5vL9z585BqsR/0tLS1LVrV0mBXwJ43bp1unDhgiTnSR7HMIy7JYAPHz6sgoICv9Ti7pzM\nybyMjIxGTZoBCD1et9Mxsa1O2GBMAQAAAm/evHnat2+fJPfbI/385z/X6NGjrSoxILxdNHTkyBHt\n3bvXL315mm9xnBsZOXJkwC8a8tSWYRisnguECcIwABAiCgoKVFZW5nQDPJk3b54WLVqk5pLelhQa\ni282TZxqz8XcWmfevHnWFhRkjCnCibffUy1atAhSJf6VlZXlMbTlryuNPE2smFc8SZ6XAA5GLZI0\n6vsvUAGEP6/b6ZjYVidsMKYAAACBN2PGDKdjjhfRNGvWTM8//3wwSwqKLl262Fd2cHfRUCDmJhz7\nuuSSS3TNNdfY/+7uoiF/BXPOnz+vDRs2eNxWinkSwJmr7zj9dSFfYxGGAYAQkZiY6PIGuGOz2ewf\nsJ6SdLW15fhVX9WekyS98MILUbOSCGOKcFNTU+Px/uPHjwepEv9yDKI48veVRu4medq2bas+ffrY\n/96/f38lJyc7Pa5+G41VWVmpjRs3epzk4YonIHJ43U7HxLY6YYMxBQAACKwdO3Zo7dq19nkBR+aq\nMHfeead69uxpUYWB5e2iIX/MTVRVVTkFUMzXtv62zZ4uGvJHLRs2bND58+ftNUh152NiYmI0cuTI\nJvcDRJpQ/J6TMAwAAGFq5cqV2rVrl5IkTbW6mACYKilJ0s6dO/26xGUoY0wRbtxtm2NODu3YsSPI\nFfmHtyWADx06pAMHDjSpj8rKSuXm5rqc5Kk/odKsWTMNHz48YEsAr1u3zmlPbse64uLiNGLEiCb3\nA8B6Pm+nY2JbnZDHmAIAAATe+++/7/UxDz30UBAqsYa7C2T8OTexfv16VVZWSnLeSrr+RUv9+vVT\n69at7TU48scqNe7aMOsaOHCg5V/wA/ANYRgAAMLU9OnTJUkTJLWytpSASJZ07/d/Ns810jGmCDcd\nOnRwOuY4YXHw4EHt3LkzmCX5RY8ePdSlSxdJ7pcAbupEz1dffeUUQDG5WpnG3RLABw8eVGFhYZNq\ncXcuZjgnIyPDbfAJQHjxeTsdE9vqhDzGFAAAIPA+/fRTp2OO8wUdO3aM6G1zvF00VFxcrG+//bZJ\nffi6lbRU+9qPGDEiYBcNeWrDMAxWzwXCSKzVBQAAgIYrKirSwoULJUmPWFxLID0i6Q1J//nPf1Rc\nXKxLL73U6pIChjFFOOrRo4fXx/z5z3/WnDlzglCNf2VlZendd9/1uB/2xIkTG92+p4kVV8v9eloC\nOJC1SGyRBASbzWZTRUVFQNq2X9HqbTsdk7mtzqef6v3339ewYcMCUlfLli09btUW7hhTAACA8HXk\nyBFt3rzZ4xZJt912W0S/9+natau6d++uwsJCl6+DVDs30ZRtotxtJZ2UlKSBAwc6PT4zM1OfffaZ\npB/GQfohmNPYWi5cuKD169ezlTQQIVgZBgCAMDRz5kzV1NRopKSrrS4mgPpKuk5STU2NZs6caXU5\nAcWYIhxlZGS4vc+cHHnvvfd+2L4hjAR6CWB3kzzJycnq7+LK/sGDB9tXZ6k/IdOUWs6fP++0J3d9\nTPIAwfX1118rKSkpILdZs2bVdtKQ/6+/v8J11qxZAavrm2++8f8LGUIYUwAAgPD15Zdfen1MNHxu\nzs7OdhmCMTVlbuLChQv66quvXG4lPWLECJdzFp4uGmpKLbm5uTp37py9BqnuPExMTIzT9tYAQhdh\nGAAAwozNZrOHCB61uJZgMM9x5syZHj9whTPGFOEqPT1dnTt3liSnCQvzWE1Nje6++27985//tKTG\nxvK2BHBhYaEOHjzYqLarqqqcAijeJnni4uI0ZMgQl0sAN2Wbiw0bNuj8+fP2Gsx2HfsdMWJEo9sH\n0HAfffRRYDsYOdK37XRM/fvXriQSQAE/Z4sxpgAAAOErPz/f62NcbXccaQJ50dDGjRudAigmd6GX\njIwMtWzZ0l6Do6bMk3jaSlqSBg4cqMTExEa3DyC42CYJAIAwU1BQoOLiYjWXdIfVxQTBnZLiVLuN\n0IEDB5SWlmZ1SX7HmEbemEaTn/zkJ3r11VedJh4cgxVVVVWaOHGi3n77bf3hD38Ii320e/ToodTU\nVBUVFbldAnjVqlW69957G9z2+vXrVVlZaW/X8bXzNIGWmZlpn9BxfF5hYaEOHTqkLl26NLgWdxNE\nZvsZGRn2FWkABMdjjz2mr7/+Wv/6179qD/TvL/3ud1Lr1v7poEULqSFLuMfESM89J1VW+qf/776T\n/vxnaetWSdJPf/pTPfbYY/5pO0QxpgAAAOHLVRjG8XN8hw4d1KlTp2CWZAl3Fw2Zr8Xhw4dVUFDQ\nqHk+T+EVd/MksbGxGjp0qL744gt7Df4I5niqxTCMqFgFCIgkrAwDAECY2bRpkyTpGknx1pYSFPGq\nPVfph3OPNIwpwtkvfvELNWtW+7HC1YomjqGYFStWKCcnR71799bTTz+t3NzckF4dKCsrKyBLAHt6\nnqdlfgOxBLC35zHJAwTfJZdcovnz52vGjBlq0aKFtGWL9MtfSrt2SQkJTb81JDRhMgz/9L1rV+25\nbN2qFi1aaMaMGZo/f75a+ysUEqIYUwAAgPC1fft2t/MdhmEoPT3dgqqCr2vXrurWrZsk1/M/kn/m\nJhzbTkhI0ODBg90+z3GexHH+5vDhwzpw4ECD66iurta6devYShqIIIRhAAAIM2Z4YJDFdQSTea6R\nGpxgTBHOevfurcmTJ7vcYsdks9nsk0SGYejbb7/VCy+8oKFDh6pt27a6+eab9eyzz+qzzz7TsWPH\ngn0KbnlbArixy+66m+Rp2bKlMjIy3D5v2LBhiouLc3qe1LglgC9cuKD169czyQOEIMMwNGXKFOXm\n5uqqq66STpyQfvMbafZsqabG6vIarqZG+sc/as/hxAldddVVys3N1ZQpUzz+DIokjCkAAED4qa6u\nVmlpqcfHXHHFFUGqxnrZ2dkeLxpqzNxETU2NUwDFnEMaOnSoYmPdb3Li6aKhxtSSl5eniooKew1S\n3fmXmJgYjRw5ssHtArAO2yQBABBm8vLyJEVncMI890jDmMJXq1at0oULFwLW/rBhwxp1RdNf//pX\n/fe//9WhQ4fsgRdXkyOOEwnmZMKZM2f0+eef6/PPP7c/rmvXrho8eLAGDx6sa6+9VoMHD7ZkP2Zv\nSwAXFBSoqKhIl112mc9tXrhwQV999ZXLSZ5hw4YpJibG7XMTEhI0aNCgOgGWpiwBnJubq3PnztUZ\nL8e64uLiNGLEiAa3C8B/+vbtq40bN2rq1KmaNWuW9M47tauK/OEPUkqK1eX55tgx6YUXpG3bJEn3\n33+/Xn75ZUt+rocCxhTuhOr7PAAAollxcbEuXrzodp5Dkjp37hzkqqyTnZ2tOXPmOB1vytxEXl6e\nysvLXW4l7SnsIklDhw5V8+bNdeHCBadA9qpVqzRp0qQG1eKufnPsBw4cyHteIMwQhgEAIIzYbDb7\nPrXRGJzYtGmT04eicMeYRt6Y+pv5gdtms2n27NmaPXt2wPr6+9//3qgvSS655BItXLhQo0aN0pkz\nZyT9EKrwFIoxH1d//A8dOqSDBw/q3//+tySpWbNm6tu3r8aMGaMbb7xRWVlZ9q2ZAqlnz55KTU1V\nUVGR24mvlStXavz48T63WT+A4nju7vbBdpSZman169dLqhvM2b9/f4ODOe6ukjLbzcjIUEJCgs/t\nAQiMxMREvfXWW8rJydGUKVNUtm2b9MAD0u9/Lw0bZnV5nq1bJ/3lL9KZM2rVqpVmzJihu+66y+qq\nLMeYwhQO7/MAAIhmRUVFXh/TqVOnIFQSGrxdNHTw4EEVFhbat1PyhacVXLzNk7Ro0UIZGRl1VpZp\nSjDHUy2GYbB6LhCG2CYJAIAwUlhYqFOnTqm5pKutLiaIrpYUJ+nUqVMqLCy0uhy/Ykwjb0wDyQyO\n+Ptmtt0UAwYM0NKlS9WxY0enlUY8tW1uoeR4q3+uNptNW7du1YsvvqicnBxdeumlmjp1qnbs2NGk\nmn2RlZXlcQnghk6ueHq8tyueJHlcjteftUhskQSEmrvuukubN2/WwIEDpTNnpGnTpOnTpaoqq0tz\nVlVVW9uTT0pnzmjQoEHKz88nNFEPYwpHofw+DwCAaHX27Fmvj2nXrl0QKgkN3bp1swdd3L2/aMrc\nhGObzZs319ChQ70+33GexHH+prCwUAcPHvS5jpqaGq1du5atpIEIw8owAACEkaNHj0qSOktqbm0p\nQRWv2nM+KOnYnj3qHkHLUR7dvVtSlI/psWPq3r27tQWFCU+hjMby55cjgwcPVl5eniZMmKCVK1c6\nrQBj8nYe9e+vH6g5duyYXn31Vb366qu64YYb9Nxzz2nw4MF+Oou6srOzNXfuXKfjZkinoXtQu5vk\niY+P15AhQ7w+/7rrrlOzZs1crqi0cuVK3X333T7VUV1d7bQnd31M8gCh5/LLL9e6dev0+9//Xn//\n+9+lDz6o3arm6aelBqwMFVBFRdKzz0p790qSHnr8cT31pz+pefPmOhaKIQ+Lte7aVR+tXKkXnnxS\nM159NSzG9Fe/+pX+/Oc/q3nzaHr3Gnih/j4PAHxxrPyYKlRhdRl+UV5ebnUJCAHnzp3z+pgWLVoE\noZLQYW6V5O59xsqVKzVhwgSf2rp48aJTAMWc7xg8eLDi4+O9tpGZmam//OUvTa4lPz9fZWVlbreS\njomJ8XiBEoDQRBgGAIAwYn4Ai8ZNK8xzPnfDDZbW4W/mR+qoHlMfJhZQKxy+0Ljsssu0fPlyvfPO\nO3ryySdVXFzscsUXR00JxyxZskRLlizRxIkT9eKLL/r9iixvSwB/++23Kikp8WmP8JqaGqcAitnW\nkCFDfPpSsXXr1urbt6+2bt3apCWA8/LyVFFR4XaSJy4uTiNGjPC5PQDBEx8fr7/97W8aPXq0Jk2a\npJN79khTpki//rWUk2NtccuWSS+9JJ07JyUnS7//vWYMG6YZeXnW1hUO7rxT6tSpdguiEB3Tdu3a\n6e2339Ytt9xibU0RKhze5wGAN2kvp0XOlT5keCHf5qx8CWw0Vvv27XXy5Em/tjlp0iT94x//aPTz\nzTBMfY2Zm8jPz9fZs2cbvZW05PmioVWrVvkchnFXtzlnMnDgQCVG0AWaQLRgmyQAAMJIZWWlJCm6\nrjeoZZ5zpMUmKr//b1SPKWEYn7naUsgft0CYMGGC9u/frxkzZqhv3751tjzytCWSt22V6r8O5uPn\nzJmjfv36ac2aNX49j549e+qy76/M93TVky/y8vLsVxfWf9192SLJ1WMd29m3b59KSkp8asPTJI95\nBVZCQjTG9IDwceutt2rr1q21VydWVEgvvCD97//WBlGC7dy52r7/9KfaP19zjfTWW9KwYcGvJZwN\nH177ul1zTciNaWZmprZs2UIQJoDC6X0eAADRorq62utjYmMDt+5AoLZQbAp3Fw2ZDhw4oEOHDvnU\nVlO3kpakVq1aqV+/fk6rEzd0NV9PtRiGoVGjRvncFoDQQRgGAAAACBOBmATx12SIK3FxcXrggQe0\ndetWffXVV5o6daq6detWp193X9r4Wp/j44uLi3X99dfrgw8+8Ot5ZGVlefwyydernjxNwvh6xZPk\neULIH7VIbJEEhIvU1FR98cUXeuqpp2p/Vn7+ufTII9L+/cErYv/+2j4//1wyDGnChNqVRFJSgldD\nJElJqX397r239vW0eEwNw9DTTz+t5cuXKzU1NXg1RKFwe58HAEA08GXVl/PnzwehkqYFZ83n+0O3\nbt3UrVs3Se4vGmrM3IRjW7GxsQ1ardbdRUMHDhzQ4cOHvT7/4sWLWrNmDVtJAxGIMAwAAGHE3IO2\n0svjIpF5zpG2ToG5OkpUjymrT3jkuBXO7NmzVVNTE7Db448/HrDzuPbaa/XSSy+poKBAO3bs0Cuv\nvKKf/exnTuEYb6vHuOL4mKqqKo0fP17//e9//Va7uwmPhl5p5DgZVH9LomENWD3BUxjGl1pqamqc\n9uSuj0keIHzExsbqueee0/Lly2u3bCssrA0yfPyxFMhVIWy22j4eeaS2z3btpP/3/6TJk6WYmMD1\nGw1iYqT77qt9Pdu1s2xMO3furOXLl+vZZ58N6BXP0SxS3ucBABCpfJmzClYYJpSCsN4uGvJlbsJm\nszkFUMw2BwwYoJYtW/pcT1PnSbZs2aLvvvuuTg31wznXXXedz/UACB18kgUAIIyYH8CicVMZ85wT\nliyRBgywtBZ/SsjPl8aNi+4x/f/s3X+0VXWdP/7ngSsgUIb8+IiSQooII/4AqVQEG225nMmWfj6V\nYTPVfAi/9sOxJrUZzfnMVM7oR7PSUvs4zmTKmNWgxZrJCSvUzJaAP64pihrhTDoB/hhBVATv94/r\npUjnBW4AACAASURBVAv3J3ju3vfs+3isdZb37nvO3q/Dxhf3vPdzv9/CMAPOlClTMmXKlHzyk59M\nkqxfvz4rVqzIvffem3vvvTcrVqzImjVrtj1/x6lud9zW9n3boM+rr76aU089NQ888ED23XffN1xv\nV1MAt9Xy2GOP5Xe/+13+x//4H13u47XXXusQQGnbx8yZM3fq/4OxY8dmypQpWbVq1XYX0Xq7Nve9\n996bjRs3bntN2+vb7Lbbbjt1BxbQP7zrXe/K/fffn4985CO59dZbk698Jbn33uTss5ORI+t7sI0b\nk0svTV7vOcedcEKuuPbajDEbTH0ddVTWvf/9OXP+/Pz0xz8u9JyeeOKJue666zLWOQVgJ6w+a3VG\njBhRdhl18eKLL2bS300quwxK1pvP6ps2berTGvrjsofHHntsvv3tb3fYvjNjE20BlLbXtB/f2JnZ\nc5O0Lh3bhdtvvz1/8id/0u3re1pKesaMGZXpbTDQCMMAQAMZN25ckuTpJJuTDCm1muK8ktb3nCRj\nDzywUtPuj5syJckAP6cVOp/smjFjxuSEE07ICSecsG3b008/ndtvvz0/+9nPcsstt2T9+vVJtr9D\np6tATJK88MILmT9/fpYsWfKG6zvggAOyzz775Kmnnur0uEnrwMkHPvCBLvdx7733ZsOGDR0GeZLe\nr4Pd3pw5c/Loo4922N+qVauydu3abf9edKanQZ5Zs2Ztm4kMaCzjxo3Lv/7rv+ayyy7LX/3VX2XL\n7bcnL72UXHxxfQ/0xS8m99yTpqamXHTRRfnMZz6TQYNMPtwXxk6YkCU/+pFzCkBDGDtibGUuGA9P\n72eloLpGjx7d43N+97vf9WkNuzLTS18HaHq6aejXv/51nnrqqey9995d7qO7wMzOjpOMGTMmU6dO\nzSOPPLJLNw319Byz50LjEoYBgAay3377ZdSoUXnuuefyqyQzyi6oIL9K8mqSUaNGbVuTtiqc0+qd\nU+pj/Pjx+eAHP5gPfvCDueqqq/Lv//7vufLKK/Nv//ZvSX4/yNJVIKalpSU//elP86Mf/Sgnnnji\nG65n7ty5+ed//ucuB6GWLl3abRimu2l5d/aOp6R1YOiaa66pey2JQR5odIMGDcrZZ5+dPfbYI6ef\nfnryxBP1P8jr+7zyyiuzYMGC+u+f7TinAADlmDBhQo/P6cswzNe+9rW8/PLOLa7+gx/8IIsXL+7y\nZp56mDhxYvbbb788+eSTXR5n6dKlOe2007rcR/uxifZjLYMGDep2ppeuzJkzJytXruxw09ATTzzR\nbTCnpaUld955p6WkoaLc4gEADaRtWsYkWVFyLUVqe68zZ84sZN3bIjmn1Tun1N+gQYNy4oknZvHi\nxfnFL36RI444otMZVjpzySWX1KWG7gY+enOnUfuf7zjIsyvrTnd3l1R3tbz22msd1uTekUEeqIZl\ny5a1fnHkkfXf+TvfmSRZvnx5/fdNl5xTAIBijRkzJkOHDk3S9Qwt//Ef/9Fnxz/ttNPyv//3/96p\nR9s4Y1+bO3dut2Gb7sYmOgugtO1r+vTpefOb37zT9ezqOElzc3Oee+657WpoX1dTU9MujdsA/YMw\nDAA0mCOOOCLJwAxOtL33qnFOoffe8Y535K677srHP/7xLp/TfnaY22+/Pb/5zW/e8HF7mgL4kUce\nybp167qsZ8cAStsAy2GHHZaRI0fudD1vfetbt82qtON+u5v55f77788LL7ywXQ3tX7/bbrvl6KOP\n3ul6gP5ly5Ytufnmm1u/6YuA2+v7XLRoUbZs2VL//dOBcwoAUI6JEyd2+bOWlpY8/PDDxRXTj3R1\nI03beEx3YxMPPvhghwBK22t3ZfbcpPswTHe19LSU9IwZMyqz/BsMRMIwANBgZs6cmWRgBifa3nvV\nOKewc5qamvL1r389f/Znf9ar2WEWL178ho95wAEHbJtSt6vjdTWAcv/99+e///u/k3Qc5NnZdbDb\nmzNnzrb99TaY09Mgz6xZszJs2LBdrgnoH5YuXZr169cne+yRHHZY/Q9w+OHJm9+c9evX9zgzFvXh\nnAIAlOPQQw/tdAaU9p/BB6Kubhpq8/jjj+e//uu/On1td79v7uo4yT777JNJkyYl+f25aX+jVFd6\n+t3X7LnQ2IRhAKDBtIUHmpO8Um4phXglre81qW5wwjmFXfPNb34z+++/f5KuAypJctddd9XleD1N\nAdzVnUbdDazs6h1Pya5NAWyQBwaG7373u61fHHNMMnhw/Q8weHDrvtsfiz7lnAIAlKOzZYfajw28\n9NJLaW5u7vCcqps4cWL23XffJF2PyezKOEk9bxpq89hjj3UZzLnjjjssJQ0VJgwDAA1m0qRJ2Xvv\nvbM5yc1lF1OARUleTWu6v7tpSRuZcwq7pqmpKX/zN3/TZUCl7Q6g+++/vy7H624ApLs7jdoP/rQf\nYKnVajnm9QuPu2JnwzCdrcm9I4M80Pj6fDmdNpbVKYxzCgBQnt4s8d3dMjxV1tNNQ12Nk7QPoLSN\n3STJtGnTMnr06F2uZ2fHSX71q1/lmWeeSdL5UtJNTU2ZPXv2LtcDlE8YBgAaTK1Wy4IFC5IkV5Zc\nSxHa3uOCBQt6XAqlUTmnsOv+5//8nxk6dGiSru9E+o//+I+6HKurKYDbjvvwww9vG0Rp//MdAyht\nAyx/8Ad/kFGjRu1yPZMnT85ee+2VJB3239lAXHNzc4c1udu/brfddsvRRx+9y/UA/UOfL6fTxrI6\nhXFOAQDKc/TRR2f48OFJuh53+PGPf1xkSf1GVzfUtAVcOhubeOihh1p/t019l5JOug/DdFZLT0tJ\nz5gxIyNGjHhDNQHlEoYBgAa0YMGCDB48OHcmebDsYvrQg0l+nmTw4MHbwiJV5ZzCrtl9991z5JFH\ndrgTqf33L7/8cjZu3PiGjzV58uTsvffeSboeANtxIOXBBx/sEEBpe/0bWSKpzTHHHLPdFMDdBXN6\nGuSZNWtWhg0b9oZrAsq1S8vpPPRQ8vGPtz4efrh3r7GsTmGcUwCA8gwdOjTHHXdcpzOgtIU+brvt\ntjz//PMlVFeurm4aarNq1aqsXbt2u5/31VLSSbL//vt3GLdpO0edHddS0lB9wjAA0ID22WefnHzy\nyUmSq0uupS9d9fp/TznllG0fZKrKOYVdt99++/X4nJdeeqkux+ppCuAd7zTqq3Wwe7OPHY9tkAeq\nb6eX09m6Nbn++uSss5JHHml9/PmfJzfc0PqznlhWp885pwAA5TvppJM6bGs/NvDqq6/me9/7XpEl\n9QuTJk3Kvvvum6Trm4aKHifZ8aahNo8++miHYE775Zo6Y5wEGp8wDEA/8eKLL3b6gK588pOfTJJ8\nO8mGckvpEy8kuf71r9vea9U5p7Brxo4d2+NzBvf2TvoedDcQ0tmdRt2tG16vQZ6u7FiLQR6ovp1a\nTmft2uSzn03+8R+TrVszb968zJs3rzUwce21ydlnJ+vWdb8Py+r0OecUAKB8H/jAB7pdKqmlpSVf\n+9rXii6rX+jppqHObtRpP2tLmwMOOGDbUtBvRG/HSVauXLktHNPZUtJNTU2ZPXv2G64HBpL+eJ1T\nGAagn5g0aVJGjhzZ4QFdOfbYY3PQQQdlY5IqftT6WpKNSaZOnVqXpUQagXMKu2bTpk09Pqdeazx3\ntx520rr29bPPPrtte/sASvtBlQMPPDDjxo17w/VMnz49b3nLWzrsf8e1uX/1q19tWzaps0GeIUOG\n5Oijj37D9QDl6vVyOnfemXzsY8kDD2TkyJG57rrrsnDhwixcuDDf+ta3Wnvm/fcn8+e3PrcrltXp\nc84pAED53vzmN+fUU0/tdInmts/WK1euzA9+8IMyyitVTzcNtR+beOSRRzoEUNr+DOtxw1DS/Y1H\n7WvpaSnpmTNn1m0sCQaKzq5xTpo0qdSahGEAoEHVarVccMEFSZIvJPlVueXU1YNJvvj615///Oe7\nncmgSpxT2DVPPfVUh23t/4696U1vytChQ+tyrMmTJ2f8+PHbHaP9YFhLS0vuuOOOJK3BmB0DKG2D\nKvUKhNVqtcyePXu7GtoHc5577rkkPQ/yzJo1K8OGDatLTUA5erWczssvJ5ddlvz1XycbNuSII47I\nfffdlw9/+MOp1Wqp1Wr5yEc+kvvuuy9HHHFEsmFD63Mvu6z1tZ2xrE6fcU4BAPqP7mY5rtVqaWlp\nybnnnptXX321wKrK19n4RvuQ0COPPJJ1r89O2N3Mg/UaJzn44IOz5557Jul401D741tKGgYGYRiA\nfmL16tXZuHFjhwd0Z968eTnppJPyapKPJqnCR6327+W9731v69TuA4hzCjtv5cqVXU5TnCT7779/\nXY/X2ymA+3od7M721VUwxyAPVF+Py+k8/nhyxhnJ4sVJknPPPTd33XVXDjjggA5PnTx5cu66666c\ne+65rRsWL2597RNPdNyvZXX6jHMKANB/zJgxI6eccsp2QY9k+8/hjz/+eC688MIyyivN2972trz1\nrW9N0vkSUkl6NTZRz3GS9jcN7Th7z/r167fVYilpqK/OrnGuXr261JqEYQD6iREjRnT6gO7UarV8\n85vfzKhRo7Iiyf8tu6A6uDjJvUlGjRqVq6++esDNIOKcws55+OGH8+ijjyZJpwGVWq2WQw89tK7H\n7O0UwEXc8ZT0bgrg9ss1dcYgDzS+LpfTaWlJ/uVfkk9+MlmzJuPHj8+SJUty8cUXZ8iQIV3ub8iQ\nIbn44ouzZMmS7LXXXsmaNcknPpEsWtS6zzaW1ekzzikAQP9y4YUXZvDrv5ft+Bm7bXaYCy+8MD/5\nyU/KKK80Pd001H6cpLOlpPfdd9/su+++daunu3GS22+/PY899lj+67/+K0nnS0k3NTVl9uzZdasH\nBor+eJ1TGAYAGtz48eNz+eWXJ0n+Nq3L0TSq5rQuD5Qkl19++balSAYa55RG0R+WTviHf/iHHp9T\nz+BJ0nVwpG3g5MEHH8yzzz7b5SDPxIkTs88++9StnvbrWHc2BfDKlSs7rMnd/nlDhgzJUUcdVbd6\ngOJ1uZzO888n552XfP3ryebNec973pMHHnggxx9/fK/3ffzxx6e5uTl//Md/nGzenFxxRXL++a37\nbmNZnbpzTgEA+p+DDjoon/70pzt8tm7//datWzNv3rw89NBDpdVZtJ5uGmoLoDz99NPbtrX9t1ar\n1XVWmKTnMExbOKezWmu1WmbOnJnhw4fXtSagHMIwAFABH/rQh7YtrXNqkmfKLmgXPJPkg/n9Ujof\n+tCHSq6oXM4pjeDb3/52PvCBD+Txxx8v5fj33Xdfvv71r3d6N1abpqam1ot9dXTggQduC3btOPDV\n9vX/+3//r0MApW1Qpd7hnMGDB+fII4/croa2upqbm39/MXUHbfXMmjUrw4YNq2tNQLE6XU5n+fJk\n/vzkl7/M0KFDc8UVV+SHP/xhxo4du9P7Hzt2bBYvXpzLL788Q4cOTe6+O/nYx5IVK1qfYFmdunNO\nAQD6py996UuZOnVqh5lQ2gdi1q9fn+OOOy4PPtjIt7j1Xk83DT388MP5/ve/3+Xr6z1OMmPGjIwc\nOXK7GtosXbrUUtIwgAjDAEAFtC2ts/fee2dlkhOTbCi7qJ2wIa01r0yy9957W0onzimNoaWlJd//\n/vczbdq0zJ8/P6tWrSrs2E899VROO+20bN26dVstO9ZWq9XyR3/0RxkzZkzdj9/TFMBf/vKXu31t\nvbW/62nHYM5XvvKVbl9rkAca33bL6bz2WnL11ck55yTPPptp06blnnvuyac+9ak39G9xrVbLmWee\nmXvuuSdTp05NnnkmOfvs1mO99pplderMOQUA6J+GDh2a66+/PsOGDds29tDZDDFr167NUUcdlZtu\nuqnMcgvxtre9LW9961uTdH3T0GWXXdbl6+s9TjJo0KAcddRRHW4aamlpyUMPPZRbb72129cbJ4Hq\nEIYBgIoYP358fvzjH2fPPffMsiQnpTHCExuSvCfJsiSjR4/OkiVLLKXzOueURrF169b80z/9U6ZN\nm5b3ve99+dnPftanx1u1alVmz56dRx99NEnHIEx75513Xp/U0NnASPsZYJ599tkua6v39L+d7bP9\ncburJTHIA41uu+V0Djgg+dSnktcH3M8444wsW7YshxxySN2Od8ghh2T58uU544wzWjfcdFNy5pnJ\n5MlJLKtTD84pAED/NmPGjFx//fXbAhbJ9iGQtpDMpk2bMm/evMybNy9PPfVUn9e1evXq3HHHHX1+\nnM50dtNQV2MT7QPd48ePz/7771/3ena8aai7cZIdZxiePXt23esByiEMAwAV8gd/8Ae59dZb86Y3\nvSm3Jzku/Xt5nfVJ/jDJHUne9KY35Uc/+lGmTZtWclX9i3NKo2gbAFq0aFGOO+64HHTQQfn7v//7\nPPHEE3U7xqZNm3LBBRfksMMOy5o1a7YbdNqxjlqtlg984AOZNWtW3Y7f3s4ESNoPquyzzz6ZNGlS\n3et5xzve0brMxQ7H6ywA0/7nQ4YMyVFHHVX3eoDibFtOJ0muvDJZtSp77rlnbr755lx11VV9stb9\n8OHDc9VVV2XRokUZNWpU8uijrcdOLKtTB84pAED/97/+1//KJZdc0mkgJtk+aHHTTTdlypQp+fSn\nP53Vq1fXvZZVq1Zl/vz5mTJlSn72s591Ol7S17obJ+mslraxm764YSjp/kakzmZXbKtn5syZffL7\nNlAOYRgAqJhZs2blJz/5ybbZRI5J0h9Xp21OMifJ8rTOHvLTn/60zy5aNzrnlEbQfpCnVqvlscce\ny/nnn5/JkyfnsMMOyznnnJN///d/z/PPP79T+926dWvuuOOOnHHGGdlvv/1y4YUX5pVXXtnumG3a\nD2bstdde+cY3vvEG31XXDjzwwOy1114djtumq2Wb+mqQZ+jQoZk1a1aXA0ydbavVapk1a1aGDRvW\nJzUBxdhuCZvNm3PsscfmgQceyMknn9znxz7llFPS3NzcOq355s2d18ROc04BABrDX/zFX+SrX/1q\nBg0atN2MMF3NEnP55Zdn8uTJmTNnTr761a/mV7/6VV577bWdPu5LL72UX/7yl/n85z+f6dOn56CD\nDso//dM/ZevWrR2CMEUtW97TUkddhXP6apzk7W9/+7bxjh1DSt0FhcyeC9XSVHYBAED9zZo1K3fe\neWfe/e53Z+VTT2Vmkr9O8rkku5Vc26tJLkryxde/3nvvvbNkyRKzh/TAOaUR7DjY0jbY0NzcnObm\n5nz5y19Okuy3336ZNm1a9t1330yYMCEjR47M7rvvnldffTUvvPBCNmzYkKeeeirNzc1ZuXLltvBL\nZ+twt21vX8OIESPywx/+MHvuuWefvt+5c+fmpptu2qmBpXqvg93enDlz8vOf/3ynXmOQBxpf2zTo\ngwcPzhe+8IV87nOfy+DBgws7/oQJE/KTn/wkF110Uf7P//k/20KM7DrnFACgcZx55pkZPXp0FixY\nkJdffrnbQExbUOXnP//5ts/vI0aMyCGHHJKJEydm3333zZ577pndd989Q4cOzcsvv5wNGzZk48aN\n2bBhQ379619n5cqVWbNmTYebktr0NEtNPZfbbG///ffPhAkT8tvf/nanZqbpq3GSIUOG5O1vf3vu\nuOOOnRq3MU4C1SIMAwAVNW3atCxfvjxnnHFGfvjDH+aCJDcnuS7JwSXV9GCSjya59/Xv3/ve9+bq\nq6/O+PHjS6qosTin9Gfd3WWz46DDk08+mTVr1vR6v10t+9PZ9re85S255ZZbMnPmzJ17A7vg2GOP\nzU033bRTr+mrO57a9v13f/d3O/UagzzQ+G677bacc845Oeuss/LOd76zlBoGDx6c888/P3/4h3+Y\nyy+/PJdcckkpdVSFcwoA0FhOO+20TJ8+PaeeemoeffTRToMqXYVXNm3alLvvvjt33313r47V9tqu\nwi5d3UR0yCGH5KqrrurT3y/nzp2bhQsXdhs+af+zMWPGZOrUqX1Wz5w5c3oMdbevp6mpKbNnz+6z\neoDiWSYJACps/PjxueWWW3L99ddn1KhRuTfJjLTO4PFCgXW88PoxZ6Y1NDFq1KjccMMNueWWW4Qm\ndpJzSn/UFn7Z8W6nzu6E2nGApqfHjq/t6me1Wi3Tp0/PL37xiz4NnLTXmyBJ+0GVcePGZcqUKX1W\nz9FHH71t5oCuBp7abx8yZEiOOuqoPqsHKMaECRNy4403lhaaaO/II4/MjTfemAkTJpRdSkNzTgEA\nGs/06dOzYsWKfOYzn8mQIUO2zY7SVVBlV8ZIurtZaMd9t22fOHFirr322qxYsaLPf7/s7Q03beM4\nxxxzTJ/W09vxobZ6Zs6cmeHDh/dpTUCxhGEAoOJqtVr+5E/+JA899FBOOumkvJrW5XX2SfKJtM7s\n0VceTPLx14/112ldQue9731vHnrooXzoQx8qbM3aqnFOB4YdBzn6o3e961351Kc+lbe+9a1dDup0\nNrCzs3oKx+y+++4577zzsmzZshx00EH1e4M9mDJlSvbaa68ONXZWbxGDPCNGjMjhhx++7fvuBs1q\ntVpmzZq1bf3s/qx97f39/wkA6I1G+D2vngba+wVg4Np9991z6aWXprm5OSeddFIGDRq0XSimHmMk\nbboag2nb7+GHH55/+Id/yKpVq/LRj340gwb1/SXh9mGYnsI8Sd/OnpskRx11VJqamnpdT6PMnut3\nK+g9YRgAGCDGjx+fH/zgB1m4cGGmTp2ajUmuSnJIkjlJbkzySh2O88rr+zrm9X1fnWRjkqlTp2bh\nwoVmDqkj57SadhzE6O0ay2V429velssvvzxr1qzJPffck/POOy8HH3xwt+GVnXlvXb2mbd9vectb\nctZZZ+Wxxx7LF7/4xQwZMqSIt72duXPndvv+2r/HvloHu705c+b0WE9bTY0wyLMrf28AoL8aiP+m\nDbT3CwBJcuCBB+aWW27JQw89lDPOOCMjR47cNpaxq59zexojqdVqGTduXE4//fTcddddWbFiRf7s\nz/5sWxikCPvvv38mTJjQb8ZJhg8fnhkzZvS6nkYcJwG6V1wHBABKV6vVctppp2XevHlZunRprrzy\nytx88825c+vW3JlkSJLpaV36pu0x/fXtndmc1plCVrR7NKd1tpCkdZ3VU045JZ/4xCcyd+5cifU+\n4JxWT6P+mc6cOTMzZ87MF7/4xaxfvz4///nPtz3uu+++bNmypcNrevrg3tmfxahRo/Lud787J598\nct773vdm9913r+v72FnHHntsvvvd7/b4vFqtVsjyTXPmzMlXvvKVXtXT3wd5ervGOAA0ioH279dA\ne7+wnc1lF1CggfBeB8J7bDOQ3msBpkyZkm984xu57LLLcuutt2bRokVZsmRJfve733V4bk/Bhs7+\nXd1tt90yc+bMzJ07NyeccELmzJlT+r+/c+fOzT//8z/3+Ly3vOUtOfTQQ/u8njlz5mTZsmU9Pm+3\n3XbL7Nmz+7yeN6LscwuNqNYiNgZQuHXr1mXcuHHbbVu7dm3Gjh1bUkXsqiqcy6eeeirXXHNNrrnm\nmvz2t7/t8PPdkoxPsnuStsU0Xk7yUpKn8/uQRHv77LNPFixYkAULFmTvvffuo8rpinNKf/PKK6/k\n0UcfzapVq7Y9Vq9eneeffz4vvPBCNmzYkA0bNqSlpSVDhw7NsGHDsueee2bs2LHZe++9M3ny5Bx0\n0EF5+9vfnilTppT9dgAAADp48cUXM3LkyLLLKNXGjRszYsSIssuoC+ezWuezv3nyySdzzz33pLm5\nOb/5zW/y5JNP5re//W02btyYTZs25aWXXkrSuuzSsGHDsscee2T8+PEZP3589ttvv0ybNi0HH3xw\nDj744AwdOrTkdwP1V4XrLrQq+1wKwwCUoOzmT/1U6Vy2tLTkN7/5TVasWJHly5dnxYoVWbFiRZ57\n7rluXzdq1KgcccQR22aFmDlzZiZOnCip3g84pwAAAFAM4YlqhSecz2qdT6CxVOm6y0BX9rm0TBIA\nkKR1msVJkyZl0qRJed/73pekNUyxZs2arFu3Li+99NJ2dyXsvvvuGTt2bPbbbz8hiX7KOQUAAIBi\nDB8+PBs3biy7jFINHz687BLqxvms1vkEYGAShgEAulSr1TJx4sRMnDix7FKoE+cUAAAA6q9Wq5lF\no0KcTwBofIPKLgAAAAAAAAAAAOpFGAYAAAAAAAAAgMoQhgEAAAAAAAAAoDKEYQAAAAAAAAAAqAxh\nGAAAAAAAAAAAKkMYBgAAAAAAAACAyhCGAQAAAAAAAACgMoRhAAAAAAAAAACoDGEYAAAAAAAAAAAq\nQxgGAAAAAAAAAIDKEIYBAAAAAAAAAKAyhGEAAAAAAAAAAKgMYRgAAAAAAAAAACpDGAYAAAAAAAAA\ngMoQhgEAAAAAAAAAoDKEYQAAAAAAAAAAqAxhGAAAAAAAAAAAKkMYBgAAAAAAAACAyhCGAQAAAAAA\nAACgMoRhAAAAAAAAAACojKayCwCg1Ysvvpjhw4d32D5ixIgSqgEAAAAAAADo2YsvvtirbUUShgHo\nJyZNmtTp9paWloIrAQAAAAAAAOidkSNHll1CB5ZJAgAAAAAAAACgMswMA9BPrF69OmPHji27DAAA\nAAAAAIBe27hxY4dt69at63JljCIIwwD0EyNGjMiIESPKLgMAAAAAAACg1zq7xrlp06YSKvk9yyQB\nAAAAAAAAAFAZwjAAAAAAAAAAAFSGMAwAAAAAAAAAAJUhDAMAAAAAAAAAQGUIwwAAAAAAAAAAUBnC\nMAAAAAAAAAAAVIYwDAAAAAAAAAAAlSEMAwAAAAAAAABAZQjDAAAAAAAAAABQGcIwAAAAAAAAAABU\nhjAMAAAAAAAAAACVIQwDAAAAAAAAAEBlCMMAAAAAAAAAAFAZwjAAAAAAAAAAAFSGMAwAAAAAAAAA\nAJUhDAMAAAAAAAAAQGUIwwAAAAAAAAAAUBnCMAAAAAAAAAAAVEZT2QUAQNWsX7++7BIAAAAAC0T1\nPAAAIABJREFUAAAajmss1IswDADU2bRp08ouAQAAAAAAAAYsyyQBAAAAAAAAAFAZwjAAAAAAAAAA\nAFSGMAwAAAAAAAAAAJXRVHYBANDIRo8enbVr15ZdBgAAAAAAQCWNHj267BJoQMIwAPAGDBo0KGPH\nji27DAAAAAAAAOB1lkkCAAAAAAAAAKAyhGEAAAAAAAAAAKgMYRgAAAAAAAAAACpDGAYAAAAAAAAA\ngMoQhgEAAAAAAAAAoDKEYQAAAAAAAAAAqAxhGAAAAAAAAAAAKkMYBgAAAAAAAACAyhCGAQAAAAAA\nAACgMoRhAAAAAAAAAACoDGEYAAAAAAAAAAAqQxgGAAAAAAAAAIDKEIYBAAAAAAAAAKAyhGEAAAAA\nAAAAAKgMYRgAAAAAAAAAACpDGAYAAAAAAAAAgMpoKrsAAACKsWXLltxyyy1JkpNPPjlNTX4VBPqW\nvgMUTd8ByqD3AEXTd4Ci6Ts0In9LAQAGiKVLl+b9739/kmTJkiU5/vjjS64IqDp9ByiavgOUQe8B\niqbvAEXTd2hElkkCABggvvvd7277+nvf+16JlQADhb4DFE3fAcqg9wBF03eAouk7NKJaS0tLS9lF\nAAw069aty7hx47bbtnbt2owdO7akioCq27JlS8aPH5/169cnScaMGZOnn37adJZAn9F3gKLpO0AZ\n9B6gaPoOUDR9h11V9vVQM8MAAAwAS5cubf2wssceyR57ZP369Vm6dGnZZQEVpu8ARdN3gDLoPUDR\n9B2gaPoOjUoYBqCfePHFFzt9ANTDtmksjzkmmT07ieksgb6l7wBF03eAMug9QNH0HaBo+g690R+v\nc1omCaAEnU0L1hVtGnijtpvG8tJLWzeefbbpLIE+o+8ARdN3gDLoPUDR9B2gaPoOvVWr1Xr1PMsk\nAQBQN9tNY3nYYa0P01kCfUjfAYqm7wBl0HuAouk7QNH0HRqZMAxAP7F69eps3LixwwPgjdpuGsvB\ng1sfprME+pC+AxRN3wHKoPcARdN3gKLpO/RWZ9c4V69eXWpNwjAA/cSIESM6fQC8EVu2bMnNN9/c\n+s2xx/7+B+96V5Jk0aJF2bJlS/GFAZWl7wBF03eAMug9QNH0HaBo+g47oz9e5xSGAQCosA7TWLYx\nnSXQR/QdoGj6DlAGvQcomr4DFE3fodEJwwAAVFiHaSzbmM4S6CP6DlA0fQcog94DFE3fAYqm79Do\nhGEAACqqy2ks25jOEqgzfQcomr4DlEHvAYqm7wBF03eoAmEYAICK6nIayzamswTqTN8BiqbvAGXQ\ne4Ci6TtA0fQdqkAYBgCgorqcxrKN6SyBOtN3gKLpO0AZ9B6gaPoOUDR9hyoQhgEAqKAep7FsYzpL\noE70HaBo+g5QBr0HKJq+AxRN36EqhGEAACqox2ks25jOEqgTfQcomr4DlEHvAYqm7wBF03eoCmEY\nAIAK6nEayzamswTqRN8BiqbvAGXQe4Ci6TtA0fQdqkIYBgCgYno9jWUb01kCb5C+AxRN3wHKoPcA\nRdN3gKLpO1SJMAwAQMX0ehrLNqazBN4gfQcomr4DlEHvAYqm7wBF03eokqayCwAAGIhaWlqyadOm\nPtn3d77zndYveprGsk3bdJb/+q/5zne+kyOPPLJP6ho+fHhqtVqf7Bvomb4DFE3fAcqg9wBF03eA\nouk70Du1lpaWlrKLABho1q1bl3Hjxm23be3atRk7dmxJFQFFa25uzqGHHtq3B7n00mTmzN49d8WK\n5Oyz+7Sc5ubmTJ8+vU+PAXRN3wGKpu8AZdB7gKLpO0DR9B0aRdnXQy2TBABQgh/84Ad9e4Bjjund\nNJZtDjusNcHfh/r8PQPd0neAouk7QBn0HqBo+g5QNH0HesfMMAAlKDsJCZTv+eefz+mnn57vfe97\nrRsOOyz53Oda12Kth2HDkp2dNrKlJXn55foc/7//O7noouSBB5Ik73//+3PNNddkj3q9P2Cn6TtA\n0fQdoAx6D1A0fQcomr5Doyj7eqgwDEAJym7+QP/Q0tKSa665JmeddVZefvnlZPTo5Pzzk8MPL7u0\nN+a++5ILL0yeeSbDhg3L1772tSxYsMCartAP6DtA0fQdoAx6D1A0fQcomr5DIyj7eqgwDEAJym7+\nQP/y4IMP5tRTT83KlStbE/d/+qfJhz+cDB5cdmk7Z+vW5LrrkhtuSFpaMnXq1Nx0003WcoV+SN8B\niqbvAGXQe4Ci6TtA0fQd+rOyr4cOKuQoAAB0afr06Vm2bFnmz5/fOp3kt7+d/MVfJOvWlV1a761b\n11rz9dcnLS2ZP39+li1b5sMK9FP6DlA0fQcog94DFE3fAYqm70DXzAwDUIKyk5BA/3XjjTfm9NNP\nz8aNG5M3vzn5y79Mjjyy7LK694tfJBdfnLzwQt70pjflm9/8ZubNm1d2VUAv6TtA0fQdoAx6D1A0\nfQcomr5Df1P29VBhGIASlN38gf7t8ccfz6mnnpp77723dcP73pcsWJAMGVJuYTvavDm55prk+99P\nksycOTPf+c53csABB5RcGLCz9B2gaPoOUAa9ByiavgMUTd+hPyn7eqgwDEAJym7+QP/3yiuv5C//\n8i/z1a9+tXXDgQcmf/3XyT77lFtYm9/+Nvnbv00eeyxJ8v/9+Z/nggsvzJD+9qEK6LVXXnklXzr/\n/HzziitaN+g7QB/Td4Ay6D1A0fQdoGiN1nc+85nP5KKLLtJ3Kqjs66HCMAAlKLv5A41j8eLF+ehH\nP5pnn302GT68de3U444rt6jbbksuuyx56aXGmW4T6L1209PqO0Ah9B2gDHoPUDR9ByhaP+87o0eP\nzre+9a285z3vKbcm+kzZ10OFYQBKUHbzBxrLf/7nf+a0007LnXfe2brhxBOTM89Mdt+92EJeeim5\n4orkRz9q/f6QQ5LPfz7Ru6B61q1LvvSlpLm59Xt9B+hr+g5QBr0HKJq+AxStn/adOXPmZOHChZkw\nYUKxdVCosq+HCsMAlKDs5g80ni1btuQLX/hCvvSlL6WlpSXZb7/WqS3f9rZiCvj1r5MvfCFZsyap\n1ZI//dPkwx9OBg8u5vhA8bZuTa67LrnhhkTfAYqg7wBl0HuAouk7QNH6Ud+p1Wq54IILcsEFF6Sp\nqamY41Oasq+HCsMAlKDs5g80rp/97Gf50Ic+lKeffjoZMiT55CeTk05qHbzoCy0tyeLFyTe+kWze\nnIwenZx/fnL44X1zPKD/ue++5MILk2ee0XeAYug7QBn0HqBo+g5QtJL7zvjx47Nw4cK8613v6pvj\n0e+UfT1UGAagBGU3f6CxrV27Nh/5yEdy6623tm6YOzc5++xk5Mj6HmjjxuTSS5Pbb0+SHHfCCbni\n2mszRq+CAWfd2rU5c/78/PTHP27doO8AfUzfAcqg9wBF03eAopXVd0488cRcd911roMNMGVfDxWG\nAShB2c0faHyvvfZaLrvssvzVX/1VtmzZkrz97cnFF9f3IJ/7XHLPPWlqaspFF12Uz3zmMxk0aFB9\njwE0DH0HKJq+A5RB7wGKpu8ARdN3KErZ10MtxAUA0IAGDRqUs88+O3vssUdOP/305Ikn6n+Q1/d5\n5ZVXZsGCBfXfP9BQ9B2gaPoOUAa9ByiavgMUTd9hoBC/AgBoYMuWLWv94sgj67/zd74zSbJ8+fL6\n7xtoWPoOUDR9ByiD3gMUTd8BiqbvUHXCMAAADWrLli25+eabW7859tj6H+D1fS5atKh1ukxgwNN3\ngKLpO0AZ9B6gaPoOUDR9h4FAGAYAoEEtXbo069evT/bYIznssPof4PDDkze/OevXr8/tt99e//0D\nDUffAYqm7wBl0HuAouk7QNH0HQYCYRgAgAb13e9+t/WLY45JBg+u/wEGD27dd/tjAQOavgMUTd8B\nyqD3AEXTd4Ci6TsMBMIwAAANqM+nsWxjOkvgdfoOUDR9ByiD3gMUTd8BiqbvMFAIwwAANKA+n8ay\njeksgdfpO0DR9B2gDHoPUDR9ByiavsNAIQwDANCAdmkay4ceSj7+8dbHww/37jWmswRep+8ARdN3\ngDLoPUDR9B2gaPoOA4UwDABAg9npaSy3bk2uvz4566zkkUdaH3/+58kNN7T+rCems4QBT98Biqbv\nAGXQe4Ci6TtA0fQdBhJhGACABrNT01iuXZt89rPJP/5jsnVr5s2bl3nz5rV+ULn22uTss5N167rf\nh+ksYcDTd4Ci6TtAGfQeoGj6DlA0fYeBRBgGAKDB9HoayzvvTD72seSBBzJy5Mhcd911WbhwYRYu\nXJhvfetbGTFiRHL//cn8+a3P7YrpLGHA03eAouk7QBn0HqBo+g5QNH2HgaTW0tLSUnYRAAPNunXr\nMm7cuO22rV27NmPHji2pIqBRbNmyJePHj29N7196aTJzZscnvfxycuWVyeLFSZIjjjgiN954Yw44\n4IDtnvbYY4/ltNNOy/Lly1s3nHRS8olPJMOGddzn8uXJOedkzJgxefrpp9PU1FTvtwb0U/oOUDR9\nByiD3gMUTd8BiqbvULSyr4eaGQYAoIH0OI3l448nZ5yx7cPKueeem7vuuqvDh5UkmTx5cu66666c\ne+65rRsWL2597RNPdNyv6SxhwNJ3gKLpO0AZ9B6gaPoOUDR9h4FGGAYAoIF0OY1lS0vyL/+SfPKT\nyZo1GT9+fJYsWZKLL744Q4YM6XJ/Q4YMycUXX5wlS5Zkr732StasaU3wL1rUus82prOEAUvfAYqm\n7wBl0HuAouk7QNH0HQYaYRgAgAaxZcuW3Hzzza3fHHvs73/w/PPJeeclX/96snlz3vOe9+SBBx7I\n8ccf3+t9H3/88Wlubs4f//EfJ5s3J1dckZx/fuu+27x+zEWLFmXLli1v/A0B/Z6+AxRN3wHKoPcA\nRdN3gKLpOwxEwjAAAA2i02ksly9P5s9PfvnLDB06NFdccUV++MMf7tKam2PHjs3ixYtz+eWXZ+jQ\nocnddycf+1iyYkXrE0xnCQOOvgMUTd8ByqD3AEXTd4Ci6TsMRMIwAAANYrtpLF97Lbn66uScc5Jn\nn820adNyzz335FOf+lRqtdouH6NWq+XMM8/MPffck6lTpybPPJOcfXbrsV57zXSWMMDoO0DR9B2g\nDHoPUDR9ByiavsNAVGtpab9gFwBFWLduXcaNG7fdtrVr1+5S2hYYGLZs2ZLx48e3pvc//enk3/4t\nWbUqSXLGGWfky1/+coYPH17XY27atCmf/exnc/XVV7dumDIlOfHE5KtfzZgxY/L000+nqamprscE\n+g99ByiavgOUQe8BiqbvAEXTdyhL2ddDhWEASlB28wcaz2233ZZ3v/vdrd8MGZJs3pw999wz1157\nbU4++eQ+PfbNN9+c+fPn57nnntt27LaajjvuuD49NlAefQcomr4DlEHvAYqm7wBF03coS9nXQy2T\nBADQALabOnLz5hx77LF54IEH+vzDSpKccsopaW5uzty5c7d9WOlQE1A5+g5QNH0HKIPeAxRN3wGK\npu8wUAnDAAA0gDvuuCNJMnjw4Fx44YW57bbbMmHChMKOP2HChPzkJz/Jl770pQwePHi7moBq0neA\nouk7QBn0HqBo+g5QNH2HgcoySQAlKHtaMKDx/Od//mfOOeecnHXWWXnnO99Zai133313Lr/88lxy\nySWFfmgCiqXvAEXTd4Ay6D1A0fQdoGj6DmUp+3qoMAxACcpu/gAAAAAAAAB9pezroZZJAgAAAAAA\nAACgMoRhAAAAAAAAAACoDGEYAAAAAAAAAAAqQxgGAAAAAAAAAIDKEIYBAAAAAAAAAKAyhGEAAAAA\nAAAAAKgMYRgAAAAAAAAAACpDGAYAAAAAAAAAgMoQhgEAAAAAAAAAoDKEYQAAAAAAAAAAqAxhGAAA\nAAAAAAAAKkMYBgAAAAAAAACAyhCGAQAAAAAAAACgMoRhAAAAAAAAAACoDGEYAAAAAAAAAAAqQxgG\nAAAAAAAAAIDKEIYBAAAAAAAAAKAyhGEAAAAAAAAAAKgMYRgAAAAAAAAAACpDGAYAAAAAAAAAgMpo\nKrsAAFq9+OKLGT58eIftI0aMKKEaAAAAAAAAgJ69+OKLvdpWJGEYgH5i0qRJnW5vaWkpuBIAAAAA\nAACA3hk5cmTZJXRgmSQAAAAAAAAAACrDzDAA/cTq1aszduzYsssAAAAAAAAA6LWNGzd22LZu3bou\nV8YogjAMQD8xYsSIjBgxouwyAAAAAAAAAHqts2ucmzZtKqGS37NMEgAAAAAAAAAAlSEMAwAAAAAA\nAABAZQjDAAAAAAAAAABQGcIwAAAAAAAAAABUhjAMAAAAAAAAAACVIQwDAAAAAAAAAEBlCMMAAAAA\nAAAAAFAZwjAAAAAAAAAAAFSGMAwAAAAAAAAAAJUhDAMAAAAAAAAAQGUIwwAAAAAAAAAAUBnCMAAA\nAAAAAAAAVIYwDAAAAAAAAAAAlSEMAwAAAAAAAABAZQjDAAAAAAAAAABQGcIwAAAAAAAAAABUhjAM\nAAAAAAAAAACVIQwDAAAAAAAAAEBlCMMAAAAAAAAAAFAZwjAAAAAAAAAAAFSGMAwAAAAAAAAAAJUh\nDAMAAAAAAAAAQGUIwwAAAAAAAAAAUBnCMAAAAAAAAAAAVIYwDAAAAAAAAAAAlSEMAwAAAAAAAABA\nZQjDAAAAAAAAAABQGcIwAAAAAAAAAABUhjAMAAAAAAAAAACVIQwDAAAAAAAAAEBlCMMAAAAAAAAA\nAFAZwjAAAAAAAAAAAFSGMAwAAAAAAAAAAJUhDAMAAAAAAAAAQGUIwwAAAAAAAAAAUBnCMAAAAAAA\nAAAAVIYwDAAAAAAAAAAAlSEMAwAAAAAAAABAZQjDAAAAAAAAAABQGcIwAAAAAAAAAABUhjAMAAAA\nAAAAAACVIQwDAAAAAAAAAEBlCMMAAAAAAAAAAFAZwjAAAAAAAAAAAFSGMAwAAAAAAAAAAJUhDAMA\nAAAAAAAAQGUIwwAAAAAAAAAAUBnCMAAAAAAAAAAAVIYwDAAAAAAAAAAAlSEMAwAAAAAAAABAZQjD\nAAAAAAAAAABQGcIwAAAAAAAAAABUhjAMAAAAAAAAAACVIQwDAAAAAAAAAEBlCMMAAAAAAAAAAFAZ\nwjAAAAAAAAAAAFSGMAwAAAAAAAAAAJUhDAMAAAAAAAAAQGUIwwAAAAAAAAAAUBnCMAAAAAAAAAAA\nVIYwDAAAAAAAAAAAlSEMAwAAAAAAAABAZQjDAAAAAAAAAABQGcIwAAAAAAAAAABUhjAMAAAAAAAA\nAACVIQwDAAAAAAAAAEBlCMMAA8ajjz6aG264IWeddVaOOuqoDB8+PIMGDerw+Pa3v112qQAAAAAA\nAADsoqayCwDoC08++WSWLVu27bFixYq88MIL2z2nVqulVquVVCEAAAAAAAAAfUEYBqicz33uc7nk\nkku229ZV8KWlpWXbz1taWoRjAAAAAAAAABqcMAxQOZs3b06SLoMtbQEYAAAAAAAAAKpHGAaotK6C\nL21BGcEYAAAAAAAAgGoRhgEqq/0SSG2GDBmS6dOnZ9asWdm4cWOuv/56SyMBAAAAAAAAVIgwDFBJ\ntVotgwcPztSpUzNr1qwcccQRmTVrVg499NA0NbW2vuuuuy7XX399yZUCAAAAAAAAUE/CMEDlfPCD\nH8z73//+zJgxI8OGDSu7HAAAAAAAAAAKJAwDVM473vGOsksAAADg/2fvzqOrKg/1jz87A4QMhDFA\nGMM8CAEMiuCAAyCIKAJCGYMtKuBs9fZ6661af7fWi3pBpkqtgTIIKDJUBhUBRSoQZmIYlDAHEmSQ\nJEBCsn9/pCdN4EyQnL2Tc76ftbIW2fs9+3326Vq7LPfD+wIAAAAAANgkyO4AAAAAAAAAAAAAAAAA\nQFmhDAMAAAAAAAAAAAAAAAC/QRkGAAAAAAAAAAAAAAAAfoMyDAAAAAAAAAAAAAAAAPwGZRgAAAAA\nAAAAAAAAAAD4DcowAAAAAAAAAAAAAAAA8BuUYQAAAAAAAAAAAAAAAOA3KMMAAAAAAAAAAAAAAADA\nb1CGAQAAAAAAAAAAAAAAgN+gDAMAAAAAAAAAAAAAAAC/EWJ3AAAVS25urvbv369jx47pwoULysnJ\nUXh4uKKiotSgQQO1atVKoaGhdscEAAAAAAAAAAAAAAQoyjAAPNq0aZOWLFmilStXKiUlRfn5+S7H\nBgcHq127durbt68eeugh3XrrrRYmBQAAAAAAAAAAAAAEOsowQBn78ccflZycrOTkZG3ZskXbt29X\nVlaWy/FNmjTRwYMHLUzovY8//lgTJ07Utm3bio4ZhiHDMFx+pqCgQLt27dKuXbv01ltv6eabb9ZL\nL72kRx991IrIAAAAAAAAAAAAAIAARxkGKIWjR49qy5YtRcWXrVu36ty5cyXGeCqPlEd79+7VE088\noW+//dZpftM0XX726vFbt27V0KFDNWPGDM2YMUMtW7b0WW4AAAAAAAAAAAAAACjDAF7KyMjQli1b\nSpRfMjMzS4xxVXy5ujziGOOuVGKXxYsXKzExUVlZWU5zelPuuXq8JK1bt04JCQmaPXu2Hn74YR8k\nBwAAAAAAAAAAAACAMgzgtV69emnXrl1Fv3tbfKlIpk6dqmeeeUZS4f05K7V4c3/Fx5qmWfRdZWVl\naeDAgZoyZYrGjRvngzsAAAAAAAAAAAAAAAS6ILsDABWFo9BRvATjKHsU/3E2viKYNWtWURFGunZ1\nl6uLLe5+HJ+9ukDjOPf0009rzpw5Ft4dAAAAAAAAAAAAACBQUIYBroOj1HF18UVyXpYp/pnybPPm\nzXr88ceLfndWhHH8uVu3bpoyZYq2bdumM2fOKC8vT2fOnFFycrImT56sW2+99ZryTPFrGoahgoIC\njR07Vlu3brXwLgEAAAAAAAAAAAAAgYAyDHADnK2GIjlfKaa8rwxz4cIFDR06VFeuXJHkvAhjGIZa\ntWqlNWvW6Ntvv9W4ceMUHx+v6OhoBQUFKTo6Wp06ddKECRO0ceNGrV69Ws2bNy+6d2eFmNzcXA0Z\nMkRZWVkW3zEAAAAAAAAAAAAAwJ9RhgGuw9Urvjgrvjh+goKC1LJlS915553XfLY8efXVV3Xo0CFJ\nroswPXv21ObNm9WjRw+vrnnfffcpOTlZd9999zUr4xRfXSctLU2vvfZaWdwGAAAAAAAAAAAAAACS\nKMMA18VV8cUwDMXFxWnw4MH685//rDVr1ujs2bPau3dvuS57pKamatq0adcUdYpvjdStWzctWbJE\nUVFR13XtqlWratmyZbrlllucrpDjmOP999/Xvn37SncjAAAAAAAAAAAAAAD8S4jdAYCKxFHoaNCg\ngRISEkr8VK9e3eZ01++1117TlStXSpRfipdWatasqQULFigsLOyGrh8eHq6FCxeqY8eOOn/+fNE8\nxcsxV65c0RtvvKG5c+eW/oYAAAAAAAAAAAAAAAGPMgzgpWeeeUZ16tRRly5dVLt2bbvjlFpaWpoW\nL17sdPsmR1nl//2//6fY2NhSzdOoUSO9/vrrevbZZ12uDrNo0SL96U9/UqNGjUo1FwAAAAAAAAAA\nAAAAbJMEeGnMmDHq27evXxRhJGnKlCnKz8+XJKerwrRo0UJjx44tk7nGjx+vpk2blpjDMack5efn\na+rUqWUyFwAAAAAAAAAAAAAgsFGGAQJQQUGBPv74Y7erwrzwwgtOz9+I4OBgPfPMMyUKMA6O1WHm\nzZtXJnMBAAAAAAAAAAAAAAIbZRggAH399ddKT0+X5HxVmLCwMA0fPrxM5xw9erQqVapUYq7i5ZgT\nJ05o3bp1ZTonAAAAAAAAAAAAACDwUIYBAtDy5cudHnesCvPAAw8oIiKiTOeMjo5Wnz59nK4O4ykX\nAAAAAAAAAAAAAADeogwDBKCvvvrK7RZIDzzwgE/mdXdd0zT15Zdf+mReAAAAAAAAAAAAAEDgoAwD\nBJiTJ08qNTVVklyu0nLffff5ZO6ePXtec8yxGo0kpaSk6NSpUz6ZGwAAAAAAAAAAAAAQGELsDgDA\nWps3b77mWPFVYho2bKj69ev7ZO7GjRurXr16OnnypAzDcFrG2bJli/r161fquebMmaPDhw+7HbN9\n+3anx5ctW6ajR4+6/Wzjxo01YsSIG84HAAAAAAAAAAAAAPANyjBAgNm2bZvT444VWjp37uzT+RMS\nErR8+XKX2zRt3769TMowH374odavX+/V2OKlHNM0tXjxYi1evNjtZ3r06EEZBgAAAAAAAAAAAADK\nIbZJAgLMjh073J7v0KGDT+f3dH1P+a6HYRg++wEAAAAAAAAAAAAAlE+sDAMEmP3797stc7Ro0cKn\n8zdv3tzlOdM0deDAgTKby9k2TAAAAAAAAAAAAAAA/0YZBggwhw4dcnveXVmlLLi6vmEYMk3TY77r\n4csVXFgdBgAAAAAAAAAAAADKJ8owQAA5deqULl26VFQ8cSY2NtanGZxd3zTNonJJdna2Tp8+rVq1\napVqnrVr15bq8wAAAAAAAAAAAACAiinI7gAArHPixAmPY+rWrevTDN5c//jx4z7NAAAAAAAAAAAA\nAADwX5RhgADy888/X3Os+HY/VatWVWhoqE8zVKlSRZGRkdfMXdyZM2d8mgEAAAAAAAAAAAAA4L8o\nwwABxFkZpriqVataksPTPJ5yAgAAAAAAAAAAAADgCmUYIICcO3fO6XHTNCVJUVFRluTwNM/Zs2ct\nyQEAAAAAAAAAAAAA8D+UYYAAcvHiRbfnIyIiLMkRGRlZVMBx5tKlS5bkAAAAAAAAAAAAAAD4H8ow\nQADJy8tzec4wDIWEhFiSw9M8ubm5luQAAAAAAAAAAAAAAPgfyjBAAPFUMqEMAwAAAAAAAAAAAACo\n6CjDAAGkoKDA7fng4GBLcniax1NOAAAAAAAAAAAAAABcoQwDBBBPK7JcuXLFkhye5gkNDbUkBwAA\nAAAAAAAAAADA/1CGAQJIpUqV3J63qgyTl5fn9jxlGAAAAAAAAAAAAADAjXK/TAQAv+Kz6m/DAAAg\nAElEQVSuDGOapnJzcy3J4akM46m046+ys7MVHh5+Q5+NiIgo4zQAAAAAAAAAAAAAAl12dralnysr\nlGGAAOKqMGEYhkzTVFZWliU5Lly4IMMwXJ6PjIy0JEd5ExcXd8OfNU2zDJMAAAAAAAAAAAAAQMV9\nd8s2SUAAqVGjhtvzv/zyiyU5PM3jKScAAAAAAAAAAAAAAK6wMgwQQGrWrOn2/Llz5yzJcf78ebfn\nPeX0V2lpaapdu7bdMQAAAAAAAAAAAABAkm54d5HMzMxS7YxRWpRhgABSq1ata46Zplm0ZdHly5f1\nyy+/qGrVqj7LcPbsWeXm5hZtzeRtzkAQERHhcisrAAAAAAAAAAAAALDajb6/zMnJKeMk14dtkoAA\n0qhRI49jTp065dMM3ly/YcOGPs0AAAAAAAAAAAAAAPBflGGAABIREVG0BZFjNZirHT582KcZDh06\ndM2x4lliYmJUpUoVn2YAAAAAAAAAAAAAAPgvyjBAgImLi3O5PZEkHThwwKfz//jjj06PO7ZrsnPf\nOAAAAAAAAAAAAABAxUcZBggw7dq1c3t+3759Pp3f0/U95QMAAAAAAAAAAAAAwB3KMECA6dy5s9vz\n27dv9+n827Ztc3u+U6dOPp0fAAAAAAAAAAAAAODfKMMAAcZVGcYwDJmmqR07drjdRqk08vPztXPn\nThmG4XIMZRgAAAAAAAAAAAAAQGlQhgECTEJCgsLCwiSpqJRSvPySlZWlrVu3+mTuzZs3Kycnp8Sc\nxYsxVapUUUJCgk/mBgAAAAAAAAAAAAAEBsowQICpXLmyunfv7nb1ly+//NInc3/11VdOj5umKcMw\ndMcddyg0NNQncwMAAAAAAAAAAAAAAgNlGCAA9erVy+U50zS1ePFin8z7ySefuD3fs2dPn8wLAAAA\nAAAAAAAAAAgclGGAADRw4MBrjjlWZ5Gkbdu26cCBA2U6Z0pKinbv3i3DMJxukWQYhgYNGlSmcwIA\nAAAAAAAAAAAAAg9lGCAANW3aVF27di1RgLna+++/X6ZzTpo0yelxR4Zu3bqpUaNGZTonAAAAAAAA\nAAAAACDwUIYBAtRjjz3m9Lhj5ZaPPvpIp06dKpO5jh8/rjlz5rgs3kjSmDFjymQuAAAAAAAAAAAA\nAEBgowwDBKiRI0cqJiZG0r+3K3JsXyRJOTk5+t3vflcmc7388su6dOlSiTmKF2Pq1KmjESNGlMlc\nAAAAAAAAAAAAAIDARhkGCFCVK1fWs88+W6IAI/172yLTNDV79mwtXbq0VPMsXLhQ8+fPL7qms7me\nf/55hYaGlmoef5Cdne30BwAAAAAAAAAAAADKq/L4ntMwr347DaBMrV+/XnfffXeJMkjxlViaNGmi\ngwcP2pLt4sWLat26tY4ePeoyX9WqVfXll1+qS5cu133977//Xr169Sp60Lm6/9TUVFWuXLksbqnC\nyMzMLFqZxxMe0wAAAAAAAAAAAADKq+K7griTkZGh2rVr+zhNIVaGAQJYlSpV9O677xb9fvV2SYZh\n6JdfflGvXr30+eefX9e1ly5dqvvvv/+aIoyDY1WYd999N+CKMAAAAAAAAAAAAAAA3wmxOwBQkXz7\n7bfav3//dX1m3759bs9nZWXpww8/vO4sPXr0ULNmza77c1cbOHCghg0bpnnz5skwjKIVYhxlFUch\npn///vrVr36lV199Va1atXJ5vdTUVL3++utauHDhNeUaSUXXNwxDI0aM0MMPP1zqe/AXaWlpljUh\nAQAAAAAAAAAAAKAsZGVlXXMsMzNTcXFxNqQpxDZJwHUYM2aMZs2aZXcMGYahjz76SKNGjSqT62Vn\nZyshIUH79u1zWWApfqxTp07q1q2b4uLiFBkZqQsXLigtLU3fffeddu7c6fQzjmOO39u2bavNmzcr\nPDy8TO6honG2TZKVy4IBAAAAAAAAAAAAgK/Y/T6UlWGAG+DtnmcO7jpnZXmtGxUREaHVq1frjjvu\n0NGjR0vkunqVGEnavn27tm/f7vRa3pRpmjRpotWrVwdsEQYAAAAAAAAAAAAA4DtBdgcAKipHScSb\nHyuuU1qNGjXS2rVr1bx58xIruFy9dVLxYoyzn+JZixdoHJ9r2bKlvv76a9WvX9+n9wMAAAAAAAAA\nAAAACEyUYYAb5K4Q4qsfX2vatKm2bNmi3r17uy3AePu9XP35Pn36aPPmzWrSpInP7wUAAAAAAAAA\nAAAAEJj8cpukEydO6KuvvvJqbJs2bdSlSxcfJ4K/8fUqLXaKjo7WihUr9Pe//10vv/yyMjIynK5M\n46wU4+x7MQxDMTExmjhxooYPH+6z3AAAAAAAAAAAAAAASH5ahvnkk0/0/PPPezV23bp1vg0Dv2PF\nCi3lwciRIzVo0CDNmjVLU6ZMUWpqatE5d9s2Ff9+2rZtq6eeekqjR49WWFiYzzMDAAAAAAAAAAAA\nAGCYfrjExWOPPaakpCSP47p166YNGzb4PhDgB3788UetWrVK27ZtU0pKio4fP64LFy4oJydH4eHh\nioqKUoMGDdS2bVt17txZffr0UbNmzeyOXW5lZmYqJiamxLGMjAzVrl3bpkQAAAAAAAAAAAAAUDbs\nfh/qlyvD7N+/X5LrFTxM05RhGBoyZIiVsYAKrXnz5nrqqafsjgEAAAAAAAAAAAAAgFt+WYY5cuRI\nURHm6oVvihdk+vfvb2kuAAAA0zSVk5NjdwxbhYeHB8y2gwAAAAAAAAAAwHp+WYY5ffq00+PFX7rU\nqlVLjRs3tioSAACAJCknJ0eRkZF2x7BVVlaWIiIi7I4BAAAAAAAAAAD8VJDdAXwhLy/P5TnHFknt\n2rWzMBEAAAAAAAAAAAAAAACs4Jcrw0REROjChQtuxzRp0sSaMAAAAK78VlIlu0NYJFfSRLtDAAAA\nAAAAAACAQOCXZZjIyEiPZZioqCiL0gAAALhQSYFThgEAAAAAAAAAALCIX26TFBkZWSZjAAAAAAAA\nAAAAAAAAULH4ZRmmVq1aMk3T7Zjc3FyL0gAAAAAAAAAAAAAAAMAqflmGadmypccx2dnZFiQBAAAA\nAAAAAAAAAACAlQK2DHPq1CkLkgAAAAAAAAAAAAAAAMBKflmGadWqldvzpmnqp59+sigNAAAAAAAA\nAAAAAAAArBJidwBf6Natm8tzhmHINE0dOHBAV65cUUiIX34FACqg7OxshYeHX3M8IiLChjQAAAAA\nAAAAAAAA4Fl2drZXx6zkl02QOnXqKD4+Xjt37iwqv0iFK8IYhiFJunTpkrZs2aLbbrvNzqgAUCQu\nLs7pccczDAAAAAAAAAAAAADKm8jISLsjXMMvt0mSpF69enkcs2rVKguSAAAAAAAAAAAAAAAAwCp+\nW4YZPHiwy3OO1WLmzZtnYSIAcC8tLU1ZWVnX/AAAAAAAAAAAAABAeeXsHWdaWpqtmfy2DJOQkKBb\nbrmlxNZIUsntRg4ePKjVq1fbEQ8ArhEREeH0BwAAAAAAAAAAAADKq/L4ntNvyzCSNGHCBLfnTdPU\n66+/blEaAAAAAAAAAAAAAAAA+Jpfl2GGDh2qFi1aSNI1q8M4ft+0aZP+9re/2ZIPAAAAAAAAAAAA\nAAAAZcuvyzChoaGaMmVKia2RijMMQ6Zp6sUXX7R9vyoAAAAAAAAAAAAAAACUnl+XYSSpZ8+eGjx4\ncInVYCQVFWQMw9D58+f1wAMP6Ny5c3bFBAAAAAAAAAAAAAAAQBnw+zKMJH3wwQcut0ty2Lt3r+69\n915lZGRYng8AAAAAAAAAAAAAAABlIyDKMNHR0Vq+fLmio6MlXVuIcfy+fft2devWTdu3b7clJwAA\nAAAAAAAAAAAAAEonIMowktSyZUstWbJEUVFRkpwXYgzD0MGDB3XbbbfpT3/6k/Ly8uyKCwAAAAAA\nAAAAAAAAgBsQMGUYSbrzzju1fv161a1bV5KKCjDSv7dMMgxDubm5+v3vf6/WrVtr7ty5unLlim2Z\nAQAAAAAAAAAAAAAA4L2AKsNIUnx8vL777jt16tSpqADjULwQY5qm0tLSNGrUKDVp0kR/+MMftGfP\nHjsiAwAAAAAAAAAAAAAAwEsBV4aRpCZNmmjTpk167bXXFBIS4nKFGEcp5sSJE3rzzTcVHx+v5s2b\n69e//rU++ugjbd26VdnZ2XbeCgAAAAAAAAAAAAAAAIoJsTuALz322GMex7Rv317btm0rKsNI1xZi\nih87ePCg0tLSlJSUVDQ+JiZGderUUZ06dRQVFaXKlSurUqVKJa5pN8Mw9OGHH9odAwAAAAAAAAAA\nAAAAwKf8ugyTlJTkdSHl6i2Tih8rXopxNvbUqVM6depUuSq/FGeaJmUYAAAAAAAAAAAAAAAQEPy6\nDOPgrOhyo5+/uhhTfExp5wEAAAAAAAAAAAAAAEDpBEQZxtOKLddTYnE21lVBprygpAMAAAAAAAAA\nAAAAAAJFQJRhfF0GKc9lk/Jc0gEAAAAAAAAAAAAAAChrQXYHAAAAAAAAAAAAAAAAAMoKZRgAAAAA\nAAAAAAAAAAD4DcowAAAAAAAAAAAAAAAA8BuUYQAAAAAAAAAAAAAAAOA3QuwOYAXDMOyOAAAeZWdn\nKzw8/JrjERERNqQBAAAAAAAAAAAAAM+ys7O9OmYlvy/DmKZpdwQA8EpcXJzT4zzHAAAAAAAAAAAA\nAJRXkZGRdke4hl+XYUaPHm13BAAAAAAAAAAAAAAAAFjIr8swH330kd0RAMBraWlpql27tt0xAAAA\nAAAAAAAAAMBrWVlZ1xzLzMx0uTOGFfy6DAMAFUlERIQiIiLsjgEAAAAAAAAAAAAAXnP2jjMnJ8eG\nJP8WZOvsAAAAAAAAAAAAAAAAQBmiDAMAAAAAAAAAAAAAAAC/QRkGAAAAAAAAAAAAAAAAfoMyDAAA\nACxlmqbdEQAAAAAAAAAAgB+jDAMAAABLdZjeQX9c/0cdPnfY7igAAAAAAAAAAMAPUYYBAACApdLO\npem/1/23mkxqontn36u/7/y7snOz7Y4FAAAAAAAAAAD8BGUYAAAA2ObrtK81asko1X2nrn699Nf6\n5vA3bKMEAAAAAAAAAABKhTIMAAAAbJeVm6W/7fib7kq6S83fb6431r+hQ+cO2R0LAAAAAAAAAABU\nQJRhAAAAYKlfd/q1oitHuzx/8OxB/WHdHxQ3KU73zLpHs3bMUlZuloUJAQAAAAAAAABARUYZBgAA\nAJaa1GeSTv72pBYMWqA+zfsoyHD9V9K1h9YqcWmi6k6sqzFLx2j9ofUqMAssTAsAAAAAAAAAACoa\nyjAAAACwXFhImB5t96hWDF+ho88f1Z/v+7Pa1Grjcnx2XraSdiSpx6weaj65uV5f97rSzqZZmBgA\nAAAAAAAAAFQUlGEAAABgq9ioWL3c/WWljE/R5t9s1viE8aoWVs3l+LRzaXpt/WtqOrmp7p51t5J2\nJLGNEgAAAAAAAAAAKEIZBgAAAOWCYRjqUr+Lpj4wVekvpmvhoIXq26Kv222U1h1apzFLx6juxLpK\nXJKodYfWsY0SAAAAAAAAAAABjjIMAAAAyp2wkDANbjdYnw/7XMeeP6a373tbbWu3dTk+Oy9bs3bO\n0t2z7lazyc302rrXdPDsQQsTAwAAAAAAAACA8oIyDAAAAMq1elH19FL3l7Rn3B5tGbtFE7pMUPWw\n6i7HHzp3SK+vf13NJjfTXUl36aPtH+nC5QsWJgYAAAAAAAAAAHYyTNM07Q5RkZmmqePHj+vEiRM6\nceKE0tPTde7cOV26dKnoR5LCwsIUFhamKlWqKDo6WrGxsUU/9evXt/kuAFgtMzNTMTExJY5lZGSo\ndu3aNiUCYJXs7GxFRkYW/vKKpEq2xrFOrqT/KfxjVlaWIiIiSnW5y1cua/n+5UrakaRVP65Svpnv\ndnx4aLgGtR2kxPhE3dXkLrdbLwEAAAAAAAAAgNKx+30oZZjrtHv3bq1bt047d+7Url27lJKSUlR4\nuVFVqlRRu3btFB8fr44dO6pHjx5q29b1NgAAKj67H/4A7EMZpmzKMMWlX0jX3N1zlbQjSSmZKR7H\nN45urNHxozUqfpSa1WhWZjkAAAAAAAAAAEAhu9+HUobxIDc3V0uXLtWSJUv09ddfKyMjo+hcWX91\nhmEU/blu3bq69957NWDAAD344IMKCQkp07kA2Mvuhz8A+1CGKfsyjINpmtqWvk1JO5I0b888nbl4\nxuNn7mh0hxI7Jmpw28GKqhxV5pkAAAAAAAAAAAhEdr8PpQzjwrZt2/TBBx9o4cKFOn/+vCTn5Zfi\nBZbScHftGjVqaOjQoXr88cfVvn37MpkPgL3sfvgDsA9lGN+VYYq7fOWy/rH/H0ramaSVB1Z6tY3S\nwDYDldgxUT2a9GAbJQAAAAAAAAAASsHu96GUYa6yceNG/fGPf9QXX3whqWRJxVXxpbRfoTfXdYx5\n8MEH9V//9V/q0qVLqeYEYC+7H/4A7EMZxpoyTHEns05q3u55+mjHR9qTscfj+EbRjTSqwyiN7jha\nzWs0tyAhAAAAAAAAAAD+xe73oZRh/uXw4cOaMGGCVq5cKenfRZSriypWfV2u5nUcf/jhhzV58mTV\nr1/fkjwAypbdD38A9qEMY30ZxsE0TW0/uV1JO5I0d/dcr7ZRur3R7UqMT9TgdoNVtXJVC1ICAAAA\nAAAAAFDx2f0+NODXfzdNU2+//bbatWunlStXyjRNmaYpwzCKiieOY1b2hq6e05HHcWzJkiVq06aN\nJk2aZFkmAACAiswwDHWu11mT+0zWiRdO6NNHP1X/Vv0VbAS7/MyGIxv0m+W/Ud2JdTXys5H66uBX\nKjALLEwNAAAAAAAAAACuV0CvDHP69GkNHTpUa9euvWbllfL6tVydzzAM9e7dW3PnzlX16tXtjAbg\nOtjdhARgH1aGsW9lGFdOZZ0q2kZpd8Zuj+MbVm2oUfGjNDp+tFrUbGFBQgAAAAAAAAAAKha734cG\nbBkmOTlZAwcO1LFjx4pWgpHKbwnmasXzGoahJk2aaPHixYqPj7c5GQBvOHv4p6WlOX34l6cXxgBK\nr0QZ5rcKrDLMxMI/lrcyjINpmtpxckfRNko/X/zZ42e6N+yuxI6JGtx2sKLDoi1ICQAAAAAAAABA\n+ZKdnX3NsczMTMXFxZU4RhnGx7799lv169dPFy5ckFT+V4Nx5erc0dHRWrVqlW699VY7YwHwgrMy\njCsV7dkEwL0SZZgAVV7LMMXl5udqxYEVStqRpM8PfK4rBVfcjq8SUkUD2gxQYnyi7om7R8FBrrde\nAgAAAAAAAADAnzi6C55QhvGhtWvXqn///srOzi6TEoy3/6N6UhYZTNNUVFSUVqxYoe7du5dJLgC+\nQRkGCFyUYSpGGaa4jOyMom2Udp3a5XF8g6oNNKrDKI3uOFota7a0ICEAAAAAAAAAAPahDGOzlJQU\n3XbbbcrKyrrhIoyr/xFv9Gssq+sVv5+qVatq06ZNatWq1Q1lAuB7bJMEBC7TNJWTk1Pi90cffVQr\nV65UR0nrJIXYFa6M5EnqIWmnpL59+2rBggUl/s4THh5eZoViqxXfRul0zmmP47s17KbR8aM1pN0Q\ntlECAAAAAAAAAPgltkmy0ZkzZ3TLLbfo4MGDN1SEKf7CpvjnQkND1bRpU7Vu3VpNmzZVnTp1FBMT\no+joaFWuXFlhYWEyTVOXL1/W5cuXdf78eWVkZCgjI0M//fST9u3bp59++kl5eXke5/I2o2maatmy\npTZt2qToaF66AOWRszKMlQ9/AOXHvHnzNHz4cFWStFXSTXYHKiO7Jd2swmLM3LlzNWzYMJsTla3c\n/FytPLBSSTuT9I/9//C4jVJYSJgGtB6gxI6JujfuXrZRAgAAAAAAAAD4NbvfhwZMGaZv375atWrV\ndRdhrh4fEhKiO++8U71791b37t2VkJCgSpUqlSpbXl6ekpOTtXHjRq1evVrr168vKsfcSF7TNGUY\nhvr166elS5eWKhsA37D74Q+gfDBNU23bttXevXv1R0m/tztQGfujpP+W1KZNG6WkpFTY1WA8yczO\n1Lzd85S0M0k7Tu7wOL5+VH2Nih+l0fGj1aoWK/kBAAAAAAAAAPyP3e9DA6IMM2fOHI0aNeq6iiVX\nj+3UqZPGjRungQMHqnr16r4LK+n8+fNavHixpk+fruTkZKd53CleiJk3b56GDBni07wArp/dD38A\n5cPatWt1zz33KFLSCUlRdgcqY79Iqi8pS4X32qNHD3sDWWDnyZ2atXOW5uyao8ycTI/juzboqsT4\nRA25aYiqhVWzICEAAAAAAAAAAL5n9/tQvy/D/Pzzz2rTpo1+/vlnSddfhLnzzjv15ptv6vbbb/dp\nTle+//57vfrqq1qzZo3XhZji42JiYpSamurzAg+A62P3wx9A+TBo0CB9+umnGi9pqt1hfGS8pOkq\nvNdFixbZHccyefl5WvnjSiXtSNLy/cs9bqNUObiyBrQZoMT4RN3X9D62UQIAAAAAAAAAVGh2vw/1\n+zLMSy+9pHfeeadotRR3ipdIGjRooGnTpqlfv35WxPToiy++0JNPPqlDhw55VYopvjrMSy+9pLfe\nesuqqAC8YPfDH4D9jh8/rsaNGys/P1+7Jd1kdyAf2S2pg6Tg4GAdOXJEsbGxdkeyXGZ2pubvma9Z\nO2dpW/o2j+Njo2I1qsMoje44Wq1rtbYgIQAAAAAAAAAAZcvu96FBlsxikzNnzmjGjBlF5RF3ihdM\nRowYoZSUlHJThJGkXr16affu3RozZkxRCcbTfTkKMdOnT9fZs2etiAkAALw0c+ZM5efn6w75bxFG\nktpLul1Sfn6+Zs6caXccW9SOqK1nbn1GWx/fqp1P7tQLXV9QTESMy/EnLpzQW9+9pTZT26jrX7tq\nRvIMnb3I3+UAAAAAAAAAAPCWX5dhJk2apOzsbEmuV1ExDKPEKioTJ07U7NmzFRUVZWVUr0REROjD\nDz/UpEmTFBRU+D+dq0JM8fvNysrS+++/b0lGAADgmWmaRcWQ8TZnsYLjHmfOnOnVlpX+rEOdDnqn\n9zs69vwxLRu6TI+0eUShQaEux286vknjPh+neu/U09BPhmrVj6uUX5BvYWIAAAAAAAAAACoev94m\nqVGjRjp+/Lgk52WY4qvBBAUF6a9//asSExOtjHjD5s6dq9GjRxfdl6f7a9SokQ4dOmRlRABu2L0s\nGAB7HTx4UM2aNVMlSb9Iqmx3IB+7LClKUp4K7z0uLs7mROXL6ZzTmr+7cBulrelbPY6vF1lPIzuM\nVGLHRLWp3caChAAAAAAAAAAAXB+734f67cowGzZs0LFjxyS5XhXGcc6xIkxFKcJI0vDhwzV58mSP\n9+Zw9OhRbdiwwYpoAADAg61bCwsPHeT/RRip8B47/OvPjnvHv9UKr6Wnb31ayY8na9eTu/TibS+q\nTkQdl+PTs9L19sa31XZaW93611s1fct0tlECAAAAAAAAAKAYvy3DfPzxx27PF98a6dFHH9Vzzz1n\nUbKyM378eA0bNqzoPjyZP3++BakAAIAnjkLIzTbnsJLjXinDuNe+TntN7DVRR58/quW/Wq6BbQa6\n3UZp8/HNGr9ivOq+U1dDPhmiFQdW6ErBFQsTAwAAAAAAAABQ/vhtGWbNmjUuCyLFj9esWVPTp0+3\nKlaZmzZtWtEyQu7u1zRNrVmzxspoAADAheTkZEmBWYZx3DvcCw0OVb+W/fTJo58o/cV0TekzRQmx\nCS7H5+bnamHKQj0w7wE1fK+hXv7yZf2Q+YOFiQEAAAAAAAAAKD/8sgyTmZmpffv2SXK9RZJjNZU3\n3nhD1apVszJemapatareeOMNt/fpcODAAZ0+fdqqaAAAwAnTNLVt2zZJgVmG2bp1q9ttHnGtmuE1\nNeGWCdoydot2j9ut3972W7fbKJ3MOqn/3fi/ajetnW6ZeYumbZmmMxfPWJgYAAAAAAAAAAB7+WUZ\n5rvvvnN57upVYR577DErIvnUmDFjPK4O47BhwwYrIgEAABcOHz6ss2fPqpKkm+wOY6GbJIVKOnv2\nrA4fPmx3nArrppib9L+9/lfHXjimz4d9rsFtB6tScCWX47ec2KIJKyao3jv1NHjRYH2+/3O2UQIA\nAAAAAAAA+D2/LMPs2bPH7XnHqjCJiYmqVMn1y4OKolKlSkpMTPTqX1l7+m4AAIBvZWRkSJLqSar4\nfwvxXmUV3rNUuIofSickKER9W/TVwsELlf5iuqb2naousV1cjs/Nz9UnP3yifvP7qeF7DfXSFy9p\nTwZ/LwQAAAAAAAAA+Ce/LMMcPHjQq3EPPvigj5NY56GHHvJqnLffDQAA8I2LFy9KkqrYnMMOjnt2\nfAcoGzWq1ND4LuO1eexm7Rm3Ry91e0l1I+u6HH8y66Qm/nOi2k9vry4zu2jq5qn6OednCxMDAAAA\nAAAAAOBbflmGSUtLc3q8+BZC4eHh6t69u1WRfK5r166KjIyU5H6rJMowAADY69KlS5KkMJtz2MFx\nz5RhfKddTDu93fNtHX3+qFYMW6FH2z3qdhul5BPJemrlU4p9N1aDFg7SP/b/g22UAAAAAAAAAAAV\nnl+WYY4fP+6yEOLYSqh169YKCvKf2w8KClKbNm1cbpVkGIZM09SJEycsTgYAAACrhQSFqE+LPlow\naIHSX0zXtL7TdEv9W1yOz83P1aepn+rB+Q+qwbsN9Nsvfqvdp3ZbmBgAAAAAAAAAgLLjP22QYrKz\ns92eNwxDrVq1siiNdVq2bOlxTFZWlgVJAACAK2FhheujXLI5hx0c91ylSiBuEmWfGlVqaFyXcdr0\nm01KGZ+il7u9rHqR9VyOP5V9Su/88x11mNFBCR8kaMrmKWyjBAAAAAAAAACoUAKyDCNJ1atXtyCJ\ntby5J2++GwAA4DuOIkggbhTkuGfKMPZpW7ut/tzzzzry/BGtHL5SQ9oNUeXgyi7Hb03fqqdXPq16\n79TTwIUDtXzfcuXl51mYGAAAAAAAAACA6xdidwBf8KbwERUVZUESa0VGRnocc9CHGhEAACAASURB\nVPFiIL56AwCg/IiJiZEkpUvKlVTJ1jTWuazCe5ak2rVr2xkFKtxG6f7m9+v+5vfr7MWzWpCyQEk7\nkrTp+Can4/MK8rQ4dbEWpy5WTESMRrQfodEdR6tDnQ4WJwcAAAAAAAAAwDO/XBkmNDTU45jc3FwL\nkljLm3sKCfHL/hMAABVG48aNVb16deVK2mN3GAvtkZSnwpXsGjdubHccFFO9SnU9mfCkvv/N90qd\nkKrfdf+dYqNiXY7PyM7Qu9+/q/gZ8er8l86avGmyTuectjAxAAAAAAAAAADu+WUZJiIiwuOYCxcu\nWJDEWllZWR7HhIeHW5AEAAC4YhiGOnfuLEnaanMWKznu9eabb5ZhGLZmgWuta7XWn+77k448d0Sr\nhq/S0JuGut1GafvJ7Xp21bOKfSdWjyx4RMv2LWMbJQAAAAAAAACA7QK2DHP06FELkljr2LFjHsd4\n890AAADfSkhIkBSYZRjHvaN8Cw4KVu/mvTV/4Hyd/O1JzXhghro26OpyfF5Bnj7b+5ke+vgh1X+3\nvl5Y/YJ2ntxpYWIAAAAAAAAAAP7NL8sw1apVk2maTs8ZhiHTNJWammpxKt9LTU11+S+tHd9HtWrV\nrIwEAACcuPnmmyUFZhnGce+oOKqFVdMTCU/on7/+p/ZO2Kv/vP0/VT+qvsvxmTmZeu/799TxLx3V\n6S+dNOn7ScrMzrQwMQAAAAAAAAAg0PllGaZJkyZOjxcvyBw5ckSnTp2yKJHvZWZm6tChQ27HGIbh\n8rsBAADWcRRCdkm6bG8US1xW4b1KlGEqula1Wul/7v0fHX7usFaPWK1f3fQrhYWEuRy/4+QOPbf6\nOcW+G6sBCwZoyd4lys3PtTAxAAAAAAAAACAQ+WUZJi4uzqtxq1ev9nES63zxxRdFZR9Xq+JIUtOm\nTa2KBAAAXIiLi1NsbKxyJX1mdxgLLJaUJ6l+/foUc/1EcFCwejXrpXkD5+nkiyf1Qb8P1K1hN5fj\nrxRc0ZK9SzRgwQDVf7e+nlv1nHac3GFhYgAAAAAAAABAIPHLMkyzZs28Gjd37lwfJ7HO/PnzvRrX\nvHlzHycBAACeGIahsWPHSpKm2ZzFCo57HPub37jc0hEVV3RYtMbePFbfPfad9j21T6/c/ooaVG3g\ncvzpnNOatGmSOv2lkzrO6Kj/+/7/lJGdYWFiAAAAAAAAAIC/M0x3y4hUUJs3b1bXrl1lGMY1q6Q4\nXsCYpqmgoCClpqaqRYsWdsQsMwcPHlTLli1drgzj+B4Mw9DGjRt166232hETQDGZmZmKiYkpcSwj\nI0O1a9e2KREAqx0/flyNGzdWfn6+dklqb3cgH9ktqYOkYElHmjZV7EsvSaNGSeHhNieDL+UX5Ovr\ntK+VtDNJi1MX69KVS27HhwSF6IEWD2h0/Gg90PIBVQquZFFSAAAAAAAAAIAv2P0+1C/LMFeuXFG1\natV08eJFSe7LIYMGDdKCBQvsiFlmRo4cqblz53os/4SHh+v8+fMKDg62IyaAYpw9/NPS0pw+/CMi\nIqyKBcBigwYN0qeffqrxkqbaHcZHxkuaLmmQpEWOgzVqSOPGSU89JdWta1s2WOP8pfNa9MMiJe1I\n0ndHv/M4vmaVmhrefrgSOyaqY92OrCYEAAAAAAAAAOVcdnb2NccyMzMVFxdX4hhlmDJw7733au3a\ntU4LIlLJQsxXX32lu+++24aUpffdd9/pzjvvLPrdXfGnR48eWrNmjdURATjhrAzjip8+pgFIWrt2\nre655x5FSjohKcruQGXsF0n1JWVJWiupx9UDKlWShg2TXnhBau+va+OguAM/H9CsnbM0a+csHfvl\nmMfxHep0UGJ8ooZ3GK6YCO/+fxMAAAAAAAAAYC1v/1GjlWWYIEtmsUH//v09jnEURUaOHKnMzEwL\nUpWts2fPavjw4S63R7ragw8+aEUsAADgpR49eqh169bKkjTJ7jA+MEmFRZg2lSvrLmcDcnOlpCSp\nQwepVy9p1SqJAqBfa1Gzhd68500devaQvhz5pYa3H64qIVVcjt91apde+OIF1X+3vvrP76/FqYuV\nm59rYWIAAAAAAAAAQEXktyvDpKenq2HDhm6LIsVXjbn99tu1evVqVani+j/GlyeXL19W3759Pa5+\nIxXee3BwsI4ePaq6bEUAlAtskwTAYd68eRo+fLhCJW2TdJPdgcrIbkk3S8qTNHfOHA2rW1d6911p\nxQr3H2zbtnClmOHDpbAwC5LCbr9c/kWLUhYpaWeSNhzZ4HF8zSo1Naz9MCV2TFSnup3YRgkAAAAA\nAAAAbMY2SRbztFWSVHIbobvvvlvLli1TeHi4xUmvz+XLlzVw4ECtWLGiROHlasXv7Z577tGXX35p\ndVQALjgrw1j58AdQfpimqYceekjLly/XzZL+KSnU7lCllCepqwrLPf3799eSJUv+XVhITZXee0+a\nPVu6fNn1RWJipAkTpHHjJJ6NAePHMz9q1o5Zmr1rto6cP+JxfPuY9krsmKjh7YerTmQdCxICAAAA\nAAAAALxh9/tQvy7DLF26VAMGDHBbhpFKlkY6dOigZcuWqWHDhhYm9V56eroefvhhJScnFx3zpuiz\ndOlS9evXz6qYADyw++EPoHxJT09Xu3btdPbsWb0p6b/sDlRKb0p6VVL16tWVkpKievXqXTsoI0Oa\nPl2aOlVyt11lWJg0cqT0/PNSmza+ioxypsAs0LpD65S0I0mf/PCJLl656HZ8sBGsPi36KDE+Uf1a\n9lPlkMoWJQUAAAAAAAAAOGP3+1C/LsNIUnx8vPbs2SPJdWlEKrllUo0aNTRp0iQNHz7ckoze+vTT\nTzVhwgRlZmYWlVy8KcJ06NBB27dvtzgtAHfsfvgDKH/mzJmjkSNHKlTSVknt7Q50g3ZJSlDh6jB/\n//vfNWLECPcfuHRJmju3cAulH35wP7Zv38ItlO65R2JrnIDxy+Vf9MkPnyhpR5K+PfKtx/E1qtTQ\nsJsKt1HqXK8z2ygBAAAAAAAAgA3sfh/q92WYRYsWaciQIR5Xh5FUYsshwzDUu3dvvf3227rpppus\niOrS3r179Z//+Z9atmxZ0T1cz2o3ixYt0iOPPGJVXABesPvhD6D8Kb5dUhtJ30qqaXeo6/SzpDsk\npcrJ9kiemKa0enVhKcbT1o7x8YWlmKFDpUqVSpkaFclPZ37S7J2zNWvnLB0+f9jj+Ha12ymxY6JG\ndBihupF1LUgIAAAAAAAAAJDsfx/q92UYSerZs6fWrFlzQ4UYwzA0ePBgPfXUU+revbsVcYts2rRJ\nU6ZM0ccff6yCgoKiTI58rhQvwvTq1UsrV660KjIAL9n98AdQPqWnpyshIUEnTpxQF0lrJEXZHcpL\nFyTdK2mLpNjYWCUnJzvfHskbu3ZJ771XuGJMXp7rcfXqSU8/LT3xhFSjxo3NhQqpwCzQ+kPrlbSz\ncBulnLwct+ODjWDd3/x+JXZM1IMtH2QbJQAAAAAAAADwMbvfhwZEGebgwYNq3769Ll26JMl9kUTS\nNYUTx+/t2rXT4MGDNWDAAJ+tFvPDDz9oyZIlWrRokXbt2uU0h6cijGNMZGSk9uzZo0aNGvkkK4Ab\nZ/fDH0D5lZKSojvvvFNnzpzRXZKWq/wXYi5I6ifpG0k1a9bUN998o7Zt25b+wunp0tSp0vTp0pkz\nrseFh0uJidJzz0ktWpR+XlQoFy5fKNxGaWeSvjn8jcfx1cOqa1j7YRodP1oJsQlsowQAAAAAAAAA\nPmD3+9CAKMNI0owZMzR+/HivVodxcFY+cRyrU6eOunXrpq5du6pt27Zq1aqVmjRpouDgYK+unZ+f\nr8OHD2vfvn364Ycf9P3332vjxo06efKkyzm9yV18VZiZM2fqscce8yoPAGvZ/fAHUL5t2bJF9957\nry5cuKAuklaq/G6ZdFpSH0nJkqKiorRmzRp16dKlbCfJyZFmzy5cLWb/ftfjDEPq31968UXp9tsL\nf0dAOXj2YNE2SofOHfI4vm3ttkqML9xGqV7UDa5kBAAAAAAAAAC4ht3vQwOmDCNJTz75pD744IMb\nKsRI15ZRrv5XpIZhqHr16oqJiVF0dLQqV66sypUryzRN5ebm6vLlyzp//rwyMjJ09uzZa67n7vrX\nW4QZP3683n//fa/uEYD17H74Ayj/tmzZovvvv19nzpxRG0kLJLW3O9RVdkkaKilVhSvCrFq1SgkJ\nCb6bsKBA+vxz6d13pXXr3I9NSJBeeEEaNEgKDfVdJpRLBWaBvjn8jZJ2FG6jlJ2X7XZ8kBFUuI1S\nfKIebPWgwkLCLEoKAAAAAAAAAP7J7vehAVWGuXLlinr16qV169ZdVyHG4eryizfbFV3tej5zPfmK\nrx7Ts2dPrVy5UkFBQV5/HoC17H74A6gYfvjhB/Xs2VMnTpxQqKT/lvQfkuyuduRJekvSH//159jY\nWH355ZdlszWSt7ZuLVwpZsEC6coV1+MaNpSeeUYaO1aKjrYuH8qNrNwsffrDp0ramaR1h9Z5HF89\nrLqG3jRUiR0T1SW2C9soAQAAAAAAAMANsPt9aECVYSTp4sWL6tevn9auXXtDhRgHd/9R3NM1S/NZ\nd9czTVO9e/fWZ599prAw/jUrUJ7Z/fAHUHGkp6frySef1LJlyyRJnSXNknSTTXl2S0qUtO1fv/fv\n318zZsxQvXo2bTFz7Jj0/vvSX/4inT/velxkpPSb3xQWY+LirMuHciXtbFrRNkpp59I8jm9Tq40S\nOxZuoxQbFWtBQt8wTVM5OTl2x7BVeHg4xSYAAAAAAADAQna/Dw24MowkXbp0SQMGDNDq1atLFElK\n63r/42pZzmmapvr376+FCxeqUqVKpb4uAN+y++EPoGIxTVNz587VM888o7NnzypU0quSnpVU1aIM\nv0iapH+vBlO9enW9//77GjZsWPl4wZyVJf3tb9L//Z+U5qbkEBQkPfJI4RZKt91mXT6UKwVmgb49\n/K2SdiZpUcoir7ZR6t2st0bHj9ZDrR+qcNsoZWdnKzIy0u4YtsrKylJERITdMQAAAAAAAICAYff7\n0IAsw0hSQUGB/uM//kPvvPNOmRZirFI8s2EYeuWVV/TGG2+Uj5dRADyy++EPoGJKT0/XE088oeXL\nl0uSIiWNlDROUnsfzblb0jRJcyRl/euY7avBuJOfLy1dKr3zjrRxo/uxt91WWIoZMEAKDrYmH8qd\nrNwsLU5drKQdSVp7aK3H8dXCqmlou8JtlG6pf0uF+Ps3ZRjKMAAAAAAAAIDV7H4fGrBlGIdPP/1U\nY8eO1blz5ypMKaZ4zho1aigpKUn9+vWzORWA62H3wx9AxWWapubPn68333xTqampRcfvUGEp5hFJ\nlUs5x2VJi1VYgtlQ7HibNm30+9//Xr/61a8qRAFA338vvfee9MknUkGB63FxcdKzz0qPPSZFRVmX\nD+XOoXOHNHvnbCXtSPJqG6XWtVorMb5wG6X6VetbkPDGlCjD/FZSoCwkmStpYuEfKcMAAAAAAAAA\n1rL7fWjAl2Gkwi/8ueee08cff1zixU55+2quLuuMGjVKEydOVK1ateyMBeAG2P3wB1DxmaapdevW\nadq0afrss8+Un58vqfAdd3tJNxf7aS/X775zVbj6y9ZiP7tUuBWSJIWEhGjAgAEaP3687rrrropR\ngrnaoUPS5MnSX/8qXbjgelx0tPT449LTT0sNG1oWD+VPgVmgDUc2KGlHkhb9sEhZuVluxwcZQerZ\ntKcSOybqoVYPqUpoFYuSeqdEGeYVBVYZ5n8K/0gZBgAAAAAAALCW3e9DKcMU89VXX+mVV15RcnKy\nJJWLYoyzDLfddpveeust3XHHHbZkAlB6dj/8AfiXEydOaObMmZo5c6aOHz9+zflQ/X/27jw8yvLQ\n//97AmFfBARkExBBtgQRXFBBjriLKCiLJKjVUvfWpb+r5xx7unzb09pzxK1ulVOXmgHRCgjuuFa0\nWghCAgKirBIQZJMlgSzP748BDJpNTeYJM+/Xdc1VMnM/mc/MZW9l7s/cN7QDGgIN9t9XAOQDG/i6\n+FJahw4dmDhxIhMnTqR9+/Y1lDzOduyIFWLuuw/WrSt/XJ06MGYM3H47DBgQv3yqlXbv2x07RmnR\nE7y56s1Kxzev35xxfWPHKJ3c4eRaUSCzDGMZRpIkSZIkSYq3sNdDLcOU4dVXX+UPf/gD7777LkCZ\nH2DX1NtW0XMNGzaMO+64g6FDh9bIc0uKn7Anf0mJKQgCVq9eTXZ2NvPnzyc7O5vs7Gy2bdtW4XUt\nWrRg4MCBDBgw4OCtS5cutWIRv0YUFcFzz8GkSTBvXsVjhwyJlWKGD4eUlPjkU621Zvua2DFKi55g\n5baVlY4/rtVxXHX8VUxInxDqMUqWYSzDSJIkSZIkSfEW9nqoZZgKfPLJJzz55JNEo1HWrl178P7K\nFoYqe0u/y/XHHHMMmZmZTJgwgW7dulUhtaTDQdiTv6TkEQQBa9asYfPmzeTn55Ofnw9Aw4YNadiw\nIa1bt6Zz586JW3ypSBDAe+/B3XfDzJmxn8vTvTvccgtceSW4oJ70giBg7tq5PLnoSaYtmVbpMUoR\nIpzd7Wyu6ncVl/S8JO7HKFmGsQwjSZIkSZIkxVvY66GWYaroo48+Ys6cObz++uu89957BxeSSvuu\ni0hlvfWNGjVi8ODBnHXWWZx99tmkp6d/78ySaq+wJ39J0jd8+mns+KTHHoM9e8of17IlXHcd3Hgj\nJMrxUfpBdu/bzYxlM3hiYewYpYCK/3rVrH4zxvWJHaN0SsdT4lJEswxjGUaSJEmSJEmKt7DXQy3D\nfA8lJSUsX76c3NxccnNz+fTTT8nLyyMvL48NGzawp6IFFKBx48a0a9eO9u3b06FDB7p160Z6ejpp\naWl0796dFLfglxJe2JO/JKkcW7fCo4/Cn/8MeXnlj0tNhcsvh9tug3794pdPtdqa7Wt4Kucpnlj4\nBJ9t+6zS8d1bdj94jFKn5p1qLJdlGMswkiRJkiRJUryFvR5qGaYGFBcXk5+fT0FBAXv37gWgQYMG\nB2916tQJOaGksIU9+UuSKrFvH0ybFjtCaeHCiscOGxYrxZx3HlhqFrEdIN9f9z5PLHyCaUumsXPf\nzgrHR4hw1jFncdXxsWOUGqU2qtY8lmEsw0iSJEmSJEnxFvZ6qGUYSQpB2JO/JKmKggDefhsmTYIX\nX6x4bK9ecOutkJkJDRvGJZ5qvz2Fe5ixdAZPLHqCN1a+UaVjlMb2GcuV/a7k1E6nVssxSpZhLMNI\nkiRJkiRJ8Rb2eqhlGEkKQdiTvyTpe1i2DO69F558EgoKyh/XujXccEPs9o25Xslt3Y51B49RWrF1\nRaXju7fszpX9rmRCvwkc3fzo7/28lmEsw0iSJEmSJEnxFvZ6qGUYSQpB2JO/JOkH2LwZHnkEHngA\nNm0qf1z9+jBhQmy3mN6945dPtV4QBPzz838ePEbpq71fVTg+QoRhxwzjqn5XMbLXyO98jJJlGMsw\nkiRJkiRJUryFvR5qGUaSQhD25C9JqgYFBTBlCtx9NyxZUvHY886D22+HYcOgGo69UeLYU7iHmctm\n8sTCJ3h95euVHqPUtF5TxvQZw1XHX8VpnU6r0jFKlmEsw0iSJEmSJEnxFvZ6qGUYSQpB2JO/JKka\nBQHMmQOTJsFrr1U8Ni0NbrsNLr88tnOMVMq6HevIysniiUVP8MmWTyodf2zLY7my35Vc0e+KCo9R\nsgxjGUaSJEmSJEmKt7DXQy3DSFIIwp78JUk1ZPFiuOceyMqCffvKH3fUUXDTTXDdddCqVfzy6bAQ\nBAEffP4BTyx8gqeXPF2lY5TO7HomVx1/FSN7jqRxvUNLH5ZhLMNIkiRJkiRJ8Rb2emhClmHy8vJ4\n/fXXqzS2V69enHjiiTWcSJIOFfbkL0mqYRs3wkMPxW5btpQ/rmFDuOoquOUW6NEjbvF0+MgvzGfm\nspk8uehJXvvstSodozS692iuOv4qTj/6dCKRiGUYLMNIkiRJkiRJ8Rb2emhClmHuv/9+br311iqN\nffvttxk8eHANJ5KkQ4U9+UuS4mTPHnjqqdhuMcuXlz8uEoHhw+H222HIkNjP0jd8/tXnsWOUFj7B\n8i0V/PO0X7cW3biy35Vcduxl9O7YO3anZRhJkiRJkiRJcRD2emhKXJ4lzhYuXEgQBJXeBg0aZBFG\nkiRJNadRI7j2Wvj4Y5g9G/7t38oeFwSxx4cOhYEDYcoUKCyMa1TVfh2bdeTfT/93lt64lH9e80+u\nHXAtzes3L3f8Z9s+41dv/4reD/WOY0pJkiRJkiRJCl9ClmE++eQTACKRSJm3A4+NHTs2zJiSJElK\nFikpsZ1f3nwTFiyAzEyoW7fssQsWQEYGdO0K//M/sH17fLOq1otEIpzS8RQeGf4IG27fwNRLp3Le\nseeREknIv95JkiRJkiRJ0neWkJ+Wrl279mDp5Zu7wZQ2YsSIMOJJkiQpmfXvHzs6afVq+MUv4Igj\nyh63fn3s8Y4d4Wc/g5Ur4xpTh4eGqQ0Z13ccL2e8zNpb1nLnsDvpeWTPsGNJkiRJkiRJUqgSsgzz\n5Zdflnn/gYIMwJFHHknnzp3jFUmSJEk6VIcOcOedsG4d/PnP0K1b2eN274b774fu3eGyy+D992PH\nKknf0KFZB35x+i/4+IaP+eCaD7h+4PUc0aCcspUkSZIkSZIkJbCELMMUFhaW+1gQBEQiEfr06RPH\nRJIkSVI5mjSBm26C5cth+nQ4/fSyx5WUwHPPwWmnwaBB8MwzUFQU36w6LEQiEU7ueDIPXfgQG27f\nwJOXPBl2JEmSJEmSJEmKq4QswzRu3LjSMV26dKn5IJIkSVJV1akDI0fCu+/Chx/C2LGx+8py4PFj\nj4V77oGvvopvVh02GtRtwKW9Lw07hiRJkiRJkiTFVUKWYZo0aVLpmKZNm8YhiSRJkvQ9nHQSPP00\nfPYZ3H47lPffrmvWwG23QadO8POfw9q18c0pSZIkSZIkSVItlLRlmKqMkSRJkkLVuTPcdRd8/jnc\nfXfs57J89RVMmgTHHAOXXw7z5sU3pyRJkiRJkiRJtUhClmGOPPJIgiCocMy+ffvilEaSJEn6gZo1\ng1tvhU8/hWnTYjvHlKW4OLajzEknweDBMHNm7D5JkiRJkiRJkpJIQpZhevToUemY3bt3xyGJJFXd\n7t27y7xJknRQ3bowZgx88AHMnQujRkEkUvbYuXNh5Ejo2RMefBD8d4okSZIkSZIkqQbUxnXOpC3D\nfPHFF3FIIklV17VrV5o0afKtmyRJ3xKJwGmnwXPPwYoVcPPN0Lhx2WM//RRuugk6dYL/+A/Iy4tv\nVkmSJEmSJElSQitrjbNr166hZkrIMsxxxx1X4eNBEPDZZ5/FKY0kSZJUg7p1g/vvh3Xr4M47oX37\nssdt2xZ7vEsXuOIKWLgwrjElSZIkSZIkSYqXhCzDnHrqqeU+Ftm/jfyKFSsoKiqKVyRJqtSqVavY\ntWvXt26SJFVJixbwi1/AqlWQlQX9+5c9rrAQnnoq9viZZ8KLL0JJSXyzSpIkSZIkSZISRllrnKtW\nrQo1U0KWYdq2bUu/fv0IguBg+QViO8IcUFBQwLx588KIJ0llaty4cZk3SZK+k3r1ICMDsrPhrbfg\noovKH/vWWzB8OPTuDX/5C+Tnxy+nJEmSJEmSJCkh1MZ1zoQswwCcc845lY555ZVX4pBEkiRJCkEk\nAkOHwqxZsGwZXHcdNGxY9tjly2OPH300/OpX8MUXcY0qSZIkSZIkSVJ1StgyzOjRo8t9LBKJEAQB\nU6ZMiWMiSZIkKSTHHQcPPwxr18Lvfw9t25Y97ssv4Xe/i5VirrkGFi+Ob05JkiRJkiRJkqpBwpZh\nBg4cyEknnVThUUkrV67k1VdfDSOeJEmSFH9HHgl33AFr1sDjj0NaWtnj9u2Dxx6LPX7eefDaa1Dq\nv6MlSZIkSZIkSarNErYMA3DjjTdW+HgQBPz2t7+NUxpJkiSplqhfH666ChYtihVdzjuv/LGvvgrn\nngvp6bECzd69cYspSZIkSZIkSdL3kdBlmHHjxtG9e3eAb+0Oc+DnDz/8kMceeyyUfJIkSVKoIhE4\n+2x4+eXYkUjXXAP16pU9dvFiuPpq6Nw5dpTSl1/GN6skSZIkSZIkSVWU0GWY1NRUHnjggUOORiot\nEokQBAG33347q1atinM6SZIkqRbp0wf+7/9g7Vr41a9iRyqV5YsvYo936gTXXQfLlsU3pyRJkiRJ\nkiRJlUjoMgzA2WefzejRow/ZDQY4WJCJRCLs2LGDCy+8kO3bt4cVU5IkSaod2raF3/42Vop59FHo\n2bPscQUF8Je/QK9ecNFF8NZbUE4JXZIkSZIkSZKkeEr4MgzAo48+Wu5xSQcsW7aMYcOGsWnTprjn\nkyRJkmqdhg1h4kRYsgRefBGGDSt/7AsvwJlnwoABkJUF+/bFL6ckSZIkSZIkSd+QFGWY5s2bM3v2\nbJo3bw58uxBz4OePPvqIU089lY8++iiUnJIkSVKtk5ICF1wAr78OH30EV1wBqallj/3oI5gwAbp2\nhTvvhG3b4ptVkiRJkiRJkiSSpAwD0KNHD2bOnEnTpk2BsgsxkUiElStXMmjQIP74xz9SWFgYVlxJ\nkiSp9jn+eHjySVi9Gv7jP6BFi7LH5eXFHu/YEW6+GT77LK4xpW968ZMX2VfsjkWSJEmSJElSskia\nMgzAkCFDeOeddzjqqKMADhZg4OsjkyKRCPv27eOXv/wlPXv2JBqNUlRUFFpmSZIkqdZp3x7+8AdY\ntw4efBCOPbbscXv2wAMPQPfuMGoUzJ0LpY4qleJl7N/H0m5SO65/4XreW/veIUfmSpIkSZIkSUo8\nSVWGAejXrx/vvfce/fv3/9YHoKULMUEQsGrVKq644gq6dOnCr3/9axYvXhxGZEmSJKl2atwYbrgB\nli2DmTNh8OCyxwUBzJgRe/yUU2DaNLBwrjjbmr+VR7If4fTHT6fb/d34fwYfOQAAIABJREFU5Zu/\nZNmXy8KOJUmSJEmSJKkGRIIk/UpccXEx//3f/81///d/H9z5pXQZ5oBv3te1a1fOOOMMTj/9dNLT\n0+nZsyeNGzeOc3pJh7vNmzfTpk2bQ+7btGkTrVu3DimRJEnVZN48uOceeOYZKC4uf9zRR8PPfgbX\nXAPNm8cvXxLavXs3TZo0if3wn0C9UOPEzz7gD/v/XMHrPqHdCWSmZTKu7zjaNW0Xp3CSJEmSJElS\nYgt7PTShyzBXX311pWNycnJYsGDBwd1gSiurFPPN+wHatGlD27Ztadu2LU2bNqV+/frUq1fvW+PC\nFIlE+Otf/xp2DEn7hT35S5JU49auhT//GR59FL76qvxxTZvCj38cK8Z07hy/fEnEMgxVet0pkRSG\ndR1GZnomI3uOpGn9pjUcUJIkSZIkSUpcYa+HJnQZJiUlpUqFlMregm/+jvLG16byS2lBEBCJRCiu\n6Ju5kuIq7MlfkqS42bkT/vpXuPdeWLOm/HEpKXDZZXDbbXDyyfHLlwQsw8DidYuZuXImWblZVToa\nqWHdhlzc82Iy0jI4t9u5pNZJrdmskiRJkiRJUoIJez00Kcow1fkSyyu81Pa30TKMVLuEPflLkhR3\nRUUwcyZMmgQffFDx2NNOi5ViLr4Y6tSJT74EZhkGdu3aRePGjQmCgAUbFhDNjTJ18VQ27tpY6a85\nstGRjO0zloy0DE7peEqt/RKEJEmSJEmSVJuEvR6aFGWYyvzQt6C2fxjqzjBS7RP25C9JUqj++U+4\n+26YPh1KSsofd8wxcMst8KMfwYEyh74zyzBfl2FKKyop4q1Vb5GVm8X0pdPZtW9Xpb/ymBbHkJGW\nQUZaBscdeVwNhJYkSZIkSZISQ9jroUlRhkngl1ipA6/fMoxUu4Q9+UuSVCusXAn33x87RmlXBUWE\nI46An/wEbr4ZOnaMX74EYRmm7DJMaXsK9zBr+SyycrJ49bNXKSopqvTXn9j+RDLSMhjXdxxtm7St\nptCSJEmSJElSYgh7PdQyTIKzDCPVTmFP/pIk1Srbt8PkybFizOeflz+ubl0YOzZ2hNIJJ8Qv32HO\nMkzlZZjSNu/ezDNLniErN4sPPq/kSC+gTqQOZx1zFpnpmVzS8xKa1HMXI0mSJEmSJCns9VDLMAnO\nMoxUO4U9+UuSVCsVFsLf/w6TJkF2dsVjhw6NlWIuvBBSUuIS73BlGea7lWFK+2zrZ0Rzo0Rzo3yy\n5ZNKxzdKbcQlPS8hMy2Ts7udTd2Uut/5OSVJkiRJkqREEPZ6qGWYBGcZRqqdwp78JUmq1YIA3n03\nVoqZPTv2c3l69IBbb4UrroBGjeKX8TBiGeb7l2EOCIKA+XnzieZGmbp4Kpt2b6r0mtaNWjOu7zgy\n0jI4qcNJRCKR7/38kiRJkiRJ0uEm7PVQyzAJzjKMVDuFPflLknTY+OQTuO8+ePxxyM8vf1zLlnD9\n9XDTTXDUUfHLdxiwDPPDyzClFZUU8frK14nmRpmxdAa7C3dXes2xLY8lMy2TjPQMjm15bLXkkCRJ\nkiRJkmqzsNdDk6IMk+wsw0i1T9iTvyRJh50tW+Avf4E//xk2bix/XL16MH587AiltLT45avFLMNU\nbxmmtN37dvP88ufJysnitc9eozio/O9cJ3c4mYy0DMb2HUubxm0qHS9JkiRJkiQdjsJeD034Moxi\nLMNItUvYk78kSYetvXvh6afh7rshJ6fisWefHSvFnHsuJHFJ3jJMzZVhStu0exPTFk8jKzeLf63/\nV6Xj60TqcE63c8hMz+Ti4y6mcb2azSdJkiRJkiTFU9jroQldhvnRj34UdoRa5fHHHw87gqT9wp78\nJUk67AUBvPkmTJoEL79c8djevWOlmIwMaNAgPvlqEcsw8SnDlLZiywqiuVGiuVE+3fpppeMbpzZm\nZK+RZKZlMuyYYdRNqRuHlJIkSZIkSVLNCXs9NKHLMJJUW4U9+UuSlFA+/hjuvRf+9rfYzjHladMG\nbrwRrr8ekujfuZZh4l+GOSAIAv61/l9Ec6M8vfhpNu/ZXOk1bRu3ZVzfcWSkZTCw/UCP/pUkSZIk\nSdJhKez1UMswkhSCsCd/SZIS0qZN8PDD8OCDsLmC0kGDBnDFFXDLLdCrV/zyhcQyTHhlmNIKiwuZ\ns3IO0dwoM5bOIL8ov9JrerTqQWZaJhnpGRzT4pg4pJQkSZIkSZKqR9jroZZhJCkEYU/+kiQltIIC\nyMqCu++GpUsrHnvBBbEjlM48ExJ0Bw7LMLWjDFParn27mLlsJlk5WcxZOYeSoKTSawZ1HERGWgZj\n+oyhdWP/m1GSJEmSJEm1W9jroZZhJCkEYU/+kiQlhZISePXVWCnm9dcrHtuvX6wUM24c1Eustohl\nmNpXhilt466NTFs8jazcLObnza90fN2Uupzb7Vwy0zMZcdwIGqU2ikNKSZIkSZIk6bsJez3UMowk\nhSDsyV+SpKSTkxMrxUyZAoWF5Y9r1w5uvhmuvRZatoxfvhp0SBnm5yRXGeau2B9rcxmmtOVfLiea\nGyWaG2XltpWVjm9Srwmjeo0iMy2TM7ueSZ2UOnFIKUmSJEmSJFUu7PVQyzCSFIKwJ39JkpLWhg3w\n4IPw8MOwdWv54xo1gquugltuge7d4xavJhxShklSh0sZ5oAgCPjg8w/Iysli2pJpbMnfUuk17Zq0\nY1zfcWSmZ9L/qP5EEvTYL0mSJEmSJB0ewl4PtQwjSSEIe/KXJCnp7d4Nf/sb3HMPrFhR/rhIBEaM\ngNtvh9NPj/18mLEMc/iVYUorLC7k1c9eJZobZeaymRQUFVR6Tc8je5KZlsn4tPF0bdE1DiklSZIk\nSZKkQ4W9HmoZRpJCEPbkL0mS9ispgRdeiB2h9M47FY8dOBBuuw0uuwxSU+OTrxoEQcCePXvCjhGq\nRo0aJcROKTv37mTGshlk5WTxxqo3KAlKKr3mtE6nkZmeyejeo2nVqFUcUkqSJEmSJEnhr4dahpGk\nEIQ9+UuSpDJkZ8dKMc88A0VF5Y/r1Al++lOYOBGaN49fPqmUDTs38PTip8nKzWLBhgWVjk9NSeX8\n7ueTkZbBRT0uomFqwziklCRJkiRJUrIKez3UMowkhSDsyV+SJFVg3Tp44AH4y19gx47yxzVpAj/+\ncawY09WjaBSepZuXEs2NEs2Nsnr76krHN63XlMt6X0ZGWgZDuwylTkqdmg8pSZIkSZKkpBL2emhC\nlmHy8vJ4/fXXqzS2V69enHjiiTWcSJIOFfbkL0mSqmDnTnj8cbj3Xli1qvxxKSkwalTsCKVBg+KX\nT/qGIAh4f937ZOVk8czHz7A1f2ul17Rv2p7L+15OZnom/dr2S4jjpCRJkiRJkhS+sNdDE7IMc//9\n93PrrbdWaezbb7/N4MGDaziRJB0q7MlfkiR9B8XFMHNm7Ail99+veOygQbFSzMiRUMfdNhSefcX7\neOXTV4jmRpm1fBYFRQWVXtO7dW8y0zIZnzaezkd0jkNKSZIkSZIkJaqw10MTsgxz9dVX88QTT1Q6\n7tRTT2Xu3Lk1H0iSviHsyV+SJH1PH3wQK8U89xyUlJQ/rmtX+NnP4OqroWnT+OWrBYIgYM2aNWza\ntIn8/HwKCmIljAYNGtCwYUPatGlD586d3YEkjnYU7GD60ulEc6O8uepNAir/GGDw0YPJTM/kst6X\n0bJhyziklCRJkiRJUiIJez00Icswp59+Ou+//365H64GQUAkEuHee+/l5ptvjnM6SQp/8pckST/Q\n6tVw333wf/8Hu3aVP655c/jJT+Dmm6FTp7jFi5cgCFi1ahXZ2dnMnz+f7OxsFixYwLZt2yq8rkWL\nFgwYMOCQW9euXS3IxMH6r9bz9OKnycrNYuHGhZWOT01J5cIeF5KZlsmFPS6kQd0GcUgpSZIkSZKk\nw13Y66EJWYY5+uijWb9+PRD7cLa0SCRysAyzcuVKOnd262dJ8Rf25C9JkqrJjh2xQsx998G6deWP\nq1MHxoyB22+HAQPil6+GrF+/nsmTJzN58mTy8vK+9Xg9oB3QEDhQnSgA8oENwL4yfmf79u2ZOHEi\nP/nJT2jfvn0NJVdpSzYtIZobJZobZe2OtZWOb16/OZf1voyMtAzO6HIGKZGUOKSUJEmSJEnS4Sjs\n9dCELMM0atSIvXv3AoeWYQ58yzAIAlq3bs0XX3wRSj5JCnvylyRJ1aywMHZ00qRJMH9+xWOHDImV\nYoYPh5TDp0wQBAFvvfUWDz30EDNnzqS4uBiIFV/SgQGlbn3331+WfcBiIHv/bT6Qy9cFmTp16jBy\n5EhuuOEGhg4d6m4xcVASlPDe2vfIysni2Y+fZVtBxTv7AHRs1pHL+15OZnom6W3T45BSkiRJkiRJ\nh5Ow10MTsgyTmppKSUkJ8O0yzIFdYc444wzefPPNsCJKSnJhT/6SJKmGBAG8916sFPP887Gfy9O9\nO9xyC1x5JTRuHL+M31EQBEydOpXf/e53LFu27OD9Q4DrgZFA/R/4HHuBGcBDwLul7u/Zsyf/9V//\nxeWXX24pJk72Fu3l5U9fJisnixc+eYG9xXsrvSatTRoZaRmMTxtPp+aJdxyYJEmSJEmSvruw10MT\nsgxzxBFHsHPnTqD8MsyVV17JY489FlZESUku7MlfkiTFwaefwr33wuOPw5495Y9r2RKuuw5uvBFq\n2fFAGzZs4Nprr2X27NkANAGuIFaC6VtDz5kLPAw8Bezaf9+IESN45JFHaNeuXQ09q8qyvWA7z338\nHNHcKG+vfpuAij8+iBBhSOchZKZnclnvyziiwRFxSipJkiRJkqTaJuz10MNnT+7voEmTJpWOadq0\naRySSJIkSUpaxx4LDzwA69bBH/9YftFl61b4wx+gS5fYLjGLFsU1ZlmCIOCpp56id+/ezJ49m1Tg\nd0Ae8CA1V4QBSCO2Q0ze/udMBWbNmkWfPn3IysoiAb/PUWsd0eAIrjnhGt688k3W3rqW/znrfyo8\nEikg4J017zBx9kTa3tWWS5+5lBlLZ7C3qPLdZSRJkiRJkqTqlLRlmKqMkSRJkqQfrGVL+Pd/h1Wr\n4G9/g379yh5XWBh7/Pjj4ayz4KWXYP/xr/G0YcMGLr74Yq644gq2b9/OAGAB8Esgnl8paLr/ORcA\nA4Bt27YxYcIELrnkEjZs2BDHJALo2Kwj/99p/x+LrltEznU5/OK0X9CxWcdyx+8r3sf0pdMZ9cwo\njpp0FD+Z/RPeWf0OJUH8/5mWJEmSJElS8knIMsyRRx5Z6bcF9+3bF6c0kiRJkgTUqwcTJsBHH8Eb\nb8CFF5Y/9sDjffvC5MmQnx+XiEuWLGHgwIEHd4P5PfBPanYnmMr03Z+h9C4xAwcO5OOPPw4xVXJL\na5vGnWfdyZpb1vD2lW/z4/4/pnn95uWO316wnckLJjP0yaF0ubcL//76v7N40+I4JpYkSZIkSVKy\nScgyTI8ePSods3v37jgkkaSq2717d5k3SZKUYCIROPNMeOEF+Phj+MlPoEGDsscuXRp7vHNn+M1v\nYNOmGos1b948hgwZQl5eHr2AbOAOYgWUsKUS2yUmG+gF5OXlMWTIEObNmxdusCSXEknhjC5nMHnE\nZDb+fCPPjXmOkT1HUq9OvXKvWffVOv703p9IeziN4x85nv9973/5/KvP45hakiRJkiRJ1a02rnNG\nggQ8cP3OO+/kP//zP4lEIofsEHPg50gkwiWXXMJzzz0XYkpJyWzz5s20adOmSmMTcJqWJEnftHkz\nPPwwPPhgxYWX+vVju8vceiv07l1tTz9v3jyGDRvGzp07ORF4GWhVbb+9em0BzgfmAU2bNuWNN97g\nxBNPDDmVStuWv42/f/x3orlR3lnzTqXjI0QY2mUomemZXNrrUpo3KH+XGUmSJEmSJNU+kUikSuM2\nbdpE69atazhNTEKWYWbMmMGll15abhkGID09nYULF4YVUVKSswwjSZLKVFAAU6bA3XfDkiUVjz3v\nPLj9dhg2LLbbzPe0ZMkShgwZwtatWzkDmA00/d6/LT52AsOBfwAtW7bk3XffpXc1loNUfdbuWMuU\n3Clk5WSxZHMl/0wD9evU56LjLiIzLZPzu59f4S4zkiRJkiRJqh0sw8TJF198Qbt27cosw0BsYblh\nw4bs2LGDunXrhhVTUhIrqwyzatWqMif/xo0bxyuWJEmqLYIAXnstVop57bWKx6alwW23weWXx3aO\n+Q42bNjAwIEDycvL4yTgdWp/EeaAncAwYjvEtG/fnvnz59OuXbuQU6k8QRCQ80UO0dwoU3KnsH7n\n+kqvadGgBWP6jCEzPZNTO51KSiQhT3qWJEmSJEk67JV1JNLmzZvp2rXrIfdZhqkG/fv3Z9GiRRUe\nlTR37lwGDRoUYkpJyaqsMkw8J39JknQYyc2Fe+6BaBT27St/3FFHwU03wXXXQavKDzkKgoCLL76Y\n2bNn0wt4l9p7NFJ5tgCDgaXAiBEjmDlzZpW/haLwFJcU886ad4jmRPn70r/z1d6vKr2mc/POZKRl\nkJGeQe/W7gIkSZIkSZJU24W9HpqwX6s655xzKh3zyiuvxCGJJEmSJP0AaWnw2GOwZg388pflF102\nbow93qkT3HADfPJJhb82Go0ye/ZsUoFpHH5FGIhlngakArNmzSIajYacSFVRJ6UOZ3Y9k79e/Fc2\n3r6RZ0c/y8XHXUxqSmq516zZsYY/zP0DfR7qwwl/OYFJ708ib2deHFNLkiRJkiTpcJKwO8PMnz+f\nk046qcKjkrp168aKFSvCiigpiYXdhJQkSYexPXvgqadiRyhVVHiJRGD4cLj9dhgyJPbzfhs2bKBP\nnz5s27aN3wN31HzqGvV74L+AFi1asGTJEo9LOkxtzd/Ks0ueJSs3i7lr51Y6PkKEYccMIyMtg1G9\nRtGsfrM4pJQkSZIkSVJVhL0emrBlGIBTTjmFf/3rXxUelfTSSy9x7rnnhphSUjIKe/KXJEkJoKQE\nXnopVop5662Kx55wQqwUM3o0Qd26B49HGgB8ANSNR94aVAicAizA45ISxertq5mSO4WsnCyWfrm0\n0vEN6jZgxHEjyEzL5Nxjz6VenXpxSClJkiRJkqTyhL0emtBlmKeeeoorr7yy3DIMxAoz77//flgR\nJSWpsCd/SZKUYBYsgHvugaefhqKi8sd16MCUwYPJePpp6gHZQN94ZaxhucAAYsWYaDTK+PHjQ06k\n6hAEAQs3LiSaG2VK7hQ27NpQ6TWtGrZiTJ8xZKZnMqjjIItRkiRJkiRJIQh7PTShyzCFhYX07duX\nTz/9FKDc3WEmT57M1VdfHVZMSUko7MlfkiQlqM8/hwcegL/8BbZv/9bDAdAbWAb8DvhlnOPVtN8B\nvwJ69erFkiVLLEEkmOKSYt5a/RbR3CjPffwcO/ftrPSarkd0JSMtg4z0DHoe2TMOKSVJkiRJkgTh\nr4cmdBkGYM6cOZx77rll7g4DsYJM8+bNWbBgAV27dg0rpqQkE/bkL0mSEtyuXfD443DvvbBy5cG7\n3wLOBJoAeUDTkOLVlK+ADsAu4K233mLo0KHhBlKNyS/MZ/Yns8nKyeLlT1+mqKSCHZH2G9BuAJnp\nmYzrO46jmhwVh5SSJEmSJEnJK+z10JS4PEuIzj77bEaPHn1wF5gDDhRjIpEIO3bs4MILL2R7Gd+c\nlCRJkqTDTpMmcPPN8MknMH06nH46AA/uf/gKEq8IA9AMmLD/zw8++GBFQ3WYa5jakDF9xjDr8lls\nuH0DD13wEKd2OrXCa7I3ZHPrq7fS4e4OnJt1Ln9b9Dd27q18dxlJkiRJkiQdfhJ+ZxiAHTt2cNJJ\nJ1V4XBJA//79efnll7/VTpKk6hZ2E1KSJCWf9S+8QOcRIygOAnKBvmEHqiG5QDpQp04d1q5dS/v2\n7cOOpDhauW0lU3KnkJWTxfItyysd37BuQy7peQkZaRmc0+0cUuukxiGlJEmSJElS4gt7PTThd4YB\naN68ObNnz6Z58+YA39oh5sDPH330EaeeeiofffRRKDklSZIkqaZMnj+f4iBgMIlbhAFIA04HiouL\nmTx5cthxFGfHtDiGXw75JUtvXMr8ifO55eRbaNu4bbnj84vymbp4KsOnDqf93e256aWb+ODzD0iC\n7w1JkiRJkiQltKTYGeaAf/zjH4wYMYKdO2PbIH9zh5gD99WrV49f//rX/PznPyc11W+FSap+YTch\nJUlScgmCgI4dO5KXl8dUYFzYgWrYVGA80KFDB9atW3fIFyKUfIpKinhz1ZtEc6NMXzqdXft2VXpN\ntxbdyEjLICM9gx6tesQhpSRJkiRJUmIJez00qcowAIsWLeKCCy5g48aNB+878BaULsREIhG6dOnC\n//t//4+xY8dSt27dUPJKSkxhT/6SJCm5rFy5km7dulEP+AqoH3agGrYXaAoUEnvtXbt2DTmRaos9\nhXuYtXwWWTlZvPLpKxQHxZVec2L7E8lMz2Rsn7G0bVL+LjOSJEmSJEn6WtjroUlxTFJp/fr14733\n3qN///7f2va4dCkmCAJWrVrFFVdcQZcuXfj1r3/N4sWLw4gsSZIkST9IdnY2AOkkfhEGYq8xff+f\nD7x2CaBRaiPG9R3HC+NfYMPtG3jg/Ac4peMpFV4zL28eP3vlZ3S4uwPnR88nKyerSrvLSJIkSZIk\nKTxJV4YB6NKlCx9++CG/+c1vqFu3LpFI5JBdYYCD9wVBQF5eHr///e/p168fxx57LNdccw2PP/44\n2dnZ7N69O8yXIkmSJEmVOlAIGRByjng68Fotw6g8rRu35saTbuSf1/yTFTev4LdDf1vhkUjFQTGv\nfPoKE2ZMoO1dbcmcnsnLK16mqKQojqklSZIkSZJUFQl9TNLVV19d6ZicnBwWLFhwsPhSWulz5Us/\n9s3z5tu0aUPbtm1p27YtTZs2pX79+tSrV69WnUsfiUT461//GnYMSfuFvS2YJElKLmeddRZvvPEG\njwITww4TJ48C1xJ77XPmzAk7jg4TQRAwP28+WTlZPL3kaTbt3lTpNW0at2Fsn7FkpmdyYvsTa9Vn\nAZIkSZIkSWEJez00ocswKSkpVfoQqrK34Ju/o7zxtfUDryAIiEQiFBdXfha6pPgIe/KXJEnJIwgC\nWrVqxbZt28gGTgg7UJxkAwOBFi1asGXLllr79zXVXkUlRby+8nWiuVGmL53OnsI9lV7TvWV3MtIy\nyEjP4NiWx8YhpSRJkiRJUu0U9npoUpRhqvMllvcBam1/Gy3DSLVL2JO/JElKHqtXr6Zr167UA3YC\n9cIOFCd7gaZAIbBq1Sq6dOkSbiAd1nbt28Xzy54nmhvltc9eozio/O/XJ3c4mcz0TMb2GUvrxv53\nviRJkiRJSi5hr4emxOVZQhaJRCq8fRdBEHzrVpXnCPMmSZIkKXlt2hQ75qUdyVOEAahP7DVD7C/e\n0g/RpF4TMtIzeCnjJdbftp77zruPkzqcVOE1H67/kJtfvpl2k9px4ZQLmZo7ld37dscpsSRJkiRJ\nUnKrG3aAeKjpXVtq864wlmEkSZKk5Jafnw9Aw5BzhOHAaz7wHkjVoW2Ttvz05J/y05N/yootK4jm\nRsnKyeKzbZ+VOb44KOalFS/x0oqXaJzamFG9RpGZnsmZXc+kbkpSfCwjSZIkSZIUd0mxM4wkSZIk\nJauCggIAGoScIwwHXrNlGNWU7q2685uhv2HFzSv44JoPuOnEm2jdqPytfncX7uapnKc4N+tcOt7d\nkVtfuZX5efNr9ZdsJEmSJEmSDkd+BUmSJEmSJOkHiEQinNzxZE7ueDJ3n3s3c1bOISsni5nLZpJf\nVHYZ64vdX3Dvh/dy74f3clyr48hIyyAjPYNjWhwT5/TVLwgC9uzZE3aMUDVq1MjdeiVJkiRJCpFl\nGEmSJElKYA0axPZHKQg5RxgOvOaGDZPxkCiFJbVOKhd0v4ALul/Azr07mblsJtHcKHNWzqEkKCnz\nmuVblvOrt3/Fr97+Fad2OpWMtAzG9BnDkY2OjHP66rFnzx6aNGkSdoxQ7dq1i8aNG4cdQ5IkSZKk\npOUxSZIkSZKUwA4UQZLxoKADr9kyjMLStH5TJvSbwCuZr7D+tvXce+69DGw/sMJr3l/3Pje+dCPt\nJrXjoqkXMW3xNPYUJvcuK5IkSZIkSd9VJEjgg6lTUlLckpbY9sSRSITi4uKwo0jab/PmzbRp0+aQ\n+zZt2kTr1q1DSiRJkhLV6tWr6dq1K/WAnUC9sAPFyV6gKVAIrFq1ii5duoQbSCpl+ZfLieZGycrJ\nYtX2VZWOb1qvKaN6jSIzPZN/6/Jv1EmpE4eU39/u3bu/3hnm5yTPxLMPuCv2R3eGkSRJkiQlu7DX\nQxO+DKMYyzBS7RL25C9JkpJHEAS0atWKbdu2kQ2cEHagOMkGBgItWrRgy5YtflFCtVIQBHzw+Qdk\n5WQxbck0tuRvqfSadk3acXnfy8lIz6D/Uf1r5T/bh5Rh/pPkKsP8IfZHyzCSJEmSpGQX9npo3bg8\nS0iuvPLKsCNIkiRJUqgikQgnnHACb7zxRtKVYQAGDBhQK8sCEsT+/zmo0yAGdRrEPefdw2ufvUZW\nThbPL3+egqKCMq/ZsGsDd39wN3d/cDe9juxFZnom49PG0+WILvENL0mSJEmSVIsldBnm8ccfDzuC\nJEmSJIVu4MCBB8swE8MOEycHyjADBw4MNYdUVfXq1GN4j+EM7zGcr/Z+xYylM4jmRnlj1RuUBCVl\nXrP0y6Xc8eYd3PHmHZx+9OlkpGUwuvdoWjVqFef0kiRJkiRJtYvnCEmSJElSghswYADwdUEkGRzc\nGaZePSgqCjWL9F01q9+MK4+/ktcmvMa6W9cx6ZxJnNCu4n2d5q6dy/UvXk+7Se245OlLeHbJs+QX\n5scpsSRJkiRJUu0SCYIgCDuEJCWbsM/IkyRJyWXlypV069aNesBXQP2wA9WwvUBToBBYCXRt1QpG\njoTLLoMzz4TU1HADSt/T0s1LieZGieZGWb19daXjm9VvxqW9LiV3LvrzAAAgAElEQVQzPZMzOp9B\nnZQ6NR8S2L17N02aNIn98J9Avbg8bfj2AX+I/XHXrl00btw41DiSJEmSJIUp7PVQyzCSFIKwJ39J\nkpRcgiCgY8eO5OXlMRUYF3agGjYVGA90ANYBkdIPtmgBF18cK8acdRbUT/RqkBJREAS8v+59snKy\nmLZkGtsKtlV6Tfum7RnfdzwZ6Rn0a9uPSCRS6TXfl2UYyzCSJEmSJIW9HuoxSZIkSZKU4CKRCBMn\nTgTgoZCzxMOB1ziRbxRhALZtgyeegOHDoW1buOIKmDULCgrimlH6ISKRCKcdfRoPD3+YjT/fyPPj\nnmd079HUr1N+uStvZx53/fMu+v+lP2kPp3Hn3DtZu2NtHFNLkiRJkiTFjzvDSFIIwm5CSpKk5LN+\n/Xo6d+5McXExOUBa2IFqSC6QDtRJSWFtnz60z82t2oVNmsBFF8V2jDnvPGjUqCZjSjViR8EOpi+d\nTlZuFm+teouAyj/yGdJ5CBlpGYzuPZoWDVtUSw53hnFnGEmSJEmSwl4PdWcYSZIkSUoCHTp04JJL\nLgHgkZCz1KSH9//vyFGjaJ+TAytXwv/+L5x8csUX7toFU6fCpZdC69YwZgw880zsfukw0bxBc37U\n/0e8ccUbrLt1Hf979v9y/FHHV3jNP9b8g2tfuJajJh3FqGmjeO7j5ygocqckSZIkSZJ0eHNnGEkK\nQdhNSEmSlJzeeustzjzzTJoAeUDTsANVs6+ADsAuYq916NChhw5YuxamT4e//x3ee69qv7RhQzj/\n/NiOMRdeCM2aVW9oKQ4Wb1pMNCfKlMVTqnQ0UvP6zbms92VkpmcypPMQUiLf7btU7gzjzjCSJEmS\nJIW9HmoZRpJCEPbkL0mSklMQBPTu3Ztly5bxO+CXYQeqZr8DfgX06tWLJUuWEIlEyh+8fv3XxZh3\n34Wq/NW4fn0499xYMeaii+CII6oruhQXJUEJc9fOJZoT5ZmPn2F7wfZKr+nYrCPj+44nMz2TtLZV\nO2DNMoxlGEmSJEmSwl4PtQwjSSEIe/KXJEnJa8qUKWRkZJAKLAD6hh2omuQCA4BCIBqNMn78+Kpf\nvHEjzJgRK8a8/TaUlFR+TWoqnH12rBhz8cXQsuX3Cy6FZG/RXl5a8RLR3CizP5nNvuJ9lV6T1iaN\nzPRMLu97OZ2adyp3nGUYyzCSJEmSJIW9HmoZRpJCEPbkL0mSklcQBFx88cXMnj2bAcA/gdSwQ/1A\nhcApxMo9I0aMYObMmRXvClORzZth5kx49ll4800oLq78mrp1YdiwWDHmkkvgyCO/33NLIdlesJ3n\nPn6OrNws3ln9DgEVf1QUIcIZXc4gMy2TS3tfyhENDt0lyTKMZRhJkiRJksJeD7UMI0khCHvylyRJ\nyW3Dhg306dOHbdu28XvgjrAD/UC/B/4LaNGiBUuWLKFdu3bV84u3bIHnn4/tGPP661BYWPk1derA\n0KGxYszIkdC2bfVkkeJk3Y51TF08lWhulJwvciodX79OfYb3GE5GWgYXdL+A+nXrW4bBMowkSZIk\nSWGvh1qGkaQQhD35S5IkZWVlMWHCBFKBbCAt7EDfUw4wkNjuME899RSZmZk180TbtsHs2bFizKuv\nwr7Kj5QhJQWGDPm6GNO+fc1kk2pIzhc5RHOiTFk8hc+/+rzS8Uc0OIIxvccw6thRnNf7vNidlmEk\nSZIkSUpKYa+HWoaRpBCEPflLkiSVPi6pF/Au0CrsUN/RFmAwsJRqOB7pu/jqK3jhhVgx5uWXoaCg\n8msiETjttFgxZtQo6NSp5nNK1aQkKOEfa/5BNCfKsx8/y469Oyq+oFQpxDKMJEmSJEnJKez1UMsw\nkhSCsCd/SZIkiB2XNHDgQPLy8jgReANoGnaoKtoJDAPmAe3bt2f+/PnVdzzSdwqyE156KVaMefFF\nyM+v2nWnnBIrxlx6KXTpUqMRpepUUFTASyteIisnixdXvMi+4jJ2SbIMYxlGkiRJkpT0wl4PTYnL\ns0iSJEmSap127drx2muv0bJlS+YBFxErmdR2O4HhxIowrVq1Ys6cOeEUYQCaNoWxY+HZZ2Hz5lgp\nZtw4qGwR/IMP4Oc/h65d4cQT4U9/gs8+i09m6QdoULcBo3qNYvrY6Wy8fSOPDn+UIZ2HhB1LkiRJ\nkiTpEO4MI0khCLsJKUmSVNq8efMYNmwYO3fu5ETgZWrvkUlfAucD84GmTZvyxhtvcOKJJ4acqgz5\n+fDaa7GSzKxZsR1kqqJ//9iOMZddBj161GxGqRqt2b6GqYunkpWTxZL1S9wZxp1hJEmSJElJLuz1\nUMsw1WTTpk3s3LmT/Px88vPzKSgooKy3dsgQvy0lKfzJX5Ik6ZvmzZvHeeedx9atW+kFTAPSwg71\nDTnAOGApsR1hXnnlFQYOHBhyqirYuxfmzIntGvP887B9e9WuS0v7uhjTu3fNZpSqSRAEfLjqQwZ1\nGxS7wzKMJEmSJElJKez1UMsw38GuXbvIzs5m4cKFLFy4kOXLl7N+/Xo2btxIUVFRpddHIpEqjZOU\n+MKe/CVJksry8ccfc/bZZ5OXl0cq8CvgF0BqyLkKgTuB3+3/c/v27ZkzZw69D8eCyL598OabsWLM\njBmwdWvVruvVC0aPjhVj+vaFSKRmc0o/wO7du2nSpEnsB8swkiRJkiQlpbDXQy3DVGLRokW88MIL\nvPrqq3z44YffKrN8l7cvEolQXFxc3RElHYbCnvwlSZLKs2HDBq677jpmzZoFwAnAk0DfkPLkAlcB\nC/b/PGLECB555BHatWsXUqJqVFgI77wTK8ZMnw6bN1ftuh49vt4x5vjjLcao1rEMYxlGkiRJkqSw\n10Mtw5Rh+/btPPXUUzz++OMsWrTo4P1lvVWRKn7oGARBtZVhHnnkEd5///1Kx7Vp04a77rrrBz+f\npOoX9uQvSZJUkSAIiEaj/PSnP2Xbtm2kAv8F/AxoFqcMXwH38fVuMC1atODPf/4z48ePr/Lfww4r\nRUXw7rtfF2M2bqzadcccEyvFjB4NAwZYjFGtYBnGMowkSZIkSWGvh1qGKWXr1q3cddddPPjgg+za\ntetb5ZeKPnCt6G2MRCLVWoaZO3cuQ4YMqTRPJBJh3rx5nHDCCT/4OSVVr7Anf0mSpKrYsGED1157\nLbNnzwagCTABuB5Iq6HnzAUeArKAXfvvS6jdYKqiuBjefz9WjHnuOVi/vmrXde789Y4xJ50EKSk1\nm1Mqh2UYyzCSJEmSJIW9HuonY0BJSQl/+tOf6Nq1K3/605/YuXPnwXJLJBI5eINYyaSsWzydfvrp\nDBkypNwspfNMnjw5rtkkSZIkJY527drx/PPPE41G6dWrF7uAh4F0YAgwFdhbDc+zd//vGrz/dz9C\nrAjTq1cvotEoM2fOTJ4iDECdOjB4MNx3H6xdGyvG3HordOpU8XVr1sCkSTBoUKwYc8stMHculJTE\nJ7ckSZIkSZJUSyT9zjALFizgxz/+MYsWLTqkAHNAdbw91b0zDMCrr77K+eefX+nuMM2aNeOLL76g\nfv361fK8kqpH2E1ISZKk7yoIAt5++20eeughZsyYcfDvNvWI7RIzoNQtjfI3gthHbPeX7FK3HGJH\nIQHUrVuXkSNHcsMNN3DGGWck5pFI31cQwLx5sR1j/v53WLWqate1awejRsV2jBk8OFa2kWqQO8O4\nM4wkSZIkSWGvhyZ1GeaRRx7hlltuobCw8GBZ5YDqfFtqogwD0LNnT1asWAF8O2/p53zmmWe49NJL\nq+15Jf1wYU/+kiRJP0ReXh6TJ09m8uTJrC/jCJ9UoB3QEGiw/74CIB/YwNfFl9I6dOjAxIkTmThx\nIu3bt6+h5AkkCOCjj2KlmGefhU8/rdp1bdp8XYw54wyoW7dmcyopWYaxDCNJkiRJUtjroUlZhikq\nKuL666/nscce+9ZuMDXxdtRUGeb+++/nlltuOfj7y3vOSy+9lGeeeabanlfSDxf25C9JklQdgiBg\n9erVZGdnM3/+fLKzs8nOzmbbtm0VXteiRQsGDhzIgAEDDt66dOniLjDfVxBATs7XxZjly6t2XatW\nMHJkrBhz5pmQmlqzOZU0LMNYhpEkSZIkKez10KQrwxQWFjJmzBhmzZp1yG4wNfk21FQZZufOnRx1\n1FEUFBQAh76G0q+rUaNGbN68mYYNG1bbc0v6YcKe/CVJkmpKEASsWbOGzZs3k5+fT35+PgANGzak\nYcOGtG7dms6dO1t8qSlBAB9//PVRSosXV+26Fi3g4otjxZizzgKP2tUPYBnGMowkSZIkSWGvhyZV\nGaawsJDRo0cza9Ys4LvvBlPZh7Xl/Z6aKsMAXH755UybNq3S3WGef/55hg8fXq3PLen7C3vylyRJ\nUpJYtgyeey5WjFm4sGrXNG8OI0bEijHnnAMNGlR+jVSKZRjLMJIkSZIkhb0emhKXZ6klbrrpJmbN\nmkUkEjlYFKmsCHNgbOniTHm3MIwfP75K41566aUaTiJJkiRJqnV69oQ77oCPPoIVK+CPf4QBAyq+\nZscOeOqp2E4xrVvD+PEwfTrs2ROfzJIkSZIkSdIPlDQ7wzz66KNcd911Vd4NpvQuMAfG1q9fn8GD\nBzNw4ED69+9P586d6dChA82aNaNBgwbUr1+/0h1aqntnmKKiItq0acOOHTu+9bpKv9YuXbqwcuXK\nan1uSd9f2E1ISZIkJblVq77eMebDD6t2TaNGcOGFsR1jLrgADuz8IX2DO8O4M4wkSdL/z959R0lZ\n3v0ff89SlxpY6Yg0UYprYVFJAqKoIUYQbEhZbMEWUWNI9NGoPAlBTcREbPyiTyyDgoCKoGAjoCAq\nVRep0nuT3pYt8/tjBCnbgN25t7xf58xx956rfGdI7nN2rs9clyRJQa+HlogwzPz58znvvPNIS0sD\n8h6EiUQilCpViiuuuIJbb72Vyy67jPj4+Gz7xcXFxTwMA3DDDTcwcuTIXOdesWIFp556ar7PL+n4\nBX3zlyRJkg5ZtSq688vo0fDFF3nrEx8Pv/51NBjzm99AlSoFW6OKFMMwhmEkSZIkSQp6PbREHJN0\n2223ceDAASDnIMzhxycB9OrViwULFvDee+/RpUuXHIMwQbriiivy1G7KlCkFXIkkSZIkqchp0ADu\nuw+mToU1a2DIEGjfHg7bMfUY+/ZFAzQ9e0LNmtEjlcJh2L49dnVLkiRJkiRJ2Sj2YZiXXnqJadOm\nZblryuEO3w2mSZMmTJo0iXA4TNOmTWNV6gnr1KlTntp9kddv+EmSJEmSSqZ69aBfP/jsM1i3Dl54\nAS65BOJy+PggNRXGjoU+faLBmN/8Bl55BbZujV3dkiRJkiRJ0mGKdRgmPT2dgQMHHgq6ZOfwIMwV\nV1zBrFmzaN++fSxKzBc1a9Y8FNrJ7rVGIhFmzpwZy7IkSZIkSUVZ7dpw550wcSJs2AD//jdcfjmU\nKpV9n7Q0GD8ebrkFatWCTp3g5Zdhy5bY1S1JkiRJkqQSr1iHYcLhMKtXrwayPx7p8B1jkpOTGTdu\nHFWK4Fnnbdu2zfE1AsybNy/H3XEkSZIkScpSjRrQty989BFs3Aj/+Q/8+tdQpkz2fdLTo+379o0G\nay69FIYOjfaXJEmSJEmSClCxDsM8/fTTOT5/MAgTCoXo1q0br732Wq67yBRWF1xwQZbXDw+/7Nu3\nj8WLF8eqJEmSJElScZSQADffHN0BZuNGeO016NwZypbNvk9GRnSHmTvvhLp14eKL4fnno0cxSZIk\nSZIkSfms2IZh5s6dy7x5847Y+eVwhwdhWrRoweuvvx5AlfmnZcuWeWq3YMGCAq5EkiRJklRiVKsG\nffrA2LGweTO88QZ06wbly2ffJzMTJk+Gu++G+vWhXTt45hn4cWdXqTho90o7hnw9hE17NgVdiiRJ\nkiRJJVKxDcO8+eab2T53+O4vcXFxvPLKK1SoUCEWZRWYM844I0/tli9fXsCVSJIkSZJKpCpVoGdP\neOcd2LQJRoyAa6+F+Pjs+0QiMHUq3HcfNGgAbdvC4MGwYkXMypYKwpz1c7j3w3upO7guV755JSPn\njWRf2r6gy5IkSZIkqcQotmGYcePG5Xjk0cFdYW655RaSkpJiWFnBqF27NlWqVAHI8XUbhpEkSZIk\nFbjKlaF7dxg1KrpjzOjRcMMNULFizv2++gr694dGjaBNG3jySVi6NDY1SwUgI5LBB99/QPfR3ak9\nuDa/HftbPlvxGZmRzKBLkyRJkiSpWCuWYZht27ZlexzQ4UGR0qVL89BDD8WqrAJXv379XNusWbMm\nBpVIkiRJkvSjihXhmmtg+PBoMGbMGOjVKxqYycnMmfDgg9C0KZx3HgwaBIsXx6ZmqQDsTN3J/835\nPzq81oHGzzTm4YkPs3DLwqDLkiRJkiSpWCqWYZgvvviCSCQCcOi/hzu4K8yvfvUrTjvttFiXV2Bq\n1aqV5es93ObNm2NUjSRJkiRJR4mPh6uugmHDosGYcePgxhvhZz/Lud+cOfDww3DGGZCYCH/5C8yf\nH5uapRPQvWV3KpTJ/kjulTtWMmjqIJo/35zzXzqfZ79+ls17/MxGkiRJkqT8UizDMHPmzMlTux49\nehRwJbFVu3btbJ8LhUJEIhHDMJIkSZKkwqFcObjySnj1Vdi4ESZMgFtvherVc+43dy489hi0bAkt\nWkR/njsXcvlyiBRL/3fV/7HhDxt49apX6dioIyGyP9J6xroZ3PPhPdR9ui6dh3dm5LyR7E/fH8Nq\nJUmSJEkqfoplGGbZsmV5anfJJZcUcCWxVaVKlVzbbN++PQaVSJIkSZJ0HMqWhU6d4OWXYcMG+OQT\nuP12qFEj534LFkR3iUlMhDPPjO4eM2eOwRgVCpXLVebGc27k0z6fsur3q3jy0idpWaNltu3TM9N5\nf/H7dB/dnVpP1aLv2L58vvJzMiOZMaxakiRJkqTioUSFYUKhn76F07BhQ2rVqhWrkmKifPnyubbZ\nv99vFkmSJEmSCrEyZeDSS2HoUFi3Dv77X7jrLshhN1QAFi+GQYPgvPOgaVN44AGYOdNgjAqF+lXq\n86df/Im5d85l9m2z+f2Fv6dWxew/l9qZupOX57zMRa9eRONnGvPn//6ZRVsWxbBiSZIkSZKKtmIZ\nhlm7du0RwZfDRSIRQqEQp59+eoyrKnh5CcOkpqbGoBJJJ2LPnj1ZPiRJkqQSq3RpuPhieP55WLMG\nPv8c7rkH6tXLud+yZfD3v0ObNtCoEfTvD199BZnusKFghUIhzq1zLk//6mnW3L+GCb0m0POsnsSX\njs+2z8odK/nblL9x5vNncv5L5/Pc9OfYsndLDKuWJEmSJClnhXGds1iGYXbv3p1rm9NOOy0GlcRW\ndgGgw6WlpcWgEkknolGjRlSqVOmYhyRJkiSgVClo1w6eeQZWrYJp0+D3v4dTT82538qVMHgwtG0L\np50G990HU6cajFHgSseVplPTTrxx9Rts7L+RV656hUsaXUKI7D/fmbFuBv0m9KPO4Dp0Gd6FUfNG\nsT/dXYAlSZIkScHKao2zUaNGgdZULMMwe/fuzbVN5cqVY1BJbOXlCKSyZcvGoBJJkiRJkgpQXFw0\n3PL009Gwy9dfwx//GN0FJidr1kTDNO3aQf36cPfdMHkyZGTEpGwpO5XLVeamc25iYp+JrPr9Kp7o\n+AQta7TMtn16ZjrjFo/j+tHXU/up2tw27jamrJxCZsSQlyRJkiRJUEzDMPv27cu1TV6OFCpq8vK6\n4+Oz33ZXUrCWL1/O7t27j3lIkiRJykEoBOefHz0WaelSmDUL/ud/oGnTnPutXx89funii6FuXbjz\nTpg4EdLTY1O3lI36VerzwC8fYO6dc5l922zuu+A+alasmW37Hak7eGn2S7R/tT1NhjThkf8+wuIf\nFsewYkmSJElSSZfVGufy5csDralYhmHysvtJXoIjRc3mzZtzbVOhQoUYVCLpRFSsWDHLhyRJkqQ8\nCoXgvPNg0CBYvBi++Qb+/Gc444yc+23aBEOHwqWXQu3a0LcvfPQReNSwAhQKhTi3zrn8s9M/WXv/\nWsb3HE+PVj2IL539F51WbF/BwCkDOeO5M7jg5Qt4fvrzbNm7JYZVS5IkSZJKosK4zlkswzB5eVPz\ncpRSUbNmzZpc21SqVCkGlUiSJEmSFLBQCM4+G/76V1iwAL77DgYMgFatcu73ww/w8svQqRPUqgU3\n3wwffACpqTEpW8pK6bjS/Pr0X/PmNW+yof8GXrnqFS5ueDEhQtn2mb52OndPuJs6g+tw1YirGD1/\nNPvTcz9iW5IkSZKk4qDEhmHWr18fg0pia+XKlYRCWX8IEolECIVC1KlTJ8ZVSZIkSZIUsFAIWraE\nxx6DuXOj4ZiBA+Gcc3Lut20bvPoqXHllNBjTpw+MHQv7DRQoOFXKVeGmc27ivzf+l5X3reTxjo/T\nokaLbNunZ6YzdtFYrht1HXUG1+H2cbczddVUIpFIDKuWJEmSJCm2imUYpmrVqjn+QR+JRFi9enUM\nKyp4mzZtYuPGjQA5vvYGDRrEqiRJkiRJkgqnM8+Ehx+GOXPg++/h8cehdeuc++zYAeEwXHUV1KgB\nPXvCO+9AMdx5VkXHqVVP5cFfPsh3d37HzL4zufeCe6lZsWa27bfv386/Z/+bdq+0o8mQJjw66VG+\n/+H7GFYsSZIkSVJsFMswTMOGDbN97uDOKYsWLSIzMzNGFRW8OXPm5KmdYRhJkiRJkg7TtCk8+CDM\nnAnLlsE//gEXXJBzn927YfhwuOaaaDDm+uth5MjodSkAoVCI1nVb869O/2Lt/Wv5oOcH3NDqBsqX\nLp9tn+Xbl/PXz/9Ks+eaceHLF/LCjBf4Ye8PMaxakiRJkqSCUyzDMI0bN87y+uE7puzbt4/58+fH\nqqQCN2nSpDy1a9KkSQFXIkmSJElSEdWoEfTvD199BStXwj//Cb/4Rc599u6FUaOge3eoWTMakBk+\nHHbujE3N0lFKx5XmitOvYPg1w9nYfyP/6fIfOjTskGOfr9d+ze/G/446g+vQdURX3p7/NqnpqbEp\nWJIkSZKkAlAswzCNGjXKU7uJEycWcCWxM378+Dy1S0pKKuBKJEmSJEkqBho0gPvug6lTYc0aGDIE\n2reHH3eczdK+fdGjk3r2jAZjrroqerTS9u2xq1s6TJVyVbj53JuZdOMkVt63kkGXDKL5Kc2zbZ+W\nmcZ7i97j2lHXUntwbW4fdztTV03N8UhuSZIkSZIKo1CkGP41O3XqVNq3b08oFDrmj/WD10KhEBdf\nfDGffvppvs0bFxeX65wZGRn5Nt9Bixcv5swzz8x2bojuilOpUiV27Nhx6Jqk4GzevJmaNY88x33T\npk3UqFEjoIokSZIk5cmGDfDuuzB6NEyeDHk5grlMGbjsMrj22mhApnr1Ai8zSHv27KFSpUrRXx4C\nygZaTuwcAAZFf9y9ezcVK1YMtJzsRCIRZq+fTTglzJtz32Tz3s259mlcrTG9z+pN8tnJNK3eNAZV\nSpIkSZKKuqDXQ4tlGCY1NZWqVauSlpYGHHk80uHhkFKlSrF06VIaNGiQL/MGFYb54x//yODBg3Od\nu127dkyePDnf55d0/IK++UuSJEnKB5s3w5gx0WDMxImQl7/5S5eGjh2jwZiuXeGUUwq+zhg7IgzT\nn5IVhnkq+mNhDsMcLi0jjY+Xfkw4Jcx7i95jf/r+XPtcWP9CkhOT6d6yOwkVEmJQpSRJkiSpKAp6\nPbRYhmEAfv7zn/PVV1/lGhB58MEH+dvf/pYvcwYRhtm9ezcNGzZk27ZtADnOPWDAAB555JF8nV/S\niQn65i9JkiQpn/3wA4wdC6NGwaefwo9f0MlRqVLQoUM0GNOtG9SqVeBlxsIRYZgSqqiEYQ63Y/8O\n3l7wNuGUMJNXTM61fZm4Mvym2W9ITkzmN6f/hnKlyxV8kZIkSZKkIiPo9dC4mMwSgI4dO+b4/MGQ\nyHPPPceWLVtiVFX+Gzx4MFu3bgWODcIcrWvXrrEoSZIkSZKkkichAW6+GcaPh40b4bXXoHNnKJvD\ntigZGdEdZe68E+rWhYsvhuefh3XrYle39KOq5atyy7m3MOnGSay4dwV/u+RvnHnKmdm2T8tMY8zC\nMVwz8hrqDK7DHe/fwbTV03L9fEqSJEmSpFgotjvDzJ07l7PPPjvLnVrgyB1T+vbty9ChQ096zljv\nDLN69WpatmzJnj17gKx3hTl4vXHjxixZsiTf5pZ0coJOQkqSJEmKkZ074f33o0cpTZgA+3M/hoZQ\nCH7xi+iOMVdfDaeeWvB15qNIJMLevXtPqv/IkSN58sknWbx48aHrvwB+C3QBTnYPklRgLPASMO2w\n682aNeOBBx7g+uuvP/S5yomoUKHCSfUvLCKRCLPWzyL8bZjh3w1n897NufZpUq0JvRN70zuxN02r\nN41BlZIkSZKkwijo9dBiG4YBaNmyJQsXLgSy3jXl8JDKhx9+yGWXXXZS88U6DHP55Zfz6aef5inw\nk5/HQUk6eUHf/CVJkiQFYNeu6M4xo0fDBx/Avn1563fhhdFgzDXXQMOGBVpi0NavX8/tt9/OuHHj\nAKgE9AHuBFoV0JxzgReBMLD7x2tdunRh6NCh1KlTp4BmLXrSMtL4aOlHhFPCvLfwPVIzUnPt07Z+\nW5ITk+neqjvV46vHoEpJkiRJUmER9HposQ7DPPHEEzz00EM5hkUgGpSpWbMm06dPp0GDBic8XyzD\nMAMHDuTRRx/N02srXbo0y5Yto379+vkyt6STF/TNX5IkSVLA9uyBDz+MBmPGjYv+nhdJSdFgzLXX\nQpMmBVtjDEUiEYYNG8Y999zD9u3bKQM8CtwLVI5RDbuAZ4C/AGlAtWrVGDJkCL169SoWu7zkpx37\ndzB6/mjCKWE+W/lZru3LxJXhymZXkpyYzBWnX0G50ie7t48kSZIkqbALej20WIdhduzYQYMGDdi9\nO/q9ntxCIy1atGDy5MmccsopJzRfrMIwb775JsnJyYd+zy2WL+AAACAASURBVG1XmG7dujF69OiT\nnldS/gn65i9JkiSpENm3Dz7+GEaNgrFjozvI5MW55/4UjGnWrGBrLEBH7wbTGniVgtsJJjffATcB\ns3783V1icrZi+wreSHmDcEqYRT8syrV9tfLV6N6yO8lnJ9O2fluDRpIkSZJUTAW9HlqswzAAf/rT\nn3jqqaey3UEFjgzENG/enE8++YS6dese91yxCMO89tpr9O3b99A4Ob2mg3NOnTqVtm3bntS8kvJX\n0Dd/SZIkSYVUaip88kl0x5j33oPt2/PW76yzfgrGtGhRsDXmo3nz5nH55Zezbt06ygCPAX8CygRc\nVxrwJD/tElO3bl0++eQTWhSh9zbWIpEIM9fNJJwSZvh3w9myd0uufZpUa0JyYjK9E3vTpHrx2elI\nkiRJkhT8emixD8Ns3LiRZs2a5bg7DBx7ZNKIESPo0KHDcc1VkGGYzMxMHn30UZ544gkyMzNzDfcc\nnO+qq67inXfeOaE5JRWcoG/+kiRJkoqAAwfgv/+NBmPefRe2bs1bv+bN4brrosGYVq2gkO68MWPG\nDDp16sTWrVtpDrwFnBV0UUeZC3QHFgAJCQlMmDCBNm3aBFxV4ZeWkcaHSz4knBJm7KKxpGak5trn\n56f+nOTEZK5veT3V46vHoEpJkiRJUkEKej202IdhAP71r39x//335xgggSMDMaVKleKuu+5i4MCB\nVK6ct9OpCyoMM3fuXO644w6++uqrQ+McrDOn11C2bFnmzZtHk2J0hrhUXAR985ckSZJUxKSlwWef\nRYMx77wDmzfnrV+zZj/tGHPOOYUmGDNjxgw6duzIrl27aANMABKCLiobPwC/BmYAlStXZuLEiQZi\njsP2/dsZPX804ZQwn6/8PNf2ZUuV5cpmV5KcmMwVp19B2VJlY1ClJEmSJCm/Bb0eWiLCMJmZmSQl\nJfHtt98C2e8OA0eGSUKhEKeccgr9+/fnrrvuomLFijnOk99hmMWLF/P3v/+d1157jczMzFyDMEfP\n9cADDzBo0KA8zycpdoK++UuSJEkqwtLTYcqUn4IxGzbkrV/jxtFQzHXXQevWgQVj5s2bR/v27dm6\ndSsXAeOAvH0NKTi7gCuBz4Hq1aszZcoUj0w6ASu2r2BYyjDCKWEW/7A41/bV46vTvWV3khOTubD+\nhYc+F5MkSZIkFX5Br4eWiDAMQEpKCm3btmX//v1A3gMxB3+vVKkS119/PT169KB9+/aULl36mH75\nEYbZsmUL48aNY/jw4UycOPGYOnKq/fB5zjvvPL788sss65QUvKBv/pIkSZKKiYwMmDYtGox5+21Y\nuzZv/U477acdY84/H+LiCrbOH61fv56kpCTWrVvH+cCnFP4gzEG7gI5Ed4ipW7cuM2fOpE6dOgFX\nVTRFIhFmrJtB+NswI+aNYMveLbn2aVq9Kb3P6k3y2ck0rtY4BlVKkiRJkk5G0OuhJSYMAxAOh7nx\nxhtzPS4JOOKbJkeHUSpWrEj79u1JSkrivPPOo0mTJjRo0ICqVavmGoZJT09n37597N27l40bN7Jm\nzRqWL1/O7NmzmTlzJnPnziUzMzPLefMa4KlYsSKzZ8/m9NNPP563R1IMBX3zlyRJklQMZWbC11/D\nqFHRcMzq1XnrV78+XHNNNBjz858XWDAmEolw1VVXMW7cOJoDUyi8RyNl5wegHbAA6NKlC2PGjHG3\nkpOUlpHGh0s+5PWU1xm3aBypGam59vnFqb8gOTGZ61teT7X4ajGoUpIkSZJ0vIJeDy1RYRiAe+65\nh+eeey5PgRjIOhRz9PWsns/LeLn1z27u7MaMRCKUKlWKt956i6uvvjrXWiQFJ+ibvyRJkqRiLhKB\nGTOioZjRo2H58rz1q1MHrr46Goxp1w5Klcq3koYNG0ZycjJlgFnAWfk2cmzNBVoDaUS/eNW7d++A\nKyo+tu/fzqh5owinhJmyakqu7cuWKsuVza6kT2Iffn36rylbqmwMqpQkSZIk5UXQ66ElLgwTiUS4\n8cYbGTZsWJ4DMXBsiKWg3ra8BmCO7nNw55lnn32Wu+66q0Bqk5R/gr75S5IkSSpBIhGYMycaihk1\nCpYsyVu/mjV/CsZcdBGcxFHM69evp2XLlmzbto2BwMMnPFLhMBB4BKhWrRrz5s3zuKQCsHzbct6Y\n+wavf/s632/9Ptf2CfEJdG/ZneSzk7mg3gXu2CNJkiRJAQt6PbTEhWEAMjMz6d27NyNGjMjTEURH\ny+6P6ZPdGeZ4xjl6vEgkwmOPPcZjjz2W576SghP0zV+SJElSCRWJwNy5PwVjFi7MW7+EBOjWLRqM\nueQSKFPmOKb86Xik1sBXwInHagqHNOBCYDYel1TQIpEI09dOJ5wSZsR3I/hh3w+59jm9+ukkJybT\nO7E3jao1ikGVkiRJkqSjBb0eWiLDMBANxPz+97/n2WefPaFATNCO/oDl6aef5t577w2oGknHK+ib\nvyRJkiQBMG/eT0cpffdd3vpUqwZXXRUNxlx6KZQrl2PzN998k169elGW6PFIrU666MLh8OOS3njj\nDXr27BlwRcXfgYwDfLjkQ8IpYcYuGsuBjAO59vllg1+SnJjMdS2uo1p8tRhUKUmSJEmC4NdDS2wY\n5qCXX36Zu+++m7S0tEPXCvtbcnh4p1y5crz66qt079494KokHY+gb/6SJEmSdIyFC+Htt6PBmG++\nyVufqlWhS5doMObyy6F8+SOejkQitGjRgoULF/JX4M/5X3Wg/go8CjRv3px58+a5O0wMbdu3jVHz\nRxFOCTN11dRc25ctVZbOzTrT5+w+dGraibKlysagSkmSJEkquYJeDy3xYRiA6dOnc9NNN7Fw4cIj\nPrQojG/N4UGYFi1aMHz4cM4666yAq5J0vIK++UuSJElSjpYs+WnHmFmz8tanUiXo3DkajOnUCSpU\nYNKkSVxyySVUAtYBlQuy5gDsBOoBu4FJkybRoUOHYAsqoZZtW8YbKW/wesrrLNm6JNf2CfEJ3NDq\nBpITkzm/3vmGmCRJkiSpAAS9HmoY5kcHDhxgwIABPPXUU6Snpxe6UMzhIZhQKMRdd93FP/7xD8of\n9Y0rSUVD0Dd/SZIkScqz5ct/2jHm66/z1qdCBfjNb7h21Sre/vpr7gKeL9Aig3MX8CJw7bXXMmrU\nqKDLKdEikQhfr/2a8LdhRswbwdZ9W3Pt0yyhGb3P6k3vxN40qtYoBlVKkiRJUskQ9HqoYZijLFy4\nkEceeYR33nnnUPDkoFi/VVnN3aFDBwYPHsy5554b01ok5a+gb/6SJEmSdEJWrYJ33okGY774Isem\na4HTgAxgLtAqBuUFYS6QCJQqVYpVq1ZRt27doEsScCDjABO+n0A4Jcy4xeM4kHEg1z7tGrQjOTGZ\n61pex8/K/ywGVUqSJElS8RX0eqhhmGx8++23DBw4kLFjx5KWlpbldqkF8dYdPc/BOX75y1/yxz/+\nkc6dO+f7nJJiL+ibvyRJkiSdtLVrfwrGTJkCR31OMgD4X6Ad8HkA5cVSO2AqMGDAAB577LGgy9FR\ntu3bxsh5IwmnhPlidc4hLoBypcrR+YzOJCcm06lpJ8qWKhuDKiVJkiSpeAl6PdQwTC42b97MK6+8\nwiuvvMKiRYsOXc/tLOGc3ta89q1SpQrXXnstd999N+ecc85xVC2psAv65i9JkiRJ+WrDBnj33Wgw\nZvJkIpmZ1AfWAcOBGwIur6ANB3oC9erVY/Xq1bl+9qPgLNu2jGEpwwinhFmydUmu7RPiE+jRqgfJ\nZyfTpm4b/20lSZIkKY+CXg81DHMclixZwvjx45kwYQLTpk1j165dx7Q5nj+Is3rrGzduzGWXXUbX\nrl255JJLKFOmzEnVLKlwCvrmL0mSJEkFZvNmlr30Ek0efpiywE6gXNA1FbBUoDKQBixbtoxGjRoF\nXJFyE4lE+GrNV4RTwrw17y227tuaa59mCc1ITkymd2JvGv6sYcEXKUmSJElFWNDroYZhTsL333/P\n7Nmz+fbbb1m+fDlr1qxhzZo1rF+/ngMHsj+HuGzZstSrV48GDRrQoEEDmjZtSlJSEueffz4JCQkx\nfAWSghL0zV+SJEmSCtKoUaO4/vrrSQJmBF1MjCQBs4i+9muvvTbocnQcDmQcYPz34wmnhHl/8fsc\nyMj+c72D2jVoR5+z+3Bti2v5WfmfxaBKSZIkSSpagl4PLR2TWYqp008/ndNPP53u3bsf81x6ejr7\n9u1j//79pKamUqZMGSpUqEB8fDylS/u2S5IkSZKk4mvWrFkAtA64jlhqTTQMM2vWLMMwRUzZUmXp\nemZXup7Zla37tjJy3kjCKWGmrZ6WbZ8pq6YwZdUU7h5/N13O6EJyYjKdmnaiTCl3eZYkSZKkwsBU\nRgEpXbo0lStXpnLlykGXIkmSJEmSFFMzZ84ESl4YBn567SqaqsdX546kO7gj6Q6Wbl3KsJRhhFPC\nLN22NMv2qRmpjJo/ilHzR1GjQg1uaHUDyYnJJNVNOq7j1CVJkiRJ+ctjkiQpAEFvCyZJkiRJBSUS\niZCQkMC2bduYBZwXdEExMovoUUnVqlXjhx9+MAhRjEQiEb5a8xWvf/s6b817i237t+Xa54yEM0hO\nTKZ3Ym9O+9lpMahSkiRJkgqXoNdDDcNIUgCCvvlLkiRJUkFZsWIFjRo1oiywCygbdEExkgpUBtKA\n5cuX07Bhw2ALUoFITU9l/PfjCaeEeX/x+6RlpuXa56LTLiI5MZlrW1xL1fJVY1ClJEmSJAUv6PXQ\nuJjMIkmSJEmSpBJh06ZNANSh5ARhAMoRfc0Q/cBPxVO50uXo1rwb73R/hw39N/Dib16kbf22Ofb5\nbOVn/Hbcb6k9uDbdR3ePhmgycg/RSJIkSZJOnGEYSZIkSZIk5Zt9+/YBEB9wHUE4+JoPvgcq3qrH\nV+eOpDuYdus0vu/3PY9d9BiNqzXOtv3+9P2MnDeSzsM7U+/petw74V5mrpuJG3dLkiRJUv4zDCNJ\nkiRJkqR8s3//fgDKB1xHEA6+ZsMwJU/T6k0Z0GEAS/otYerNU7m99e1UK18t2/ab925myPQhtHmp\nDS1eaMGgKYNYuX1lDCuWJEmSpOLNMIwkSZIkSZIk5YNQKMQvGvyCoVcOZf0f1vP29W/T9cyulIkr\nk22fhVsW8vB/H6bhMw3p8GoH/jPnP+xM3RnDqiVJkiSp+DEMI0mSJEmSpHxTvnx0f5T9AdcRhIOv\nOT6+JB4SpaOVK12Oq5tfzbvd32X9H9bzwhUvcGH9C3Ps89nKz7h17K3UeqoWN4y+gQ8Wf0BaRlqM\nKpYkSZKk4sMwjCRJkiRJkvLNwSBISTwo6OBrNgyjoyVUSODONnfy5a1fsvjuxTza/lEa/axRtu33\np+/nrXlvceXwK6n3dD3unXAvs9bNIhKJxLBqSZIkSSq6QhH/gpKkmNu8eTM1a9Y84tqmTZuoUaNG\nQBVJkiRJUv5YsWIFjRo1oiywCygbdEExkgpUBtKA5cuX07Bhw2ALUqEXiUSYtnoa4ZQwb817i+37\nt+fap/kpzUlOTKZXYi8aVG0QgyolSZIk6cQEvR5qGEaSAhD0zV+SJEmSCkokEiEhIYFt27YxCzgv\n6IJiZBaQBFSrVo0ffviBUCgUdEkqQvan7+eDxR8QTgkz/vvxpGXmfDRSiBAXNbyI5MRkrm1xLVXK\nVYlRpZIkSZKUN0Gvh3pMkiRJkiRJkvJNKBTivPOiEZhZAdcSSwdfa+vWrQ3C6LiVL12ea1pcw5gb\nxrD+D+t5/ornubD+hdm2jxBh8orJ3Dr2Vmo9VYseb/dg/PfjSc9Mj2HVkiRJklR4GYaRJEmSJElS\nvkpKSgJKZhjm4GuXTlRChQTuanMXX976JYvuXsQj7R+h0c8aZdt+f/p+Rnw3gt+8+RvqPV2P+z68\nj9nrZ+OG4JIkSZJKMsMwkiRJkiRJyletW7cGSmYY5uBrl/JDs4Rm/OXiv7D0nqVMuXkKt513G1XL\nVc22/aY9m3jm62do/e/WtHqxFU9MfYLVO1bHsGJJkiRJKhxCEb8iIEkxF/QZeZIkSZJUkJYtW0aT\nJk0oC+wEygVdUAFLBSoDaURfe6NG2e/iIZ2s/en7eX/x+4RTwnk6GilEiA4NO5CcmMw1La6hSrkq\nMapUkiRJUkkW9HqoYRhJCkDQN39JkiRJKkiRSIT69euzbt06hgM3BF1QARsO9ATq1avH6tWrCYVC\nQZekEmLL3i289d1bvJ7yOtPXTs+1fXzpeLqe2ZXkxGQua3IZpeNKx6BKSZIkSSVR0OuhhmEkKQBB\n3/wlSZIkqaANGDCA//3f/6Ud8HnQxRSwdsBUoq/5scceC7oclVCLtixiWMowhs0dxortK3JtX6ti\nLXq06kHy2cmcW/vcIh/iikQi7N27N+gyAlWhQoUi/+8oSZKk4iPo9VDDMJIUgKBv/pIkSZJU0Nau\nXctpp51GRkYGKcBZQRdUQOYCiUCpUqVYtWoVdevWDboklXCZkUy+WPUF4ZQwI+eNZEfqjlz7tKzR\nkuTEZHol9qJ+lfoxqDL/7dmzh0qVKgVdRqB2795NxYoVgy5DkiRJAoJfD42LySySJEmSJEkqUerV\nq0fXrl0BGBpwLQXpxR//261jR4MwKhTiQnG0O60d/+78bzb038DIa0fSuVnnHI9Emrd5Hg9OfJAG\n/2xAx9c78uo3r7IrdVcMq5YkSZKk/OXOMJIUgKCTkJIkSZIUC5MmTeKSSy6hErAOqBx0QflsJ1AP\n2A1MCoXocNNNMGAANGgQaF1SVjbv2cxb894inBJm+trpubaPLx1Pt+bdSE5M5tLGl+YYpikMjtgZ\npj9QNtByYucA8FT0R3eGkSRJUmES9HqoYRhJCkDQN39JkiRJioVIJEKLFi1YuHAhfwX+HHRB+eyv\nwKNAc2AeEAIoVw5+9zt46CFISAiyPClbi7YsIpwSZljKMFbuWJlr+1oVa9HzrJ4kJyZzTu1zCIVC\nMajy+BwRhnmIkhWGGRT90TCMJEmSCpOg10MNw0hSAIK++UuSJElSrLz55pv06tWLMsBsoFXQBeWT\nuUBrIA14A+h5dIMqVeBPf4L77gMXp1VIZUYymbpqKuFvw4yaP4odqTty7dOqZiuSE5PpeVZP6lep\nH4Mq88YwjGEYSZIkFS5Br4fGxWQWSZIkSZIklUg9evSgc+fOpAE3EQ2PFHWHv5YuzZrRo0KFYxvt\n3Al//jM0aQIvvAAHDsS2SCkP4kJxtD+tPS91eYkN/Tcw8tqRXNnsyhyPRPpu03c88OkDNPhnAy59\n/VJe++Y1dqXuimHVkiRJkpQ7wzCSJEmSJEkqMKFQiP/3//4f1apVYxbw96ALygdPEt3lplq1agyd\nPJnQsmXQrx+UKXNs440bo8cmNW8Ow4dDZmasy5XypHzp8lzX8jrG9RjHuvvXMaTTENrUbZNt+wgR\nJi6fyE3v3UTtwbXp9U4vPlryEemZ6TGsWpIkSZKyZhhGkiRJkiRJBapOnToMGTIEgP8lesRQUZUC\n/OXHn4cMGUKdOnWgVi0YMgQWLoRevSAUOrbjsmXQsye0bg0ffgieXK5CrEbFGvS7oB/T+05nwe8W\n8HC7h2lQtUG27fem7eXNuW/S6Y1OnPrPU/nDR3/gmw3fEPF/55IkSZICEor4F4kkxVzQZ+RJkiRJ\nUqxFIhGuuuoqxo0bR3NgCpAQdFHH6QegHbAA6NKlC2PGjCGUVfDl22/hoYdg/PjsB7voInjiCbjw\nwgKqVspfmZFMpqycQjglzKj5o9iZujPXPq1qtqJPYh96ntWTelXqFWh9e/bsoVKlStFfHgLKFuh0\nhccBYFD0x927d1OxYsVAy5EkSZIOCno91DCMJAUg6Ju/JEmSJAVh/fr1JCUlsW7dOtoAE4HKQReV\nR7uAjsAMoG7dusycOTO6K0xOPv8cHnwQvvwy+zZdu8KgQdFjlKQiYl/aPsYuGks4JcyHSz4kI5KR\nY/sQITo27khyYjJXN7+aSmUr5XtNhmEMw0iSJKlwCXo91GOSJEmSJEmSFBN16tTh448/pnr16swA\nOhMNmRR2u4AriQZhEhIS+OSTT3IPwgC0bw9ffAFjxkCLFlm3GTMGWrWCW26B1avzsWqp4MSXiad7\nq+683/N91v1hHc90eoakuknZto8Q4dNln3LjmBup9VQter/Tm4+XfkxGZs4hGkmSJEk6Ue4MI0kB\nCDoJKUmSJElBmjFjBh07dmTXrl20ASZQeI9M2gL8GpgJVK5cmYkTJ9KmTZvjHygjA8JhePTR7EMv\n5crB3XfD//wPJBTWd0TK3oLNCwinhBmWMozVO3MPd9WpVIeeZ/UkOTGZs2uffVJzuzOMO8NIkiSp\ncAl6PdQwjCQFIOibvyRJkiQFbcaMGXTq1ImtW7fSHHgLOCvooo6SAtwALCC6I8yHH35IUlL2u1/k\nyf798OKL8Le/wQ8/ZN2mShX405/gvvvAhW0VQZmRTD5f+Tnhb8OMmj+KXQdy3wPqrJpnkZyYTK/E\nXtStXPe45zQMYxhGkiRJhUvQ66GGYSQpAEHf/CVJkiSpMJg/fz6XXXYZ69atowzwKPAAUCbgutKA\nJ4C//vhz3bp1+eSTT2iR3VFHJ2LnTnjqKXj6adizJ+s2tWpFd5Lp2xfKBP2uSCdmX9o+xi4ay+sp\nr/PRko/IiOR8NFJcKI6OjTqSnJhMt+bdqFS2Up7mMQxjGEaSJEmFS9DroXExmUWSJEmSJEk6SosW\nLZg5cyZdunQhDXgEuBD4LsCa5v5Yw6NEgzBdunRh5syZ+RuEgejuL3/5CyxdGj0aKauwy8aN8Lvf\nQfPmMHw4ZGbmbw1SDMSXiad7q+580PMD1t6/ln/96l+0rtM62/aZkUw+WfYJfcb0ofZTtUl+N5mP\nl35MRmbOIRpJkiRJOpw7w0gqUebPn8+8efPYuHEje/bsIT4+nho1atC8eXPOOussSpUqFZM6gk5C\nSpIkSVJhEolEeOONN7jnnnvYtm0bZYgGY+4FqsSohp3AM/y0G0y1atV49tln6dmzJ6FQqOALWLYM\nHnkE3nwz+zbnnAOPPw6/+hXEoiapAC3YvIBwSphhKcNYvXN1ru3rVq5Lz1Y9ST47mcRaicc8784w\n7gwjSZKkwiXo9VDDMJKKvQULFvDMM88wZswYNm3alG27qlWr0rlzZ/r160ebNm0KtKagb/6SJEmS\nVBitX7+e22+/nXHjxgFQCUgG7gTOKqA55wIvAMOA3T9e69KlC0OHDqVOnToFNGsOvvkGHnoIJkzI\nvk2HDtFQzIUXxqwsqaBkRjL5bMVnhFPCjJ4/ml0HduXaJ7FWIsmJyfQ8qyd1K9cFDMOAYRhJkiQV\nLkGvhxqGkVRs7dq1iz/96U+89NJLZGZm5umbfAdviddffz1Dhgw55gadX4K++UuSJElSYRWJRBg+\nfDgDBw5kwYIFh663IxqKuRood5JzpALvEA3BTD3sevPmzfnzn/9Mjx49YrMbTE4++wwefBC++ir7\nNt26wd/+Fj1GSSoG9qbtZeyisYRTwny05CMyIjkfjRQXiuPSxpeSnJjM5adeTq3qtaJPGIaRJEmS\nAhf0eqhhGEnF0rJly7jyyitZuHDhER9g5nTLO7pd/fr1GTt2LOecc06+1xf0zV+SJEmSCrtIJMLk\nyZN54YUXePfdd8nIiC6KlyW6S0zrwx5nkf269wGiu7/MOuyRQvQoJIDSpUvTrVs37rrrLi666KLg\nQzCHi0Rg7NjoTjHz52fdJi4ObroJBgyAU0+NZXVSgdq4eyPDvxtOOCXM7PWzc21fIVKBvf+7N/qL\nYRhJkiQpcEGvhxqGkVTsrF69ml/+8pesWbPmiOuRSCTHDzWPfj4SiZCQkMBnn31GixYt8rXGoG/+\nkiRJklSUrFu3jpdeeomXXnqJtWvXHvN8GaAOEA+U//HafmAfsJ6fgi+Hq1evHn379qVv377UrVu3\ngCrPJxkZEA7Do4/C6tVZtylXDvr1i+4mk5AQ2/qkAjZ/83zC34YZNncYa3auybrRYaEQwzCSJElS\n8IJeDzUMI6lYSUtLo23btsyePfuYYEtcXBzdu3enT58+JCUlUa1aNXbu3Mk333zD8OHDee211zhw\n4MAx/Ro3bsycOXOoXLlyvtUZ9M1fkiRJkoqiSCTCihUrmDVrFjNnzmTWrFnMmjWLbdu25divWrVq\nJCUl0bp160OPhg0bFq5dYPJi/3548cXo0Ug//JB1mypV4IEH4N57wUVxFTOZkUw+W/EZr6e8zuj5\no9l9YPdPTxqGMQwjSZKkQiXo9VDDMJKKlYcffpjHH3/8mEBLzZo1GTVqFO3atcu273fffUe3bt1Y\nunTpof4Hd4vp06cPr7zySr7VGfTNX5IkSZKKi0gkwsqVK9m8eTP79u1j3759AMTHxxMfH0+NGjU4\n7bTTil7wJSc7dsBTT8HTT8PevVm3qV07upPMb38LZcrEtj4pBvam7eW9he8RTgnz0dKPyEzNNAxj\nGEaSJEmFSNDroYZhJBUby5Yto2XLlhw4cODQtUgkQqVKlZg2bRqtWrXKdYw1a9Zw/vnns3HjxiPG\niIuLY9q0aZx//vn5UmvQN39JkiRJUjGwYQMMHAj/7/9BenrWbZo0iba5/nqIi4ttfVKMbNi9gVen\nv8r/dPyf6AXDMJIkSVLggl4P9S9gScXGE088QWpq6qHfD+7qMnjw4DwFYQDq16/Pf/7zH47OCUYi\nEf7617/ma72SJEmSJJ2U2rXhuedg4ULo2TPrNkuXQo8ekJQEH30Efi9OxVDtSrXpd0G/oMuQJEmS\nVIgYhpFULGzbto1wOHzE8UYALVq0oG/fvsc1VqdOnfjVr351aIxQKEQkEmH8+PF8//33+Vu4JEmS\nJEknq0kTeOMNmDMHfv3rrNvMmQOdOsEll8DXX8e2PkmSJEmSYswwjKRiYdSoUUfsCgPREMv9999/\nQuNl12/YsGEnNJ4kSZIkSQXunHNg/HiYPBkuvDDrnJg34wAAIABJREFUNgefu/rq6I4ykiRJkiQV\nQ4ZhJBULo0ePPuZauXLluO66605ovEsvvZQ6deoc+v3g7jCjRo064RolSZIkSYqJiy6CadPg3Xeh\nefOs27z7LrRsCb/9LaxZE9v6JEmSJEkqYIZhJBV5qampTJ069YgjkkKhEO3bt6dSpUonNGYoFOKK\nK644dFTSQYsWLWLt2rUnXbMkSZIkSQUqFIKuXWHuXPjPf+DUU49tk5kJ//d/0LQp/PGPsHVr7OuU\nJEmSJKkAGIaRVOTNmDGD/fv3H3P94osvPqlxs+v/2WefndS4kiRJkiTFTKlScPPNsHgxDB4M1asf\n2yY1FZ56Cho3hkGDYM+e2NcpSZIkSVI+MgwjqcibPXt2ltdbt259UuMmJSVleX3OnDknNa4kSZIk\nSTFXvjzcfz8sWwYPPwwVKhzbZseO6HNNm8KLL0JaWuzrlCRJkiQpHxiGkVTkpaSkZHm9RYsWJzVu\n06ZNKVu27DHX586de1LjSpIkSZIUmKpVYeBAWLoU7roLSpc+ts2GDdHnmjeHESOixylJkiRJklSE\nGIaRVOQtW7bsmGvx8fHUrVv3pMaNi4ujYcOGh34PhUJEIpEs55MkSZIkqUipXRuefx4WLoQePbJu\ns3Rp9LmkJPjoI4hEYlujJEmSJEknyDCMpCJv5cqVhEKhI67VqVMnX8auW7cukaM+7Fu1alW+jC1J\nkiRJUuCaNIE334Q5c6BTp6zbHHyuY0f4+uvY1idJkiRJ0gkwDCOpyNu0adOhnyORCKFQiNq1a+fL\n2FmNk5aWxvbt2/NlfEmSJEmSCoVzzoEJE2DSJLjggqzbTJoEF14I11wT3VFGkiRJkqRCyjCMpCIt\nLS2NPXv2HHO9atWq+TJ+duNs3bo1X8aXJEmSJKlQ6dABvvwS3n0XmjfPus0770DLltC3L6xZE9Py\nJEmSJEnKi9JBFyCpaDhw4ACLFy9mzZo17Nq1i71791KhQgUqV65M/fr1OeOMMyhTpkzM69q1a1eW\n1ytVqpQv41euXPm45pUkSZIkqcgLhaBrV7jySgiH4bHHYPXqI9tkZsLLL8OwYdCvHzz4IFSvHky9\nkiRJkiQdxTCMpGx9/fXXjBkzhgkTJjBv3jwyMjKybVuqVClatmzJFVdcwVVXXcUF2W2pnM8OHDiQ\n5fWyZcvmy/jZBXxSU1PzZXxJkiRJkgqt0qXh5puhRw94/nkYNAiO3il1/374xz/g3/+GBx6Ae+6B\nihWDqVeSJEmSpB95TJKUT5YsWcKIESPo378/F110EVWqVCEuLi7bR+PGjYMuOVsjRowgKSmJtm3b\n8uSTT5KSkkJmZiahUCjbR2ZmJikpKTzxxBO0bduWNm3aMHLkyAKvNS0tLcvrpUvnT9YvuzBMdvNK\nkiRJklTslC8Pf/gDLFsGDz8MFSoc22bHDnjoIWjaFIYOBf9uliRJkiQFyJ1hpBOwevVqZsyYwcyZ\nM5kxYwazZs1i+/btR7Q5GBIpShYuXMjtt9/OlClTsqw/Eolk2/fo9rNmzeKGG25g6NChDB06lGbN\nmhVIzXFxWWf6MjMz82X87MbJbl5JkiRJkoqtqlVh4ED43e+i//33vyE9/cg2GzbAnXfC4MHRNtdd\nB/4NLUmSJEmKMcMwUi42bdrEjBkzjgi/bN68+Yg22QVfjg6PHGyTU6gkKO+88w433XQTu3fvzrLO\nvIR7jm4PMHnyZJKSknj99dfp2rVrvted3XFI6Ud/GHeCshsnv45hkiRJkiSpyKlTJ3ps0u9/D48+\nCsOHH9tmyRK44Qb4+9/h8cfhssugiH1pSJIkSZJUdBmGKUTS09OZP38+mzZtYvv27WRkZFC1alUa\nNGjAGWecQalSpfJ9zpSUFDIyMjjzzDOJj4/P9/GLg8svv5yUlJRDv+c1+FKUPP/889xzzz1A9PVl\nFWrJy+s7vG0kEjn0Xu3evZtrrrmG5557jjvvvDNfay9fvnyW1/ft25cv4+/duzfL6/7/RZIkSZJU\n4jVtCm++CX/8Y/SIpA8/PLbN7Nnwq1/BxRfDE0/A+efHvk5JkiRJUoljGCZga9euZdiwYbz77ruk\npKSQmpqaZbuyZcvSrl07unbtSu/evalSpUq+zP/SSy/xwgsvEAqFOPXUUznzzDNp3rz5EY+EhIR8\nmauoOpHjgvLSrrB47bXXDgVh4NjdXQ7+npcjnw4PwBwdiIlEIvTr14/KlSvTu3fvfKu/cuXKlCpV\n6pjjjHbt2pUv42c3TrVq1fJlfEmSJEmSirxzz4UJE2DyZHjwQfj662PbTJoEF1wA11wTPT7pzDNj\nXqYkSZIkqeTwwN6ArFmzhptuuomGDRvy0EMPMX36dPbv338oQHD0IzU1lYkTJ9KvXz/q1atH//79\n2blzZ77UEolEyMzMZOXKlXz88cc888wz3HHHHVx00UXUrFmTmjVr0r59e26//Xb+9a9/8dFHH7Fq\n1ap8mbuoOBgIOfjvcbiDYY+jQzNFIQgzffp0brvttkO/5xSE+fnPf85zzz3H7Nmz2bp1K2lpaWzd\nupWZM2cyZMgQLrjggmNCMIePGQqFyMzMpG/fvsyaNStfX0f16tWP+D0SibBly5Z8GTu7cY6eU5Ik\nSZKkEq9DB/jyS3jnnezDLm+/Da1aQd++sGZNTMuTirsHPnmA7zZ9F3QZkiRJUqEQihSFFftiZujQ\nofzhD384FH45KLedN45ue8oppzBo0CBuvfXWE65lyZIlTJs2jfnz5zN37lxmz57Nxo0bj2mXVW0V\nKlTIt903CrNzzz2Xb7/9Nsd/n6z+b3T0cUMHrx1s37BhQ5YtW5a/xR6HXbt2cfbZZ7Ny5cpDNR10\nsPZQKESzZs148cUX6dChQ65jfvrpp9x1110sXbr00LWsdpZp1KgR33zzDZUqVcqX13LeeefxzTff\nHPH+1q5dm3Xr1p302BdeeCHTp08/YuyEhAQ2b958UuNu3ryZmjVrHnFt06ZN1KhR46TGlSRJkiSp\nUEhPh9dfh8ceyz70Ur489OsX3U3GL53oJO3Zs+enz5oeAsoGWk7sHAAG/fjzj6/7gnoXcOu5t3JD\nqxuoXK5ygMVJkiSpJAt6PdSdYWIoPT2dXr168bvf/Y59+/YdcYTM4QvtWT3gyB1IIpEImzdv5rbb\nbuMXv/jFCS/6N23alD59+vDEE0/wwQcfsH79elasWMFrr73G1VdfTZkyZY7Y7ePwx969e/PtvSns\njt7x5ejH4f82cXFxNGvWjPbt2x/TtzB55JFHWLFiBZB9EOayyy5j+vTpeQrCAFx66aXMnDmTiy++\n+Jgg0OG76yxfvpwBAwbkx8sAoGHDhsdc27RpU7bHjh2P5cuXH7PLTaNGjU56XEmSJEmSirXSpeGW\nW2DxYvjHPyCr44b3748+17gxPP44lKDPmqSC9PXar7nt/duoM7gOt7x3C1+s+qJI7GItSZIk5SfD\nMDGSlpbGNddcw4gRI44ITwDHhF6ykl0wJhKJ8OWXX5KUlMSXX36ZL7U2aNCA5ORkRo8ezaeffnpM\n2KOwhjsKUnbBl1AoRKNGjbjuuut48sknmThxItu2bWPhwoX5GvbIbwsWLOCFF1445t/y8N1sfv7z\nnzNmzBgqVz6+b49UqVKFsWPHcv755x9xXNLRczz77LMsWrTo5F7Ij84444xjrkUiEb7//vuTGnfn\nzp3H7ABzcLccSZIkSZKUB/Hx0L8/LFsGDz0EFSoc22bHjuhzTZvC0KGQlhb7OqViaE/aHl755hV+\n+covafFCC56a9hSb9mwKuixJkiQpJgzDxMhvf/tbxo0bB3BMCOZ4ZRWK2bBhAxdffDGvvPJK/hUN\nJCYmZjlvSXPwfT711FPp2rUrAwcO5MMPP2TLli0sXbqUESNG0L9/fzp06HDc4ZEgDBgwgPT0dCDr\nY4wSEhJ46623KF++/AmNX6FCBUaOHMnPfvazI8Y+/H8/6enp/OUvfzmh8Y927rnnZnn922+/Palx\n58yZc1zzSZIk6f+zd+/xOdaPH8ff1w7s5DCa2pzmfKq0OVT6KXJWESkJFZuovpFOKPrqhA74JpQY\nolJCB5FyiNQ3X4fNaYZhCZs2Ge3IbPfvj7sJu+857b6u3dvr+Xjcj+5d12f3531jd9zX+/58AABw\nomJF6Y03pH37pMcft68cc6GkJPu5xo2lzz+X8vLMzwm4sSr+VZye231st55f+byqTqqq+xbep+Xx\ny5Wbl2tiOgAAAMBclGFMMHv2bM2fP99pCebClUYudst3YSnm9OnTioyM1NSpU4ssu5+jT+uUMkOH\nDtXSpUt19OhRHTx4UIsXL9aoUaPUoUMHBTpa4reYS0hI0JIlSxyu8JO/kssbb7yhkJCQq5qnRo0a\neuWVVxwWqPJXh/niiy/0+++/X9U8ktSyZUuHx692taQNGzZc1nwAAAAAAOAigoOl6dOluDjpwQcd\nj9m3z36uRQvphx+kUvrhLOBy7X1qr7558Bt1a9BNnoanwzFn8s5oSdwS3fXpXQp9N1Rj1oxRQmqC\nyUkBAAAA16MM42LJyckaPnx4gZUxLiy3nLsNz8Vujr43/zFtNpuGDRumadOmFUl+b2/vInkcdzZg\nwAB17dpVQUFBVkcpElOnTlVurv1TH45WhalXr54GDRpUJHM98cQTql279nlznFuOyc3NLZI/q6Gh\noQoNDT37df7PwsqVK6/qcR19v5+fn2699darelwAAAAAAEq9unWlBQuk6GipUyfHY/LPtW8vbdpk\nbj7ADXl5eOmeBvfo6we/1qHhhzSh3QTVrVTX6fjDfx3W6+tfV+0ptdV+Xnst2LFA2WeyTUwMAAAA\nuA5lGBcbPXq00tLSJBUsHuSXW2rXrq0nnnhCCxYsUHR0tI4dO6ZTp07p9OnTOn78uHbs2KElS5Zo\n5MiRCg8Pd7hN0oWFmKFDhyoqKsqCZ4ziLC8vT5999lmhq8I888wzDs9fCU9PTw0dOrTQ1WE+/fTT\nIpmra9euBebZt2+ftm/ffkWPl5KSonXr1p3382oYhtq3by8vR0s5AwAAAACAyxcWJq1YIa1ZIzlb\niTX/3P33S3v2mJsPcFPB5YI14v9GaO+/9mrdo+vU/8b+8vXydTp+dcJqPbTkIYVMDNHQ74Zq29Gr\n234cAAAAsBplGBc6fPiw5syZc/Zi+rnFFQ8PD/Xp00cbNmxQfHy8pk6dqt69e+umm25SpUqV5O3t\nLS8vL1WsWFFNmjTRvffeq3Hjxmnz5s06cOCAnnvuOQUGBjpc2SN/jiFDhmjx4sWWPHcUT2vWrFFS\nUpIkx6vC+Pj4qG/fvkU65yOPPKIyZcqcN9e5pZXExEStXbv2qud56KGHHB6fMWPGFT3erFmzzq6g\ncynzAAAAAACAq9C2rbRhg7R4sdSggeMxixZJTZpIjz0mHTlibj7ATRmGodtr3q55PeYp6dkkvX/X\n+2oW3Mzp+NTsVL238T3dNOMmtZjZQh9s/kAns0+amBgAAAAoGpRhXGjGjBkFLqbbbDa1bNlSW7du\n1SeffKKWzj7xUojQ0FC99dZbOnz4sKZPn64qVaoUWBHDMAzl5uaqX79++vHHH6/qeaDkWLp0qcPj\n+aue3HXXXfL39y/SOStUqKAuXbo4XB3mYrkuR6tWrdS4ceMCqyTNnTtXhw4duqzHSktL07vvvltg\nhZwqVaqoe/fuV50VAAAAAAA4YBhSz57Szp3SrFlS1aoFx+TmSjNn2rdZGjFCOn7c/JyAm6rgU0FD\nmg/R5sc2a+vgrXqq5VMK9Al0On5z4mY9vuxxBU8M1iNfPaKfDv5U6Ht8AAAAQHFCGcaF5s6dW2BL\npIiICP3yyy9q0qTJVT++j4+PhgwZovj4eL3wwgsqU6bMef8YMQxDp06dUs+ePbVz586rng/ub9Wq\nVYVugXTXXXe5ZN7CHtdms2nlypVFMs/zzz9f4Fh2drYGDx58WY/z7LPPKjk5+ezX+WWhYcOGnV3l\nBgAAAAAAuIiXlxQRIcXHS2+/LQU6uFifnS299ZZUp440YYKUmWl+TsCNNb2uqaZ0maLEZxP1ac9P\ndWetO52OzTqTpXnb5umOuXeo4bSGevPnN3U0/aiJaQEAAIDLRxnGRbZv364jfy/Xmn8hPSIiQjNn\nzpSnp2eRzhUQEKAJEyZo+/btuuWWWwoUYk6ePKmuXbsqMTGxSOeFezl69Kji4uIkyeknONq3b++S\nuTt06FDgWP7PhSTFxsbqjz/+uOp5+vfvrxtvvLHA6jDff/+9nn766Ut6jIkTJ2rWrFkFSkPVqlXT\nsGHDrjojAAAAAAC4RL6+0nPPSQcOSC++aP/6QidOSKNG2VeKmTFDyskxPyfgxny8fNTnhj5a/fBq\n7R+6X6Nbj1bVcg5WZfrb3j/3auTqkao2qZru/exeLd2zVGfyzpiYGAAAALg0lGFc5Icffjh73zAM\nNWvWTB988IFL56xXr55+/vlnjRs3Tt7e3ufNf/jwYXXt2lVpaWkuzYDia+PGjQWOnVv4qF69uqo6\nWn64CNSsWVPBwcEF5jzXpk2brnoeDw8PzZgxQ15eXmeP5c83ZcoUde3aVfv373f4vUlJSerfv7+e\nf/758zLml3amTp0qX0dvugEAAAAAANeqWFF64w1p/37p8cftK8dcKClJGjJEatJEWrhQysszPyfg\n5moH1tZrd76mg08f1LKHlqlHwx7y8nDw8yYp15arr/d8rW6fdVONyTX04uoXte/4PpMTAwAAAM5R\nhnGR7du3S/pnBY7333+/yFeEccTDw0MjR47UTz/9pJCQkPNWANmxY4d69eql3Nxcl+dA8RMdHe3w\neH7ZIzw83KXzN2/evNA9hWNiYopknptvvlkTJkw4uzVZPsMwtGLFCtWvX1+tW7fW8OHD9eqrr+q5\n555Thw4dVLNmTX3yyScOizDDhw/XPffcUyT5AAAAAADAFQoOlqZPl+LipAcfdDwmPl7q3Vtq2VIq\nom2ZgdLG08NTXet11ZLeS3R4+GG93eFtNajcwOn4pPQkjf95vOq9V09tP2qrj7d/rKycLBMTAwAA\nAAVRhnGR2NhYSfYL8K1bt1azZs1Mnb9ly5aKiYnRHXfccfaCvs1m06pVqxQZGWlqFhQPW7duLfT8\njTfe6NL5L/b4F8t3OZ555hmNGDHi7J/7c7dNkqRffvlF7777rsaOHatJkyZp9erVys3NPXs+/3sM\nw1D//v31zjvvFFk2AAAAAABwlerWlRYskLZskTp1cjxmyxapY0epfXupCFajBUqrawOu1XOtnlPc\nk3H6ecDPGnDTAPl5+zkdv/a3ter/ZX8FTwzWk8ueVHSS4w/oAQAAAK5GGcZFjh49evZ+7969Lclw\nzTXXaOXKlRowYMB5hZh58+ZpzJgxlmSCdfbu3et0iyLJvs2WK9WtW9fpOZvNpvj4+CKdb/z48Zo+\nfbp8fHzOK8Xk/yxceDv3vCR5eXlp7Nixmjt3bpHmAgAAAAAARSQ8XFqxQlqzxr4SjCOrV9vP3X+/\ntGePufmAEsQwDN1W4zbN7j5bSc8m6cO7P1TLqk5+7iSdPHVS0zdPV7MPmyl8RrimbZym1KxUExMD\nAACgtKMM4yJ//fXX2fu33HKLZTm8vLwUFRWll19++bxCzLhx4zRt2jTLcsF8v/32W6HnCyurFAVn\nj59f0LlYvisxePBg7dy5Uz179pSnp6fD4oujgkzHjh21efNmSmMAAAAAALiDtm2lDRukxYulBk62\nclm0SGrSRHrsMenIEXPzASVM+bLlNajZIP0v8n/a8fgOPX3z06rkW8np+JijMfrXd/9SyKQQ9VvS\nTz8m/Kg8W56JiQEAAFAaUYZxkezs7LP3a9asaWESu7Fjx+rDDz+Uh4fH2TLAsGHDWPWilPjjjz/O\n/pnMX/nkQiEhIS7N4Ojxz82SkZGhY8eOFfm8tWvX1hdffKH9+/dr4sSJ6tatm+rVq6dy5crJy8tL\nAQEBCg0NVefOnfXGG28oNjZWK1ascPm2UQAAAAAAoAgZhtSzp7RzpzRzplS1asExubn2c3XrSiNG\nSKmsUgFcreurXK/JnScr8ZlEfd7rc3Ws01GGHK9OnX0mW5/s+ER3zrtT9d+rr3HrxykxLdHkxAAA\nACgtDJuzK+O4KhUqVFBaWpoMw1BOTo48PIpH7+jrr79Wnz59dOrUKdlsNnl6euqTTz7RAw884PR7\nzi3QSDp73zAM5ebmmhXd7axbt05t27Yt8Gsn2UsgoaGhOnDggClZYmJi1KxZs/Oy5OfJ/73Mzs6W\nt7e3yzJkZWXJ39+/0AzR0dFq2rSpyzIUJykpKapSpcp5x5KTkxUUFGRRIgAAAAAASpCsLGnqVGn8\neOell4oV7aWYoUMlPz9z86HIZWRkKCAgwP7Fi5LKWBrHPKcljbPfTU9Pl7+/v6VxJOngiYOas3WO\nZsfM1qG/DhU61sPwUNd6XRURFqG76t0lb0/XvT8JAAAAc1l9PbR4NDRKoODg4LP3z90yyWrdu3fX\nd999p3Llyp0ts/Tv31/ffPON1dHgQn/++WeBY/nFHEkqX768S4swkuTr63v2DYlz5z7X8ePHXZoB\nAAAAAACUEr6+0vPPSwcOSKNG2b++0IkT9nN160ozZkg5OebnhGucLmW3YqZmxZoa22asEoYlaEXf\nFbq/8f3y9nD83mOeLU/f7v1WPT7voeqTq2vEyhHa++dekxMDAACgJPKyOkBJVb9+fe3da/9Le1JS\nkipWrGhxon/ccccdWrdunbp06aI//vhDOTk56t27t7755ht16NDB6nhwAUdlmHOVL1/elBzly5dX\nRkaG0/MXywkAAAAAAHBZKlaUxo2TnnpKevVV+zZJF650nJQkDRkiTZwovf661KuXVExWecYVesfq\nAJAkTw9PdarbSZ3qdlJKRoo+3v6xZsXM0q6UXQ7H/5Hxh97671t6679vqXWN1ooIi1Cvxr3kX8b6\n1W4AAADgfvhXnYvceuutZ+//+uuvFiZxrGnTpvrll19Up04dGYahU6dOqUePHvrpp5+sjgYXOHHi\nhMPj+dsVlStXzpQcF5snlb26AQAAAACAKwQHS++/L8XFSb17Ox4TH28/17KltGqVufmAEi7IP0jD\nbx2unY/v1K8RvyoyLFIBZQKcjl//+3o9+vWjCp4YrCHfDtGmI5vO23odAAAAuBhWhnGRzp0766WX\nXpIkLVu2TAMHDrQ4UUG1atXSf//7X3Xp0kVbtmxRZmam7rnnHq1cuVItW7a0Oh6KUFZWVqHnzdpL\nOCAgQDabzek2SdnZ2abkAAAAAAAApVS9etJnn9m3UHrxRemHHwqO2bJF6tBBatdOmjBBat7c/Jy4\nbH5+fkpPT7c6hqX8/PysjnBRhmHolmq36JZqt2hy58laGLtQs6Jn6dfDjj9QmnY6TTO2zNCMLTN0\nQ5UbFBkeqb439FVlv8omJwcAAIC7oQzjImFhYWrQoIH27NmjpUuX6tChQ6pevbrVsQq45pprtHbt\nWvXo0UOrVq1SWlqaOnfurB9//FFNmza1Oh6KSE4he14bhiEvL3NeCi42z+nTxXCTYwAAAAAAUPI0\nayZ9/720Zo00cqS0aVPBMatXSy1aSPffb98+qX5983PikhmGYdoHvlA0AsoEaGDYQA0MG6hdKbs0\nO2a2Ptr2kY5lHnM4fkfyDg1bMUzPr3xePRv1VERYhO6sdac8DBbABwAAQEH8LdGFhg4dKknKzc3V\niBEjCh2bnZ2tl156SbVr15avr68aNGig8ePHK/fCPYxdwN/fX8uWLVPvv5eIPXHihDp06KDdu3e7\nfG6Y42IlE8owAAAAAACgVLrzTul//5MWLZIaNHA85osvpMaNpcGDpSNHzM0HlBKNgxrrnY7v6Mgz\nR7To/kXqUreLDDleXfp07ml9tvMzdZjfQXWm1NFr617ToZOHTE4MAACA4o4yjAsNHDhQoaGhstls\n+vzzz/XVV185HJeTk6OOHTtqwoQJ+u2333Tq1CnFx8dr9OjR6t69uyl7oXp7e2vBggVnCzzHjh1T\n+/bttX//fpfPDdfLy8sr9Lynp6cpOS42z8VyAgAAAAAAFDnDkO67T9q5U5o5U6pateCY3Fzpww+l\nunXtK8mkppqfEygFyniW0X2N79Pyvst18OmDerXNqwqtGOp0/G8nftPLa19Wzf/UVJdPumjxrsU6\nncsH7gAAAEAZxqXKli2ryZMnS5JsNpv69++v6OjoAuMmTZqkn3/+WZJ9Oc/8m81m03fffaf33nvP\ntMz/+c9/9MYbb0iSkpKSdOedd5o2N1znYiuynDlzxpQcF5vH29vblBwAAAAAAAAFeHlJkZFSfLz0\n1ltSYGDBMdnZ0ptvSrVr2/+bmWl+TqCUqF6husbcMUb7h+7Xyv4r9eD1D6qMZxmHY22yacW+Fer1\nRS9Vm1RNz/3wnOJS4kxODAAAgOKEMoyLde/eXZGRkZKkjIwMtWvXTqtWrTpvzPz58x1+b34hJioq\nyuU5zzVq1ChFRUXJ09NThw8fPpsD7qtMGcf/SMxnVhkmJyen0POUYQAAAAAAgOV8faXnn5cOHJBG\njbJ/faETJ+wrxNSrZ18x5iLveQC4ch6Gh9rXbq8F9y1Q4jOJerfzu7qhyg1Ox6dkpmjirxPVeHpj\ntYpqpdkxs5V+Ot3ExAAAACgOKMOYYNq0aWrdurUk6eTJk+ratauee+45ZWVlSZL27dsnw7Dvf2qz\n2QoUT+Lj480NLGnAgAFasmSJfHx8JOlsPrinwsowNptNp0+bs3ToxcowFyvtlHQZGRlXfAMAAAAA\nAEWsYkVp3Dhp3z5pyBDJ0fbPiYnS4MHS9ddLX3wh8YEywKUq+1XW0JuHatuQbdoYuVGDmw1WuTLl\nnI7/9fCvivgmQsETgxX5TaQ2HN7ABz8BAAAuk7tew6QMYwJvb28tW7ZMt912myQpNzdXkydPVs2a\nNfXSSy9d9Pv9/PxcHdGhu+++WytXrlTFihXfnz+EAAAgAElEQVQlUYhxZ/7+/g6P5/+epqeb88mI\ntLS0Qv8cBQQEmJKjuKpVq5YCAgKu6AYAAAAAAFwkJER6/30pLk564AHHY/butZ9r0UK6YFVoAEXP\nMAy1qNpCH9z9gZKeTdLc7nPVukZrp+PTT6crKiZKt0bdquvfv16Tf52sY5nHTEwMAADgvq70+mWt\nWrUszU0ZxiQBAQFatWqV+vfvf7Z5fuzYMU2YMEE5OTkOV4Sx2WwyDEO33367FZElSa1atdL69esV\nEhIiiUKMu6pUqVKh5//66y9TclxsnovlBAAAAAAAsEy9etLnn0ubN0sdOjges2WL/VyHDvb7AFzO\nv4y/HrnpEf004CftfnK3Xmj1gq71v9bp+F0pu/TMD88oZGKI7v/ifn2/73vl5uWamBgAAABmMGys\nCWi6RYsW6ZlnntHhw4clOS+Y2Gw2lSlTRv/9738VHh5uZsQCDh06pE6dOmn37t0yDONsUSc3l38k\nOLNu3Tq1bdv27K+XpPO2wwoNDdWBAwdMybJ+/XrdcccdTrP4+PgoMzPT5Tl8fHzObpV0bo78P0/r\n169Xq1atXJ6jOEhJSVGVKlXOO5aQkKCgoKArejxnq/8AAAAAAAAXWb1aGjVK2rTJ+Zj775def12q\nX9+8XACUk5ujZfHLFBUTpeXxy5Vnyyt0fPXy1TUwbKAG3DRANSvWNCklAACAe7jS7Y5SUlIKrA6T\nnJx8xddDLxdlGIucPn1as2fP1qxZsxQdHe1wjJ+fn+bOnatevXqZnM6x1NRU3XXXXdqwYYMkUYa5\niOJUhomLi1OTJk3Oy5KfJ7+IkpqaqvLly7ssQ2pqqipXrlxohri4ONUvJW8OOSrDmPniDwAAAAAA\nioDNJi1eLL30kn2rJEc8PaWICOnf/7ZvuQTAVEf+OqKPtn2k2TGztT91f6FjDRlqX7u9IsMj1b1B\nd5X1KmtSSgAAgJLH6uuhlGGKgcTERP3888+Ki4tTcnKyzpw5o7p166pfv34KDg62Ot55srKy9Oqr\nr+ro0aOSpDlz5licqPgqTmWYjIwMlStXrtAiyu7du1WvXj2XZdi9e7caN25caIb09HT5+vq6LENx\nYvWLPwAAAAAAKEJnzkhz5khjx0qJiY7H+PpKQ4dKI0ZIgYGmxgMg5dnytO63dYqKidKiXYt0KvdU\noeMr+1ZWvxv7KSIsQjdce4NJKQEAAEoOq6+HUoYBXKQ4lWEkKSgoSMePHz87f36e/CLK999/r/bt\n27ts/hUrVqhr165Ofz2uvfZaJSUluWz+4sbqF38AAAAAAOACWVnSe+9J48dLJ044HlOxojRypPTU\nU5Kfn7n5AEiSUrNS9emOTxUVE6WYozEXHd+yaktFhkWq9/W9Vb6s61bXBgAAKEmsvh7qYcosACxX\nq1YtFdZ9i4+Pd+n8+/btc3g8v4xz4X5xAAAAAAAAbsfXV3rhBenAAXvhxdEKuCdO2M/Vqyd9+KF9\nVRkApgr0DdSTLZ9U9OBobXlsi55o/oQqlK3gdPzGIxv12LePKXhisAZ8PUC//P5Loe+1AgAAwHqU\nYYBSokmTJoWe37Nnj0vnv9jjXywfAAAAAACA2wgMtK8Os2+fNHiw5OlZcExiov1ckybSokUSF9YB\nS4QHh2vaXdOU9GyS5veYrzahbZyOzczJ1Nytc/V/c/5PjaY10tu/vK0/0v8wLywAAAAuGWUYoJQI\nDw8v9HxMzMWXA70a0dHRhZ4PCwtz6fwAAAAAAACmCwmRPvhA2rVLeuABx2P27pXuv19q2VJavdrc\nfADO8vX2Vb8b++nHR35U/FPxGvV/oxQcEOx0/J4/9+iFVS+o2uRq6vl5Ty3bu0xn8ljpCQAAoLig\nDAOUEs7KMIZhyGazaevWrS5b2jM3N1fbtm2TYRhOx1CGAQAAAAAAJVb9+tLnn0ubNkkdOjges3mz\n1L691LGjtGWLufkAnKdupboa126cfh/+u7558Bt1b9BdnoaDFZ4knck7oy93f6m7F9yt0P+EavSa\n0TqQesDkxAAAALgQZRiglGjevLl8fHwk6Wwp5dzyS3p6ura46I2WjRs3KjMz87w5zy3G+Pr6qnnz\n5i6ZGwAAAAAAoNho3lz64Qdp1Sr7fUdWrrSf693bvmoMAMt4eXjpngb36KsHv9Kh4Yc0od0E1atU\nz+n4I2lH9Mb6N1RnSh21m9dOn+74VNlnsk1MDAAAgHyUYYBSomzZsrrtttsKXf1l5cqVLpl71apV\nDo/bbDYZhqHWrVvL29vbJXMDAAAAAAAUO+3aSRs3Sl98YV81xpGFC6XGjaUhQ6TERHPzASgguFyw\nRvzfCO351x6te3SdHm76sHy9fJ2OX5OwRn2X9FXIxBA9tfwpbTu6zcS0AAAAoAwDlCIdO3Z0es5m\ns2nJkiUumXfRokWFnu/gbHlgAAAAAACAksowpF69pNhY6cMPpZCQgmNyc6UZM6S6daVRo6TUVPNz\nAjiPYRi6vebt+ujej5T0bJLev+t9NQ9xvup1anaqpm6aqptm3KTmHzbXB5s/0MnskyYmBgAAKJ0o\nwwClyH333VfgWP7qLJIUHR2t+Pj4Ip0zNjZWO3bskGEYDrdIMgxDvXr1KtI5AQAAAAAA3IaXlzRo\nkBQfL735plSxYsExWVnShAlSnTrSW2/ZvwZguQo+FTSk+RBtGrRJWwdv1VMtn1KgT6DT8VuStujx\nZY8reGKwHv7yYa37bV2hK3kDAADgylGGAUqR2rVr65ZbbjmvAHOh9957r0jnfPfddx0ez8/QqlUr\n1ahRo0jnBAAAAAAAcDt+ftILL0gHDkgjR0q+DrZfSU2VRoywrxQzc6Z05oz5OQE41PS6pprSZYoS\nn03Upz0/Vbta7ZyOzTqTpfnb56vNR23UYGoDTfh5gpLSkkxMCwAAUPJRhikBKlWqdNFb5cqVrY6J\nYmLgwIEOj+ev3DJnzhz98ccfRTLXkSNH9PHHHzst3kjSgAEDimQuAAAAAACAEiEwUBo/Xtq3T3rs\nMcnTs+CYxET7uSZNpEWLJFaWAIoNHy8f9bmhj1Y9vEr7h+7X6NajVbVcVafj44/Ha9TqUao+ubq6\nf9Zd3+z5RmfyKLoBAABcLcPGGnxuz8PD47wtaBwxDEO5ubkmpsK6devUtm1bh9sD2Ww2hYaG6sCB\nA6bnOnXqlGrWrKmUlJSzWfKz5a/W8vDDD2vOnDlXPVffvn21YMECp78G1113nQ4ePChvb++rnsvd\npKSkqEqVKucdS05OVlBQkEWJAAAAAABAsbR3rzR6tPTFF87HNG9u30apnfOVKABYJzcvV9/v/15R\nMVGXVHYJDgjWI00f0cCwgapXuZ5JKQEAAIqW1ddDWRmmBDEMw+ENOFfZsmU1bNiwAuWp/CKMzWbT\nvHnz9PXXX1/VPAsXLixQhLlwruHDh5fKIowzGRkZDm8AAAAAAKAUq19fWrhQ2rRJat/e8ZjNm+3n\nOnaUtmwxNx+Ai/L08FTXel21+IHFOjz8sN7u8LYaXtPQ6fik9CRN+GWC6k+trzZz22j+tvnKzMk0\nMTEAAMDlKY7XOVkZpgTIXxnGmfziASvDmKu4rgwjSVlZWWrYsKEOHTrkNF/58uW1cuVKtWjR4rIf\nf8OGDerYsePZFzhnzz8uLk5ly5Ytiqfkdhw1IZ3hZRoAAAAAAJy1apU0cmThpZcHHpBef12qx4oS\nQHFls9n06+FfNSt6lj6P/fyiZZcKZSvooRseUmR4pMKDw01KCQAAcGkudZEOVobBFbHZbAVugCO+\nvr6aNGnS2a/PLankf/3XX3+pY8eOWrZs2WU99tdff63OnTsXKMLkyy9nTZo0qdQWYQAAAAAAAK5Y\n+/b2VWIWLnRedlm4UGrUSBoyREpMNDcfgEtiGIZaVW+l2d1nK+nZJH1494e6uerNTsefPHVS729+\nX80+bKawGWGaunGqUrNSTUwMAADgXlgZpgTIXxnG0W9l/nFWhrk669ev1969ey/re/bs2aN33nnH\n6cor11xzjcaPH3/ZWdq0aaM6depc9vc50q9fP3366acOyzDn6tOnj8aMGaMGDRo4fay4uDi98sor\nWrhwYYHHy3/M/D+L/fr100cffVQkz8FdOVoZJiEhwWET0t/f36xYAAAAAADAneTkSHPmSK+84rz0\n4usrDRsmjRghVaxobj4Al21n8k5FRUdp/vb5+jPrz0LHlvUsq/sa36eIsAi1CW0jD4PPPwMAAGs4\n2hIpJSVFtWrVOu+YmSvDUIYpASjDuN6AAQOKRXnDMAzNmTNHDz/8cJE8XkZGhpo3b649e/Y4LbCc\neywsLEytWrVSrVq1FBAQoLS0NCUkJOiXX37Rtm3bHH5P/rH8rxs3bqyNGzfKz8+vSJ6Du3JUhjHz\nxR8AAAAAAJQgmZnSe+9JEyZIJ044HhMYaN9e6amn7AUZAMXaqTOn9PWerxUVE6WV+1fKpsIv5dQO\nrK2BNw3Uozc9qqrlq5qUEgAAwDmrr4dShikBKMO4Xn4Z5lL3OstX2I/XlTxWUZdhJOn3339X69at\ndejQofNyOVol5lKeT2FlmtDQUK1fv15Vq/KPMatf/AEAAAAAQAmUmiq9+ab07rtSdrbjMVWrSmPH\nSo8+Knl5mZkOwBU6eOKg5mydozlb5+j3k78XOtbD8FCXul0UERahu+vfLW9Pb5NSAgAAnM/q66Gs\nmQdcJpvNdsk3Mx7natWoUUM//vij6tatW2BLp/yv82/5xxzdzs2afyz/eRqGofr162vNmjUUYQAA\nAAAAAFwlMNC+Osy+fdJjj0mengXHHDkiDRokXX+9tHixxGclgWKvZsWaGttmrA4MPaDv+32v+xvf\nL28PxyWXPFuelsUvU8+FPVVtcjW9sPIF7Tm2x+TEAAAA1qMMA1ymwgohrrq5Wu3atbVp0yZ16tSp\n0ALMpf66XPj9Xbp00caNGxUaGury5wIAAAAAAFDqVa0qzZghxcZK99/veMyePVKvXtLNN0tr1pib\nD8AV8fTwVMc6HbXw/oU68swRTeo4SU2Cmjgdn5yRrLf/+7YaTmuo1nNaa+7Wuco4nWFiYgAAAOtQ\nhgEuw+Ws5lLUN1erUKGCli9frrlz5+raa689b2WXi+VwNMYwDF177bWaN2+evv32W5UvX97lzwEA\nAAAAAADnaNBAWrhQ2rhRatfO8ZhNm+znOnWSoqPNzQfgigX5B2n4rcO14/Ed2hCxQZFhkQooE+B0\n/M+//6wBXw9Q8MRgDV46WBuPbDTlfWcAAACrUIYBLpEVK8KYvUKMJPXv318HDhzQtGnT1Lhx4wLz\nOyvqnDuuSZMmmj59uhISEtS3b19TcgMAAAAAAMCJFi2kVauklSulZs0cj/nhB/u5Bx+U4uPNzQfg\nihmGoZur3ayZ3WYq6dkkRXWLUqvqrZyOTzudpg+jP9TNs25W0w+a6t0N7+rPzD9NTAwAAGAOw0b1\n1+15eHic3ZrmQvnHDcNQbm6uBeng7vbt26cVK1YoOjpasbGxOnLkiNLS0pSZmSk/Pz+VK1dO1apV\nU+PGjRUeHq4uXbqoTp06Vscu9lJSUlSlSpXzjiUnJysoKMiiRAAAAAAAoFTIy5MWL5Zeesl56cXL\nS4qMlF5+WQoONjcfgCIRlxKnqJgozds2TymZKYWOLeNZRj0a9lBEWITa1W4nD4PPUQMAgKtn9fVQ\nyjAlAGUYwP1Y/eIPAAAAAABKuZwcac4caexYKSnJ8RhfX+npp6UXXpAqVjQ1HoCicTr3tL7d+61m\nRc/S9/u/V54tr9DxoRVDNeCmARpw0wBVr1DdpJQAAKAksvp6KGWYEoAyDOB+rH7xBwAAAAAAkCRl\nZkpTpkgTJkgnTzoeExgojRol/etf9oIMALd0+K/Dmrt1rqJiovTbid8KHWvIUKe6nRQRFqFuDbqp\njGcZc0ICAIASw+rroZRhSgDKMID7sfrFHwAAAAAA4DzHj0tvvmkvxmRnOx5Ttap9JZlHH7VvpQTA\nLeXZ8vRjwo+aFTNLS+KW6HTu6ULHX+N3jR6+8WFFhEeocVBjk1ICAAB3Z/X1UMowJQBlGMD9WP3i\nDwAAAAAA4NCRI9Irr0izZ0vO3k9s0EB64w2pZ0/JMMzNB6BIHc86rk+2f6JZMbO0/Y/tFx1/S7Vb\nFBkWqd7X91ZAmQATEgIAAHdl9fVQyjAlAGUYwP1Y/eIPAAAAAABQqD17pNGjpUWLnI9p2dK+vVLb\ntublAuASNptNW5K2aFb0LC3YuUB/nfqr0PH+3v568PoHFREWoVuq3SKDYhwAALiA1ddDKcOUAJRh\nAPdj9Ys/AAAAAADAJdm0SRo5UlqzxvmYjh2l8eOl8HDzcgFwmcycTC3atUizomdp/e/rLzq+0TWN\nFBkeqf439leQP+9vAgAAO6uvh1KGKQEowwDux+oXfwAAAAAAgMuycqW9FBMd7XxM797S669Ldeua\nlwuAS+05tkezY2bro20f6Y+MPwod6+3hrW4NuikyPFIdaneQp4enSSkBAEBxZPX1UMowJQBlGMD9\nWP3iDwAAAAAAcNny8uzbJo0eLcXHOx7j5SVFRkovvywFB5ubD4DL5OTmaHn8cs2KmaXl8cuVZ8sr\ndHz18tU14KYBGhA2QKEVQ80JCQAAihWrr4dShikBKMMA7sfqF38AAAAAAIArlpMjzZ4tvfKKlJTk\neIyvr/T009ILL0gVK5qbD4BLJaYl6qOtHykqJkr7U/cXOtaQofa12ysiLEL3NrxXZb3KmpQSAABY\nzerroZRhSgDKMID7sfrFHwAAAAAA4KplZkpTpkgTJkgnTzoeExgovfii9OST9oJMCWGz2XTw4EEl\nJycrKytL2dnZkiQfHx/5+vqqSpUqqlmzpgzDsDgp4Dp5tjz9dPAnzYqepcVxi5V9JrvQ8ZV8K6n/\njf0VERahG669waSUAADAKlZfD6UMUwJQhgHcj9Uv/gAAAAAAAEXm+HHpzTftxZhsJxfDq1WTxo6V\nHnnEvpWSG7HZbEpISNCWLVu0efNmbdmyRdHR0UpNTS30+wIDA9WsWbPzbrVq1aIggxLpRPYJfbrj\nU82KnqWYozEXHd8ipIUiwyP14PUPqnzZ8iYkBAAAZrP6eihlmBKAMgzgfhy9+CckJDh88ff39zcr\nFgAAAAAAwJU7fFh69VX7FkrO3ots2FB64w2pRw+pmJdCjhw5opkzZ2rmzJlKTEwscL6MpGBJvpJ8\n/j6WLSlLUpKk0w4eMyQkRIMGDdJjjz2mkJAQFyUHrBWTFKOomCh9vP1jnTzlZNWov/l5++mBJg8o\nIixCt1W/za3KYjabTZmZmVbHsJSfn59b/Z4BAFwnIyOjwLGUlBTVqlXrvGOUYXBZKMMA7sdRGcYZ\nXqYBAAAAAIBb2b1bGj1aWrzY+ZiWLe3bK7Vta16uS2Cz2fTjjz9q+vTp+uqrr86+p1pG0o2Smp1z\nu/7v446clrRT0pa/b5sl7dA/BRlPT0/16NFDTzzxhNq0acPFZJRIWTlZWhK3RLNiZmntb2svOr5B\n5QaKCIvQw00f1rUB17o+4FXKyMhQQECA1TEslZ6ezoc5AQCSdMl/n6UMg8tCGQZwP5RhAAAAAABA\nibdpkzRypLRmjfMxnTpJ48dLYWHm5XLAZrNpwYIFeu2117R79+6zx2+X9LikHpLKXuUcpyR9KWm6\npPXnHG/YsKHGjBmjPn36UIpBibXv+D7NiZmjOVvnKCk9qdCxXh5eurv+3YoMi1Snup3k5VE8t1aj\nDEMZBgDwD8owcAnKMID7YZskAAAAAABQKths0qpV9lJMdLTzcQ8+KL32mlS3rnnZ/paUlKTBgwdr\n6dKlkqQASQ/LXoK53kVz7pD0vqT5ktL/PtatWzd98MEHCg4OdtGsgPXO5J3Rin0rNCt6lr7d+61y\nbYVftwgpF6IBNw3QwLCBqh1Y26SUl+a8Msxzcr5UVElzWtI79ruUYQAA+dgmCS5BGQZwP47KMGa+\n+AMAAAAAAJgqL09atEh66SVp3z7HY7y8pEGDpDFjJBMKITabTR9//LGGDh2qEydOyFvSy5KGSSrn\n8tnt0iS9K+lVSTmSAgMDNWXKFPXt25dVYlDiHU0/qnnb5mlW9CzFH4+/6Pi2oW0VGR6pHg17yNfb\n14SEhTuvDPOiSlcZZpz9LmUYAEBhrL4eShmmBKAMA7gfq1/8AQAAAAAALJGTI0VFSa+8Ih096niM\nn5/09NPSCy9IFSq4JMaFq8E0kzRXrlsJ5mJ2SnpU0pa/v2aVGJQmNptNP//+s6JiorQwdqGyzmQV\nOr6iT0X1vaGvIsMjddN1N5mUsiDKMJRhAACFs/p6KGWYEoAyDOB+rH7xBwAAAAAAsFRGhjRlivTm\nm9LJk47HVKokjRolPfmk5Ft0q0DExsaqY8eOSkxMlLekf0t6QZJ3kc1wZXIkval/VokJCQnRypUr\n1bhxY2uDASY6mX1Sn+38TLNiZmlz4uaLjg8PDldEWIQeuuEhVfSpaELCf1CGoQwDACic1ddDPUyZ\nBQAAAAAAAACAfP7+9qLLgQPS889LPj4Fxxw/bj9Xv759NZkzZ6562k2bNun2229XYmKiGsm+EstL\nsr4II9kzjJY9UyNJiYmJuv3227Vp0yZrgwEmquBTQYObD9amQZu0bcg2DW05VIE+gU7HRydF68nl\nTyp4YrD6f9lf635b5/CDwwAAoPShDAMAAAAAAAAAsEalStJbb0nx8VJkpOTh4C3rw4ft5268Ufry\nS+kKL3Rv2rRJ7dq10/Hjx9VC0npJN1xVeNe4QfZsLST9+eefateuHYUYlEo3Xnuj3u3yrhKfTdSC\n+xaofe32Tsdmn8nWx9s/VpuP2qj+1Poav368EtMSTUwLAACKG8owAAAAAAAAAABrVasmzZwpxcZK\n993neExcnNSzp3TrrdLatZf18LGxsercubPS0tJ0h6TVkipfbWYXqix7xtslpaWlqXPnztq1a5fF\nqQBr+Hj56MHrH9TK/it1YOgBjbl9jKqWq+p0/L7j+/TimhdVY3INdVvQTd/s+UZn8q5+ZSkAAOBe\nKMMAAAAAAAAAAIqHhg2lRYuk//1PatvW8Zj8c507SzExF33IpKQkdezYUcePH1dLSUsllSvS0K5R\nTtK3sq8Qc/z4cXXo0EFJSUkWpwKsVSuwll5t+6oOPn1Qyx9arvsa3ScvDy+HY3NtuVq6d6m6f9Zd\n1SdX18hVIxX/Z7zJiQEAgFUowwAAAAAAAAAAipeWLaXVq6Xvv5fCwhyP+f57KTxc6tNH2rfP4RCb\nzabBgwcrMTFRjSQtl3sUYfKVk/SdpEaSEhMTNWTIENmucJsooCTx9PBUl3pdtOiBRTryzBG90+Ed\nNbymodPxR9OP6s1f3lT9qfV1x9w7NG/bPGXmZJqYGAAAmI0yDAAAAAAAAACg+DEMqWNHafNm6bPP\npLp1HY/77DOpUSPpiSeko0fPO/XJJ59o6dKl8pb0uYr31kjOVJY9u7ekb775Rp988onFiYDipYp/\nFT3b6lntemKXfhn4iwbeNFD+3v5Ox/908Cc98tUjCp4YrMe/fVxbErdQMgMAoAQybPwf3u15eHjI\nMAyHf1nLP24YhnJzcy1IB8CRlJQUValS5bxjycnJCgoKsigRAAAAAABAMZeTI0VFSa+8UqD0cpaf\nnzR8uPT880rKzFSTJk2Umpqq1yW9ZGrYove6pDGSAgMDFRsbq+DgYKsjAcVW2qk0fR77uaJiorTh\n8IaLjm96bVNFhEWo7419Vcm30iXNkZGRoYCAAPsXL0oqcxWB3clpSePsd9PT0+Xv77x4BAAo3ay+\nHkoZpgSgDAO4H6tf/AEAAAAAANxWRoY0ZYr05pvSyZMOh9gCA9U9OFhLd+1SM0kbJHmZGrLo5Ui6\nRVK0pG7duumrr76SYRgWpwKKv9jkWEXFRGnetnn6M+vPQseW9Syrno16KjI8Um1C28jDcL7BAmUY\nyjAAgMJZfT2UbZIAAAAAAAAAAO7D318aNUrav196/nmpbNkCQxakpmrprl0qI2mu3L8II9m3SZqr\nf7ZLWrBggbWBADfRpEoTTeo0SUeeOaKFvRaqU51OMuS4SHYq95QW7FygdvPaqe6Uunr9p9d1+K/D\nJicGAABFgTIMAAAAAAAAAMD9VK4svfWWtG+fFBEhedjf7rZJeu3vIWMkXW9VPhe4QfbnJEmvv/66\nw9XCAThW1qus7m9yv1b0W6GEYQkae8dY1ahQw+n4hBMJGvPjGNX8T03d9eldWhK3RDm5OSYmBgAA\nV4MyDAAAAAAAAADAfVWrJs2aJcXGSj17aq2k3ZICJA2zNplLDJP9ucXFxWndunVWxwHcUs2KNfXv\nNv/WgaEH9H2/7/VAkwfk7eHtcGyeLU/L45frvoX3qdrkanr+h+e1+9hukxMDAIDLRRkGAAAAAAAA\nAOD+GjaUFi/WtLZtJUkPSypnbSKXKC+p/9/3p02bZmUUwO15eniqY52O+rzX50p8NlGTO01Wk6Am\nTscnZyTrnV/fUaNpjdR+XnsTkwIAgMtFGQYAAAAAAAAAUCIcOXJEX/30kyTpcYuzuFL+c/vyyy+V\nmJhoaRagpLjG7xo9fcvT2vH4Dm2I2KBB4YMUUCbA6fgNhzeYmA4AAFwuL6sDDBw40OoIAAAAAAAA\nAIASYObMmcrNzVVrSddbHcaFbpD0f5J+zs3VzJkz9e9//9vqSECJYRiGbq52s26udrMmdZqkL2K/\nUFRMlH459IvV0QAAwGUwbDabzcoAHh4eMgzDyghur7DfQsMwZLPZZBiGcnNzTUwFoDApKSmqUqXK\neceSk5MVFBRkUSIAAAAAAAD3ZrPZVK1aNSUmJmqBpAetDuRiCyQ9JKlq1ao6dOgQ77MDLhaXEqfZ\nMbP10baPlJKZIp2WNO7vky9KKmNhODOd87zT09Pl7+9vaRwAQPFl9fXQYrNNks1m43aFNwAAAAAA\nAAAo7RISEpSYmKgyknpYHcYEPSV5y9ulWvMAACAASURBVL411G+//WZxGqDkaxTUSG93fFuHnzms\nxQ8sVsc6Ha2OBAAACmH5Nkn5aK1fOQoxAAAAAAAAAEq7LVu2SJJulFTW2iimKCv7c90i+3OvVauW\nxYmA0qGMZxn1bNRTnWp0UkBEgNVxAACAE8WmDEOhA0Bpl5GRIT8/vwLHWWYSAAAAAADg4vLLMM0s\nzmGmZvqnDNOrVy+r4wAAAKCUysjIuKRjZio2ZRgAKO2cfXqHsiAAAAAAAMDFbd68WVLpK8NI/zx3\nAAAAwAoBAcVvtTQPqwMAAAAAAAAAAHA1bDaboqOjJZXOMsyWLVv4QBUAAABwDlaGAYBiIiEhQUFB\nQVbHAAAAAAAAcDsHDx5Uamqqyki63uowJrpekrek1NRUHTx4UKGhoRYnAgAAQGmUnp5e4FhKSorT\nnTHMQBkGAIoJf39/+fv7Wx0DAAAAAADA7SQnJ0uSgiWVsTaKqcrK/px/l/1iA2UYAAAAWMHRNc7M\nzEwLkvyDbZIAAAAAAAAAAG4tKytLkuRrcQ4r5D/n/F8DAAAAAMVoZRjDMKyOAAAAAAAAAABwQ9nZ\n2ZIkH4tzWCH/OVOGAQAAAP5RbMowNpvN6ggAAAAAAAAAAAAAAABwc5aXYW6//XZWhQEAAAAAAAAA\nXDEfH/v6KNkW57BC/nP29S2Nm0QBAAAAjllehlm7dq3VEQAAAAAAAAAAbiy/CFIaNwrKf86UYQAA\nAIB/eFgdAAAAAAAAAACAq1GlShVJUpKk09ZGMdUp2Z+zJAUFBVkZBQAAAChWKMMAAAAAAAAAANxa\nzZo1FRgYqNOSdlodxkQ7JeVICgwMVM2aNa2OAwAAABQblGEAAAAAAAAAAG7NMAyFh4dLkrZYnMVM\n+c+1WbNmMgzD0iwAAABAcUIZBgAAAAAAAADg9po3by6pdJZh8p87AAAAADvKMAAAAAAAAAAAt9es\nWTNJpbMMk//cAQAAANhRhgEAAAAAAAAAuL38Qsh2SaesjWKKU7I/V4kyDAAAAHAhyjAAAAAAAAAA\nALdXq1YthYSE6LSkL60OY4IlknIkVa1aVaGhoRanAQAAAIoXyjAAAAAAAAAAALdnGIYGDRokSZpu\ncRYz5D/HQYMGyTAMS7MAAAAAxQ1lGAAAAAAAAABAiTBo0CB5enpqvaQdVodxoR2Sfpbk6el5tgAE\nAAAA4B+UYQAAAAAAAAAAJULVqlV17733SpI+sDiLK73/93979OihkJAQS7MAAAAAxRFlGAAAAAAA\nAABAifHkk09KkuZJSrM2ikv8JWn+3/fznysAWMFms1kdAQAApyjDAAAAAAAAAABKjDZt2qhhw4ZK\nl/Su1WFc4F1J6ZIaNWqkO+64w+o4AEqx22bfpo+3f6zTuaetjgIAQAGUYQAAAAAAAAAAJYZhGBoz\nZowk6VVJO62NU6R2SHrt7/ujR4+WYRhWxgFQym3/Y7v6f9lfof8J1bj14/Rn5p9WRwIA4CzKMAAA\nAAAAAACAEqVPnz665557lCPpUUk5FucpCuc+l253360+ffpYGwgA/paUnqSX1ryk6pOra8i3Q7T7\n2G6rIwEAQBkGAAAAAAAAAFCyGIahGTNmKDAwUFskvWV1oCLwpqRoSYGSPkhIkBEba3EiADhf1pks\nzdgyQ42mNdJdn96lVQdWyWazWR0LAFBKUYYBAAAAAAAAAJQ4wcHBmjJliiTpFdm3GHJX22Xf8kmS\npkgKjo2VmjWTJk6U8vIsTAagNGtVvZXTc8vjl6vD/A5q+kFTzYmZo+wz2SYmAwCAMgwAAAAAAAAA\noITq27fv2e2Sekv60+pAV+BPSQ/q7+2RJPXNP3H6tPTcc9Kdd0oHD1oVD0Ap9kP/H7R50Gb1vaGv\nvDy8HI7ZkbxDA78ZqJr/qalX1r6i5Ixkk1MCAEoryjAAAAAAAAAAgBIpf7ukkJAQxUnqIinN6lCX\nIU32zHGSQoKC9EH9+jIuHLRunXTjjdJHH0lsRwLAZM1Cmunjnh/rt2G/aeRtIxXoE+hwXHJGssau\nG6sak2so4usI7UzeaXJSAEBpQxkGAIqJjIwMhzcAAAAAAABcueDgYP3www+qVKmSNkm6R+5RiEmT\ndLekTZIqV66slWvXKnjbNunZZyXjgkrMX39Jjz4q9eolHTtmflgApV7V8lU1vv14HRp+SNO7Tle9\nSvUcjjuVe0qzt87WDe/foI7zO+q7+O+UZ2O7NwBwd8XxOqdhs1EVBwCzpaSkqEqVKpc0lpdpAAAA\nAACAq7dp0ya1a9dOaWlpaiHpO0mVrQ7lxDHZV4TZLKlcuXJavXq1WrRo8c+AtWulRx6Rfv+94Ddf\ne60UFSXddZc5YYFSKiMjQwEBAfYvXpRUxtI45jktaZz9bnp6uvz9/R0Oy7PlaXn8ck3eMFlrEtYU\n+pANr2mop29+Wv2b9peft18RBwYAmMG4sKztRHJysoKCglycxo6VYQAAAAAAAAAAJV6LFi20evXq\nsyvEtJa0w+pQDmyXdLvsRZjKlStrzZo15xdhJKlNG2n7dnsh5kJ//CHdfbf02GNSerrrAwOAAx6G\nh+6uf7dWP7xaWwdv1SNNH1EZT8eNod3HdmvIsiGqMbmGRq8ZraS0JJPTAgBKIlaGAQALOFoZJiEh\nwWET0lmzHgAAAAAAAJdv165d6tChgxITE+Ut6WVJIyR5W5wrR9IESa/9fT8kJEQrV65U48aNC//G\nL7+0F18cbY9Uu7Y0f77UqlXRBwZKOVaGKXxlGEeOph/V9E3T9f7m93Us0/mWbt4e3upzQx8Nv2W4\nbrrupqsMDAAwg6MtkVJSUlSrVq3zjrEyDACUQv7+/g5vAAAAAAAAKDqNGzfW5s2b1a1bN+VIGiPp\nFkk7Lcy04+8ML8tehOnWrZs2b9588SKMJPXoIe3Y4XhbpAMHpNatpRdflE6fLtrQAHCZrgu4Tq+2\nfVW/P/27Zt4zU42DHL/G5eTlaN62eQqbEaa2H7XVN3u+UZ4tz+S0AIDLURyvc1KGAQAAAAAAAACU\nKsHBwfrqq680f/58BQYGKlpSuOyrsvxlYo6//p6zmaRoSYGBgfr444/11VdfKTg4+NIf6LrrpKVL\npQ8/lC686JCXJ40fL918sxQbW3ThAeAK+Xr7KjI8Ujsf36kVfVeoU51OTseu/W2tun/WXQ2mNtC0\njdOUfprt3wAAl4YyDAAAAAAAAACg1DEMQ/369VNsbKzuuece5ci+MkvV/2fvzqOtLuv2Ad+bI7No\naGDghKblAKjMaqKFmpY5ZKWGOGTkPKCVDVpvgw1WoqY4oGair1mZpL7ZrzLnROGgggOaiSOoKEjM\n4/79saWEcw4Kwv6ew7mutfbitJ+Hs+/tWn6Xaz13nyfJSalMa1lbJiY58e3Peuc0mCeeeCKDBw9O\nqVRa9V9aKiVDhyaPPVb/tUiPPpr07p1ccEGlIANQsFKplE9u88n8+cg/54mTnsjQXkPTuqZ1vXuf\nnf5sTrnjlGw+fPOc/dez89LMl6qcFoCmRhkGAAAAAIBmq0uXLvnjH/+YG264Idtvv31mJ7ksSc8k\nA5PcmGTBGvicBW//rj3e/t2XJ5mdZPvtt88NN9yw6tNgGvLhDyf33pv86EdJy5YrhFiQnHVWMmhQ\n8sIL7/+zANaQHTrtkCs/c2VeGvZSvr/X97NJ+03q3ffW/Ldy/j/Oz1YXbZUjbj4iD7/ycJWTAtBU\nlMrlcrnoEADNzbRp09K5c+fl3nv99dfTqVOnghIBAAAAUC6Xc/fdd2fEiBG55ZZbsmTJkiRJqyQ9\nUrnOaNmrx9vv12dhKtNfat/xmpDKBJgkWW+99XLIIYfkpJNOyp577rl6k2Dei0ceSY48Mnnyybpr\nG2yQ/PKXyZAhlakywCqZM2dO1l9//cr/+FYafiCsaxYm+VHlx9mzZ6f9ilezrSELFi/Ibx7/TS4Y\nc0EmvDZhpXt333z3DBswLAdvd3BqWtSslTwArLqiz0OVYQAKUPTDHwAAAICVmzJlSkaOHJmRI0fm\nlVdeqbPeMkmXJG2TtHn7vflJ5iWZmv8WX95p0003zdChQzN06NB07dp1LSVfwfz5ybe/nQwfntR3\nHPDZzyZXXJF88IPVyQPrCGWYtVuGWaZcLueu5+/K8DHDc/szt690b7cPdMvp/U/Pl3b5UjZovcFa\nzQXAuyv6PFQZBqAART/8AQAAAHhvyuVynn/++dTW1mbcuHGpra1NbW1tZsyYsdK/17Fjx/Tp0ye9\ne/f+z6tbt25rbwrMu7nrruToo5OXXqq7tskmyTXXJJ/6VPVzQRO1XBnmq2leZZifV36sRhnmnZ55\n85lcNOaiXPvYtZm7aG6D+zq06pAv9/pyTut/Wrp9oFvV8gGwvKLPQ5VhAApQ9MMfAAAAgNVXLpfz\nwgsvZNq0aZk3b17mzZuXJGnbtm3atm2bTp06Zcsttyyu+NKQmTOT005Lrruu/vXjj09+/vNk2QE/\n0KDlyjDNVLXLMMtMnzc9V9ZemUseviSvzKo7uWuZFqUWOWS7Q3Lmrmdm1812bXzPZIB1XNHnocow\nAAUo+uEPAAAAQDN2882V4subb9Zd+/CHk1Gjkl13rX4uaEKUYYorwyyzaMmi/O7J3+WCBy9I7dTa\nle7tt2m/DBswLIduf2ha1rSsUkKA5q3o81BlGIACFP3wBwAAAKCZe/XV5Ljjkj/9qe5aixbJN76R\nfPe7SavmcvcLrJpyuZy5cxu+qqc5aNeuXaOYtlIul3P/i/dn+JjhGT1pdMpp+Ohzsw02y6n9Ts3Q\nXkPTsW3HKqYEaH6KPg9VhgEoQNEPfwAAAABIuZyMHJmceWYyZ07d9V12Sa6/Ptlhh+pnA1gNz814\nLhc/dHGufuTqzF44u8F97Vu2z7E7H5vTB5yebTbapooJAZqPos9DlWEAClD0wx8AAAAA/uPZZ5Oj\njkoefLDuWuvWyU9+kpx2WmViDEATMHP+zFw1/qpc/PDFeXHmiw3uK6WUAz96YIYNGJaBWw5sFJNu\nANYVRZ+H+i9XAAAAAABozrbZJrn33uS885L11lt+bcGCZNiwZJ99khcbPlAGaEw2bLNhztrtrPzr\ntH/lt5/7bXbdbNd695VTzh+f/mP2+vVe6X1l74x6bFQWLllY5bQArA0mwwAUoOgmJAAAAADUa/z4\nZMiQ5Mkn665tsEFy6aXJ4MGJ6QlAEzPm5TEZPmZ4bn7y5iwpL2lwX5f1u+SUfqfk+N7HZ+N2G1cx\nIcC6pejzUJNhAAAAAACAil69ktrayjSYFf3735WizBe+kLz5ZvWzAbwPAzYbkJs+d1OeO/25fHXX\nr2bD1hvWu2/q7Kn59t+/nc2Hb54Tbj8hk96YVOWkAKwJJsMAFKDoJiQAAAAAvKu//z055pjkpZfq\nrn3oQ8k11yT771/1WABrwqwFs/KrR3+Vix66KM/NeG6le/ffZv8MGzAse2+9d0omYwG8J0Wfh5oM\nAwAAAAAA1PWJTyQTJlSmwazo1VeTT30qOfHEZM6c6mcDeJ86tO6Q0/qflmdOeSa3HHZL9thijwb3\n3vHsHdn3+n2z0+U75ZpHrsn8xfOrmBSA1WEyDEABim5CAgAAAMAq+f3vk+OPT6ZPr7u2zTbJqFHJ\ngAHVzwWwBtVOqc3wMcNz0xM3ZfHSxQ3u69y+c07qc1JO7HtiOrfv3OA+gOas6PNQZRiAAhT98AcA\nAACAVTZ1anLccckdd9Rda9Ei+da3ku98J2nZsvrZANagV/79Si4de2kuH3d5Zsyf0eC+1jWtM7jH\n4AzbdVi6d+5exYQAjV/R56HKMAAFKPrhDwAAAACrpVxOrrwyOfPMZO7cuuu9elWmxOywQ/WzAaxh\ncxbOyXWPXZcLH7owz7z5zEr37r313jlzwJn55DafTItSiyolBGi8ij4P9SQGAAAAAADem1Kpcl3S\no4/Wfy3S+PGVQsyFFyZLl1Y/H8Aa1L5V+5zY98Q8dfJTuf2I2zNoq0EN7v3bc3/Lp/73U9lxxI65\nYtwVmbuonsIgAFVjMgxAAYpuQgIAAADA+7Z4cfLTnyb/8z+Vn1f0iU8k116bbL55tZMBrDWPvfpY\nLnzowvzvxP/NwiULG9y3cduNc3zv43Nyv5PTtUPXKiYEaByKPg9VhgEoQNEPfwAAAABYY2prkyFD\nkqeeqru24YbJJZckgwdXpsoArCNenf1qLht7WUaMG5E35r7R4L6WLVrm8O6HZ9iAYdmlyy5VTAhQ\nrKLPQ12TBAAAAAAArL7evSuFmDPOqLs2c2alKHPYYcmbb1Y/G8Ba8qH1P5Tvffx7efGMFzPyMyOz\nQ6cd6t23aOmijJowKr2u7JWP//rjufXpW7O07Bo5gLXNZBiAAhTdhAQAAACAteLOO5Njjklefrnu\nWpcuyTXXJPvtV/VYAGtbuVzOX5/7a4aPGZ4/P/vnle7dZqNtcnr/03PMzsdk/VbrVykhQHUVfR5q\nMgwAAAAAALBmDBqUTJyYHHlk3bWpU5P9909OOimZM6f62QDWolKplH0/vG/uGHxHnjjpiQztNTRt\n1mtT795npz+bU+84NZsP3zxf/+vX89LMl6qcFmDdZzIMQAGKbkICAAAAwFr3u98lJ5yQTJ9ed23b\nbZNRo5L+/aufC6BKps2Zlitqr8ilYy/Nq7NfbXBfTakmn9/x8xk2YFj6bdqvigkB1p6iz0NNhgEA\nAAAAANa8z3++MiWmvmuR/vnPZPfdk+98J1m0qPrZAKqgU/tOOWfgOXn+9Odz7UHXZqdNdqp335Ly\nkvzm8d+k/1X9s/s1u+f3T/4+i5curnJagHWLyTAABaivCTl58uR6m5Dt27evViwAAAAAWPPK5eSK\nK5Kzzkrmzq273rt3ZUrM9ttXPxtAFZXL5dz9/N25YMwFuf2Z21e6t9sHuuW0fqfluF7HZYPWG1Qp\nIcDqmVPPFZjTpk3LVltttdx71ZwMowwDUID6yjAN8ZgGAAAAYJ3wz38mQ4YkDz1Ud61Nm+SnP01O\nOSVpYag9sO575s1nctGYi3LtY9dm7qJ6ioJv69CqQ77c68s5rf9p6faBbtULCLAKSqXSe9qnDAOw\njlOGAQAAAKBZWrw4+clPku99r/LzigYNSn71q2TzzaufDaAA0+dNz8jakfnlw7/MK7NeaXBfi1KL\nHLLdIRk2YFh223y393zwDFANyjAAJHFNEgAAAADNXG1tcuSRyaRJddc23DAZMSI54ojEYS/QTCxa\nsii/e/J3GT5meMZNGbfSvX279s2Zu56ZQ7c/NC1rWlYpIUDDXJMEQJL6yzDVfPgDAAAAQOHmzUu+\n8Y3k4ovrX//CF5LLLks22qi6uQAKVC6X88BLD2T4mOEZPWl0lpaXNrh3sw02y6n9Ts3QXkPTsW3H\nKqYEeHdFn4cqwwAUoOiHPwAAAAA0Gn/7W3LsscnLL9dd69Klcm3SJz9Z/VwABXtuxnO5+KGLc/Uj\nV2f2wtkN7mvfsn2O2fmYnN7/9Gy78bZVTAjQsKLPQ1tU5VMAAAAAAADqs/feycSJyeDBddemTk32\n2y85+eSknvH7AOuyrTtunQv3uzAvD3s5v9j3F9liwy3q3Tdn0ZxcOvbSfPSSj+ag3xyUu5+/O+Yh\nAM2dyTAABSi6CQkAAAAAjdJvf5uccEIyY0bdtW23TUaNSvr3r34ugEZg8dLFueWpWzJ8zPA8+PKD\nK927y4d2ybABw3JY98PSqqZVlRIC/FfR56EmwwAAAAAAAI3DF76QPP54/dci/fOfye67J9/9brJo\nUfWzARRsvRbr5fM7fj7/OO4fGXPcmBy242GpKdXUu/eRVx/JUaOPSrcLu+W8e8/LG3PfqHJagGKZ\nDANQgKKbkAAAAADQqJXLyWWXJV/9ajJvXt31Pn0qU2K226762QAakRdnvphfPvTLjBw/MjMXzGxw\nX5v12uSonkfljAFnZPtO21cxIdBcFX0eqgwDUICiH/4AAAAA0CQ880wyZEjy8MN119q0Sc4/Pzn5\n5KSFQfhA8zZrwaxc++i1ueihi/KvGf9a6d79t9k/wwYMy95b751SqVSlhEBzU/R5qP86BAAAAAAA\nGqePfCR54IHk+99Pala4CmT+/OS00ypXKr38cjH5ABqJDq075NT+p+bpU57O6MNGZ+CWAxvce8ez\nd2Tf6/dNz8t75urxV2f+4vlVTApQHSbDABSg6CYkAAAAADQ548ZVpsRMmlR37QMfSEaMSI44ovq5\nABqp8VPHZ/iY4fnN47/J4qWLG9zXqV2nnNT3pJzY58Rssv4mVUwIrMuKPg81GQYAAAAAAGj8+vRJ\nxo+vTINZ0VtvJV/8YnL44cn06dXPBtAI9erSK6MOGZXnT38+3/zYN7NR243q3Tdt7rR8757vZYsL\nt8hxfzwuE1+bWOWkAGueyTAABSi6CQkAAAAATdpf/5oce2zyyit117p2Ta65pnJ9EgD/MXfR3Fz3\n2HW5cMyFefrNp1e6d++t986wAcOy3zb7pUXJfAVg1RV9HurJBQAAAAAANC377JNMnFiZBrOiKVOS\n/fZLTjklmTu3+tkAGql2LdvlhD4n5MmTn8ztR9yeQVsNanDv3577Wz79v5/OjiN2zBXjrsjcRZ6n\nQNNiMgxAAYpuQgIAAADAOuOmm5ITT0xmzKi79pGPJNdfn/TtW/1cAE3AhNcm5MIxF+aGiTdk4ZKF\nDe7bqO1GOaH3CTm538np2qFrFRMCTVXR56HKMAAFKPrhDwAAAADrlFdeSb70peQvf6m7VlOTnHNO\n8u1vJy1bVj8bQBPw2uzXMmLsiFw27rJMmzutwX0tW7TMYd0Py7ABw9KrS68qJgSamqLPQ5VhAApQ\n9MMfAAAAANY55XIyYkTyta8l8+bVXe/TpzIl5qMfrX42gCZi/uL5uWHCDRk+ZniemPbESvfuueWe\nGTZgWA74yAGpaVFTpYRAU1H0eWiLqnwKAAAAAADA2lQqJSefnDzySP3XIo0bl+yyS3LJJcnSpdXP\nB9AEtFmvTY7rdVwmnjgx/+/I/5f9ttmvwb33vHBPDr7p4Hz0ko/mkocvyeyFs6uYFGDlTIYBKEDR\nTUgAAAAAWKctWpT86EfJD36QLFlSd32ffZJf/SrZdNPqZwNoYp6c9mQuGnNRrptwXeYvnt/gvg+0\n+UCG9hqaU/udms033LyKCYHGqOjzUGUYgAIU/fAHAAAAgGZh7NhkyJDk6afrrnXsWLlW6fDDq58L\noAl6Y+4buXzc5bl07KV5dfarDe6rKdXkczt8Lmfuemb6bdqvigmBxqTo81DXJAEAAAAAAOumvn2T\n8eOTU06puzZjRnLEEZXX9OnVzwbQxHyw3QdzzsBz8vzpz+fXB/86O39o53r3LSkvyU1P3JT+V/XP\n7tfsnt8/+fssXrq4ymmB5s5kGIACFN2EBAAAAIBm569/TY45Jpkype5a167JtddWrk8C4D0pl8u5\n54V7csGDF+T2Z25POQ0fO2+54ZY5rf9pOW6X47Jhmw2rmBIoStHnoSbDAAAAAAAA67599kkmTqz/\nWqQpU5J9901OPTWZO7f62QCaoFKplL267ZVbj7g1T5/ydE7ue3LatWxX794XZr6Qs/5yVjYfvnmG\n/XlYJs+YXOW0QHNjMgxAAYpuQgIAAABAs/ab3yQnnpi89VbdtY9+NBk1qnLFEgCrZPq86RlZOzK/\nfPiXeWXWKw3ua1FqkYO3OzhnDjgzu22+W0qlUhVTAtVQ9HmoyTAAAAAAAEDzcvjhyeOP138t0tNP\nJ7vumnzve8miRdXPBtCEbdR2o5z9sbMz+fTJ+d/P/m/6dO1T776l5aX5w1N/yMd+9bH0v6p/bpx4\nYxYt8cwF1hyTYQAKUHQTEgAAAABIsnRpMmJE8vWvJ/Pm1V3v168yJeYjH6l+NoB1QLlczgMvPZDh\nY4Zn9KTRWVpe2uDezTbYLKf0PSVf6f2VdGzbsYopgbWh6PNQZRiAAhT98AcAAAAA3uHpp5MhQ5Kx\nY+uutW2b/OxnyUknJa7xAFhtk2dMzsUPXZyrH7k6sxbOanBfu5btcuzOx+b0/qdn2423rWJCYE0q\n+jxUGQagAEU//AEAAACAFSxalJx3XvLDHyZLltRd33ff5Jprkk03rX42gHXIzPkzc/UjV+fihy7O\nCzNfaHBfKaUc8JEDMmzAsOzVba+UFBKhSSn6PFQZBqAART/8AQAAAIAGPPxwZUrMM8/UXevYMbns\nsuSww6qfC2Ads3jp4oyeNDrDxwzPP176x0r37vyhnTNswLAc3v3wtKppVaWEwPtR9Hloi6p8CgAA\nAAAAQFPQr1/yyCPJKafUXZsxIzn88OSLX6z8DMBqW6/FevncDp/LA196IGOOG5PDdjwsNaWaevc+\n+uqjOXr00dnywi1z3r3n5Y25b1Q5LdDUmAwDUICim5AAAAAAwHvwl78kxx6bTJlSd23TTZNrr032\n3rvqsQDWVS/OfDGXPHxJrqy9MjMXzGxwX5v12uSonkfljAFnZPtO21cxIfBeFX0eajIMAAAAAABA\nffbdN5k4sf5rkV55Jdlnn+S005K5c6ufDWAdtMWGW+T8fc7Py2e+nIv3uzgf7vjhevfNXzw/V46/\nMjuM2CH737B//vqvv8YMCOCdTIYBKEDRTUgAAAAAYBXdeGNy0knJW2/VXdtuu2TUqKRPn+rnAliH\nLVm6JLc/c3uGjxmee164Z6V7u3funjP6n5HBPQenzXptqpQQaEjR56EmwwAAAAAAALybI46oTInZ\nZ5+6a5MmJbvumnz/+8nixdXPBrCOqmlRk4O2Oyh3H3N3ar9SmyN7Hpn1WqxX797HX388X77ty9li\n+Bb57l3fzWuzX6tyWqAxMRkGoABFNyEBAAAAgNW0dGly6aXJ17+ezJ9fd71//+S665KPfKT62QCa\ngSmzpuTShy/N5bWXZ/q86Q3ua1XTKoN7DM6wAcPSY5MeVUwIJMWfhyrDABSg6Ic/AAAAAPA+TZqU\nHHlkUltbd61t2+QXv0hOOCEp8T/fswAAIABJREFUlaqfDaAZmLtobkY9NirDxwzP028+vdK9g7Ya\nlDN3PTP7bbNfWpRcngLVUPR5qH/TAQAAAAAAVtV22yUPPph85ztJTc3ya/PmJSedlHzqU8mUKcXk\nA1jHtWvZLsf3OT5Pnvxk/u+L/5e9t967wb13Tr4zn/7fT2eHS3fI5eMuz9xFc6uYFCiCyTAABSi6\nCQkAAAAArEEPPZQMGZL885911zbaKLnssuQLX6h+LoBmZsJrE3LhmAtzw8QbsnDJwgb3bdR2oxzf\n+/ic0u+UdO3QtYoJofko+jzUZBgAAAAAAID3o3//5JFHKtNgVjR9enLYYZUrld56q/rZAJqRnpv0\nzDUHXZMXz3gx393zu+nUrv5D9+nzpufH9/843S7sliG3DMn4qeOrnBRY20yGAShAfU3IyZMn19uE\nbN++fbViAQAAAADv1//7f8mxxyZTp9Zd22yz5Nprk0GDqh4LoDmav3h+bphwQ4aPGZ4npj2x0r0D\ntxyYYQOG5TMf+UxqWtSsdC+wvDlz5tR5b9q0adlqq62We6+ak2GUYQAKUF8ZpiEe0wAAAADQxLz5\nZmVKzG9/W//66acnP/5x0rZtdXMBNFPlcjl/e+5vGT5meO549o6V7v1wxw/n9P6n59hdjs36rdav\nUkJo2kql0nvapwwDsI5ThgEAAACAdVy5nNx4Y6UUM3Nm3fXtt09GjUp6965+NoBm7KlpT+XCMRfm\nugnXZf7i+Q3u27D1hhnaa2hO7X9qtthwiyomrF+5XM7cuXOLjlGodu3avefSBdWlDANAEtckAQAA\nAECz8dJLlWuT7ryz7tp66yXf+U7yzW9Wfgagat6Y+0auGHdFLhl7SV6d/WqD+2pKNfncDp/LsAHD\n0n+z/lVMuLw5c+Zk/fWb96Sa2bNnOzdrpFyTBECS+ssw1Xz4AwAAAABVtHRpcsklydlnJ/PrmULQ\nv39lSsy221Y/G0Azt2Dxgtz0xE0ZPmZ4Hn310ZXu3XWzXXPmrmfm4O0OznotqltiVIZRhmlqij4P\nVYYBKEDRD38AAAAAoABPPZUMGZLU1tZda9cu+fnPkxNOSFwBAVB15XI597xwT4aPGZ7bnr4t5TR8\njL7lhlvmtP6n5bhdjsuGbTasSr7lyjBfTdKqKh9bvIVJfl75URmmaSn6PLRFVT4FAAAAAACgudt+\n++TBB5Nzz01qapZfmzs3Oemk5NOfTqZOLSYfQDNWKpWyV7e98sfD/5inT3k6J/c9Oe1atqt37wsz\nX8hZfzkrmw/fPGf8+Yw8N+O56oZt1cxesBqUYQAAAAAAAKqlZcvk+99P7r8/2Wabuut33JF07578\n7nfVzwZAkmTbjbfNJZ+6JC8Pezk/3fun2WyDzerdN2vhrFz00EXZ9pfb5tDfHpr7X7w/LmaBxkEZ\nBgAAAAAAoNoGDEgefTQ58cS6a9OnJ1/4QnLkkclbb1U/GwBJko5tO+bru389z532XG489Mb07dq3\n3n1Ly0vzh6f+kD1+tUf6XdUvN068MYuWLKpyWuCdlGEAAAAAAACK0L59MmJEZRpMly5112+4IenR\nI/n736ufDYD/aFnTMod3PzwPffmh3H/s/Tl0+0PTolT/Ufu4KePyxT98MVtfvHV+ev9PM2PejCqn\nBRJlGAAAAAAAgGLtt18ycWLy+c/XXXv55WTQoGTYsGTevOpnA+A/SqVSdt9i9/z+C7/Ps6c+mzP6\nn5EOrTrUu/flf7+cb9z5jWw2fLOc/H8n55k3n6lyWmjelGEAAAAAAACKtvHGyU03Jddfn2y4Yd31\nCy9MevdOxo+vfjYA6tiq41YZvt/wvHzmy7lg3wvS7QPd6t03d9HcjBg3Ittdsl0OvPHA3DX5rpTL\n5eqGhWZIGQYAAAAAAKAxKJWSwYMrU2I+8Ym66089lfTvn5x3XrJ4cfXzAVDHBq03yLBdh+Wfp/4z\nv//877Pb5rvVu6+ccm575rZ84rpPpNeVvfLrR3+dBYsXVDktNB/KMAAAAAAAAI3J5psnf/1rZRpM\nmzbLry1enJxzTrLHHsmzzxaTD4A61muxXg7d4dA88KUH8tCXH8rh3Q9PTamm3r2PvvpojvnjMel2\nUbf88N4f5o25b1Q5Laz7lGEAAAAAAAAamxYtktNPT2prk1696q6PGZPstFNyxRWJ6zYAGpV+m/bL\njYfemMmnT87XdvtaNmxdz/V3SV6d/WrOvevcbD5883zltq/kyWlPVjkprLuUYQAAAAAAABqrHXZI\nHnywMg2mxQrHOnPnJieckBxwQDJ1ajH5AGjQ5htunvP3OT8vn/lyfrn/L7PNRtvUu2/+4vkZOX5k\ndhyxY/a/Yf/85V9/SVnREd4XZRgAAAAAAIDGrFWr5Ac/SO6/P9mmnoPUP/0p6dEjufnm6mcD4F2t\n32r9nNLvlEw6eVJGHzY6e265Z4N7//zsn/PJ6z+ZHpf1yFXjr8r8xfOrmBTWHcowAAAAAAAATcGu\nuyaPPlqZBrOiN99MPve55Kijkpkzq58NgHdV06ImB213UO4+5u7UfqU2Q3oOScsWLevd+8S0JzL0\ntqHZYvgW+e5d381rs1+rclpo2pRhAAAAAAAAmor27ZPLLkv+7/+SD32o7vqoUZUpMX//e/WzAfCe\n9erSK9cdcl2eP+P5fOtj38pGbTeqd9+0udPy/Xu/n+0u3a7KCaFpU4YBAAAAAABoaj71qWTixMo0\nmBW99FIyaFBy5pnJfNdrADRmXTt0zXmDzstLw17K5Z++PNt9sP7Sy6Ili6qcDJo2ZRgAAAAAAICm\n6IMfTH7728o0mA02qLs+fHjSu3fyyCPVzwbAKmnXsl2O73N8njjpifzpi3/KPlvvU3QkaNKUYQAA\nAAAAAJqqUik58sjKlJiPf7zu+pNPJv36JT/6UbJ4cfXzAbBKWpRaZP9t989fhvwlE06YkC/t/KW0\nqmlVdCxocpRhAAAAAAAAmrottkj+9rfKNJjWrZdfW7w4+fa3k4EDk2efLSYfAKusxyY9cvVBV+fF\nM17MNz/2zaLjQJOiDAMAAAAAALAuaNEiOeOMpLY22WWXuusPPpjsvHNyxRVJuVz9fACslk3W3yTf\nHvjtomNAk6IMAwAAAAAAsC7ZccdkzJjKNJgWKxwFzZmTnHBCcsAByauvFpMPAGAtU4YBAAAAAABY\n17Rqlfzwh8n99ycf/nDd9T/9KenePbn55upnAwBYy5RhAAAAAAAA1lW77po8+mhy/PF11958M/nc\n55Kjj05mzqx+NgCAtUQZBgAAAAAAYF22/vrJ5Zcnt9+ebLJJ3fXrrkt69kzuvrvq0QAA1gZlGAAA\nAAAAgObg059OHn88OfTQumsvvph8/OPJWWcl8+dXPxsAwBqkDAMAAAAAANBcfPCDye9+V5kGs8EG\nddcvuCDp0yd55JHqZwMAWEOUYQAAAAAAAJqTUikZMiSZODHZa6+66088kfTvn/z4x8mSJVWPBwDw\nfinDAAAAAAAANEdbbJHceWdlGkzr1suvLVqUfOtbycCByb/+VUw+AIDVpAwDAAAAAADQXLVokQwb\nltTWJjvvXHf9H/9IdtopGTkyKZernw8AYDUowwAAAAAAADR3O+6YPPRQZRpMixWOj+bMSb7yleTA\nA5NXXy0mHwDAKlCGAQAAAAAAIGnVKjnvvOS++5Ktt667fvvtSY8eyS23VD8bAMAqUIYBAAAAAADg\nv3bbLXnssco0mBW98Uby2c8mxxyTzJxZ9WgAAO+FMgwAAAAAAADLW3/95IorkttuSzbZpO76r3+d\n9OyZ3HNP9bMBALwLZRgAAAAAAADqd8ABycSJySGH1F178cXk4x9PvvrVZP786mcDAGiAMgwAAAAA\nAAAN69Qpufnm5Nprkw4dll8rl5Nf/CLp2zd59NFC4gEArEgZBgAAAAAAgJUrlZKjj65Midlrr7rr\njz+e9OuX/OQnyZIlVY8HAPBOyjAAAAAAAAC8N1tumdx5Z2UaTKtWy68tWpR885vJnnsmzz1XTD4A\ngCjDAAAAAAAAsCpatEjOPDOprU122qnu+gMPJD17JlddVblGCQCgypRhAAAAAAAAWHXduycPP1yZ\nBtNihSOnOXOSoUOTgw5KXnutmHwAQLOlDAMAAAAAAMDqadUq+dGPknvvTbbeuu76bbdVSjOjR1c/\nGwDQbCnDAAAAAAAA8P7svnvy6KOVaTAreuON5JBDkmOPTf797+pnAwCaHWUYAAAAAAAA3r8OHZIr\nr6xMg+ncue76tdcmPXsm99xT9WgAQPOiDAMAAAAAAMCac8AByeOPV6bBrOiFF5KPfzz52teSBQuq\nnw0AaBaUYQAAAAAAAFizOnVKbr65Mg2mQ4fl18rl5Oc/T/r2TR57rJB4AMC6TRkGAAAAAACANa9U\nSo4+OpkwIRk4sO76xImVQsxPf5osWVL9fADAOksZBgAAAAAAgLWnW7fkrrsq02BatVp+bdGi5Bvf\nSPbaK5k8uYh0AMA6SBkGAAAAAACAtatFi+Sss5Jx45Kddqq7fv/9Sc+eydVXV65RAgB4H5RhABqJ\nOXPm1PsCAAAAAFhn9OiRPPRQcvbZlWuU3mn27OTLX04OOih57bVi8gEAq6wxnnOuV+inA/AfW221\nVb3vl/2/IAAAAACAdUnr1slPfpIccEBy1FF1r0e67bZKaWbkyEoxBgBo1NZff/2iI9RhMgwAAAAA\nAADV97GPJY89lhx3XN21adOSgw+urP3739XPBgA0acowAI3E5MmTM3v27DovAAAAAIB1VocOyVVX\nJX/8Y9K5c931a65Jdtopue++6mcDAN6T+s44J684+a3KlGEAGon27dvX+wIAAAAAWOcdeGDy+OOV\naTArev75ZM89k69/PVmwoOrRAICVa4znnMowAAAAAAAAFK9Tp+QPf6hMg+nQYfm1cjn52c+Svn2T\nCROKyQcANBnKMAAAAAAAADQOpVJy7LGVwssee9RdnzixUog5//xkyZLq5wMAmgRlGAAAAAAAABqX\nbt2Su+6qlF5atVp+beHC5Oyzk49/PJk8uZB4AEDjpgwDAAAAAABA41NTk3zta8nYsUnPnnXX77uv\n8v4111SuUQIAeJsyDAAAAAAAAI1Xz57Jww9XpsGUSsuvzZ6dHHdccsghyeuvF5MPAGh0lGEAAAAA\nAABo3Fq3Tn7yk+SeeypXKK3oj39MundPbr216tEAgMZHGQYAAAAAAICmYY89kgkTKtNgVjRtWnLQ\nQZW1WbOqnw0AaDSUYQAAAAAAAGg6OnRIrroqGT066dSp7vo11yQ77ZTcf3/1swEAjYIyDAAAAAAA\nAE3PQQcljz9e+XNFkycnAwcmZ5+dLFhQ/WwAa9PCZvaC1bBe0QEAAAAAAABgtXTunNxyS/KrXyWn\nn57Mnv3ftXI5Of/85M9/Tq6/PunRo7icAGvSz4sOAI2fyTAAAAAAAAA0XaVS8qUvJRMmJHvsUXd9\nwoSkT5/kZz9Lliypfj4AoOpMhgEAAAAAAKDp22qr5K67kl/8IjnnnGTRov+uLVyYfP3rye23J7/+\nddKtW2ExAVZHu3btMvud06+aoXbt2hUdgSZEGQYAAAAAAIB1Q01NpfTyyU8mQ4YkEycuv37vvUnP\nnsnFFydHH12ZKgPQBJRKpbRv377oGNBkuCYJAAAAAACAdctOOyVjxyZf+1rdwsusWcmxxyaf/Wwy\nbVox+QCAtUoZBgAAAAAAgHVP69bJ+ecnd99d/7VIo0cn3bsnt91W7WQAwFqmDAMAAAAAAMC6a+DA\n5LHHKtNgVvT668mBByZDh1YmxgAA64T1ig4AAAAAAAAAa9UGGyTXXJMcdFCl+LLi9UhXXZXceWdy\n3XXJxz5WTMaVKJfLeeGFF/L6669n3rx5mT9/fpKkTZs2adu2bTp37pwtt9wypRWvhAKAZkoZBgAA\nAAAAgObhoIOSAQMqhZgVr0eaPLkyRebss5PvfS9p1aqQiOVyOZMnT05tbW3GjRuX2trajB8/PjNm\nzFjp3+vYsWN69+693GurrbZSkAGgWSqVy+Vy0SEAmptp06alc+fOy733+uuvp1OnTgUlAgAAAABo\nRsrlyqSYM85IZs+uu77TTsn11yfdu1ct0iuvvJKRI0dm5MiRmTJlSp31Vkm6JGmbpM3b781PMi/J\n1CQL6/mdXbt2zdChQ/OVr3wlXbt2XUvJAaCuos9DlWEAClD0wx8AAAAAgCTPPZccfXRy//1111q1\nSn70o2TYsKRFi7Xy8eVyOXfddVdGjBiR0aNHZ8mSJZWPTtIzSe93vLq//X59FiZ5PEnt269xSSbm\nvwWZmpqaHHLIITnppJOy1157mRYDwFpX9HmoMgxAAYp++AMAAAAA8LYlS5Kf/zw599xk0aK663vu\nmfz618mWW66xjyyXy7nxxhvzgx/8IJMmTfrP+wOTnJjkkCSt3+dnLEhyS5IRSe57x/vbbbddzj33\n3BxxxBFKMQCsNUWfh66dGisAAAAAAAA0BTU1ydlnJ2PH1n8t0j33JD16JNdeW7le6X2aOnVqDjro\noAwePDiTJk3K+klOSmWSyz1JDs/7L8Lk7d9xeJJ7k0xIpWSzfpJJkyZl8ODBOfjggzN16tQ18EkA\n0PgowwAAAAAAAMBOO1UKMV/9arLixJRZs5Jjj00OPTSZNm21fn25XM6oUaOyww475LbbbkvLJD9I\nMiXJpalcg7S29EhlQsyUtz+zZZJbb701O+64Y66//vq4SAKAdY0yDAAAAAAAACRJmzbJz36W3HVX\n/dci3XJLZUrM7bev0q9dNg3mqKOOyltvvZXeScYnOSdJhzWR+z3q8PZnjk/SO8mMGTMyZMgQU2IA\nWOcowwAAAAAAAMA77blnMmFCcswxdddeey35zGeSr3wlmT37XX/VE088kT59+vxnGswPkzyYtTsJ\n5t10fzvDO6fE9OnTJ08++WSBqQBgzVGGAQAAAAAAgBVtsEHyq18lf/hD8sEP1l0fObJytdIDDzT4\nK8aOHZuBAwdmypQp2T5JbZJvp1JAKVrLVKbE1CbZPsmUKVMycODAjB07tthgALAGKMMAAAAAAABA\nQw45JHn88eSAA+quPfdcMnBg8q1vJQsXLrc0duzYDBo0KNOnT0/fJPcl6VGVwKumRyrZ+iZ58803\nM2jQIIUYAJo8ZRgAAAAAAABYmU02SW69tTINpn375deWLk1+/OOkf/9KaSaVq5H222+/zJo1K3sm\nuTPJxlUP/d5tnErGgUlmzZqV/fbbz5VJADRpyjAAAAAAAADwbkql5MtfTh57LNl997rrjz6a9OmT\nqf/zP9l3330zffr09EtyW5IO1c66GjokuT2VCTHTp0/PPvvsk6lTpxacCgBWjzIMAAAAAAAAvFcf\n/nByzz2VaTAtWy63VF6wIMd/73uZMmVKtk/ypzSNIswyHZLckWT7JFOmTMkJJ5yQcrlccCoAWHXK\nMAAAAAAAALAqamqSb3wjefjhZMcd//P2DalMgmmZ5KY07quRGrJxKtlbJrn11ltzww03FJwIAFad\nMgwAAAAAAACsjp13TsaNS846K1OTnPb2299N0qPAWO9XjyTfefvn0047zXVJADQ5yjAAAAAAAACw\nutq0SflnP8vxu+2WGUl6Jzm76ExrwNlJeiWZMWOG65IAaHKUYQAAAAAAAOB9uPHGG3PbP/6RVkmu\nTbJewXnWhJapfJdl1yXdeOONxQYCgFWgDAMAAAAAAACrqVwu5wc/+EGS5Nwk3YuNs0b1SOU7JckP\nf/hD02EAaDKUYQAAAAAAAGA13X333Zk0aVLWT3J60WHWgtOTrJ/kqaeeyj333FN0HAB4T5RhAAAA\nAAAAYDVdeumlSZKjknQoNspasUGSIW//vOy7AkBjpwwDAAAAAAAAq+GVV17J6NGjkyQnFpxlbVr2\n3W655ZZMmTKl0CwA8F4owwAAAAAAAMBqGDlyZJYsWZI9knQvOsxa1CPJx5IsWbIkI0eOLDoOALwr\nZRgAAAAAAABYReVy+T/FkJMKzlINy77jyJEjUy6XC80CAO9GGQYAAAAAAABW0eTJkzNlypS0SnJI\n0WGq4LNJWqZyNdTzzz9fcBoAWDllGAAAAAAAAFhFtbW1SZKeSVoXG6UqWqfyXZP/fncAaKyUYQAA\nAAAAAGAVLSuE9C44RzUt+67KMAA0dsowAAAAAAAAsIrGjRuXpHmWYZZ9dwBorJRhAAAAAAAAYBWU\ny+WMHz8+SfMsw9TW1qZcLheaBQBWRhkGAAAAAAAAVsELL7yQGTNmpFWS7kWHqaLuSVommTFjRl54\n4YWi4wBAg5RhAAAAAAAAYBW8/vrrSZIuSVoVG6WqWqfynZNk2rRpRUYBgJVShgEAAAAAAIBVMG/e\nvCRJ24JzFGHZd172zwAAGiNlGAAAAAAAAFgF8+fPT5K0KThHEZZ9Z2UYABozZRgAAAAAAAAAANYZ\nyjAAAAAAAACwCtq0qcxHmV9wjiIs+85t2zbHS6IAaCqUYQAAAAAAAGAVLCuCNMeLgpZ9Z2UYABoz\nZRgAAAAAAABYBZ07d06STE2ysNgoVbUgle+cJJ06dSoyCgCslDIMAAAAAAAArIItt9wyHTt2zMIk\njxcdpooeT7IoSceOHbPlllsWHQcAGqQMAwAAAAAAAKugVCqlV69eSZLagrNU07Lv2rt375RKpUKz\nAMDKKMMAAAAAAADAKurTp0+S5lmGWfbdAaCxUoYBAAAAAACAVdS7d+8kzbMMs+y7A0BjpQwDAAAA\nAAAAq2hZIWRCkgXFRqmKBal810QZBoDGTxkGAAAAAAAAVtFWW22Vrl27ZmGSW4oOUwV/SLIoyaab\nbppu3boVnAYAVk4ZBgAAAAAAAFZRqVTK0KFDkyQjCs5SDcu+49ChQ1MqlQrNAgDvRhkGAAAAAAAA\nVsPQoUNTU1OT+5JMLDrMWjQxyf1Jampq/lMAAoDGTBkGAAAAAAAAVsOmm26agw8+OElyecFZ1qbL\n3v7zkEMOSdeuXQvNAgDvhTIMAAAAAAAArKaTTz45SXJdklnFRlkr/p1k1Ns/L/uuANDYKcMAAAAA\nAADAatprr72y3XbbZXaSi4oOsxZclGR2ku233z577rln0XEA4D1RhgEAAAAAAIDVVCqVcu655yZJ\nvp/k8WLjrFETk/zg7Z/POeeclEqlIuMAwHumDAMAAAAAAADvwxFHHJHPfOYzWZTkmCSLCs6zJrzz\nuxx44IE54ogjig0EAKtAGQYAAAAAAADeh1KplCuuuCIdO3ZMbZLziw60Bvw0yfgkHTt2zOWXX24q\nDABNijIMAAAAAAAAvE9dunTJxRdfnCT5XipXDDVVE1K58ilJLr744nTp0qXIOACwypRhAAAAAAAA\nYA0YPHjwf65LOizJm0UHWg1vJjk8b1+PtO22GfzFLxacCABWnTIMQCMxZ86cel8AAAAAADQNy65L\n6tq1a55Ksn+SWUWHWgWzUsn8VJKuSS7/5z9TOuaYZOHCQnMB0Lg1xnPOUrlcLheaAKAZmjZtWjp3\n7vye9npMAwAAAAA0LU888UQGDhyY6dOnZ88ktyXpUHSodzEryQFJ7k2y8dt/7rBscdCg5Oabkw03\nLCgdAI1ZqVR6T/tef/31dOrUaS2nqTAZBgAAAAAAANagHXfcMX/+85/ToUOH3JNkUBr3lUlvJPlE\nKgWYDm3a5I5S6b9FmCS5885kjz2Sl18uJB8ArCplGIBGYvLkyZk9e3adFwAAAAAATU/fvn1z5513\nZqONNsrYJHskmVh0qHpMSDIwybgkG2+8cf5+333pe9ttSbt2y2+cODEZMKDyJwC8Q31nnJMnTy40\nkzIMQCPRvn37el8AAAAAADRNffv2zX333ZeuXbvmqSS9k/wwyaKCcyWVDD9I0ifJU0m6du2ae++9\nN3369Ek+/enknnuSzp2X/0uvvJJ87GPJ3/9e/cAANFqN8ZxTGQYAAAAAAADWkh122CHjxo3LgQce\nmEVJzk0yIMnjBWaa+HaG76RSijnwwAMzbty47LDDOy5H6tMnefDB5CMfWf4v//vfyX77JddfX73A\nALCKlGEAAAAAAABgLerSpUtGjx6dUaNGpWPHjhmfpFcqk1n+XcUc/377M3snGZ+kY8eOuf766zN6\n9Oh06dKl7l/YeuvkH/9Idttt+fcXLUqGDEl+/OOkXF77wQFgFSnDAAAAAAD8f/buPN7qus4f+Ouw\nyI65gIkrajpqWSqmoOK+75qjiVo6qWmlP7PSZnKyrGmbbFEZG6zcSNMGF1xHzRUwNs2GxLQQDVAw\nUFlF4Pz+uIL3cC/7ved77r3P5+NxHuH7c875vI7Vefh4nJefDwA0s1KplNNPPz0TJkzIMccck/dS\ndzLLZkkuSN1pLc3lT0nOf3+v+qfBTJgwIYMGDUqpVFrxizfaKHnkkeSkkxqu/eu/Juefnyxa1Cy5\nAWBtKcMAAAAAAABAlWy66aa5++67M3To0Oy4446Zk+S/kuySZGCSW5O82wT7vPv+e+37/ntfl2RO\nkh133DFDhw5d8WkwjenSJfntb5P/9/8arv3iF8kJJyRz5zZBagBoGqVy2dllANU2Y8aM9O7du2I2\nffr09OrVq6BEAAAAAABUW7lczuOPP57BgwfnzjvvzOLFi5Mk6yX5WOquM1r6+Nj788YsTN3pL+Pq\nPZ5P3QkwSdKhQ4eccMIJueCCC7Lffvut/CSYVfnJT5JLLml4PdIeeyTDhyebbLL27w1Aq1H076HK\nMAAFKPrLHwAAAACA2jJ16tQMGTIkQ4YMyZQpUxqsd0yyaZIuSTq/P1uQZH6Safmg+FLfZpttlnPO\nOSfnnHNO+vTp03Rh77gjOeOM5N3lzrDp2zd58MFk++2bbi8AWqSifw9VhgEoQNFf/gAAAAAA1KZy\nuZxXXnkl48aNy9ixYzNu3LiMGzcus2bNWunrNthgg/Tr1y+77777ssfWW2+9bqfArMzTTyfHHpss\nn2ujjZJ77kkGDGiefQFG9ZPfAAAgAElEQVRoEYr+PVQZBqAARX/5AwAAAADQcpTL5UyePDkzZszI\n/PnzM3/+/CRJly5d0qVLl/Tq1StbbbVV8xVfVmTixOSII5JXXqmcd+6cDB2anHhidfMAUDOK/j1U\nGQagAEV/+QMAAAAAQJN4/fXk6KOTceMq56VS8tOfJhdeWEwuAApV9O+h7aqyCwAAAAAAAND6fPjD\nyeOP150QU1+5nFx0UXLJJcmSJYVEA6DtUoYBAAAAAAAA1l737sk99ySf+1zDtauuSk49NVmwoPq5\nAGizlGEAAAAAAACAddOhQ/Lf/51ceWXDtTvuSA45JJk5s/q5AGiTlGEAAAAAAACAdVcqJd/4RnLj\njXXlmPqefjrZe+/klVcKiQZA26IMAwAAAAAAADSdM89M7r8/6dGjcj5xYtK/fzJ+fDG5AGgzlGEA\nAAAAAACApnXIIclTTyV9+lTOX389GTgweeCBYnIB0CYowwAAAAAAAABN7+MfT555Jtl558r53LnJ\nMcckv/xlMbkAaPWUYQAAAAAAAIDmscUWydNPJwccUDlfvDj53OeSb34zKZeLyQZAq6UMAwAAAAAA\nADSfD32o7lqk005ruPbtbydnn5289171cwHQainDAAAAAAAAAM2rU6fk5puTyy5ruHbDDclRRyXv\nvFP1WAC0TsowAAAAAAAAQPNr1y753veSwYPr/lzfww8nAwcmU6cWkw2AVkUZBgAAAAAAAKie889P\n7rwz6dKlcv7HPyZ77ZVMmFBMLgBaDWUYAAAAAAAAoLqOPTZ5/PGkV6/K+WuvJXvvXbcGAGtJGQYA\nAAAAAACovk9+Mhk1Ktluu8r5228nhx2W3HprMbkAaPGUYQAAAAAAAIBibLttMnJk3fVI9S1cmJx2\nWvLDHyblcjHZAGixlGEAAAAAAACA4vTqlTz6aHL88Q3XLr00+eIXk8WLq58LgBZLGQYAAAAAAAAo\nVteuye9+V1d8Wd7gwclJJyXz5lU/FwAtkjIMAAAAAAAAULz27ZOf/zz50Y8art19d3LggcmMGdXP\nBUCLowwDAAAAAAAA1IZSKfnKV5LbbkvWW69y7Q9/SPr3T15+uZhsALQYyjAAAAAAAABAbTnllOTh\nh5MPfahy/te/1hVinnmmmFwAtAjKMAAAAAAAAEDtGTgwGTEi2XLLyvmbb9ZdmXT33cXkAqDmKcMA\nAAAAAAAAtWmnnZJRo5JPfKJyPn9+csIJybXXFpMLgJqmDAMAAAAAAADUrj59kiefTA47rHJeLidf\n/GJy6aXJkiXFZAOgJinDAAAAAAAAALWtR49k+PDk7LMbrv3wh8mgQcm771Y/FwA1SRkGAAAAAAAA\nqH0dOybXX59ccUXDtdtuqzs5ZtasqscCoPYowwAAAAAAAAAtQ6mUfPObyS9/mbRvX7n2xBPJPvsk\nkycXkw2AmqEMAwAAAAAAALQsZ5+d3Hdf0r175fzPf07690+ee66YXADUBGUYAAAAAAAAoOU57LDk\nySeTTTetnE+bluy7b/K//1tMLgAKpwwDAAAAAAAAtEy77pqMGpXsuGPlfM6c5KijkhtuKCQWAMVS\nhgEAAAAAAABarq22SkaMSAYOrJwvWpScdVbyrW8l5XIx2QAohDIMAAAAAAAA0LJtsEHdtUinnNJw\n7Yorks99LnnvvarHAqAYyjAAAAAAAABAy9epU/Kb3yRf/WrDtV/9Kjn22GT27OrnAqDqlGEAAAAA\nAACA1qFdu+SHP0yuvjoplSrXHnww2W+/ZNq0YrIBUDXKMAAAAAAAAEDr8sUvJv/zP0nnzpXzZ59N\n+vdPXnihmFwAVIUyDAAAAAAAAND6nHBC8vvfJxttVDmfPDkZMCB56qlicgHQ7JRhAAAAAAAAgNap\nf/9k1Khk220r52+9lRx8cHL77cXkAqBZKcMAAAAAAAAArddHPpKMHJl88pOV84ULk1NOSX7846Rc\nLiYbAM1CGQYAAAAAAABo3Xr3rrsy6ZhjGq595SvJRRclixdXPxcAzUIZBgAAAAAAAGj9unVL7rwz\nOf/8hmtXX52cfHIyf371cwHQ5JRhAAAAAAAAgLahffvk2muT73+/4dqddyYHHZS8+Wb1cwHQpJRh\nAAAAAAAAgLajVEouvTQZOjTp2LFybdSoZMCA5K9/LSYbAE1CGQYAAAAAAABoe047LXnooWT99Svn\nL72U9O+fjB5dTC4A1pkyDAAAAAAAANA2HXBA8vTTyRZbVM5nzEj23z8ZPryQWACsG2UYAAAAAAAA\noO366EfrrkfaZZfK+fz5yfHHJ9ddV0wuANaaMgwAAAAAAADQtm22WfLUU8nBB1fOlyxJzj8/+frX\n6/4MQIugDAMAAAAAAADQs2dy333JmWc2XPv+9+vmCxdWPxcAa0wZBgAAAAAAACBJ1lsvueGG5PLL\nG64NHZocfnjy1ltVjwXAmlGGAQAAAAAAAFiqVEq+/e1kyJCkffvKtcceS/bdN3nttWKyAbBalGEA\nAAAAAAAAlve5zyX33JN061Y5/7//S/r3T55/vphcAKySMgwAAAAAAABAY448MnniiWSTTSrnU6Yk\n++yTPPJIMbkAWCllGAAAAAAAAIAV2X33ZNSoZIcdKuezZydHHJHcfHMxuQBYIWUYAAAAAAAAgJXp\n2zcZOTLZe+/K+aJFyZlnJt/9blIuF5MNgAaUYQAAAAAAAABWZcMN665F+tSnGq594xvJeefVlWMA\nKJwyDAAAAAAAAMDq6Nw5+e1vk4svbrg2ZEhy3HHJnDnVzwVABWUYAAAAAAAAgNXVrl1y1VXJT3+a\nlEqVa/ffn+y/f/LGG4VEA6COMgwAAAAAAADAmrroouSOO5JOnSrn48Yl/fsnL75YTC4AlGEAAAAA\nAAAA1spJJyWPPppsuGHlfNKkZMCAZMSIYnIBtHHKMECb8eKLL+aWW27JRRddlAEDBqRr165p165d\ng8dNN91UdFQAAAAAAKCl2HvvZOTIpG/fyvnMmclBByW/+10xuQDasA5FBwBoDq+++mrGjBmz7DFu\n3Li88847Fc8plUopLX+XJwAAAAAAwJraYYdk1Kjk6KOTsWM/mL/7bvLP/5xcdVXy//5fcfkA2hhl\nGKDVufTSS/OjH/2oYrai4ku5XF62Xi6XlWMAAAAAAIC1s8kmyeOPJ6ecktx33wfzcjm5+OJk8uTk\nxz9O2rm8A6C5+aYFWp2FCxcm+aAAs3zBpVwuL3sAAAAAAAA0mW7dkrvuSs49t+HaT39aV5RZsKD6\nuQDaGGUYoFWrX3ypX4BxRRIAAAAAANAsOnRIrrsu+e53G6797nfJwQcn//hH9XMBtCHKMECrtXzx\npVQqpVOnTunXr18+//nP5/TTT1+2DgAAAAAA0GRKpeRf/zW56aa6ckx9I0Yke++dTJpUTDaANqDD\nqp8C0PKUSqW0b98+O+64Y/bYY4/069cve+yxRz7+8Y+nw/v/0HnjjTfm5ptvLjgpAAAAAADQap1x\nRtKnT3Liick773wwf/HFpH//5N57k379issH0EopwwCtzqmnnpqTTz45u+22Wzp37lx0HAAAAAAA\noC076KDkqaeSI49Mpkz5YP7GG8l++yV33FG3BkCTcU0S0OrsueeeGTBggCIMAAAAAABQG3bZJXnm\nmeSjH62cz5uXHHtsMmRIMbkAWillGAAAAAAAAIDmtvnmydNPJwceWDlfvDg599zk8suTcrmYbACt\njDIMAAAAAAAAQDWsv37ywAPJoEEN177zneSzn00WLqx6LIDWRhkGAAAAAAAAoFrWWy+5+ebk619v\nuHbTTclRRyVvv139XACtiDIMAAAAAAAAQDWVSsl//Edy3XVJu+V+sn3kkWTgwGTKlGKyAbQCyjAA\nAAAAAAAARTjvvOTuu5OuXSvnzz+f7LVX8n//V0wugBZOGQYAAAAAAACgKEcfnTz+eNKrV+X8739P\n9tkneeyxQmIBtGTKMAAAAAAAAABF2mOPZNSo5CMfqZy//XZy2GHJ0KHF5AJooZRhAAAAAAAAAIq2\n7bbJyJFJ//6V8/feS04/Pfne95JyuZhsAC2MMgwAAAAAAABALdh44+TRR5MTT2y49q//mlxwQbJo\nUfVzAbQwyjAAAAAAAAAAtaJLl+T225MLL2y4dt11dUWZuXOrnwugBelQdACg+SxcuDB/+ctf8ve/\n/z2zZ8/OvHnz0rVr1/To0SObb755dthhh3Ts2LHomAAAAAAAANTXvn3y058mW22VXHJJ5drw4ckB\nByT33pv07l1MPoAapwwDrcwf/vCH3HXXXXnggQcyYcKELF68eIXPbd++fXbeeecceeSROe6447Ln\nnntWMSkAAAAAAAArVColX/5ysvnmyRlnJAsXfrA2ZkzSv3/ywAPJ9tsXlxGgRrkmiTbt5Zdfzm23\n3ZavfOUr2W+//dKzZ8+0a9duhY9tttmm6MgrdNttt6Vfv37p379/fvCDH+T555/PkiVLUiqVVvhY\nsmRJnn/++Xz/+99P//79s8cee+T2228v+qMAAAAAAACw1D//c/LII8kGG1TO//a3ZMCAZNSoYnIB\n1DAnw9BmvPbaaxkzZkzGjh2bMWPGZNy4cXnrrbcqnrO0JNKSTJw4Meedd16eeuqpRvOXy+UVvnb5\n548bNy6nnnpqrrvuulx33XXZXpMYAAAAAACgePvum4wYkRxxRDJ58gfzf/wjOfDA5De/SU44obh8\nADVGGYZWafr06RkzZkxF+WXGjBkVz1lR8WX58sjS56ysVFKUYcOG5bOf/WzmzJnTaM7VKfcs//wk\nefzxx9OvX7/cdNNNOf7445shOQAAAAAAAGtkxx3rToE5+uhk/PgP5gsWJCedlPzsZ8mXvlRcPoAa\nogxDq3TooYfm+eefX/bXq1t8aUmuvfbaXHjhhUnqPl9jpZbV+Xz1n1sul5f9vZozZ05OOumkXHPN\nNTn//PObLPc777yTq6++eq1ff+aZZ2aLLbZosjwAAAAAAAAtxqabJk88kZx8cvLggx/My+Xkwgvr\nTo354Q+Tdu2KywhQA5RhaJXW5rqg1XlerbjxxhuXFWGShqe7LP3r1bnyqX4BZvlCTLlczpe+9KX0\n6NEjp59+epNknzVrVi6//PK1em2pVMq+++6rDAMAAAAAALRd3bsn99yTnH9+8stfVq79+MfJa68l\nN96YdO5cTD6AGqASSKu1tBCytOBR39Kyx/KlmZZQhBk9enTOPffcZX+9siLMgAEDcs0112T8+PGZ\nOXNm3nvvvcycOTNjx47Nz3/+8+y5554NSjD137NUKmXJkiU555xzMm7cuCb9HMv/d7CqBwAAAAAA\nAO/r2DEZMiT59rcbrt1+e3LYYcnMmdXPBVAjlGFo9VZUrFhaAKn/qPXSxezZs3Pqqadm0aJFSRov\nwpRKpeywww559NFH89RTT+X888/Pxz/+8ay//vpp165d1l9//ey66675whe+kJEjR+ahhx7Kdttt\nt+yzN1aIWbhwYU455ZTMmTOnyT5LY3//V/YAAAAAAACgnlIpufzy5Ne/TjosdyHIk08m++xTd20S\nQBukDEOrtfyJL40VX5Y+2rVrl+233z4DBw5s8Npacvnll+eVV15JsuIizCGHHJLRo0dn//33X633\nPPjggzN27NgccMABDUon9U/XmTRpUq644oqm+BhrfCqME2IAAAAAAABW4LOfTe67L+nRo3L+wgvJ\nXnsl48cXEgugSMowtForKr6USqX07ds3J598cn7wgx/k0UcfzaxZszJx4sQmK3s0hxdeeCGDBw9u\nUAipfzXSgAEDctddd6XH8v+wswo9e/bMPffck09+8pONnpCzdI+rr746L7744jp9jq222iqLFy9e\nq8eiRYuWFZYAAAAAAAB436GH1p0Gs+mmlfPXX08GDkwefLCYXAAF6bDqp0DLtLTQsfnmm6dfv34V\njw022KDgdGvuiiuuyKJFiyrKL/VLKxtttFF++9vfpnPnzmv1/l27ds3tt9+eT3ziE3n77beX7VO/\nHLNo0aJ8+9vfztChQ9f9AwEAAAAAANB0PvGJ5JlnkiOOSP785w/mc+cmRx+d/Pd/J2efXVw+gCpS\nhqFVuvDCC7PJJptkjz32SK9evYqOs84mTZqUYcOGNXpN0NKyyne/+9306dNnnfbZcsst861vfSsX\nXXTRCk+HueOOO/K9730vW2655TrtBQAAAAAAQBPbcsvk6aeTE05Innjig/nixcm//Evy6qvJN7+Z\nNPKbE0Br4pokWqWzzjorRx55ZKsowiTJNddck8WLFydJo6fCfOQjH8k555zTJHtdcMEF2WabbSr2\nWLpnkixevDjXXnttk+wFAAAAAABAE9tgg+Shh5JPf7rh2re+VVeKee+96ucCqCJlGKhxS5YsyW23\n3bbSU2G+/OUvN7q+Ntq3b58LL7ywogCz1NLTYX7zm980yV4AAAAAAAA0g06dkltuSS69tOHar39d\nd23S7NnVzwVQJcowUON+//vfZ9q0aUkaPxWmc+fOGTRoUJPu+ZnPfCbrrbdexV71yzFTp07N448/\n3qR7AgAAAAAA0ITatUu+//3k2mvr/lzf//5vMnBgMnVqMdkAmpkyDNS44cOHNzpfeirMUUcdlW7d\nujXpnuuvv36OOOKIRk+HWVUuAAAAAAAAasgFFyTDhiVdulTOn3su6d8/mTChmFwAzUgZBmrcI488\nstIrkI466qhm2Xdl71sul/Pwww83y74AAAAAAAA0seOOSx57LNl448r5q68me++duBEAaGWUYaCG\nvf7663nhhReSZIWntBx88MHNsvchhxzSYLb0NJokmTBhQt54441m2RsAAAAAAIAmtueeyahRyXbb\nVc7ffjs57LDkttuKyQXQDDoUHQBYsdGjRzeY1T8lZosttshmm23WLHtvtdVW2XTTTfP666+nVCo1\nWsYZM2ZMjj766GbZf13dcsstmTx58kqf8+yzzzY6v+eee/Laa6+t9LVbbbVVTj/99LXOBwAAAAAA\nUHXbbZeMHJkcc0zyhz98MF+4MPn0p5PXXku+8pVkJbcWALQEyjBQw8aPH9/ofOkJLbvttluz7t+v\nX78MHz58hdc0PfvsszVbhvnlL3+ZJ554YrWeW7/oUy6XM2zYsAwbNmylr9l///2VYQAAAAAAgJan\nV6/k979PTjstufvuyrWvfS2ZPDn52c+S9u2LyQfQBFyTBDXsueeeW+n6Lrvs0qz7r+r9V5WvaKVS\nqdkeAAAAAAAALVbXrsn//E/yhS80XLv22uSkk5J586qfC6CJKMNADfvLX/6y0uLFRz7ykWbdf7vl\n74ysp1wu56WXXmrW/ddVuVxutgcAAAAAAECL1r59cvXVyQ9/2HDt7ruTAw9MZsyofi6AJqAMAzXs\nlVdeWen6ysoqTWFF77+0oLOqfEVrzpNhnA4DAAAAAAC0eKVS8tWvJrfemqy3XuXaH/6QDBiQvPxy\nMdkA1kGHogMAjXvjjTeyYMGClEqlFZ5E0qdPn2bN0Nj7l8vlZUWQuXPn5s0338zGG2/crDnWxmOP\nPVZ0BAAAAAAAgJbh1FOTTTdNjj8+eeutD+Yvv5z075/ce2+y557F5QNYQ06GgRo1derUVT7nwx/+\ncLNmWJ33nzJlSrNmAAAAAAAAoAr22y95+ulkiy0q52++mRxwQN3VSQAthDIM1Kh//OMfDWb1r+bp\n2bNnOnbs2KwZunTpku7duzfYu76ZM2c2awYAAAAAAACqZOedk2eeST7xicr5/PnJiScmgwcXkwtg\nDSnDQI1qrAxTX8+ePauSY1X7rConAAAAAAAALUifPsmTTyaHHlo5X7Ik+cIXkssuq/szQA1ThoEa\n9Vb9+xjrKZfLSZIePXpUJceq9pk1a1ZVcgAAAAAAAFAlPXok996bfPazDdd+8IPk9NOTd9+teiyA\n1aUMAzVq/vz5K13v1q1bVXJ07959WQGnMQsWLKhKDgAAAAAAAKqoY8fkV79KvvnNhmu33pocfniy\ngn+5G6BoyjBQo957770VrpVKpXTo0KEqOVa1z8KFC6uSAwAAAAAAgCorlZIrrkiuvz5p375y7fHH\nk332SV59tYhkACulDAM1alUlE2UYAAAAAAAAquJf/qXu2qTlby6YMCHp3z957rlicgGsgDIM1Kgl\nS5asdL398u3bZrKqfVaVEwAAAAAAgFbg8MOTJ59MPvzhyvnUqcnAgcnDDxeTC6ARyjBQo1Z1Isui\nRYuqkmNV+3Ts2LEqOQAAAAAAACjYbrslo0YlO+5YOZ89OznyyOSGGwqJBbA8ZRioUeutt95K16tV\nhnnvvfdWuq4MAwAAAAAA0IZsvXUyYkTdaTD1LVqUnHVWcuWVSblcSDSApVZ+9ARQmJWVYcrlchYu\nXFiVHKsqw6yqtMPqmzt3brp27bpWr+22/B2dAAAAAAAAzWWDDZKHHko+85nk9tsr1/7935NXX00G\nD078S9XQ4s2dO7eqr2sqyjBQo1ZUbiiVSimXy5kzZ05VcsyePTulUmmF6927d69Kjragb9++a/3a\nsoY1AAAAAABQTZ07J7femmyxRfLjH1euXX998ve/J3fckfgtCVq0lvp7sGuSoEZtuOGGK11/5513\nqpJjVfusKicAAAAAAACtVLt2yX/+Z/LznyfL/8vVDz6Y7Ldf8vrrxWQD2jQnw0CN2mijjVa6/tZb\nb1Ulx9tvv73S9VXlZPVNmjQpvXr1KjoGAAAAAADAmvnSl5LNN09OOy1ZsOCD+fjxyV57JQ88kOy4\nY3H5gLW2tjeWzJgxY51uxlhXyjBQozbeeOMGs3K5vOzKonfffTfvvPNOevbs2WwZZs2alYULFy67\nmml1c7J2unXrtsLrsQAAAAAAAGraCSckv/99cswxyT/+8cF88uRk772Tu+9O9t23uHzAWlnb3y/n\nzZvXxEnWjGuSoEZtueWWq3zOG2+80awZVuf9t9hii2bNAAAAAAAAQAvRv38ycmSyzTaV81mzkkMO\nSe64o5hcQJujDAM1qlu3bsuuICotf8fi+yZPntysGV555ZUGs/pZevfunS5dujRrBgAAAAAAAFqQ\n7bdPRo1K9tijcv7uu8k//3Ny1VXJCm4kAGgqyjBQw/r27bvC64mS5KWXXmrW/V9++eVG50uvayry\njjcAAAAAAABqVO/eyWOP1V2ZtLxLLkkuvjhZvLj6uYA2QxkGatjOO++80vUXX3yxWfdf1fuvKh8A\nAAAAAABtVLduybBhyec/33DtZz+rOyVm/vzq5wLaBGUYqGG77bbbStefffbZZt1//PjxK13fdddd\nm3V/AAAAAAAAWrAOHZLBg5Pvfa/h2rBhycEHJ2++Wf1cQKunDAM1bEVlmFKplHK5nOeee26l1yit\ni8WLF+ePf/xjSqXSCp+jDAMAAAAAAMBKlUrJZZclt9ySdOxYuTZyZLL33snf/lZMNqDVUoaBGtav\nX7907tw5SZaVUuqXX+bMmZNx48Y1y96jR4/OvHnzKvasX4zp0qVL+vXr1yx7AwAAAAAA0MoMGpQ8\n+GDSs2fl/C9/Sfr3T8aMKSYX0Copw0AN69SpU/bee++Vnv7y8MMPN8vejzzySKPzcrmcUqmUfffd\nNx2Xb+8CAAAAAADAihx4YPL008nmm1fOp09P9t8/uffeQmIBrY8yDNS4Qw89dIVr5XI5w4YNa5Z9\nf/e73610/ZBDDmmWfQEAAAAAAGjFPvaxZNSoZJddKufz5iXHHZf84hfF5AJaFWUYqHEnnXRSg9nS\n01mSZPz48XnppZeadM8JEybkT3/6U0qlUqNXJJVKpXzqU59q0j0BAAAAAABoIzbfPHnyyeSggyrn\nS5Ykn/988m//lqzk5gSAVVGGgRq3zTbbZK+99qoowCzv6quvbtI9f/aznzU6X5phwIAB2XLLLZt0\nTwAAAAAAANqQ9ddP7r8/OfPMhmv/8R9184ULq58LaBWUYaAFOPvssxudLz255de//nXeeOONJtlr\nypQpueWWW1ZYvEmSs846q0n2AgAAAAAAoA1bb73khhuSb3yj4dottyRHHpm8/XbVYwEtnzIMtABn\nnHFGevfuneSD64rK9Y6GmzdvXi677LIm2etrX/taFixYULFH/WLMJptsktNPP71J9gIAAAAAAKCN\nK5WSK69MfvGLpH37yrVHH0323Tf5+9+LyQa0WMow0AJ06tQpF110UUUBJvng2qJyuZybbropd999\n9zrtc/vtt+fWW29d9p6N7XXxxRenY8eO67QPjZs7d26jDwAAAAAAgFbv3HOTe+5JunatnP/pT8le\ne9X9J1CTavF3zlJ5+V+8oQ174okncsABB1SUQeqfxLL11lvnb3/7WyHZ5s+fn3/6p3/Ka6+9tsJ8\nPXv2zMMPP5w99thjjd//mWeeyaGHHrrsS2lFn/+FF15Ip06dmuIjtWkzZsxYdtrPqviaBgAAAAAA\n2oyxY5OjjkqmT6+c9+yZDBuWHHRQMbmAFap/08jKTJ8+Pb169WrmNHWcDAMtRJcuXXLVVVct++vl\nr0sqlUp55513cuihh+a+++5bo/e+++67c/jhhzcowiy19FSYq666ShEGAAAAAACA5tOvX/LMM8kO\nO1TO33knOeKI5Oabi8kFtCgdig4AzeWpp57KX/7ylzV6zYsvvrjS9Tlz5uSXv/zlGmfZf//9s+22\n267x65Z30kkn5bTTTstvfvOblEqlZSfELC2rLC3EHHvssfn0pz+dyy+/PDss/w8K9bzwwgv51re+\nldtvv71BuSbJsvcvlUo5/fTTc/zxx6/zZ2DFJk2aVLUmJAAAAAAAQM3q2zcZMSI57ri6/1zqvfeS\nM89MXnst+frXk9U8jQJoXnPmzGkwmzFjRvr27VtAmjquSaLVOuuss3LjjTcWHSOlUim//vWvc+aZ\nZzbJ+82dOzf9+vXLiy++uMICS/3ZrrvumgEDBqRv377p3r17Zs+enUmTJmXEiBH54x//2Ohrls6W\n/vVOO+2U0aNHp6/SaGYAACAASURBVOvydzSy1hq7Jqmax4IBAAAAAADUvPnzkzPOSP7nfxqunXde\ncs01SQfnP0AtKvr3UN8MtHqrez/ZUivrhzXle62tbt265aGHHsq+++6b1157rSLX8qfEJMmzzz6b\nZ599ttH3Wp0yzdZbb52HHnpIEQYAAAAAAIDq6tIluf325JJLkp/+tHLtF79IpkxJbrst6datmHxA\nzWpXdACohqUlkdV5VON91tWWW26Zxx57LNttt13FCS7LX51UvxjT2KN+1voFmqWv23777fP73/8+\nm222WbN+HgAAAAAAAGhUu3bJT36SXHVVw2uR7r032X//5I03CokG1C5lGNqElRVCmuvR3LbZZpuM\nGTMmhx122EoLMKv792X51x9xxBEZPXp0tt5662b/LAAAAAAAALBSF19cd0pMp06V87Fjk/79kxdf\nLCYXUJOUYWj11uQ0l6Z+NLf1118/999/f2644YZssskmDa5LWlmOxp5TKpWyySab5Kabbsq9996b\nnj17NvtnAAAAAAAAgNXyqU8ljzySbLhh5XzSpGTAgGTkyGJyATVHGYZWrYgTYap9QkySnHHGGfnb\n3/6Wa6+9NjvttFOD/VdU1Kn/vJ133jmDBw/OpEmTMmjQoKrkBgAAAAAAgDWyzz7JiBHJ8rcbzJyZ\nHHRQMmxYIbGA2lIqV+P4CqCqXn755Tz44IMZP358JkyYkClTpmT27NmZN29eunbtmh49emTzzTfP\nTjvtlN122y1HHHFEtt1226JjtykzZsxI7969K2bTp09Pr169CkoEAAAAAADQgrz+enL00cm4cZXz\nUin5yU+Siy4qJheQpPjfQ5VhAApQ9Jc/AAAAAABAizdnTnLKKcn99zdcu/ji5D//M2nnshQoQtG/\nh/p/PgAAAAAAAAAtT/fuyd13J+ec03DtJz9JTj01WbCg+rmAwinDAAAAAAAAANAydeiQ/OIXyXe+\n03DtjjuSQw5JZs6sfi6gUMowAAAAAAAAALRcpVLyb/+W3HhjXTmmvqefTvbeO3nllUKiAcVQhgEA\nAAAAAACg5TvzzOT++5MePSrnEycme+2VjBtXTC6g6pRhAAAAAAAAAGgdDjkkeeqppE+fyvkbbyT7\n7Zc88EAxuYCqUoYBAAAAAAAAoPX4+MeTZ55Jdt65cj53bnLMMcn11xeTC6gaZRgAAAAAAAAAWpct\ntkiefjo54IDK+eLFyTnnJP/+70m5XEw2oNkpwwAAAAAAAADQ+nzoQ3XXIg0a1HDtyiuTs85KFi6s\nfi6g2SnDAAAAAAAAANA6deqU3HRT8vWvN1y78cbk6KOTd96pfi6gWSnDAAAAAAAAANB6tWuX/Md/\nJIMH1/25vocfTgYOTKZMKSYb0Cw6FB0AgDpz585N165dG8y7detWQBoAAAAAAIBW5vzzk802S049\nNZk//4P5H/+Y9O9fd6XSzjsXlw9aqLlz567WrJpK5XK5XGgCgDZoxowZ6d2792o919c0AAAAAABA\nExo9uu56pBkzKufrr5/ceWdywAHF5IIWqlQqrdbzpk+fnl69ejVzmjquSQIAAAAAAACg7fjkJ5NR\no5KPfKRy/vbbyWGHJb/5TTG5gCajDANQIyZNmpQ5c+Y0eAAAAAAAANDEtt02GTky2Wuvyvl77yWD\nBiU/+EHi9H5YLY39xjlp0qRCM3UodHcAlunWrVu6detWdAwAAAAAAIC2YeONk0cfrSu/3HVX5dpl\nlyWTJydXX520b19MPmghGvuNc968eQUk+YCTYQAAAAAAAABom7p2TX73u+RLX2q49l//lZx4YlLw\nj/rAmlOGAQAAAAAAAKDtat8++dnPkv/8z4Zr99yTHHBAMn169XMBa00ZBgAAAAAAAIC2rVRKLrkk\nue22ZL31KtdGj04GDEheeqmYbMAaU4YBAAAAAAAAgCQ55ZTk4YeTD32ocv7Xv9YVYp55pphcwBpR\nhgEAAAAAAACApQYOTEaMSLbcsnL+5pt1VybddVcxuYDVpgwDAAAAAAAAAPXttFPdKTC77lo5X7Ag\nOfHE5Npri8kFrBZlGAAAAAAAAABY3qabJk88kRx2WOW8XE6++MXka19LliwpJhuwUsowAAAAAAAA\nANCYHj2S4cOTs89uuPajHyWDBiXvvlv9XMBKKcMAAAAAAAAAwIp07Jhcf31yxRUN1267LTn00GTW\nrKrHAlZMGQYAAAAAAAAAVqZUSr75zeRXv0o6dKhce/LJZO+9k8mTi8kGNKAMAwAAAAAAAACr46yz\nknvvTbp3r5y/8ELSv3/y3HPF5AIqKMMAAAAAAAAAwOo67LC602A23bRyPm1asu++yUMPFZMLWEYZ\nBgAAAAAAAADWxK67JqNGJTvuWDmfMyc56qjk178uJheQRBkGAAAAAAAAANbcVlslI0Yk++1XOV+8\nODn77ORb30rK5WKyQRunDAMAAAAAAAAAa2ODDequRTr11IZrV1yRfO5zyXvvVT0WtHXKMAAAAAAA\nAACwtjp1SoYOTb761YZrv/pVcswxyezZ1c8FbZgyDAAAAAAAAACsi3btkh/+MLnmmqRUqlx76KG6\nq5SmTSsmG7RByjAAAAAAAAAA0BS+8IVk2LCkc+fK+bPPJnvtlbzwQjG5oI1RhgEAAAAAAACApnL8\n8cljjyUbb1w5f/XVZMCA5Mkni8kFbYgyDECNmDt3bqMPAAAAAAAAWpi99kpGjky23bZy/tZbySGH\nJL/9bTG5oBnU4u+cpXK5XC40AUAbNGPGjPTu3Xu1nutrGgAAAAAAoIWaPj055phk9OiGaz/6UXLJ\nJUmpVP1c0IRKq/m/4enTp6dXr17NnKaOk2EAAAAAAAAAoDn07l13ZdKxxzZc++pXk4suShYvrn4u\naOWUYQBqxKRJkzJnzpwGDwAAAAAAAFqwrl2TYcOS889vuHb11cnJJyfz51c/FzSRxn7jnDRpUqGZ\nOhS6OwDLdOvWLd26dSs6BgAAAAAAAE2tffvk2muTrbZKLruscu3OO5MDD0yGD0823riYfLAOGvuN\nc968eQUk+YCTYQAAAAAAAACguZVKyaWXJkOHJh07Vq4980wyYEDy178Wkw1aGWUYAAAAAAAAAKiW\n005L/vd/k/XXr5y/9FLSv38yenQxuaAVUYYBAAAAAAAAgGraf/9kxIhkiy0q5zNm1K0NH15EKmg1\nlGEAAAAAAAAAoNp23jkZNSrZZZfK+fz5yfHHJ//1X8XkglagQ9EBAAAAAAAAAKBN2myz5Kmnkk99\nKnn44Q/mS5YkF1yQvPpq8t3vJu2qe85FuVzO5MmTM3369MyfPz8LFixIknTu3DldunRJ7969s9VW\nW6VUKlU1F6wuZRgAAAAAAAAAKErPnsl99yXnnJPceGPl2ve/X1eI+dWvkk6dmmX7crmcSZMmZdy4\ncRk7dmzGjRuX8ePHZ9asWSt93QYbbJDdd9+94tG3b18FGWpCqVwul4sOAdDWzJgxI717966YTZ8+\nPb169SooEQAAAAAAAIUql5Mrrki+/e2GawcckAwblnzoQ0223ZQpUzJkyJAMGTIkU6dObbC+XpJN\nk3RJ0vn92YIk85NMS7Kwkffs06dPzjnnnJx77rnp06dPk2Wl5Sn691BlGIACFP3lDwAAAAAAQI26\n/vrk859PFi+unO+8c/LAA8kWW6z1W5fL5Tz22GMZPHhw7rrrrix+f4/1kuySZPd6j4++P2/MwiT/\nl2Tc+4+xSf6UDwoy7du3zwknnJALLrgg+++/v9Ni2qCifw9VhgEoQNFf/gAAAAAAANSwBx5ITj45\nmTu3ct6nT3L//cnHP75Gb1cul3PrrbfmyiuvzMSJE5fNByY5P8kJSdb1EqZ3k9yZZHCSp+rN/+mf\n/imXX355Pv3pTyvFtCFF/x7ariq7AAAAAAAAAACr54gjkieeSDbZpHI+dWqy777JI4+s9ltNmzYt\nxx13XAYNGpSJEyeme5ILUneSyxNJTs26F2Hy/nucmuTJJM+nrmTTPcnEiRMzaNCgHH/88Zk2bVoT\n7ASrpgwDAAAAAAAAALVm992TZ55Jdtihcj57dl1Z5qabVvrycrmcm2++OTvttFOGDx+ejkmuTDI1\nybWpuwapuXwsdSfETH1/z45J7rnnnuy888655ZZb4gIbmpsyDAAAAAAAAADUoq23TkaOTPbZp3K+\naFHymc8k3/lO0kixZOlpMGeeeWbeeuut7J5kfJJvJOlRhdhL9Xh/z/FJdk8ya9asnHHGGU6Jodkp\nwwAAAAAAAABArdpww+Thh5OTT264dvnlybnn1pVj3jdhwoT069dv2Wkw30kyKs17EsyqfPT9DPVP\nienXr1/+/Oc/F5iK1kwZBgAAAAAAAABqWefOyW23JV/+csO1669PjjsumTMnY8aMycCBAzN16tTs\nmGRckn9LXQGlaB1Td0rMuCQ7Jpk6dWoGDhyYMWPGFBuMVkkZBgAAAAAAAABqXbt2yY9/nPz0p0mp\nVLl2//0Zs8ceOejAAzNz5szskeSpJB8rIucqfCx12fZI8o9//CMHHXSQQgxNThkGAAAAAAAAAFqK\niy5K7rij7rSY901IcvjEiZk9Z072S/Joko2KyrcaNkpdxoFJZs+encMPP9yVSTQpZRgAAAAAAAAA\naElOOil59NFkww0zLcmhSWYm+WSS4Ul6FBpu9fRIcm/qToiZOXNmDjnkkEybNq3gVLQWyjAAAAAA\nAAAA0NIMGJDyiBE5r2vXTE2yY5L70zKKMEv1SPJA6rJPnTo1n//851MulwtORWugDAMAAAAAAAAA\nLdDQsWMzfN68dEzy29T21UgrslHqsndMcs8992To0KEFJ6I1UIYBAAAAAAAAgBZm2rRpufDCC5Mk\n30zysWLjrJOPJfn39/984YUXui6JdaYMAwAAAAAAAAAtSLlcznnnnZdZs2Zl9ySXFh2oCVyaZLck\ns2bNcl0S60wZBgCgjZg7d25KpVJKpVLmzp1bdBygDfC9A1Sb7x2gCL57gGrzvQMkya233prhw4dn\nvSQ3JOnQjHvNTVJ6/9Gc3zodU/dZll6XdOuttzbjbrR2yjAAAAAAAAAA0EKUy+VceeWVSZLLk3y0\n2DhN6mOp+0xJ8p3vfMfpMKw1ZRiAGjF37txGHwAAAAAAALDU448/nokTJ6Z7kouKDtMMLkrSPckL\nL7yQJ554oug4rIZa/J2zOU9LAmAN9O3bt9G5xisAAAAAAABLXXvttUmSM5P0KDZKs+iZ5Iwk/5W6\nz7r//vsXG4hV6t69e9ERGnAyDAAAAAAAAAC0AFOmTMldd92VJDm/4CzNaelnu/POOzN16tRCs9Ay\nKcMA1IhJkyZlzpw5DR4AAAAAAACQJEOGDMnixYuzb5KPFh2mGX0syT5JFi9enCFDhhQdh1Vo7DfO\nSZMmFZpJGQagRnTr1q3RBwAAAAAAAJTL5WXFkAsKzlINSz/jkCFDUi6XC83CytXi75zKMAAAAAAA\nAABQ4yZNmpSpU6dmvSQnFB2mCk5M0jF1V0O98sorBaehpVGGAQAAAAAAAIAaN27cuCTJLkk6FRul\nKjql7rMmH3x2WF3KMAAAAAAAAABQ45YWQnYvOEc1Lf2syjCsKWUYAAAAAAAAAKhxY8eOTdI2yzBL\nPzusLmUYAAAAAAAAAKhh5XI548ePT9I2yzDjxo1LuVwuNAstizIMAAAAAMD/Z+++o6Oo9/+PvzaQ\nQipFASkJQYrSQRSkI03QqyCIF0SRKyDqFVH06tdCsXBt144FLyooRUQUFCvSEekBBKRoCAihBQgh\ngUDI/v7wt7mbZEuy2ZnZXZ+Pc/ZAZjfzec8Hfe3szHtnAAAAgACWlpamEydOKEJSE6uLMVETSeGS\nTpw4obS0NKvLQRChGQYAAAAAAAAAAAAAgAB25MgRSdIlkiKsLcVUkfpzmyXp6NGjVpaCIFPe6gIA\n4K8oPz+/2LJjx45ZUAmAv5Ls7OyCvx89elQ5OTkWVgPgr4DcAWA2cgeAFcgeAGYjd4C/pvT0dEl/\nXiXF7JaQbKe/H5VkduqE//8/09PTaYgJIq7Ofbo6R2oUm50bawGA6Xbs2KFGjRpZXQYAAAAAAAAA\nAAAAmGL79u26/PLLTRmL2yQBAAAAAAAAAAAAAAAgZNAMAwAAAAAAAAAAAAAAgJBBMwwAWKBy5cpW\nlwAAAAAAAAAAAAAApjHzHKnNbrfbTRsNACBJys/PV0ZGhtVlAAAAAAAAAAAAAIApqlSporAwc67Z\nQjMMAAAAAAAAAAAAAAAAQga3SQIAAAAAAAAAAAAAAEDIoBkGAAAAAAAAAAAAAAAAIYNmGAAAAAAA\nAAAAAAAAAIQMmmEAAAAAAAAAAAAAAAAQMmiGAQAAAAAAAAAAAAAAQMigGQYAAAAAAAAAAAAAAAAh\ng2YYAAAAAAAAAAAAAAAAhAyaYQAAAAAAAAAAAAAAABAyaIYBAAAAAAAAAAAAAABAyKAZBgAAAAAA\nAAAAAAAAACGDZhgAAAAAAAAAAAAAAACEDJphAAAAAAAAAAAAAAAAEDJohgEAAAAAAAAAAAAAAEDI\noBkGAAAAAAAAAAAAAAAAIaO81QUAgL+dO3dOu3bt0h9//KGsrCzl5OQoOjpacXFxqlWrlho2bKjw\n8HCrywxIhw8f1q5du3TixAmdOnVKkhQfH69KlSqpQYMGqlatmsUVAoGJ3AFgNnIHgBXIHgBmI3cA\nmI3cAWA2cgcwDs0wAELCmjVr9MUXX+ibb77Rtm3bdOHCBbevLVeunBo3bqw+ffroxhtvVJs2bUys\nNLBkZmbqs88+09dff60lS5boxIkTHl9fuXJldenSRdddd51uuukmJSQkmFQpEHjIHQBmI3dK7ujR\no9q6dat++eUXbdu2TTt37lRGRoZOnjypkydP6uzZs4qKilJMTIyqV6+umjVrqlGjRmrevLk6d+6s\n2rVrW70JQMAge0omOzu7IHPS0tK0b98+7d+/XwcOHNDp06eVk5OjnJwc5eXlKTIyUtHR0apataou\nueQSNWzYUI0bN1a7du3UrFkz2Ww2qzcHsBS5A8Bs5A4As5E7/nP69GktW7ZMP//8s3bu3Kldu3bp\n2LFjBY1FkZGRio2NVWxsrGrXrq26devq0ksvVYsWLdSmTRtVqVLF6k2AgWx2u91udREA4KvZs2fr\npZde0saNGwuWleTAoXP0XXHFFXr44Yc1cOBAQ2oMRAcOHNCkSZM0ffp0ZWdnSyrZvEn/m7uYmBjd\ncccdevTRR1WzZk3DagUCDblTNqdPn9bGjRu1fv16rVu3TuvXr9dvv/3m8Xc+/PBD3X777SZVCAQe\ncse748ePa8mSJfrxxx+1ePFi7dq1q9hr3M2Zq4/EDRs21KBBgzR06FAlJSX5vV4gGJA97uXm5mrt\n2rVatWqV1qxZoy1btmjv3r0u88TbnBX9ncqVK6tv374aMmSIunTp4s+ygYBH7phj0qRJeuKJJ0r0\n2r179yoxMdHgigDrkDuuTZw4URMnTrRs/A4dOmj58uWWjQ8Yidzxj9zcXM2dO1fvv/++VqxYoby8\nvELPl+YYUL169Qq+BN69e3fFxMQYUjOsQTMMgKD066+/6q677tKKFStcvql5irair3e8tkuXLnrn\nnXfUoEED/xYbQOx2u15++WVNnDhRp0+fdjsX7rh6fWxsrCZOnKgxY8bwDUaENHKn9HJzc5WSklLQ\n9LJu3Trt3LlT+fn5Ba8pSW588MEHNMPgL4nc8eyPP/7Qp59+qjlz5mjt2rUF2+iv/RG73a5y5crp\nlltu0fjx41W/fn2/rBcIdGSPe1u2bNFdd92lTZs26dy5cwXL/f05yDFvTZs21YQJE9SvXz+/rh8I\nNOSOeXbt2qUWLVooNzfX4+vsdrtsNptSU1NphkFIInc8czTDWHWst3379jTDIOSQO/6Rm5ur119/\nXc8//7yOHz8uyT+fxxxzGhERoQ8++ECDBg0q8zoRGMKsLgAASmvevHm66qqrCu002O32gof055uf\nu0fR1zuWL126VK1bt9YXX3xh2bYZ6dSpU7ruuuv08MMPKzs7u9hcSJ7nzd3rs7OzNXbsWN1www06\ndeqUNRsHGIzc8S4vL0+bNm3Se++9p5EjR6pVq1aKi4vT1VdfrdGjR2v69On69ddfC22/q7lxnlN6\ntvFXRu6498Ybb6h9+/ZKSkrS2LFjtWbNGklyu+0l5Wp+8/PzNXPmzIIT0p4uWwyEArLHs/3792vN\nmjU6f/58se2WVOrcKfp7Red469at6t+/v7p166Z9+/b5bTuAQELumGvkyJE6e/asJNefw/gMhr8C\ncqd03GWFvx+OsYBQRO74x8KFC9WgQQM98sgjOnHihNvzViXhbv7Pnz+vo0ePGlI/rEEzDICgMnny\nZN18880FzRyu3qxKsnNd9E3S8funT59W//799fbbb1u2jUY4duyYrr76an377bfFdg68nZB2tVPg\n/FrHsoULF6pDhw4F3bhAqCB3SmbhwoW64oordNddd+m///2vUlJSdOHCBY8nijjYCrhG7nj2r3/9\nSz///LMk1w0wzstLu4/jbl3nz5/XU089pS5duig9Pd3U7QXMQvaUjqv9mNLkjrvMcjWXS5YsUbNm\nzfTNN9+Yvp2Akcgdc02ZMkXLly8vmFfgr4jc8Q9PJ+19fTjWC4QacqfscnNzde+99+pvf/ub/vjj\nD4/HgZyXl/QzmAP7R6GJZhgAQWPatGkaPXp0wc/Ob0zOOwwl2bl21djhvJ777rtPH3/8sYlbZ5xT\np06pZ8+e2rFjh8udLal4Y4ynefO04/XLL7+oZ8+eysrKsmZjAT8jd0qvJCeg3b0WALlTWp4ODLl6\nzts+jrv1SH/O26pVq9S+fXulpqZats2AEcie0ivJ/k5J58vVZzTHeh3LTp06pRtuuEEzZswweUsB\nY5A75jp06JAeeeSRQhnD5zD81ZA7/lOSE/dleQChgtwpu8zMTPXo0UNvv/222/NZZTkGROaEvvJW\nFwAAJbF27VqNHDmy4GdXOw2Ov7dr106DBw9Wu3btVKdOHcXFxSkrK0u///67fvrpJ82YMUNr1qwp\ntrPg/CaZn5+vESNG6PLLL9cVV1xh7sb62dChQ5WSklJonqTCO002m00VK1bUoEGD1KdPH7Vo0UIX\nXXSR7Ha7jh07ppSUFC1cuFCzZ89WZmZmwe84OP+8adMmDRs2THPnzjV3QwE/I3d85+pDhLsDrXzg\nAP6H3Ck9VyeNiy6/6KKL1LJlS9WtW1e1a9dWXFycwsPDdeLECWVkZGjbtm1atWqVTp8+XbCeogeb\nnJft3btX3bp105o1a3TxxRebtKWAccge37jLHEmKj49X/fr11bBhQ1WvXl3x8fGKj49XhQoVdPr0\naZ06dUpHjx7V5s2btXXr1kL541ifq/y5cOGC/vGPf6hq1arq0aOHSVsK+B+5Y7577rlHmZmZxfIF\n+Ksgd/yLZjrAO3Kn7I4ePaprrrlG27Zt83h+y/nnBg0aqHnz5qpXr56qVKmimJgYnT17VidPntSJ\nEyf022+/adOmTTp48GDButgnCm02O//CAAJcVlaWmjdvrrS0NEmudxpsNpsaNGigt99+W126dPG6\nzkWLFumee+7Rb7/9VrDM1TfxkpOTlZKSotjYWD9tjblef/11jRkzxuOOQlhYmMaMGaNx48YpPj7e\n4/oyMzM1fvx4vfHGGwXz7u7f4/XXX9e9995rzIYBBiN3Sm/+/Pnq16+fxwMinppkij7nPM8ffPCB\nbr/9dv8WDAQYcqfkKlSooHPnzhX8XHSbKlSooF69eql3797q3r276tSp43Wd+fn5WrJkiV544QUt\nWrTI5Qlp5zEkqV27dgW3GgCCFdlTOgsXLtTf/vY3Sf/blvDwcLVq1UodO3ZUhw4ddNVVV6latWql\nWu+yZcs0bdo0zZkzR2fOnHH7WUv6cy6rVq2qLVu2qGrVqn7aMsA85I755s2bpwEDBhQ78ebutIDz\nv0NqaqoSExPNLBfwO3Kn9CZOnKiJEye6zA2bzab33nvP0PGrV6+uPn36GDoGYCRyp+xycnLUuXNn\nbdiwwe15KMffmzdvruHDh6t///4l/ix27NgxrVy5UvPnz9fChQuVkZFR8Nwrr7xS6Io+CHJ2AAhw\n999/v91ms9nDwsLsNput4OH4OSwszN6rVy/7qVOnSrXezMxMe7du3byue+zYsQZtmbEOHDhgj42N\ntYeFhRXaPuefo6Ki7PPnzy/1uj/77DN7ZGSkx3XHx8fb09PTDdgywHjkTul98cUXxXKg6MPxnONR\nsWJFe9euXe2XXHJJsTlxno9p06ZZvXmA4cidkouKinK5/9GxY0f7Rx99ZD99+nSZ1r9s2TJ7rVq1\nCuWVu3l78cUX/bRVgDXIntL56quv7GFhYfZq1arZhw8fbv/yyy/tZ86c8dv609LS7DfccEOhOXI3\nd8OGDfPbuICZyB1zZWZm2mvUqFFsvyYsLMxer149r/OVlpZm9SYAZUbulN6ECRM8HqcB4Bm5U3bX\nX3+91+1MTk62f/7552UeKz8/375o0SJ7v3797OHh4fbXXnvND1uAQEEzDICAtn37dnt4eLjLpgvH\n3zt06ODzAcjs7Gx7mzZtXO7cO36OiIiw//rrr37eMuMNGjTI43aVK1fO/sUXX/i8/k8//dTrzsiQ\nIUP8uEWAOcgd3ziaYdw1vsTGxto7duxof+CBB+wzZsyw79y5s+B3u3TpQjMM/tLIndKJiooqqD8i\nIsI+bNgw++bNm/06xrFjx+wdOnRwu6/jWJaQkGDPyMjw69iAWcie0ktNTbWvXLnS8HGeeOIJr/lT\nvnx5+2+//WZ4LYA/kTvmGzFiRLHPV44/v//+e5phEPLIHd/QDAP4jtwpuxdeeMHrPsrgwYPtWVlZ\nfh97//799l9++cXv64V1wqy+Mg0AeDJhwgTl5eVJcn3JtypVquiTTz5RVFSUT+uPjo7WnDlzVLFi\nxULrtjtdz9lK+gAAIABJREFUci0vL09PPfWUT+u3yo4dO/TJJ5+4vGy//f9fgu+hhx7SjTfe6PMY\nAwYM0JgxYwrW58z2/y9TN2vWLO3atcvnMQArkDtlY7PZFBUVpauuukr33HOP3n//fW3ZskWnTp3S\n8uXL9fLLL2vw4MFq0KCB1aUCAYPcKb3w8HCNHDlSu3bt0vvvv69mzZr5df1VqlTRggULdNlllxXb\n13Get6ysLL322mt+HRswC9lTenXq1FH79u0NH+fpp5/Wvffe6zF/8vPzNXXqVMNrAfyJ3DHXsmXL\nNHXq1IJ5sDndlmHQoEHq0aOHxRUCxiN3AJiN3CmbTZs26cknn3R7zslms+nBBx/UjBkzDLkVVK1a\ntdS4cWO/rxfWoRkGQMBKTU3VvHnzPDZ0PPvss6pRo0aZxklMTNTEiRNd3ivZ8Qb76aefat++fWUa\nx0wvvPBCwfa42uFKSkryy87Qs88+q1q1ahVav/M82u12vfjii2UeBzALueO7Bg0aaMqUKdqwYYOy\nsrK0evVqvfHGGxo6dKgaN27sck4BkDu+uOmmm7Rt2za9/fbbSkpKMmycSpUqaf78+QoPD5cktwdi\npk2bZlgNgFHInsD33HPPqWbNmpKK54/057/TggULzC4L8Bm5Y67c3FyNHDnS5XMVK1bUq6++anJF\ngPnIHQBmI3fKbtSoUTp//rykwue2HPN3xx13cM4JpUIzDICA9eabb+rChQuSXDd01K9fXyNGjPDL\nWPfcc4/q1q1baAznHYkLFy5o8uTJfhnLaMePH9esWbM87nA9/fTTioiIKPNYFSpU8LrT9fHHH+vk\nyZNlHgswA7nju8svv1zDhw9XixYtVK5cOavLAYIGuVN6M2bMUL169UwZq379+rrnnnuK7es4/7x/\n/35t3LjRlHoAfyF7Al9MTEzBlTidOV8tZvv27XzWQtAgd8z11FNPaffu3ZL+t+2O/Hj++ed10UUX\nWVkeYApyB4DZyJ2ymT59utatWyepeCOMJDVt2lTvvPOOZfUhONEMAyAg5efna/bs2R4bOh588EG/\nXWmgXLlyGj16tMemjpkzZ/plLKPNnj1b586dk+R6h6tmzZr6+9//7rfxbr31VlWrVq3QOM7zeO7c\nOX366ad+Gw8wCrkDwGzkTnB46KGHvL5m6dKlxhcC+AnZEzz69u3r9TU7d+40oRKgbMgdc23ZskUv\nvfRSsdsjSVK7du00fPhwK8sDTEHuADAbuVM2eXl5xW6P5Pz3sLAwffjhhwVX7wVKimYYAAFp8eLF\nSk9Pl+S6oSMqKkq33nqrX8ccOnRowdVSXDV1HDx4MChOdLjbwXHscA0bNsyvV22IiIjQ0KFDXe50\nOcyYMcNv4wFGIXcAmI3cCQ41a9ZU8+bNC12NoaitW7eaXBXgO7IneFx66aUFV29wlz+HDh0ysyTA\nJ+SOeex2u0aMGKG8vLxiz4WHh+vdd9+1oCrAfOQOALORO2Uza9Ys7d+/X1LhbXAci7n11lvVokUL\nq8pDEKMZBkBA+vLLL10ud7zxXXfddYqJifHrmAkJCerdu7fHpg53dQWK48ePa/Xq1R67i2+55Ra/\njzto0CCXyx0dyKtWreLy3Qh45A4As5E7waNTp04en//9999NqgQoO7InuDiuwulOTk6OSZUAviN3\nzPPqq68Wu72AY54feughNWrUyMryANOQOwDMRu6UzSuvvOLxvNZjjz1mYjUIJTTDAAhIixYt8vjG\nd9111xkyrqf12u12/fDDD4aM6y8//vhjoYMdUuHu48TEREMOfDRv3lw1a9YsNJ7zDlh+fr4WL17s\n93EBfyJ3AJiN3Ake1atXd/uc3W6n6RdBhewJLvHx8R4PbsfGxppYDeAbcscce/fu1bhx4wrdHsmh\nbt26GjdunFWlAaYjdwCYjdzxXUpKilJSUiQVPq/laCTq1KmTGjZsaGWJCGI0wwAIOIcOHdKOHTsk\nye1Bv+7duxsydo8ePYotc74k/rZt23T48GFDxvaHH3/80eVyxzYYNW/Sn/8mng7SLlq0yLCxgbIi\ndwCYjdwJLhdffLHL5Y45O3PmjJnlAD4je4LPkSNHPB5Ur1KlionVAKVH7phn1KhRys7OllT8qjBv\nvfWWIiMjrSwPMA25A8Bs5E7ZzJw50+PzgwcPNqkShCKaYQAEnLVr1xZb5nzwr3bt2gVXIfG3pKQk\nXXLJJcXGdOa43GwgcjV3ztq3b2/Y2O3atXP7nN1u91obYCVyB4DZyJ3g4u42JI6DXFFRUWaWA/iM\n7Aku+fn5Sk9P9/ia+vXrm1QN4BtyxxwfffSRvv/++0Lfonb8+fe//93liTIgVJE7AMxG7pTNp59+\n6vELANdff72J1SDU0AwDIOBs3LjR5XLHh/hWrVoZOn7r1q09XuFk06ZNho7vq/Pnz2vbtm0edxqM\nnLvWrVu7XO7cgXzhwgXDxgfKgtwBYDZyJ7j88ccfbp+z2WyqVKmSidUAviN7gsuKFSsKmvFc3Qa3\nYcOGbq9cBQQKcsd4GRkZGjt2rMvbIyUkJOiVV16xqjTAEuQOALORO77bvXu30tLSJLn/zONo9gF8\nQTMMgIDjuDegO82aNTN0fG/r91afVbZt26bz589Lcr3TUK5cOTVq1Miw8Zs0aaKwsLBC4zrvgJ07\nd07bt283bHygLMgdAGYjd4KLuwNbDpdeeqlJlQBlQ/YEF3eXC3ccVOcbkggG5I7xRo8erWPHjkkq\nfnuk5557TlWrVrWyPMB05A4As5E7vlu6dKnL5Y59mTZt2phbEEJOeasLAICidu3a5fHqJkZfBrpe\nvXpun7Pb7dq9e7eh4/tq165dHp9PSkpS+fLGxX54eLhq166tffv2uX3N7t271bRpU8NqAHxF7gAw\nG7kTPLKysrRy5UqP/15NmjQxsSLAd2RP8EhJSdH7779f6N+r6Jcd/vnPf1pRGlAq5I6xvv32W82a\nNavY7ZEk6eqrr9bIkSMtrhAwH7ljrqNHjyo1NVUHDx7U6dOndeHCBVWoUEHR0dG65JJLVKtWLVWr\nVs3qMgFDkTu+W758ucfnS3pVnePHj2v79u06evSosrKyVK5cOcXExOjiiy9WnTp1DLtNFQIfzTAA\nAs7evXs9Pu/pjd0f3K3fcUDBW31WSU1NdbnccTDE6HmT/py7tLQ0tzt+7moErEbuADAbuRM85s6d\nq3PnzhU6uVRU586dTa4K8A3ZExwOHTqkQYMGKT8/X1LhK246Pt/dcccdSkxMtKpEoMTIHeNkZ2fr\n7rvvdnl7pPDwcE2ZMsWq0gBLkTvGmzJlin744QetXr1aBw8e9Pr6ihUrqlWrVmrXrp369OmjNm3a\neGwcAIINueO7lJQUj3ngae6WL1+uTz/9VAsXLvS6jQkJCWrbtq169Oih/v37KykpydeSEWS4TRKA\ngHL48GGdPXtWktyebKhRo4ahNbhav3Mt2dnZBZefDSTe3uyNnreSjEEzDAIRuQPAbOROcHn99deL\nLXM+UFOjRg1dccUVZpYE+ITsCQ5bt25V586dtXPnTkmub4GblJSkl19+2ZL6gNIgd4z1+OOPKy0t\nTVLx2yONHTvW0FtlA4GK3DGOc86MGjVKn332mdLT02Wz2bw+MjMztXjxYj3zzDNq166dateurfHj\nxys9Pd3irQLKjtzxXV5entc7Hri6LfWCBQvUqlUrdenSRZMnTy74granx6lTp/Tdd9/poYceUnJy\nsq699lotWbLEqE1DAKEZBkBAKUknefXq1Q2toSTrP3DggKE1+MLb3Bk9byUZIxDnDSB3AJiN3Ake\nn3zyiTZv3uzyqjCOk0233nqrRdUBpUP2BLa0tDSNHTtWV1xxhfbs2VPolieOv9vtdlWqVEnz5s1T\nbGys1SUDXpE7xlm7dq3efPNNl1eFSU5O1rhx46wqDbAUuWMOx/6JpIJ9FE8P59+x2WxKT0/X008/\nrUsvvVT/+te/lJmZaeXmAGVC7vhu9+7dOn/+vCT3jUTOt1k7fPiwrrvuOvXt27fgWE1Js0gqnEPf\nf/+9unXrpr59+2rfvn0GbymsRDMMgICSkZFRbJnzB/r4+HiFh4cbWkOFChUKDiy6uzzb8ePHDa3B\nF67mzlnVqlUNr8Hb/V8Dcd4AcgeA2cid4HDmzBn93//9X7H5cf65fPnyuvfee80uDfAJ2RMYzp49\nqyNHjmjXrl364osvNGHCBHXq1El169bVK6+8ogsXLhS81rkJRvrzM92iRYvUokULq8oHSoXcMUZe\nXp6GDx9e6CoNjj9tNpsmT56sqKgoK0sELEPuGMv5xHPRZZ4e7k5K5+bm6qWXXlKTJk303XffWbFJ\nQJmRO77bv39/sWVFj7kkJCRIkn7++We1atVK33zzTaEGGOff8/RwvN7xcCxfsGCBWrZsqa+++srI\nTYWFaIYBEFC8NXTEx8ebUoe3cbzVaYWMjAyP91Y0Y+48jWG32wNy3gByB4DZyJ3g8MgjjxTchtLd\nVWGGDh2q2rVrW1AdUHpkjzmGDBmisLAwt4/o6GhVr15dl112mW666SY99dRTWrlypSS5PEjrWN67\nd29t3rxZLVu2tGzbgNIid4zx3HPP6ZdffpH0v30Sx58DBw5Ur169LK4QsA6543+eTiaX9OFuHY71\nHzhwQH369NG///1vy7YT8BW54ztvt0qLi4uTJK1atUo9e/bUoUOHCl2515crVDk4Lztx4oT69u2r\nKVOm+H0bYT2aYQAElJMnT7pc7nhjcrz5Gc3bOCdOnDCljtJwN3cOZsyduzEcOxmBOG8AuQPAbORO\n4Pvxxx81efJkj1eFiYuL0zPPPGN2aYDPyB5zON+ypDQPSS5PGLVu3Vqff/65Fi5c6PVKnECgIXf8\nb+fOnXr22Wdd3h4pISFBr776qlWlAQGB3DGGu8aW0u7jSMVPRjvWKUmPP/647rvvPvM3ECgDcsd3\n3pphIiIitGvXLvXp00fZ2dmSVCgzSpNLRfOm6O/n5+fr7rvv1ocffmjY9sIa5a0uAACcnTlzxuPz\nMTExptQRGxtb7I3R2dmzZ02pozQCYe683bc+EOcNCIT/d6TgzB0AviF3Alt6erpuvfXWgp/dXRXm\n6aefNuU2lIC/kD3mc3ffe1ecT2zXqlVLAwcOVP/+/dW2bVujygMMR+7434gRI5Sbm1voajCOP//9\n73/TNIe/PHLHv4o2sMTHx6t9+/Zq2rSpmjZtqssuu0yVK1dWQkKC4uPjdebMGWVkZOj48ePavXu3\nli1bpuXLl2v79u3F1ue8n+R8Mvutt95SXFycJk2aZPLWAr4hd3yXmZnpcrlzg0r//v2VlZVVbN9H\n+jNL6tevrxtvvFG9evVSYmKiqlWrpoiICB06dEjp6elaunSpFixYoLVr1xZqfin6Wc2xbNSoUapf\nv77at29v+PbDHDTDAAgo58+fd/uczWZT+fLmxJa3cc6dO2dKHaXhae4k79vkD8E4bwC5A8Bs5E7g\nysvL0y233KIjR44UOzji/HPnzp35xiKCDtljPk+3sXVW9MTQkSNHtGnTJl1yySWqVauWatWqZWSZ\ngGHIHf965513tHLlSpcng9q2bau77rrL4goB65E7/mWz2ZSUlKT+/fvruuuuU8eOHVWuXDm3r4+N\njVVsbKySkpLUsmVLDRw4UJK0bds2vfDCC5o9e7by8vJcnox2Xvb888+rZcuWuvnmmw3fRqCsyB3f\nuWokcuSC43OR8/EZ5z8TExP10ksvqX///i7XnZSUpKSkJLVt21aPPvqo1q9fr/vuu6+gKcY5g5wb\n8s6dO6fbbrtNW7duNa2RCcbiNkkAAoq3N2R2HNwLhLkLxnkDAuH/nZKMw/8/QOggdwLXqFGjCp1k\ncih6CwIum4tgRPaYqyT3rXd1uwBJys3N1eLFi/XQQw/p0ksv1R133KEdO3ZYsRlAmZA7/pOenq7/\n+7//c3l7pPDwcL377rtWlQYEFHLHP8qVK6c+ffroyy+/1O+//64XX3xRXbp08dgI40njxo01bdo0\n/frrr7ryyisLndAuyvHciBEjvN5CBQgE5I7vvF2txvkWR85/3nDDDdqxY4fbRhhXWrdurdWrV+uJ\nJ55wuT/lfAwoLS1N48aNK+XWIFDRDAMgoOTn53t83tcd7tLyNo63Oq0QCHMXjPMGBML/OyUZh/9/\ngNBB7gSml19+We+//77Ly+VK//um0LRp05SYmGhBhUDZkD3mKck964veu965Mcb5kZeXp+nTp6t5\n8+Z65plnQmJ+8NdB7vjPPffcU3ArgaLfYn7ggQfUpEkTK8sDAga54x+PPfaYvvrqK/Xp08ev601O\nTtbKlSs1evRoryejs7Ky9OCDD/p1fMAI5I7vvN3toOhtjWw2m2655RZ99tlnioqK8mnMiRMn6rnn\nnnN7S1vHWG+//bb279/v0xgILNwmCUBA8da9mpeXZ0od3sYJDw83pY7SKF++vMe6zZi7YJw3gNwB\nYDZyJ/B88sknevjhhz1+M9Fms+mhhx7SDTfcYEGFQNmRPeYYMWKEunbt6vK5/Px8ZWZm6uTJkzp+\n/Li2bNmiTZs2FVwevOiVYpwv133hwgWNGzdO3377rRYuXKiEhARzNggoA3LHP+bOnav58+e7vJJC\nUlKSJkyYYF1xQIAhd/wjLMy479GXL19er7zyiipVqqQJEyYU+wzmfOJ7zpw5evzxx2n4Q0Ajd3xX\nkkYh5y8sNWrUSB9++GGZM+rhhx/Wxo0b9cknn7i8XZL059U6X3/9db344otlGgvWoxkGQECJiIjw\n+LxZOw7eOlIDccchIiLC8maYYJw3gNwBYDZyJ7D88MMPGjp0aMHPRW+P5DgYctNNN+n555+3okTA\nL8gec3Tq1EmdOnUq8evz8/O1YcMG/fe//9WsWbOUnZ1dqAmm6BVjfvrpJ/Xs2VM//PCD4uPjjdoM\nwC/InbLLzMwsdAUFB0dOvPXWWz5/MxoIReRO8Bg3bpy2b9+uOXPmuL06pyS9+OKLmjZtmsnVASVH\n7vjO29w57/+UL19e06ZN8/o7JTV58mQtXbpUR44ccXmrbLvdrg8//FCTJk0KyLlDyXGbJAABxdMb\nmd1uN+2+ht52HPz1hutP3moyY+6Ccd4AcgeA2cidwLF69WrddNNNBXPhrhHmmmuu0cyZM60qE/AL\nsicwhYWF6corr9S7776rgwcP6r777lNYWFixE0LOTTHr169Xv379rCgXKBVyp+zGjh2rQ4cOSVKx\n2wQMGDBA1157rcUVAoGF3Aku77zzji666CJJKtb058i7zz77rOAqekAgInd8V5KanL+g1KpVK7+N\nXblyZY0dO9bt5y5JOn78uJYuXeq3MWENmmEABJSYmBiXyx07w6dPnzaljqysLJeXyXeIjY01pY7S\ncDd3DmbMXVZWlsfnA3HeAHIHgNnIncCwefNmXX/99crJyZHkuhFGktq0aaP58+fzTSAEPbIn8MXG\nxurVV1/V0qVLVbVq1WK3Q3G+fPfSpUv12muvWVUqUCLkTtksXbpUH3zwQUHtztsQHx9PBgAukDvB\npWLFinr88cc9now+c+aMvv76a7NLA0qM3PGdt3NazkaNGuX38f/xj38UXGHP3dyRP8GPZhgAAaVy\n5coenz916pQpdXgbx1udVqhcubLby0lK5syduzEcdQXivAHkDgCzkTvW27lzp3r16qWTJ09Kct8I\n07x5c3399deKjo62pE7An8ie4NGhQwd9//33qlSpkiT335R+7LHHCq4YAQQicsd3ubm5GjlyZMHP\nzs1wNptNkyZNUvXq1a0qDwhY5E7wGT58eMEJcXcno7kyAwIZueM7TzU550FiYqK6dOliyPh/+9vf\n3J5Xs9vtWr16td/HhblohgEQUKpUqeLxeccJC6NlZmZ6fN5bnVYIhLnzNIbNZgvIeQMC4f8dKThz\nB4BvyB1r7d27V927d9fRo0clFW+EcWjYsKG+//57VaxY0fQaASOQPcGlWbNmmjt3rsdvSp89e1Zv\nvPGG2aUBJUbu+G7ChAnas2ePpMK3R5L+vGrd3XffbWV5QMAid4JPTEyM+vTpw8loBC1yx3feanLs\nA7Vr186wGtyt23F8aOvWrcrPzzdsfBiPZhgAAcVxj1BnzjvCubm5hnfSnjhxouA+ju52wl3VaTVv\nNZnxjUFvYwTivAHkDgCzkTvWOXjwoLp166aDBw9Kct0IY7fblZycrEWLFuniiy+2pE7ACGRP8Ona\ntasGDhxY7HZJ0v+uDjNlyhSdP3/eogoBz8gd32zevFn/+c9/XN4eKTw8XO+++65VpQEBj9wJTl27\ndnW53JF/O3fuNLMcoFTIHd+VtKa2bdsaVkObNm2KLSv6BYQDBw4YNj6MRzMMgICSmJjo9TWHDx82\ntIaSrL927dqG1uALb3Nn9LyVZIyS/PsCZiN3AJiN3LHG0aNH1a1bN+3du1eS+0aYmjVr6scff1TN\nmjWtKBMwDNkTnJ555pliy5zz6/jx41qzZo2ZJQElRu6UXn5+voYPH64LFy5IKn57pDFjxqhp06ZW\nlggENHInOLVs2bLYMuf9nZycnIIrewKBhtzxXUnPFzVq1MiwGkqy7j/++MOw8WE8mmEABJSYmJiC\nS6O5u0doWlqaoTU4TpA4c66latWqqlChgqE1+KJOnToenzd63iTXc+csOTnZ8BqA0iJ3AJiN3DHf\niRMn1L1794JvFLprhKlatap+/PFHr/tVQDAie4JTvXr1Cg7Quvt3W7FihZklASVG7pTerFmztGHD\nBkkqdlWoxMRETZgwwaLKgOBA7gSnknz+OnLkiPGFAD4gd3xX0vNFRt6+Oj4+XmFhf7ZLuPv3y8jI\nMGx8GK+81QUAQFHJycnKyMhw+8aze/dude/e3bDxHfdkLspxECJQGzrc1eW4fPbu3bsNr2HPnj1u\n/90kmmEQuMgdAGYjd8xz6tQp9ejRQ1u3bi3YL3JwboSpXLmyFi1apAYNGlhVKmA4sic4XXfdddq+\nfbvbf7eNGzeaXBFQcuRO6Rw7dqzYMket7du318yZM/02lrvbKDibPXt2wQk+V+Li4jRw4EC/1QT4\nA7kTfBISEry+Jicnx4RKAN+QO76JiYnRxRdfrGPHjhU7XuPMyGYY6c8MOnnypNvnyZ/gRjMMgIDT\nuHFjrV+/3u3zRt8j1Nv6GzdubOj4vnJVl/O3iI4dO6aTJ08atuOQkZGh48ePe9xpCdS5A8gdAGYj\nd8yRnZ2t3r17a+PGjR4bYeLj4/Xdd9+pSZMmVpUKmILsCU7eDl67OnkOBApyp2ycb5M0c+ZMvzbD\nFB3D1ZiPPvqox9+tU6cOzTAIOORO8ImIiPD6mvPnz5tQCeAbcsd3TZo00ZIlSzx+ydroq9pUqFDB\nYzMM+RPcuE0SgIDTqlUrj89v2rTJ0PG9favO1T1MA0FSUpIqV64syf3l3IycO1fz5lxHlSpVVLNm\nTcPGB8qC3AFgNnLHeGfPntX111+v1atXe2yEiYmJ0ddff60rrrjCqlIB05A9walatWpun7Pb7Vy2\nGwGN3PEfm83m90dZxwQCEbkTfEpy1YVAvMUL4EDu+K4kx2IyMzMNrcHb+smf4EYzDICA427HwXES\nIyUlpUSXcvXFhQsXtHnzZo8f6AN5x6Fly5Ye58Zx32kjuFu34+o0gTxvALkDwGzkjrHOnTunG2+8\nUcuWLfPYCBMVFaUFCxaoXbt2VpUKmIrsCU7x8fEulzvm8ty5c2aWA5QKueM/drvd7w9fxnR+DghE\n5E7wOXz4sNfXxMbGmlAJ4Btyx3etW7f2+hpPV20pq7y8PGVnZ0tyv29D/gQ3mmEABJzWrVsrKipK\nUuGTFQ6nT582rKlj7dq1BZ3ojjGddyIqVKhQojdnq3To0MHj80uXLjVs7CVLlnh8vmPHjoaNDZQV\nuQPAbOSOcfLy8nTzzTfrhx9+8NgIExERoXnz5qlr165WlQqYjuwJTo6Ds0U55jEmJsbMcoBSIXd8\nZ8SVYPxxZRgg0JE7wWfPnj1eX8MVxxHIyB3feTunJUlHjhwxbPySrJv8CW40wwAIOJGRkWrfvr3H\nTtkffvjBkLEXLVrkcrnj6iYdO3ZUeHi4IWP7Q/fu3V0ud5wIWr58ufLy8vw+bm5urlauXOnxoEiP\nHj38Pi7gL+QOALORO8bIz8/X4MGD9eWXX3pshAkPD9cnn3yia6+91qpSAUuQPcFp//79bp+z2WwF\nt8sFAhG54xsjrgLjryvDlPR3AauQO8FnzZo1xZY5H2euUqWKoqOjzSwJKBVyx3c1atRQ48aNJcnt\n+aV169YZNv769eu9viYpKcmw8WE8mmEABKSePXu6fc5ut2vevHmGjDt37lyPzwd6Q0fbtm0VFxcn\nyXUHcnZ2tr777ju/j/v111/rzJkzhcZz3nFJSEjQVVdd5fdxAX8idwCYjdzxv2HDhmnu3LkeG2HK\nlSun6dOn68Ybb7SqTMBSZE/w2bx5s8fnL730UpMqAXxD7pSOGVeEKcuVYbhSDIIBuRNcFi5c6HK5\n42R+8+bNTa4IKD1yx3fXXnutx0ain3/+2bCxXa3bef8mOTmZ2yQFOZphAASk/v37F1vm2PmVpI0b\nN2r37t1+HXPbtm3aunVroZMnzm96NptNAwYM8OuY/lauXDn17dvX447DzJkz/T6uu3U6/s369evH\nARIEPHIHgNnIHf8aNWqUPvroI4+NMGFhYXrvvfd0yy23WFUmYDmyJ/g4bvvmTqNGjUysBig9cqfk\n7r//fl24cMG0h1T8W9iOn202m/bu3evx93/77TfT5wgoCXInePz6669at25dsc9xztq1a2dyVUDp\nkTu+GzhwoMvlju1as2aNTp8+bcjY33//vcvljn+7Nm3aGDIuzEMzDICAVLduXbVt27bQzkJRb7zx\nhl/HfO2111wud9TQrl07JSYm+nVMI9x6660ulzt2HD777DMdOnTIb+Pt379f8+fP93hw1l1NQCAh\ndwCG/l9rAAAgAElEQVSYjdzxnwceeEBTpkxxewDVsX1vvvmm7rjjDvMLBAII2RNclixZorS0NEly\ne4KoU6dOZpYElBq5E7y4HRKCFbkTPCZNmuT1Nb169TKhEqBsyB3fXXnllbrsssskub7jQU5OjqZP\nn+73cdetW6eNGzd6bMYjf4IfzTAAAtY//vEPl8sdb0wffPCBDh8+7JexDhw4oI8//thjQ8ewYcP8\nMpbRunfvrtq1a0tyveNw/vx5vfjii34b74UXXlBeXl6hcZznMTExUddcc43fxgOMRO4AMBu5U3ZP\nPPGEXnvtNZcHLxzLbDab/vOf/2jUqFEWVQkEFrIneEyYMKHYMue5rF69ulq0aGFiRYBvyB0AZiN3\nAt9PP/2kGTNmuL1ClSTVrFmTK8MgaJA7vhs+fLjbhhS73a633nrL7026r7/+erFlzvNZvnx5XX/9\n9X4dE+ajGQZAwLrttttUtWpVSe67QR999FG/jPWvf/1LZ8+eLTSG85tetWrVNGTIEL+MZbSwsDCN\nGTPG5Y6BY6dr8uTJfrkk3/bt2/Xuu++63OFynHh68MEHyzwOYBZyB4DZyJ2yee655zRp0iSvjTDP\nPvusxowZY1GVQOAhe4LDW2+9pRUrVrjMOEe+MXcIFuQOALORO4EtIyNDgwcPLvjZ3b7OiBEjzC4N\n8Bm547uRI0eqUqVKkgrPnePvO3bs8OuXvBcvXqyZM2d6PLd10003qXLlyn4bE9agGQZAwIqMjNT9\n99/vdkfYbrdr+vTpmj9/fpnGmTNnjmbNmuXxAOMDDzyg8PDwMo2TlpamsLAwj4+nnnqqTGM4jBw5\nsuBN2t3VYYYMGVJwRRdfnDt3TkOGDCm4x7SrHa7KlSvrzjvv9HkMwGzkDgCzkTu+e+ONN/TYY495\nbYR54okn/HawCQgVZE/pZGZmasWKFWWqsbQWLlyoBx54wOM3pcPDw3X33XebWhfgK3IHgNnIndI5\nd+6cNmzYUKYaS+rEiRPq1auX9u3bJ6nwcWvnfZ2YmBj985//NKUmwB/IHd/FxsZq9OjRHr/kPX78\neG3durXMY508ebLQeSt3V5y5//77yzwWrEczDICANmbMGNWuXdvlfRYdb4BDhw7VunXrfFr/zz//\nrOHDh3s8wJiUlKTRo0f7tH5XbDab24e/xMTEaOLEiR53utavX69hw4b5dGm5/Px83X777UpJSSlY\nr6txnnnmGUVHR/u+IYAFyB0AZiN3Su+DDz7QmDFjXK7PuRHmoYce0sSJE/0yJhBqyJ6SO3nypDp3\n7qwePXrop59+8lO1ruXn5+uVV15Rv379it2O1sHxb3bnnXeqTp06htYD+BO5A8Bs5E7JnTlzRlde\neaUGDBhgaFPM2rVr1apVK23cuNHliXzpf/s6Tz75ZMGVIoBgQe747uGHHy42d85fws7NzVXPnj3L\n1BBz/PhxdevWTWlpaYXW7xjDMXbfvn3Vtm3bMmwNAgXNMAACWoUKFfTyyy8X/OzqDfDUqVPq2bOn\nFi5cWKp1z58/X9dee62ys7MLrdPB8ab38ssvKzIysiybUYzdbi94uBrbH+6++241a9as2E6Xc0PM\njBkzNGDAAGVlZZV4vadOnVK/fv00Z86cYh9YnMdp0aKFRo4c6Z+NAUxE7gAwG7lTOnPmzCm0j+Hu\nwMW9996r559/3i9jAqGI7Cm9xYsXq0OHDuratavee+89ZWRk+G3dkvTTTz+pdevWGjt2bLErcEqF\nP2/VrFlTkyZN8uv4gNHIHQBmI3dKb968ebryyivVuXNnTZ8+vWD7yurkyZOaOHGiOnbsqH379rls\nhHHe12nevLkefPBBv4wNmInc8V10dLRee+21gp9dzd3hw4fVpUsXn66us2nTJnXq1EmbNm3yeG4r\nNjZWL730kq+bgQBT3uoCAMCb/v37a/DgwQX373O8STne2B07DzfccIMGDRqkJ598Ug0bNnS7vh07\ndmjixIkFzRyS+5MoQ4YMUd++fQ3fRiOEhYXpo48+Ups2bZSbm1vozd25Qebzzz/XunXr9PTTT+vv\nf/+7252ks2fPasaMGZowYYIOHDjgdmfBbrcrOjpaH330Ed+EQtAid3yTnZ2t2bNnl/r30tPTPT6/\nbNkynT9/vlTrjIuL08CBA0tdC2AVcqdk1qxZo9tuu035+fmSXG+TJCUmJqpZs2aaOnWqabVdf/31\nqlatmmnjAf5A9pSezWbTsmXLtGzZMt17773q2rWr+vbtq/bt26tp06al/gy0Z88ezZs3Tx9//LF+\n+eWXQt+wdPd5KyIiQh9//LESEhL8t2GAScgdAGYjd0rHsU0rVqzQihUrdPfdd6tbt27q3bu3OnTo\noCZNmpR4f+fChQvasGGDZs2apalTp+r06dMu58x5XLvdrkqVKmnevHkqV66cH7cMMA+547u+ffvq\nzjvv1NSpU4vNnfTntp48eVL9+vVTjx499MQTT6h9+/YKC3N//Y/t27frtdde09SpUwt9Wbwox3Ov\nv/66kpOTDdtGmMtmp1UdQBDIzs5W69attXPnTq8HBiWpZcuWateunZKTkxUbG6usrCylpqZq1apV\n2rx5s8vfcSxz/NyoUSOtXbvWb7f5SUtLU3JysssmEseb7Pjx4zVu3Di/jOcwdepUjRgxotjVYZzH\ndyyrWLGiunbtqubNm+uiiy6S3W7XsWPHtHnzZi1evFinTp3yOv82m01Tp07VHXfc4dftAMxG7vg+\nXiCoU6eOfv/9d6vLAEqF3PFu2rRpGjZsmNsDF1ax2WxasmSJOnXqZHUpQKmRPaVfv7vPVtHR0WrQ\noIHq16+vGjVqqFq1aoqNjVVkZKTOnTunrKwsnTp1SsePH9e2bdu0ZcuWQlfp9DT/juVhYWGaPn26\nBg8e7NO2AIGA3AkcYWFhHrchNTVViYmJFlYI+Ae5411mZqYqVarkdX8nJiZGDRs2VIMGDVSjRg1V\nrVpV0dHRioyMVHZ2to4fP66MjAzt3r1bq1evLriChbdj047lsbGx+vrrr9WhQweftgMIFOSO73Jz\nc9WhQwdt2LChRHN30UUXqXv37kpMTFT16tVVvnx5HTlyROnp6Vq6dKl+++03l79XdJnNZtP9999f\n6Mo+CH5cGQZAUIiJidF3332njh07av/+/ZIKv0k5d9RKf17ubNOmTS7XVZI3zzp16ui7777z206D\nle6880798ccfmjhxoqT/3d+x6FVibDabMjMz9fnnn+vzzz8vtp6SfEPRZrNp4sSJNMIgJJA7vivp\nN4SceTqp7cv6gGBE7viPmbkRSE05gC/IntJx/izlPC+SdObMGaWkpCglJaXE6yrpiSFJioyM1Ecf\nfaQBAwaUaRsAq5E7AMxG7pSeu/2dnJwcbdy4URs3bvS6jtLu61SuXFnz589X+/bty1w/YDVyx3eR\nkZH65ptvdM011+iXX36RVHzunJdlZGS4vVq5uxwqusxms+n222+nESYEub9mEAAEmMTERC1ZskT1\n6tVzeQDS8SbovBPh6lH0zbJoM0eDBg20ePFi1axZ07Jt9bfx48dr/Pjxhbbf25wUfUjFd9KKrm/C\nhAl64oknrNxUwK/IHd85z01JHv5Yl/PrgWBF7vhHaTPI1wcQKsie0nF1QNXb5ylvn7GKzq3zczab\nTfXr19fKlStphEHIIHcAmI3cKTlP+ytFn/fXvk6LFi20fv16GmEQUsgd31100UVasmSJ2rRp47fz\nWs6/77zcZrNp7Nix+uCDDyzbXhiHZhgAQaVu3bpat26devXq5XFnwRNXb5aO3+/du7fWrl2rOnXq\nGLodJa3Vn8aPH69PPvlEcXFxHnegPHG3oxAXF6e5c+fqySefNHQbACuQO2Ufz6wHECrIndKv36oH\nEErInpJx1RRXlvG8HaiNiorSI488ok2bNumKK67w23YAgYDcCRyhsA1ASZA73nna1/FlPG/7OhUq\nVNDTTz9tyrwBViB3fFelShUtX75co0aNKrb9zjV54y6HbDabKleurLlz5+qFF14wdFtgHZphAASd\nhIQEff311/rwww9VrVo1lzvS7r6p625nvlq1apo+fbq++uorxcfHG1p/0Rrc1WqEAQMGaMeOHerf\nv7/LnSdPtRR9neP3b775Zu3YsUP9+vUzbTsAs5E7ZR/PzAcQCsid0q+fzAHKjuxx7ZJLLtGUKVN0\n4403Fny5wN3nqZKO7e53HOtNSEjQAw88oF27dmnSpEkhcblzwBVyJzCEwjYAJUXuuBYZGalu3bop\nOjralH2dmJgY3X///dqzZ48ee+wxlS9f3i/bAQQicsd34eHhmjx5spYtW6bmzZuX+byWI4ciIiI0\natQo7dq1i3NbIY5mGABB67bbbtPvv/+uyZMnq1GjRh67zIvuKDgejRs31ltvvaXU1FTdeuuthtcc\nCN8srlGjhubMmaMNGzZoyJAhJf6A4/ya6Oho3X777dq4caNmz56tGjVqmFY/YCVyp2zjmf0AQgG5\nU7r1kzmAf5A9hUVERGj48OGaN2+eMjIytGjRIj3++OPq3r27Klas6HZMTyePXP1OlSpVdPPNN2v2\n7Nk6ePCgXnrpJdWqVavM9QPBgNyxVihsA1Ba5E5hUVFR+uGHH3Ty5EktW7ZMEyZMUM+ePQtO3Lt6\neGuUKfr6mJgYXXvttZo6daoOHTqkl19+WZdcckmZaweCBbnjuw4dOmjjxo366quv1Lt3b4WHh5co\nj4rWnJycrMcee0ypqamaPHmyKleubOp2wHw2O63eAELEnj179O2332rjxo3atm2bDhw4oKysLOXk\n5Cg6OlpxcXGqVauWGjVqpFatWql379669NJLrS7bcrm5uVq8eLGWLVumX375Rbt27dKJEyeUlZUl\nSYqLi1PlypXVoEEDNW7cWF26dFHXrl0VGRlpceWA9cgdAGYjdwBYgezxbNeuXUpJSdHvv/+u1NRU\npaam6uDBg8rKylJ2drays7OVl5enyMhIRUZGqmLFiqpWrZpq1KihBg0a6PLLL1fr1q11+eWXW70p\nQMAgd8zx1FNPeXx+zJgxhn/bHAgU5I57hw4dUkpKin799Vft37+/4HH06FHl5OQoJydHZ86ckd1u\nV1RUlKKjo3XxxRerRo0aSk5OVtOmTdWiRQu1adOGK8AATsgd32VlZWnRokVatWqVduzYoT179hSc\n17pw4YIqVKigihUrKjExUfXq1dOVV16pDh06qFmzZlaXDpPRDAMAAAAAAAAAAAAAAICQwW2SAAAA\nAAAAAAAAAAAAEDJohgEAAAAAAAAAAAAAAEDIoBkGAAAAAAAAAAAAAAAAIYNmGAAAAAAAAAAAAAAA\nAIQMmmEAAAAAAAAAAAAAAAAQMmiGAQAAAAAAAAAAAAAAQMigGQYAAAAAAAAAAAAAAAAhg2YYAAAA\nAAAAAAAAAAAAhAyaYQAAAAAAAAAAAAAAABAyaIYBAAAAAAAAAAAAAABAyKAZBgAAAAAAAAAAAAAA\nACGDZhgAAAAAAAAAAAAAAACEDJphAAAAAAAAAAAAAAAAEDJohgEAAAAAAAAAAAAAAEDIoBkGAAAA\nAAAAAAAAAAAAIYNmGAAAAAAAAAAAAAAAAIQMmmEAAAAAAAAAAAAAAAAQMmiGAQAAAAAAAAAAAAAA\nQMigGQYAAAAAAAAAAAAAAAAhg2YYAAAAAAAAAAAAAAAAhAyaYQAAAAAAAAAAAAAAABAyaIYBAAAA\nAAAAAAAAAABAyKAZBgAAAAAAAAAAAAAAACGDZhgAAAAAAAAAAAAAAACEDJphAAAAAAAAAAAAAAAA\nEDJohgEAAAAAAAAAAAAAAEDIoBkGAAAAAAAAAAAAAAAAIYNmGAAAAAAAAAAAAAAAAIQMmmEAAAAA\nAAAAAAAAAAAQMmiGAQAAAAAAAAAAAAAAQMigGQYAAAAAAAAAAAAAAAAhg2YYAAAAAAAAAAAAAAAA\nhAyaYQAAAAAAAAAAAAAAABAyaIYBAAAAAAAAAAAAAABAyKAZBgAAAAAAAAAAAAAAACGDZhgAAAAA\nAADAB2lpaQoLCyvxY9++fVaXDAAAAADAX0J5qwsAAAAAAAAAgpnNZvP4vN1u9/oaAAAAAADgPzTD\nAAAAAAAAAGVkt9tdLqcJBgAAAAAA83GbJAAAAAAAAAAAAAAAAIQMmmEAAAAAAAAAAAAAAAAQMmiG\nAQAAAAAAAAAAAAAAQMigGQYAAAAAAAAAAAAAAAAhg2YYAAAAAAAAAAAAAAAAhAyaYQAAAAAAAAAA\nAAAAABAyaIYBAAAAAAAAAAAAAABAyKAZBgAAAAAAAAAAAAAAACGjvNUFAAAAAAAAAMHOZrNZXQIA\nAAAAAPj/aIYBAAAAAAAAysBut1tdAgAAAAAAcEIzDAAAAAAAAOCjkl4RhivHAAAAAABgHpudr64A\nAAAAAAAAAAAAAAAgRIRZXQAAAAAAAAAAAAAAAADgLzTDAAAAAAAAAAAAAAAAIGTQDAMAAAAAAAAA\nAAAAAICQQTMMAAAAAAAAAAAAAAAAQgbNMAAAAAAAAAAAAAAAAAgZNMMAAAAAAAAAAAAAAAAgZNAM\nAwAAAAAAAAAAAAAAgJBBMwwAAAAAAAAAAAAAAABCBs0wAAAAAAAAAAAAAAAACBk0wwAAAAAAAAAA\nAAAAACBklLe6AAAAAAAAAPw12O12bdu2TVu2bNHOnTu1e/dupaen68iRI8rIyNDZs2eVm5ur8+fP\nKzIyUtHR0YUecXFxqlWrlurUqaOkpCTVqVOn4BEeHm715iEE7du3T6tXr9bOnTuVmpqq33//Xenp\n6crOzlZOTo6ys7MVFhammJgYxcTEqFKlSkpOTlbdunXVsGFDXX311WratKlsNpvVmwIAAAAAfyk2\nu91ut7oIAAAAAAAAhKaDBw9q/vz5+uqrr/TTTz8pMzOz2GtK0ijg6RBWRESEWrZsqbZt2xY8kpKS\nylR3INu7d6+mTp1qdRl+9/DDDys+Pt7SGrKzs/Xll1/qiy++0KpVq3TgwIFir/H036ur/04TEhLU\nqVMn3XLLLbrxxhsVExPj15oBAAAAAMXRDAMAAAAAAAC/ys/P14IFC/TWW2/pxx9/LGgQMPLqGEUP\ncdWsWVP9+vXTzTffrA4dOhgydlpampKTk0v8+r179yoxMbHM4y5btkxdu3Yt83oCic1mU2pqql/m\nxxfLly/Xm2++qYULF+rMmTMFNfmL47/P6OhoDRw4UI888ogaNmzot/UDAAAAAAoLs7oAAAAAAAAA\nhI7PP/9cTZo00U033aRFixZJ+rOpwNFYYLfb/f5wHsPxOHjwoN5880117txZtWrV0ujRo7V//35D\ntrno2EUfjteYPW6wPKy0YMECXX311erSpYvmzp2rs2fP+v2/V+l//1ZnzpzRhx9+qMaNG+uWW25R\namqqlZsPAAAAACGLZhgAAAAAAACU2cGDB3Xttdeqf//+2rlzp9uGAiN4a0BIT0/X5MmTtXr1akPG\nd1eDGRdkNqK5yMyHVX799Vddc8016tu3r9asWWPof6+u/ru02+369NNP1bRpU7344ou6cOGCX8YC\nAAAAAPyJZhgAAAAA/6+9uw+Psrrzx/8ZICE8CZVai0oQvVZQbAWsClWkgigEcBWfF2tdtep20e52\nW6xWba2K7e66dddFVy1qW+tDlYWKxKJYEUShIMiq+ICKUQTlQVECEQKZ3x/f36QDhsyEZCZkeL2u\na65LuE/mvO87hz+SeXsOADTKzJkz42tf+1o8+eSTeSvAZNLcZQt2TzU1NfGzn/0s+vbtG7Nmzaot\nweRrve5Yiqmqqoorr7wyBg0aFB9++GFO5wYAANiTKMMAAAAAsMt+85vfRFlZWaxfv367UkG2WuLR\nOrRMa9eujWHDhsXPf/7zqK6uzul6zWTHUsy8efPiyCOPjHnz5u3y/QEAAPBXyjAAAAAA7JLJkyfH\nRRddVHvESzalgp2VBhp6rI6CDA2xePHi6NevXzzzzDPb7V6USV1rLJs1mu26TB+/atWqGDp0aDzz\nzDONuVUAAABCGQYAAACAXbBkyZI477zzaj/Mz1QsyFQmyHbHjaYoIBSSXd1ZJx+v3cWCBQti6NCh\nsXLlyqx3g6lvvWa6552ty53Z8dikU045RSEGAACgkdo0dwAAAAAAWpYtW7bE2LFjY8uWLRGRXREm\nfVx6MaC4uDh69uwZpaWlsc8++8SXvvSlKCkpieLi4ti2bVts3rw5qqqqYt26dbF69epYtWpVvPvu\nu7F169bt5qhr15hC15DjffZU8+bNi+HDh8eGDRsiouFrNf3vIiK6d+8eBx10UHTv3j06d+4c7du3\nj0QiERs3boy1a9fG22+/HUuXLo1NmzZt9z47lmV2lF6y2bhxY5x66qkxf/786N27dyPuHgAAYM+l\nDAMAAABAg/zXf/1XLF26tHaXjfqkj0kkElFSUhLDhg2LESNGxKBBg6J3797RqlXDNi/etm1bLF++\nPJYsWRILFy6M+fPnxwsvvFBnOadQSzEt4b6au6zz9ttvx6hRo3apCJP6727dusUpp5wSo0aNigED\nBsTee++dcd5t27bFokWLYurUqfHggw9GRUXFF0oxmQoxlZWVceqpp8aCBQuiU6dODbpvAAAAIhLJ\n5v6pFAAAAIAWY+PGjdGjR4/45JNPIqL+gkHqQ/9EIhFdu3aNK6+8Mi6++OLo3Llzk+f6/PPP49ln\nn41p06bF5MmTY/Xq1dvlSyQS8eCDD8ZZZ53VZHNWVFREz5496y0FpT+D5cuXR2lpaZPNv7tas2ZN\nDBw4MJYvXx4R2a+Rpnw+GzZsiAEDBsTrr7+eVYb0MYlEIo499tj4wQ9+EKecckqDy1rpkslkPPTQ\nQ/Gzn/0s3nrrre2KNtmsmdNOOy0effTRXZ4fAABgT7XrP8kBAAAAsMd58MEH4+OPP46I7EsO55xz\nTixbtiz+5V/+JSdFmIiIkpKSOPnkk+O///u/Y+XKlfHUU0/FmWeeGcXFxS1iF5VCUVVVFSNHjox3\n3nknIrIroURE9O7dO77yla80WY5vf/vb8dprr2XMkJJaqz169IipU6fG7Nmz49RTT21UESbi/93j\nueeeGy+//HJcddVV0bp16zqPC6srSzKZjClTpsTkyZMblQEAAGBPpAwDAAAAQNZ++9vfZhyTXoT5\n8Y9/HL///e9zVoLZ2fxDhgyJhx56KN5///34yU9+El26dMnb/HuqmpqaOOecc2LhwoUZj9BK3x2l\nW7du8cQTT0RJSUmT5Pjtb38bjz32WIOO8UokEnHeeefFyy+/HKNHj26SHOmKi4vjxhtvjGnTpkXn\nzp2zKuiksl1xxRXx6aefNnkmAACAQuaYJAAAAACysmHDhth7772jpqYmIurecWN3PeKlsrIyNmzY\nEN26dWuy93RM0vbGjRsXt99+e4OKMB06dIjZs2dHv379miTDRx99FH369Ml4jFd6hlatWsWECRNi\n/PjxTZIhkwULFsRJJ50Un376adZr58orr4wJEybkJR8AAEAhsDMMAAAAAFmZO3dubNu2LSJ2XoRJ\nKS4ujttuuy1v2TLp2LFjkxZh2N6//du/NbgI06ZNm3j44YebrAgTEfGDH/wgq2O8UtcTiUTceuut\neSvCREQcddRRMW3atCgqKoqInR+XlLqWTCZj4sSJtfcFAABAZsowAAAAAGTl1VdfzTgmVTAYM2aM\n8ske4uGHH44f//jH9ZY60qXWyG233RZlZWVNluOVV16Jhx9+OGOO9B1Xrrrqqhg3blyTZcjWcccd\nF7/61a/qLeykX6usrIz/+I//yEc0AACAgqAMAwAAAEBW3nrrrazHDh8+PIdJ2F3MmTMnLrjggto/\nZ9oVJv3Yn0svvbRJs1x77bX1HuGVniEiYujQoXHDDTc0aYaG+N73vhdDhgypfSY7k8o8adKk2p2Z\nAAAAqJ8yDAAAAABZWbNmTdZj+/Tpk8Mk7A5ef/31OO2002LLli0RkX0R5txzz40JEyY0aZalS5fG\nH//4x3qPaUovnHTo0CHuueeerHezyZWJEydG69atI6Lu45LS72X16tXx+OOP5y0bAABAS6YMAwAA\nAEBWKisrsx7bpUuXHCahuX300UdRVlYWn3zySURkX4QZPHhw3HvvvU2e584778xqXCrHNddcEwcc\ncECT52ioXr16xdixY+t9funuu+++3AYCAAAoEMowAAAAAGRl69atWY/dsGFDDpPQnDZt2hSjRo2K\nd999NyIyF2FSDjvssJgyZUoUFRU1aZ7NmzfH/fffn/GooZSuXbvG5Zdf3qQZGuP73/9+xjGpQtHM\nmTOjuro6D6kAAABaNmUYAAAAALLSrl27rMe+9957OUxCc6mpqYmzzz47XnzxxXqPJIr4awElmUzG\nfvvtF+Xl5dG5c+cmzzR16tSsdqhJ7Qozbty4aN++fZPn2FX9+vWLvn371ubbUfo9bdq0KebMmZPP\neAAAAC2SMgwAAAAAWenatWvWY6dPn57DJDSXcePGxfTp0xtUhOnYsWM8/vjj0b1795xkmjZtWr3X\n0wsmiUQiLrjggpzkaIzRo0dnPfbJJ5/MYRIAAIDCoAwDAAAAQFZKS0szjkmVJB555JFYu3ZtHlKR\nL7/85S/jf/7nfxpUhGnTpk088sgj0bdv35xkSiaTMWPGjHqPSEqNSyQS8c1vfjOrdZxvJ598ctZj\n58+fn8MkAAAAhUEZBgAAAICs9OnTp97r6QWJ9evXx/e+971cRyJPHnroobj66qszlk5SUuWTO+64\no0FFj4b6y1/+EuvWraudM5MRI0bkLEtj9OvXL1q3bh0RsdNnnCohLVmyJJ/RAAAAWiRlGAAAAACy\nMmDAgIxjUiWIZDIZkydPjgsvvDBqamrykI5cefbZZ7c7WijTrjCpNXD11VfHRRddlNNsc+bMadD4\nYcOG5ShJ47Rr1y4OOeSQnV5Pf+affvppVFRU5CMWAABAi6UMAwAAAEBWevToEYcddlhE7Hz3ihZa\nkGYAABbRSURBVIi/FmIiIu67774YOHCgo11aqNdeey3GjBkT1dXVEZF9Eea8886LG264Ief5Fi9e\nXO/19HVaVFQURxxxRK4j7bIePXpktbtNRMQbb7yR4zQAAAAtmzIMAAAAAFk799xzs/rAPplM1hYj\nFixYEAMHDoxhw4bFY489Flu3bs1DUhrro48+irKysli/fn1EZF+EGTJkSEyaNCkvGRctWpTx6KZU\n7sMOOyyKioryEWuX7L///lmP/eCDD3KYBAAAoOVThgEAAAAga5dcckm0bds2IurfHSYlVZBIJBLx\n9NNPx6mnnhr77bdfXHbZZTFjxozYvHlzriOzCzZt2hQjR46sPY4nUxEm5fDDD4/JkydHmzZtcp6x\nqqoqli1bltXYRCIRBx98cI4TNc5ee+2V9VhlGAAAgPopwwAAAACQtX322Sf+6Z/+qbYckW0hJr0U\ns27durjrrrtixIgR0bVr1ygrK4tbbrklFi5cGNu2bcv1LZBBTU1NnHXWWbW7rmRThEkmk7H//vtH\neXl5g0odjfHee+9FTU1N7fyZlJaW5jpSo7Rr1y7rsStXrsxhEgAAgJYvkcz2IFoAAAAAiIiNGzdG\n37594+23396uDJGtHQs06V/bvn37OProo+Ob3/xmDBw4MAYMGBBdu3ZtmuBNrKKiInr27FlvYST9\n+KDly5fv9oWMiIjLLrss7rrrrgYVYTp16hRz5syJr3/96/mKGU8//XQMGzYsY85Ckb6W/u7v/i5+\n97vfNXckAACA3Vbu9ysFAAAAoKB06NAhHn744Tj++ONj06ZNtTu+ZFtISB+X+tqUqqqqmDVrVsya\nNav273r16hXHHXdcDBo0KIYOHRr7779/k90L27v55psbXIQpKiqKRx99NK9FmIiIFStWNGh8NrsY\nNbds/w1VVVXlOAkAAEDLpgwDAAAAQIP1798/Hn300RgzZkx8/vnnERG7tEvMjmN3LMdERLz55pvx\nxhtvxKRJkyIiok+fPjF8+PA444wz4phjjmnMbZDmgQceiGuuuSbr0khql5I777wzhg0bluN0X7Rq\n1aoGjS+k3WOUYQAAAOrXqrkDAAAAANAyDR8+PJ566qn48pe/vN1OInUVWrKVTCa/8Ep/z0QiEUuX\nLo1bbrklBg4cGD169Iirr7463n777Sa7rz3RrFmz4sILL6z9c6ZdYVJFmOuuuy4uuOCCPCT8osrK\nymaZd3eQKqABAABQN2UYAAAAAHbZscceG0uWLImhQ4fWliRSr/QCS2PUV45ZsWJF/OIXv4hDDjkk\nhg8fvt3xSmRn6dKlMWbMmKiuro6I7Isw3/nOd+KnP/1pvmJ+wZ68O0oh7XIDAACQC8owAAAAADRK\nt27d4sknn4wHHnggevTosd1xSXXt7NJYdRVjIiKefPLJGDJkSHzrW9+KhQsXNnqePcGqVauirKws\nPv3004jIvghz4oknxt13352vmHWyOwoAAAA7owwDAAAAQJM4++yzY9myZXHXXXfFoYceWlt+2XFn\nl/RiTGMLMnUVbmbPnh3HHHNM/OM//mNs2rSpqW6v4GzcuDFGjRoV7733XkRkLsKkfP3rX49HH300\nWrdunfOM9dm8eXODxte17lrSK3UPAAAAZKYMAwAAAECTadOmTVx00UXx6quvxp///Of4zne+E126\ndNnuA/36jj3a1XLMjmWbiIg77rgj+vfvH2+++WbT3WCB2LZtW5x55pmxePHi2sLSzqR/37p37x7l\n5eXRqVOnfEXdqaKiogaN33HdteQXAAAA9VOGAQAAACAnBg8eHPfcc0+sXr06nnjiibjiiiu22zFm\nZzvHRDSuHJP+Hm+++WYMGDAgFixY0OT315L9wz/8Q/zpT39qUBGmc+fOUV5eHt26dctXzHq1b9++\nQeObe2eXXOwUAwAAQN3aNHcAAAAAAApbmzZt4qSTToqTTjopIiI+/vjjmDt3bsyZMyfmzJkTixYt\niq1bt9aO37GcseOH/9nsjJF+HNP69etjxIgRMXfu3OjVq1cT3VXLddNNN8Wvf/3rBhVhiouLY/Lk\nydGnT598xcyoXbt2Gcek7jGRSMRPfvKT+PnPf56HZAAAADQ3ZRgAAAAA8mrvvfeO0aNHx+jRoyMi\noqqqKl544YV47rnn4vnnn4/58+fHZ599Vjs+vbCx43FL9UkvxHzyySdx+umnx4IFC7IqURSq3//+\n93HttddmLMKkpJ7h3XffHUOGDMlDwux17NixQeM///zzHCUBAABgd6MMAwAAAECzateuXQwZMqS2\nbJFMJuPFF1+MZ555JmbMmBHPPfdcVFdX116LyL4UkypzJJPJeO211+L666+PX/ziFzm+o93TM888\nExdddFFWR+yk76hy/fXXx7e//e08JGyY/fffv0HjN23alKMkAAAA7G5aNXcAAAAAAEiXSCTiG9/4\nRvzoRz+KmTNnxrp16+LBBx+M008/PUpKSmqLGunFmGzeM5lMxq233hrvv/9+rm9ht/Pqq6/GmDFj\nvlAqqkt6EebCCy+Ma665Jl8xG6S0tLRB4z/66KMcJQEAAGB3owwDAAAAwG6tQ4cOcdZZZ8Uf/vCH\nWLlyZfz7v/97lJaWbnfUT32FmPTiR3V1ddx66605z7w7WbVqVZSVldUePZVtEebkk0+OO++8M18x\nG6yhZZgVK1bkKAkAAAC7G2UYAAAAAFqMLl26xD//8z/HsmXL4pe//GW0a9eu3nJHulTR4/7778/6\na1q6jRs3xsiRI2t3w8lUhEnp27dvPPLII9Gq1e7768Pu3btHcXFxRNRfhkp935cvX56vaAAAADSz\n3fenWQAAAADYiaKiovjhD38Ys2bNir322isist8dZu3atTFnzpycZ2xu27ZtizPOOCNeeuml7XbR\nqUvq2SWTySgtLY3p06dHhw4d8hV1l7Rp0yaOOOKIeu8r/dqaNWti5cqV+YgGAABAM1OGAQAAAKDF\nOuqoo2L69Om1ZY76CjHp9oQyzGWXXRYzZsxoUBGmS5cu8cQTT8RXv/rVfMVslKOPPrpB4xcuXJij\nJAAAAOxOlGEAAAAAaNGOPfbY+O53v9ugo49efPHFHCZqfjfccENMmjSpQUWY4uLimDJlShx66KH5\nitloxxxzTIPGz5w5M0dJAAAA2J0owwAAAADQ4o0fPz7rsclkMpYvX57DNM3rd7/7Xfz0pz/NWIRJ\nSSaTkUgkYtKkSTF48OA8JGw6J554Yla7AqWexWOPPZavaAAAADQjZRgAAAAAWryePXtGnz59IiJz\nKSIiYuXKlXnJlW9//vOf4+KLL87quKhUQSSRSMSNN94YY8eOzUPCpvXVr341jj766HpLP+nX3n//\n/Xj++efzEQ0AAIBmpAwDAAAAQEE44ogjsj4qqbKyMsdp8u+VV16J008/PbZu3RoRkfF4pFQR5rvf\n/W5cddVV+YrZ5E477bQGjZ84cWKOkgAAALC7UIYBAAAAoCDsu+++WY+trq7OYZL8W7lyZZSVlcVn\nn30WEdkXYUaMGBG33357vmLmxNlnnx2tWv2/X3Nmc1TS5MmTC/qYLAAAAJRhAAAAACgQJSUlWY/t\n2LFjDpPkV2VlZZSVlcUHH3wQEZmLMCn9+/ePP/zhD7VFkpaqR48eMWrUqKyPSqquro7x48fnIxoA\nAADNpGX/pAsAAAAA/7/Vq1dnPbZz5845TJI/27Zti9NPPz3+7//+LyKyK8Ikk8k48MAD4/HHH4/2\n7dvnJWeuXXHFFRnHpHbDSSaT8b//+79RXl6eh2QAAAA0B2UYAAAAAArCokWLMo5JFSIOPvjgPCTK\nvUsuuSSeeuqp2pLHzqQXYb70pS9FeXl5g46V2t0NGTIk+vfvX/v9rU/qWf393/99fPjhh3lKCAAA\nQD4pwwAAAADQ4i1fvjwWL16csRSScuihh+YhVW5df/31ce+99zaoCNO2bduYOnVq9O7dO18x8+aW\nW27JOCb9Oa1duzZGjhwZGzZsyGUsAAAAmoEyDAAAAAAZPf/883HxxRfH22+/3dxR6nTzzTc3aPzx\nxx+foyT58Zvf/Cauv/76BhVhWrVqFffdd18MGjQoXzHzavDgwfG3f/u3GXeHST8u6aWXXoqysrJY\nv359HpM23GeffRYTJkyIVatWNXcUAACAFkEZBgAAAICMqqur45577onevXvH+eefH0uWLGnuSLVm\nzJgRkyZNqrcAkX6tdevWcdJJJ+UjWk7MnDkzLrnkkozHAaWkyh8TJkyIs88+O8fpmtevfvWr6NSp\nU0REVoWYiIi5c+fGwIEDd8ui15o1a+K6666LHj16xLXXXhtVVVXNHQkAAKBFUIYBAAAAIGs1NTVx\n//33R79+/eL444+PRx55JLZu3dpseebMmbNdwaO+XVJSBYiRI0dG586d8xGvyb388stxxhln1D7z\nTLvCpO750ksvjfHjx+crZrM58MAD47bbbqt9LpkKMakxb7zxRvTv3z/uvvvuvOTMZP78+XHeeedF\n9+7d48Ybb4xPP/20uSMBAAC0KMowAAAAADRIIpGIRCIRzz33XJx99tnRrVu3uPzyy+Mvf/lL3jJs\n27Ytbr311jjppJNiw4YNEVF/MSTd5ZdfnstoOfXDH/4wPvvss4jIvggzcuTImDhxYr4iNrvzzz8/\nzjnnnKwLMannVFlZGZdeemkMGjQonnvuuXzFrfXuu+/GTTfdFH369ImBAwfGAw88ENXV1VnvAAQA\nAMBftWnuAAAAAAC0LDuWDD7++OOYOHFiTJw4MUpLS2PUqFExevToGDx4cJSUlDTp3KmdaW688cZ4\n6623ajNkUwyJiPjWt74VQ4YMadJM+bRly5aMY9LLE61atYq/+Zu/ieuuuy6XsZrEj370o9hrr72a\n5L1+/etfx1tvvRULFy6sLW9ls2tQIpGIuXPnxvHHHx+DBw+OSy+9NMaMGRPFxcVNkitdTU1NzJ8/\nP8rLy6O8vDwWL14cEX8tmwEAALDrEsls/5cZAAAAAPZYzz77bJxwwgl1lgp2/OA+db2oqCiOPPLI\nOO644+Ib3/hG9OnTJw455JAoKipq0NwffPBBvPDCCzFt2rQoLy+PdevWbTdnpiJMakxRUVEsWrQo\n+vTp06D5d6aioiJ69uxZb9EifYeW5cuXR2lpaaPmPOGEE+LZZ5/NWO5oaZrq+aRbu3ZtHHvssbFs\n2bKsSlPpWdLHdurUKU488cQYMWJEHH300XHYYYdFmzYN+38Mt2zZEsuWLYvXX389Fi1aFC+88EIs\nWLAgNm7c+IV5d8yZvoaWLVsWBx10UIPmBgAA2BPZGQYAAACARtnxg/vUh/pbt26NefPmxbx582qv\nt2nTJg444IDYf//9Y7/99ou99947SkpKoqSkJJLJZGzcuDEqKyujsrIyli9fHm+++WZUVlbW+f7Z\nlkFSRYJ//dd/bbIiTEvREnYYyVWp58tf/nLMmDEjhgwZEhUVFbXrINOcO+58VFlZGVOmTIkpU6ZE\nRERxcXEcdNBBteu4U6dOUVJSEsXFxbF58+b4/PPPo6qqKtasWRMfffRRfPjhh7FixYqoqanZbp4d\nd4AppHITAABAc1OGAQAAAKDJ7KwYk7Jt27aoqKiId999N6v3q+s9Grq7RyKRiLFjx8b3v//9rOYs\nJLt7wSLXZZ0DDzwwXnjhhRgxYkQsWbJku+OQMj2b9FJMes7q6up444034vXXX88qQ+pr67rX3f37\nAwAA0FK1au4AAAAAABSmZDL5hVdKqmCQ6VXX+2SyYxHm9NNPj/vuuy8n98jub999943Zs2fHsGHD\naksw6aWYTJpiDdf1PoowAAAAuaMMAwAAAECDZFsiqEtdhYBMr4bmSi87jBs3Lh566KFo1cqvwfZk\nHTt2jD/96U9x8803R3Fx8XY7wzR0Pe/KGm5o8aWuMg0AAADZ81sAAAAAALKW/uH+znbAyKf0+dNz\n7bXXXnHvvffGf/7nfyrCUGv8+PHx/PPPx+GHH77dmolo3gLKjv+WdizRJBKJ6NSpU5SUlOQ9GwAA\nQEvkNwEAAAAAZNS1a9fYb7/9dnp8UUTdx8Y0tfqOUUpdLysri1deeSXOP//8Jp8/21z5KFVke0zP\n7vxqDv3794+XXnop7rjjjth33313Wj7JZcZMx4GljznyyCPjzjvvjA8++CD222+/nOQBAAAoNG2a\nOwAAAAAAu7/DDz88VqxYEfPnz4+pU6fG9OnT49VXX629XtcxMLkqE+w4V2qOgQMHxk033RSDBw9u\n8jkbkqdQ5ywkiUQiLrnkkhg7dmzcfvvtcfvtt8d7770XEds/21wWYna2jiMievfuHeecc06cddZZ\n0atXr5zMDwAAUMgSST85AwAAALALVq1aFTNmzIinn346Zs+eHStWrNjueqZfO2UqGdT39amv7dCh\nQ5x55plx2WWXxVFHHZVl8qZRUVERBx10UFZjE4lEvPPOO1FaWtqoOU844YSYPXt2o95jd9RUz2dX\nJZPJ+OMf/xiTJk2KmTNnxpYtW2r/fmcas353/Pq2bdvGscceG2VlZVFWVqYAAwAA0EjKMAAAAAA0\niYqKipg7d24sXLgwXnzxxViyZEls2LChzrHZ/EqqrrJBIpGIXr16xaBBg2L06NExbNiwKC4ubnR2\nSNm4cWOUl5fH448/Hs8//3y88847XxiT7a9Ud1aYOeCAA6Jfv34xYMCAGDRoUBx99NFRVFTUqNwA\nAAD8lTIMAAAAADmzYsWKeO2112LZsmVRUVER7733Xnz44Yexbt26+Pjjj2PDhg2xZcuWqK6ujtat\nW0fbtm2jbdu20blz5/jKV74S++67b5SWlkavXr2id+/e0b9//+jSpUtz3xZ7kE8++SQWLFgQr7zy\nSu0afv/99+Pjjz+OTZs2RVVVVVRVVUVERHFxcbRt2zY6duwYXbt2jX322Sf23XffOPDAA+Oggw6K\ngw8+OL72ta9ZwwAAADmmDAMAAAAAAAAAQMFo1dwBAAAAAAAAAACgqSjDAAAAAAAAAABQMJRhAAAA\nAAAAAAAoGMowAAAAAAAAAAAUDGUYAAAAAAAAAAAKhjIMAAAAAAAAAAAFQxkGAAAAAAAAAICCoQwD\nAAAAAAAAAEDBUIYBAAAAAAAAAKBgKMMAAAAAAAAAAFAwlGEAAAAAAAAAACgYyjAAAAAAAAAAABQM\nZRgAAAAAAAAAAAqGMgwAAAAAAAAAAAVDGQYAAAAAAAAAgIKhDAMAAAAAAAAAQMFQhgEAAAAAAAAA\noGAowwAAAAAAAAAAUDCUYQAAAAAAAAAAKBjKMAAAAAAAAAAAFAxlGAAAAAAAAAAACoYyDAAAAAAA\nAAAABUMZBgAAAAAAAACAgqEMAwAAAAAAAABAwVCGAQAAAAAAAACgYCjDAAAAAAAAAABQMJRhAAAA\nAAAAAAAoGMowAAAAAAAAAAAUDGUYAAAAAAAAAAAKhjIMAAAAAAAAAAAFQxkGAAAAAAAAAICCoQwD\nAAAAAAAAAEDBUIYBAAAAAAAAAKBgKMMAAAAAAAAAAFAwlGEAAAAAAAAAACgYyjAAAAAAAAAAABQM\nZRgAAAAAAAAAAAqGMgwAAAAAAAAAAAVDGQYAAAAAAAAAgIKhDAMAAAAAAAAAQMFQhgEAAAAAAAAA\noGAowwAAAAAAAAAAUDCUYQAAAAAAAAAAKBjKMAAAAAAAAAAAFAxlGAAAAAAAAAAACoYyDAAAAAAA\nAAAABUMZBgAAAAAAAACAgqEMAwAAAAAAAABAwVCGAQAAAAAAAACgYCjDAAAAAAAAAABQMJRhAAAA\nAAAAAAAoGMowAAAAAAAAAAAUDGUYAAAAAAAAAAAKxv8HLDGEwddUm0wAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_compression_experiments(res_h, comp_ratios, \"figs/compression_human.png\", 100.)\n", - "Image(filename=\"figs/compression_human.png\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### FSWT x GWT" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 1.30960783, 1.46880193, 1.40233368, 1.83547972, 2.97625452,\n", - " 5.96806709])" - ] - }, - "execution_count": 65, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "numpy.divide(res_h['GWT'], res_h['FSWT'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Wikipedia" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "G = read_graph(wiki[\"path\"] + \"wiki.graph\", wiki[\"path\"] + \"wiki.data\")\n", - "F = read_values(wiki[\"path\"] + \"wiki.data\", G) " - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "algs = [OptWavelets(n=20), GRCWavelets(), Fourier()]\n", - "\n", - "comp_ratios = [0.1, 0.20, 0.30, 0.40, 0.50, 0.60]\n", - "sys.setrecursionlimit(G.number_of_nodes())\n", - "res_w, time_w = compression_experiment_static(G, F, algs, comp_ratios, 10)" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACMMAAAZxCAYAAACxbsOrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAuIwAALiMBeKU/dgAAIABJREFUeJzs3Xl8VOX5///3ZCEBAsgSNAiEsEoUgZCIbAkSqOJSl48b\n2gJWQa0VP2392orVuv4e0lpbwY0PUkVFAZWiFAERAVlkCZFFIOyEJWEJQVlCyML8/hhOnGS2LDNz\nZk5ez8cjD8Nk5j7XmTtOzlxz3fdls9vtdgEAAAAAAAAAAAAAAAAWEGF2AAAAAAAAAAAAAAAAAIC/\nUAwDAAAAAAAAAAAAAAAAy6AYBgAAAAAAAAAAAAAAAJZBMQwAAAAAAAAAAAAAAAAsg2IYAAAAAAAA\nAAAAAAAAWAbFMAAAAAAAAAAAAAAAALAMimEAAAAAAAAAAAAAAABgGRTDAAAAAAAAAAAAAAAAwDIo\nhgEAAAAAAAAAAAAAAIBlUAwDAAAAAAAAAAAAAAAAy6AYBgAAAAAAAAAAAAAAAJZBMQwAAAAAAAAA\nAAAAAAAsg2IYAAAAAAAAAAAAAAAAWAbFMAAAAAAAAAAAAAAAALAMimEAAAAAAAAAAAAAAABgGRTD\nAAAAAAAAAAAAAAAAwDIohgEAAAAAAAAAAAAAAIBlUAwDAAAAAAAAAAAAAAAAy6AYBgAAAAAAAAAA\nAAAAAJZBMQwAAAAAAAAAAAAAAAAsg2IYAAAAAAAAAAAAAAAAWAbFMAAAAAAAAAAAAAAAALAMimEA\nAAAAAAAAAAAAAABgGRTDAAAAAAAAAAAAAAAAwDIohgEAAAAAAAAAAAAAAIBlUAwDAAAAAAAAAAAA\nAAAAy4gyOwAAqI/Kysq0c+fOSre1aNFCERHUKAIAAAAAAAAAAAAIb+fPn1dhYWGl27p06aKoqOCU\nqVAMAwAm2Llzp5KTk80OAwAAAAAAAAAAAACCYuvWrerevXtQjsUWBAAAAAAAAAAAAAAAALAMimEA\nAAAAAAAAAAAAAABgGRTDAAAAAAAAAAAAAAAAwDKizA4AAOqjFi1auNy2detWtWrVyoRoANQXZ86c\nUVJSkiRp7969aty4sckRAbA6XncABBuvOwDMwGsPgGDjdQdAsPG6g9ooKChQcnJypdvcfUYaKBTD\nAIAJIiJcN+Zq1aqV4uPjTYgGQH3RqFGjiu/j4+N5wwIg4HjdARBsvO4AMAOvPQCCjdcdAMHG6w78\nxd1npAE7VtCOBAAAAAAAAAAAAAAAAAQYxTAAAAAAAAAAAAAAAACwDIphAAAAAAAAAAAAAAAAYBkU\nwwAAAAAAAAAAAAAAAMAyKIYBAAAAAAAAAAAAAACAZVAMAwAAAAAAAAAAAAAAAMugGAYAAAAAAAAA\nAAAAAACWQTEMAAAAAAAAAAAAAAAALINiGAAAAAAAAAAAAAAAAFgGxTAAAAAAAAAAAAAAAACwDIph\nAAAAAAAAAAAAAAAAYBkUwwAAAAAAAAAAAAAAAMAyKIYBAAAAAAAAAAAAAACAZUSZHQAAAACCo3Hj\nxrLb7WaHAaAe4XUHQLDxugPADLz2AAg2XncABBuvOwhH7AwDAAAAAAAAAAAAAAAAy6AYBgAAAAAA\nAAAAAAAAAJZBMQwAAAAAAAAAAAAAAAAsg2IYAAAAAAAAAAAAAAAAWAbFMAAAAAAAAAAAAAAAALAM\nimEAAAAAAAAAAAAAAABgGRTDAAAAAAAAAAAAAAAAwDIohgEAAAAAAAAAAAAAAIBlUAwDAAAAAAAA\nAAAAAAAAy6AYBgAAAAAAAAAAAAAAAJZBMQwAAAAAAAAAAAAAAAAsg2IYAAAAAAAAAAAAAAAAWAbF\nMAAAAAAAAAAAAAAAALAMimEAAAAAAAAAAAAAAABgGRTDAAAAAAAAAAAAAAAAwDIohgEAAAAAAAAA\nAAAAAIBlUAwDAAAAAAAAAAAAAAAAy6AYBgAAAAAAAAAAAAAAAJZBMQwAAAAAAAAAAAAAAAAsg2IY\nAAAAAAAAAAAAAAAAWEaU2QEAABDOzp8/r+PHj5sdBgAAAAAAAAAAgCW1bNlSERHs84GaoRgGAIA6\nOH78uFq3bm12GAAAAAAAAAAAAJZ09OhRxcfHmx0GwgzlUwAAAAAAAAAAAAAAALAMimEAAAAAAAAA\nAAAAAABgGRTDAAAAAAAAAAAAAAAAwDKizA4AAACr2bp1q1q1amV2GAAAAAAAAAAAAGGloKBAycnJ\nZocBC6AYBgAAP2vVqpXi4+PNDgMAAAAAAAAAAACol2iTBAAAAAAAAAAAAAAAAMugGAYAAAAAAAAA\nAAAAAACWQTEMAAAAAAAAAAAAAAAALINiGAAAAAAAAAAAAAAAAFgGxTAAAAAAAAAAAAAAAACwDIph\nAAAAAAAAAAAAAAAAYBkUwwAAAAAAAAAAAAAAAMAyKIYBAAAAAAAAAAAAAACAZVAMAwAAAAAAAAAA\nAAAAAMugGAYAAAAAAAAAAAAAAACWQTEMAAAAAAAAAAAAAAAALINiGAAAAAAAAAAAAAAAAFgGxTAA\nAAAAAAAAAAAAAACwDIphAAAAAAAAAAAAAAAAYBkUwwAAAAAAAAAAAAAAAMAyKIYBAAAAAAAAAAAA\nAACAZVAMAwAAAAAAAAAAAAAAAMugGAYAAAAAAAAAAAAAAACWQTEMAAAAAAAAAAAAAAAALINiGAAA\nAAAAAAAAAAAAAFgGxTAAAAAAAAAAAAAAAACwDIphAAAAAAAAAAAAAAAAYBkUwwAAAAAAAAAAAAAA\nAMAyKIYBAAAAAAAAAAAAAACAZVAMAwAAAAAAAAAAAAAAAMugGAYAAAAAAAAAAAAAAACWQTEMAAAA\nAAAAAAAAAAAALINiGAAAAAAAAAAAAAAAAFgGxTAAAAAAAAAAAAAAAACwDIphAAAAAAAAAAAAAAAA\nYBkUwwAAAAAAAAAAAAAAAMAyoswOAAAAhC673a7c3FwdPXpUZ8+eVXFxsSQpNjZWDRs2VOvWrZWY\nmCibzWZypKgu5hShpKSkRPv371d+fr4KCgpUXFysc+fOKSYmRo0bN1ZcXJwaN26s1q1bq3379oqM\njDQ7ZAAAAABwy263q6ioyOwwTNWoUSPL5BOYT2vNZygrKSnRgQMHdPDgQZ0+fVpFRUU6e/asJEe+\nLjY2Vi1atNDFF1+sSy65RE2aNDE5YgAIHxTDAAAASY43+Xv37tX69euVlZWl9evXKzs7WydOnPD6\nuObNm6tPnz6VvpKSknizHAKYU4SaAwcOaOHChVqyZImys7O1a9culZeXV+uxkZGRatu2rZKSktS5\nc2elpqYqNTVVV155paKieFsDAHVRVlamOXPmSJJuueUWXlctgDkFgOArKipSXFyc2WGY6vTp02rc\nuLHZYfgF82mt+QwVZ86c0bfffqs1a9ZozZo12rhxo44cOSK73V7tMeLj43XZZZfp8ssvV9++fdW/\nf3916dIlgFEDQPiy2WvyCgsA8Itjx46pdevWlW47evSo4uPjTYoItWWFuTx06JCmTJmiKVOmKC8v\nz+XnDSQlSGooKfbCbcWSzkrKl1TiZsw2bdpozJgxGjt2rNq0aROgyOEJcxq+Zs2apVOnTpkdhiRp\n1KhRfvngrKysTNOnT9c777yjVatWVSR4altcVfXtS0xMjHr27KlrrrlG1113nQYMGFDjuKdNm6b7\n7rvP489bt26tw4cP1yremujVq5c2bdrk9T533HGHZs6cGdA4Tpw4oZYtW3q9z8KFCzVs2DCdOnVK\ns2bNCmg8wfTLX/4yrP6GA/7y9ddfa9iwYZKkRYsWaejQoSZHhLpiTkNPqF7n7dixQ8uXLzc5Iv+I\niIjwek0HBNqZM2conrBQ8QTzaa35NNPZs2c1a9YszZ49W4sWLarYpVnyX24kISFB119/vW666SZd\nd911atCgQZ1iHjNmjKZOnerx57feeqs+++yzOh3Dl5MnT6pFixY6f/681/u99tprevTRRwMay7x5\n83TTTTd5/HlUVJQKCwsVFxenXbt2admyZQGNJ5juv/9+U45rhc9d4GD2XFIMAwAmMPvFH/4TrnNp\nt9u1ZMkSvfnmm5ozZ07FzgwNJF0pqY/T1xUXbnenRNIPktZf+MqStFk/F1NERkbq1ltv1W9/+1sN\nHjyYnUUCiDm1hqSkJOXm5podhmw2m06cOKGmTZvWaZwPPvhATz31lA4ePFgxblXVfTvi7XfNeYwm\nTZooMzNT48ePV2pqarXG3rdvnzp27OgxPpvNpi1btuiyyy6r1ni18eOPP6pVq1Y+n4/WrVsrPz8/\nYHFI0hdffKFbbrnF4/MRHR2tH3/8UQ0bNtTu3bstswLNZrNp+fLl6t+/v9mhAEE3duxYTZkypeL7\nyZMnmxwR6oo5DT2hep03depUjRkzxuSo/CMqKkolJe5K+4HgqFQ88bg8v/G2mhJJrzi+tVLxBPNp\nrfk0w6FDhzRx4kS98847Fbs0e8pt1OSjWl9jNG/eXHfddZceeOABpaSk1DBqhw8//FAjR470eKyW\nLVvq6NGjtRq7ur788kvdeOONPnOPt956qz799NOAxvLEE0/olVde8RhLamqq1qxZI8n3gqtwYrPZ\nqr2js7+F6+cucGX2XEYE5SgAACAk2O12ffTRR0pOTlZmZqY+++wzlZeXK13Sx5JOSlon6W1JYySl\nyPt7/QYX7jPmwmOyLozxsaRBksrLy/Xpp59qyJAhSk5O1kcffVSjN3fwjTm1HpvNZuqXPxw8eFAZ\nGRkaNWqUDh06VGlsu91e6XemNnEZYzjvMmN8nT59Wp9//rlWrVpV7Xg7dOigxMREl/GdLV26tKZP\nQ40sX768YrWT8/k5x2K323X06FHl5OQENBbnFUxVj2+z2ZSamqqGDRtWeozZv7eh8HsPhKuysjL9\n5z//qfj37NmzVVZWZmJEqCvmNHSF8t87s2Pjbzksp0E9+7I6s59f5jOsFBUV6emnn1aXLl3097//\nXT/++GOlv1fucg61/ZvnLjfy448/6u2331ZqaqoyMzO1YMGCGp/D4MGDXY7hnBs4fvy4fvjhhxqP\nWxPuchNVnzu73a5vv/02oHF4isX4Xqr8fBnMvjbi2gpwoBgGAIB6Ij8/XzfffLPuvfde5eTkKE7S\nb+XY9WOZpLslxfjhODEXxvpW0iZJD0uKk5STk6N7771Xt9xyS8B3NagvmFNrc1cQEegvf1ixYoV6\n9+6t5cuXuyR6jGIKd7fXJMaqb87dJSJqKiMjw+tjA73FbU3GNzsWd0keyZzf2VD5vQfC2dKlS1VQ\nUCA1ayY1a6aCgoKAFwAisJjT0Beqf+/M/pvM33EAQLhbtGiRunXrppdeeknnzp0LSF7E+W+gp9yI\ncfuSJUt0/fXXKz09vWLnkupo27atOnbsWDGWO2bmJpyvAY4fP64tW7YELI7Tp08rOzvba4EIeRIg\ndFEMAwCAxdntdn3wwQdKTk7W3LlzFS3pBUl5kt6Qo2VOoPSQ9OaFY70gKVqO9huXX365PvzwQy6u\na4k5rb9CfdXHokWLdO2116qwsFA2m81ngqY2MfpK/tSWp8SFccxAJ3lq8iFlID/QPHnypDZs2FCr\nJE8wfx9D6fceCHezZs1yfDNokDRwoCTpk08+MTEi1BVzGp5C4TovHP+WAwAQCsrLy/Xkk0/quuuu\nU15enkv+Q/r5b5+nnEZN//55Gsdd4c2KFSvUv39/nT17ttrnNHjwYK95vkDmJqpTgBKsWFasWFHR\nKsj5uTZERkZq0KBBbh8bjtdWXF/BaqLMDgAAAAROfn6+HnzwQc2dO1eS1EfSewpssYQ7TST9RdIt\nkkZLWn/ihH7961/rk08+0dtvv62EhIQgRxS+mNP6LZSLjTZt2qTbb79dxcXFkirH6pyoMf4dFRWl\nIUOG6KqrrlKPHj3UvXt3XXTRRWratKni4uJUUlKioqIi5efn68CBA9qyZYs2bdqklStXas+ePRVj\nuztObbgr8DASR5J05MgR7dixQ127dq31MTzxVIDi7nmz2wO7BbDRrsk4lnMckhQVFaWBFz5YdRbs\n381Q/n8BCCeV2ukYr4Pz5mn27Nl64403FBVF2ijcMKfhy+y/bfwtBwCgdoqLi3XbbbdpwYIFLu/j\nJffv7SXH++tevXrpqquuUkpKihITE5WYmKjmzZurYcOGatiwoc6ePavTp0/rxx9/1J49e7R7925t\n3rxZy5cvV05OTsWYvhYiGWry93fw4MH697//7XJ7MHITK1euVFlZWaXchPOxq1q2bJkeeeSRgMTi\naXGUEUfv3r0VFxfn8efBwrUV4B7vgAEAsKgtW7boF7/4hfLy8hQt6a+SnpBjJw+zXCHpO0kTJD0v\nx44iWVlZWrRokZKTk02MLDwwpwjW6oyaHufcuXO66667dPr0aUnu34AbCZh27drpySef1B133KEW\nLVp4HDMmJkYxMTFq3ry5kpOTde2111b8LD8/X/PmzdN///tfLVy4UCUlJR6PW10dOnRQYmKi9u/f\n7zG5snTp0oAUw6xYscKlAEWSy/fGvBw+fDhghTnekjw2m02pqalq2LBhpZ8F6vfS23wG4pisfkJ9\nVKmdTq9ejhud2uoMHTrU3ABRY8xp+DLzOo+/5QAA1M7Jkyd1ww03aOXKlT4LYYzvhwwZol/96lf6\n5S9/qebNm3sd3yiKiY+PV5cuXSr9rLCwUJ9//rlmzpypJUuWqKyszO0uMbXla9FQQUGBtm7dGpD8\nn6/cRDAXDXnbKdhms7l9nri2AkIHbZIAALCgdevWKT09XXl5eeouab2kp2Ru0YQhWo4dRdZL6i4p\nLy9P6enpWrdunbmBhTjmtP4y3njabDa9++67Ki8vD/hXWVmZmjZtWu0YX3jhBW3fvl2Sa9LHSExE\nRkbqmWee0fbt2/Xggw96LYTxJSEhQQ888IDmzJmjI0eOaMqUKerbt2+dt3PNyMjwmlgIVKskT+N6\nO59gx2KomuTp1KlTQH4Hx48fL6ly4sX5/4XMzMyA/N7379/fv08oEOIqtdOJjHR80VYnrDGn4SUU\nrvPuv//+gBzH+Jvq6W/5Cy+84Pdjnjt3LoizBwCo70pLS3XjjTdWFMI4tyySVOk2m82mW2+9VRs2\nbNCiRYs0atQon4UwvrRo0UL33XefFixYoNzcXD355JNq2bKly3Frq23bturYsWPFubhjRp6k6m44\nknTs2DFt27bN73EUFRUpKyvL6/NYNU8yatSogFxbpaenVzwHBudrq7/+9a8BuW4Ewh3FMAAAWMy6\ndeuUmZmpwsJCpUlaLqmH2UG50UOO2NIkHT9+XJmZmRRPeMCcIpQVFBRo4sSJXlv8xMTEaObMmfrr\nX/+qmJgYvx6/adOm+s1vfqNVq1YpOztbo0ePVnR07crEMjIy3N5uJFsCleRx7m3tnMho27at2rZt\nW+l2d4/xl+r05Ha34glAeHLbTkeSrrlGkjR79mySn2GGOQUAAAie3/zmN1qxYoXbHViM22w2m9q3\nb6+FCxfq008/VY8egcnoXXLJJXrxxRd14MABvfDCC2ratGmdd4aRfC8aCkRuomoBivN/r7766kq3\nBToWo12T5NrmSpIiIyM1aNAgvx8XgP9QDAMAgIVs2bJF1113nU6dOqUMSYsltTQ7KC9ayhFjuqRT\np07puuuu09atW02OKrQwpwh1U6dO9dgeyUj8vPXWW7rtttsCHkvPnj01depU7d27V0OGDKnx4z1t\nAWzIz8/Xrl276hKiC28FKBkZGRp4YTW/IZCFOStWrFB5ebkk90meqKgol3gAhC+37XQkx/dObXUQ\nPphTAACA4PjXv/6l6dOn+yyEyczMVHZ2dtBaVcbGxmr8+PHauXOnRo8eHZBWSVJg2xOtWrVKpaWl\nklzzTKNGjVK7du3c7noTiDyJt3ZNktS7d2/FxcX5/bgA/IdiGAAALCI/P1+/+MUvVFhYqKskzZXU\nxOygqqGJpP/KsZtIYWGhhg0bpvz8fJOjCg3MKcKBkfxx5pz4GTZsmEaPHh3UmBISEnTFFVfU+HFJ\nSUlq3769JM9bAPv7Q8SVK1e6FKAY0tPTK60wCnRhjq+e3KmpqWrYsKFfjwnAPC7tdAy01QlbzCkA\nAEDg5eTkaPz48W7zBs75kJtvvlnz58+vU5vo2oqPj9fUqVP13//+V23atKn1OL4WDR09elQ5OTm1\nHt8db0UtVfMkUmAXDXkb02azsXsuEAYohgEAwALsdrsefPBB5eXlqbukLxUeRROGJpLmS+ouKS8v\nTw899FCdt/EMd8wpwsGRI0f0ww8/SHIt5DD84Q9/CGZIdeZrC2B/J1e8jZeRkVHRE9rsWCRaJAFW\n4rGdjoG2OmGHOQUAAAiO0aNH69y5c5Iq50KcC2GGDh2qWbNmKdK5QNkEw4cP1+bNm2u9M027du2U\nlJQkyfOioUDmJpyPGR8fr8suu6xSnqRqYc727dv9FkdxcbHWrVtHK2kgzFEMAwCABUyfPl1z585V\ntKSZCu02Op60lCP2aElffPGFpk+fbnJE5mJOEQ5Wr17tcptzkqB58+bKzMwMZkh15msL4GAleS6+\n+GJ16dJFycnJatWqlcvPqz62rqr25HaHJA9gHR7b6RhoqxN2mFMAAIDAmzFjhtauXSvJtRDG0LZt\nW3388ceKiooKenzuNG/eXAsWLNAf//hHr+/5PRk8eHDQFg0VFxdr7dq1leI0CoyMHWGCtWjou+++\nU0lJSUUMUuV5joyMdNmlBkDooRgGAIAwl5+fr3HjxkmS/iqph7nh1EkPSc9c+H7cuHH1trUOc4pw\nsWPHDre3G4mK5ORk01dB1ZSvLYAPHTqkPXv2+OVY7gpQjOfOObkzcOBAt6vN/JnkWblyZcVOAe6S\nPFFRURp4ocUGgPDnsZ2OgbY6YYc5BQAACKzy8nI988wzHgtKjPfz7777rimtkbyJiIjQ3/72t1q1\nPg7moiF3BSiGjIwMSdJll12m+Pj4ihic+bPo29NYRly9e/dWXFyc344HIDAohgEAIIwZrXROnDih\nPpL+ZHZAfvAnSSmSTpw4US9b6zCnCCeHDh3y+vOEhIQgReI/SUlJat++vaTAbwG8atUqlZaWSnJN\n8jgXw3jaAvjgwYPau3evX2LxdE5GMi81NbVWSTMAocdnOx0DbXXCBnMKAAAQeB9//LF27dolyXN7\npLvuuktDhgwxK8SA8LVo6PDhw9q5c6dfjuUt3+KcGxk0aFDAFw15G8tms7F7LhAmKIYBACCMffzx\nx5o7d64aSHpPUmhsvlk30XKci9Fa5+OPPzY3oCBjThFOTp8+7fXnsbGxQYrEvzIyMrwWbflrpZG3\nxIqx4knyvgVwMGKRpGsufIAKIPz5bKdjoK1O2GBOAQAAAm/y5MkutzkvoomIiNALL7wQzJCCol27\ndkpKSpLkedFQIHITzse66KKLdOWVV1b829OiIX8V5pw7d05r1qzx2laKPAkQHiiGAVBvbN++XR9+\n+KEee+wx9e/fX40aNVJERITL1/vvv292qEC12O32ijdYT0u6wtxw/KqHHOckSS+++GK92UmEOUW4\nKS8v9/rzgoKCIEXiX86FKM78vdLIU5KnRYsWuvzyyyv+3atXLzVt2tTlflXHqK3i4mKtW7fOa5KH\nFU+Adfhsp2OgrU7YYE4BAAACa+vWrVq5cmVFXsCZsSvMbbfdpk6dOpkUYWD5WjTkj9xESUmJSwGK\n8dxWbdvsbdGQP2JZs2aNzp07VxGDVDkfExkZqUGDBtX5OAACj2IYAJa0f/9+ffbZZ/rzn/+szMxM\nXXTRRerevbtGjhypSZMmafXq1Tp37pxsNpvLFxAuli5dqpycHMVJeszsYALgMUlxkrZt2+bXLS5D\nGXOKcOOpbY6RHNq6dWuQI/IPX1sAHzhwQPv27avTMYqLi7V27Vq3SZ6qCZWIiAj1798/YFsAr1q1\nyqUnt3Nc0dHRGjBgQJ2PA8B81W6nY6CtTshjTgEAAAJvxowZPu/z4IMPBiESc3haIOPP3MTq1atV\nXFwsybWVdNVFSz179lSzZs0qYnDmj11qPI1hxJWSkqLGjRvX+TgAAo9iGACW86c//UkdOnTQHXfc\nob/97W9asmSJTp065bboxW63V1zAsEsBws0bb7whSRopqYm5oQREU0m/vvC9ca5Wx5wi3LRu3drl\nNue/p/v379e2bduCGZJfdOzYUe3atZPkeQvguiZ6vvvuO5cCFIO7nWk8bQG8f/9+5ebm1ikWT+di\nFOekpqZ6LHwCEF6q3U7HQFudkMecAgAABN68efNcbnPOF1x88cWWbpvja9FQXl6edu/eXadjVLeV\ntOR47gcMGBCwRUPexrDZbOyeC4SRKLMDAAB/Mz5Y8vThFUUvsIJDhw5pzpw5kqSHTY4lkB6W9Jak\n//znP8rLy1ObNm3MDilgmFOEo44dO/q8z8svv6xp06YFIRr/ysjI0Icffui1H/aoUaNqPb63xIq7\n7X69bQEcyFgkWiQBwWa321VUVBSQsStWtPpqp2Mw2urMm6cZM2aoX79+AYmrUaNGlt6lkzkFAAAI\nX4cPH9b333/vtUXSzTffbOlrn/bt26tDhw7Kzc11+zxIjtxEXdpEeWolHRcXp5SUFJf7p6en68sv\nv5T08zxIPxfm1DaW0tJSrV69mlbSgEWwMwwASzN2fnH+kkRLJIS9KVOmqLy8XIMkXWF2MAHUQ9JA\nSeXl5ZoyZYrZ4QQUc4pwlJqa6vFnRnLko48++rl9QxgJ9BbAnpI8TZs2VS83K/vT0tIqdmepeg1T\nl1jOnTvn0pO7KpI8QHBt3rxZcXFxAfmaOnWq4yA1+f/6wgrXqVOnBiyuH374wf9PZAhhTgEAAMLX\nt99+6/M+9eF98+DBg70uNK5LbqK0tFTfffed21bSAwYMcJuz8LZoqC6xrF27VmfPnq2IQaqch4mM\njHRpbw0gdFEMA8Cyqha+2Gw2xcTEKDU1VQ899JB+9atfVfwcCCd2u72iiOC3JscSDMY5TpkyxbI7\nOzGnCFfJyclKSEiQJJeEhXFbeXm57rnnHn3wwQemxFhbvrYAzs3N1f79+2s1dklJiUsBiq8kT3R0\ntPr27evrzWZlAAAgAElEQVR2C+C6tLlYs2aNzp07VxGDMa7zcQcMGFDr8QHU3Oeffx7YAwwaVL12\nOoZevRw7iQRQwM/ZZMwpAABA+MrOzvZ5H3ftjq0mkIuG1q1b51KAYvBU9JKamqpGjRpVxOCsLnkS\nb62kJSklJUWNGzeu9fgAgos2SQAsyWazKTIyUt27d1daWppSU1OVlpamnj17KirK8dI3bdq0sPtg\nDpCkvXv3Ki8vTw0k3Wp2MEFwm6RoOdoI7du3T0lJSWaH5HfMqfXmtD65/fbbNWnSJJfEg3NhRUlJ\niUaNGqX33ntPf/nLX8Kij3bHjh3Vtm1bHTp0yOMWwMuWLdOvf/3rGo+9evVqFRcXV4zr/Nx5S6Cl\np6dXJHScH5ebm6sDBw6oXbt2NY7FU4LIGD81NbViRxoAwfHoo49q8+bN+uSTTxw39Ool/elPUrNm\n/jlAbKxUkwUBkZHS889LxcX+Of5PP0kvvyxt3ChJuuOOO/Too4/6Z+wQxZwCAACEL3fFMM7v41u3\nbq1LLrkkmCGZwtOiIeO5OHjwoPbu3VurPJ+34hVPeZKoqChdffXV+uabbypi8EdhjrdYbDZbvdgF\nCLASdoYBYDl33323li9frpMnT2rjxo1655139NBDD6lPnz4VhTBAOFu/fr0k6UpJMeaGEhQxcpyr\n9PO5Ww1zinD2yCOPKCLC8bbC3Y4mzkUxS5YsUWZmprp27apnnnlGa9euDendgTIyMgKyBbC3x3nb\n5jcQWwD7ehxJHiD4LrroIs2cOVOTJ09WbGystGGD9LvfSTk5UsOGdf+qzc6YNpt/jp2T4ziXjRsV\nGxuryZMna+bMmWrmr6KQEMWcAgAAhK8tW7Z4zHfYbDYlJyebEFXwtW/fXomJiZI877bvj9yE89gN\nGzZUWlqax8c550mc8zcHDx7Uvn37ahxHWVmZVq1aRStpwEIohgFgOX379lX//v0dSUbAgozigT4m\nxxFMxrlatXCCOUU469q1q+677z63LXYMdru9Iklks9m0e/duvfjii7r66qvVokUL3XDDDXruuef0\n5Zdf6tixY8E+BY98bQFc2213PSV5GjVqpNTUVI+P69evn6Kjo10eJ9VuC+DS0lKtXr2aJA8Qgmw2\nm8aOHau1a9eqe/fu0vHj0h//KL37rlRebnZ4NVdeLv37345zOH5c3bt319q1azV27Nh607aWOQUA\nAAg/ZWVlOnLkiNf7dOvWLUjRmG/w4MFeFw3VJjdRXl7uUoBi5JCuvvpqrwucvS0aqk0sWVlZKioq\nqohBqpx/iYyM1KBBg2o8LgDzsEUCAABhJisrS1L9LJwwzt1qmFNU17Jly1RaWhqw8fv161erFU1/\n//vf9dVXX+nAgQMVBS/ukiPOiQQjmXDy5EnNnz9f8+fPr7hf+/btlZaWprS0NF111VVKS0szpR+z\nry2A9+7dq0OHDunSSy+t9pilpaX67rvv3CZ5+vXrp8jISI+Pbdiwofr06VOpgKUuWwCvXbtWZ8+e\nrTRfznFFR0drwIABNR4XgP/06NFD69at02OPPaapU6dK77/v2FXkL3+R4uPNDq96jh2TXnxR2rRJ\nknT//ffrtddeM+V1PRQwp/AkVK/zAACoz/Ly8nT+/HmPeQ5JSkhICHJU5hk8eLCmTZvmcntdchNZ\nWVk6c+aM21bS3opdJOnqq69WgwYNVFpa6lKQvWzZMo0ePbpGsXiK35j7lJQUrnmBMEMxDAAAYcRu\nt1f0qa2PhRPr1693eVMU7phT682pvxlvuO12u9599129++67ATvWv/71r1p9SHLRRRdpzpw5uuaa\na3Ty5ElJPxdVeCuKMe5Xdf4PHDig/fv367PPPpMkRUREqEePHho2bJiGDx+ujIyMitZMgdSpUye1\nbdtWhw4d8pj4Wrp0qe69995qj1m1AMX53D31wXaWnp6u1atXS6pcmLNnz54aF+Z4WiVljJuamqqG\nDRtWezwAgdG4cWO98847yszM1NixY3V60ybpgQekP/9Z6tfP7PC8W7VKmjBBOnlSTZo00eTJkzVi\nxAizozIdcwpDOFznAQBQnx06dMjnfS655JIgRBIafC0a2r9/v3JzcyvaKVWHtx1cfOVJYmNjlZqa\nWmlnmboU5niLxWazsXsuEIZokwQAQBjJzc3ViRMn1EDSFWYHE0RXSIqWdOLECeXm5podjl8xp9ab\n00AyCkf8/WWMXRe9e/fWokWLdPHFF7vsNOJtbKOFkvNX1XO12+3auHGjXnnlFWVmZqpNmzZ67LHH\ntHXr1jrFXB0ZGRletwCuaXLF2/19rXiS5HU7Xn/GItEiCQg1I0aM0Pfff6+UlBTp5Elp/HjpjTek\nkhKzQ3NVUuKI7amnpJMn1adPH2VnZ1M0UQVzCmehfJ0HAEB9derUKZ/3admyZRAiCQ2JiYkVhS6e\nri/qkptwHrNBgwa6+uqrfT7eOU/inL/Jzc3V/v37qx1HeXm5Vq5cSStpwGLYGQYAgDBy9OhRSVKC\npAbmhhJUMXKc835Jx3bsUAcLbUd5dPt2SfV8To8dU4cOHcwNKEx4K8qoLX9+OJKWlqasrCyNHDlS\nS5cuddkBxuDrPKr+vGpBzbFjxzRp0iRNmjRJ1157rZ5//nmlpaX56SwqGzx4sKZPn+5yu1GkU9Me\n1J6SPDExMerbt6/Pxw8cOFARERFud1RaunSp7rnnnmrFUVZW5tKTuyqSPEDo6dy5s1atWqU///nP\n+te//iV9+qmjVc0zz0g12BkqoA4dkp57Ttq5U5L04Lhxevqll9SgQQMdC8UiD5M1a99eny9dqhef\nekqTJ00Kizn9/e9/r5dfflkNGtSnq9fAC/XrPACojmNnjqlIRWaH4RdnzpwxOwSEgLNnz/q8T2xs\nbBAiCR1GqyRP1xlLly7VyJEjqzXW+fPnXQpQjHxHWlqaYmJifI6Rnp6uCRMm1DmW7OxsnT592mMr\n6cjISK8LlACEJophAAAII8YbsPrYtMI457PXXmtqHP5mvKWu13NajcQCHMLhA41LL71Uixcv1vvv\nv6+nnnpKeXl5bnd8cVaX4piFCxdq4cKFGjVqlF555RW/r8jytQXw7t27lZ+fX60e4eXl5S4FKMZY\nffv2rdaHis2aNVOPHj20cePGOm0BnJWVpaKiIo9JnujoaA0YMKDa4wEInpiYGP3zn//UkCFDNHr0\naBXu2CGNHSv94Q9SZqa5wX39tfTqq9LZs1LTptKf/6zJ/fppclaWuXGFg9tuky65xNGCKETntGXL\nlnrvvfd04403mhuTRYXDdR4A+JL0WpJ1VvpQwwtVL2dVnYKN2mrVqpUKCwv9Oubo0aP173//u9aP\nN4phqqpNbiI7O1unTp2qdStpyfuioWXLllW7GMZT3EbOJCUlRY0ttEATqC9okwQAQBgpLi6WJNWv\n9QYOxjlbrWyi+MJ/6/WcUgxTbe5aCvnjKxBGjhypPXv2aPLkyerRo0ellkfeWiL5aqtU9Xkw7j9t\n2jT17NlTK1as8Ot5dOrUSZdeWJnvbdVTdWRlZVWsLqz6vFenRZK7+zqPs2vXLuXn51drDG9JHmMF\nVsOG9bFMDwgfN910kzZu3OhYnVhUJL34ovS3vzkKUYLt7FnHsV96yfH9lVdK77wj9esX/FjCWf/+\njuftyitDbk7T09O1YcMGCmECKJyu8wAAqC/Kysp83icqKnD7DgSqhWJdeFo0ZNi3b58OHDhQrbHq\n2kpakpo0aaKePXu67E5c0918vcVis9l0zTXXVHssAKGDYhgAAAAgTAQiCeKvZIg70dHReuCBB7Rx\n40Z99913euyxx5SYmFjpuJ4+tKlufM73z8vL09ChQ/Xpp5/69TwyMjK8fphU3VVP3pIw1V3xJHlP\nCPkjFokWSUC4aNu2rb755hs9/fTTjtfK+fOlhx+W9uwJXhB79jiOOX++ZLNJI0c6dhKJjw9eDFYS\nH+94/n79a8fzafKc2mw2PfPMM1q8eLHatm0bvBjqoXC7zgMAoD6ozq4v586dC0IkdSucNR7vD4mJ\niUpMTJTkedFQbXITzmNFRUXVaLdaT4uG9u3bp4MHD/p8/Pnz57VixQpaSQMWRDEMAABhxOhBW+zj\nflZknLPV9ikwdkep13PK7hNeObfCeffdd1VeXh6wr3HjxgXsPK666iq9+uqr2rt3r7Zu3aqJEyfq\nzjvvdCmO8bV7jDvO9ykpKdG9996rr776ym+xe0p41HSlkXMyqGpLon412D3BWzFMdWIpLy936cld\nFUkeIHxERUXp+eef1+LFix0t23JzHYUMX3whBXJXCLvdcYyHH3Ycs2VL6R//kO67T4qMDNxx64PI\nSOk3v3E8ny1bmjanCQkJWrx4sZ577rmArniuz6xynQcAgFVVJ2cVrGKYUCqE9bVoqDq5Cbvd7lKA\nYozZu3dvNWrUqNrx1DVPsmHDBv3000+VYqhanDNw4MBqxwMgdPBOFgCAMGK8AauPTWWMc264cKHU\nu7epsfhTw+xs6brr6vecUgxT73Tr1k3dunXTI488IkkqKCjQ+vXrlZ2drezsbK1fv165ubkV96+6\n1W3V24x/G0mf0tJS3XXXXdq4caPat29f53g9bQFsxLJz504dOXJEF198sccxzp8/71KAYozRp0+f\nGv1/EB8fr27dumnHjh2VPkSrbm/u7OxsnT59uuIxxuMN0dHRNVqBBSA0XHPNNdqwYYNGjRqlBQsW\nSP/8p5SdLT3+uBQX59+DnT4tvfKKdOE1J/PaazVp6lS1YjcY/+rfX8fuuEOP3n+/vvnqq6DO6fDh\nwzVt2jTFM6cAgBrY+9heNW7c2Oww/OLMmTNK+v+SzA4DJqvOe/WioqKAxhCKbQ8HDx6s999/3+X2\nmuQmjAIU4zHO+Y2a7J4rydE61oNly5bpV7/6ldfH+2olnZKSYpnXNqC+oRgGAIAw0rp1a0lSvqQS\nSQ1MjSZ4zslxzpIU37Wrpbbdb92tm6R6PqcWmk/UTqtWrXTttdfq2muvrbgtPz9fy5Yt05IlSzRn\nzhwVFBRIqrxCx1NBjCSdPHlS999/vxYtWlTn+Dp37qxLL71UeXl5bo8rORInd955p8cxsrOzderU\nKZckj1T9PtjO0tPTtX37dpfxduzYoaNHj1b8vXDHV5InLS2tYicyAOGldevWmjdvnl599VU9+eST\nKlu2TDp7Vpowwb8HeuEFae1aRUVF6eWXX9bvf/97RUSw+XAgxLdtq0Xz5zOnAICwEN843jIfGDdS\n9XelgHW1bNnS532OHDkS0Bhqs9NLoAtofC0a2rNnj/Ly8tSmTRuPY3grmKlpnqRVq1bq3r27cnJy\narVoyNd92D0XCF8UwwCokZKSEu3YsUMHDx7UqVOnVFRUpEaNGqlJkyZq27atunXrpujoaLPDBCwr\nMTFRzZs314kTJ/SDpBSzAwqSHySVSmrevHlFT1qrYE6tN6fwj4SEBN199926++679dZbb2nhwoV6\n88039eWXX0r6OcniqSDGbrfrm2++0fz58zV8+PA6x5ORkaGPPvrIYxJq6dKlXothvG3LW9MVT5Ij\nMTRlyhS/xyKR5AHCXUREhB5//HE1a9ZMY8eOlXbv9v9BLoz55ptvasyYMf4fH5UwpwAAAOZo27at\nz/sEshjmtddeU3FxzZqrf/7555o7d67HxTz+0KFDByUmJmr//v0ej7N06VLdc889Hsdwzk0451oi\nIiK87vTiSXp6urZt2+ayaGj37t1eC3PsdruWL19OK2nAoiiGAeDTmjVrNGfOHM2fP19btmxReXm5\nx/tGRkbq8ssv1/XXX6+bb75Zffv2DWKkgPUZ2zIuXrxY61V/CifWX/hvnz59gtL3NpiYU+vNKfwv\nIiJCw4cP1/Dhw7VmzRqNGzdOWVlZHgtinP3973/3SzHM4MGD9dFHH7n9WXVWGjn/vGqSpzZ9p72t\nkvK2S8358+ddenJXRZIHsIZ169Y5vunXz/+DX321NG+esrKyKJwIIuYUAAAguFq1aqWYmBiVlJR4\nzD8cOHAgYMf3VkziyYEDBzR37twARFNZRkaG3n//fY/5hWXLlnmM310BivHc9ujRQ02bNq1xPOnp\n6Zo8ebLHWEaMGOH2Z5s2bdKJEyc8tpKOioqqVd4GQGhgv1PAz3bt2qUZM2bo8ccfV0ZGhpo2baqI\niAiPXx07djQ7ZI9mzJih1NRU9evXTxMmTNCmTZt0/vx52Ww2j1/nz5/Xpk2b9PLLL6tfv35KS0vT\nrFmzzD4VwFJSU1Ml/VxMUB8Y52qcu9Uwp0D19e3bVytXrtTDDz/s8T7ORTLLli3Tvn376nxcX1sA\n5+Tk6NixYx7jqVqAYiRYevXqpbi4uBrH065du4pdlaqO623nlw0bNujkyZOVYnB+fHR0tAYMGFDj\neACElrKyMv3nP/9x/CMQBW4Xxpw9e7bKysr8Pz5cMKcAAADm6NChg8ef2e12bd26NXjBhBBPC2mM\nfIy33MTmzZt14sQJSZVbOtlstlrtnit5XzTkLRZfraRTUlIs0/4NqI8ohgHq4MCBA5o9e7bGjx+v\nYcOGqUWLFuratavuuecevfrqq1q+fLnOnDnjtXgkFOXk5CgjI0P33HOPvv/+e5d47Xa7xy9Jle6/\nfv163X333RoyZIh27Nhh5mkBltGnTx9J9bNwwjh3q2FOgZqJiorS66+/rvvuu69SQYon/lgR1blz\n54otdb2tenJnw4YN+umnnyS5Jnlq2gfbWXp6esV41S3M8ZXkSUtLU2xsbK1jAhAali5dqoKCAqlZ\nM6lXL/8foHdvqWlTFRQU+NwZC/7BnAIAAJijZ8+ebneEcX4PXh95WjRk2LVrlw4fPuz2sd6uN2ub\nJ7n00kuVlJQk6ee5cV4o5Ymva192zwXCG8UwQDUdPXpU8+bN07PPPqsbb7xRF198sRITE3X77bfr\n5Zdf1uLFi/XTTz+5LXZxVzBi3B5qZs+erauuuqrSFnXeil18na9x+9KlS5Wamqo5c+aYdm6AVRjF\nA5sknTM3lKA4J8e5StYtnGBOgdqZPHmyOnXqJMlzgYokrVy50i/Hy8jI8Hr95mmlkbfESm1XPEm+\nWyXVNBaJJA9gFRW7cw4aJEVG+v8AkZGOsZ2PhYBiTgEAAMyRkuLa1Nw5N3D27Flt2rTJ5T5W16FD\nB7Vv316S55xMbfIk/lw0ZNi5c6fHwpxvv/2WVtKAhVEMA1TTL37xC9100016/vnn9eWXX6qgoKBa\nhS+hWPDiyRtvvKE77rijYjcbdwUw3naFqVoAI1Xefv/06dP6n//5H7311lumnSNgBUlJSWrTpo1K\nJP3H7GCCYLakUjmq+71tSxrOmFOgdqKiovTss896vN4yrl02bNjgl+N5S4B4W2nknPxxTrDYbDYN\nuvDBY23UtBjGXU/uqkjyAOEv4O10DLTVCRrmFAAAwDzVafHtrQ2PlflaNOQpT+JcgGLkbiQpOTlZ\nLVu2rHU8Nc2T/PDDDzp+/Lgk962ko6KiNHDgwFrHA8B8FMMA1VTTwpdQb4VU1bRp0zRu3LiKf1c9\nl6qFLt6+ql40OP/bbrfr0Ucf1YcffhjEswOsxWazacyYMZKkN02OJRiMcxwzZkzYvKbWFHMK1N5t\nt92mmJgYSZ5XIh04cMAvx/K0BbBx3K1bt1YkUZx/XrUAxbg2uvzyy9W8efNax9OlSxddcsklkuQy\nvrtE3KZNm1x6cjs/Ljo6WgMGDKh1PABCQ8Db6RhoqxM0zCkAAIB5BgwYoEaNGknynHf46quvghlS\nyPC0oMb4LMhdbmLLli2Oa1v5t5W05L0Yxl0svlpJp6SkqHHjxnWKCYC5KIYBasB5e7Wq1a7uimWc\nHxPK1q5dq7Fjx1b8210hjPF9//799frrrys7O1uFhYUqLS1VYWGhsrKyNHHiRPXt29eleMZ5TJvN\npvPnz2vMmDFav359EM8SsJYxY8YoMjJSyyVtNjuYANosaYWkyMjIimIRq2JOgdpp2LCh+vXr53LN\n5fzv4uJinT59us7H6tKli9q0aSPJcwKsaiJl8+bNLgUoxuPr0iLJMGjQoErXqN4Kc3wledLS0hQb\nG1vnmACYq1btdLZskR5+2PG1dWv1HkNbnaBhTgEAAMwTExOjzMxMt5/1GJ+FfP311/rxxx9NiM5c\nnhYNGXbs2KGjR49W+nmgWklLUqdOnVzyNsYcuTsuraQB66MYBqgFd7uhSO53ign1Fe+nTp3S3Xff\nXbEFsrtCGJvNpm7dumnx4sVavny5Hn74YfXs2VPNmjVTRESEmjVrpt69e+uRRx7RqlWrtHDhQnXu\n3LnSxYbz2DabTSUlJbrrrrv88sEUUB9deumluuWWWyRJb5scSyAZTdVuvfXWijcyVsWcArWXmJjo\n8z5nz571y7F8bQFcdaVRoPpgV2eMqscmyQNYX43b6ZSXSx98ID32mJST4/gaN0768EPHz3yhrU7A\nMacAAADmu+mmm1xuc84NlJaW6pNPPglmSCEhKSlJ7du3l+R50VCw8yRVFw0Ztm/f7lKY49yuyR3y\nJED4oxgGqIGqO764K3wxviIiItS1a9eKP96hWhTz9NNPa9++fZI8F8IMGzZMa9eurfYf/qFDhyor\nK0vXXHONx1Xadrtde/fu1bPPPuuP0wDqpUceeUSS9L6kU+aGEhAnJX1w4XvjXK2OOQVqJz4+3ud9\nIqu7kt4Hb9dD7lYaeesb7q8kjydVYyHJA1hfjdrpHD0q/fGP0r//LZWXa8SIERoxYoSjYGLqVOnx\nx6Vjx7yPQVudgGNOAQAAzHfnnXd6bZVkt9v12muvBTuskOBr0ZC7hTpVF1JLUufOnStaQddFdfMk\n27ZtqyiOcddKOioqSgMHDqxzPADMRTEMUAOeCl9sNpuSkpJ0xx13aMKECVq8eLFOnDihnJyckC72\n2LZtm958802Xizfn1kj9+/fXnDlz1KRJkxqN3bRpU33xxRe66qqr3O6QYxxj0qRJ2r59e91OBKin\nBg8erMsuu0ynJVnxrdZrkk5L6t69u19aiYQD5hSonaKiIp/38VePZ2/9sCVH7+vCwsKK250LUJyv\nh7p27arWrVvXOZ4ePXrooosuchm/am/uH374oaJtkrskT4MGDTRgwIA6xwPAXNVup7N8ufTAA9LG\njYqLi9O0adM0ffp0TZ8+Xe+9957jNXPDBun++x339YS2OgHHnAIAAJivadOmuuuuu9wu/jXeW2/b\ntk2ff/65GeGZyteiIefcRE5OjksBivEc+mPBkOR94ZFzLL5aSffp08dvuSQA5qEYBqgBo/ClXbt2\nuuWWW/Tiiy9qwYIFKigo0O7duzVjxgw9/vjjGjx4cI2LR8zw7LPPurRHcv5QpGXLlpo5c6ZiY2Nr\nNX6jRo00a9Yslw9onC8Yy8rK9Pzzz9dqfKC+s9lsevrppyVJz0v6wdxw/GqzpBcufP+Xv/wlZHfX\n8jfmFKidvLw8l9ucf8eaNGmimJgYvxyrS5cuSkhIqHQM52sbu92ub7/9VpKjMKZqAYqRVPFXQZjN\nZtPAgQNddvgzjn/ixAlJvpM8aWlptb7mAxAaqtVOp7hYevVV6ZlnpFOnlJqaqu+//14jR46seL87\natQoff/990pNTZVOnXLc99VXHY91h7Y6AcOcAgAAhA5vuxwbi3+feOIJlZaWBjEq87nLbzgXCeXk\n5OjYhd0Jve086K88yRVXXKEWLVpIcl005Hx8WkkD9QPFMEA1jRs3TnPnztXhw4eVm5urzz77TE8+\n+aSGDRum5s2bmx1eje3du1ezZ8/2uKWfzWbTSy+9pDZt2tTpOO3bt9dzzz3ndps84wLxk08+0f79\n++t0HKC+GjFihG666SaVShotyQpvtZzP5Ze//KVja/d6hDkFam7btm0er2kkqVOnTn49XnW3AA50\nH2x3Y3kqzCHJA1ifz3Y6u3ZJDz0kzZ0rSXriiSe0cuVKde7c2eWuXbp00cqVK/XEE084bpg71/HY\n3btdx6WtTsAwpwAAAKEjJSVFt956q8tO+M7vw3ft2qWXXnrJjPBM07FjR7Vr106S+xZSkqqVm/Bn\nnsR50VDV3XsKCgoqYqGVNGB9FMMA1XTffffp+uuvV3x8vNmh+MXrr7+u8vJySe53henSpYvGjBnj\nl2P99re/VceOHSsdw/kCsby8XG+88YZfjgXUNzabTZMnT1bz5s21XtLfzA7IDyZIypbUvHlzvf32\n2/VuBxHmFKiZrVu3VrRc9FR827NnT78es7pbAAdjxZNUvS2Ands1uUOSBwh/Htvp2O3SZ59Jjzwi\n5eYqISFBixYt0oQJE9SgQQOP4zVo0EATJkzQokWLdMkll0i5udJvfyvNnu0Y00BbnYBhTgEAAELL\nSy+9pMgL12VV32Mbi39feuklLV682IzwTONr0ZBznsRdK+n27durffv2fovHW55k2bJl2rlzpw4f\nPizJ/edjUVFRGjhwoN/iAWAeimGAeuj8+fOaMWOG111h/vCHP/jtw8rIyEiNGzfO6+4wH330kV+O\nBdRHCQkJmjhxoiTpOTna0YSrTXK0B5KkiRMnVrQiqW+YU4SLUGid8M477/i8jz8LTyTPhSPGtdPm\nzZtVWFjoMcnToUMHXXrppX6Lx7mPtbstgLdt2+bSk9v5fg0aNFD//v39Fg+A4PPYTufHH6Xx46XX\nX5dKSnTjjTdq48aNGjp0aLXHHjp0qDZt2qQbbrhBKimRJk2SnnrKMbaBtjp+x5wCAACEnssuu0z/\n+7//6/Le2vnf5eXlGjFihLZs2WJanMHma9GQUYCSn59fcZvxX5vN5tddYSTfxTBGcY67WG02m/r0\n6aNGjRr5NSYA5qAYBqiHvvnmG5eLDucPRGJjY3Xvvff69ZijRo2qWKHmbneYvLw8jxcgAHy79957\nK1rr3CXpuNkB1cJxSXfr51Y6/n4dCjfMKcLB+++/rzvvvFO7du0y5fjff/+9Xn/9dbersQxRUVGO\nD6pdqsYAACAASURBVPv8qGvXrhWFXe6ua+x2u/7v//7PpQDFSKr4uzgnMjJS/fr1qxSDEdemTZt+\n/jC1CiOetLQ0xcbG+jUmAMHltp1OVpZ0//3S6tWKiYnRpEmT9MUXX9Rqt9P4+HjNnTtXEydOVExM\njPTdd9IDD0jr1zvuQFsdv2NOAQAAQtOLL76o7t27uyz+df6spaCgQJmZmdq8OZyXuFWfr0VDW7du\n1aeffurx8f7Ok6SkpCguLq5SDIalS5fSShqoRyiGAeqhuRf6iVdlfCByww03VKwu9pdmzZpp+PDh\nXrfK8xQXAN+M1jpt2rTRNknDJZ0yO6gaOCVHzNsktWnThlY6Yk4RHux2uz799FMlJyfr/vvv144d\nO4J27Ly8PN1zzz0ubR+dY7PZbLr++uvVqlUrvx/f1xbA//jHP7w+1t+cVz1VLcz55z//6fWxJHmA\n8Fepnc7589Lbb0v/7/9JhYVKTk7W2rVr9bvf/a5Of4ttNpseffRRrV27Vt27d5eOH5cef9xxrPPn\naavjZ8wpAABAaIqJidEHH3yg2NjYityDux1ijh49qv79+2vmzJlmhhsUHTt2VLt27SR5XjT06quv\neny8v/MkERER6t+/v8uiIbvdri1btmjBggVeH0+eBLAOimGAeujrr7/2mjDz9+rp6oxrt9u1aNGi\ngBwXqC8SEhL01VdfqUWLFlon6SaFR/HEKUk3SlonqWXLllq0aBGtdC5gThEuysvL9e677yo5OVm3\n3367lixZEtDj7dixQwMHDtT27dsluRbCOBs/fnxAYnCXGHHeAaawsNBjbP7e/tfdmM7H9RaLRJIH\nCHeV2ul07iz97nfShYT7Qw89pHXr1unKK6/02/GuvPJKZWVl6aGHHnLcMHOm9OijUpcukmir4w/M\nKQAAQGhLSUnRBx98UFFgIVUuAjGKZIqKijRixAiNGDFCeXl5AY9r7969+vbbbwN+HHfcLRrylJtw\n/nwqISFBnTp18ns8VRcNecuTVN1heODAgX6PB4A5KIYB6pnDhw9r27Ztkjx/IFKTXuM1MWzYMJfb\nnC98tmzZoiNHjgTk2EB9cfnll2vBggVq0qSJlknKVGi31ymQ9P+zd+9BUtVn3sCf5s70KAoMiiIw\n3lAiRASMknAxXhJr1dI1WV9vSVyCr5vVEBM12fCaVBLd1dK4icbLlutGo3ghCajkYhZcTdSYApFA\ninUB44gJujIYjcyMgIP9/jEODswVmD5n+vTnUzVVzOnp83vali8z3d/5nY9HxG8iYq+99opf/vKX\nMXbs2JSn6lk8p5SK5heA5s+fHyeeeGIcccQR8S//8i/xxz/+sdvWaGhoiKuvvjqOPvroWLdu3Q4v\nOu08Ry6Xi7/7u7+LyZMnd9v6Le1KgaTliyoHHnhgVFdXd/s8H/nIR5ouc7HTem19v9fy9n79+sWU\nKVO6fR4gOdsvpxMRcdttEWvWxODBg2PBggVx++23F+Va9xUVFXH77bfH/PnzY999941Yvbpp7QiX\n1ekGnlMAgJ7v7LPPjhtuuKHNQkzEjkWLhx56KMaMGRNf+tKXoqampttnWbNmTcycOTPGjBkTTzzx\nRJuvlxRbR6+TtDVL82s3xfiFoYiOfxGprV8Wb55n4sSJRfl+G0hHn7QHAJK1ZMmSVsda/sN/0EEH\nxYEHHliUtUeNGhXDhw+P//3f/233m7GlS5fGaaedtsdr3XfffbFu3boOv2b58uVtHn/00UfjT3/6\nU4f3HTVqVFxwwQW7PR8U0+TJk+Pxxx+PT37yk7H0L3+JqRHxUESMS3uwnayMiP8TTZfRGTJkSDz2\n2GMxadKklKfqmTynlIKdtwZeu3ZtzJkzJ+bMmRPjx4+Pk08+OU466aT4yEc+Evvss0+Xz7tt27Z4\n5pln4v7774+f/vSn8cYbb7S55W7Ejt/T7L///nHrrbd2wyNr2+GHHx77779/vP76621+X9PeZZuK\n9SJP//79Y/LkyfH000+3elGnoxedJk+eHAMGDCjKTEAydriEzdatMWPGjLj33ntjxIgRRV/7rLPO\nismTJ8cFF1ywQ1li3rx5ceKJJxZ9/azynAIAlIYvf/nL0bdv37j88svjvffei4jWO8Q0H2toaIib\nb745fvCDH8SUKVPib//2b+Okk06KsWPHRq9eu7Z3wTvvvBMrVqyIn/3sZ/HII4/EqlWrtq+z82sU\nSV22vLNLHbVXzinW6yTHHntsDBgwILZs2bLDf5POSkJ2z4VsUYaBMvP888+3ebz5DZFjjjmmqOtP\nmjQpFi5c2O43YMuXL++WMsxdd93V5d9c2/nalfPnz4/58+d3eJ8ZM2Yow9CjTZ48OZ566qk4+eST\n44VXX42JEfGNiPhqRPRNebZ3I+K6iPjO+38+4IADYtGiRXYP6YTnlFKw84stzf/er1y5MlauXBnf\n/e53I6KpVDp27NgYOXJkjBgxIiorK2PgwIHx7rvvxttvvx2bNm2KV199NVauXBkvvPBCbNmypdU5\n23thp1AoRD6fj0cffTQGDx5c1Mc7ffr0eOihh3bphaXuvg52S9OmTYunn356l+7jRR4ofc3boPfu\n3Tu+/e1vx1e/+tXo3bt3YuuPGDEiHn/88bjuuuvim9/8Zmzbti21rdmzwnMKAFA6LrvsshgyZEjM\nmjUrNm/e3OqXhVpeNqm5lPH0009v//k9n8/H+PHjY/To0TFy5MgYPHhwDBw4MPr37x+bN2+OTZs2\nRV1dXWzatCleeumleOGFF2LdunU7FG3a25GmrWPdebnNlg455JAYMWJErF+/fpd2pinW6yT9+vWL\nY489Nn7zm9/s0us2XieBbFGGgTLz+9//vsPbi/WNUMvzL1y4sN3bO5tvVyTVeIaeauzYsfHcc8/F\nJZdcEo8++mhcHRELIuKeiDgqpZn+EBGfi4jmWt4ZZ5wRd9xxRwwfPjyliUqL55SebOcXWTr6LaRX\nXnml0x3cWt63vcv+tHV8n332iYcffjgmTpy4aw9gN8yYMSMeeuihXbpPsX7jqfnc//zP/7xL9/Ei\nD5S+xYsXx5VXXhmzZ8+O4447LpUZevfuHXPmzImPf/zjcfPNN8cNN9yQyhxZ4TkFACgt5513Xowb\nNy7OOeecWL16dZtFlfbKKw0NDfHss8/Gs88+26W1mu/bXtmlvV8iGj9+fNx+++1F/f5y+vTpMXfu\n3A7fm2l529ChQ+PII48s2jzTpk3rtNTdcp4+ffrExz72saLNAyRv1/bdAkremjVrOvxG5LDDDivq\n+oceemi7txUKhVi7dm23rdX8RlwxPqBUDB8+PB5++OG49957Y999943nI+KYaNrB4+0E53j7/TUn\nRlNpYt9994377rsvHn74YaWJXeQ5pSfa+d/J5hdf2vpNqJ1foOnsY+f7tndbLpeLcePGxW9/+9ui\nFk5a6kqRpOX3XcOGDYsxY8YUbZ6PfvSj23cOaO/7vZbH+/XrF1OmTCnaPEAyRowYEQ888EBqpYmW\njj/++HjggQcSuZxPlnlOAQBKz7hx42LZsmVx+eWXR79+/bbvjtJeUWV3XiPp6JeF2rs80+jRo+Ou\nu+6KZcuWFf37y67+wk3z6zhTp04t6jxdfX2oeZ6JEydGRUVFUWcCkqUMA2Xm5Zdf7vD2jsoq3aG9\n8zd/o9bZfLtiV76B3J0PKBW5XC4uuOCCWLVqVZx++unxbjRdXufAiPhCNO3sUSx/iIh/eH+tb0TT\nJXTOOOOMWLVqVZx//vn+Lu0mz2l5KIV/b0444YS49NJL46CDDmr3RZ22XtjZVZ2VYwYOHBhf//rX\nY+nSpXHEEUd03wPsxJgxY2L//fdvNWNb8ybxIk8+n48JEyZs/7yj719yuVxMnjw5BgwYUNSZukPL\n2Xv63wkA6IpS+D6vO5Xb4wWgfA0cODBuvPHGWLlyZZx++unRq1evHUox3fEaSbP2XoNpPu+ECRPi\n3//932PNmjXxuc99Lnr1Kv5bwi3LMF15X6XYv8w0ZcqU6NOnT5fnKZXdc31vBV2nDANl5PXXX4/N\nmzdHxI6t4ZYOOOCAos7Q1vlbzlJfXx8bN27c43WeeOKJ2LZtW9E+Hn/88T2eEZI2fPjweOSRR2Lu\n3Llx5JFHRl1E3B4R4yNiWkQ8EBFbumGdLe+fa+r7574jIuoi4sgjj4y5c+faOaQbeU6zqZR2JDv4\n4IPj5ptvjnXr1sWSJUvi61//ehx11FEdlld25bG1d5/mc++zzz4xe/bsWLt2bXznO9+Jfv36JfGw\ndzB9+vQu7yhXrOtgtzRt2rQu73JXCi/y2KUPgCwpx3/Tyu3xAkBExOGHHx4PP/xwrFq1Ki655JKo\nrKzc/lrG7v6c29lrJLlcLoYNGxYXX3xxPPPMM7Fs2bK46KKLtpdBknDIIYfEiBEjeszrJBUVFXHM\nMcd0eZ5SfJ0E6FhyCQik7tVXX+30a5p/u7lYunL+9evXx9ChQ4s6B5SrXC4X5513Xpx77rnx5JNP\nxm233RYLFiyIp7Zti6ciol9EjIumS980f4x7/3hbtkbTTiHLWnysjKbdQiKarrN61llnxRe+8IWY\nPn26xnoReE6zp1T/m06cODEmTpwY3/nOd2Ljxo3x9NNPb/9Yvnx5NDY2trpPZz+4t/XfYt99942T\nTz45zjzzzDjjjDNi4MCB3fo4dtWMGTNi3rx5nX5dLpdL5PJN06ZNi3/913/t0jw9/UWejv4ulOrf\nEwDKW7n9+1Vujxd2sDXtARJUDo+1HB5js3J6rAkYM2ZM3HrrrXHTTTfFY489FvPnz49FixbF66+/\n3uprOys2tPXvat++fWPixIkxffr0+MQnPhHTpk1L/d/f6dOnx/3339/p1+2zzz7x4Q9/uOjzTJs2\nLZYuXdrp1/Xt2zc+9rGPFX2ePZH2cwulKFdQG4Oi+vWvfx0nnHDC9sZvxI7b140ePTpeeumlRGZZ\nvHhxnHLKKe3OMmjQoHjzzTeLPsfee+8d9fX129dtnqO5xbx48eI44YQTij5Hmmpra2PYsGE7HNuw\nYUNUVVWlNBG7KwvP5auvvhp33nln3HnnnbF+/fpWt/eNiOERMTAimi+msTki3omI1+KDkkRLBx54\nYMyaNStmzZpV9B2naM1zSk+zZcuWWL16daxZs2b7R01NTbz11lvx9ttvx6ZNm2LTpk1RKBSif//+\nMWDAgBg8eHBUVVXFAQccEIcddlgcccQRceyxx8aYMWPSfjgAAACt1NfXR2VlZdpjpKquri7y+Xza\nY3QLz2e2ns+e5pVXXoklS5bEypUr4+WXX45XXnkl1q9fH3V1ddHQ0BDvvPNORDRddmnAgAExaNCg\nGD58eAwfPjxGjRoVY8eOjaOOOiqOOuqo6N+/f8qPBrpfFt53oUnaz6WdYaCMvPHGGx3evvfeeycy\nR8syTFs6mxPoXgcccEB885vfjG984xvx8ssvx7Jly+K5556LZcuWxbJly+LNN9+MVzq4/7777huT\nJk3avivExIkTY/To0ZrqKfKc0tP0798/xo8fH+PHj097FAAAAIBUjRw5MkaOHBmf+tSn0h4FINOU\nYaCMvPXWW20eb96dZa+99kpkjr322itee+21dm9PYncaoLVcLhfV1dVRXV29/QexQqEQ69ati9ra\n2njnnXd2+K2EgQMHRlVVVYwaNUpJoofynAIAAEAyKioqoq6uLu0xUlVRUZH2CN3G85mt5xOA8qQM\nA2Wk+Q3P9iS15WFlZeX2SyK1ZfPmzYnMAXQul8vF6NGjY/To0WmPQjfxnAIAAED3y+VyLimTIZ5P\nACh9vdIeAEjOu+++2+5tuVwu+vRJph/X2Tpbt25NZA4AAAAAAAAAskcZBspIZyUTZRgAAAAAAAAA\nSp0yDJSR9957r8Pbe/funcgcna3T2ZwAAAAAAAAA0B5lGCgjne3I0tjYmMgcna3Tt2/fROYAAAAA\nAAAAIHuSuSYK0CP069evw9uTKsO8++67Hd5ermWY+vr6qKio2K375vP5bp4GAAAAAAAAKHf19fWJ\n3q+7KMNAGemoDFMoFGLr1q2JzNFZGaaz0k5WVVdX7/Z9C4VCN04CAAAAAAAAEFFZWZn2CLvFZZKg\njLS3e0gul4uIiLq6ukTm2LRp0/Y121KqgQoAAAAAAABA+uwMA2Vk8ODBHd7+9ttvJzJHZ+t0NmdW\n1dTURFVVVdpjAAAAAAAAAETE7m+oUFtbu0dXxthTyjBQRoYMGdLh7W+99VYic/z1r3/t8PbO5syq\nfD7f7u49AAAAAAAAAEnb3fcvGxoaunmSXeMySVBGhg4d2upYoVDY/uctW7YUfXeYN998M7Zu3dpq\n7ZbamhMAAAAAAAAAukIZBsrIyJEjO/2a119/vagzdOX8Bx10UFFnAAAAAAAAACC7lGGgjOTz+e2X\nIMrlcm1+zbp164o6w8svv9zqWMtZhg0bFgMHDizqDAAAAAAAAABklzIMlJnq6up2L08UEbF27dqi\nrv/iiy+2ebxQKEQul4vq6uqirg8AAAAAAABAtinDQJn50Ic+1OHtq1evLur6nZ2/s/kAAAAAAAAA\noCPKMFBmjjnmmA5vX758eVHXf/755zu8fcKECUVdHwAAAAAAAIBsU4aBMtNeGSaXy0WhUIjf//73\nHV5GaU9s27YtVqxYEblcrt2vUYYBAAAAAAAAYE8ow0CZmTRpUgwYMCAiYnsppWX5pa6uLpYtW1aU\ntZcsWRINDQ07rNmyGDNw4MCYNGlSUdYGAAAAAAAAoDwow0CZ6d+/f3z0ox/tcPeXRYsWFWXtxYsX\nt3m8UChELpeLqVOnRt++fYuyNgAAAAAAAADlQRkGytApp5zS7m2FQiHmz59flHV/8pOfdHj7ySef\nXJR1AQAAAAAAACgfyjBQhs4+++xWx5p3Z4mIeP7552Pt2rXduuaqVaviD3/4Q+RyuTYvkZTL5eJT\nn/pUt64JAAAAAAAAQPlRhoEydPDBB8dxxx23QwFmZ7fccku3rvn973+/zePNM0yZMiVGjhzZrWsC\nAAAAAAAAUH6UYaBM/f3f/32bx5t3bvnhD38Yr7/+erestX79+rjvvvvaLd5ERFx00UXdshYAAAAA\nAAAA5U0ZBsrUhRdeGMOGDYuIDy5X1Hz5ooiIhoaG+NrXvtYta1111VWxefPmHdZoWYzZb7/94oIL\nLuiWtQAAAAAAAAAob8owUKb69+8fs2fP3qEAE/HBZYsKhUL86Ec/ikceeWSP1pk3b1488MAD28/Z\n1lqXX3559O3bd4/WAQAAAAAAAIAIZRgoa1/60pfioIMO2l5Kaam5vPLZz342li5dulvn/93vfhef\n//zn2zx3s1GjRsUXv/jF3To/AAAAAAAAAOxMGQbK2MCBA+Omm27a/vnOl0vK5XLx9ttvxymnnBI/\n//nPd+ncjzzySHzyk5+M+vr6Hc7ZrLmAc9NNN0X//v335GEAAAAAAAAAwHZ90h4ASslTTz0Va9as\n2aX7rF69usPb6+rq4q677trlWWbMmBGHHHLILt9vZ2effXacd955cf/990cul9u+I0xzWaW5EHPG\nGWfEueeeG1dffXWMGTOm3fO98MIL8a1vfSvmzZvXqlwT8cGOM7lcLi644II488wz9/gxAAAAAAAA\nAECzXGHn7RqAdl100UVxzz33pD1G5HK5+OEPfxif+cxnuuV89fX1MWnSpFi9enW7BZaWxyZMmBBT\npkyJ6urqqKysjE2bNkVNTU0888wzsWLFijbv03ys+fOxY8fGkiVLoqKiolseQ6mpra2NYcOG7XCs\npqYmqqqqWn1tPp9Paix2Q1vP5YYNG9p8LgEAAAAAAGif911KU/PVQlqqra2N6urqHY4l+VzaGQZ2\nQ3PRo6s66px157l2Vz6fj1/96lcxderU+NOf/rTDXDvvEhMRsXz58li+fHmb5+pKmWb06NHxq1/9\nqmyLMO3Z+R+DZjqLAAAAAAAAQE9VWVmZ9git9Ep7AChVzSWRrnwkcZ49NXLkyHjiiSfi0EMP3WEH\nl50vndSyGNPWR8tZWxZomu93+OGHx3/913/FgQceWNTHAwAAAAAAAEB5UoaB3dRRIaRYH8V28MEH\nx9KlS+MTn/hEhwWYrv532fn+p556aixZsiRGjx5d9MdSimpqaqKurq7VBwAAAAAAAEBP1dZ7nDU1\nNanOpAwDu2FXdnPp7o9iGzRoUPziF7+Iu+++O/bbb79Wl0vqaI62viaXy8V+++0XP/rRj+JnP/tZ\n7L333kV/DKUqn8+3+QEAAAAAAADQU/XE9zmVYWAXpbEjTNI7xEREXHjhhfHSSy/FrbfeGmPHjm21\nfntFnZZf96EPfShuu+22qKmpifPPPz+RuQEAAAAAAAAob7lCEltNACXvxRdfjMceeyyef/75WLVq\nVaxfvz42bdoUDQ0NUVFREXvttVeMGDEixo4dG8ccc0yceuqpccghh6Q9do9VW1sbw4YN2+HYhg0b\noqqqKqWJ2F2eSwAAAAAAgO7hfZfsSPu57JPIKkDJO/TQQ+PSSy9NewwAAAAAAAAA6JDLJAEAAAAA\nAAAAkBnKMAAAAAAAAAAAZIYyDAAAAAAAAAAAmaEMAwAAAAAAAABAZijDAAAAAAAAAACQGcowAAAA\nAAAAAABkhjIMAAAAAAAAAACZoQwDAAAAAAAAAEBm9El7AADImo0bN6Y9AgAAAAAAQMnxHgvdRRkG\nALrZ2LFj0x4BAAAAAAAAypbLJAEAAAAAAAAAkBnKMAAAAAAAAAAAZIYyDAAAAAAAAAAAmdEn7QEA\noJQNGTIkNmzYkPYYAAAAAAAAmTRkyJC0R6AEKcMAwB7o1atXVFVVpT0GAAAAAAAA8D6XSQIAAAAA\nAAAAIDOUYQAAAAAAAAAAyAxlGAAAAAAAAAAAMqNP2gMA0KS+vj4qKipaHc/n8ylMAwAAAAAAANC5\n+vr6Lh1LkjIMQA9RXV3d5vFCoZDwJAAAAAAAAABdU1lZmfYIrbhMEgAAAAAAAAAAmWFnGIAeoqam\nJqqqqtIeAwAAAAAAAKDL6urqWh2rra1t98oYSVCGAegh8vl85PP5tMcAAAAAAAAA6LK23uNsaGhI\nYZIPuEwSAAAAAAAAAACZoQwDAAAAAAAAAEBmKMMAAAAAAAAAAJAZyjAAAAAAAAAAAGSGMgwAAAAA\nAAAAAJmhDAMAAAAAAAAAQGYowwAAAAAAAAAAkBnKMAAAAAAAAAAAZIYyDAAAAAAAAAAAmaEMAwAA\nAAAAAABAZijDAAAAAAAAAACQGcowAAAAAAAAAABkhjIMAAAAAAAAAACZoQwDAAAAAAAAAEBmKMMA\nAAAAAAAAAJAZyjAAAAAAAAAAAGSGMgwAAAAAAAAAAJmhDAMAAAAAAAAAQGYowwAAAAAAAAAAkBnK\nMAAAAAAAAAAAZIYyDAAAAAAAAAAAmaEMAwAAAAAAAABAZijDAAAAAAAAAACQGcowAAAAAAAAAABk\nRp+0BwCgSX19fVRUVLQ6ns/nU5gGAAAAAAAAoHP19fVdOpYkZRiAHqK6urrN44VCIeFJAAAAAAAA\nALqmsrIy7RFacZkkAAAAAAAAAAAyw84wAD1ETU1NVFVVpT0GAAAAAAAAQJfV1dW1OlZbW9vulTGS\noAwD0EPk8/nI5/NpjwEAAAAAAADQZW29x9nQ0JDCJB9wmSQAAAAAAAAAADJDGQYAAAAAAAAAgMxQ\nhgEAAAAAAAAAIDOUYQAAAAAAAAAAyAxlGAAAAAAAAAAAMkMZBgAAAAAAAACAzFCGAQAAAAAAAAAg\nM5RhAAAAAAAAAADIDGUYAAAAAAAAAAAyQxkGAAAAAAAAAIDMUIYBAAAAAAAAACAzlGEAAAAAAAAA\nAMgMZRgAAAAAAAAAADJDGQYAAAAAAAAAgMxQhgEAAAAAAAAAIDOUYQAAAAAAAAAAyAxlGAAAAAAA\nAAAAMkMZBgAAAAAAAACAzFCGAQAAAAAAAAAgM5RhAAAAAAAAAADIDGUYAAAAAAAAAAAyQxkGAAAA\nAAAAAIDMUIYBAAAAAAAAACAzlGEAAAAAAAAAAMgMZRgAAAAAAAAAADJDGQYAAAAAAAAAgMxQhgEA\nAAAAAAAAIDOUYQAAAAAAAAAAyIw+aQ8AQJP6+vqoqKhodTyfz6cwDQAAAAAAAEDn6uvru3QsScow\nAD1EdXV1m8cLhULCkwAAAAAAAAB0TWVlZdojtOIySQAAAAAAAAAAZIadYQB6iJqamqiqqkp7DAAA\nAAAAAIAuq6ura3Wstra23StjJEEZBqCHyOfzkc/n0x4DAAAAAAAAoMvaeo+zoaEhhUk+4DJJAAAA\nAAAAAABkhjIMAAAAAAAAAACZoQwDAAAAAAAAAEBmKMMAAAAAAAAAAJAZyjAAAAAAAAAAAGSGMgwA\nAAAAAAAAAJmhDAMAAAAAAAAAQGYowwAAAAAAAAAAkBnKMAAAAAAAAAAAZIYyDAAAAAAAAAAAmaEM\nAwAAAAAAAABAZijDAAAAAAAAAACQGcowAAAAAAAAAABkhjIMAAAAAAAAAACZoQwDAAAAAAAAAEBm\nKMMAAAAAAAAAAJAZyjAAAAAAAAAAAGSGMgwAAAAAAAAAAJmhDAMAAAAAAAAAQGYowwAAAAAAAAAA\nkBnKMAAAAAAAAAAAZIYyDAAAAAAAAAAAmaEMAwAAAAAAAABAZijDAAAAAAAAAACQGcowAAAAAAAA\nAABkhjIMAAAAAAAAAACZoQwDAAAAAAAAAEBmKMMAAAAAAAAAAJAZyjAAAAAAAAAAAGSGMgwAAAAA\nAAAAAJmhDAMAAAAAAAAAQGYowwAAAAAAAAAAkBnKMAAAAAAAAAAAZIYyDAAAAAAAAAAAmdEn7QEA\naFJfXx8VFRWtjufz+RSmAQAAAAAAAOhcfX19l44lSRkGoIeorq5u83ihUEh4EgAAAAAAAICuqays\nTHuEVlwmCQAAAAAAAACAzLAzDEAPUVNTE1VVVWmPAQAAAAAAANBldXV1rY7V1ta2e2WMJCjDWtwt\nNAAAIABJREFUAPQQ+Xw+8vl82mMAAAAAAAAAdFlb73E2NDSkMMkHXCYJAAAAAAAAAIDMUIYBAAAA\nAAAAACAzlGEAAAAAAAAAAMgMZRgAAAAAAAAAADJDGQYAAAAAAAAAgMxQhgEAAAAAAAAAIDOUYQAA\nAAAAAAAAyAxlGAAAAAAAAAAAMkMZBgAAAAAAAACAzFCGAQAAAAAAAAAgM5RhAAAAAAAAAADIDGUY\nAAAAAAAAAAAyQxkGAAAAAAAAAIDMUIYBAAAAAAAAACAzlGEAAAAAAAAAAMgMZRgAAAAAAAAAADJD\nGQYAAAAAAAAAgMxQhgEAAAAAAAAAIDOUYQAAAAAAAAAAyAxlGAAAAAAAAAAAMkMZBgAAAAAAAACA\nzFCGAQAAAAAAAAAgM5RhAAAAAAAAAADIDGUYAAAAAAAAAAAyo0/aAwAAkIzGxsZ4+OGHIyLizDPP\njD59fCsIFJfcAZImd4A0yB4gaXIHSJrcoRT5vxQAoEw8+eST8elPfzoiIhYtWhQnnXRSyhMBWSd3\ngKTJHSANsgdImtwBkiZ3KEUukwQAUCbmzZu3/c8//vGPU5wEKBdyB0ia3AHSIHuApMkdIGlyh1KU\nKxQKhbSHACg3tbW1MWzYsB2ObdiwIaqqqlKaCMi6xsbGGD58eGzcuDEiIoYOHRqvvfaa7SyBopE7\nQNLkDpAG2QMkTe4ASZM77K603w+1MwwAQBl48sknm35YGTQoYtCg2LhxYzz55JNpjwVkmNwBkiZ3\ngDTIHiBpcgdImtyhVCnDAACUge3bWE6dGvGxj0WE7SyB4pI7QNLkDpAG2QMkTe4ASZM7lCplGACA\njGtsbIwFCxY0fTJjRsQJJ0RExPz586OxsTG9wYDMkjtA0uQOkAbZAyRN7gBJkzuUMmUYAICM22Eb\ny6OPbvqwnSVQRHIHSJrcAdIge4CkyR0gaXKHUqYMAwCQcTtsY9m7d9OH7SyBIpI7QNLkDpAG2QMk\nTe4ASZM7lDJlGACADGu1jWUz21kCRSJ3gKTJHSANsgdImtwBkiZ3KHXKMAAAGdZqG8tmtrMEikTu\nAEmTO0AaZA+QNLkDJE3uUOqUYQAAMqzVNpbNbGcJFIncAZImd4A0yB4gaXIHSJrcodQpwwAAZFS7\n21g2s50l0M3kDpA0uQOkQfYASZM7QNLkDlmgDAMAkFHtbmPZzHaWQDeTO0DS5A6QBtkDJE3uAEmT\nO2SBMgwAQEa1u41lM9tZAt1M7gBJkztAGmQPkDS5AyRN7pAFyjAAABnU6TaWzWxnCXQTuQMkTe4A\naZA9QNLkDpA0uUNWKMMAAGRQp9tYNrOdJdBN5A6QNLkDpEH2AEmTO0DS5A5ZoQwDAJBBnW5j2cx2\nlkA3kTtA0uQOkAbZAyRN7gBJkztkhTIMAEDGdHkby2a2swT2kNwBkiZ3gDTIHiBpcgdImtwhS5Rh\nAAAypsvbWDaznSWwh+QOkDS5A6RB9gBJkztA0uQOWdIn7QEAaFJfXx8VFRWtjufz+RSmAYqtUChE\nQ0NDUc794IMPNv2hs20smzVvZ/nzn8eDDz4Yxx9/fFHmqqioiFwuV5RzA52TO0DS5A6QBtkDJE3u\nAEmTO/RE9fX1XTqWpFyhUCikOgFAGaqtrY1hw4Z16WvFNGTTypUr48Mf/nBxF7nxxoiJE7v2tcuW\nRVxxRVHHWblyZYwbN66oawDtkztA0uQOkAbZAyRN7gBJkzv0RF0tK23YsCGqqqqKPE0Tl0kCAEjB\nI488UtwFpk7t2jaWzY4+uqnBX0RFf8xAh+QOkDS5A6RB9gBJkztA0uQOdI2dYQBS0NbOMDU1NW02\nIV0mCbLprbfeiosvvjh+/OMfNx04+uiIr3616Vqs3WHAgIhd3TayUIjYvLl71v/rXyOuuy5ixYqI\niPj0pz8dd955ZwzqrscH7DK5AyRN7gBpkD1A0uQOkDS5Q0/U1iWRamtro7q6eodjSe4MowwDkIK2\nyjBJhj/QMxQKhbjzzjtj9uzZsXnz5oghQyLmzImYMCHt0fbM8uUR114b8cYbMWDAgPj+978fs2bN\nck1X6AHkDpA0uQOkQfYASZM7QNLkDqUg7fdDlWEAUpB2+AM9yx/+8Ic455xz4oUXXmhq3F94YcRn\nPhPRu3fao+2abdsi7rkn4r77IgqFOPLII+Ohhx5yLVfogeQOkDS5A6RB9gBJkztA0uQOPVna74f2\nSmQVAADaNW7cuFi6dGnMnDmzaTvJH/0o4stfjqitTXu0rqutbZr53nsjCoWYOXNmLF261A8r0EPJ\nHSBpcgdIg+wBkiZ3gKTJHWifnWEAUpB2ExLouR544IG4+OKLo66uLmLvvSO+9rWI449Pe6yO/fa3\nEddfH/H227HXXnvFv/3bv8W5556b9lRAF8kdIGlyB0iD7AGSJneApMkdepq03w9VhgFIQdrhD/Rs\nL774Ypxzzjnx/PPPNx341KciZs2K6Ncv3cF2tnVrxJ13RvzkJxERMXHixHjwwQfj0EMPTXkwYFfJ\nHSBpcgdIg+wBkiZ3gKTJHXqStN8PVYYBSEHa4Q/0fFu2bImvfe1r8b3vfa/pwOGHR3zjGxEHHpju\nYM3Wr4/41rci1q6NiIj/+8UvxtXXXhv9etoPVUCXbdmyJa6ZMyf+7ZZbmg7IHaDI5A6QBtkDJE3u\nAEkrtdy5/PLL47rrrpM7GZT2+6HKMAApSDv8gdKxcOHC+NznPhd/+ctfIioqmq6deuKJ6Q61eHHE\nTTdFvPNO6Wy3CXRdi+1p5Q6QCLkDpEH2AEmTO0DSenjuDBkyJO6+++447bTT0p2Jokn7/VBlGIAU\npB3+QGn585//HOedd1489dRTTQdOPTXisssiBg5MdpB33om45ZaIX/6y6fPx4yP+3/+LkF2QPbW1\nEddcE7FyZdPncgcoNrkDpEH2AEmTO0DSemjuTJs2LebOnRsjRoxIdg4Slfb7ocowAClIO/yB0tPY\n2Bjf/va345prrolCoRAxalTT1pYHH5zMAC+9FPHtb0esWxeRy0VceGHEZz4T0bt3MusDydu2LeKe\neyLuuy9C7gBJkDtAGmQPkDS5AyStB+VOLpeLq6++Oq6++uro06dPMuuTmrTfD1WGAUhB2uEPlK4n\nnngizj///Hjttdci+vWL+Md/jDj99KYXL4qhUIhYuDDi1lsjtm6NGDIkYs6ciAkTirMe0PMsXx5x\n7bURb7whd4BkyB0gDbIHSJrcAZKWcu4MHz485s6dGyeccEJx1qPHSfv9UGUYgBSkHf5AaduwYUN8\n9rOfjccee6zpwPTpEVdcEVFZ2b0L1dVF3HhjxK9/HRERJ37iE3HLXXfFUFkFZad2w4a4bObM+K//\n/M+mA3IHKDK5A6RB9gBJkztA0tLKnVNPPTXuuece74OVmbTfD1WGAUhB2uEPlL733nsvbrrppvin\nf/qnaGxsjDj22Ijrr+/eRb761YglS6JPnz5x3XXXxeWXXx69evXq3jWAkiF3gKTJHSANsgdImtwB\nkiZ3SEra74e6EBcAQAnq1atXXHHFFTFo0KC4+OKLI/74x+5f5P1z3nbbbTFr1qzuPz9QUuQOkDS5\nA6RB9gBJkztA0uQO5UL9CgCghC1durTpD8cf3/0nP+64iIh47rnnuv/cQMmSO0DS5A6QBtkDJE3u\nAEmTO2SdMgwAQIlqbGyMBQsWNH0yY0b3L/D+OefPn9+0XSZQ9uQOkDS5A6RB9gBJkztA0uQO5UAZ\nBgCgRD355JOxcePGiEGDIo4+uvsXmDAhYu+9Y+PGjfHrX/+6+88PlBy5AyRN7gBpkD1A0uQOkDS5\nQzlQhgEAKFHz5s1r+sPUqRG9e3f/Ar17N5275VpAWZM7QNLkDpAG2QMkTe4ASZM7lANlGACAElT0\nbSyb2c4SeJ/cAZImd4A0yB4gaXIHSJrcoVwowwAAlKCib2PZzHaWwPvkDpA0uQOkQfYASZM7QNLk\nDuVCGQYAoATt1jaWq1ZF/MM/NH3893937T62swTeJ3eApMkdIA2yB0ia3AGSJncoF8owAAAlZpe3\nsdy2LeLeeyNmz474n/9p+vjiFyPuu6/pts7YzhLKntwBkiZ3gDTIHiBpcgdImtyhnCjDAACUmF3a\nxnLDhoivfCXiP/4jYtu2OPfcc+Pcc89t+kHlrrsirrgiora243PYzhLKntwBkiZ3gDTIHiBpcgdI\nmtyhnCjDAACUmC5vY/nUUxGf/3zEihVRWVkZ99xzT8ydOzfmzp0bd999d+Tz+Yjf/z5i5symr22P\n7Syh7MkdIGlyB0iD7AGSJneApMkdykmuUCgU0h4CoNzU1tbGsGHDdji2YcOGqKqqSmkioFQ0NjbG\n8OHDm9r7N94YMXFi6y/avDnittsiFi6MiIhJkybFAw88EIceeugOX7Z27do477zz4rnnnms6cPrp\nEV/4QsSAAa3P+dxzEVdeGUOHDo3XXnst+vTp090PDeih5A6QNLkDpEH2AEmTO0DS5A5JS/v9UDvD\nAACUkE63sXzxxYhLLtn+w8pVV10VzzzzTKsfViIiDjvssHjmmWfiqquuajqwcGHTff/4x9bntZ0l\nlC25AyRN7gBpkD1A0uQOkDS5Q7lRhgEAKCHtbmNZKET89KcR//iPEevWxfDhw2PRokVx/fXXR79+\n/do9X79+/eL666+PRYsWxf777x+xbl1Tg3/+/KZzNrOdJZQtuQMkTe4AaZA9QNLkDpA0uUO5UYYB\nACgRjY2NsWDBgqZPZsz44Ia33or4+tcjfvCDiK1b47TTTosVK1bESSed1OVzn3TSSbFy5cr4m7/5\nm4itWyNuuSVizpymczd7f8358+dHY2Pjnj8goMeTO0DS5A6QBtkDJE3uAEmTO5QjZRgAgBLR5jaW\nzz0XMXNmxO9+F/37949bbrklHn300d265mZVVVUsXLgwbr755ujfv3/Es89GfP7zEcuWNX2B7Syh\n7MgdIGlyB0iD7AGSJneApMkdypEyDABAidhhG8v33ou4446IK6+M+MtfYuzYsbFkyZK49NJLI5fL\n7fYauVwuLrvssliyZEkceeSREW+8EXHFFU1rvfee7SyhzMgdIGlyB0iD7AGSJneApMkdylGuUGh5\nwS4AklBbWxvDhg3b4diGDRt2q20LlIfGxsYYPnx4U3v/S1+K+MUvItasiYiISy65JL773e9GRUVF\nt67Z0NAQX/nKV+KOO+5oOjBmTMSpp0Z873sxdOjQeO2116JPnz7duibQc8gdIGlyB0iD7AGSJneA\npMkd0pL2+6HKMAApSDv8gdKzePHiOPnkk5s+6dcvYuvWGDx4cNx1111x5plnFnXtBQsWxMyZM+PN\nN9/cvnbzTCeeeGJR1wbSI3eApMkdIA2yB0ia3AGSJndIS9rvh7pMEgBACdhh68itW2PGjBmxYsWK\nov+wEhFx1llnxcqVK2P69Onbf1hpNROQOXIHSJrcAdIge4CkyR0gaXKHcqUMAwBQAn7zm99ERETv\n3r3j2muvjcWLF8eIESMSW3/EiBHx+OOPxzXXXBO9e/feYSYgm+QOkDS5A6RB9gBJkztA0uQO5cpl\nkgBSkPa2YEDp+fOf/xxXXnllzJ49O4477rhUZ3n22Wfj5ptvjhtuuCHRH5qAZMkdIGlyB0iD7AGS\nJneApMkd0pL2+6HKMAApSDv8AQAAAAAAAIol7fdDXSYJAAAAAAAAAIDMUIYBAAAAAAAAACAzlGEA\nAAAAAAAAAMgMZRgAAAAAAAAAADJDGQYAAAAAAAAAgMxQhgEAAAAAAAAAIDOUYQAAAAAAAAAAyAxl\nGAAAAAAAAAAAMkMZBgAAAAAAAACAzFCGAQAAAAAAAAAgM5RhAAAAAAAAAADIDGUYAAAAAAAAAAAy\nQxkGAAAAAAAAAIDMUIYBAAAAAAAAACAzlGEAAAAAAAAAAMgMZRgAAAAAAAAAADJDGQYAAAAAAAAA\ngMxQhgEAAAAAAAAAIDOUYQAAAAAAAAAAyAxlGAAAAAAAAAAAMkMZBgAAAAAAAACAzFCGAQAAAAAA\nAAAgM5RhAAAAAAAAAADIjD5pDwBAk/r6+qioqGh1PJ/PpzANAAAAAAAAQOfq6+u7dCxJyjAAPUR1\ndXWbxwuFQsKTAAAAAAAAAHRNZWVl2iO04jJJAAAAAAAAAABkhp1hAHqImpqaqKqqSnsMAAAAAAAA\ngC6rq6trday2trbdK2MkQRkGoIfI5/ORz+fTHgMAAAAAAACgy9p6j7OhoSGFST7gMkkAAAAAAAAA\nAGSGMgwAAAAAAAAAAJmhDAMAAAAAAAAAQGYowwAAAAAAAAAAkBnKMAAAAAAAAAAAZIYyDAAAAAAA\nAAAAmaEMAwAAAAAAAABAZijDAAAAAAAAAACQGcowAAAAAAAAAABkhjIMAAAAAAAAAACZoQwDAAAA\nAAAAAEBmKMMAAAAAAAAAAJAZyjAAAAAAAAAAAGSGMgwAAAAAAAAAAJmhDAMAAAAAAAAAQGYowwAA\nAAAAAAAAkBnKMAAAAAAAAAAAZIYyDAAAAAAAAAAAmaEMAwAAAAAAAAD8f/buPLqq+t4b/+eEMCaR\nOhBwqAYUFBERxQkL1UeRFhWrFuVapVaftle91Vbb1XXvxau29dH22j7XOlbr0FbogNdi+VnnCk/F\niig4gIJIoqJYElAQwhCG8/vDe9KEnAxAzj5w8nqttdfi7P093/3eEdC19tvvFwqGMgwAAAAAAAAA\nAAVDGQYAAAAAAAAAgIKhDAMAAAAAAAAAQMFQhgEAAAAAAAAAoGAowwAAAAAAAAAAUDCUYQAAAAAA\nAAAAKBjKMAAAAAAAAAAAFIzifAfIhaVLl8bTTz/dprEDBw6Mo48+OseJAAAAAAAAAABIQkGWYR56\n6KH4zne+06ax06dPz20YAAAAAAAAAAASU5BlmFdeeSXS6XSr44YPHx4jRoxIIBEAAAAAAAAAAEko\nyDLMW2+9FRERqVQq6/V0Oh2pVCrOO++8JGMBAAAAAAAAAJBjBVmGee+99+qLMFuvENOwIDN27NhE\ncwEAAAAAAAAAkFtF+Q6QC8uXL896vmERZq+99ooDDjggqUgAAAAAAAAAACSgIMswGzdubPZaZouk\nQYMGJZgIAAAAAAAAAIAkFGQZpqSkpNUxFRUVuQ8CAAAAAAAAAECiCrIMU1pa2uqYsrKyBJIAAAAA\nAAAAAJCkDluGacsYAAAAAAAAAAB2LQVZhtlrr70inU63OKauri6hNAAAAAAAAAAAJKUgyzADBgxo\ndUxtbW0CSQAAAAAAAAAASFKHLcMsW7YsgSQAAAAAAAAAACSpIMswBx98cIvX0+l0LF68OKE0AAAA\nAAAAAAAkpSDLMMOHD2/2WiqVioiIRYsWxaZNm5KKBAAAAAAAAABAAgqyDNO7d+8YMmRIpNPp+vJL\nxKcrwmSsX78+Zs+enY94AAAAAAAAAADkSEGWYSIiTj311FbHPP744wkkAQAAAAAAAAAgKQVbhhk3\nblyz11KpVKTT6Zg8eXKCiQAAAAAAAAAAyLWCLcMMGzYsjjnmmBa3SqqsrIwnnngiH/EAAAAAAAAA\nAMiBgi3DRERcfvnlLV5Pp9Nx/fXXJ5QGAAAAAAAAAIBcK+gyzPjx46N///4REU1Wh8l8njVrVtx3\n3315yQcAAAAAAAAAQPsq6DJM586d47bbbmu0NVJDqVQq0ul0XH311VFVVZVwOgAAAAAAAAAA2ltB\nl2EiIkaNGhXjxo1rtBpMRNQXZFKpVKxatSpOO+20WLlyZb5iAgAAAAAAAADQDgq+DBMRcffddze7\nXVLGggUL4uSTT47q6urE8wEAAAAAAAAA0D46RBmmZ8+eMW3atOjZs2dENC3EZD7PnTs3hg8fHnPn\nzs1LTgAAAAAAAAAAdkyHKMNERAwYMCCmTp0aZWVlEZG9EJNKpaKysjKOP/74uPHGG2Pjxo35igsA\nAAAAAAAAwHboMGWYiIiRI0fGjBkzok+fPhER9QWYiH9smZRKpaKuri4mTpwYhxxySEyaNCk2bdqU\nt8wAAAAAAAAAALRdhyrDREQMGTIkZs6cGUOHDq0vwGQ0LMSk0+moqqqKCRMmREVFRVx77bUxb968\nfEQGAAAAAAAAAKCNUumtGyEdxObNm+OGG26IG264oX7ll4ZlmIytz/Xt2zc+//nPx+c+97k4/PDD\n45BDDomSkpKE0wO7upqamigvL290rrq6Onr16pWnRAAAAAAAAADtI9/vQ4sTuUueXHzxxa2OGTx4\ncMyZM6fZAszW2yhVVlZGVVVVPPDAA/Xjy8vLo3fv3tG7d+8oKyuLrl27RpcuXRrNmW+pVCruvffe\nfMcAAAAAAAAAAMipgl4ZpqioqE2FlNZ+BFvP0dz4nan80lA6nY5UKhWbN2/OdxTgf+S7CQkAAAAA\nAACQK/l+H1rQK8Nk7Gjfp+H3G64Ws/WYAu4VAQAAAAAAAADsEjpEGaa1FVu2pcSSbWxzBZmdhZIO\nAAAAAAAAANBRdIgyTK7LIDtz2WRnLukAAAAAAAAAALS3onwHAAAAAAAAAACA9qIMAwAAAAAAAABA\nwVCGAQAAAAAAAACgYCjDAAAAAAAAAABQMIrzHSAJqVQq3xEAAAAAAAAAAEhAwZdh0ul0viMAAAAA\nAAAAAJCQgi7DfPWrX813BAAAAAAAAAAAElTQZZj7778/3xEAAAAAAAAAAEhQUb4DAAAAAAAAAABA\ne1GGAQAAAAAAAACgYCjDAAAAAAAAAABQMJRhAAAAAAAAAAAoGMowAAAAAAAAAAAUDGUYAAAAAAAA\nAAAKhjIMAAAAAAAAAAAFQxkGAAAAAAAAAICCoQwDAAAAAAAAAEDBUIYBAAAAAAAAAKBgKMMAAAAA\nAAAAAFAwlGEAAAAAAAAAACgYyjAAAAAAAAAAABQMZRgAAAAAAAAAAAqGMgwAAAAAAAAAAAWjON8B\nAPhUbW1t9OjRo8n5kpKSPKQBAAAAAAAAaF1tbW2bziVJGWYHpdPp+OCDD2Lp0qWxdOnS+PDDD2Pl\nypWxfv36+iMiolu3btGtW7fo3r179OzZM/bZZ5/6Y999983zUwA7g759+2Y9n06nE04CAAAAAAAA\n0DalpaX5jtCEMsw2ev3112P69Onx6quvxmuvvRbz58+vL7xsr+7du8egQYNiyJAhccQRR8SJJ54Y\nhx56aDslBgAAAAAAAADoOFJpSw60qK6uLh555JGYOnVq/OUvf4nq6ur6a+39o0ulUvW/7tOnT5x8\n8slx1llnxRlnnBHFxXpLUEhqamqivLy80bmqqqro1atXk7G2SQIAAAAAAAB2Vtm2RKqpqWmyM0Z1\ndXXW96G5oAzTjDlz5sTdd98df/jDH2LVqlURkb380rDAsiNamnuPPfaI8ePHxze+8Y0YPHhwu9wP\nyK9sZZgk//IHAAAAAAAAyJV8vw8tSuQuu5Dnn38+vvjFL8bRRx8d99xzT6xcuTLS6XSk0+lIpVJN\njoiov769R0RknTtzfcWKFXHHHXfEEUccEV/60pdi9uzZ+fwRAQAAAAAAAADstJRh/se7774bp59+\neowYMSKefPLJrAWYiOzFlx3VloJM5vy0adPiuOOOi3POOSc++OCDHb43AAAAAAAAAEAh6fBlmHQ6\nHT/5yU9i0KBB8dhjjzUpwWTGtFfxZVtyZSvGZM5NnTo1Bg4cGLfccktimQAAAAAAAAAAdnYdugyz\nfPnyGDVqVPzrv/5rrF27tlEJJh8FmOY0zNIw35o1a+Kqq66KMWPGxMcff5zvmAAAAAAAAAAAeddh\nyzAvvfRSHHXUUfHss89mLcHsrLKVYp544okYNmxYvPrqq/mOBwAAAAAAAACQVx2yDPPXv/41Tj75\n5FiyZEl9sSQiduoSzNYabp+UTqejqqoqTjzxxJg1a1aekwEAAAAAAAAA5E+HK8M8++yzMWbMmFi9\nenW7rAaTmWNHj+2x9Soxq1atilNPPTVmzpy5XfMBAAAAAAAAAOzqOlQZZv78+XHmmWdGbW3tdq8G\n01yJJVNM2dajtXnbouEqMatXr47TTjstFi5cuE1zAAAAAAAAAAAUguJ8B0jKRx99FGeeeWasWbNm\nu4owWxdfMjp37hz9+vWLQw45JPr16xe9e/eO8vLy6NmzZ3Tt2jW6desW6XQ6NmzYEBs2bIhVq1ZF\ndXV1VFdXx+LFi2PhwoWxePHi2LhxY6N7bWvGhivEfPLJJ3HmmWfGrFmzomfPnm1+RgAAAAAAAACA\nXV2HKcNccMEFUVlZuc0lk63HFxcXx8iRI2P06NFxwgknxLBhw6JLly47lG3jxo3x0ksvxfPPPx9P\nPPFEzJgxo74csy15M4WYiIhFixbFhAkT4pFHHtmhbAAAAAAAAAAAu5JUelv3CdoFPfjggzFhwoRt\nKpZsPXbo0KFx6aWXxjnnnBO777577sJGxKpVq+Lhhx+OO++8M1566aWseVqSSqXqizGTJ0+O8847\nL6d5gW1XU1MT5eXljc5VV1dHr1698pQIAAAAAAAAoH3k+31owZdhVqxYEQMHDowVK1ZExLYXYUaO\nHBk/+tGP4nOf+1xOczbnhRdeiGuuuSaeeeaZNhdiGo4rLy+PN998M+cFHmDb5PsvfwAAAAAAAIBc\nyff70KJE7pJHN910Uyxfvjwi2lYiyayqsu+++8af/vSnmD59et6KMBERxx13XDz11FPx+OOPxwEH\nHFC/4kum8JJNw+esqamJH//4x0lEBQAAAAAAAADIu4Iuw3z00Udx1113tVgcyWi4msoFF1wQ8+fP\nj9NPPz3XEdvs1FNPjddffz2+9rWv1ZddWnuuTLHnzjvvjI8//jiJmAAAAAAAAAAAeVXQZZhbbrkl\namtrI6L5VWEargaTSqXi5ptvjl//+tdRVlaWZNQ2KSkpiXvvvTduueWWKCr69B9dc4WYhs+7Zs2a\nuPXWWxPJCAAAAAAAAACQTwVdhrn//vtbXD2l4WowRUVF8ctf/jKuuuqqpOJtt29961toECAoAAAg\nAElEQVTxwAMP1Odv7RnT6XTcd999ScUDAAAAAAAAAMibgi3DPPfcc/H+++9HRPOrwmSuZVaEueii\nixJKt+O+8pWvxM9//vNWny1jyZIl8dxzzyURDQAAAAAAAAAgbwq2DPO73/2uxesNt0Y699xz49vf\n/nZCydrPZZddFueff379c7Tmt7/9bQKpAAAAAAAAAADyp2DLMM8880yzBZGG5/fcc8+48847k4rV\n7u64447o1atXRDS/XVKm+PPMM88kGQ0AAAAAAAAAIHEFWYapqamJhQsXRkTzWyRlVlP5wQ9+EJ/5\nzGeSjNeudtttt/jBD37Q4nNmLFq0KJYvX55UNAAAAAAAAACAxBVkGWbmzJnNXtt6VZiLL744iUg5\n9bWvfa3V1WEynnvuuSQiAQAAAAAAAADkRUGWYebNm9fi9cyqMBdddFF06dIloVS506VLl7joooua\nXR2modZ+NgAAAAAAAAAAu7KCLMNUVla2adwZZ5yR4yTJOfPMM9s0rq0/GwAAAAAAAACAXVFBlmGq\nqqqynm+4hVCPHj3ihBNOSCpSzh133HFRWloaES1vlaQMAwAAAAAAAAAUsoIsw3zwwQfNFkIyWwkd\ncsghUVRUOI9fVFQUAwcObHarpFQqFel0OpYuXZpwMgAAAAAAAACA5BROG6SB2traFq+nUqk4+OCD\nE0qTnAEDBrQ6Zs2aNQkkAQAAAAAAAADIjw5ZhomI2H333RNIkqy2PFNbfjYAAAAAAAAAALuqDluG\nKSsrSyBJskpLS1sds27dugSSAAAAAAAAAADkR0GWYTp37tzqmLq6ugSSJKstz1RcXJxAEgAAAAAA\nAACA/CjIMkxJSUmrY1avXp1AkmStWbOm1TE9evRIIAkAAAAAAAAAQH502DLMkiVLEkiSrPfff7/V\nMW352QAAAAAAAAAA7KoKsgzzmc98JtLpdNZrqVQq0ul0vPnmmwmnyr0333wzUqlU1muZn8dnPvOZ\nJCMBAAAAAAAAACSqIMswFRUVWc83LMi89957sWzZsoQS5V5NTU288847LY5JpVLN/mwAAAAAAAAA\nAApBQZZh+vbt26ZxTzzxRI6TJOfJJ5+sL/s0typORES/fv2SigQAAAAAAAAAkLiCLMMceOCBbRo3\nadKkHCdJzm9/+9s2jTvooINynAQAAAAAAAAAIH8KsgxzzDHHtHg9lUpFOp2OZ555JhYtWpRQqtyp\nrKyMxx9/PFKpVKtjhw0blkAiAAAAAAAAAID8KMgyzJFHHhk9evSIiGhSEGm4hVA6nY6JEycmmi0X\nrr322tiyZUtENN0iqeHzd+/eXRkGAAAAAAAAAChoBVmGKS4ujmOPPbZJMSQjnU7Xrw7z0EMPxbPP\nPptwwvYzc+bMmDx5courwmSe99hjj41OnTolmA4AAAAAAAAAIFkFWYaJiBg7dmyrYzKFmAsvvDBq\namoSSNW+Pv744/jKV75SX/pprvyTccYZZyQRCwAAAAAAAAAgbwq2DHPuuedGUdGnj5dt1ZSGxZGl\nS5fGOeecE+vWrUss347asGFDfPnLX4733nuvvtSztYbPXVRUFOPHj08yIgAAAAAAAABA4gq2DLP3\n3nvH5z//+RZXS8lsHxTx6XZDZ5xxRqxduzapiNttw4YNcc4558Szzz7b4vZIEf94xhNPPDH69OmT\nUEIAAAAAAAAAgPwo2DJMRMQVV1zR6phMWSSdTsezzz4bJ5xwQixZsiSBdNvnww8/jJEjR8Zjjz1W\nX4RpbXukiIgrr7wy19EAAAAAAAAAAPKuoMswZ555ZgwePDgism+VlNGwEPPqq6/G0KFDY9KkSUnF\nbLP//u//jqFDh8ZLL71UX4BprgiTeZ5UKhWHH354nH766UlGBQAAAAAAAADIi4Iuw0RETJw4sU0r\np2SKI6lUKj766KOYMGFCjBkzJubNm5dAypYtWLAgzjrrrDj33HOjurq6UXmnLa655pocJwQAAAAA\nAAAA2DkUfBlm3LhxcfLJJ9cXSFqSKZdkiiZPPPFEHHHEEfFP//RPMXPmzCTiNjJr1qy48MILY/Dg\nwfGnP/2pUWGnpSJMw1VhTj311Dj77LMTTA0AAAAAAAAAkD+pdFuXF9mFVVZWxuDBg2P9+vUR0fzW\nQhmZ0kzDckxExKBBg2LcuHFx1llnxWGHHZaTrG+88UZMnTo1pkyZEq+99lrWHK0VYTJjSktLY968\nebH//vvnJCuw/WpqaqK8vLzRuerq6ujVq1eeEgEAAAAAAAC0j3y/D+0QZZiIiLvuuisuu+yybdpe\nKFv5JHOud+/eMXz48DjuuOPi0EMPjYMPPjgqKiqiU6dObZp78+bN8e6778bChQvjjTfeiBdeeCGe\nf/75+Pvf/97sPduSu+GqMPfcc09cfPHFbcoDJCvff/kDAAAAAAAA5Eq+34d2mDJMRMQ///M/x913\n371dhZiIpmWUrbddSqVSsfvuu0d5eXn07NkzunbtGl27do10Oh11dXWxYcOGWLVqVVRXV8fHH3/c\nZL6W5t/WIsxll10Wt956a5ueEUhevv/yBwAAAAAAAMiVfL8PLU7kLjuJ2267Ld56662YPn16mwsx\n2VZoyXYt83nFihWxYsWKJmOb+05Drc3fkobfPeWUU+KWW25p83cBAAAAAAAAAApFUb4DJKm4uDge\nffTROOmkk+pXUNkW6XS6/oj4tICS7dh67PZ+r60afnf06NHxyCOPRFFRh/pHCwAAAAAAAAAQER2s\nDBMR0b1793j00Udj9OjR9YWYbS3FRGQvu2Q0V3bZ+l4tzdFWDYswY8eOjUceeSS6deu2zfMAAAAA\nAAAAABSCDleGiYjo1q1bPProo3H11Vc3Wq1lRzW3GkxLq8Rsr0yxJjPPv//7v8cf//jH6NKlyw4/\nBwAAAAAAAADArqpDlmEiIoqKiuI///M/Y8qUKdGzZ88dWiUmaQ1Xg9ljjz3ikUceiR/+8Ie7RHYA\nAAAAAAAAgFzqsGWYjHPOOScWLFgQ48ePb7RKzM5YLGm4Gkw6nY4JEybEggUL4vTTT893NAAAAAAA\nAACAnUKHL8NERJSXl8fkyZPjySefjKOOOqq+bJIpn+SzGNMwQybX8ccfHzNmzIgHHngg9tprr7xl\nAwAAAAAAAADY2SjDNHDKKafEiy++GI899liMGDGivnwS0biUkstyTLb7ZHKcfPLJ8Ze//CVmzpwZ\nI0aMyFkGAAAAAAAAAIBdVXG+A+yMRo8eHaNHj4633norfvWrX8WkSZPivffeq7/eWiEmU6BpTmtl\nmobf79evX1xwwQVx4YUXxoEHHtjGJwAAAAAAAAAA6JhS6daaG0RExNy5c+Opp56Kp59+OmbOnBnr\n1q1rMmZbV4zJ9qPv0aNHjBgxIk455ZQYNWpUHH744dudGdh51dTURHl5eaNz1dXV0atXrzwlAgAA\nAAAAAGgf+X4fqgyzHbZs2RILFy6M119/PV5//fV4++23Y+nSpbF06dL48MMPY+3atS1+v6SkJPbe\ne+/YZ599Yt99940DDzwwDj/88Bg8eHD0798/iorsXgWFLt9/+QMAAAAAAADkSr7fh9omaTsUFRXF\nwIEDY+DAgXHuuec2ub558+ZYt25drF+/PjZs2BAREd26das/OnXqlHRkAAAAAAAAAIAOQRkmBzp1\n6hSlpaVRWlqa7ygAAAAAAAAAAB2K/XgAAAAAAAAAACgYyjAAAAAAAAAAABQMZRgAAAAAAAAAAAqG\nMgwAAAAAAAAAAAVDGQYAAAAAAAAAgIJRnO8AubB06dJ4+umn2zR24MCBcfTRR+c4EQAAAAAAAAAA\nSSjIMsxDDz0U3/nOd9o0dvr06bkNAwAAAAAAAABAYgqyDPPKK69EOp1uddzw4cNjxIgRCSQCAAAA\nAAAAACAJBVmGeeuttyIiIpVKZb2eTqcjlUrFeeedl2QsAAAAAAAAAAByrCDLMO+99159EWbrFWIa\nFmTGjh2baC4AAAAAAAAAAHKrKN8BcmH58uVZzzcswuy1115xwAEHJBUJAAAAAAAAAIAEFGQZZuPG\njc1ey2yRNGjQoAQTAQAAAAAAAACQhIIsw5SUlLQ6pqKiIvdBAAAAAAAAAABIVEGWYUpLS1sdU1ZW\nlkASAAAAAAAAAACS1GHLMG0ZAwAAAAAAAADArqUgyzB77bVXpNPpFsfU1dUllAYAAAAAAAAAgKQU\nZBlmwIABrY6pra1NIAkAAAAAAAAAAEnqsGWYZcuWJZAEAAAAAAAAAIAkFWQZ5uCDD27xejqdjsWL\nFyeUBgAAAAAAAACApBRkGWb48OHNXkulUhERsWjRoti0aVNSkQAAAAAAAAAASEBxvgPkQu/evWPI\nkCHx6quvRiqVinQ6HRGfrgiTKcOsX78+Zs+eHccff3w+owIAHUw6nY61a9fmO0Ze9ejRo/6/yQAA\nAAAAANpbQZZhIiJOPfXUePXVV1sc8/jjjyvDAACJWrt2bZSWluY7Rl6tWbMmSkpK8h0DAAAAAAAo\nUAW5TVJExLhx45q9llktZvLkyQkmAgAAAAAAAAAg1wp2ZZhhw4bFMcccEy+++GKzWyVVVlbGE088\nEaNHj85nVACgo/puRHTJd4iE1EXEzfkOAQAAAAAAdAQFuzJMRMTll1/e4vV0Oh3XX399QmkAALbS\npYMdAAAAAAAACSjoMsz48eOjf//+ERH1q8FENF4dZtasWXHfffflJR8AAAAAAAAAAO2roMswnTt3\njttuu61+i6StZbZPuvrqq6OqqirhdAAAAAAAAAAAtLeCLsNERIwaNSrGjRvXaDWYiKgvyKRSqVi1\nalWcdtppsXLlynzFBAAAAAAAAACgHRR8GSYi4u677252u6SMBQsWxMknnxzV1dWJ5wMAAAAAAAAA\noH0U5ztAEnr27BnTpk2L4447LlatWlW/PVJE1K8Yk06nY+7cuTF8+PCYMmVKDB06NM+pgVx44403\nYv78+bFs2bKora2N7t27R69evWLgwIExePDg6NSpU74jAgAAAAAAALADOkQZJiJiwIABMXXq1Bg7\ndmysXr06ayEmIqKysjKOP/74uPbaa+O73/1udO7cOZ+xgXbw5ptvxi233BJTp05tcfWnnj17xhln\nnBHf+ta34uijj04wIQAAAAAAAADtpUNsk5QxcuTImDFjRvTp0yciPt0yKVOCyRRjUqlU1NXVxcSJ\nE+OQQw6JSZMmxaZNm/KWGdh+q1evjksvvTQGDx4cd999d9TU1NT/uc92fPLJJ/Hggw/GscceG+PH\nj7dtGgAAAAAAAMAuqEOVYSIihgwZEjNnzoyhQ4fWF2AyGhZi0ul0VFVVxYQJE6KioiKuvfbamDdv\nXj4iA9uhsrIyjj322PjFL37RaPWndDrd7BHxj5LcH/7whxg2bFi88sor+XwMAAAAAAAAALZRhyvD\nRERUVFTErFmz4rrrrovi4uJmV4jJlGKWLl0aP/rRj2LIkCFx0EEHxSWXXBL3339/vPzyy1FbW5vP\nRwGyWLJkSZx00kmxcOHC+j/bEf/YEq25o2FBLpVKxfvvvx+jRo2KN954Ix+PAQAAAAAAAMB2KM53\ngFy6+OKLWx0zePDgmDNnTpMX5hHZt1GqrKyMqqqqeOCBB+rHl5eXR+/evaN3795RVlYWXbt2jS5d\nujSaM99SqVTce++9+Y4BObdx48Y466yzYsmSJU3+XBcVFcV5550XEyZMiGHDhsXuu+8en3zySbzy\nyivx29/+Nn71q19FXV1d/fdSqVSsWLEixo4dG3Pnzo2ysrJ8PRYAAAAAAAAAbZRKb71XUAEpKipq\nUyGltR/B1nM0N35nKr80lFkNY/PmzfmOAjn37//+73HjjTc2KcKUl5fHlClTYsSIEc1+d968eXHW\nWWfF4sWLGxXhUqlUTJgwIe6///52y1lTUxPl5eWNzlVXV0evXr3a7R7Azqm2tjZKS0s//fBvEdEl\nr3GSUxcR/+fTX65ZsyZKSkryGgcAAAAAAMidfL8P7RDbJKXT6RaPbfl+RGTdXqUt98nXAR1FZWVl\n/OxnP2tShCktLY2nn366xSJMRMRhhx0Wzz77bPTp06f+XGb7pN/85jfx4osv5iw7AAAAAAAAAO2j\nQ5RhspVXti6ytFVzZZPW7pHPAzqKm266KTZs2FD/ObOqy09/+tM47LDD2jTHfvvtF/fdd1+TIlk6\nnY4f/vCH7ZoXAAAAAAAAgPbXIcowuV45Jd8rv1gVBiI+/vjj+M1vftNopaaIiEMPPTS+/vWvb9Nc\nX/jCF2L06NGNym7pdDr+/Oc/x6JFi9o3OAAAAAAAAADtqkOUYYDCN2XKlEarwkR8WmK56qqrtmu+\n5r734IMPbtd8AAAAAAAAACRDGQYoCA899FCTc127do1x48Zt13ynnHJK7L333vWfM6vDTJkyZbsz\nAgAAAAAAAJB7yjDALm/Dhg3x3HPPNdoiKZVKxciRI6O0tHS75kylUjFmzJgm240tXLgwPvjggx3O\nDAAAAAAAAEBuKMMAu7zZs2fH+vXrm5w/6aSTdmje5r4/Y8aMHZoXAAAAAAAAgNzpEGWYVCrVYQ/o\nCObMmZP1/FFHHbVD8w4bNizr+blz5+7QvAAAAAAAAADkTnG+A+Ta1lucAIXntddey3r+0EMP3aF5\nDzrooOjSpUts3Lix0fnXX399h+YFAAAAAAAAIHcKugzz1a9+Nd8RgARUVlY2Ode9e/fYZ599dmje\noqKiqKioiEWLFkXEp6tMpdPprPcDAAAAAAAAYOdQ0GWY+++/P98RgAS8++67TbYF23vvvdtl7n32\n2SfeeuutRvO/99577TI3AAAAAAAAAO2vKN8BAHZUdXV1/a/T6XSkUqno06dPu8ydbZ6NGzfGypUr\n22V+AAAAAAAAANqXMgywS9u4cWPU1tY2Od+zZ892mb+5eT766KN2mR8AAAAAAACA9lXQ2yQB7aeu\nri7eeuuteP/992P16tWxdu3a6NGjR5SVlcV+++0XBx98cHTu3DnxXKtXr856vrS0tF3mLysr26b7\nAgAAAAAAAJBfyjBAs2bNmhVTp06Nxx57LObPnx+bN29udmynTp1i0KBBMWbMmDjzzDPj2GOPTSRj\nXV1d1vNdunRpl/mbK/hs2LChXeYHAAAAAAAAoH0pw0A7efvtt+Oll16Kl156KWbPnh1z586NNWvW\nNDu+oqIiKisrE0zYdr/73e/i5ptvjjlz5tSfS6VSkUqlmv3Oli1b4rXXXovXXnstbrrppjjqqKPi\ne9/7Xpx77rk5zbpx48as54uL2+evt+bKMM3dFwAAAAAAAID8UoaB7bBkyZKYPXt2ffHl5ZdfjpUr\nVzYa01p5ZGe0YMGC+OY3vxl//etfs+ZPp9PNfnfr8S+//HKMHz8+7rrrrrjrrrtiwIABOclcVFSU\n9fyWLVvaZf7m5mnuvgAAAAAAAADklzIMtKK6ujpmz57dqPxSU1PTaExzxZetyyOZMS2VSvLl4Ycf\njosuuijWrFmTNWdbyj1bj4+ImD59egwbNix+/etfx5e+9KV2z93cdkibNm1ql/mbm6e9tmECAAAA\nAAAAoH0pw0ArTj311HjttdfqP7e1+LIruf322+OKK66IiE+fL1uppS3P13BsOp2u/1mtWbMmzjnn\nnLjtttvi0ksvbdfs3bp1y3p+3bp17TL/2rVrs57v3r17u8wPAAAAAAAAQPuyzwe0IlPoaFiCyZQ9\nGh7Zxu8KfvWrX9UXYSKaru6ydbGlpSPz3a0LNJlr3/rWt+LBBx9s1/xlZWXRqVOnJudXr17dLvM3\nN8/uu+/eLvMDAAAAAAAA0L4KcmWYpUuXxtNPP92msQMHDoyjjz46x4nY1WXKINlWR2mu9LIrrBTz\n4osvxje+8Y36z9mKMJlfDx8+PM4///wYPnx4VFRURFlZWaxevToqKyvj+eefj0mTJsWsWbOaFGAa\nFmm2bNkSX//612PgwIFx1FFHtdtz7LHHHrF8+fJGz9Hw845obp499tijXeYHAAAAAAAAoH0VZBnm\noYceiu985zttGjt9+vTchqGgbEvxpbnyzM5i9erVMX78+Ni0aVNEZC/CpFKpGDBgQNx5551x4okn\nNpmjZ8+eMXTo0Bg6dGhcfvnl8fTTT8dll10WixcvbjRPw0JMXV1dnHfeefHKK69EaWlpuzzLvvvu\nGzU1NY1WqPn73//eLnMvW7asybk99tgjunbt2i7zAwAAAAAAANC+CnKbpFdeeSXrNjZbH8cff3yM\nGDEi33HZBTQswWT7vdRwq6CioqIYMGBAjBw5ssl3dybXXHNNvPPOOxHRfBFm1KhR8eKLL2YtwmRz\nyimnxEsvvRQnnXRSkyJQ5nM6nY6qqqq47rrr2uMxIiKioqKiybnq6urYsGHDDs9dVVXVZNunvn37\n7vC8AAAAAAAAAORGQZZh3nrrrYiIRgWFhkfm2nnnnZfPmOxCmiu+pFKp6Nu3b4wbNy5+/OMfxzPP\nPBMff/xxLFiwoF3LHu3tzTffjDvuuKNJUafhajbDhw+PqVOnRllZ2TbNvdtuu8Wf/vSnOOaYY+p/\nXtnuceutt8bChQt37EH+x8EHH9zkXDqdjkWLFu3QvJ988knU1NQ0OpdZLQcAAAAAAACAnVNBbpP0\n3nvvNVnJIaPhi/mxY8cmmotdV+b3zX777RfDhg1rdOy+++55Trftrrvuuti0aVOj8kvDPxt77rln\n/P73v49u3bpt1/w9evSIP/zhD3HEEUfEqlWrmmyXFBGxadOm+MEPfhCTJk3a4ecZOnRo1vOvvvpq\nHHbYYds979y5c7fpfgAAAAAAAADkX0GWYZYvX571fMOX/XvttVcccMABSUViF3bFFVdE79694+ij\nj45evXrlO84Oq6qqiocffjjr9k2ZssoNN9wQ++yzzw7dZ//994/rr78+rrzyymZXh5kyZUrceOON\nsf/+++/QvY455pis5//2t7/FV77yle2e94UXXtim+wEAAAAAAACQfwW5TdLGjRubvZZ52T9o0KAE\nE7Er+9rXvhZjxowpiCJMRMRtt90WmzdvjojIuipM//794+tf/3q73Ouyyy6Lfv36NbpHw9WaNm/e\nHLfffvsO36eioiIqKirqP2fKNk899dQOzZvt+z169Ijjjz9+h+YFAAAAAAAAIHcKsgxTUlLS6piG\nL86ho9iyZUv87ne/a3FVmKuuuirr9e3RqVOnuOKKK5psVxbxj8LK5MmT2+VeY8aMaXKft99+O157\n7bXtmq+mpiZmzJjRqMSTSqXilFNOieLiglxUCwAAAAAAAKAgFGQZprS0tNUxZWVlCSSBnctf/vKX\n+PDDDyMi+6ow3bp126FthbL56le/Gl26dGl0r4allaVLl8b06dN3+D7nn39+1vO/+MUvtmu+X/7y\nl/Ur6LTlPgAAAAAAAADsHDpsGaYtY6DQTJs2Lev5zKonp512WptWVtoWPXv2jC9+8YtZV4dpLde2\nGD58eBx66KGNSj7pdDoeeOCBWLJkyTbNtXr16rjllluarJBTXl4eZ5555g5nBQAAAAAAACB3CrIM\ns9dee7X44j0ioq6uLqE0sPN4+umnW9wC6bTTTsvJfVuaN51Ox1NPPdUu9/ne977X5Nz69evjm9/8\n5jbNc/XVV0d1dXX950xZ6Morr6xf5QaA7Tfnwzn5jgAAAAAAABSwgizDDBgwoNUxtbW1CSSBncff\n//73ePPNNyMimi2LnXLKKTm596hRo5qcyxRMIiLmz58fy5Yt2+H7XHjhhXH44Yc3WR3miSeeiG9/\n+9ttmuOnP/1p/PKXv2xSGtpvv/3iyiuv3OGMAESMvH9kfHHSF+P5Jc/nOwoAAAAAAFCAOmwZpj1e\nvMOu5MUXX2xyrmHh47Of/Wzsu+++Obn3AQccEHvvvXeTezY0e/bsHb5PUVFR/OIXv4ji4uL6c5n7\n/fznP48xY8bE4sWLs373ww8/jAsvvDC+973vNcqYKe3cdttt0b179x3OCMCnHn/78TjhvhPif/3q\nf8Vfqv7S6qp+AAAAAAAAbVXc+pBdz8EHH9zi9XQ63ewLcShUc+Zk35IiU/Y48sgjc3r/YcOGxbRp\n05otw8ydOzdOP/30Hb7PscceGzfddFN897vfjYh/lGFSqVQ8/vjjMWDAgBg+fHgMGzYsdt999/jk\nk0/i1VdfjRkzZsSmTZuyFmG+853vxBlnnLHD2QBo6tl3no1n33k2hn92eEwcMTG+cNAXWtzSDwAA\nAAAAoDUFWYYZPnx4s9cy26YsWrQoNm3a1GgFCShkr7zySovXDz/88Jze//DDD49p06Y1e721fNvi\nqquuipqamvjJT37SaMukzMvVmTNnxsyZMxt9p+H1ht+58MIL4+abb263bABk9/yS52PM5DFx1N5H\nxcSRE2PswWOjKFWQixgCAAAAAAA5VpBvGHr37h1DhgypX9Uho+Hy++vXr2+XbVlgV/HWW2+1+H/a\n9+/fP6f3P+igg5q9limotacbb7wx7rjjjujWrVt9CS5zZIovDY+G1yMiiouL47rrrosHHnigXXMB\nEHHTKTfF3qV7Z7328ocvx1m/PyuOuOuI+P2838fmLZsTTgcAAAAAAOzqCrIMExFx6qmntjrm8ccf\nTyAJ7BzeeeedFq+3VFZpD83NnynotJZve3zzm9+MefPmxdlnnx2dOnXKWnzJVpA59dRT46WXXopr\nrrmm3TMBEPEvx/xLVF5ZGXeMuSP277l/1jGvV78e4/97fAy6Y1D8+tVfx6YtmxJOCQAAAAAA7KoK\ntgwzbty4Zq9lXoZPnjw5wUSQP8uWLYv169dHROMVkhraZ599cpoh2/wNs9TW1sby5cvb/b79+vWL\nKVOmxOLFi+OnP/1pjB07Nvr37x9lZWVRXFwcpaWlUVFREV/4whfihhtuiPnz58fjjz+e822jADq6\nbsXd4tKjL423v/V23Df2vjhoj+ylyYUrFsZXp341Btw6IO55+Z7YsGlDwkkBAGT1TWsAACAASURB\nVAAAAIBdTSrd3JvxAnDcccfFiy++WF9+ych8TqVS8ec//zlGjx6dx5QUqhkzZsRJJ53U6PdfZhWU\ndDodFRUVUVlZmUiWuXPnxlFHHdXin4X169dH586dc5Zh3bp1UVJS0mKGOXPmxJAhQ3KWYWdSU1MT\n5eXljc5VV1dHr1698pQISEptbW2UlpZ++uHfIqJLXuMkpy4i/s+nv1yzZk2UlJQ0urxpy6b4w/w/\nxA1/vSHeqHmj2Wn2222/+P4J349Lhl4S3Tt3z2FgAAAAAABge+X7fWjBrgwTEXH55Ze3eD2dTsf1\n11+fUBrInxUrVjQ5lynmRETstttuOS3CRER07969/uVvw3s39NFHH+U0AwA7r+Ki4jh/8Pnx+qWv\nx0PjHooj+hyRddz7n7wf33rsW9Hv5/3ip8//NNbUrUk4KQAAAAAAsLMr6DLM+PHjo3///hHR+OV7\nZhWKiIhZs2bFfffdl5d8kJRsZZiGdtttt0RytHaf1nICUPiKUkVxzqHnxJxvzIlp/zQtjtn3mKzj\n/r7m7/Hdp74bFf9VETf8vxti1fpVCScFAAAAAAB2VgVdhuncuXPcdttt0dxOUJntWa6++uqoqqpK\nOB0kZ+XKlVnPZ/5slJWVJZKjtft8/PHHieQAYOeXSqXi9AGnxwuXvBBPXvBkjDxgZNZxK9atiInP\nTowD/uuA+I9n/yNWrFWsBAAAAACAjq6gyzAREaNGjYpx48Y1Wg0m4h8lgFQqFatWrYrTTjut2cIA\n7OrWrVvX4vWSkpJEcpSWljZbTouIWL9+fSI5ANh1pFKpGHXgqJhx0YyYcdGMGNVvVNZxqzasih/+\nvx9GxS0V8f2nvh/VtdUJJwUAAAAAAHYWBV+GiYi4++67m90uKWPBggVx8sknR3W1FycUno0bNzZ7\nLZVKRXFxcSI5WrtPXV1dIjkA2DWNPGBkPHnhk/G3S/4Wpw84PeuYNXVr4ifP/yQq/qsivv34t+OD\nTz5IOCUAAAAAAJBvHaIM07Nnz5g2bVr07NkzIpoWYjKf586dG8OHD4+5c+fmJSfkSmslE2UYAHYl\nx+13XEz7p2kx5xtz4pyB52Qds27Turhl1i3R7+f94tL/79J4Z+U7yYYEAAAAAADypkOUYSIiBgwY\nEFOnTo2ysrKIyF6ISaVSUVlZGccff3zceOONLa6mAbuSLVu2tHi9U6dOieRo7T6t5QSAhobuPTQe\nOvehmHfpvDh/8PlRlGr6n7Z1m+virpfviv639o+LH7k4Fq1YlIekAAAAAABAkjpMGSYiYuTIkTFj\nxozo06dPRER9ASbiH1smpVKpqKuri4kTJ8YhhxwSkyZNik2bNuUtM7SH1lZkSer3eGv36dy5cyI5\nAHYadR3syJFB5YNi0tmTYsHlC+JrR3wtioua/ntv05ZNcf8r98chtx8SX3n4KzG/en7uAgEAAAAA\nAHmVzN4oO5EhQ4bEzJkz48tf/nLMmTOn2RVi0ul0VFVVxYQJE+L73/9+XHLJJTFu3Lg47LDD8pge\ntk+XLl1avJ5UGaa11ZY6ehmmtrY2evTosV3fLSkpaec0QCJuzneAwtJ/z/5x35n3xX98/j/iJzN/\nEvfOvTfqNjdu4WxJb4nJr0+Oya9PjrMHnh0TR0yMoXsPzVNiAAAAAADYudXW1ib6vfbSoVaGyaio\nqIhZs2bFddddF8XFxc2uEJMpxSxdujR+9KMfxZAhQ+Kggw6KSy65JO6///54+eWX8/4PENqipTJM\nOp2Ouroc/u/6DbRWhmmttFPo+vbtG6Wlpdt1APAPFZ+piDtOuyMqr6iMbx/77ehe3D3ruIfffDiO\nvPvIOH3y6THr/VkJpwQAAAAAgJ3f9r6/7Nu3b15zF/TKMBdffHGrYwYPHpx1hZiI7NsoVVZWRlVV\nVTzwwAP148vLy6N3797Ru3fvKCsri65du0aXLl0azZlvqVQq7r333nzHIE+aWzUkU/has2ZNIjlW\nr17d4p8LpQ6gI+jRo0ejv3d///vfxyWXXBKdI+K5iBiUt2Tta15EfC4iNkXEvffeG+edd179te1d\nBWtb7bvbvvF/v/B/419H/Gv87G8/i9tn3x5r6pr+O+/RRY/Go4sejVP6nRLXjLwmRh4wMpF8AAAA\nAABAbqTSmZZHASoqKmpTIaW1H8HWczQ3fmcqvzSU2f5p8+bN+Y7SocyYMSNOOumk+sJJRDQqV1VU\nVERlZWUiWaZOnRpnn312s1n69OkTS5cuzXmO3r17x/Lly+vvm8mR+T06derUOOOMM3KeY2dQU1MT\n5eXljc5VVVVFr169tms+2yTBrimdTsehhx4aCxYsiB9GxMR8B2pnP4yI/4iIgQMHxvz58/P+30or\n1q6In8/6edwy65ZYtWFVs+NG7D8iJo6cGKP6jcp7ZgAAAAAAyKft3S2npqamyeow1dXV2/0+dFsV\n9MowGTva92n4/YarxWw9poB7Rezi9txzzxavr1y5MpEcq1Y1/+IxovWcha6kpESpBTqY6dOnx4IF\nC6I0Iq7Md5gcuDIifhIRb775ZsyYMSNOPPHEvObZs8eecf1J18dVx18Vt8++PX72t5/FinUrmoz7\n63t/jdEPjo5j9j0mJo6YGKcPOF0pBgAAAACADml731+uXbu2nZNsm6K83j0hmQJLc8e2yJReGh5t\nuUc+D9hrr72anGtY3tqwYUN88sknOc3w8ccfR11dXZN7N5QtJ0Ahu/322yMiYkJElOU3Sk7sFhEX\n/s+vM8+6M+jZrWf824h/i3e//W7cPOrm6F3SO+u4Fz94Mcb+bmwM/cXQeOiNh2JLekvCSQEAAAAA\ngO3RIcow2QosW5dZcjl/Pg+IiNh///1bHbNs2bKcZmjL/J/97GdzmgFgZ/LBBx/E1KlTIyLi0jxn\nyaXMs/3xj39MZEu+bVHSpSSuHn51VF1ZFbd+8dbYb7f9so57ddmrMW7KuDjsjsNi0muTYtOWTQkn\nBQAAAAAAtkWHKMNAR1dSUlK/BVFzqwW9++67Oc3wzjvvNDnXMEt5eXl07949pxkAdib33HNPbN68\nOUZExGH5DpNDgyPicxGxefPmuOeee/IdJ6vunbvHvxzzL7H4isVxzxn3RL/d+2Ud9+byN+OCP14Q\nA28fGPfNvS/qNtclnBQAAAAAAGgLZRjoIPr27dviakGLFi3K6f3ffvvtrOfT6XSkUqno27dvTu8P\nsDNJp9P1xZDL8pwlCZlnvOeee3bqleu6dOoS//vI/x0L/2Vh/PpLv46D9zw467i3P3o7LvnTJdH/\n1v5x5+w7Y/2m9QknBQAAAAAAWqIMAx3EoEGDWry+cOHCnN6/tflbywdQSKqqqmLp0qXRJSLOyneY\nBJwdEZ3j062hsq0UtrMpLiqOC4dcGPMvmx+///LvY3D54Kzj3lv1Xlz258viwJ8fGP/1wn/F2o1r\nE04KAAAAAABkowwDHcSRRx7Z4vW5c+fm9P5z5sxp8frQoUNzen+AncnLL78cERGHR0TX/Eb5/9m7\n7/Aoq4QN4/ckEEooIlJVIIDSYYFgQWWxYF3FioW2dkRFLJ8KuroqdiyIKIouUoS1CyIWxEJRQXoH\nlYCCIFFRCT1kvj9i2MBMIEDyTsr9u665NjPnzLzPm+UaB95nzglEKTLPFf537oVBfFw8nZp0Yk6P\nObx78bsk10yOOu+nDT9x80c3U+fpOjwy5RH+3PpnwEklSZIkSZIkSVJ2xaIMEwqFiu1NypJTGSYU\nChEOh5kzZ06+bV2xY8cO5s6du8c/k5ZhJBUnWYWQ1jHOEaSscy1MZZgscaE4OjbsyPSrpvNB5w9o\ne3jbqPNSN6XSZ2If6jxdh/s+v4/1m9cHnFSSJEmSJEmSJEExKMOEw+Fif5MAkpOTKV26NMDOUkr2\nPx9paWn5doFy+vTpbNq0aZdjZi/GlClThuTk6N+2l6SiaMaMGUDxLMNknXthFAqFOL3+6Uy5fAqf\ndvuUk5JOijpv/Zb1/PuLf1P76dr0ndiX1I2pASeVJEmSJEmSJKl4KxHrAPmpe/fusY4gFRilSpXi\nuOOOY+LEiTmu0DJhwoR8KaV88sknUR8Ph8OEQiFOOOEESpYsmefHlaSCKBwO79w6rjiWYWbOnLnz\n/b+wCoVCnJh0IicmnciXP35Jv0n9+OC7DyLmbdi2gYenPMyAaQPo0boHt7W9jRrla8QgsSRJkiRJ\nkiRJxUuRLsMMHTo01hGkAuXUU09l4sSJUcfC4TBvv/02ffr0yfPjvvnmm3sc79ChQ54fU5IKqpUr\nV7J+/XoSgKaxDhOgpkBJYP369axcuZI6derEOFHeaHt4W8Z3Hs/Mn2bSb3I/3l3ybsScTds38eTX\nTzLom0Fc1eoqbj/udmpVrBWDtJIkSZIkSZIkFQ9FfpskSf9zwQUXRDyW/dv5s2bN4ttvv83TYy5c\nuJD58+cTCoWibpEUCoW48MIL8/SYklSQrVu3DoAaQEJsowSqFJnnDJCaWvS2DWpdszXvXPwO83rM\n45KmlxAicuWbrTu2MuibQdR7ph5Xjb2K73/7PgZJJUmSJEmSJEkq+izDSMVI3bp1OeaYY/a4PcXA\ngQPz9JgDBgyI+nhWhrZt21Krlt+Ol1R8bN68GYAyMc4RC1nnnPU7KIqaVWvG6AtGs/j6xXRv0Z34\nUHzEnPSMdF6e/TINnm1At3e6sTh1cQySSpIkSZIkSZJUdFmGkYqZK664IurjWSu3DB06lJ9//jlP\njrV69WpGjhyZY/EG4PLLL8+TY0lSYbFlyxYASsc4RyxknXNRLsNkaXBIA1459xWW3biMa1pdQ8m4\nkhFzdoR3MGLeCJo814ROb3Ri3s/zYpBUkiRJkiRJkqSixzKMVMx07dqVqlWrAv/brihr+yKATZs2\nceedd+bJsW6//fadF32jbZFUrVo1unTpkifHkiSpIKpbqS4vnP0C3/f6nhuPupHSJSJrUGHCvLHo\nDVoMbkHH/3bkm9XfxCCpJEmSJEmSJElFh2UYqZgpVaoUN9100y4FGPjftkXhcJjhw4czZsyYAzrO\n66+/zujRo3e+ZrRj3XzzzZQsGflNeUkqykqXzixDbIlxjljIOucyZYrfJlGHVzycZ854hpSbUrjt\n2NtILJkYdd7YpWM56qWjOH3k6Uz9YWrAKSVJkiRJkiRJKhosw0jFUO/evTn88MN3llKyyyqvdO/e\nnW++2b9vpn/99ddcddVVUV87S+3atenVq9d+vb4kFWZZRZCiv1FQpKxzLo5lmCzVy1Xn8VMfZ0Xv\nFdx1wl1UKFUh6ryPvv+I44cez4nDTmTi8okRxVJJkiRJkiRJkpQzyzBSMVSmTBmefPLJnfd33y4p\nFArx559/cuqpp/L+++/v02uPGTOG008/nY0bN+7ymlmyCjhPPvkkpUqVOpDTkKRCKWurujXAtthG\nCdRWMs8ZoEqVKrGMUiAcUvYQ+p3Uj5W9V3J/+/s5uMzBUed9vuJzThlxCsf95zjGfzveUowkSZIk\nSZIkSbkQCvsv6tJeTZ48mWXLlu3Tc5YuXUr//v132SYoe+nkkEMO4eGHH97nLO3bt6devXr7/Lxo\nunTpwqhRo6KWYbK79NJL+de//kWDBg1yfK3Fixdz33338frrr0e8XtZrZhVhunTpwrBhw/LkHAqr\n1NTUnRfEs6xbt84LxFIxEA6HqVy5MuvXr2cm0CrWgQIyE0gGKlWqxK+//hrx35ribsPWDTw/43me\n+OoJ1m1cl+O8VjVacfcJd9OxYUfiQvbaJUmSJEmSJEkFU6yvh1qGkXLh8ssvLxDljVAoxNChQ+nW\nrVuevN7GjRtJTk5m6dKlORZYsj/WsmVL2rZtS1JSEuXKlWPDhg2kpKQwdepU5s6dG/U5WY9l3W/c\nuDHTp0+nbNmyeXIOhVW0N/+UlJSob/6JiYlBxZIUkFNOOYWJEyfyInB1rMME5EXgWjLPfcKECbGO\nU2Bt2r6Jl2a9xGNTH2P1htU5zmtatSl3nXAXFzW+iPi4+AATSpIkSZIkSZK0q6xdQ7JLTU0lKSlp\nl8eCLMOUCOQoUhGxr99i31PXLC9fa38lJiby0UcfccIJJ/Djjz/ukiscDu9cySXrsdmzZzN79uyo\nr5WbMk2dOnX46KOPin0RJie7/8cgi51FqehJTk5m4sSJzKT4lGFm/vW/ycnJMc1R0JUtWZZeR/fi\n2tbX8sqcV3hk6iOs+H1FxLwF6xZw6VuXcu/n99L3+L5c1uwySsaXDD6wJEmSJEmSJKnYK1euXKwj\nRHBtdWkfZZVEcnML4nUOVK1atfjss8+oX79+xJZOWfd3L8ZEu2XPmr1Ak/W8I488kk8//ZRDDz00\nX89HkgqD1q1bA/8riBQHWeeade7as1IlSnFt8rUsu2EZQzsO5YiDj4g6b9mvy/jnmH/S4NkGvDjz\nRbambw04qSRJkiRJkiRJBY9lGGkf7akQkl+3/Fa3bl2++eYbTjvttD0WYHL7e9n9+WeccQbTp0+n\nTp06+X4uhVlKSgppaWkRN0lFT1YhZB5QHKoLW8k8V7AMs69Kxpfkn3/7J4uvX8yo80fRpEqTqPNS\nfk/h2nHXUn9gfQZOG8jm7ZsDTipJkiRJkiRJKq6iXeNMSUmJaSbLMNI+2JfVXPL6lt8qVqzI+PHj\neeWVV6hWrVrEdkl7yhFtTigUolq1agwfPpxx48ZRoUKFfD+Hwi4xMTHqTVLRk5SURM2aNdkGvBPr\nMAF4G9gOHHrooRYj91N8XDyXNruUedfN461Ob9Gyesuo81b9uYpeH/YiaUASj099nLRtliolSZIk\nSZIkSfmrIF7ntAwj5VIsVoQJeoUYgK5du7J8+XIGDRpE48aNI46fU1En+7wmTZrw3HPPkZKSQufO\nnQPJLUmFSSgU4uqrrwbguRhnCULWOV599dWB/fesqIoLxXF+o/OZec1M3r/sfY457Jio837e+DO3\nf3I7tZ+uTb9J/fhjyx8BJ5UkSZIkSZIkKXZC4SCWnJBUaH333Xd8+OGHzJo1i4ULF7J69Wo2bNjA\npk2bKFu2LOXLl+ewww6jcePGtGrVijPOOIN69erFOnaBl5qaStWqVXd5bN26dVSpUiVGiSQFbfXq\n1dSuXZsdO3YwD2gW60D5ZD7QHIiPj+eHH36gZs2asY5UpITDYT5N+ZQHJj3AFyu/yHFexVIVufGo\nG+l9TG8ql60cYEJJkiRJkiRJUnEU6+uhlmEkKQZi/eYvqWC48MILeeutt+gJDIp1mHzSE3iezHN9\n4403Yh2nSJu8cjL9Jvfj4+8/znFOYslEerbpyS3H3kL1ctUDTCdJkiRJkiRJKk5ifT3UMkweWbdu\nHRs2bGDz5s1s3ryZLVu2EO1X265duxikk1TQxPrNX1LB8Nlnn3HSSSdRDvgJKB/rQHnsT+BQII3M\nc23fvn1sAxUT01dP58HJDzJ26dgc55QuUZprWl3D/x33fxxW4bAA00mSJEmSJEmSioNYXw+1DLMP\n0tLSmDlzJnPmzGHOnDksXbqU1atXs3btWtLT0/f6/FAolKt5koq+WL/5SyoYwuEwjRs3ZsmSJTwA\n3B3rQHnsAeAeoFGjRixcuJBQKBTrSMXKnLVzeGjyQ7y56E3CRP/InxCfwOV/u5w7jruDpEpJASeU\nJEmSJEmSJBVVsb4eahlmL+bOncu4ceP46KOPmDZtWkSZZV9+faFQiB07duR1REmFUKzf/CUVHKNG\njaJz586UBGYBTWMdKI/MB1oD24FX69blstdfh9atY5yqeFqUuoiHpzzMqPmjyAhnRJ0TH4qnS/Mu\n9D2hL0dWPjLghJIkSZIkSZKkoibW10Mtw0Tx+++/M2LECIYOHcrcuXN3Ph7tV5XbbziHw+E8K8MM\nHjyYL7/8cq/zqlatSv/+/Q/4eJLyXqzf/CUVHOFwmI4dO/Lee+/RGvgKKBnrUAdoO3AMmeWec4B3\ngVBcHFx/PTzwAFSsGNN8xdV3v33HI1MeYdjcYaRnRF+tMC4UR6cmnbjrhLtoWrWoVLMkSZIkSZIk\nSUGL9fVQyzDZ/Pbbb/Tv359BgwaRlpYWUX7ZU/FlT7/GUCiUp2WYKVOm0K5du73mCYVCfPPNN7Rq\n1eqAjykpb8X6zV9SwbJmzRqaNGnC+vXr6QfcFetAB6gf8C+gErAQqJF9sHp1eOopuPhicNukmFj5\n+0oem/oYL89+ma07tuY477yG53F3u7tpVcPPkpIkSZIkSZKkfRPr66FxgRylgMvIyODRRx8lKSmJ\nRx99lA0bNuwst4RCoZ03yCyZRLsF6fjjj6ddu3Y5ZsmeZ8iQIYFmkyRJ+65GjRo888wzANxH5hZD\nhdU84P6/fn6mRo1dizAAa9fCpZfCqafCsmXBhhMAtQ+qzaCzBrH8puXcfMzNlClRJuq8d5a8Q+sX\nW3PWqLP46sevAk4pSZIkSZIkSdL+K/ZlmFmzZpGcnEzfvn13lmCyF2BiWXrZkz59+gC7lnV2v4XD\nYUaPHs3WrTl/41eSJBUMnTt35uyzz2Y7cDHwa6wD7YdfgUvI3CbpnHPOoXNKCjz4IJQuHTn5k0+g\nWTO4917YsiXgpAKoWb4mT572JCt6r+DO4+6kXEK5qPPGfzuetv9pyynDT+HzFZ8XqM/EkiRJkiRJ\nkiRFU6zLMIMHD6Zt27bMnTt3lxIMUODKL7s77bTTOPLII3fez6m0s2HDBsaNGxeLiJIkaR+EQiFe\neOEFatasyWLgDGBDrEPtgw1kZl4M1KxZk8GDBxMqVQr69oVFi+DMMyOftG0b3H8/NG0KH30UcGJl\nqZpYlYdPeZiVvVfy77//m4NKHxR13sSUiZw47ETavdKOj777qEB/VpYkSZIkSZIkFW/FsgyTnp7O\n1VdfzfXXX8+2bdt2FmGg4JdgsuvZs2eusr722msBpJEkSQeqRo0afPzxxxx88MF8A5xN4SjEbAD+\nAXwDVK5cmQkTJlCjRrYNkpKSYNw4ePttOOywyBf4/ns4/XTo1AlWrw4otXZ3cJmDubf9vazsvZKH\nT36YQ8oeEnXelB+mcPqrp3P0S0czdunYQvPZWZIkSZIkSZJUfITCxexfr7dv306nTp0YO3ZsRAkm\nv2RtWRQKhdixY0eeve6GDRuoXr06W/7aWiD7OWQ/r7Jly5KamkqZMmXy7NiSDkxqaipVq1bd5bF1\n69ZRpUqVGCWSVJB88803nHzyyWzYsIE2wAdA5ViHysEvZK4IMwMoX748EydOpE2bNjk/IS0N7rsP\nnnoKon0uKlcOHngAbrgBSpTIp9TKjY3bNvLizBd5/MvHWZO2Jsd5zas15+4T7ub8RucTHxcfYEJJ\nkiRJkiRJUkEV6+uhxWplmO3bt3PRRRcxZsyY/SrCZG2jlNMtaOXLl+ecc86Jmj/7Y5s3b2bixIlB\nRpMkSQegTZs2TJw4cecKMScA82MdKop5QDsyizCVK1fm008/3XMRBjLLLo8/DrNmQdu2keNpaXDz\nzdCmDXz9dT6kVm4lJiRy87E3s/ym5Qw6cxCHVzg86rx5P8+j05udaPp8U0bOG0l6RnrASSVJkiRJ\nkiRJ2lWxKsPccMMNjB07dmd5JTdbIu1edsl6TrRbLFx22WW5mjd+/Ph8TiJJkvJSmzZtmDx5MjVr\n1mQx0BroB2yPcS7IzPAAkAwsBmrWrMmkSZNITk7O/Ys0bw6TJ8NLL8HBB0eOz5mTWZa59lr47be8\nCa79UrpEaXq26cl3vb7jpbNfol6lelHnLfllCV3f6UrDZxvy8qyX2bZjW8BJJUmSJEmSJEnKVGy2\nSXrxxRfp0aNHrleDyb7SS9bcUqVKccIJJ5CcnEzLli2pXbs2hx56KBUqVKB06dKUKlVqZ8lm99fK\nj22SANLT06latSp//PFHxHllP9c6deqwfPnyPD22pP0X62XBJBUea9asoUePHowdOxaAVsAwoGmM\n8swH/gnM+uv+Oeecw+DBg6lRo8b+v+gvv8Add8B//hN9vEqVzNVkunWDGKzGp12lZ6Tz3wX/5cHJ\nD7LklyU5zju8wuHccdwdXNnqSkqXKB1gQkmSJEmSJElSrMX6emixKMMsWrSIVq1asX175nepc1uE\nCYfDxMfHc+aZZ3LllVfSoUMHypQpk+Pz4uLiAi/DAFxyySW8/vrrez32ihUrOPzw6MvbSwpWrN/8\nJRUu4XCYV199lV69erF+/XpKAv8CbgIqBJThT2AAmSvCbAcqVarEwIEDueyyy/Juu8ipU6FHD1iw\nIPp4u3bw/PPQuHHeHE8HZEfGDt5e/Db9Jvdj3s/zcpxXvVx1/q/t/3Ft62tJTEgMMKEkSZIkSZIk\nKVZifT20WGyTdM0117BtW+Yy7XsqwmTfPgmgc+fOLF68mDFjxnDOOefssQgTS2eeeWau5k2ePDmf\nk0iSpPwQCoXo0qULCxcu5Oyzz2Y7cA9wKNCTzNVa8st84Lq/jnUPmUWYc845h4ULF9K5c+e8K8IA\nHHcczJqVuQpMYpTSxKRJ0KIF9OkDmzbl3XG1X+Lj4rmoyUXMuXYOYy8ZS5uabaLOW5u2lls/vpU6\nA+rw8OSH+XPrnwEnlSRJkiRJkiQVN0W+DDNkyBC+/PLLqKumZJd9NZh69erx2WefMWLECOrXrx9U\n1P12+umn52re1KlT8zmJJEnKTzVq1GDMmDG8+uqrNGrUiDTgeaA50A4YDWzNg+Ns/eu1TvjrtQcD\naUCjRo149dVXeffddw9sW6Q9KVkSbrsNFi+G886LHE9Ph0ceyVwd5r338ieD9kkoFOLsBmcz7app\nfNTlI46vdXzUeb9s+oW+n/al9tO1+ffn/+a3zb8FnFSSJEmSJEmSVFwU6W2S0tPTqVevHqtWrQJy\nXhUmexHmzDPPZNSoUVSosO+bDsRqmySAI488ku+//x7Y9Tyz52nTpg3Tpk3Ll+NL2jexXhZMUuEX\nDof5/PPPee6553jnnXd2fsZIAJoBrbPdmv31eDTbyFz9ZWa22zwyV4ABJkX8qwAAIABJREFUKFGi\nBOeddx49e/bk73//e96uBJMb48bBjTfCihXRxzt2hGeegVq1Ao2lnIXDYSatnMQDkx5gYsrEHOeV\nTyjP9W2u5+Zjb6ZqYtUc50mSJEmSJEmSCp9YXw8t0mWYoUOHcuWVV+5xVZjsRZUuXbrwyiuv7PdF\nnliWYbp3786IESMijp+96FO2bFk2bNgQ/EUsSRFi/eYvqWj56aefGDJkCEOGDGH16tUR4yWBGkAZ\noPRfj20BNgNr+F/xJbtDDz2Uq6++mquvvpqaNWvmU/Jc2rQJHnwwc/uk7VHSli0L994LN9+cubKM\nCoyvfvyKByc/yPvfvp/jnDIlytAjuQe3tb2NmuVj/GdNkiRJkiRJkpQnYn09tEiXYZo1a8bChQtz\nLMNkL6mcd955vPnmmwd0vFiWYZ577jluuOGGvR5/0aJFNGjQIF8ySMq9aG/+KSkpUd/8ExMTg4ol\nqZALh8OsWLGCmTNnMmPGDGbOnMnMmTNZv379Hp9XqVIlkpOTad269c5bnTp1Cl6BdvFi6NkTPv88\n+niTJvD883DCCYHG0t7NWjOLByc/yNuL385xTqn4UlzZ8kpuP+52ah9UO8B0kiRJkiRJkqQDsXHj\nxojHUlNTSUpK2uUxyzB5YP78+bRo0SJXRZjGjRszbdo0ypYte0DHjGUZ5osvvuDEE0/c6/Hfeust\nzj333HzJICn3opVhclJE36YlBSQcDrNy5UpSU1PZvHkzmzdvBqBMmTKUKVOGKlWqULt27YJXfMlJ\nOAwjR8Ktt0JqavQ5//wnPPYYuNpWgbNg3QIemvwQry18jYxwRtQ5JeJK0K15N/qc0If6B9cPOKEk\nSZIkSZIkaV/l9hqDZZg80KdPHx599NEcyyGQeXEoPj6er776iuTk5AM+ZizLMGvXrqVmzZp7PX7/\n/v25+eab8yWDpNyzDCNJB2j9eujbF154IbMgs7uDD4ZHH4UrroC4uODzaY+W/bqMh6c8zIi5I9gR\njv75OC4Ux6VNL+WuE+6iUZVGASeUJEmSJEmSJOVWQSzDFNkrA++9994ef+FZ5ZArrrgiT4owsVa9\nenUqVKgA7PkPWkpKSlCRJO2jlJQU0tLSIm6SpCgqVcrcEumrr6Bly8jx336Dq6+G44+HuXODz6c9\nOrLykQztOJRvb/yWa1tfS0J8QsScjHAGr85/lSbPNeGiNy5i7lr/f5QkSZIkSZKkgijaNc5YdxOK\nZBlm/fr1LF68OOpY9qJIiRIl6Nu3b1Cx8t1hhx221zmrVq0KIImk/ZGYmBj1Jknag6OPhunTYcAA\nKF8+cvyrr6B1a7jlFtiwIfh82qOkSkkM/sdgvu/1Pb2O6kXpEqUj5oQJ8+aiN/nbC3/jnNHnMH31\n9BgklSRJkiRJkiTlpCBe5yySZZipU6fu3FYk2vYiWavCnHbaadSuXTvoePmmWrVqe91OJTU1NaA0\nkiRJASlRAnr1giVL4OKLI8d37ICnnoJGjeCtt6Jvq6SYOqzCYQw4YwArblrB/7X9PxJLRv9L0nvL\n3uPol47mtJGnMXnl5IBTSpIkSZIkSZIKiyJZhpk9e3au5l166aX5nCRY1atXz3EsFAoRDoctw0iS\npKKrZk3473/ho4+gfv3I8dWr4cIL4ayzYPny4PNpr6qVq8ZjHR5jZe+V/Kvdv6hYqmLUeR9//zHt\nXmlH+1fa88nyT/ZaCJckSZIkSZIkFS9FsgyzPJcXN0466aR8ThKsChUq7HXO77//HkASSZKkGDr1\nVJg/H+69FxISIsc/+ACaNIF+/WDr1uDzaa8ql63M/Sfez4reK+h3Yj8ql6kcdd4XK7+gw4gOtP1P\nW95f9r6lGEmSJEmSJEkSUMzKMKFQaOfPderUoVq1akFFCkTp0qX3OmfLli0BJJEkSYqx0qXh3/+G\nBQugQ4fI8S1b4F//ghYt4NNPA4+n3Dmo9EHc1e4uVvReweMdHqdaYvTP71+v+pp/jP4HrV9szduL\n3yYjnBFwUkmSJEmSJElSQVIkyzCrV6/epfiSXTgcJhQKccQRRwScKv/lpgyz1W8/S5Kk4uSIIzK3\nTXrtNahRI3J86VI4+WTo3BnWrg0+n3KlXEI5bmt7Gyk3pfDM6c9waPlDo86bvXY2F7x+Ac2fb87o\n+aPZkbEj4KSSJEmSJEmSpIKgSJZh0tLS9jqndu3aASQJVk4FoOy2b98eQBJJkqQCJBSCTp1gyRLo\n1QvionwEHjUKGjaEQYNghwWKgqpMyTLcePSNfN/re174xwvUOahO1HkLUxdy2duX0WhQI16Z8wrb\nd/gZWJIkSZIkSZKKkyJZhtm0adNe55QvXz6AJMHKzRZICQkJASSRJEkqgCpUgAED4Jtv4KijIsf/\n+ANuuAGOOQZmzAg+n3KtVIlSXNP6GpbdsIxXOr7CkZWPjDrv29++5fIxl3PEwCMYPGMwW9NdJVGS\nJEmSJEmSioMiWYbZvHnzXufkZkuhwiY3512mTJkAkkiSJBVgrVrBl1/C88/DQQdFjs+YkVmWueGG\nzIKMCqyS8SXp/rfuLOq5iNEXjKZp1aZR5638YyXXvX8ddZ+py4CvB7Bp+97L85IkSZIkSZKkwqtI\nlmFys/pJboojhU1qaupe55QtWzaAJJIkSQVcfDz06JG5dVLXrpHj4XDmlkkNG8Lo0Zn3VWDFx8Vz\nSdNLmNtjLu9c/A6tarSKOu+nDT/R+6PeJA1I4rGpj7Fh64aAk0qSJEmSJEmSglAkyzCJiYl7nZOb\nrZQKm1WrVu11Trly5QJIIkmSVEhUqwbDh8Nnn2UWX3a3di1cdhl06ADLlgWfT/skLhTHuQ3PZcbV\nMxh/2XiOPezYqPPWbVzHHZ/cQZ0BdXjgiwf4fcvvASeVJEmSJEmSJOWnYluGWbNmTQBJgrVy5UpC\noVDUsXA4TCgUokaNGgGnkiRJKgTat4e5c+GhhyDadpoTJ0KzZnDPPVAEVxgsakKhEGcccQZTr5jK\nxG4TaV+nfdR5v23+jXs+v4faT9fm7k/v5pdNvwQbVJIkSZIkSZKUL4pkGaZixYqE97CUfTgc5scf\nfwwwUf5bt24dP//8M8Aez71WrVpBRZIkSSpcEhKgTx9YtAjOOityfNs2eOABaNoUPvww+HzaZ6FQ\niJOSTuKz7p8x+fLJnF7/9Kjz/tz6Jw9OfpA6T9fh/z7+P9amrQ04qSRJkiRJkiQpLxXJMkydOnVy\nHMtaOWXp0qVkZGQElCj/zZ49O1fzLMNIkiTtRVISvPcevPMOHHZY5Pjy5XDGGXDRRbB6dfD5tF+O\nr3U8H3T+gOlXTadjg45R52zcvpH+X/UnaUASvT7oxY9/FK0CvSRJkiRJkiQVF0WyDFO3bt2oj2df\nMWXz5s0sWrQoqEj57rPPPsvVvHr16uVzEkmSpCIgFIJzz4XFi+G22yA+PnLOm29Cw4bw1FOQnh58\nRu2XNoe24d1L3mVuj7l0atKJEJHbjG5J38LA6QOp90w9rnnvGpavXx6DpJIkSZIkSZKk/VUkyzBJ\nSUm5mjdx4sR8ThKc8ePH52pecnJyPieRJEkqQsqVg8cfh9mz4bjjIsfT0uCWWyA5Gb76Kvh82m/N\nqzXntQtfY2HPhXRt3pX4UGThaXvGdobMGsKRA4+k+7vdWfrL0hgklSRJkiRJkiTtqyJZhmnZsmWu\n5r333nv5nCQYy5YtY8GCBYRCoV1Wv4H/bQsFkJiYSOPGjYOOJ0mSVPg1awaTJsHLL0PlypHjc+dC\n27ZwzTXw22/B59N+a1SlEcPPG87SG5ZyVcurKBlXMmLOjvAOhs8dTqNBjbjkzUuY//P8GCSVJEmS\nJEmSJOVWkSzDtGnThoSEBGDXMkiWrNLIF198wQ8//BB0vDw3ZMiQPY6Hw2FCoRCtWrWK+vuQJElS\nLsTFwRVXwJIlcOWV0ecMGQINGsCwYbBbSVkFW72D6zHknCF81+s7rm9zPaXiS0XMCRPmtYWv0Xxw\nc8577Txm/jQzBkklSZIkSZIkSXtTJMswpUqVolWrVhGrpAC7PJaRkcELL7wQZLQ8l5aWxtChQ3NV\ncjn55JMDSCRJklTEHXIIvPQSTJmSuWLM7n75Bf75T2jfHhYuDDqdDlCtirV49sxnSbkphVuOuYWy\nJctGnffukndJHpLMma+eyZc/fhlwSkmSJEmSJEnSnhTJMgzsvfiRtTrMs88+yy+//BJQqrz3xBNP\n8NtfS/FHK/9kd+655wYRSZIkqXg47jiYORP694fExMjxSZPgb3+DO++EjRuDz6cDUqN8DZ447QlW\n3LSCvsf3pXxC+ajzPvjuA477z3GcPPxkPkv5bK+fySVJkiRJkiRJ+a/IlmE6deqU41j2f6BOS0vj\n7rvvDiJSnvvxxx954oknclwVJvvjSUlJNIv2zWVJkiTtv5Il4dZbYfFiOO+8yPH0dHj0UWjcGMaO\nDT6fDliVxCo8ePKDrOy9kvva30el0pWizvs05VNOGn4SJww9gQ+/+9BSjCRJkiRJkiTFUJEtwzRr\n1oxGjRoBRC2LhMPhnavDDBkyhAkTJgQd8YBdeeWVpKWlATmvCpN1nhdffHGQ0SRJkoqXww+Ht9+G\nceOgTp3I8R9+gI4dM28rVwYeTweuUplK3PP3e1jZeyWPnPwIVcpWiTpv6o9TOePVMzjqpaMYs2QM\nGeGMgJNKkiRJkiRJkopsGQaga9eue/1GZlYhpmvXrvzwww8BJTtw/fr145NPPtmZf3fZC0Dx8fFc\nd911QcaTJEkqns46CxYuhL59M1eN2d3YsZmrxDz6KGzfHnw+HbDypcpzx/F3kHJTCk+d9hQ1ytWI\nOm/GTzM497VzaflCS15f+Do7MnYEnFSSJEmSJEmSiq9QuAiv3/3HH39Qq1atPa6eklUaCYfDNG7c\nmM8//5xDDjlkv44XFxcXtZyS9VgoFGLHjgP/R/BRo0bRtWvXnfdzOq+sY5533nm8+eabB3xcSXkn\nNTWVqlWr7vLYunXrqFIl+rfMJUmF0OLF0LMnfP559PHGjeH556Fdu0BjKW9tSd/C0NlDeWTqI/zw\nR87l+oaHNKTv8X25tNmllIgrEWDCzL8vbNq0KdBjFjRly5bNcXtZSZIkSZIkSXkv1tdDi3QZBuD2\n22+nf//+Oa6gArsWYho1asSECROoWbPmPh8riDLMsGHDuPrqq3e+zp7OKeuYU6ZM4dhjjz2g40rK\nW7F+85ckBSQchldfhVtvhXXros/p3h0efxz8b0Chtn3HdkbMG8FDkx/i+/Xf5zivbqW63HncnXT/\nW3cS4hMCybZx40bKlSsXyLEKqrS0NBITE2MdQ5IkSZIkSSo2Yn09tEhvkwRw6623Ur58eYAcvwmY\nVSgJhUIsXryYVq1a8XlO3+CNkYyMDO6++26uvPJK0tPTgdwVYTp27GgRRiokNm7cGPUmSSrEQiHo\n0gWWLIHrrsu8v7thw6BBA3jxRcjICD6j8kTJ+JJc0fIKltywhJHnjaTRIY2izlu+fjnXjLuGes/U\n49npz7J5++aAk0qSJEmSJElS3iqI1zmL/MowAE8//TS33HLLHleHgV1XiImPj6dnz57069dvZ5lm\nb/JrZZj58+fTo0cPvv76652vk5VzT+eQkJDAwoULqVev3j4fU1L+itaEzEkxeJuWpOJj+vTMUsys\nWdHHjz02c+ukFi2CzaU8lxHO4J3F79Bvcj/mrJ2T47zq5apz27G30SO5B4kJ+bNyyS4rw9wGBLMg\nTextA/pn/ujKMJIkSZIkSVL+ye0W5a4Mk8d69erF3/72N2DP/ydkXyFmx44dPPvss9SvX5/HH388\nJq2lZcuWcdVVV9GqVatcFWGyZM275ZZbLMJIkiQVJEcdlVmIeeYZiFa4/uoraN0abrkFNmwIPp/y\nTFwojgsaX8Csa2bx3qXvcdShR0WdtzZtLbdNuI3aT9fmockP8ceWP/I3WEIxu0mSJEmSJEkqlorF\nyjAA8+bN49hjj2XLli3AnsskuxdOQqEQ5cqVo1OnTlx66aW0a9eOEiVKRDwvL1aG+eWXX3jvvfcY\nPXo0EydOjMixp+zZj9OqVSu++uqrqDklxV60lWFSUlKiNiH9FrMkFVE//ZRZennttejjNWvCgAFw\nwQXRt1dSoRIOh/lk+Sc8MOkBJv8wOcd5B5U+iF5H9eKmY27i4DIH58mxd1kZpi/FpySyDXgo80dX\nhpEkSZIkSZLyT7TFRVJTU0lKStrlsSBXhik2ZRiAESNG0L17971ulwS7riCzexklMTGRdu3akZyc\nTKtWrahXrx61atWiYsWKey3DpKens3nzZjZt2sTPP//MqlWrSElJYdasWcyYMYP58+eTkZER9bi5\nLfAkJiYya9YsjjjiiH359UgKULQyTJBv/pKkAmTCBOjZE777Lvr46afDs8+CK/4VGZNWTqLfpH5M\nWD4hxznlEspxfZvrueXYW6iamLutFXNiGcYyjCRJkiRJkhS0WF8PLVZlGMjcMunZZ5/NVSEGopdi\ndn882nhuXm9vz8/p2Dm9ZjgcJj4+ntdee43zzz9/r1kkxU6s3/wlSQXMli3w6KPw8MOwdWvkeOnS\n0Lcv3H47lCoVfD7li69Xfc2Dkx9k3LJxOc4pU6IM17a+ltva3sahFQ7dr+NYhrEMI0mSJEmSJAUt\n1tdD4wI5SgEyYMAAunTpsnOllr0Jh8O7rNCSdct6PPstN6I9LzfHyM3rhkIhBgwYYBFGkiSpsCld\nGu69FxYsgFNPjRzfsgXuuQeaN4e/ttJU4XfMYcfw3qXvMeuaWVzQ6IKoczanb+bpaU9T95m6XDfu\nOlb+vjLglJIkSZIkSZJU+BS7MkwoFOKVV17hkksu2Vkg2ZdSTLTSSm5fI6fn7f4a+1KuyX7ce+65\nh549e+bqeZIkSSqA6teHDz+E116DGjUix5ctg1NOgcsug7Vrg8+nfNGyRkve7PQmC65bwGXNLiMu\nFPnXtG07tjF45mDqD6zPFWOu4Ntfv41BUkmSJEmSJEkqHIpdGQYgLi6OkSNHcuONN+5SbsmtPa3s\nsr/P3dfX2b2A89RTT3Hvvffm+hwkSZJUQIVC0KkTLFkCN90EcVE+so8eDQ0awLPPwo4dwWdUvmhS\ntQmvnv8qS65fwuV/u5wScSUi5qRnpDN0zlAaDmpI57c7s3DdwhgklSRJkiRJkqSCrViWYSCzEDNg\nwABefPFFSpYsCUQWTAqq7CvIJCQkMGrUKG666aYYp5IkSVKeqlABnn4aZsyAo4+OHP/zT7jxxsyx\nGTOCz6d8c0TlI/hPx//w7Y3fcl3ydSTEJ0TMyQhnMGr+KJo+35QLX7+Q2WtmxyCpJEmSJEmSJBVM\nxbYMk+Wqq65i0qRJNGjQIGILpIIoexGmcePGTJ8+nYsvvjjGqSRJkpRvWraEL7+EwYPhoIMix2fO\nhKOOghtugN9/Dz6f8k2dg+rw3FnPsbzXcnof3ZsyJcpEnffW4rdo9WIrzh59NtNWTQs4pSRJkiRJ\nkiQVPMW+DANw1FFHMWfOHO68807i4+MLZCkmK0tWtuuvv54ZM2bQrFmzGCeTJElSvouLg2uvhaVL\noVu3yPFwGAYNgoYNYdSozPsqMg6tcChPnf4UKTelcMdxd1AuoVzUeeOWjeOYl4/h1BGnMmnlpIBT\nSpIkSZIkSVLBYRnmLwkJCTz00EPMmzePCy64ACDmpZis42aVYMLhMO3bt2fGjBkMHDiQ0qVLB55J\nkiRJMVS1KgwbBp99Bo0aRY7//DN07gynnJJZnFGRUq1cNR455RFW3LSCe9rdQ8VSFaPOm7B8An9/\n5e+0G9qOCd9P2Pn3GkmSJEmSJEkqLizD7KZhw4a88cYbzJo1iwsuuIASJUpElGLysxyz++tnlWCO\nP/54xowZw6effkrLli3z5diSJEkqJNq3hzlz4KGHoEyUrXM+/RSaN4d//Qs2bw48nvJX5bKVue/E\n+1jZeyUPnvQglctUjjpv8g+TOXXkqZw47MSAE0qSJEmSJElSbFmGyUGLFi144403WLVqFY888ghH\nHnnkzmJKTuWY3BZl9va8rGOUL1+eK664glmzZjFp0iTOPvvsfD9vSZIkFRIJCdCnDyxcCP/4R+T4\ntm3Qrx80bQoffBB8PuW7iqUr0veEvqzovYL+HfpTLbFa1HkzfpoRcDJJkiRJkiRJiq1Q2DWzc+27\n775j/PjxfPDBB3z55Zds2LAhYs6+rBgT7Vdft25dOnTowLnnnstJJ51EyZIlDyizpIIpNTWVqlWr\n7vLYunXrqFKlSowSSZIKtXAYxoyBXr3gxx+jz7ngAnj6aTjssGCzKTCbt2/m5dkv8+jUR1n156r/\nDWwDHvrr575AQgzCxUK2805LSyMxMTGmcSRJkiRJkqTiJNbXQy3DHIBvv/2WWbNmMXfuXFJSUli1\nahWrVq1izZo1bNu2LcfnJSQkcOihh1KrVi1q1apF/fr1SU5O5qijjqJy5ehLnEsqWmL95i9JKqLS\n0uD+++GppyA9PXK8XDm4777M0kyJEsHnUyC27djGsDnDeHjKw6T8nmIZBsswkiRJkiRJUtBifT3U\nMkw+SU9PZ/PmzWzZsoWtW7dSsmRJypYtS5kyZSjhhQep2Iv1m78kqYhbsACuuw6mTIk+3rw5DB4M\nxx4bbC4FKj0jndHzR/PAJw/w7W3fZj5oGUaSJEmSJElSAGJ9PTQukKMUQyVKlKB8+fJUqVKFww47\njGrVqlG+fHmLMJIkScp/TZvCF1/Af/4D0VYenDcP2raFa66B334LPp8CUSKuBF1bdGXGNTNiHUWS\nJEmSJEmSAmUZRpIkSSqK4uLg8sth6VK46qroc4YMgQYN4JVXwAUji6z4uPhYR5AkSZIkSZKkQFmG\nkSRJkoqyypUzSy9TpkCzZpHjv/ySWZpp1y5zeyVJkiRJkiRJkgo5yzCSJElScXDccTBzJvTvD4mJ\nkeNTpkDLlnDHHbBxY/D5JEmSJEmSJEnKI5ZhJEmSpOKiZEm49VZYvBjOPz9yPD0dHnsMGjeGMWOC\nzydJkiRJkiRJUh6wDCNJkiQVN4cfDm+9Be+/D0lJkeM//ADnngvnnAMrVgQeT5IkSZIkSZKkA2EZ\nRpIkSSquzjwTFiyAu+7KXDVmd++9l7lKzCOPwLZtweeTJEmSJEmSJGk/WIaRJEmSirOyZaFfP5g3\nD048MXJ882bo0wdatoQvvgg+nyRJkiRJkiRJ+8gyjCRJkiRo2BAmToSRI6Fq1cjxRYugfXvo3h3W\nrQs8niRJkiRJkiRJuWUZRpIkSVKmUAg6d4YlS6Bnz8z7uxs+PLM488ILkJERfEZJkiRJkiRJkvbC\nMowkSZKkXVWqBIMGwbRp0KpV5Pj69dCjB7RtC3PmBJ9PkiRJkiRJkqQ9sAwjSZIkKbo2bWD6dHjm\nGahQIXJ82jRo3Rpuvhk2bAg+nyRJkiRJkiRJUViGkSRJkpSz+Hi48cbMrZMuuSRyPCMDnn46c+uk\nN96AcDj4jJIkSZIkSZIkZWMZRpIkSdLe1agBo0fDxx/DEUdEjv/0E3TqBGecAd99F3w+SZIkSZIk\nSZL+YhlGkiRJUu516ADz5sF990GpUpHjH30ETZvC/ffD1q3B55MkSZIkSZIkFXuWYSSpgNi4cWPU\nmyRJBU7p0nDPPbBgAZx2WuT41q1w773QrBl88knw+SRJkiRJkiRJgSmI1zktw0hSAZGUlES5cuUi\nbpIkFVj168MHH8Drr0PNmpHj336buZLMpZfCmjXB55MkSZIkSZIk5bto1ziTkpJimskyjCRJkqT9\nFwrBRRfB4sVw000QF+WvGP/9LzRsCAMHwo4dwWeUJEmSJEmSJBUrlmEkqYBISUkhLS0t4iZJUqFQ\noQI8/TTMmAFHHx05/uef0KsXHHUUfPNN8PkkSZIkSZIkSfki2jXOlJSUmGayDCNJBURiYmLUmyRJ\nhUrLlvDll/DCC3DQQZHjs2ZllmWuvx5+/z34fJIkSZIkSZKkPFUQr3NahpEkSZKUt+Li4JprYOlS\n6NYtcjwchueey9w66dVXM+9LkiRJkiRJkpRHLMNIkiRJyh9Vq8KwYfD559CoUeT4zz9Dly5wyimw\nZEng8SRJkiRJkiRJRZNlGEmSJEn56+9/hzlz4OGHoUyZyPFPP4XmzeHuu2Hz5uDzqcjbvmN7rCNI\nkiRJkiRJCpBlGEmSJEn5LyEB7rwTFi2Cs8+OHN++HR58EJo0gfHjg8+nIq3+wPr0+qAXM36aQdht\nuSRJkiRJkqQizzKMJEmSpODUqQNjx8K778Lhh0eOp6TAWWfBBRfAqlWBx1PR9OumXxk4fSBthrSh\nyXNNeGTKI/z4x4+xjiVJkiRJkiQpn1iGkSRJkhS8jh1h8WK4/XYoUSJy/O23oWFDeOKJzFVjpDyy\n+JfF9JnYh9pP1+aU4acwfO5w0ralxTqWJEmSJEmSpDxkGUaSJElSbCQmwqOPwuzZcPzxkeMbN8Jt\nt0Hr1vDll8HnU5EWJszElIl0f7c71fpXo9s73fhk+SfsyNgR62iSJEmSJEmSDpBlGEmSJEmx1bQp\nfPEF/Oc/ULly5Pj8+XDccXDVVfDrr8HnU6HX5/g+JB2UlOP4pu2bGDFvBB1GdKDW07W4Y8IdLFy3\nMMCEkiRJkiRJkvKSZRhJkiRJsRcXB5dfDkuXZpZeonn5ZWjQAIYOhYyMYPOpULur3V183+t7Jl8+\nmatbXU3FUhVznPvThp947MvHaPp8U1q/2JoBXw9g3cZ1AaaVJEmSJEmSdKAsw0iSJEkqOCpXhiFD\nYOpUaN48cvzXX+GKK+Dvf4cFC4LPp0IrFApxfK3jefHsF1lz6xpeu/A1zjriLOJD8Tk+Z9aaWfT+\nqDc1n6jJ2aPP5o2Fb7AlfUuAqSVJkiRJkiTtD8swkiRJkgqetm1h5kx44glITIwcnzIFWraE22+H\ntLTg86lQK1OyDJ2adGLcZeNYfctqnjrtKVpWb5nj/B3hHYxbNo5ADvzeAAAgAElEQVROb3aiev/q\nXPvetUz9YSrhcDjA1JIkSZIkSZJyKxT2X+8kKXCpqalUrVp1l8fWrVtHlSpVYpRIkqQCbNUq6N0b\n3nor+vjhh8Mzz0DHjhAKBZutENi4cSPlypXLvNMXSIhpnOBsAx7K/DEtLY3EaKWq3SxYt4ARc0cw\ncv5Iftrw017n161Ul27Nu9G1RVfqVqp7gIElSZIkSZKkoiPW10Mtw0hSDMT6zV+SpELpgw/g+ush\nJSX6+D/+AQMHQp06gcYq6CzD5L4Mk2VHxg4+TfmU4fOG8/bit9m0fdNen3N8rePp1rwbFzW5iINK\nH7SfoSVJkiRJkqSiIdbXQ90mSZIkSVLhcMYZsHAh3H03lCwZOT5uHDRuDA8/DNu2BZ9PRUZ8XDwd\n6nVgxHkjWHvrWl7p+AonJZ1EiJxXHprywxSuGXcN1ftXp9MbnRi3bBzbd2wPMLUkSZIkSZKkLK4M\nI0kxEOsmpCRJhd6SJdCzJ3z2WfTxRo3gueegfftAYxVErgyz7yvD5OSHP37g1XmvMnzecJb8smSv\n86uUrcJlzS6jW4tutKzekpDbeEmSJEmSJKmYiPX1UFeGkSRJklT4NGwIEyfCyJFQrVrk+OLFcOKJ\n0K0brFsXfD4VSbUq1qLPCX1Y1HMR06+azg1tbqBymco5zk/dlMqAaQNo/WJrmj3fjMemPsbqP1cH\nmFiSJEmSJEkqnizDSJIkSSqcQiHo3DlzlZjrr8+8v7sRI6BBA3jhBcjICD6jiqRQKESbQ9sw8MyB\n/HTrT4y5ZAznNzqfknFRtu/6y8LUhdzxyR0c/tThnDriVEbOG8nGbRsDTC1JkiRJkiQVH5ZhJEmS\nJBVuBx0Ezz4L06ZB69aR47//Dj16QNu2MHt28PlUpCXEJ3BOg3N4q9NbrL1tLc+f9TzHHnZsjvPD\nhJmwfAJd3+lKtf7V+Oe7/2Ti8onsyNgRYGpJkiRJkiSpaLMMI0mSJKloaNMmsxAzcCBUqBA5Pm0a\nJCdD797w55/B51ORd3CZg+mR3IMvr/ySZTcs41/t/kWdg+rkOH/j9o0MmzuMU0acQp0BdejzSR8W\npy4OLrAkSZIkSZJURIXC4XA41iEkqbhJTU2latWquzy2bt06qlSpEqNEkiQVMWvWwK23wujR0cdr\n1ICnn4aLLoq+vVIRsnHjRsqVK5d5py+QENM4wdkGPJT5Y1paGomJiTGJkRHOYMoPUxg+dzivL3yd\nDds27PU5yTWT6da8G5c0vYQqiX4+lCRJkiRJUuET6+uhrgwjSZIkqeipUQNGjYIJE+DIIyPH16yB\niy+G00+H774LPp+KjbhQHO1qt+Olc15i7W1rGX3BaM6ofwZxoZz/Oj7jpxn0+rAXNZ+sScf/duSt\nRW+xNX1rgKklSZIkSZKkws0yjCRJkqSi65RTYN48uP9+KFUqcvzjj6FpU7jvPtiyJfh8KlbKlizL\nJU0vYXzn8ay+ZTVPnPoELaq1yHF+ekY6Y5eO5cI3LqTGEzW4btx1fPXjV7jAqyRJkiRJkrRnbpMk\nSTEQ62XBJEkqlr7/Hm64AT78MPr4EUfAoEHQoUOwufLZLtsk3Ubx2iapf+aPsdwmKTfm/TyPEXNH\nMHL+SNamrd3r/PoH16db8250ad6FpEpJASSUJEmSJEmS9k2sr4dahpGkGIj1m78kScVWOAxvvgm9\ne8NPP0Wfc/HF8OSTULNmsNnyyS5lmGKqoJdhsqRnpDNx+USGzxvOO4vfYXP65r0+p13tdnRt3pWL\nGl9ExdIVA0gpSZIkSZIk7V2sr4dahpGkGIj1m78kScXen3/CvffCM89ARkbkePny0K8fXH89xMcH\nny8PWYYpPGWY7P7c+idvLXqL4fOG8/mKz/c6v3SJ0nRs0JFuLbpxar1TKRFXIv9DSpIkSZIkSTmI\n9fVQyzCSFAOxfvOXJEl/mTMHrrsOvv46+nirVjB4MLRpE2yuPBQOh9m0aVOsY8RU2bJlCYVCsY6x\n31b+vpKR80YyfN5wlv26bK/zqyVW47Jml9GtRTdaVGtRqM9dkiRJkiRJhVOsr4dahpGkGIj1m78k\nScomIwNeegnuvBPWr48cD4WgRw948EGoVCn4fNJfwuEw01dPZ/jc4fx34X/5bfNve31Os6rN6Nai\nG5c1u4ya5YvG1l+SJEmSJEkq+GJ9PdQyjCTFQKzf/CVJUhTr1sHtt8OwYdHHq1aFJ56Azp0zCzJS\nDG1N38r4b8czfN5w3l/2Ptsztu9xflwojg51O9CtRTfObXguZUuWDSipJEmSJEmSiqNYXw+1DCNJ\nMRDrN39JkrQHkyZlbp20aFH08RNPhOeeg4YNg80l5eDXTb/y2sLXGD53ONNWT9vr/HIJ5bio8UV0\na9GNdrXbERf6f/buO77K8vD7+OdkEDYGHBC2iDKDCq5aFGvdBUUBGUmsWtwb+/T5We2yteMpWmxF\nLNZqTgAVB4qrWkVR+TlAmzAEBRlKWLIkYWWc548DFCRDIbnvjM/79cqrybmv+5zvgfZ6lVzfc10J\nAaSUJEmSJElSfRL2eqhlGEkKQdiTvyRJqsTOnXDfffDrX8O2bftfT06Gn/4Ufv5zaOwOG6o5Fn21\niGhelGhelBWbV1Q6vkOLDmT0ziCrTxbHHHpMAAklSZIkSZJUH4S9HmoZRpJCEPbkL0mSvqXly+Gm\nm+D558u+3qkT/O1vcMEFgcaSKlMaK2Xm8plk52YzdcFUCnYWVHrPiW1PJCs9i+G9htOqcasAUkqS\nJEmSJKmuCns91DKMJIUg7MlfkiR9R889Fy/FrChnp43Bg2HcOGjfPthc0rewtWgr0xZOIzs3m9c+\nf43SWGmF45MTkrng6AvISs/i/K7nk5KUElBSSZIkSZIk1RVhr4dahpGkEIQ9+UuSpANQWAi/+Q3c\ney8UF+9/vUkT+NWv4Oab48coSTVQ/pZ8Js+dzGO5jzFv7bxKx7ds1JLhPYeT1SeLE9ueSCQSCSCl\nJEmSJEmSaruw10Mtw0hSCMKe/CVJ0kGYNw+uuw7efrvs6717w4MPwqmnBptL+g5isRi5a3KJ5kaZ\nNHcSawrXVHrP0a2OJis9i4z0DDoe0jGAlJIkSZIkSaqtwl4PtQwjSSEoa/JfunRpmZN/kyZNgool\nSZK+rVgMHnsMfvpT+OqrssdceSX84Q9w6KHBZpO+o+LSYl5b8hrZedlMWziN7cXbK73n9I6nk9Un\niyE9htA8pXkAKSVJkiRJklRTFRYW7vfYunXr6Ny58z6PWYaRpDqurDJMeZymJUmqwdavh//5H5g4\nsezrrVrBH/8Il18OCQnBZpMOwObtm3lqwVNk52Uzc/nMSsc3TGrI4G6DyeqTxQ+P/CFJCUkBpJQk\nSZIkSVJN8m2P1rYMI0l1nGUYSZLqmP/9X7jmGsjLK/v6qafGj07q3TvYXNJBWLpxKTl5OWTnZbN4\nw+JKx7du2ppRvUeR1SeL9CPSA0goSZIkSZKkmsAyjCpUXFzMggULWLt2LZs2baKkpIQWLVrQoUMH\njjnmGBITE6v8NfPy8igpKaFbt240atSoyp9fUtk8JkmSpDqouBj++lf4xS+goGD/64mJcOut8Mtf\nQtOmweeTDlAsFuO9L98jOzebx+c/zqbtmyq9p88Rfcjqk8XI3iNp3bR1ACklSZIkSZIUFo9J0n5W\nrlxJTk4Ozz77LHl5eezYsaPMcQ0aNKB///5cdNFFZGRk0Lx51ZzJfuONNzJ+/HgikQjt27enW7du\ndO/efZ+vVq1aVclrSfqvssowQU7+kiSpGn35Zbz08tRTZV9v3x7GjYOLLoJv+YkJqabYUbyDFz97\nkezcbF787EWKS4srHJ8QSeCcLueQ1SeLC4+5kEbJfghDkiRJkiSpPgh7PdQyTEi+/PJL7rzzTiZN\nmkRpaem3OgZl99ZCjRs35uqrr+YXv/jFQZdibrzxRh544IH9XmNvrVq1KrMk06FDh4N6bak+C3vy\nlyRJAXj5ZbjhBvj887KvX3BBfCeZb3w6Qqot1hWu44n5T5Cdm82H+R9WOr55SnOG9hhKZnom/Tv2\nJyGSEEBKSZIkSZIkhSHs9VDLMCGYMGECY8aMYfv27fuUYCo7R+ubYw899FDuuecerrzyygPOsnjx\nYmbNmsWCBQuYO3cuH330EWvWrNlvXFnZGjduzJYtWw74taX6LOzJX5IkBWTbNrjnHvjjH6GoaP/r\njRrBnXfC7bdDgwbB55OqyCfrPiGaFyWaF+XLr7+sdHzHFh3JTM8ks08mR7c6OoCEkiRJkiRJClLY\n66GWYQJUXFzMZZddxuOPP76n2PLNkkl5fx3ljYtEIpx88slMnTqVtLS0Ksm5YsUK3nrrLZ577jmm\nT59OcXFxmbkikQglJSVV8ppSfRP25C9JkgK2aBFcdx288UbZ17t1gwcfhAEDAo0lVbXSWClvLnuT\n7NxsnlrwFIVF+58X/U0ntzuZrPQsLu11KS0btQwgpSRJkiRJkqpb2OuhlmECUlRUxJAhQ3jhhReI\nxWL7lFu+619BWfe2bt2ap59+mlNOOaVqAu/y9ttvc/rpp5dZxrEMIx24sCd/SZIUglgMpkyB226D\nMnZjBCAjA/78ZzjiiGCzSdWgcGchzy58luzcbP79+b+JUfG/fZMTkhl4zECy0rM4r+t5NEh0tyRJ\nkiRJkqTaKuz1UMswAbnsssuIRqMHVYL5pm8+V4MGDXjwwQe5/PLLD+p597Z582ZSU1OJRCL77EZj\nGUY6OGFP/pIkKUSbNsWPRho/Pl6Q+aZDDokfrXTVVZCYGHw+qRqs/Holk+ZOIjs3m/nr5lc6vlWj\nVozoNYKsPln0S+tX6bHCkiRJkiRJqlnCXg+1DBOARx55hJ/85Cd7fnn3zT/y7/pLvfLu311QGTdu\nHDfccMNBJP6voqIiUlJSLMNIVSzsyV+SJNUAs2fDNdfAnDllXz/xxPjRSccfH2wuqRrFYjH+s/o/\nZOdmM2nuJNZtXVfpPd0O7UZmeiYZ6Rl0aNEhgJSSJEmSJEk6WGGvh1qGqWZr166la9euFBQUAOxT\nKNnbd/lrKGt3mW8WYu6//36uv/76g8q+W0JCgmUYqYqFPflLkqQaoqQEJkyAO+6Ar7/e/3pCAtxw\nA9x9NzRvHny+AxCLxVi+fDlr165l27ZtbN++HYCGDRvSqFEjDj/8cDp27OhOH6KopIhXl7xKdl42\nzy18jh0lOyocHyHCgE4DyOqTxSXdL6FZSrOAkkqSJEmSJOm7Cns91DJMNbvqqqt4+OGH9yuTwH+L\nLF26dOGcc86hf//+HHPMMXTo0IFmzZoRiUQoKChg5cqVfPbZZ3zwwQe8+uqrfPTRR/s8z+7n+mYh\n5u9//ztXXnnlQb8HyzBS1Qt78pckSTXM6tUwZgxMnlz29TZt4L77YNgwqEElklgsxtKlS5kzZw6z\nZ89mzpw5fPTRR2zcuLHC+1JTU+nbt+8+X507d7YgU49t2r6JqfOnkp2XzTsr3ql0fKOkRlzc/WKy\n+mRxZuczSUzwSDFJkiRJkqSaJOz1UMsw1ejLL7+kc+fOlJaW7vN4LBYjMTGRYcOGcfPNN3PiiSd+\np+ddtmwZ48eP55FHHmHDhg1l/sJ492s8/vjjXHLJJQf1PizDSFUv7MlfkiTVUK+/DtddB59+Wvb1\ns86CBx6Arl2DzfUNK1euZOLEiUycOJH8/Pz9rjcA2gCNgIa7HtsObANWATvLeM60tDRGjx7NVVdd\nRVpaWjUlV22wZMMScvJyyM7L5vONn1c6Pq1ZGqN6jyKrTxa9Du8VQEJJkiRJkiRVJuz1UMsw1eiu\nu+7id7/73X47uJx44on84x//oGfPngf1/Nu3b+fRRx/l17/+NWvWrCnz6KWUlBReeuklzjjjjAN+\nHcswUtULe/KXJEk12I4d8Kc/we9+F//+m1JS4P/+3/hXw4b7X68msViMGTNmMH78eKZNm7bn3wIN\ngHSg715fvXY9XpadwDxgzq6v2cBc/luQSUxMZPDgwVx33XUMGDDA3WLqsVgsxqwvZhHNi/LE/CfY\ntH1Tpfcc1/o4svpkMaLXCI5oekQAKSVJkiRJklSWsNdDLcNUo/bt2+/5lOTuP+Yrr7ySCRMmkJhY\ndVs4FxQU8Nvf/pZx48axY8eO/co3LVq04O2336ZXrwP7hJxlGKnqhT35S5KkWmDJErjhBnjllbKv\nH3VUfJeYs8+u1hixWIwpU6Zw9913s3Dhwj2PnwZcCwwGUg7yNXYAzwLjgbf3erxbt27cddddjBgx\nwlJMPbe9eDsvfPoC2bnZvPTZS5TEKv63aGIkkXOPOpesPlkMPHogjZIbBZRUkiRJkiRJEP56qGWY\napKXl8exxx67T3HkiiuuYOLEidX2mp999hmXXXYZ77333n6FmHbt2vHee+8d0HbjlmGkqhf25C9J\nkmqJWAyefhpuvhnKOI4IgGHD4L77oBqOFlq1ahVXX30106dPB6ApkEW8BFNdh9HMBR4EokDBrscG\nDRrEhAkTaNOmTTW9qmqTtYVreXze42TnZjNn1ZxKx7dIacHQHkPJ6pPF9zt832KVJEmSJElSAMJe\nD00I5FXqoVdffXXP95FIhL59+zJhwoRqfc2uXbvyzjvvcM8995CcnLzP63/55Zecf/75bNmypVoz\nSJIkSapCkQgMGQILF8Ktt0JZO0w++SR06wbjxkFxcZW8bCwWIxqN0qNHD6ZPn04ycDeQDzxA9RVh\nAHoT3yEmf9drJgPPP/88PXv2JCcnBz/PocObHM5NJ93E7KtmM+/aefzs1J/Rtlnbcsdv3rGZhz9+\nmNMePY0u93fhlzN+yeINiwNMLEmSJEmSpKC5M0w1ycrKIicnB4iXUT744AP69u0b2Ot/8MEHXHLJ\nJaxcuXKfnVx++MMf8tJLL32nY5rcGUaqemE3ISVJUi2VmwvXXAPvvVf29eOOgwcfhJNOOuCX+OZu\nMH2BR6neAkxF5gE/Bnbv/+EuMSpLSWkJM5bNIDs3m6c/eZqtRVsrved77b9HVnoWw3oOI7VRagAp\nJUmSJEmS6o+w10Mtw1STvn378vHHHxOJROjfvz9vvvlm4Bm++uorhg4dyltvvbVPgSUrK4t//vOf\n3/p5LMNIVS/syV+SJNVipaXwj3/Az34GGzfufz0SgauvhnvugdTvtsA/f/58zj77bPLz80kGfgn8\nH+K7s4SpCPgj8Jtd36elpfHaa6/Ro0ePcIOpRirYWcAznzxDdm42byx9gxgV/9qjQWIDBh0ziKz0\nLM496lySE8P+b7wkSZIkSVLtF/Z6qMckVZPVq1fv+f7SSy8NJcOhhx7Ka6+9xuWXX76nvBKLxcjO\nzuauu+4KJZMkSZKkg5SQAKNHw6JFcNll+1+PxWDChPjRSdFo/Odv4cMPP+S0004jPz+f7sR3Yvk5\n4RdhIJ7hTuKZugP5+fmcdtppfPjhh+EGU43UtEFTsvpk8e+sf7Pi1hX84cw/0P3Q7uWO31myk6cW\nPMWgxweRdm8aN798M7PzZ3sklyRJkiRJUi3mzjDVpFmzZhQWFhKJRJg9ezbHHXdcqHl+9atf8Zvf\n/GafXV3uv/9+rr/++krvdWcYqeqF3YSUJEl1yMyZcO21sGBB2dcHDIDx46F7+WWADz/8kDPPPJMt\nW7ZwAvAy0Ko6slaB9cB5wIfE/931+uuvc8IJJ4ScSjVdLBbjo1UfkZ2bzeR5k/lq61eV3tP90O5k\n9ckiIz2Dds3bBZBSkiRJkiSp7gh7PdQyTDVJTk6mpKSESCTCunXraNmyZdiRePjhh7n22mspLS0l\nFouRkJDAww8/zI9//OMK77MMI1W9sCd/SZJUxxQVwX33wa9/DVu37n89ORluvx3uvBMaN97n0vz5\n8znttNPYsGEDpwPTgWaBhD5wW4AfATOBli1b8vbbb3tkkr61opIiXln8Ctl52Ty/6Hl2luyscHyE\nCD/o/AOy+mRxcfeLadqgaUBJJUmSJEmSaq+w10Mtw1STFi1asGXLFiKRCEVFRSQk1IwTqZ577jlG\njBjBjh07iMViJCYmMmnSJIYNG1buPZZhpKoX9uQvSZLqqOXL4aab4Pnny77eqRP89a/wox8BsGrV\nKvr160d+fj4nAv+m5hdhdtsCnEl8h5i0tDRmz55NmzZtQk6l2mbjto08Of9JsvOymfXFrErHN05u\nzCXdLyGrTxZndDqDxITEAFJKkiRJkiTVPmGvh1qGqSbdunXj008/JRKJsH79eg455JCwI+3x1ltv\nceGFF7JlyxZisRjJyclMnTqVQYMGlTneMoxU9cKe/CVJUh33/PNw442wYkXZ1y+6iNhf/sKFN97I\n9OnT6Q68Tc09Gqk864H+wCfAoEGDmDZtGpFIJORUqq0Wb1hMNDdKNC/K0k1LKx3ftllbMtIzyOqT\nRY/D3JlIkiRJkiRpb2Gvh1qGqSaDBg3ihRdeIBKJMG/ePLp37x52pH3k5uZy3nnnsWbNGmKxGCkp\nKTz//POcddZZ+421DCNVvbAnf0mSVA8UFsLdd8PYsVBcvN/lnJQUMnfsIBmYA/QOPGDVmAv0BYqA\naDRKRkZGyIlU28ViMd794l0e+89jPLngSb7e8XWl9/Rt05esPlkM7zWcw5scXul4SZIkSZKkui7s\n9dCacXZPHXTKKafs+f5///d/Q0xStj59+vDuu+/SpUsXIpEIO3bsYPDgwcycOTPsaJIkSZKqQpMm\n8Ic/wH/+A6edts+lVcBNO3YA8EtqbxEG4tl/sev7m266iVWrVoUZR3VAJBLh+x2+z8RBE1k9ZjVP\nDHmCC7peQGKk/COR5qyaw82v3Ezbe9syaMogps6fyvbi7QGmliRJkiRJ0t4sw1STc889d8/3L774\nYohJyte5c2dmzZrF8ccfD8DWrVsZOHAgH3zwQcjJJEmSJFWZnj3hzTfh0Ufh0EOJAVcDG4nvqPKz\nMLNVkZ8BxwMbN27kmmuuwQ1QVVUaJTdiWM9hvDDyBVbetpL7zrmP41ofV+744tJipn86nWFPDaP1\nn1tz9fSreXfFu/53UpIkSZIkKWAek1SNunfvzqJFi0hKSmLJkiW0b98+7EhlKiwsZPDgwfz73/8G\n4JBDDmHGjBn06dMH8JgkqTqEvS2YJEmqpzZsYPLQoYx64w0aED8eqVfYmarI3sclTZo0iZEjR4ac\nSHXZ3DVzieZFycnLYVVB5bsRdUntQmZ6Jpl9Mjky9cgAEkqSJEmSJIUr7PVQd4apRjfddBMAJSUl\n/OxnFX/ecvv27fz85z/nyCOPpFGjRhxzzDH8/ve/D6Rs0qRJE1588UUuvfRSADZt2sRZZ53FwoUL\nq/21JUmSJAUnlprK3fn5ANxF3SnCQPy4pLt2ff/b3/7WnThUrXof0Zs/nfUnvrj1C/6V8S9G9R5F\no6RG5Y5fsnEJv3rrV3S5vwv9/9mfiXMmsmn7pgATS5IkSZIk1S/uDFONduzYQffu3Vm2bBmRSISn\nn36aiy66aL9xRUVFnHnmmbz77r5bJ0ciEc477zymT59OJBIJJPMtt9zC/fffD0BaWhpvvfUWXbt2\ndWcYqYqF3YSUJEn104wZM/jBD35AUyAfaBZ2oCr2NdAWKCD+XgcMGBBuINUrW3Zs4elPniY7N5s3\nl71JjIp/3ZKSmMKF3S4kKz2Ls7ucTXJickBJJUmSJEmSql/Y66GWYarZc889x+DBg4H4DixvvfUW\nxx9//D5j/vjHP/I///M/+xVedhdO7rvvvj27zATh97//PT//+c+JRCK0a9eOL774wjKMVMXCnvwl\nSVL9NGTIEJ5++mmuAx4IO0w1uQ54kPh7nTp1athxVE+t2LyCSXmTeCz3MRatX1Tp+MObHM7IXiPJ\n6pPFsa2PDewDMdUlFouxdevWsGOEqnHjxrX+71GSJEmSpIMR9nqoZZgAXHXVVTz88MMAtGjRgqlT\np/LDH/5wz/VevXqxYMGCMn9JEovF6N27N7m5uYHlBfjnP//J1Vdfvafs8s0dayzDSAcn7MlfkiTV\nPytXrqRjx46UlJQwl7p1RNLe5gLpQGJiIitWrCAtLS3sSKrHYrEYs/Nnk52bzZR5U1i/bX2l9/Q6\nvBeZ6ZmM6j2Kts3bBpCy6hUWFtK0adOwY4SqoKCAJk2ahB1DkiRJkqTQhL0emhDIq9RzDzzwAP37\n9wdg8+bNnH/++dx+++1s27YNgMWLF+8pwsRisf3Otv/ss8+CDQxcfvnlPPPMMzRs2BDATzNJkiRJ\ntdzEiRMpKSmhP3W3CAPQG/g+UFJSwsSJE8OOo3ouEolwQtsT+Ov5fyV/TD7TLp3Gxd0vJjmh/COR\n5q2dx8/+/TPa39ees6Nnk5OXQ+HOwgBTS5IkSZIk1X7uDBOQgoICzjvvPN599909xZJWrVoxevRo\nxo4dS1FREcA+RxHt/rlly5Z89dVXoeSeNWsWAwcOZNOmTXvyuDOMdPDCbkJKkqT6JRaL0a5dO/Lz\n85kCDA87UDWbAowE2rZtu+fYV6kmWb91PU/Of5LsvGze+/K9Ssc3SW7CkB5DyOqTxYBOA0iI1OzP\nNu2zM8ztQINQ4wRnJ/Dn+LfuDCNJkiRJqu/CXg+1DBOgHTt2cNVVVxGNRvcplAD77Qaz9/ULL7yQ\nZ555JozIACxYsIBzzjmH/Pz8PY9ZhpEOTtiTvyRJql8+//xzunTpQgPgayAl7EDVbAfQDCgi/t47\nd+4cciKpfJ+u/5RobpRoXpTlm5dXOr598/ZkpGeQmZ5J98O6B5Dwu9unDHMH9asMc0/8W8swkiRJ\nkqT6Luz10Jr9UaI6JiUlhccee4wnn3yStm3j537vvRPM3l+7JScnc+edd4aSd7cePXowa9Ysjjnm\nmP1KO5IkSZJqvjlz5gCQTt0vwkD8Pabv+n73e5dqqqNbHc3dP7ibz2/+nDcve5Mrjr2CZg2alTv+\ni6+/4Pfv/J4e43tw4sQT+dsHf+OrreHsJitJkiRJklRTWYpgii4AACAASURBVIYJwZAhQ1i8eDHj\nx4/n+OOPJxaLlfnVuHFjcnJyOP7448OOTPv27Xn33Xc5+eSTLcRIkiRJtczuQkjfkHMEafd7tQyj\n2iIhksDpnU7nHxf+g9W3r2bKJVM476jzKjwS6cP8D7nx5RtpM7YNFz5+IU8veJodxTsCTC1JkiRJ\nklQzJYUdoL5q0KAB11xzDddccw35+fm88847fPLJJ6xdu5bi4mKOOuooMjIyaNOmTdhR90hNTeX1\n11/nN7/5DatXrw47jiRJkqRvafbs2UD9LMPsfu9SbdI4uTHDew1neK/hrNqyiinzppCdm03umtwy\nxxeXFvP8oud5ftHzpDZM5dKel5LVJ4uT2528z+6zkiRJkiRJ9UUk5jYfkhS4sM/IkyRJ9UcsFqNV\nq1Zs3LiROUD4+04GYw7Qj3ipf/369RYCVCfkrs4lmhdl0txJrC6o/EMqR7U8iqz0LDLSM+ic2jmA\nhHGFhYU0bdo0/sMdQIPAXjpcO4F74t8WFBTQpEmTUONIkiRJkhSmsNdDPSZJkiRJkuqw5cuXs3Hj\nRhoAvcIOE6BeQDKwceNGli9fHnYcqUr0ad2HP5/9Z7649QteHvUyI3qNoGFSw3LHL96wmF+8+QuO\nvP9ITn/0dP7x0T/YvH1zgIklSZIkSZLCYRlGkiRJkuqwtWvXAtCG+rM5A0AK8fcM8U+hSHVJUkIS\n5x51LpMvmcya29fwyKBHGNBpQIX3zFw+k59M/wmtx7ZmxNMjePmzlykuLQ4msCRJkiRJUsAsw0iS\nJElSHbZt2zYAGoWcIwy73/PuPwOpLmqe0pzLj7ucGZfNYOnNS/ntGb+la8uu5Y7fXrydx+c9zvmT\nz6fdve0Y868x5K7ODTCxJEmSJElS9bMMI0mSJEl12Pbt2wEo/yCVumv3e7YMo/qi0yGd+PlpP2fR\nDYt478r3uK7fdaQ2TC13/JrCNdz73r0c+9CxpD+Yzp9n/Zn8LfkBJpYkSZIkSaoelmEkSZIkSZLq\nkEgkwkntTuKBCx5g1ZhVPDPsGS7qdhHJCcnl3jN37Vx++tpPaX9fe87NOZfJcyeztWhrgKklSZIk\nSZKqTlLYASRJkiRJ1adhw/j+KNtDzhGG3e+5UaP6eEiUFJeSlMLg7oMZ3H0wX239iifmPUF2XjYf\nrPygzPGlsVL+teRf/GvJv2jaoClDewwlq08Wp3U8jYSIn6mSJEmSJEm1g7/FkCRJkqQ6bHcRpD4e\nFLT7PVuGkeIObXwo1594Pe//5H0+uf4T7vj+HbRv3r7c8QU7C/jnf/7JGY+dQedxnbnzjTtZ9NWi\nABNLkiRJkiQdGMswkiRJklSHHX744QCsAnaGGyVQO4i/Z4DDDjsszChSjdTt0G787szfseyWZcy4\nbAaXH3s5TRs0LXf8is0r+N3bv6PbA904+eGTeeCDB1i/dX2AiSVJkiRJkr49yzCSJEmSVId17NiR\n1NRUdgLzwg4ToHlAEZCamkrHjh3DjiPVWAmRBAZ0GsAjFz7CmtvXMOniSZzT5ZwKj0R6f+X73PDy\nDbQZ24bBTwzm2U+eZWdJfarbSZIkSZKkmi4p7AA6eC1btqx0TCQSYf16P7El1WSFhYU0btx4v8eb\nNGkSQhpJklRXRCIRjj/+eF5//XXmAMeHHSggc3b9Z9++fYlEIqFmkWqLxsmNGdl7JCN7jyR/Sz6T\n507msdzHmLe27CpdUWkR0xZOY9rCabRs1JLhPYeT1SeLnof0DDi5JEmSJEkKU2Fh4bd6LEiWYeqA\nTZs2EYlEiMVi5Y7xl79Szde5c+cyH6/of9uSJEnfRr9+/faUYUaHHSYgu8sw/fr1CzWHVFulNUvj\n9u/dzphTxpC7Jpfs3GwmzZ3E2sK1ZY7fsG0D42ePZ/zs8RzV9KiA00qSJEmSpDA1bVr+0cth8Zik\nOiQSiZT5JUmSJKl+69u3L/Dfgkh9sPfOMJIOXCQS4djWx3LvOfey8raVvDjyRS7teSkNkxqWe8/i\nDYsDTChJkiRJkrQ/d4aRpBpi6dKlHHbYYWHHkCRJddDuQkgesANICTVN9dtB/L2CZRipKiUlJHF+\n1/M5v+v5bN6+macWPEV2XjYzl88MO5okSZIkSQpRQUHBfo+tW7eu3JMxgmAZpg4p6ygVd4aRao8m\nTZrQpEmTsGNIkqQ6qHPnzqSlpZGfn8+zwPCwA1WzZ4AioG3btnTq1CnkNFLd1KJhC648/kquPP5K\nlm5cSk5eDtl52e4KI0mSJElSPVTWGufWrVtDSPJfHpMkSZIkSXVcJBJh9OjRAIwPOUsQdr/H0Vdc\n4QcEpAB0Tu3MXaffxac3fMqsK2Zx5XFXhh1JkiRJkiTVc5ZhJEmSJKkeGD16NImJibwNzA07TDWa\nC7wDJAKjH3oIfv972LAh5FRS/RCJRDil/SmMO29c2FEkSZIkSVI9ZxlGkiRJkuqBtm3bctFFFwEw\nIeQs1enBXf85GEhbuxbuuAPat4cbboAlS8KMJkmSJEmSJCkglmEkSZIkqZ64/vrrAcgGtoQbpVp8\nDUR3fX/93he2boUHHoCuXeHii+HddyEWCz6gJEmSJEmSpEBYhpEkSZKkemLAgAF069aNAqAuHmIy\nDigAujduzOllDYjF4Nln4fvfh1NOgalTobg42JCSJEmSJEmSqp1lGEmSJEmqJyKRCHfddRcAvwHm\nhRunSs0F7t71/Z0TJxL58EMYMQISE8u+4f33Ydiw+G4xf/kLbKmLe+VIkiRJkiRJ9ZNlGEmSJEmq\nR0aMGMHAgQMpAn4MFIWcpyrs/V4GDRrEiBEjoF8/mDwZPv8cxoyBZs3KvnnZMrj1VmjfHv7P/4Ev\nvwwstyRJkiRJkqTqYRlGkiRJkuqRSCTCQw89RGpqKnOAP4UdqAr8EfgISE1NZcKECUQikf9e7NAB\n/vzneMll7Nj4z2XZvBn+3/+Dzp0hIwM+/jiI6JIkSZIkSZKqgWUYSZIkSapn2rRpw/333w/Ar4kf\nMVRb5RE/8gng/vvvp02bNmUPbN4cbrsNliyBKVPiO8eUpbgYJk2C44+HM86AF16A0tLqiC5JkiRJ\nkiSpmliGkSRJkqR6aNSoUXuOS7oUWB92oAOwHhjOf49HGjVqVOU3JSXB8OHwwQcwcyZceCHsvZPM\n3t58EwYOhJ494e9/h23bqi68JEmSJEmSpGpjGUaSJEmS6qHdxyWlpaXxCXAesCXsUN/BFuKZPwHS\n0tL2Px6pMpEI9O8P06bBwoVw7bXQqFHZYxcuhKuvho4d4Ve/grVrD/4NSJIkSZIkSao2lmEkSZIk\nqZ5q06YNr776Ki1btuRDYCC1oxCzBfgR8CHQqlUrXnvttfKPR/o2jj4axo+HFSvg7rvhiCPKHrdu\nHfz619ChA1x1FXzyyYG/piRJkiRJkqRqYxlGkiRJkuqxnj178sorr9CsWTPeAs6kZh+Z9BXwA2Am\n0KxZM15++WV69OhRNU9+6KFw552wfDk88kj8eKSy7NgBEydCjx5wwQXwxhsQi1VNBkmSJEmSJEkH\nzTKMJEmSJNVzJ5xwAq+//vqeHWL6A3PDDlWGPOA0YDbxHWHeeOMNTjjhhKp/oZQUuPxymDsXXnkF\nzjqr/LEvvQRnngl9+0JODhQVVX0eSZIkSZIkSd+JZRhJkiRJEieccAJvv/02aWlpfAL0BX4L1IRq\nRxFwN9AP+ARIS0tj5syZ9OvXr3pfOBKBc86BV1+F3Fy47DJITi577McfQ2YmdO4Mf/oTbNpUvdkk\nSZIkSZIklcsyjCRJkiQJgB49ejB79mwGDRpEEXAXcDIwL8RMc3dl+AXxUsygQYOYPXt21R2N9G2l\np8Ojj8KyZXDHHZCaWva4lSvhZz+D9u3hlltg6dIgU0qSJEmSJEnCMowkSZIkaS9t2rRh2rRpRKNR\nUlNT+Qg4nvjOLF8HmOPrXa/ZF/gISE1NJScnh2nTptGmTZsAk3xDWhr87nfwxRfwt79Bly5ljyso\ngHHj4KijYOhQeO+9YHNKkiRJkiRJ9ZhlGEmSJEnSPiKRCBkZGcyfP5+BAwdSRHxnlrbAdcR3a6ku\nc4Frd73W3rvBzJ8/n1GjRhGJRKrx1b+DJk3g+uth0SJ45hk49dSyx5WWwlNPwSmnxMc88wyUlASb\nVZIkSZIkSapnLMNIkiRJksrUpk0bnnvuOSZNmkT37t0pAB4E0oHTgCnAjip4nR27nqv/rueeABQA\n3bt3Z9KkSeHvBlORxEQYPBjeeSe++8vQoZBQzj+1Z82CSy6BY46J7ypTWBhsVkmSJEmSJKmesAwj\nSZIkSSpXJBJh5MiRzJ8/nzfeeIMhQ4aQmJjI28BIoDnQD7ga+DswB9hZwfPt3DXm77vu6Qc02/Vc\n7wBJSUkMHTqUGTNmMH/+fEaOHFlzdoOpzEknwZNPwuLFcMst0LRp2eOWLIEbb4T27eGOOyA/P9ic\nkqrdoq8WhR1BkiRJkqR6LRKLxWJhh9DBSUhIIBKJUNZf5e7HI5EIJW7FLdUY69at4/DDD9/nsbVr\n13LYYYeFlEiSJOnby8/PZ+LEiUycOJGVK1fudz0ZaAM0Ahruemw7sA1YRfzoo29q27Yto0ePZvTo\n0aSlpVVT8oBt2gQTJ8K4cVDGn9MeyckwciTcdhukpweXT6omhYWFNN1dBrsDaBBqnODsBO7Z9f0d\n0K9TPzLTMxneaziHNzm8ojslSZIkSapzwl4PtQxTB1iGkWqfsCd/SZKkqhCLxVi2bBlz5sxh9uzZ\nzJkzhzlz5rBx48YK70tNTaVfv3707dt3z1enTp1qzw4w31VRUXzHmLFj4eOPKx77wx/CmDFwzjlQ\nV/88VOdZhmGf950YSeSco84hMz2TQccMonFy45ACSpIkSZIUnLDXQy3D1AGWYaTaJ+zJX5IkqbrE\nYjGWL1/OunXr2LZtG9u2bQOgUaNGNGrUiMMOO4yOHTvW3eJLRWIxePPNeCnmxRcrHtuzZ3ynmFGj\nICUlkHhSVbEMQ7nvu1mDZlzS4xIy0zM5vePpJCYkBhhQkiRJkqTghL0eahmmDrAMI9U+YU/+kiRJ\nCtnChXDffZCdDdu3lz/uiCPghhvgmmvg0EODyycdBMswfKv33bZZW0b1HkVmn0x6Hd6rmsNJkiRJ\nkhSssNdDEwJ5FUmSJEmS9F/dusFDD8GKFfCrX0F5vwRYswbuugs6dIBrr4VPPw00pqQDM+3SaYzq\nParCI5FWblnJn2b9id4P9ubYCccydtZYVm1ZFWBKSZIkSZLqLneGqQPcGUaqfcJuQkqSJKmG2bYN\ncnLg3nvju8aUJxKBgQNhzBjo3z/+s1TDuDMMFBQU0KRJEwp2FvDsJ88SzYvy+tLXKY2VVvgUCZEE\nzux8JpnpmQzuPpimDZpWf25JkiRJkqpB2OuhlmHqAMswUu0T9uQvSZKkGqq0FF5+GcaOhRkzKh7b\nr1+8FHPJJZCcHEw+6VuwDPPfMsze8rfkM2XuFKJ5UXLX5Fb6dI2TG3Nx94vJ6J3BmUeeSVJCUjWE\nliRJkiSpeoS9HmoZpg6wDCPVPmFP/pIkSaoFPv44vlPM449DcXH54zp0gJtugtGjoXnz4PJJ5bAM\nU3YZZm9z18wlJy+HSXMnsXLLykqfunXT1ozoNYLM9EyObX0sEXeFkiRJkiTVcGGvh1qGqQMsw0i1\nT9iTvyRJkmqRL7+Ev/4VHnoINm8uf1yzZvFCzM03xwsyUkgsw1RehtmtpLSEN5e9Sc7cHJ5a8BQF\nOwsqvafnYT3JSM9gVO9RtG/R/iBDS5IkSZJUPcJeD7UMUwdYhpFqn7Anf0mSJNVCW7bAI4/AX/4C\ny5aVPy4xEYYOjR+h1K9fYPGk3SzDfPsyzN62Fm3luYXPkTM3h38t/hclsYp/jxMhwoBOA8hIz2BI\njyE0T3FnKEmSJElSzRH2eqhlmDrAMoxU+4Q9+UuSJKkWKy6GadNg7Fh4772Kx552WrwU86MfQUJC\nMPlU71mGObAyzN7WFKzh8XmPkzM3h9n5sysd3zCpIRcecyEZ6Rmc0+UckhOTD/i1JUmSJEmqCmGv\nh1qGqQMsw0i1T9iTvyRJkuqIWbPipZhnn4WK/nnftSvceitcdhk0bhxcPtVLlmEOvgyzt0/WfUJO\nXg45c3NYsXlFpeMPa3wYw3sNJyM9gxPSTiASiVRJDkmSJEmSvouw10Mtw9QBlmGk2ifsyV+SJEl1\nzJIl8eOTHnkEtm4tf1yrVnDttXD99dC6dXD5VK9YhqnaMsxupbFS3lnxDtHcKFMXTGXzjs2V3nN0\nq6PJTM9kVO9RdE7tXKV5JEmSJEmqSNjroZZh6gDLMFLtE/bkL0mSpDpqwwb4+9/h/vth1aryxzVo\nABkZcNtt0LNncPlUL1iGqZ4yzN62F2/nhU9fIJoX5aXPXqK4tLjSe77f4ftkpmcytMdQUhulVls2\nSZIkSZIg/PVQyzB1gGUYqfYJe/KXJElSHbdzJzz+ePwIpby8iseee268FPPDH4LHqagKWIap/jLM\n3r7a+hVPzn+SaF6U9758r9LxDRIb8KOjf0RmeibnHXUeKUkpAaSUJEmSJNU3Ya+HWoapAyzDSLVP\n2JO/JEmS6olYDF5/PV6KeeWVisemp8dLMSNGxHeOkQ6QZZhgyzB7W7xhMTl5OeTk5bBk45JKx6c2\nTOXSnpeS2SeTU9qdQsRCnCRJkiSpioS9HmoZpg6wDCPVPmFP/pIkSaqH5s+He++FnJz4zjHladMG\nbrwRrr4aWrYMLp/qDMsw4ZVhdovFYrz35XtE86I8Mf8JNmzbUOk9R6YeSUbvDDLSM+jaqmsAKSVJ\nkiRJdVnY66GWYeoAyzBS7RP25C9JkqR6bPVqeOABePBBWL++/HGNG8MVV8Att0CXLsHlU61nGSb8\nMszedpbs5OXPXiaaF2X6p9PZWVJBGW6Xk9qeRGZ6Jpf2upRDGx8aQEpJkiRJUl0T9nqoZZg6wDKM\nVPuEPflLkiRJbN0K2dnx3WI++6z8cZEIDB4cP0Lpe9+L/yxVwDJMzSrD7G3jto08teAponlR3l7x\ndqXjkxKSOO+o88hMz2TgMQNpmNQwgJSSJEmSpLog7PXQ0MswV1xxRZgvXyc8+uijlmGkWibsyV+S\nJEnao7QUXngBxo6FmTMrHnvSSTBmTLwck5QUTD7VOvuUYW6nfpVh/hz/tqaWYfa2dONSJs+dTDQv\nyqL1iyod3zylOUN7DCUzPZP+HfuTEEkIIKUkSZIkqbYKez009DLM7l1NdOAq+iu0DCPVTGFP/pIk\nSVKZZs+Ol2KmToWK/g3ZqVP8+KQrroBmzQKLp9phnzJMPVUbyjC7xWIxZufPJicvhynzprBu67pK\n7+nQogOjeo8iMz2T7od1DyClJEmSJKm2CXs9tMaUYTytqXpYhpFqprAnf0mSJKlCK1bAuHEwcSJs\n2VL+uBYt4Kqr4KaboF274PKpRrMMU7vKMHsrKinitc9fI5oXZdrCaWwv3l7pPX3b9CUjPYMRvUZw\nRNMjAkgpSZIkSaoNwl4PrTFlGB04d4aRap+wJ39JkiTpW/n6a3j44XgxZsWK8sclJcGll8aPUDru\nuODyqUaKxWJs3bo17Bihaty4ca3/fdfXO77m6QVPkzM3hxlLZxCj4l8hJkYSObvL2WSkZ3BRt4to\nnNw4oKSSJEmSpJoo7PXQGlOGcWeY6mEZRqqZwp78JUmSpO+kuBieeip+hNLs2RWPPeOMeCnmvPMg\nISGYfJKq1Rebv2Dy3MlE86LMXze/0vFNGzTl4u4Xk5meyRmdziAxITGAlJIkSZKkmiTs9VDLMHWc\nZRipZgp78pckSZIOSCwGb78dL8VMnx7/uTzdusFtt0FmJjRsGFxGSdUmFouRuyaXaG6UyfMms7pg\ndaX3pDVLY1TvUWSkZ5B+RHoAKSVJkiRJNUHY66GWYeo4yzBSzRT25C9JkiQdtE8/hb/8BR59FLZt\nK3/cYYfB9dfDtdfCN/4/sKTaq6S0hNeXvk5OXg7PfPIMhUWFld6TfkQ6memZjOg1grbN2waQUpIk\nSZIUlrDXQy3D1HGWYaSaKezJX5IkSaoyX30FEybA3/4Ga9aUPy4lBbKy4rvFdOsWXD5J1a5gZwHT\nFk4jmhfl35//m9JYaYXjI0Q488gzyUzPZHC3wTRLaRZQUkmSJElSUMJeD7UMU8dZhpFqprAnf0mS\nJKnKbd8OkyfDvffC/PkVj73gAhgzBgYMgEgkkHiSgrFqyyqmzJtCNC/Kf1b/p9LxjZIaMbj7YDJ6\nZ3BWl7NISkgKIKUkSZIkqbqFvR5qGaaOswwj1UxhT/6SJElStYnF4F//ipdiXnut4rHHHRcvxQwb\nBsnJweSTFJh5a+eRk5fDpLmT+PLrLysdf0STIxjRawSZfTI5rvVxRCzLSZIkSVKtFfZ6aI0pw6j6\nWIaRap6wJ39JkiQpEHl58VLM5MlQVFT+uHbt4KabYPRoOOSQ4PJJCkRprJS3lr1FNC/KUwueYsvO\nLZXe0/3Q7mSmZzIqfRQdWnQIIKUkSZIkqSqFvR5aY8ow7gxTvSzDSDVL2JO/JEmSFKj8fPjb32DC\nBNi4sfxxTZvClVfCLbdAp06BxZMUnG1F23h+0fNE86K8svgVSmKV/77q9I6nk5meyZAeQ2jRsEUA\nKSVJkiRJByvs9dDQyzADBgxwZ5iAzJgxI+wIknYJe/KXJEmSQlFYCP/8J9x3H3z+efnjEhLgkkvi\nRyiddFJw+SQFam3hWp6Y9wTRvCgf5n9Y6fiUxBQGHTOIzPRMzjnqHBokNgggpSRJkiTpQIS9Hhp6\nGUaS6qOwJ39JkiQpVCUl8PzzMHYsvPtuxWNPPTVeihk0CBITg8knKXALv1rIpLxJ5MzNYdmmZZWO\nb9WoFcN7DSczPZMT257oh+0kSZIkqYYJez3UMowkhSDsyV+SJEmqMd5/P16KefppKC0tf1yXLvHj\nky6/HJo0CS6fpECVxkp5d8W75OTl8OSCJ9m0fVOl93Rt2ZWM9Awy0jM4MvXIAFJKkiRJkioT9nqo\nZRhJCkHYk78kSZJU4yxdCuPGwT/+AQUF5Y9LTYVrroEbb4Q2bYLLJylw24u389JnLxHNi/Lipy9S\nVFpU6T2ntj+VjPQMhvUcRstGLQNIKUmSJEkqS9jroZZhJCkEYU/+kiRJUo21aRP8/e9w//2wcmX5\n45KTYeRIuO02SE8PLp+kUKzfup6pC6YSzYsy64tZlY5vkNiAC7peQEZ6Bhd0vYCUpJQAUkqSJEmS\ndgt7PdQyjCSFIOzJX5IkSarxdu6EqVPjRyh9/HHFY886C8aMgbPPhkgkmHySQrNkwxJy8nLImZvD\n4g2LKx1/SMNDGNZjGJl9Mjm1/alEnCckSZIkqdqFvR5qGUaSQlDW5L906dIyJ/8mTZoEFUuSJEmq\neWIxePPNeCnmxRcrHtuzZ3ynmFGjIMVdIKS6LhaL8f7K98nJy+HxeY+zftv6Su/pfEhnMtIzyEjP\n4OhWRweQUpIkSZLqvsLCwv0eW7duHZ07d97nMcswklTHlVWGKY/TtCRJkrTLJ5/AffdBdjbs2FH+\nuCOOgBtugGuvhVatgssnKTQ7S3byyuJXyMnL4flFz7OjpII5YpcT255IZnoml/a8lMOauFOrJEmS\nJB2ob7sDp2UYSarjLMNIkiRJB2HtWhg/Hh54AL76qvxxjRrBj38Mt94KXbsGFk9SuDZt38RTC54i\nJy+Ht5a/Ven4pIQkzj3qXDLTMxl49EAaJTcKIKUkSZIk1R2WYSRJgMckSZIkSVVi2zbIyYF774WF\nC8sfF4nAwIEwZgz07x//WVK9sHzTcibNnUQ0L8rCryqYJ3ZpntKcId2HkJGewemdTichkhBASkmS\nJEmq3TwmSZIElF2GCXLylyRJkuqU0lJ4+WUYOxZmzKh4bL9+8VLMkCGQlBRMPkmhi8VifLTqI6J5\nUabMm8LawrWV3tO+eXtG9R5FZp9MehzWI4CUkiRJklR3hL0eahlGkkIQ9uQvSZIk1VkffRTfKeaJ\nJ6C4uPxxHTrAzTfDT34CzZsHl09S6IpLi3ltyWtE86JMWziNbcXbKr3nuNbHkZmeyYjeI2jdtHUA\nKSVJkiSpdgt7PdQyjCSFIOzJX5IkSarzvvwS/vpXeOgh2Ly5/HHNm8Po0XDTTfGCjKR6ZcuOLTzz\nyTNE86K8sfQNYlT8q9KESAJnHXkWmemZXNTtIpo08GhjSZIkSSpL2OuhlmEkKQRhT/6SJElSvbFl\nCzzyCPzlL7BsWfnjEhNh6ND4EUr9+gUWT1LNsfLrlUyeO5loXpS5a+dWOr5JchMu7n4xmemZ/KDz\nD0hMSAwgpSRJkiTVDmGvh1qGkaQQhD35S5IkSfVOcTE8+yyMHQvvv1/x2NNOi5difvQjSEgIJp+k\nGiV3dS45eTlMmjuJVQWrKh3fpmkbRvYeSWZ6Jn1a9wkgoSRJkiTVbGGvh1qGkaQQhD35S5IkSfVW\nLAazZsG998bLMRX9WuToo+HWWyErCxo3Di6jpBqjpLSEGctmEM2L8vSCpyksKqz0nt6H9yYjPYOR\nvUfSrnm7AFJKkiRJUs0T9nqoZRhJCkHYk78kSZIkYMmS+PFJjzwCW7eWP65VK7juOrj+ejjiiODy\nSapRCncW8tyi54jmRXl1yauUxkorHB8hwg86/4CM9Awu6X4JzVKaBZRUkiRJksIX9nqoZRhJCkHY\nk78kSZKkvWzYAA89BH/9K6yq4DiUlBTIyIjvFtOzZ3D5JNU4qwtW8/i8x4nmRflo1UeVjm+U1IgL\nu11IZnomZ3c5m6SEpABSSpIkSVJ4wl4PtQwjSSEIe/KXJEmSVIadO2HKFBg7FubOrXjsuefCmDFw\n5pkQiQSTT1KNtGDdAqK5USbNncQXX39R6fjDmxzO8J7DyeyTSd82fYk4h0iSJEmqg8JeD7UMI0kh\nCHvylyRJklSBWAxefz1einnllYrH9ukDt90Gw4dDsq8OigAAIABJREFUgwbB5JNUI5XGSpm5fCY5\neTlMXTCVr3d8Xek93Q7tRkbvDDLSM+h4SMcAUkqSJElSMMJeD7UMI0khCHvylyRJkvQtzZ8P994L\nOTnxnWPKk5YGN94IV18NqanB5ZNUI20r2sb0T6eTk5fDy4tfpri0uNJ7Tut4Ghm9MxjacyiHNDwk\ngJSSJEmSVH3CXg+1DCNJIQh78pckSZL0Ha1eDQ88AA8+COvXlz+ucWO44gq45Rbo0iW4fJJqrHWF\n63hi/hPk5OXw/sr3Kx2fkpjCwGMGktE7g/O6nkeDRHedkiRJklT7hL0eahlGkkIQ9uQvSZIk6QBt\n3QqPPQb33QeffVb+uEgEBg+GMWPge98LLp+kGu3T9Z+Sk5dDTl4OSzctrXR8q0atuLTnpWSkZ3By\nu5OJRCIBpJQkSZKkgxf2eqhlGEkKQdiTvyRJkqSDVFoKL7wAY8fCzJkVjz355Hgp5qKLICkpmHyS\narRYLMasL2YRzYvy5Pwn2bh9Y6X3HNXyKDJ6Z5CRnkGXlu48JUmSJKlmC3s91DKMJIUg7MlfkiRJ\nUhWaPTteipk6FUpKyh/XuTPcfHP8GKVmzYLLJ6lG21G8g5c+e4loXpQXPn2BotKiSu85pd0pZKZn\nMqznMFo1bhVASkmSJEn6bsJeD7UMI0khCHvylyRJklQNli+H+++HiRNhy5byx7VoAVdfDTfeCO3a\nBZdPUo23YdsGps6fSjQvyrtfvFvp+OSEZM7vej6Z6ZlccPQFNExqGEBKSZIkSapc2OuhlmEkKQRh\nT/6SJEmSqtHmzfDwwzBuHHzxRfnjkpJg+PD4EUrHHhtcPkm1wucbP2dS3iSieVE+2/BZpeMPaXgI\nQ3v8f/buPDjr8t77+DsJCTsaEJSgBFzZRQKxVkUqijuCC7LFaltckGDb06ed01PtTHWec57psbYE\nEUVbbdhcUBQtKlK0aK0JQSEGUKuASKKABGUJEJL7+eMnLi1JRHLfV0Ler5mMIXx/yefH2Gus18fr\nupqcfjmc2fVMkpOSE5BSkiRJkg4s9H6oZRhJCiD04i9JkiQpASorYd686AqlZctqnz333KgUc+GF\nkOwGtqQvxWIxCjYWMHPlTOaWzGXLri11PtPtyG6M6zuOnH45nHLUKQlIKUmSJElfF3o/1DKMJAUQ\nevGXJEmSlECxGCxdGpViFiyIfl2Tnj3hJz+BnBxo4XUnkr6usqqS5997nvyV+Ty15in2VO2p85mB\nGQPJ6ZfD6D6j6dS6U53zkiRJklQfQu+HWoaRpABCL/6SJEmSAnnnHbj7bnj4YaioqHmuY0e45RaY\nODH6XJL+xae7P2Xe6nnkr8znpXUv1TmfkpTCBSdeQE6/HIafMpxWqa3iH1KSJElSkxV6P9QyjCQF\nEHrxlyRJkhTYli0wfTpMnQoff1zzXIsWcO210WkxPXokLp+kRuWDTz9gdvFs8lfms2rzqjrn26a1\n5cpeV5LTL4ch3YaQnNT4r2eLxWLs2rUrdIygWrVqRVJSUugYkiRJEhB+P9QyjCQFEHrxlyRJktRA\n7N4Ns2fD734HJSW1z156Kfz0pzBkCLjZKekAYrEYb3z0Bvkr8pnz1hw+3llL2e5zx7Y7lrF9xpJz\nag59OvVJQMr42LlzJ23atAkdI6gdO3bQunXr0DEkSZIkIPx+qGUYSQog9OIvSZIkqYGJxeD55+Gu\nu+DFF2ufHTAgKsWMGgWpqYnJJ6nR2Ve9jxfff5GZK2fy5Jon2VVZ96kp/Y/pz/i+4xnbdyyd23ZO\nQMr6YxnGMowkSZIaltD7oZZhJCmA0Iu/JEmSpAZsxQq4++7oxJjKyprnjj0WJk+GCRPgyCMTl09S\no7N9z3aeXPMkM1fOZPHaxVTHqmudT05KZmj3oeT0y2Fkz5G0SWv4JZOvlWF+BqQFjZM4e4H/jT61\nDCNJkqSGJPR+qGUYSQog9OIvSZIkqREoLYWpU2H6dCgvr3muTRv40Y/g1luhW7eExWsoYrEY69ev\nZ9OmTVRUVLB7924AWrRoQcuWLenUqROZmZkkebWUBEDp9lJmF89m5sqZrPh4RZ3zrVJbcUXPKxjf\ndzxDjx9Ks+RmCUh58L5WhvklTasM83+jTy3DSJIkqSEJvR9qGUaSAgi9+EuSJElqRHbsgIceik6L\nef/9mueSk+Gqq6IrlE4/PWHxEikWi7F27VqKiopYtmwZRUVFLF++nPLaykJAeno6WVlZX/vo3r27\nBRk1ecUfF5O/Mp9ZxbMo3V5a5/wxbY5hbJ+xjO83nv7H9G9Q/xuyDGMZRpIkSQ1L6P1QyzCSFEDo\nxV+SJElSI1RVBU89BXfdBX//e+2zZ54J//EfMHw4pKQkJl8cbdy4kRkzZjBjxgxKS/99wz4N6Ay0\nBFp8/rXdQAVQRrRX/K8yMjKYMGECN9xwAxkZGXFKLjUOVdVVvLTuJfJX5jNv9Tx27N1R5zO9O/Ym\np18OY/uO5bgjjktAytpZhrEMI0mSpIYl9H6oZRhJCiD04i9JkiSpkfvHP+B3v4N586C6uua5E0+E\nH/8YrrsOGtkGaSwWY8mSJUybNo358+dTVVUFRPvb/YCsr3z0oeZ9773AW0DR5x/LgGK+LMikpKQw\ncuRIJk6cyJAhQxrUSRdSCLsqd/HUmqfIX5nPC++9QFWsqtb5JJIY0m0I4/uN56peV9GuebsEJf06\nyzCWYSRJktSwhN4PtQwjSQGEXvwlSZIkHSbWroU//AEeeAB27qx5rn17uOkmmDQJOndOXL5vIRaL\nMWfOHO644w7WrFnzxdcHAzcDI4Hmh/gz9gBPAtOApV/5eo8ePbjtttsYM2aMpRgJ+HjHx8x9ay75\nK/MpKiuqc75FsxZcfsrl5PTLYdgJw0hNSU1AyohlGMswkiRJalhC74dahpGkAEIv/pIkSZIOM9u2\nwf33w5QpsHFjzXOpqTB2bHSFUt++icv3DZWVlXHjjTeyYMECANoA1xKVYPrE6WcWA/cC+cD+i2GG\nDx/O9OnT6dzAi0NSIq3evJqZK2cys3gmH3z6QZ3zHVt1ZHSf0eT0y2FgxsC4F8wsw1iGkSRJUsMS\nej/UMowkBRB68ZckSZJ0mNq7Fx59FO66C958s/bZ88+PSjHDhkHgU1BisRgzZ85k8uTJbNu2jVTg\nduBWoG2CMmwH/gD8BqgE0tPTmTJlCuPGjfOUGOkrqmPVvPLBK+SvyOexVY/x6Z5P63zmlA6nML7f\neMb1HUf39O5xyWUZxjKMJEmSGpbQ+6GWYSQpgNCLvyRJkqTDXCwGL70UlWKefbb22T594Kc/jU6M\naX6oFxAdvH89DSYLeIj4nQRTl7eA64D9F8J4SoxUs937dvPMO8+QvzKfv7z7F/ZV76vzmbO6nkVO\nvxyu7nU16S3T6y2LZRjLMJIkSWpYQu+HWoaRpABCL/6SJEmSmpDVq+Huu+HPf4Y9e2qeO+YYmDQJ\nbroJOnRISLSSkhKGDRtGaWkpqcCvgZ8DqQn56TWrBP4fX54Sk5GRwaJFi+jVq1fYYFIDtmXXFh4t\neZT8lfn848N/1DmflpLGpSdfSk6/HC4+6WLSUg6tvWIZxjKMJEmSGpbQ+6GWYSQpgNCLvyRJkqQm\naNMmmDYN7rkHtmypea5lS7juOvjJT+Ckk+IWp7CwkAsvvJCtW7fSE3gE6Bu3n/btFAPXAKuBDh06\nsHDhQgYNGhQ4ldTwvfvJu8wqnkX+ynzeL3+/zvn2Ldszqtcock7N4Yxjz/hWV5NZhrEMI0mSpIYl\n9H6oZRhJCiD04i9JkiSpCauogJkz4Xe/gzVrap5LSoLhw+E//gPOOiv6dT0pLCxk6NChbN++nUHA\nQiAxZ9EcvE+Ai4BCoG3btixevNhCjPQNxWIxXvvwNWaunMkjJY+wtWJrnc8cn3484/uOZ3y/8ZzU\n4ZsX8izDWIaRJElSwxJ6P9QyjCQFEHrxlyRJkiSqq2HhQrjrLliypPbZQYOiUsyVV0KzZof0Y0tK\nShg8eDBbt27lHGAB0PaQvmP8bQcuBf4GtG/fnqVLl3plknSQ9lbt5S/v/oWZK2ey4J0F7K3aW+cz\np3c5nZx+OVzT5xqOanVUrbOWYSzDSJIkqWEJvR9qGUaSAgi9+EuSJEnS1yxfHp0U88gjsG9fzXOZ\nmXDrrfDDH0K7dgf9Y8rKyhg4cCClpaVkAy/S8Isw+20HhhKdEJORkcGyZcvo3Llz4FRS41ReUc5j\nqx5j5sqZLP1gaZ3zzZKbcdGJF5HTL4fLTrmMFs1a/NuMZRjLMJIkSWpYQu+HWoaRpABCL/6SJEmS\ndEAffghTpsD998Onn9Y8164dTJgQFWOOO+4bfetYLMbll1/OggUL6AkspeFejVSTT4CzgdXA8OHD\nmT9/Pkn1eH2U1BStLV/LrOJZ5K/M551P3qlz/ojmR3B1r6sZ3288Z2eeTXJSMmAZBizDSJIkqWEJ\nvR9qGUaSAgi9+EuSJElSrbZvhz/+EX7/e1i3rua5lBQYNSq6Qikrq9ZvOXPmTHJyckgFioC+9Zk3\ngYqBLKASyM/PZ/z48YETSYeHWCzGstJl5K/MZ+5bc9m8a3Odz2Qekcm4vuMY3288XVt1tQxjGUaS\nJEkNSOj9UMswkhRA6MVfkiRJkr6RffvgySfhrrvg9ddrnz3nnKgUc8klkJz8td8qKyujd+/elJeX\ncyfwX/FLnBB3ArcB6enplJSUeF2SVM8qqyp54b0XyF+Zz1NvP8XufbvrfKZ/+/68OfnN6BeWYSRJ\nkqTgQu+HJtc9IkmSJEmSpCapWTO4+mp47TV45RUYORJquhbo5Zdh+HDo2ROmT4ddu4DotIcbb7yR\n8vJysoBfJC593PwCGACUl5dz00034X9rJtWv1JRULjn5EuZeNZePf/Yxfxz+R77X7XskUfO1ZG9+\n9GYCE0qSJElq6CzDSJIkSZIkqXZJSXDmmfDEE/DOOzBpErRqdeDZd96Bm2+Grl3h9tuZM306CxYs\nIA14CGiWwNjxkkr0LqnA008/zZw5c8IGkg5j7Zq34/rTruev3/8r63+8nv8Z+j/07tg7dCxJkiRJ\nDZzXJElSAKGPBZMkSZKkQ7Z1K9x3H+TlQVnZAUdiQK+kJNbEYtwB/CqhAePvDuB2oGfPnpSUlJBU\n06k5kupVLBZjxccryF+Rz+y3ZvPRjo++dl2Q1yRJkiRJ4YXeD/VkGEmSJEmSJB289u3hP/8T1q6F\nhx6Cvn3/beQlYE0sRhvg1gTHS4RbgTbA6tWrefnll0PHkZqMpKQk+h/Tn7suuIsNP9nA8+OfZ3Sf\n0aFjSZIkSWpALMNIkiRJkiTp22veHL7/fVixAl54AS644Ivfuufzv14LtA0SLr7aATmff37PPffU\nNiopTpolN2PYCcN4YPgDoaNIkiRJakAsw0iSJEmSJOnQJSXB+efDc89BcTEbr7mG+Z//1s1Bg8XX\n/nd78sknKS0tDZpFkiRJkiRFLMNIkiRJkiSpfvXpw4wePagCzgb6hM4TR32Bs4CqqipmzJgROo4k\nSZIkScIyjCRJkiRJkupZLBb7ohgyMXCWRNj/jjNmzCAWiwXNIkmSJEmSLMNIkiRJkiSpnq1du5bS\n0lLSgJGhwyTAFUAqsHHjRtatWxc4jSRJkiRJsgwjSZIkSZKkelVUVARAP6B52CgJ0ZzoXeHLd5ck\nSZIkSeFYhpEkSZIkSVK92l8IyQqcI5H2v6tlGEmSJEmSwrMMI0mSJEmSpHq1bNkyoGmWYfa/uyRJ\nkiRJCscyjCRJkiRJkupNLBZj+fLlQNMswxQVFRGLxYJmkSRJkiSpqbMMI0mSJEmSpHqzfv16ysvL\nSQP6hA6TQH2AVKC8vJz169eHjiNJkiRJUpNmGUaSJEmSJEn1ZtOmTQB0BtLCRkmo5kTvDLB58+aQ\nUSRJkiRJavIsw0iSJEmSJKneVFRUANAycI4Q9r/z/j8DSZIkSZIUhmUYSZIkSZIk1Zvdu3cD0CJw\njhD2v7NlGEmSJEmSwrIMI0mSJEmSJEmSJEmSpMOGZRhJkiRJkiTVmxYtovNRdgfOEcL+d27Zsile\nEiVJkiRJUsNhGUaSJEmSJEn1Zn8RpCleFLT/nS3DSJIkSZIUlmUYSZIkSZIk1ZtOnToBUAbsDRsl\nofYQvTNAx44dQ0aRJEmSJKnJswwjSZIkSZKkepOZmUl6ejp7gbdCh0mgt4BKID09nczMzNBxJEmS\nJElq0izDSJIkSZIkqd4kJSUxYMAAAIoCZ0mk/e+alZVFUlJS0CySJEmSJDV1lmEkSZIkSZJUrwYO\nHAg0zTLM/neXJEmSJEnhWIaRJEmSJElSvcrKygKaZhlm/7tLUqK9UfZG6AiSJElSg2EZRpIkSZIk\nSfVqfyFkJbAnbJSE2EP0rgBZJ58cMoqkJuzsP53Ndx/8LnOK57C3am/oOJIkSVJQlmEkSZIkSZJU\nr7p3705GRgZ7gSdDh0mAJ4BKoAvQLTsbRo2C+fNhT1OoAklqSF778DXGPjGWbr/vxm9e/g0f7fgo\ndCRJkiQpCMswkiRJkiRJqldJSUlMmDABgGmBsyTC/necACTt2QOPPQYjR8Ixx8CECfDSS1BdHTCh\npKambEcZv37p13S9uyvjnxjP6x++HjqSJEmSlFCWYSRJkiRJklTvJkyYQEpKCkuB4tBh4qgYeAVI\nISrDfM22bfDAA/C970HXrvB//g+88QbEYgnPKalpqqyuZFbxLL7z4HfInpFN/op89uzz1CpJkiQd\n/izDSJIkSZIkqd516dKFESNGADA9cJZ4uvfzv47s3JmMZs1qHty4Ef73f2HAAOjdG+68E95/PyEZ\nJTUND494mLO6nlXj7xeWFnLt/Gvp+vuu3L7kdkq3lyYwnSRJkpRYlmEkSZIkSZIUF7fccgsAfwa2\nh40SF58B+Z9/fsvs2fDRRzB9OgweXPuDq1fDbbfBCSfAGWfA1KmwaVO840o6zF3Z60qWXr+U5Tcs\n5wf9f0CLZi0OOLdp5ybu+NsdZP4+k9GPj+bVD14l5olVkiRJOswkxfynXElKuM2bN9OpU6evfW3T\npk107NgxUCJJkiRJqn+xWIxevXqxZs0a7gB+FTpQPbsDuB3o2bMnJSUlJCUlffmbH3wAc+fCrFmw\ncmXd3ywlBc4/H8aOhREjoG3beMWWDks7d+6kTZs20S9+CaQFjZM4e4H/G326Y8cOWrdu/cVvfbLr\nEx5Y/gD3FN7Dhs821PptTjvmNCafPpnRfUbXWKKRJEmSDkbo/VBPhpEkSZIkSVJcJCUlcdtttwHw\nG+CtsHHqVTFRGQbgV7/61deLMABdu8LPfw4rVkBxMfznf0JmZs3fsKoKnnsOrr0Wjj4aRo+GBQtg\n7954vYKkw1yHVh34xVm/4P1b32feqHkM6Takxtk3PnqD65+6nuPuPo5fLv4lGz6tvTwjSZIkNXSe\nDCNJAYRuQkqSJElSosRiMS6//HIWLFhAFvAakBo61CGqBL4DLAeGDx/O/Pnz/70McyCxGPz97zB7\nNjzyCHzySd3PtG8PV18dnRhz1lmQ7H/bJh2IJ8P8+8kwB1L8cTFTC6aSvzKfin0VNc6lJKUwoscI\ncrNzGZw5+JutcZIkSdJXhN4PtQwjSQGEXvwlSZIkKZHKysro3bs35eXl3An8V+hAh+hO4DYgPT2d\nkpISOnfufPDfpLISFi2KrlGaPx927ar7meOOgzFjYNw46NsX3JyWvmAZ5puVYfYrryjnj2/8kXsK\n72HttrW1zvY7uh+TBk1iXL9xtEptdYiBJUmS1FSE3g+1DCNJAYRe/CVJkiQp0WbOnElOTg6pQBHQ\nN3Sgb2klMJDodJj8/HzGjx9/6N9050546qnoxJjnn4d9++p+pnfvqBQzZgx063boGaRGzjLMwZVh\n9quqruLZd58lryCPF99/sdbZ9Bbp/GjAj5g4aCLdjuz27fJKkiSpyQi9H2oZRpICCL34S5IkSVKi\nffW6pJ7AUqBD6FAH6RPgbGA1B3k90sHYvBkefzw6MebVV7/ZM2eeGV2jNGoUHHVU/eaRGgnLMN+u\nDPNVqzevZmrBVB5e8TA7K3fWOJeclMxlJ19GbnYu53Y/1yuUJEmSdECh90Mtw0hSAKEXf0mSJEkK\noaysjIEDB1JaWsogYDHQNnSob2g7MBQoBDIyMli2bNm3ux7pYKxbB3PmRMWYkpK655s1g2HDohNj\nLr8cDmFTXGpsLMMcehlmv093f8pDbz7E1MKp/HPrP2ud7dWxF5MGTSLn1BzapLU55J8tSZKkw0fo\n/VDLMJIUQOjFX5IkSZJCKSkpYfDgwWzdupVzgAU0/ELMduBS4G9Ahw4d+Nvf/kavXr0SFyAWg+Li\nqBQzZw5s2FD3M61awYgR0Ykxw4ZBamr8c0oBWYapvzLMftWxap7753PkFeTx3D+fq3X2iOZH8IPT\nfsAtg27hhPYn1FsGSZIkNV6h90Mtw0hSAKEXf0mSJEkKqbCwkKFDh7J9+3YGAQtpuFcmbQEuApYB\nbdu2ZfHixQwaNChcoOpqeOUVmD0bHnsMtm6t+5kOHaIrlMaNgzPOgOTk+OeUEswyTP2XYb7qnU/e\n4Z6Ce/jTm39i+97tNc4lkcTFJ11MbnYu559wPslJrjeSJElNVej9UMswkhRA6MVfkiRJkkIrLCzk\nwgsvZOvWrfQEHgH6hg71L1YCo4HVRCfCPPfccwwcODBwqq/Yuxeefz46Mebpp6Giou5nMjOj02LG\njoU+feKfUUoQyzDxLcPst33Pdv684s9MLZzKmi1rap09ucPJTBo0ie/3/z7tmreLay5JkiQ1PKH3\nQy3DSFIAoRd/SZIkSWoIVq1axfnnn09paSmpwO3AL4DQF/pUAv8D3PH55xkZGSxatCixVyMdrO3b\nYf786MSYRYugqqruZ/r1i0oxY8ZA167xzyjFkWWYxJRh9ovFYrz4/otMKZjCs+88S4yatxnaprXl\nuv7XMSl7Eid3ODkh+SRJkhRe6P1QyzCSFEDoxV+SJEmSGoqysjJuuukmnn76aQAGAA8Doc4sKQau\nA5Z//uvhw4czffp0OnfuHCjRt/Dxx9EVSrNmwT/+8c2eGTw4KsZcfTW0bx/ffFIcfK0M8zOaVhnm\nf6NPE1mG+ar3tr7HtMJpPPjGg3y659NaZy844QJys3O56KSLvEJJkiTpMBd6P9QyjCQFEHrxlyRJ\nkqSGJBaLMWvWLCZPnkx5eTmpwG3ArUCiLtb4DPgDX54Gk56eTl5eHmPHjiUpKSlBKeLg/fej02Jm\nzYI1tV9pAkBqKlx4IYwbB5ddBq1axT+jVA++VoZpokKVYfbbuXcnM1fOJK8gj5LNJbXOnpB+ArcM\nuoXrT7ueI1scmaCEkiRJSqTQ+6GWYSQpgAMt/mvXrj3g4h/yX2JIkiRJUiKVlZVx4403smDBAgDa\nADnAzUDfOP3MYmAaMBPY8fnXGuVpMHWJxeDNN6NizJw5sHFj3c+0aQMjR0Ynxpx3HjRrFv+c0rdk\nGSZ8GWa/WCzGknVLyCvI4+m3n6Y6Vl3jbOvU1lx76rVMyp5Er44N+Co6SZIk1Wrnzp3/9rXNmzfT\nvXv3r33NMowkHeYOVIapicu0JEmSpKYkFosxZ84c7rzzTlavXv3F188mKsVcATQ/xJ+xB3iCqATz\nyle+3rNnT371q18xZsyYxn0aTF2qqmDp0ui0mMcfh23b6n6mY0e45proxJjTT4fD+c9HjVIsFmPX\nrl2hYwTVqlWrBrd2rd+2nmmF03jgjQfYWrG11tmh3YeSm53LpSdfSkpySoISSpIkqT58038OtQwj\nSYc5yzCSJEmSVLtYLMZLL73EtGnTePLJJ6mqqgIgjeiUmKyvfPT9/OsHspfo9Jeir3ysJLoKCaBZ\ns2aMHDmSiRMncs455zS4jeS427MHFi6MijELFkS/rsvxx0enxYwdCz17xj+jpEZvV+Uu5hTPIa8g\njxUfr6h1ttuR3Zg4cCI/HPBD2rdsn6CEkiRJOhSWYSRJgNckSZIkSdLBKC0tZcaMGcyYMYONB7je\nJxXoDLQEWnz+td1ABVDGl8WXr+rSpQsTJkxgwoQJZGRkxCl5I/PZZ/DEE9FVSosXQ3XNV5t84bTT\nolLMmDHQpUv8M0pq1GKxGK988ApTCqbw5OonqYpV1TjbsllLxvcbT252Ln2PjtdleZIkSaoPXpMk\nSQIOXIZJ5OIvSZIkSY1RLBZj3bp1FBUVsWzZMoqKiigqKqK8vLzW59LT0xk4cCBZWVlffHTr1q3p\nnQJzMMrK4NFHoxNjCgvrnk9KgnPOia5RuvJKSE+Pf0ZJjdqGTzcwfdl07l9+P1t2bal19pzMc8jN\nzuXyHpfTLLlZghJKkiTpUITeD7UMI0kBhF78JUmSJOlwEYvFWL9+PZs3b6aiooKKigoAWrZsScuW\nLenYsSOZmZkWXw7Fu+9Gp8XMmhV9Xpe0NLj44ujEmEsvhZYt459RUqO1e99uHnnrEfIK8igqK6p1\n9rh2x3HzwJuZkDWBo1odlaCEkiRJ+jZC74dahpGkAEIv/pIkSZIkHbRYDIqKomLM3LnR6TF1adsW\nrrgiOjHm3HMhJSX+OSU1SrFYjH98+A+mFEzh8VWPs696X42zzVOaM6bvGHKzcxnQeUACU0qSJOmb\nCr0fahlGkgIIvfhLkiRJknRIqqrgpZei02LmzYPPPqv7maOPhtGjo2LMwIHR1UqSdACl20u5b9l9\n3Fd0Hx/v/LjW2TOPO5Pc7Fyu6HkFqSmpCUooSZKkuoTeD7UMI0kBhF78JUmSJEmqN7t3w7PPRifG\nPPMM7N1b9zMnnRRdozR2LJx8cvwzSmqU9uzbw+OrHievII/XN75e62xG2wxuyrqJG7Ju4Og2Ryco\noSRJkmoSej/UMowkBRB68ZckSZIkKS62bYMnnohOjFmyJLpaqS4DB0almNGjoXPn+GeU1CgVbiwk\nryCPuW/NpbK6ssa5tJQ0RvUexeTsyQzqMijxewbGAAAgAElEQVSBCSVJkvRVofdDLcNIUgChF39J\nkiRJkuKutBTmzo1OjCkqqns+ORm+973oGqUrroAjjoh/RkmNzsc7Pub+ovuZXjSd0u2ltc6e3uV0\ncrNzubr31aSlpCUooSRJkiD8fqhlGEkKIPTiL0mSJElSQq1ZE5ViZs+G996re755c7j00ujEmIsv\nhhYt4p9RUqNSWVXJE6ufIK8gj1c3vFrr7NGtj+bGrBu5aeBNdG7rCVSSJEmJEHo/1DKMJAUQevGX\nJEmSJCmIWAwKCqJSzNy5sGlT3c8ccQRceWV0Ysw550BKSvxzSmpUlpctZ2rBVGYXz2ZP1Z4a55ol\nN+OqXleRm53LGceeQVJSUgJTSpIkNS2h90Mtw0hSAKEXf0mSJEmSgtu3D/7616gY88QTsH173c9k\nZMDo0dGJMQMGgBvZkr5iy64tzCiawbRl0/jwsw9rnc3qnEVudi7X9LmGFs08fUqSJKm+hd4PtQwj\nSQGEXvwlSZIkSWpQKirgmWdg1iz4y1+gsrLuZ045JSrFjB0LJ54Y/4ySGo191ft4as1T5BXk8fL6\nl2udParVUdww4AZuHnQzx7Y7NkEJJUmSDn+h90Mtw0hSAKEXf0mSJEmSGqzycnj88ejEmJdfjq5W\nqkt2dnSN0jXXwNFHxz+jpEZj5ccrmVowlZkrZ1Kxr6LGuZSkFEb2HMnk7Mmc1fUsr1CSJEk6RKH3\nQy3DSFIAoRd/SZIkSZIahQ0b4JFHohNj3nyz7vnkZDjvvKgYM2IEtGsX/4ySGoWtFVt5cPmDTFs2\njXXb1tU6e+rRp5KbncvYvmNpmdoyMQElSZIOM6H3Qy3DSFIAoRd/SZIkSZIanVWrotNiZs+GtWvr\nnm/RAoYPj65RuugiSEuLf0ZJDV5VdRXPvPMMeQV5LF67uNbZ9i3b86PTfsTEQRPJPDIzQQklSZIO\nD6H3Qy3DSFIAoRd/SZIkSZIarVgM/vGP6LSYRx6BLVvqfiY9Ha66KirGDB4cnSAjqclbtXkVUwum\n8ucVf2Zn5c4a55KTkhl+ynBys3P5XrfveYWSJEnSNxB6P9QyjCQFEHrxlyRJkiTpsFBZCS++GJ0W\n8+STsLPmzewvdOkCY8ZEVymdeiq4qS01edt2b+NPb/yJewrv4b3y92qd7d2xN7nZuYzvN57Waa0T\nlFCSJKnxCb0fahlGkgIIvfhLkiRJknTY2bkTFiyITox57jnYt6/uZ3r2jEoxY8bA8cfHP6OkBq06\nVs3CdxeSV5DH8+89X+vskS2O5Af9f8At2bdwfLrrhyRJ0r8KvR9qGUaSAgi9+EuSJEmSdFj75BN4\n7LHoxJilS7/ZM2ecEV2jNGoU/Mv/Z5fU9Ly95W2mFkzloRUPsWPvjhrnkkjikpMvITc7l/OPP98r\nlCRJkj4Xej/UMowkBRB68ZckSZIkqclYvx7mzo1OjCkurns+JQXOPz86MWbECGjTJv4ZJTVYn+35\njIfffJiphVN555N3ap09pcMp5Gbncu2p19K2edsEJZQkSWqYQu+HWoaRpABCL/6SJEmSJDVJxcXR\naTGzZ8MHH9Q937IlXH55VIwZNgzS0uKfUVKDVB2rZtF7i8gryOMv7/6FGDVvrbRNa8v1/a9nUvYk\nTupwUgJTSpIkNRyh90Mtw0hSAKEXf0mSJEmSmrTqavj736NSzKOPRtcq1aV9++gKpbFj4cwzITk5\n/jklNUj/3PpPphVO48E3HuSzPZ/VOnvhiReSm53LhSdeSHKS64YkSWo6Qu+HWoaRpABCL/6SJEmS\nJOlze/fCokXRNUpPPQW7dtX9TNeuMGZMdGJM377xzyipQdqxdwf5K/KZWjiVVZtX1Tp7YvsTmTRo\nEtf1v44jWhyRoISSJEnhhN4PtQwjSQGEXvwlSZIkSdIB7NgRFWJmzYIXXoCqqrqf6dMnKsWMGQOZ\nmfHPKKnBicVi/HXtX8kryOPpt5+u9Qql1qmt+f6p32dS9iR6duyZwJSSJEmJFXo/1DKMJAUQevGX\nJEmSJEl12Lw5ukJp9uzoSqVv4qyzomuUrr4ajjoqvvkkNUjrtq1jWuE0Hlj+AOW7y2udPe/488jN\nzuWSky4hJTklQQklSZISI/R+qGUYSQog9OIvSZIkSZIOwtq1MGdOdGLMqtqvQgGgWTO44ILoxJjh\nw6F16/hnlNSg7KrcxayVs8gryKN4U3Gts92P7M7EQRP54Wk/JL1leoISSpIkxVfo/VDLMJIUQOjF\nX5IkSZIkfQuxGKxcGZVi5syBDz+s+5nWrWHEiOjEmPPPh9TU+OeU1GDEYjH+tv5v5BXkMX/NfKpi\nNV+/1iq1FeP7jif39Fz6dOqTwJSSJEn1L/R+qGUYSQog9OIvSZIkSZIOUXU1LF0aXaP02GNQXvt1\nKEB0ddKoUdGJMWecAUlJ8c8pqcHY8OkG7l12L/cX3c8nFZ/UOjuk2xBys3MZfspwmiU3S1BCSZKk\n+hN6P9QyjCQFEHrxlyRJkiRJ9WjPHnj++ejEmKefht27636mW7fotJhx46BXr7hHlNRwVFRWMPet\nueQV5PHGR2/UOtv1iK5MHDiRHw34ER1adUhQQkmSpEMXej/UMowkBRB68ZckSZIkSXGyfTs8+WR0\nYsyiRdEJMnU59dSoFDN6NBx3XPwzSmoQYrEYf9/wd/IK8pi3eh77qvfVONuiWQvG9hlL7um59D+m\nfwJTSpIkfTuh90Mtw0hSAKEXf0mSJEmSlAAffwyPPhqdGPP663XPJyXB4MHRiTFXXQXt28c/o6QG\nYeNnG7mv6D7uK7qPTTs31Tp7VtezyM3OZWSPkaSmpCYooSRJ0sEJvR9qGUaSAgi9+EuSJEmSpAR7\n773otJhZs+Dtt+ueT02Fiy6KToy59FJo1Sr+GSUFt2ffHh5b9RhTXp9CYWlhrbNd2nbh5oE3MyFr\nAp1ad6p1VpIkKdFC74dahpGkAEIv/pIkSZIkKZBYDN54IyrGzJkDpaV1P9OmDVxxRXRizNCh0KxZ\n/HNKCu71D18nryCPR0sepbK6ssa5tJQ0RvcZTW52LgMzBiYwoSRJUs1C74dahpGkAEIv/pIkSZIk\nqQGoqoKXX46KMY8/Dp9+WvcznTrBNddEJ8ZkZ0dXK0k6rH204yPuL7qf6cumU7ajrNbZ7xz7HXKz\nc7mq11WkpaQlKKEkSdK/C70fahlGkgIIvfhLkiRJkqQGZvduWLgwukbpmWdgz566nznhhOi0mLFj\noUeP+GeUFNTeqr3MWzWPvII8XvvwtVpnj2lzDDdl3cSNA2/kmDbHJCihJEnSl0Lvh1qGkaQAQi/+\nkiRJkiSpAfv0U3jiiejEmL/+Faqr635mwICoFDN6NHTpEv+MkoIqKi0iryCPOW/NYW/V3hrnUpNT\nubr31eRm53J6l9NJ8jQpSZKUIKH3Qy3DSFIAoRd/SZIkSZLUSJSVwSOPRCfGLFtW93xSEgwZEl2j\ndOWVcOSRcY8oKZzNOzczY/kM7l12Lx9+9mGtswMzBpKbncs1va+hebPmCUooSZKaqtD7oZZhJCmA\n0Iu/JEmSJElqhN55JzotZtYs+Oc/655PS4NLLomKMZdcAi1axD+jpCD2Ve9j/pr5THl9Cks/WFrr\nbMdWHbkx60ZuGngTXdp5kpQkSYqP0PuhlmEkKYDQi78kSZIkSWrEYrHolJjZs2HuXPjoo7qfadcu\nOilm7Fj43vcgJSX+OQ9jsViM9evXs2nTJioqKti9ezcALVq0oGXLlnTq1InMzEyvpFEQKz5aQV5B\nHrOKZ7F73+4a55olN+OKnleQm53Lmced6d+vkiSpXoXeD7UMI0kBhF78JUmSJEnSYaKqCpYsiU6L\nmTcPtm+v+5ljjoHRo6MTY7KyoquVVKNYLMbatWspKipi2bJlFBUVsXz5csrLy2t9Lj09naysrK99\ndO/e3cKBEuaTXZ/w4BsPck/hPXzw6Qe1zvY/pj+52bmM6TOGlqktE5RQkiQdzkLvh1qGkaQAQi/+\nkiRJkiTpMFRRAc8+G50Y8+yzsHdv3c+cfHJ0WszYsXDSSfHP2Ihs3LiRGTNmMGPGDEpLS//t99OA\nzkBLYP8FVLuBCqAMONCffkZGBhMmTOCGG24gIyMjTsmlr6uqrmLBOwuY8voUlqxbUutsh5Yd+NGA\nHzFx0ES6HtE1QQklSdLhKPR+qGUYSQog9OIvSZIkSZIOc+Xl8MQT0YkxL70UXa1Ul0GDolLM6NHR\n6TFNUCwWY8mSJUybNo358+dTVVUFRMWXfkDWVz76fP71A9kLvAUUff6xDCjmy4JMSkoKI0eOZOLE\niQwZMsTTYpQwb216i6kFU8lfmc+uyl01ziUnJTOixwhys3M5J/Mc/x6VJEkHLfR+qGUYSQog9OIv\nSZIkSZKakI0bYe7c6MSY5cvrnk9OhnPPja5RGjkSjjgi/hkDi8VizJkzhzvuuIM1a9Z88fXBwM3A\nSKD5If6MPcCTwDRg6Ve+3qNHD2677TbGjBlj4UAJU15Rzp/e/BP3FN7D++Xv1zrbt1NfJmVPYlzf\ncbROa52ghJIkqbELvR9qGUaSAgi9+EuSJEmSpCZq9WqYMyc6Meb92jfAAWjeHC67LDox5uKLo18f\nZsrKyrjxxhtZsGABAG2Aa4lKMH3i9DOLgXuBfGDH518bPnw406dPp3PnznH6qdK/q6quYuE/F5JX\nkMcL771Q6+yRLY7kh6f9kFsG3UL39O4JSihJkhqr0PuhlmEkKYDQi78kSZIkSWriYjEoKIhKMY88\nAps21f3MEUfAVVdFJ8YMHgwpKfHPGUexWIyZM2cyefJktm3bRipwO3Ar0DZBGbYDfwB+A1QC6enp\nTJkyhXHjxnlKjBJuzZY1TC2YysMrHmbH3h01ziWRxGWnXEZudi5Duw/171VJknRAofdDLcNIUgCh\nF39JkiRJkqQv7NsHixdH1yg98QTsqHkT/AsZGTBmTHRizGmnQSPbDP/X02CygIeI30kwdXkLuA4o\n+vzXnhKjkD7b8xkPvfkQUwum8u7Wd2ud7XlUTyZlT+LaU6+lTVqbBCWUJEmNQej9UMswkhRA6MVf\nkiRJkiTpgHbtgmeeiU6MWbgQKivrfqZHj6gUM3YsnHBC/DMeopKSEoYNG0ZpaSmpwK+BnwOpgXNV\nAv+PL0+JycjIYNGiRfTq1StsMDVZ1bFqXnjvBfIK8vjLu3+pdbZd83Zc3/96JmVP4sT2JyYooSRJ\nashC74dahpGkAEIv/pIkSZIkSXXauhUefzw6Mebll7/ZM6efHl2jNGoUHH10fPN9C4WFhVx44YVs\n3bqVnsAjQN/Qof5FMXANsBro0KEDCxcuZNCgQYFTqal795N3uafwHv705p/4bM9ntc5efNLF5Gbn\nMuyEYSQnJScooSRJamhC74dahpGkAEIv/pIkSZIkSQdlwwaYMycqxqxYUfd8Sgqcd150WszIkdC2\nbfwz1qGwsJChQ4eyfft2BgELgQ6hQ9XgE+AioBBo27YtixcvthCjBmH7nu3kr8xnasFUVm9ZXevs\nSe1PYlL2JK7rfx3tmrdLUEJJktRQhN4PtQwjSQGEXvwlSZIkSZK+tZKSqBQzezasW1f3fIsWMHx4\ndGLMhRdCWlrcI/6rkpISBg8ezNatWzkHWACEr+fUbjtwKfA3oH379ixdutQrk9RgxGIxFq9dTF5B\nHgveXkCMmrea2qS14funfp9J2ZPocVSPBKaUJEkhhd4PtQwjSQGEXvwlSZIkSZIOWSwGr70Gs2bB\no4/Cli11P5OeDldfHZ0Yc/bZkBz/K1TKysoYOHAgpaWlZAMv0vCLMPttB4YSnRCTkZHBsmXL6Ny5\nc+BU0te9X/4+0wqn8eAbD7Jt97ZaZ4edMIzc7FwuOvEiUpJTEpRQkiSFEHo/1DKMJAUQevGXJEmS\nJEmqV5WVsGhRdFrM/Pmwc2fdzxx7LIwZE50Y068fJCXVe6xYLMbll1/OggUL6AkspeFejVSTT4Cz\ngdXA8OHDmT9/Pklx+LOSDtXOvTuZVTyLvII83tr0Vq2zx6cfzy2DbuEHp/2AI1scmaCEkiQpkULv\nh1qGkaQAQi/+kiRJkiRJcbNzJzz9dHRizPPPw759dT/Tq1dUihkzBrp3r7coM2fOJCcnh1SgCOhb\nb985sYqBLKASyM/PZ/z48YETSTWLxWK8vP5l8grymL9mPtWx6hpnW6W2IqdfDrnZufTu1DuBKSVJ\nUryF3g+1DCNJAYRe/CVJkiRJkhJiyxZ47LHoxJhXXvlmz3z3u1Ex5uqr4RD+XUlZWRm9e/emvLyc\nO4H/+tbfqWG4E7gNSE9Pp6SkxOuS1Cis37aee5fdy4zlM9hasbXW2XO7n0tudi6XnXyZVyhJknQY\nCL0fahlGkgIIvfhLkiRJkiQl3Lp1MHdudGLMW7VfoQJASgpccAGMHQuXXw5t2nzjH/XV65GygH8A\nzb5t7gaiEvgOsByvS1LjU1FZwZy35pBXkMebH71Z62zmEZlMHDSRH572Qzq0amwXm0mSpP1C74da\nhpGkAEIv/pIkSZIkSUEVF0elmNmzYcOGuudbtYoKMePGwbBhkJpa6/js2bMZN24caUTXI/Wpl9Dh\nffW6pFmzZjF27NjAiaSDE4vFeHXDq+QV5DFv1TyqYlU1zrZo1oJxfceRm53LqcecmsCU30wsFmPX\nrl2hYwTVqlUrS3mSpBqF3g+1DCNJAYRe/CVJkiRJkhqE6mp49dWoFPPoo7C19mtUAOjQAUaNik6M\n+e53ITn5a78di8Xo1asXa9as4Q7gV/FJHswdwO1Az549KSkpcSNajdaHn33I9GXTub/ofjbv2lzr\n7Nldz2by6ZMZ0WMEzZIbxjlPO3fupM1BnFh1ONqxYwetW7cOHUOS1ECF3g+1DCNJAYRe/CVJkiRJ\nkhqcvXvhhReiE2OeegoqKup+JjMTxoyJTozpE53/smTJEs4991zaAKVA27iGTrzPgC7ADqJ3HTJk\nSNhA0iHavW83j5Y8Sl5BHstKl9U6e2y7Y7l54M1MGDCBjq3D/rtUyzCWYSRJtQu9H2oZRpICCL34\nS5IkSZIkNWjbt0eFmFmzYNEiqKr5KpUv9O0L48Zx1csvM2/hQiYC98Q9aBgTgXuBq666isceeyx0\nHKlexGIxXt/4OnkFeTxW8hiV1ZU1zjZPac7oPqPJzc4lKyMrgSm/9LUyzM+AtCAxEm8v8L/Rp5Zh\nJEm1Cb0fahlGkgIIvfhLkiRJkiQ1Gps2RVcozZ4Nr71W6+hGIBOoAoqBPgmIF0Ix0A9ISUnhgw8+\nICMjI3QkqV6VbS/j/qL7mV40nY92fFTr7BnHnsHk0ydzZc8rSU1JTVDCfynD/JKmVYb5v9GnlmEk\nSbUJvR+aXPeIJEmSJEmSJEmBdOoEkybB3/8O770Hd94JPXsecHQGURHmbA7fIgxAX+AsoKqqihkz\nZoSOI9W7zm078+shv2b9j9cz64pZfOfY79Q4+9qHrzFm3hgyf5/Jb17+TZ3lGUmS1DRYhpEkSZIk\nSZIkNQ7HHw//9V9QUgJvvAE/+xl06QJAjKgMA9E1Qoe7/e84Y8YMPABeh6u0lDTG9h3Laz98jcIJ\nhVx76rWkpRz4CJayHWX8+qVf0/Xurox/Yjyvf/h6gtNKkqSGxDKMJEmSJEmSJKlxSUqC/v3ht7+F\nDz6AJUtYe801lBLdVDIydL4EuAJIBTZu3Mi6desCp5Hib2DGQB4e8TAbfrKBO753BxltD3w9WGV1\nJbOKZ/GdB79D9oxs8lfks2ffngSnlSRJoVmGkSRJkiRJkiQ1XsnJMGQIRVdeCUA/oHnYRAnRnOhd\nAYqKikJGkRKqU+tO/Grwr1h36zoeueoRzup6Vo2zhaWFXDv/Wrr+viu3L7md0u2lCUwqSZJCsgwj\nSZIkSZIkSWr09hdCsgLnSKT972oZRk1Rakoqo3qPYun1S1l+w3J+0P8HtGjW4oCzm3Zu4o6/3UHm\n7zMZ/fhoXv3gVa8XkyTpMGcZRpIkSZIkSZLU6C1btgxommWY/e8uNVWndT6NBy9/kA9/8iH/M/R/\nOK7dcQec21e9j0dKHuGsP51F1v1ZPPTmQ+zetzvBaSVJUiJYhpEkSZIkSZIkNWqxWIzly5cDTbMM\nU1RU5CkXEtChVQd+cdYveP/W95k3ah5Dug2pcfaNj97g+qeu57i7j+OXi3/Jhk83JC6oJEmKO8sw\nkiRJkiRJkqRGbf369ZSXl5MG9AkdJoH6AKlAeXk569evDx1HajCaJTfjip5XsOT7S1h500puGHAD\nLZu1PODsll1b+O9X/pvuf+jOVY9excvrXrZcJknSYcAyjCRJkiRJkiSpUdu0aRMAnYG0sFESqjnR\nOwNs3rw5ZBSpwep7dF/uu+w+Pvzph/z2/N/S7chuB5yrilUxb/U8hjw8hP739eeB5Q+wq3JXYsNK\nkqR6YxlGkiRJkiRJktSoVVRUAHDgcx8Ob/vfef+fgaQDa9+yPT/77s/4Z+4/eWr0U5x3/Hk1zq78\neCUTFkzg2N8dy88X/Zx129YlLqgkSaoXlmEkSZIkSZIkSY3a7t27AWgROEcI+9/ZMoz0zaQkpzD8\nlOEsylnEqomrmDhwIq1TWx9wtnx3Ob/9+285YcoJjJg7gsXvL/YKJUmSGgnLMJIkSZIkSZIkSWpy\nenbsyT2X3MPGn27k7gvu5sT2Jx5wrjpWzVNvP8V5+efR594+TF82nR17dyQ4rSRJOhiWYSRJkiRJ\nkiRJjVqLFtH5KLsD5whh/zu3bNkUL4mS6scRLY7gx9/5MW9Peptnxz7LhSdeWOPsqs2ruPnZmzk5\n7+QEJpQkSQfLMowkSZIkSZIkqVHbXwRpihcF7X9nyzDSoUtOSubiky5m4biFvD3pbSZnT6ZtWtsD\nzn6257MEp5MkSQfDMowkSZIkSZIkqVHr1KkTAGXA3rBREmoP0TsDdOzYMWQU6bBzcoeT+cNFf2Dj\nTzcy9aKpnNLhlNCRJEnSQbAMI0mSJEmSJElq1DIzM0lPT2cv8FboMAn0FlAJpKenk5mZGTqOdFhq\n27wtt2TfwqpbVvH8+Oe59ORLSSIpdCxJklQHyzCSJEmSJEmSpEYtKSmJAQMGAFAUOEsi7X/XrKws\nkpLcnJfiKTkpmWEnDGPBmAW8m/suudm5oSNJkqRaWIaRJEmSJEmSJDV6AwcOBJpmGWb/u0tKjBPa\nn8B/n/ffoWNIkqRaWIaRJEmSJEmSJDV6WVlZQNMsw+x/d0mSJEkRyzCSJEmSJEmSpEZvfyFkJbAn\nbJSE2EP0rmAZRpIkSfpXlmEkSZIkSZIkSY1e9+7dycjIYC/wZOgwCfAEUAl06dKFbt26BU4jSZIk\nNSyWYSRJkiRJkiRJjV5SUhITJkwAYFrgLImw/x0nTJhAUlJS0CySJElSQ2MZRpIkSZIkSZJ0WJgw\nYQIpKSksBYpDh4mjYuAVICUl5YsCkCRJkqQvWYaRJEmSJEmSJB0WunTpwogRIwCYHjhLPN37+V9H\njhxJRkZG0CySJElSQ2QZRpIkSZIkSZJ02LjlllsA+DOwPWyUuPgMyP/88/3vKkmSJOnrLMNIkiRJ\nkiRJkg4bQ4YMoUePHuwA/hA6TBz8AdgB9ExK4pyFC+HTT0NHkiRJkhocyzCSJEmSJEnS/2fvvsOj\nLNM2jJ9D71VwQcGEQNSwKCAqTawUuwi4q3TLqihF10KRXcUCuq5LV9dCERtIRFmVYkMQVAxNQwnV\nAiiIKKEJhPn+GOIHZEIzmRmS83cccyy87533ucbdjehceR5JeUYgEKB///4ADAC+jm6cHPUV8PC+\nXz8QDBJ44glISIAhQ2DXrmhGkyRJkmKKZRhJkiRJkiRJUp5y/fXXc+WVV7Ib6ALsjnKenLD/e7kK\nuD7zxqZN0KsXJCXBhAkQDEYpoSRJkhQ7LMNIkiRJkiRJkvKUQCDAs88+S/ny5UkBnoh2oBzwODAP\nKF+0KM8ULEjg4IGVK+G666BxY/j008gHlCRJkmKIZRhJkiRJkiRJUp5TpUoVhg4dCsBDhI4YOl4t\nInTkE8DQ55+nyuLF0KZN+OHPPoOmTeHaa2HZskhFlCRJkmKKZRhJkiRJkiRJUp7Uvn37349L+guw\nKdqBjsEm4K/sOx7pqqto3749JCbCG2+EdoBp1Cj8F775JtSuDXfcARs2RDCxJEmSFH2WYSRJkiRJ\nkiRJeVLmcUlVq1ZlCXApkB7tUEchnVDmJUDVqlV55plnCAT2OyAp80ikN96AmjWzPiAjA0aODN17\n9FHYvj1CySVJkqTosgwjSZIkSZIkScqzqlSpwrRp06hQoQJzgSs5Pgox6cAVwFygYsWKTJ8+nSpV\nqmQdDARCRyalpsLQoXDCCWEelg4PPAC1asGLL4ZKMpIkSVIeZhlGUr6xbNkyxo0bR8+ePWncuDEl\nSpSgQIECWV5jx46NdlRJkiRJkiTloNq1azNlyhRKly7NDOBiYvvIpJ+Ai4BPgNKlS/Pee++RlJR0\n6C8qUgS6d4cVK6BPHyhWLOvMunVw001Qrx5MmQLBYC6klyRJkqKvULQDSFJu+Pbbb5k7d+7vr5SU\nFLZs2XLATCAQOHBbWUmSJEmSJOVZZ599Nh988AGtWrVi7s8/cx7wOlAn2sEOsgj4K6GjkSpWrMiU\nKVNo0KDBkT+gbFl47DG4/Xbo3x/Gjs1aevnqK7j0UrjkEvjXv6Bu3Rx8B5IkSVL0uTOMpDzn/vvv\nJy4ujnbt2vHEE0/w0UcfkZ6e/nv5Zf8STDAYJLjvXwYE/UkYSZIkSZKkPO3ss89m5syZVK1alSXA\nWcAjwO4o54JQhoeBBoSKMFWrVuWTTz45uiLM/qpVg9GjYf58aN48/Mz770P9+tCpE3z77bGtI0mS\nJMUgyzCS8pxdu3YBZCm+ZMoswFh+kSRJkiRJyn+SkpL48ssvueqqq9gN9AcaAl9HMdNX+zL8g1Ap\n5qqrruLLL788/NFIR+LMM2HaNJg6FQd3hE0AACAASURBVM44I+v9YBBeegkSE6F3b/j11z++piRJ\nkhRllmEk5Wn7F1/2L8B4RJIkSZIkSVL+VaVKFSZNmsRLL71E+fLlmQfUJ7Qzy5bDfG1O2rJvzbOA\neUD58uUZN24ckyZNokqVKjm7WIsWMG8ejBoFJ52U9f5vv8Hjj0NCAgwdCvt+4EySJEk6HlmGkZRn\nHVx8CQQCFC1alAYNGnDbbbfRoUOH3+9LkiRJkiQpfwkEAnTo0IHU1FSuvPJKdhPameUkoBuh3Vpy\ny1fA7fvW2n83mNTUVNq3b597/76qYEHo0gXS0uDRR6F06awzmzZBz56QlAQTJoR2jpEkSZKOM5Zh\nJOVJgUCAQoUKUadOHbp27cqIESP44osvSE9P54svvmDEiBFcdNFF0Y4pSZIkSZKkKKtSpQpvvfUW\nL7/8MqeffjpbgaeBM4BmwKvAbzmwzm/7nnXevmc/A2wFTj/9dF5++eXc2Q0mOyVKQN++sHIl3Hkn\nFCqUdWblSrjuOmjcGD79NDK5JEmSpBwS5k+4knR8++tf/0q7du2oX78+xYoVi3YcSZIkSZIkxbhA\nIMANN9zA9ddfz8cff8zIkSN58803mZmRwUygCFCH0HFGma86+66Hs4vQ7i8p+70WEdoBBqBQoUK0\nbt2abt26cf7550dv5+JKlWDYMOjeHfr0geTkrDOffQZNm0Lr1jBoECQmRj6nJEmSdJQsw0jKc849\n99xoR5AkSZIkSdJxKBAIcOGFF3LhhReybt06nnvuOZ577jnWrl37e6klU2GgClAcyPxxrJ3ADmA9\n/1982d9JJ53ELbfcwi233ELVqlVz860cncREmDgxtAPMvffCnDlZZ958E95+G269Ff75T6hcOfI5\nJcWUX3b+QsmSJaMdQ5KksCzDSJIkSZIkSZJ0kKpVq/LPf/6Tf/zjH6xZs4aUlBS+/PJLUlJSSElJ\nYfPmzXx7iK8vX748DRo04Kyzzvr9FRcXF71dYI5EkyahQkxyMvTuDStWHHg/IwNGjoSXXoL774e7\n7goduSQpX0oakUSv83rRq2EvyhcvH+04kiQdwDKMJEmSJEmSJEnZCAQCxMfHEx8fT9u2bQEIBoN8\n8803bNy4kR07drBjxw4AihcvTvHixalUqRKnnHJKbBdfshMIQJs2cOWV8Oyz8NBDsGnTgTPp6fDA\nA/D00/Dww9CpExQsGJ28kqJmy29bGPDJAAZ/Ppie5/akV8NeVCheIdqxJEkCLMNIkiRJkiRJknRU\nAoEAcXFxxMXFRTtK7ilSBLp3DxVdHn8c/vMf2LnzwJm1a+HGG0P3nngCWrYMlWkk5StbftvCw588\nzODPQqWYuxrdZSlGkhR1BaIdQJIkSZIkSZIkxaiyZeGxxyAtDTp3Dl92+eoruPRSaNECFiyIfEZJ\nMSF9VzqPzHyEuMFx9PugH5u2bzr8F0mSlEssw0iSJEmSJEmSpEOrVg1Gj4Z586B58/Az778P9euH\nSjPffhvReJIir83pbQiQtSCXviudx2Y9RtyQOPp+0Jeftv8UhXSSpPzOMowkSZIkSZIkSToydevC\ntGkwdSqccUbW+8EgjB0LiYnQuzf8+mvkM0qKiDGtx/B1t6/565//GrYUs3XXVgbOGkj8kHj6vN/H\nUowkKaIsw0iSJEmSJEmSpKPTokVol5hRo+Ckk7Le/+03ePxxSEiAoUNh167IZ5SU65IqJfFqm1dJ\n7ZbK9X++PttSzKBPBxE3OI77p9/Pxm0bo5BUkpTfWIaRJEmSJEmSJElHr2BB6NIF0tLg0UehdOms\nM5s2Qc+eULs2vPFGaOcYSXnO6ZVO55U2r7D4jsW0r9OeAoGsH0Fu272NJ2Y/QdyQOO6bfh8btm2I\nQlJJUn5hGUaSJEmSJEmSJB27EiWgb19YsQLuuAMKFco6s2IFtGsHjRvDp59GPqOkiDjthNMYd+04\nFndbTIczOoQtxWzfvZ1/zf4X8UPiuXfavZZiJEm5wjKMJEmSJEmSJEn64ypXhuHDITUVrr02/Mxn\nn0HTpqH7aWmRzScpYk494VReav0SS+5YQsczOmZbinlyzpPEDY7j71P/zg9bf4hCUklSXmUZRsrD\ndu3axddff82UKVOYMGECY8aMYcKECUyZMoWvv/6a3bt3RzuiJEmSJEmSpLwmMREmToRZs6BRo/Az\nb74JSUmhnWQ2uCuElFclVkxkbOuxLL1jKZ3P7EzBQMEsMzv27OCpz56ixpAa3D31bksxkqQcEWav\nQknHs88//5xJkybx3nvvkZqaSkZGRrazBQsWpHbt2lx22WVcffXVnHvuuRFMKkmSJEmSJClPa9Ik\ndCRScjL07h06Kml/GRkwciS89BLcfz/cdVfoyCVJeU6tirUYfc1oHmj2AI/OfJSXFr5ERvDAzy92\n7NnBfz77D09/+TS3nXUb9zW5jyqlq0QpsSTpeOfOMMrXVqxYwWuvvcY999zD+eefT5kyZShQoEC2\nrxo1akQ7crZee+01GjRoQKNGjXj88cdZtGgRe/fuJRAIZPvau3cvixYtYtCgQTRq1Iizzz6b8ePH\nR/utSJIkSZIkScorAgFo0yZ0dNLQoVCxYtaZ9HR44IHQjjKjRoVKMpLypJoVajLq6lEsu3MZXet2\nDbtTzM49Oxn8+WBqDK1Brym9WJ++PgpJJUnHO8swyje+++47kpOT6du3L82bN6dChQokJiZyww03\n8NRTTzFz5ky2bdt2yPJILFq6dCnnn38+N9xwA/Pnz8+SNxgMZvsCDphPSUnhr3/9KxdddBFpntcr\nSZIkSZIkKacUKQLdu8PKlaFdYooVyzqzdi3ceCPUqwdTp0Y+o6SISaiQwItXv0ha9zRuqncThQpk\nPcxi556dDPl8CPFD4unxXg/WblkbhaSSpOOVZRjlSRs2bOCdd97hwQcf5IorruDEE0/klFNOoW3b\ntgwaNIgPPviAX3/9NWzZJVxhJPN6rElOTuacc85h5syZYfMDhy337D+fef3jjz+mQYMGTJo0KWrv\nTZIkSZIkSVIeVLYsDBwIaWnQuXNo55iDffUVtGoFLVrAggWRzygpYmqUr8HzVz1P2p1p3Fzv5rCl\nmN8yfmPYF8NIGJpA93e7W4qRJB2RrH9HkfKAFi1asGjRot9/n93OLrFYcDlSI0aMoEePHkDo/e3/\nXvYvuhzOwaWYzL9WW7dupU2bNgwfPpzbb789x3Jv2bKFYcOGHfPXd+rUiWrVquVYHkmSJEmSJElR\nUK0ajB4NvXrBfffB9OlZZ6ZPh/r1oWNHeOSR0NdIsWhXtANEUC691/jy8Tx31XP0a9aPx2Y+xqgF\no9izd88BM79l/MbwucP577z/ckv9W+jdtDcnlzk5dwJJko57lmGUJ4UrvxyqGLL/7PFQkBkzZszv\nRRggSxFm/11hDmf/AszBhZhgMEj37t0pXbo0HTp0yJHsmzdvpn///sf0tYFAgPPOO88yjCRJkiRJ\nkpRX1K0L06aFjkW6997QrjD7CwZh7FgYPz5UnOndO7S7jBRLnox2gLwjrlwc/73yv/Q7rx8DZw3k\nxfkvsnvv7gNmdmXsYsTcETw37zluqncTfZr2oVpZPzeQJB3IY5KUZ2UWQg4+7giyHh108NfEsi++\n+IK//e1vv//+UEWYxo0bM3z4cObNm8fPP//M7t27+fnnn/nyyy8ZOnQo5557bpYSzP7PDAQC7N27\nl1tuuYWUlJQcfR+HOr4puyOdJEmSJEmSJOVRLVvC/PkwahScdFLW+zt3wqBBkJAAQ4fCrvy0FYeU\n/5xS7hSeueIZVvRYwW1n3UbhAoWzzOzK2MXTXz5NwtAEbv/f7Xz767dRSCpJilWB4PHw6b90lOrV\nq8fChQsPWaII9z/9g48byryWOR8XF8eqVatyNuxRSE9P58wzz+Sbb775PVOmzOyBQIDExESefvpp\nLrjggsM+8/3336dbt26sXLny92vhdpaJj49nwYIFlCpV6g+9h2+++Yb4+Phj+tpAIMBHH31Es2bN\n/lCGTGPGjKFr164H/HccCAQYNWoUnTp1ypE1srNx40YqV658wLUNGzZQqVKlXF1XkiRJkiRJinnb\nt8PgwaHyS3p6+JmaNWHgQGjTBvxhOkVBMBhk+/bt0Y4RVSVKlIjYD7N+++u3DJo1iBfmv8CujPBl\nuMIFCnNjvRvp07QPp5Q7JSK5JEnZi/bnoR6TpDzrcDu+7H8/EAhQs2ZNqlSpwowZM8KWYmJB//79\nWbNmTZZ8+xdhmjdvzoQJEyhduvQRPfOSSy7hyy+/5Nprr+XDDz/M8tct89mrV6/mwQcf5Mkn//h+\nj8f6h2N3iJEkSZIkSZLygRIloG9fuPlmGDAAnn0W9uw5cGbFCmjXDho1gn/9C5o0iU5W5VuBQICS\nJUtGO0a+Ub1sdUZePpI+TfswaNYgnp//fJZSzO69u3k25VlenP8iXet2pc95fYgrFxedwJKkqPOY\nJOVZmUf/ZBY69n/Fx8fTrl07Hn/8cT744AM2b97M0qVLefDBB6MdO1tLlixh5MiRWQoh+xdjGjdu\nzKRJk464CJOpTJkyvP3225xzzjkHHJd08BrDhg1j2bJlf+h9nHLKKWRkZBzTa8+ePTm2K4wkSZIk\nSZKkGFe5MgwfDqmpcO214WfmzIGmTUP309Iim09SxFUrW40Rl49gZY+V3Hn2nRQpWCTLzO69u/nv\nvP9Sa1gtbnn7FlZvXh2FpJKkaLMMozwrs/hSrVo1rrnmGh555BGmTJnCTz/9xMqVK3nttde45557\nuOCCC466PBINDz74IHv2/fRDuGOMKlasyOuvv06xYsWO6fklSpRg/PjxlCtX7oBn778DzZ49exgw\nYMAxPV+SJEmSJEmSjkliIkycCLNmhXaCCefNN6F2bbjzTtiwIbL5JEXcyWVOZthlw1jVYxXdz+lO\n0YJFs8zs2buH5+c/T+LwRG5++2ZWbV4VhaSSpGixDKM8qUePHkyePJkffviBb775hokTJ9KnTx+a\nN29O+fLlox3vqK1evZrk5OSwxwRl7uTy6KOPUrVq1T+0TvXq1XnooYeyPVYqGAwyYcIEvv322z+0\njiRJkiRJkiQdtSZN4NNPYcIESEjIen/PHhgxAmrWhEcfhe3bI59RUkSdVOYkhl46lFU9V9HjnB7Z\nlmJemP8CicMSuemtmyzFSFI+YRlGeVLXrl257LLLqFSpUrSj5Ijhw4eTkZEBhN8VplatWtxyyy05\nsla3bt2oUaPGAWvsX47JyMhgxIgRObKWJEmSJEmSJB2VQADatoXFi2HoUKhYMetMejo88EBoR5lR\no2Dfv1uVlHdVLV2VIZcOYVXPVfQ8tyfFCmXdRT8jmMGLC14kcVgiXd/qyoqfV0QhqSQpUizDSDFu\n7969vPbaa4fcFebuu+8Oe/9YFCxYkB49ehxyd5hXXnklR9aSJEmSJEmSpGNSpAh07w4rV0Lv3hDu\n+Pi1a+HGG6F+fZg6NfIZJUVc1dJVGdxqMKt6rOKuhndRvFDxLDMZwQxGLxjNacNPo8ukLpZiJCmP\nsgwjxbgPP/yQ9evXA+F3hSlWrBjt27fP0TU7d+5MkSJFDlhr/3LMunXr+Pjjj3N0TUmSJEmSJEk6\namXLwsCBkJYGnTqFdo452KJF0KoVtGgBCxZEPqOkiKtSugpPtXyKVT1XcXfDu7MtxYxZOIZTh59K\n50mdWb5peRSSSpJyi2UYKcZNnjw57PXMXWEuv/xySpYsmaNrli1blksvvTTs7jCHyyVJkiRJkiRJ\nEVetGowZA/PmQfPm4WemTw/tEtO5M3z3XWTzSYqKP5X6E/9u+W9W91zN3xv9PWwpZm9wL2MXjuW0\nEafR8c2OLPtpWRSSSpJymmUYKca9//77hzwC6fLLL8+VdQ/13GAwyPTp03NlXUmSJEmSJEk6ZnXr\nwrRpMGUK1KmT9X4wCGPHQmIi9OkDv/4a+YySIu7EUifyZIsnWdNrDfc2vpcShUtkmdkb3Mu4ReNI\nGplEh+QOLP1paRSSSpJyimUYKYb98MMPLFmyBCDbXVouueSSXFm7eZifnsjcjQYgNTWVH3/8MVfW\nliRJkiRJkqQ/pGVLmD8fXnwRTjop6/2dO2HQIKhZE4YNg127Ip9RUsRVLlmZJ5o/weqeq7mv8X2U\nLJx15/29wb28/NXLJI1Ion1ye5ZsXBKFpJKkPyoQPNQ5KFI+M2PGDC688EICgcDv5ZPM8kcwGCQu\nLo5Vq1ZFLM/bb7/NNddck22e6tWrs2bNmlxb/6STTuKHH374fb3M9TNLMW+99RZXXHFFrq3/R4wb\nN45vvvnmkDPz588nOTn5gL+mgUCA1q1bU69evUN+7SmnnEKHDh2OOd/GjRupXLnyAdc2bNhApUqV\njvmZkiRJkiRJksLYvh0GDw6VX9LTw8/UrAkDB0KbNnCInbol5S0bt23k33P+zfAvhrNt97awMwEC\n/OXPf6F/s/4kVUqKcEJJOn5F+/PQQhFZRdIxmTdvXtjrmaWN+vXr5+r6DRo0YPLkydke0zR//vyY\nLcO88MILzJgx44hm9+8EBoNBkpOTSU5OPuTXXHDBBX+oDCNJkiRJkiQpQkqUgL594eabYcAAePZZ\n2LPnwJkVK6BdO2jUCJ58Eho3jk5WSRFVqWQlBl0yiHsa38NTc55i2BfD2Lpr6wEzQYK89vVrvP71\n61xX+zr6N+tP7cq1o5RYknSkPCZJimELFiw45P0zzjgjV9c/3PMPly/aAoFArr0kSZIkSZIkHWcq\nV4bhwyE1Fa69NvzMnDnQpEloh5i0tMjmkxQ1J5Q4gccufow1PdfQt2lfShUplWUmSJDXU1+nztN1\n+Msbf+HrDV9HIakk6UhZhpFiWFpa2iGLF7Vq1crV9WvWrJntvWAwyPLly3N1/T8qGAzm2kuSJEmS\nJEnScSoxESZOhFmzoGHD8DPJyVC7Ntx5J2zcGNl8kqKmYomKPHrxo6zpuYZ+5/WjdJHSWWaCBBmf\nOp46T9fhugnX8dWPX0UhqSTpcCzDSDFszZo1h7x/qLJKTsju+ZkFncPli7bc3BnG3WEkSZIkSZKk\n41yTJjB7NkyYAAkJWe/v2QMjRoTuPfYYbN8e+YySoqJiiYo8ctEjrOm1hv7N+lOmaJmwcxMWT+CM\nZ86g7fi2LPpxUYRTSpIOxTKMFKN+/PFHdu7cCZDtTiRVq1bN1Qzhnr9/lm3btvHTTz/laoZj9dFH\nH5GRkZFrrw8++CDab1GSJEmSJEnSHxUIQNu2sHgxDBkCFStmnUlPh379QjvKjB4NGRkRjykpOioU\nr8CACwewpuca/tHsH9mWYiYumciZz5xJm/FtWPjDwginlCSFYxlGilHr1q077Myf/vSnXM1wJM9f\nu3ZtrmaQJEmSJEmSpFxXpAj06AErV0Lv3lCsWNaZtWuha1eoXx+mTo18RklRU754eR668CHW9FzD\nP8//J2WLlg07l7wkmbrP1uXa169lwQ8LIpxSkrQ/yzBSjNq0aVOWa/sfzVOmTBkKFy6cqxmKFy9O\nqVKlsqy9v59//jlXM0iSJEmSJElSxJQtCwMHQloadOoU2jnmYIsWQatW0KIFLHQHCCk/KV+8PA9e\n8CBreq3hwfMfpFyxcmHn3lz6JvWercc1r13D/PXzI5xSkgSWYaSYFa4Ms78yZcJvxZfTDrfO4XJK\nkiRJkiRJ0nGnWjUYMwbmzYNLLgk/M3061KsHnTvDd99FNp+kqCpXrBz/vOCfrOm5hgEXDMi2FPPW\nsreo/9/6XP3a1cxbPy/CKSUpf7MMI8WoX375Jez1YDAIQOnSpSOS43DrbN68OSI5JEmSJEmSJCni\n6taFadNgyhSoUyfr/WAQxo6FxETo0wd+/TXyGSVFTdliZel/fn/W9FzDwxc+TPli5cPOvb3sbc76\n71lc9epVpKxLiXBKScqfLMNIMWrHjh2HvF+yZMmI5ChVqtTvBZxwdu7cGZEckiRJkiRJkhQVgQC0\nbAnz58OLL0LVqllndu6EQYOgZk0YNgx27Yp8TklRU7ZYWR5o9gBreq3hkQsfoULxCmHnJqdNpsFz\nDbjilSuYu3ZuhFNKUv5iGUaKUbt37872XiAQoFChQhHJcbh1dvkPdZIkSZIkSZLyg4IFoWtXWL4c\nHn0Uwu2q/dNP0KMH1K4Nb7wR2jlGUr5RpmgZ+jXrx5qea3jsoseyLcW8s/wdznn+HC5/5XK+WPtF\nhFNKUv5gGUaKUYcrmViGkSRJkiRJkqQoKFEC+vaFFSvgjjsg3L9DXbEC2rWDJk1g9uzIZ5QUVaWL\nlqbPeX1Y03MNAy8eSMXiFcPOvbv8Xc59/lwue/kyPv/+8winlKS8zTKMFKP27t17yPsFCxaMSI7D\nrXO4nJIkSZIkSZKUJ1WuDMOHQ2oqXHtt+Jk5c0KFmDZtQjvKSMpXShctTe+mvVnTaw2DLh7ECSVO\nCDv33or3aPhCQ1qNa8Wc7+ZEOKUk5U2WYaQYdbgdWfbs2RORHIdbp3DhwhHJIUmSJEmSJEkxKTER\nJk6EWbOgYcPwM8nJkJQE3bvDxo2RzScp6koVKcX9Te9ndc/VPHHJE9mWYqaunErjFxvTclxLZn/n\nrlKS9EdYhpFiVJEiRQ55P1JlmN27dx/yvmUYSZIkSZIkSeL/j0SaMAESErLe37MntJNMQgI89hhs\n3x75jJKiqlSRUtzb5F7W9FzDv5r/i8olK4edm7ZyGk1ebEKLl1rw6befRjilJOUNlmGkGHWoMkww\nGGTXrl0RyXG4MszhSjs6ctu2bTvmlyRJkiRJkqQYEAhA27aweDEMGQIVK2adSU+Hfv1CO8qMHg0Z\nGRGPKSm6ShYpyT2N72FVj1U82fzJbEsx01dNp+moplwy9hJmfTsrwiklKeR4/QzTMowUo0qWLBn2\neiAQAGDr1q0RyZGenv77muGUKlUqIjnyg/j4eEqVKnVML0mSJEmSJEkxpEgR6NEDVq6E3r2hWLGs\nM2vXQteuUL8+TJ0a+YySoq5kkZL8vfHfWd1zNU+1eIoTS54Ydu6D1R9w3qjzuHjsxXzyzScRTikp\nvzvWzy/j4+OjmtsyjBSjKlSocMj7W7ZsiUiOw61zuJySJEmSJEmSlG+VLQsDB8KyZdCpU2jnmIMt\nWgStWkGLFrBwYeQzSoq6EoVLcFeju1jVcxX/afkf/lTqT2HnPlz9IeePPp+LxlzEjDUzIpxSko4v\nlmGkGFUx3PaZ+/nll18ikuPXX3895P3D5dSRW716NVu3bj2mlyRJkiRJkqQYVr06jBkD8+bBJZeE\nn5k+HerVgy5d4LvvIhpPUmwoUbgEvRr2YlWPVQxuOZgqpaqEnftozUdcMOYCLhh9AR+v+TiyISXl\nO8f6+eXq1aujmtsyjBSjTjjhhCzXgsHg77/+7bffcn13mM2bN7Nr164sa+8vXE4dm5IlSx7zS5Ik\nSZIkSdJxoG5dmDYN3nsP6tTJej8YDJVmEhOhTx84zA8rSsqbihcuTs+GPVnZYyVDWg3JthQz45sZ\nXDjmQs4ffT4frf4o289yJOmPOF4/w7QMI8Wo6tWrH3bmxx9/zNUMR/L8atWq5WoGSZIkSZIkScpT\nAoHQsUjz58OLL0LVqllndu6EQYOgZk0YNgz2/dCipPyleOHi9Di3B6t6rmLYpcM4qfRJYec++eYT\nLhp7EeePPp8PV39oKUaSsAwjxaySJUv+fgRRINw5ssA333yTqxnWrFmT5dr+WSpXrkzx4sVzNYMk\nSZIkSZIk5UkFC0LXrrB8OTzyCJQunXXmp5+gRw+oXRsmTgztHCMp3ylWqBh3nnMnK3qsYPilw7Mt\nxcz8diYXj72YZqOb8f6q9y3FSMrXLMNIMSw+Pv6Qf1BZvnx5rq6/YsWKsNeDwSCBQID4+PhcXV+S\nJEmSJEmS8rwSJaBfP1ixAu64AwoVyjqzYgW0bQtNmsDs2ZHPKCkmFCtUjDvOuYOVPVYy4rIRnFzm\n5LBzs76dRfOXmtN0VFOmr5xuKUZSvmQZRophtWvXPuT9ZcuW5er6h3v+4fJJkiRJkiRJko5Q5cow\nfDikpkLr1uFn5swJFWLatAntKCMpXypaqCjdzu7Giu4rePryp6lWplrYudnfzabFuBY0ebEJ01ZO\nsxQjKV+xDCPFsPr16x/y/vz583N1/Xnz5h3yfr169XJ1fUmSJEmSJEnKdxITITkZZs6Ehg3DzyQn\nQ1ISdO8OGzdGNp+kmFG0UFFua3Aby7sv55nLn6F62eph5+Z8P4eW41rS+MXGTFkxxVKMpHzBMowU\nw7IrwwQCAYLBIAsWLMi1P7BkZGSwcOFCAoFAtjOWYSRJkiRJkiQplzRtGjoSacIESEjIen/PntBO\nMgkJ8NhjsH175DNKiglFCxXl1ga3srz7cp694llOKXtK2LnPvv+MS1++lEYvNOK95e9ZipGUp1mG\nkWJYgwYNKFasGMDvpZT9/2CydetWUlJScmXtL774gu37/uEpc839izHFixenQYMGubK2JEmSJEmS\nJAkIBKBtW1i8GIYMgYoVs86kp0O/fnDqqTB6NGRkRDympNhQpGAR/nbW30jrnsZzVz5HXLm4sHOf\nr/2cy165jHOfP5d3l79rKUZSnmQZRophRYsWpUmTJof8Q8j06dNzZe33338/7PVgMEggEOC8886j\ncOHCubK2JEmSJEmSJGk/RYpAjx6wYgXcfz8ULZp15vvvoWtXqF8fpk2LfEZJMaNIwSLcXP9m0u5M\n4/krn8+2FDN33Vwuf+Vyznn+HP6X9j9LMZLyFMswUoxr0aJFtveCwSDJycm5su4bb7xxyPvNmzfP\nlXUlSZIkSZIkSdkoVw4GDYK0NOjUKbRzzMEWLYKWLUOvhQsjn1FSzChcsDA31b+JtDvTeOGqF6hR\nvkbYuS/XfcmVr17J2c+dzeRlky3FSMoTLMNIMa5NmzZZrmXuzgIwb948li9fnqNrpqam8tVXXxEI\nBMIekRQIBGjbtm2OrilJkiRJQftUtwAAIABJREFUkiRJOkLVq8OYMZCSApdcEn5m2jSoVw+6dAnt\nGiMp3ypcsDA31ruRpXcsZdTVo0gonxB2LmV9Cle9dhUNnmvA28vethQj6bhmGUaKcTVq1KBhw4YH\nFGAONmzYsBxdc8iQIWGvZ2Zo3Lgx1atXz9E1JUmSJEmSJElHqV69UOnlvfegTp2s94PBUGmmVi3o\n2xd+/TXyGSXFjMIFC9OlbheW3rmU0VePzrYUM2/9PK5+7WrO+u9ZTFo6yVKMpOOSZRjpOHDjjTeG\nvZ65c8uoUaP48ccfc2SttWvXMm7cuGyLNwBdu3bNkbUkSZIkSZIkSX9QIACtWsH8+fDii1C1ataZ\nnTth4ECoWROGDYNduyKfU1LMKFSgEJ3rdmbpnUsZc80YalWoFXZu/g/zaf16a+r/tz5vLnmTvcG9\nEU4qScfOMox0HOjYsSOVK1cG/v+4ov1buNu3b6d37945stZ9993Hzp07D1hj/2LMiSeeSIcOHXJk\nLUmSJEmSJElSDilYELp2heXL4ZFHoHTprDM//QQ9ekDt2jBxYmjnGEn5VqECheh0ZicW37GYsdeM\nJbFiYti5BT8s4Nrx11Lv2XokL0m2FCPpuGAZRjoOFC1alJ49e2bZhi7z2KJgMMjYsWN56623/tA6\n48eP59VXX/39meHWuuuuuyhcuPAfWkeSJEmSJEmSlEtKlIB+/WDFCujWLVSSOdiKFdC2LTRtCrNn\nRz6jpJhSqEAhOp7ZkcXdFjOu9ThOrXhq2LlFPy6izfg21H2mLm8sfsNSjKSYZhlGOk706tWLatWq\n/V5K2V9meaVz587MnTv3mJ7/2WefcfPNN4d9dqZTTjmFHj16HNPzJUmSJEmSJEkRVLkyjBgBqanQ\nunX4mdmzoUkTaNMmtKOMpHytYIGCtD+jPandUnn52pc57YTTws59teEr2k1ox5nPnMmE1AmWYiTF\nJMsw0nGiePHiPPXUU7///uDjkgKBAFu2bKFFixa88847R/Xst956i1atWrFt27YDnpkps4Dz1FNP\nUbRo0T/yNiRJkiRJkiRJkXTqqZCcDDNnQsOG4WeSkyEpCbp3h40bI5tPUswpWKAgN9S5ga9v/5pX\nrn2F0084Pezc1xu+5ro3ruOMp89gfOp4SzGSYkogePCn3lIeMXPmTNLS0o7qa5YtW8aTTz55wDFB\n+5dOTjjhBAYOHHjUWS644AISEhKO+uvC6dChA6+88krYMsz+rr/+evr378+pp4bfyg5gyZIlPPTQ\nQ4wfPz7L8zKfmVmE6dChA2PGjMmR9yDYuHEjlStXPuDahg0bqFSpUpQSSZIkSZIkScrzgkGYOBF6\n94aVK8PPlC4dut+rV+jIJUn5XsbeDN5Y/AYDPhnA4o2Ls51LqpRE/2b9aZfUjoIFwhzRJilfifbn\noZZhlGd17do1JsobgUCAUaNG0alTpxx53rZt22jQoAHLli3LtsCy/7V69erRuHFj4uPjKVWqFOnp\n6axevZpPP/2UhQsXhv2azGuZv09KSuKLL76ghP/gk2PCffNfvXp12G/+JUuWjFQsSZIkSZIkSfnB\nrl3wzDMwYABs2hR+5uST4eGHoWNHKOiH2pJgb3BvqBQzYwCpG1OznTv9hNPp36w/19W+zlKMlE9k\nnkCyv40bNxIfH3/ANcswUg7ILMMcvGPK4Rzq/xLH8qycLsMAfPvtt5x33nl89913B+QKt0vMkbyf\nQ5Vp4uLimDlzJieddFKO5Vf4Mkx2/DYtSZIkSZIkKVf88gsMGgSDB8Nvv4WfOfNMeOIJaNEistkk\nxay9wb1MXDyRAZ8M4OsNX2c7d9oJp9G/WX/+UvsvlmKkPO5IP0ePZBmmQERWkaIsGAwe8SsSz/mj\nqlevzkcffUTNmjWzHOmU+fvMV+a1cK/9s2Zey3yfgUCAxMREPvzwQ4swkiRJkiRJkpQXlSsXKsOk\npUGnThDug6yFC6Fly9Br327jkvK3AoECtKvdjoW3LeSNdm9Qp3KdsHNLf1pK++T21B5Zm5cXvUzG\n3owIJ5WUn1mGUb5wqEJIbr1yW40aNZg7dy4tW7Y8ZAHmSP+6HPz1l156KV988QVxcXG5/l4Usnr1\narZu3ZrlJUmSJEmSJEm5qnp1GDMGUlLgkkvCz0ybBvXqQZcu8P33EY0nKTYVCBSgTVIbFty2gInX\nTeSME88IO7ds0zI6vNmBpJFJvLTwJfbs3RPhpJJyW7jPOFevXh3VTJZhlOcdzW4uOf3KbWXLluXd\nd99l9OjRnHjiiQfs7HK4HOFmAoEAJ554ImPHjuV///sfZcqUyfX3oP9XsmTJsC9JkiRJkiRJioh6\n9UKll/fegzphdnoIBkOlmVq1oG9f+PXXyGeUFHMKBApw7enXMv/W+SRfl0zdP9UNO5e2KY1OkzqR\nNCKJsQvHWoqR8pBY/JzTMozytGjsCBPpHWIAOnbsyKpVqxgxYgRJSUlZ1s+uqLP/XO3atRk5ciSr\nV6+mffv2EcktSZIkSZIkSYoxgQC0agXz58OLL0LVqllndu6EgQOhZk0YPhx27458Tkkxp0CgAK1P\nb828v81j0l8mZVuKWf7zcjpP6szpI05nzIIxlmIk5YpAMBLbV0iKqBUrVjBlyhTmzZtHamoqa9eu\nJT09ne3bt1OiRAlKly7NySefTFJSEvXr1+fSSy8lISEh2rHzlY0bN1K5cuUDrm3YsIFKlSpFKZEk\nSZIkSZIkhbF9O/znP/D445CeHn6mVq1QOebaa0NlGkki9MPak9Mm8+DHDzL/h/nZziWUT6Dfef3o\ncEYHChcsHMGEknJTtD8PtQwjSVEQ7W/+kiRJkiRJknRUNmyAhx6CZ5+FjIzwM40bw7/+FfpPSdon\nGAzyv7T/8dCMh0hZn5LtXI3yNeh3Xj86ntHRUoyUB0T781CPSZIkSZIkSZIkSdKhVa4MI0ZAaiq0\nbh1+ZvZsaNIE2raF5csjm09SzAoEAlx56pXMvWUuk6+fTIOqDcLOrdq8ipvevolTh5/KC/NeYHeG\nR7BJOnaWYSRJkiRJkiRJknRkTj0VkpNh5kxo2DD8zMSJkJQE3bvDxo2RzScpZgUCAa5IvIIvbv6C\nd254h7Ornh12bvUvq7l58s0kDk/kuZTn2JWxK8JJJeUFlmEkSZIkSZIkSZJ0dJo2De0EM348JCRk\nvb9nDwwfDjVrwsCBsGNH5DNKikmBQIDLal3G5zd/zrs3vMu5J50bdm7NL2v42//+RuKwRP6b8l9L\nMZKOimUYSZIkSZIkSZIkHb1AANq1g8WLYcgQqFgx68yWLdC3LyQmwpgxkJER+ZySYlIgEODSWpcy\n56Y5vNf+PRqeHH63qW9+/YZb/3crtYbV4tkvn7UUI+mIWIaRJEmSJEmSJEnSsStSBHr0gBUr4P77\noWjRrDPffw9dusBZZ8G0aRGPKCl2BQIBWtVsxewbZzO1w1Qandwo7Ny3v37Lbe/cRs2hNXl67tP8\ntue3CCeVdDyxDCNJkiRJkiRJkqQ/rlw5GDQI0tKgY8fQzjEHW7gQWrYMvRYujHxGSTErEAjQIqEF\nn974KdM6TKNxtcZh577b8h3d3u1GzWE1GTl3pKUYSWFZhpEkSZIkSZIkSVLOqV4dxo6FlBS4+OLw\nM9OmQb16od1ivv8+ovEkxbZAIEDzhObM6jqL6R2n07R607Bz32/5njvevYOEoQmM+GIEO/fsjHBS\nSbHMMowkSZIkSZIkSZJyXr16MH06vPce/PnPWe8HgzBmDNSqBX37wq+/Rj6jpJgVCAS4pMYlfNLl\nEz7o9AHnVT8v7Nza9LXc+d6dJAxNYNjnwyzFSAIsw0iSJEmSJEmSJCm3BALQqhUsWAAvvABVq2ad\n2bkTBg6EmjVh+HDYvTvyOSXFrEAgwEXxFzGjyww+7PQhzU5pFnZuXfo6ekzpQcLQBIZ+PpQdu3dE\nOKmkWGIZRpIkSZIkSZIkSbmrYEG48UZYvhweeQRKlco689NP0L071K4NycmhnWMkaZ9AIMCF8Rcy\no8sMPur8ERfEXRB2bl36OnpO6UnC0ASGfDbEUoyUT1mGkSRJkiRJkiRJUmSUKAH9+sHKldCtW6gk\nc7Dly6FNG2jaFGbPjnxGSTHvgrgL+KjzR3zc+WMujLsw7Mz6revpNbUXNYbW4D9z/sP23dsjnFJS\nNFmGkSRJkiRJkiRJUmRVrgwjRkBqKrRuHX5m9mxo0gTatg0VZCTpIOfHnc+HnT9kRpcZXBR/UdiZ\nH7b+wN3T7qbGkBo8NecpSzFSPmEZRpIkSZIkSZIkSdFx6qmhI5FmzoRzzw0/M3EiJCVBjx6wcWNk\n80k6LjQ7pRkfdPqAmV1nckmNS8LO/LjtR/4+7e/ED4nn37P/zbZd2yKcUlIkWYaRJEmSJEmSJElS\ndDVtCnPmwPjxkJCQ9f6ePTBsGNSsCQMHwo4dkc8oKeY1rd6U6R2nM6vrLJrXaB52ZsO2Ddwz/R7i\nh8Tz5OwnLcVIeZRlGEmSJEmSJEmSJEVfIADt2sHixTB4MFSokHVmyxbo2xcSE2HMGMjIiHxOSTGv\nSfUmTOs4jU9v/JQWCS3CzmzcvpF7p99L/JB4nvj0Cbbu2hrhlJJyk2UYSZIkSZIkSZIkxY4iRaBn\nT1i5Eu6/H4oWzTrz/ffQpQucdRZMnx7xiJKOD42rNWZqh6nMvnE2LRNahp3ZuH0j979/P/FD4nl8\n1uOWYqQ8wjKMJEmSJEmSJEmSYk+5cjBoEKSlQceOoZ1jDrZwIbRoAS1bwqJFkc8o6bjQqFojpnSY\nwpyb5nBpzUvDzvy0/Sd6f9CbuMFxDJo1iPTf0iOcUlJOsgwjSZIkSZIkSZKk2FW9OowdCykpcPHF\n4WemTYO6daFr19CuMZIURsOTG/Ju+3f5/ObPuazWZWFnNu3YRJ8P+hA3JI7HZj7Glt+2RDilpJwQ\nCAaDwWiHkKT8ZuPGjVSuXPmAa6tXr6ZSpUpZZkuWLBmpWJIkSZIkSZIU24JBmDoV7r0Xvv46/Eyx\nYnDXXdC7N5QpE9l8ko4rc9fO5aEZD/HO8neynalQvAJ3N7yb7ud2p0xRv6dI4Wzbti3LtY0bNxIf\nH3/AtQ0bNoT9PDQ3WIaRpCgIV4bJjt+mJUmSJEmSJOkgGRkwZgz07w/r1oWfOeEE+Oc/4dZboXDh\nyObLYcFgkG+++YYNGzawY8cOdu7cCUCxYsUoXrw4lStX5pRTTiEQ7igpSYf15bovGTBjAJPTJmc7\nU75Yee5udDfdz+lO2WJlI5hOin1H+vcfyzCSlMdZhpEkSZIkSZKkHLBtGwweDIMGwdat4Wdq1Qrd\nb90ajoOySDAYZPXq1aSkpPDll1+SkpLCvHnz2Lx58yG/rnz58px11lkHvOLj4y3ISEchZV0KAz4Z\nwNvL3s52plyxctzV8C56ntszoqWYYDDI9u3bI7ZeLCpRooTf02KUZRhJEuAxSZIkSZIkSZKUozZs\ngIcegmefDe0aE07jxvDkk9CoUWSzHaG1a9fy3HPP8dxzz7EuzG43RYAqQHGg2L5rO4EdwHpgV5hn\nVq1alVtuuYW//e1vVK1aNZeSS3nPvPXzGDBjAG8teyvbmXLFytHr3F70bNiTcsXK5Xqmbdu2UapU\nqVxfJ5Zt3brVz81ilMckSZKA8GWYSH7zlyRJkiRJkqQ8adky6N0bJk3KfqZNGxg4MLRjTJQFg0E+\n+ugjRo4cyaRJk8jYV+QpApwBnLXf68/7roezC/gaSNn3+hL4iv8vyBQsWJDWrVvTrVs3LrjgAndW\nkI7Qgh8WMGDGAN5c+ma2M2WLlqVXw170atgrV0sxlmEswxxvov15qGUYSYqCaH/zlyRJkiRJkqQ8\nbdYsuOce+Pzz8PcLFYLbb4d//ANOOCGy2QiVYF599VUefvhhli5d+vv1ZsDtQGug6B9c4zfgTWAk\nMHO/66eddhr9+/fn+uuvtxQjHaGFPyxkwCcDSF6SnO1MmaJl6HluT+5qeBfli5fP8QwHlGHuIft2\nXF6zC3gy9EvLMMeXaH8eahlGkqIg2t/8JUmSJEmSJCnPCwbhjTdCO8WsWhV+pkyZ0P1evaB48YjE\nWr9+PbfeeiuTJ08GoBTQiVAJ5s+5tOZXwNPAS8DWfdeuuuoqnnnmGapUqZJLq0p5z6IfFzFgxgAm\nLpmY7UyZomXocU4P7mp0FxWKV8ixtQ8ow/Qlf5VhHgv90jLM8SXan4cWiMgqkiRJkiRJkiRJUiQF\nAtCuHSxZAoMHQ4UwH0pv2QJ9+0JiIowZA/uOKcoNwWCQl156iaSkJCZPnkxh4GFgHTCC3CvCANQh\ntEPMun1rFgbefvttateuzbhx4/Bn56Ujc8aJZ/DGdW+w6LZFtEtqF3Zmy29beGTmI8QNjuOBDx9g\n0/ZNEU4pCSzDSJIkSZIkSZIkKS8rUgR69oSVK+G++6BomAOIvv8eunSBs86C6dNzPML69eu5+uqr\n6dSpE7/88gtnAfOAB4DSOb5a9krvW3MecBawefNmOnbsyDXXXMP69esjmEQ6vtU5sQ7j243nq9u/\n4rra1xEg65Fj6bvSeXTmo8QNiaPvB335aftPUUgq5V+WYSRJkiRJkiRJkpT3lSsHjz8OaWnQsWNo\n55iDLVwILVpAq1awaFGOLJuamkqDBg1+3w3mEWAOubsTzOH8eV+G/XeJadCgAYsXL45iKun48+fK\nf+b1tq/z1e1f8Zfafwlbitm6aysDZw0kfkg8fd7vYylGihDLMJIkSZIkSZIkSco/qleHsWMhJQUu\nvjj8zNSpULcudO0a2jXmGM2dO5dmzZqxbt06TgdSgH6ECijRVpjQLjEpwOnAunXraNasGXPnzo1u\nMOk4VLtybV5r+xpfd/uav/75r9mWYgZ9Ooi4wXH0fr83G7dtjEJSKf+wDCNJkiRJkiRJkqT8p169\n0JFI770Hfw6zT0swCKNHQ2Ii9OsHW7Yc1ePnzp3LxRdfzM8//8zZwEygTk7kzmF1CGU7G9i0aRMX\nX3yxhRjpGCVVSuLVNq+S2i2VG+rcELYUs233Nh7/9HHih8Rz3/T72LBtQxSSSnmfZRhJkiRJkiRJ\nkiTlT4FA6EikBQvghRegatWsMzt2wGOPQUICDB8Ou3cf9rGpqam0atWK9PR0zgc+ACrmePicU5FQ\nxmZAeno6rVq18sgk6Q84vdLpvHztyyy+YzHt67SnQCDrx/Lbdm/jX7P/RfyQeO6ddq+lGCmHWYaR\nJEmSJEmSJElS/lawINx4I6SlwcMPQ6lSWWd++gm6d4fatSE5ObRzTBjr16+nRYsW/Pzzz5wDTAZK\n52r4nFEa+B+hHWJ+/vlnmjdvzvr166OcSjq+nXbCaYy7dhyLuy2mwxkdwpZitu/ezpNzniR+SDz3\nTLuHH7f+GIWkUt5jGUaSJEmSJEmSJEkCKFkSHngAVqyAbt1CJZmDLV8ObdrAeefBnDkH3AoGg9x6\n662sW7eO04F3OT6KMJlKA+8BpwPr1q3jtttuI5hN6UfSkTv1hFN5qfVLLLljCZ3O7JRtKebfc/5N\n/JB4/j717/yw9YcoJJXyDsswkiRJkiRJkiRJ0v5OPBFGjIDUVLjmmvAzn34KjRtD27ah8gzw8ssv\nM3nyZAoDrxPbRyNlpyKh7IWBt99+m5dffjnKiaS8I7FiImOuGcPSO5bS+czOFAxkLdzt2LODpz57\nivgh8dw15S7Wp7tDk3QsLMNIkiRJkiRJkiRJ4Zx6Krz5JnzyCZx7bviZiRPh9NNZf9NN9OjeHYB/\nAnUilzLH1QH+se/XPXr08LgkKYfVqliL0deMZumdS+lSt0vYUszOPTsZ/PlgagytQa8pvfgh3Z1i\npKNhGUaSJEmSJEmSJEk6lMwjkcaPhxo1stwO7tnDrS++yOZffuEs4P7IJ8xx9wP1gc2bN3tckpRL\nalaoyairR7HszmXcWPfGbEsxQz4fQtLIpCgklI5flmEkSZIkSZIkSZKkwwkEoF07WLIEBg+GChV+\nv/UqMBkoAowGCkUnYY4qTOi9ZB6X9Oqrr0Y3kJSHJVRI4IWrXyCtexo31buJQgWyfhfZ9X/s3Xl0\nVeW9//H3CYNgGEQEZZ4EBFRUUOqE3Itoq0JF7W0Rq+IVUKzgrdNdt2Kr2K6K/qpgFZQ6VQFbJxRp\nexUHoF5lpmJAsAhhtASJAmEIkP374xAEOSeQ5Jy9T5L3a62zTPZ52Pu7N8tvds7+8Dx7CyOoTKq4\nDMNIkiRJkiRJkiRJR6pmTRgxAlasgLvuIqhZk1H73hoJnBxlbSl2CvFzAnjggQecHUZKs7YN2vKH\nfn9g+c+Wc+PpNyYMxUg6MoZhJEmSJEmSJEmSpNI65hh48EE+eP55PgPqACOirikNRhA/t6VLlzJj\nxoyoy5GqhDYN2jCh3wQ+v/VzhpwxxFCMVAaGYSRJkiRJkiRJkqQyevyVVwC4FqgbbSlpUQ/46b6v\nH3/88ShLkaqc1se05sm+T/LPW//JDaffEHU5UoViGEaSJEmSJEmSJEkqg3Xr1jFlyhQAbo64lnQq\nPrfXX3+d9evXR1qLVBW1OqYVY38wNuoypArFMIwkSZIkSZIkSZJUBhMmTGDv3r2cD5wcdTFpdApw\nHrB3714mTJgQdTmSJB2WYRhJkiRJkiRJkiSplIIg2B8MGRZxLWEoPscJEyYQBEGktUiSdDiGYSRJ\nkiRJkiRJkqRSWrlyJevXr6cm0D/qYkJwBVCD+NJQq1atirgaSZJKZhhGkiRJkiRJkiRJKqX58+cD\ncCpwVLSlhOIo4ucK3567JEmZyjCMJEmSJEmSJEmSVErFgZBuEdcRpuJzNQwjScp0hmEkSZIkSZIk\nSZKkUpo3bx5QNcMwxecuSVKmqh51AZKkuIKCAo4++uhDtmdnZ0dQjSRJkiRJkiQpmSAIWLBgAVA1\nwzDz588nCAJisVik9UiSMkNBQcERbQuTYRhJyhBt2rRJuD0IgpArkSRJkiRJkiSVJDc3l/z8fGoC\nJ0ddTIhOBmoA+fn55Obm0rp164grkiRlgjp16kRdwiFcJkmSJEmSJEmSJEkqhY0bNwLQBKgZbSmh\nOor4OQPk5eVFWYokSSVyZhhJyhArV66kUaNGUZchSZIkSZIkSTqMHTt2AFA74jqiUHzOxddAkqRt\n27Ydsi0vLy/pyhhhMAwjSRkiOzub7OzsqMuQJEmSJEmSJB3Gzp07AagVcR1RKD5nwzCSpGKJnnFu\n3749gkq+5TJJkiRJkiRJkiRJkiRJqjQMw0iSJEmSJEmSJEmlUKtWfH6UnRHXEYXic65duyouEiVJ\nqigMw0iSJEmSJEmSJEmlUBwEqYoLBRWfs2EYSVImMwwjSZIkSZIkSZIklULjxo0B2AAURltKqHYR\nP2eARo0aRVmKJEklMgwjSZIkSZIkSZIklUKrVq1o0KABhcCnURcTok+B3UCDBg1o1apV1OVIkpSU\nYRhJkiRJkiRJkiSpFGKxGGeccQYA8yOuJUzF59qtWzdisViktUiSVBLDMJIkSZIkSZIkSVIpde/e\nHaiaYZjic5ckKVMZhpEkSZIkSZIkSZJKqVu3bkDVDMMUn7skSZnKMIwkSZIkSZIkSZJUSsWBkE+A\nXdGWEopdxM8VDMNIkjKfYRhJkiRJkiRJkiSplNq0aUPTpk0pBF6PupgQvAbsBpo1a0br1q0jrkaS\npJIZhpEkSZIkSZIkSZJKKRaLMXjwYACeiLiWMBSf4+C+fYnFYpHWIknS4RiGkSRJkiRJkiRJkspg\n8ODBVKtWjVnA4qiLSaPFwN+BasDg8eOhVy947TXYuzfawiRJSsIwjCRJkiRJkiRJklQGzZo14/LL\nLwdgfMS1pNO4ff/tDzQFmDEDrrwS2rWDhx+G/PzoipMkKQHDMJIkSZIkSZIkSVIZ3XLLLQD8Edga\nbSlpsQV4Yd/Xt3z3zdxcuPNOaN4cbr4Zli4NtzhJkpIwDCNJkiRJkiRJkiSVUa9evTjppJPYBoyJ\nupg0GANsAzo1asQFxx+feND27TB+PHTuDBdfDNOmQVFRmGVKknQQwzCSJEmSJEmSJElSGcViMUaO\nHAnA/cCn0ZaTUouBUfu+vufRR4mtXg0vvADduyf/Q2+/DZddBiedBI89Blsr43w5kqRMZxhGkiRJ\nkiRJkiRJKocBAwbQt29fdgPXA7sjricVDjyXfv36MWDAAKhZE665BubMgf/7P/jxj6FatcQ7+Pxz\nGD4cmjWD226DFSvCK16SVOUZhpEkSZIkSZIkSZLKIRaL8eSTT9KgQQPmA6OjLigFHgQWAA0aNGD8\n+PHEYrFv34zF4Oyz4aWXYNUq+J//gYYNE+9o61YYMwbat4e+fWH6dAiCEM5AklSVGYaRJEmSJEmS\nJEmSyqlJkyaMHTsWgPuILzFUUX1CfMkngLFjx9KkSZPkg5s3h1//GtasgaefhlNPTTwuCOCtt6BP\nHzjlFHjqKdi+PdWlS5IEGIaRJEmSJEmSJEmSUmLgwIH7l0v6MfBV1AWVwVfAT/h2eaSBAwce2R+s\nXRtuuAEWLYL334fLL4esJI8ic3Jg6NB4kObuu2H16hRVL0lSnGEYSZIkSZIkSZIkKQWKl0tq2rQp\nS4EfAFujLqoUthKveSnQtGnTQ5dHOhKxGPTqBa+/Dv/8J9x+O9Svn3hsfj6MHg1t2sBVV8GsWS6h\nJElKCcMwkiRJkiRJkiRJUoo0adKEt99+m2OPPZa5QF8qRiBmK3AZMBdo2LAh77zzTsnLIx2JNm3g\n4Ydh7Vp44gk46aTE44qK4NVXoWdP6NYNnnsOdu4s37ElSVWaYRhJkiRJkiRJkiQphbp06cLf/vY3\n6tatywygN5m9ZNIm4N+BmUDdunX561//SufOnVN3gDp14Oab48sj/e1vcMklyccuXAiDBkHLlnDv\nvbBhQ+rqkCRVGYZhJEmSJEmSJEmSpBQ788wzeffdd/fPEHM+sDjqohL4BOgJzCM+I8x7773HmWee\nmZ6DZWXBxRfDtGmwbBnjMqyTAAAgAElEQVT87GfxoEwieXkwalQ8FDNwIMyZk56aJEmVkmEYSZIk\nSZIkSZIkKQ3OPPNMZs2aRdOmTVkKdAMeAHZHXBfEaxgFdAeWAk2bNmXmzJl07949nAI6dIDHHosv\nofTII9C2beJxe/bApEnQowecfTZMngy7M+EKSpIymWEYSZIkSZIkSZIkKU06d+7MvHnz6NevH7uB\nkcD3gE8jrGnxvhruJR6K6devH/PmzUvt0khHqn59uO02WL4c3ngDevdOPvbjj+Hqq6F1a3jggfjs\nMZIkJWAYRpIkSZIkSZIkSUqjJk2aMGXKFF544QUaNGjAAuAM4jOzbAmxji37jtkNWAA0aNCAF198\nkSlTptCkSZMQK0mgWjXo1w+mT4fFi2HwYKhVK/HY9eth5Eho0QJuuAEWLQq3VklSxjMMI0mSJEmS\nJEmSJKVZLBbjmmuuIScnh759+7Kb+MwszYBhxGdrSZfFwM37jnXgbDA5OTkMHDiQWCyWxqOXwckn\nw1NPxZdQ+u1v46GXRHbtgmefhdNPhwsugNdeiy+rJEmq8gzDSFKGKCgoSPiSJEmSJEmSJFUeTZo0\n4Y033mDixIl06tSJbcA44FSgJzAZ2JWC4+zat6/z9+17PLAN6NSpExMnTsyM2WAOp2FDuPtu+OIL\nePllOO+85GNnzoQrr4QTT4SHHoL8/PDqlKQqLhOfc8aCIAgirUCSqqC8vDwaN258RGNt05IkSZIk\nSZJUOQVBwAcffMATTzzB66+/zt69ewGoCZxCfDmj4tcp+7YnUkh89pf5B7w+IT4DDED16tXp378/\nw4YN44ILLsi8mWBKY8ECGDsWJk+GwsLk444+Gq69Fm69FTp3Dq8+KU0KCgqoU6dO/Jv/IXlDqGwK\ngd/Ev9y2bRvZ2dmRlqPEjvTnysaNG2nUqFGaq4kzDCNJETAMI0mSJEmSJEk60Pr165kwYQITJkxg\n3bp1h7xfA2gC1AZq7du2E9gBbODb4MuBmjVrxuDBgxk8eDBNmzZNU+UR+de/4MknYdw4+PLLksf2\n6QMjRsAPfgBZLpyhiumgMMwdVK0wzMPxLw3DZC7DMJIkIHEYZuXKlQmbvz/UJUmSJEmSJKnqCIKA\nVatWMX/+fObNm8f8+fOZP38++YdZ9qdBgwZ0796dbt267X+1bt26Ys8CcyQKC+NLKI0ZA3Pnljz2\nxBPjM8Vcfz3UqxdKeVKqHBSGqaIMw2SuREsi5eXl0aZNm4O2GYaRpEouURgmzOYvSZIkSZIkSao4\ngiAgNzeXvLw8duzYwY4dOwCoXbs2tWvXplGjRrRq1aryB19KEgTw8cfxJZReeQX27Ek+tm5duOEG\n+NnP4gEZqQIwDGMYpqKJ+nmoYRhJikDUzV+SJEmSJEmSpEpr3Tp44on4MkpffZV8XCwGl14aX0Kp\nd+/491KGCoKA7du3R11GpI4++uiqHfqrYKJ+HmoYRpIiEHXzlyRJkiRJkiSp0tuxAyZPji+h9Mkn\nJY/t3BmGD4ef/hSOPjqc+iSpEov6eWhWKEeRJEmSJEmSJEmSpDDVrh1fDmnRIvjgA+jfH7KSPB5d\nsgRuugmaN4e774bc3FBLlSSllmEYSZIkSZIkSZIkSZVXLAYXXACvvQYrVsDtt0P9+onH5ufD6NHQ\nti1cdRXMmgUutCFJFY5hGEmSJEmSJEmSJElVQ+vW8PDDsHYtPPEEnHRS4nFFRfDqq9CzJ3TrBs89\nBzt3hlmpJKkcDMNIkiRJkiRJkiRJqlrq1IGbb4acHPjf/4VLLkk+duFCGDQIWraEkSNh/frw6pQk\nlYlhGEmSJEmSJEmSJElVU1YWXHQRTJsGy5bBrbfGgzKJ5OXBAw9Aq1Zw9dUwe3a4tUqSjphhGEmS\nJEmSJEmSJEnq0AHGjo0vofTII9C2beJxe/bA5Mnwve/FX5MnQ2FhuLVKkkpkGEaSJEmSJEmSJEmS\nitWvD7fdBsuXw5tvQu/eycfOnh2fJaZ16/isMXl5oZUpSUrOMIwkSZIkSZIkSZIkfVe1atC3L0yf\nDosXw5AhULt24rEbNsDIkdCiBQwaBIsWhVurJOkghmEkSZIkSZIkSZIkqSQnnwxPPglr1sBvfxsP\nvSSyaxc89xycfjpccAG8+mp8WSVJUqgMw0iSJEmSJEmSJEnSkWjYEO6+G774Al5+Gc4/P/nYmTPh\nqqugXTt46CHIzw+vTkmq4gzDSJIkSZIkSZIkSVJpVK8eD7rMnAnz58N110HNmonHrl4Nd90FzZvD\nTTfBkiXh1ipJVZBhGEmSJEmSJEmSJEkqqzPOiC+NtHo13H8/nHBC4nHbt8eXWurSBS66CN56C4qK\nQi1VkqoKwzCSJEmSJEmSJEmSVF7HHw8jR0JuLrz4Ipx5ZvKx77wDfftCx44wdixs2RJenZJUBRiG\nkSRJkiRJkiRJkqRUqVkTBg6EOXPgo4/gJz+JL6uUyD//CSNGxJdQGjEi/r0kqdwMw0iSJEmSJEmS\nJElSOnzvezB5MqxaBb/4BRx3XOJxW7fGZ4jp0CE+Y8w770AQhFqqJFUmhmEkSZIkSZIkSZIkKZ2a\nNYMHHoDVq+Hpp+HUUxOPCwJ46y246CI4+WR48kkoKAi3VkmqBAzDSJIkSZIkSZIkSVIYateGG26A\nRYvggw+gf3/ISvLIdskSuOkmaNEC7roLcnNDLVWSKjLDMJIkSZIkSZIkSZIUplgMLrgAXnsNVqyA\nO+6AY45JPDY/Hx56CNq2hSuvhJkzXUJJkg7DMIwkSZIkSZIkSZIkRaV163jYZe1aeOIJOOmkxOOK\niuLhmQsugDPOgGefhZ07Qy1VkioKwzCSJEmSJEmSJEmSFLXsbLj55vjySP/7v3DJJcnHLloUX26p\nZUsYORLWrw+vTkmqAAzDSJIkSZIkSZIkSVKmiMXgootg2jRYvhxuvRXq1Ek8Ni8PHngAWrWCq6+G\n2bPDrVWSMpRhGEmSJEmSJEmSJEnKRO3bw9ix8SWUHn0U2rVLPG7PHpg8Gb73PejRAyZNgsLCcGuV\npAxiGEaSJEmSJEmSJEmSMln9+jBiBCxbBm++Cb17Jx87Zw4MHAitW8OoUbBxY2hlSlKmMAwjSZIk\nSZIkSZIkSRVBtWrQty9Mnw6ffgpDhkDt2onHbtgA994LLVvCoEGwaFG4tUpShAzDSJIkSZIkSZIk\nSVJF06ULPPlkfAmlBx+EFi0Sj9u1C557Dk4/HXr2hFdfjS+rJEmVmGEYSZIkSZIkSZIkSaqojj0W\n7roLvvgCXn4Zzj8/+dhZs+Cqq6BdOxg9GjZvDq9OSQqRYRhJkiRJkiRJkiRJquiqV48HXWbOhAUL\n4PrroWbNxGNXr4a774bmzeGmm2DJklBLlaR0MwwjSZIkSZIkSZIkSZXJ6afDs8/CmjVw//1wwgmJ\nx+3YEV9qqUsX6NMH3noLiorCrVWS0sAwjCRJkiRJkiRJkiRVRo0bw8iRkJsLEyfCWWclHzt9OvTt\nCx06wJgxsGVLeHVKUooZhpEkSZIkSZIkSZKkyqxmTbj6apg9Gz76CAYMiC+rlMiKFXDbbfEllEaM\ngM8/D7dWSUoBwzCSJEmSJEmSJEmSVFV873swaRKsWgW/+AUcd1zicVu3wtix0LEjXHYZvPMOBEGo\npUpSWRmGkSRJkiRJkiRJkqSqplkzeOABWLMGnnkGunZNPC4IYNo0uOgi6NIFxo+HgoJwa5WkUjIM\nI0kZoqCgIOFLkiRJkiRJkiQpbWrVgkGDYOFC+OADuOIKyEryGHnpUrj55vgSSnfdBbm5oZYqKTNl\n4nPOWBA4l5UkhS0vL4/GjRsf0VjbtCRJkiRJkiRJCtWqVfD44/CHP8DXXycfl5UFl18Ow4dDz54Q\ni4VWoqTMETvC//c3btxIo0aN0lxNnDPDSJIkSZIkSZIkSZK+1bo1PPQQrF0L48ZBp06JxxUVwWuv\nQa9ecPrp8OyzsHNnmJVKUkLODCNJEUg0M8zKlSsTJiGzs7PDKkuSJEmSJEmSJOlQQQDTp8OYMTBt\nWsljjzsOhg6FYcOgadNw6pMUqURLIuXl5dGmTZuDtoU5M4xhGEmKQKIwTJjNX5IkSZIkSZIkqUw+\n/xweeyw+C8y2bcnHVa8OP/pRfAml730vvPokZYSon4e6TJIkSZIkSZIkSZIk6ci0bw9jx8K6dfDo\no9CuXeJxe/bA5Mlw9tnQowdMmgSFheHWKqnKMgwjSZIkSZIkSZIkSSqdevVgxAhYtgymToULL0w+\nds4cGDgQWreGUaNg48bQypRUNRmGkSRJkiRJkiRJkiSVTbVqcNll8M478OmnMGQI1K6deOyGDXDv\nvdCiBVx/PSxcGGqpkqoOwzCSJEmSJEmSJEmSpPLr0gWefBLWroUHH4yHXhIpLITnn4czzoCePeHV\nV+PLKklSihiGkSRJkiRJkiRJkiSlzrHHwl13wRdfwCuvwPnnJx87axZcdRW0awejR8PmzeHVKanS\nMgwjSZIkSZIkSZIkSUq96tXhyith5kxYsCC+NFLNmonHrl4Nd98NzZvD0KGQkxNqqZIqF8MwkiRJ\nkiRJkiRJkqT0Ov10ePZZWLMGRo2CJk0Sj9uxA556Ck4+Gfr0galToago3FolVXiGYSRJkiRJkiRJ\nkiRJ4WjcGO65B1atgokT4ayzko+dPh369YMOHWDMGNiyJbQyJVVshmEkSZIkSZIkSZIkSeGqWROu\nvhpmz4aPP4YBA+LLKiWyYgXcdhs0awbDh8Pnn4dbq6QKxzCMJEmSJEmSJEmSJCk6PXrApEnx2WLu\nuQeOOy7xuG3b4LHHoGNHuOwyePttCIJQS5VUMRiGkSRJkiRJkiRJkiRFr1kzGDUK1qyBZ56Brl0T\njwsCmDYNLr4YunSBceOgoCDcWiVlNMMwkiRJkiRJkiRJkqTMUasWDBoECxfCjBlwxRWQleTR9tKl\nMGwYNG8Od94Zn11GUpVnGEaSJEmSJEmSJEmSlHliMejZE159FVasiIddjjkm8divv4aHH4Z27eLh\nmRkzXEJJqsIMw0iSJEmSJEmSJEmSMlvr1jB6NKxdG18WqVOnxOOKiuD116FXLzj99PhySzt3hlmp\npAxgGEaSJEmSJEmSJEmSVDFkZ8NNN0FODrz9Nlx6afKx//gH/Od/QosWcM89sG5deHVKipRhGEmS\nJEmSJEmSJElSxRKLQZ8+8NZbsHw5DB8OdesmHrtpE/z61/HZZQYMgI8/DrVUSeEzDCNJkiRJkiRJ\nkiRJqrjat4cxY+JLKD36KLRrl3jcnj3w0ktw9tnQowdMnAiFheHWKikUhmEkSZIkSZIkSZIkSRVf\nvXowYkR8ppipU+HCC5OPnTMHrrkmPlvMqFGwcWNoZUpKP8MwkiRJkiRJkiRJkqTKIysLLrsM3nkH\ncnJg6FCoXTvx2A0b4N57oUULuP56WLgw1FIlpUcsCIIg6iIkqarJy8ujcePGB23buHEjjRo1iqgi\nSZIkSZIkSZKkSmzzZnj6afj972H16pLHnndefIaZyy+H6tXDqS/DBEFAbm4uGzduZMeOHezcuROA\nWrVqUbt2bRo3bkyrVq2IxWIRV6pMFfXzUMMwkhSBqJu/JEmSJEmSJElSlbRnD7zxBowdCzNnljy2\nZUu45Ra48UY49thw6otAEASsXLmS+fPnM2/ePObPn8+CBQvIz88v8c81aNCAbt26HfRq06aNARkB\n0T8PNQwjSRGIuvlLkiRJkiRJkiRVeQsXxkMxkyZBYWHycbVrw09/CsOHQ5cu4dWXZuvWrWPChAlM\nmDCB9evXH/J+TaAJUBuotW/bTmAHsAFIdMWaNm3K4MGDGTJkCE2bNk1T5aoIon4eahhGkiIQdfOX\nJEmSJEmSJEnSPhs3wlNPwRNPwIYNJY/t3Tu+hNKll0JWVjj1pVAQBLz//vs88cQTTJkyhb179wLx\n4MupQLcDXifv255IIfApMH/fax6wmG8DMtWqVaN///4MGzaMXr16OVtMFRT181DDMJIUgaibvyRJ\nkiRJkiRJkr6jsBBefRXGjIHZs0se264d/OxnMGgQ1K8fTn3lEAQBkydPZtSoUXz22Wf7t/cEbgb6\nA0eV8xi7gNeBJ4BZB2w/6aSTGDlyJAMGDDAUU4VE/TzUMIwkRSDq5i9JkiRJkiRJkqQSzJ4dX0Lp\nz3+GPXuSj6tTB66/Hm69FTp0CK280tiwYQNDhw5l6tSpANQBriUegjk5TcdcDIwDXgC27dvWr18/\nxo8fT5MmTdJ0VGWSqJ+HVrx5myRJkiRJkiRJkiRJSqcePWDiRMjNhXvugWQP8Ldtg9//Hjp2jC+d\n9PbbkCHzUQRBwAsvvEDnzp2ZOnUqNYBRwHrgcdIXhAE4hfgMMev3HbMG8Oabb9KlSxdefPFFnLND\n6WYYRpIkSZIkSZIkSZKkRJo2hVGjYPVqePZZOO205GP/8he4+GLo3BnGjYOCgvDq/I4NGzbwwx/+\nkGuvvZavv/6absAC4B6gboh11N13zAVANyA/P5+f/vSnXH755WzYsCHESlTVGIaRJEmSJEmSJEmS\nJKkktWrFl0NasABmzIArr4SsJI/bP/sMhg2D5s3hjjtg1aowKyUnJ4fu3bvvnw3mAeAj0jsTzOGc\nvK+GA2eJ6d69O0uWLImwKlVmhmEkSZIkSZIkSZIkSToSsRj07AmvvAJffAF33gnHHJN47Ndfw//7\nf9CuHVxxBXzwQdqXUJo7dy49e/Zk/fr1dALmA78gHkCJWg3is8TMBzoB69evp2fPnsydOzfawlQp\nGYaRJEmSJEmSJEmSJKm0WrWC0aNh7VoYPz6+PFIiRUXw+uvwb/8Gp58OzzwDO3emvJy5c+fSu3dv\nNm/ezJnALOCUlB+l/E4hXtuZwFdffUXv3r0NxCjlDMNIkiRJkiRJkiRJklRW2dkwdCh8+im8/TZc\ndll8BplE/vEP+M//hBYt4Be/gHXrUlJCTk4O3//+99m6dSsXAO8CDVOy5/RoSLzGnsDWrVv5/ve/\n75JJSinDMJIkSZIkSZIkSZIklVcsBn36wNSpsHw5DB8OdesmHrtpE/zmN9C6NQwYAB99VOYllDZs\n2MBFF13E5s2bOQuYCiQ5akapC7xFfIaYzZs306dPHzZs2BBxVaosDMNIkiRJkiRJkiRJkpRKJ54I\nY8bEl1AaMyb+fSJ79sBLL8E550CPHjBxIhQWHvFhgiBg6NChrF+/nk7AX6gYQZhidYG/Ap2A9evX\nc9NNNxGUMRQkHcgwjCRJkiRJkiRJkiRJ6VCvXnyGmGXL4jPG9OmTfOzcuXDNNdCqFdx/P/zrX4fd\n/cSJE5k6dSo1gD+R2UsjJdOQeO01gDfffJOJEydGXJEqA8MwkiRJkiRJkiRJkiSlU1YWXHYZvP02\n5OTA0KFQu3bisV9+Cb/8JbRsCddfDwsWJBy2YcMGhg8fDsAvgVPSU3koTgHu3ff18OHDXS5J5WYY\nRpIkqYooKCggFosRi8UoKCiIuhxJVYB9R1LY7DuSomDvkRQ2+45UCXTuDOPHx5dQGj06HnpJpLAQ\nnn8eunWD88+HV16JL6vEt8sj5efn0w24O43lFgCxfa90dp27gTOA/Px8l0tSuRmGkSRJkiRJkiRJ\nkiQpbMceC3feCStWwKuvQs+eycf+/e/wox9B27bw4INMnjCBqVOnUhN4DqgeUsnpVIP4uRQvlzR5\n8uRoC1KFZhhGkiRJkiRJkiRJkqSoVK8OV1wBM2bAwoUwaBAcdVTisWvWEPz3fzPqppsAGAmcHF6l\naXcK8XMCeOCBB5wdRmVmGEaSJEmSJEmSJEmSpExw2mnwzDOwZg2MGgVNmhwy5APgsyCgDjAi7PpC\nMAKoAyxdupQZM2ZEXY4qKMMwkiRJkiRJkiRJkiRlkkaN4J57YNUqmDQJevTY/9bj+/57LVA3itrS\nrB7w031fP/744yUNlZIyDCNJkiRJkiRJkiRJUiaqWRMGDICPP4aPP2bd5ZczZd9bN0daWHoVn9vr\nr7/O+vXrI61FFZNhGEmSJEmSJEmSJEmSMl2PHkzo2pW9wPnAyVHXk0anAOcBe/fuZcKECVGXowrI\nMIwkSZIkSZIkSZIkSRkuCIL9wZBhEdcShuJznDBhAkEQRFqLKh7DMJIkSZIkSZIkSZIkZbiVK1ey\nfv16agL9oy4mBFcANYB169axatWqiKtRRVM96gIkSXEFBQUcffTRh2zPzs6OoBpJkiRJkiRJkiRl\nkvnz5wNwKnBUtKWE4iji5zqf+Lm3adMm4oqUTEFBwRFtC5NhGEnKEMl+gDvtmyRJkiRJkiRJkorD\nMN0iriNM3fg2DHPVVVdFXY6SqFOnTtQlHMJlkiRJkiRJkiRJkiRJynDz5s0Dql4YBr49d+lIOTOM\nJGWIlStX0qhRo6jLkCRJkiRJkiRJUoYJgoAFCxYAVTMMM3/+fIIgIBaLRVqPEtu2bdsh2/Ly8iJd\n2sowjCRliOzsbLKzs6MuQ5IkSZIkSZIkSRkmNzeX/Px8agInR11MiE4GagD5+fnk5ubSunXriCtS\nIomecW7fvj2CSr5lGEaSIlBUVHTItk2bNkVQiaSqpKCgYP/XeXl5kd+ISqr87DuSwmbfkRQFe4+k\nsNl3pKpp2bJlADQGvgn52AUHfJ0HhN11GgPrgOXLl/sPyyuQRM8+Ez0jTZdYEARBaEeTJAGwdOlS\nOnfuHHUZkiRJkiRJkiRJkhSKJUuW0KlTp1COlRXKUSRJkiRJkiRJkiRJkqQQGIaRJEmSJEmSJEmS\nJElSpWEYRpIkSZIkSZIkSZIkSZVGLAiCIOoiJKmq2bNnD59//vlB24499liysswoSpIkSZIkSZIk\nSarYioqK2Lx580Hb2rdvT/Xq1UM5vmEYSZIkSZIkSZIkSZIkVRpOQSBJkiRJkiRJkiRJkqRKwzCM\nJEmSJEmSJEmSJEmSKg3DMJIkSZIkSZIkSZIkSao0DMNIkiRJkiRJkiRJkiSp0jAMI0mSJEmSJEmS\nJEmSpErDMIwkSZIkSZIkSZIkSZIqDcMwkiRJkiRJkiRJkiRJqjQMw0iSJEmSJEmSJEmSJKnSMAwj\nSZIkSZIkSZIkSZKkSsMwjCRJkiRJkiRJkiRJkioNwzCSJEmSJEmSJEmSJEmqNAzDSJIkSZIkSZIk\nSZIkqdIwDCNJkiRJkiRJkiRJkqRKwzCMJEmSJEmSJEmSJEmSKo3qURcgSalWWFjI8uXLWbt2LVu3\nbmX79u0cffTR1K1bl+bNm9OxY0dq1KgRdZkZ6V//+hfLly8nPz+fLVu2AFCvXj0aNGhAhw4dOP74\n4yOuUMpM9h1JYbPvSIqCvUdS2Ow7ksJm35EUNvuOlD6GYSRVCrNnz2bKlCn89a9/JScnh7179yYd\nW61aNbp06cIll1zCD3/4Q3r06BFipZnlm2++4dVXX+Uvf/kL77//Pvn5+SWOP/bYY+nVqxeXXnop\nV1xxBfXr1w+pUinz2Hckhc2+c+Ty8vJYvHgxn376KTk5OSxbtoyvvvqKr7/+mq+//pqdO3dSq1Yt\nsrOzOeGEE2jWrBmdO3ema9euXHDBBbRo0SLqU5Ayhr3nyBQUFOzvObm5uaxevZo1a9awbt06tm3b\nxvbt29m+fTt79uzhqKOO4uijj6Zx48Y0adKEjh070qVLF8455xxOPfVUYrFY1KcjRcq+Iyls9h1J\nYbPvpM62bduYMWMGH3/8McuWLWP58uVs2rRpf7DoqKOOok6dOtSpU4cWLVrQtm1b2rVrx2mnnUaP\nHj1o2LBh1KegNIoFQRBEXYQkldVLL73Eww8/zIIFC/ZvO5IPDg9sfd26dePOO+/kP/7jP9JSYyZa\nt24dv/nNb/jjH/9IQUEBcGTXDb69dtnZ2Vx//fX893//N82aNUtbrVKmse+Uz7Zt21iwYAHz5s1j\n7ty5zJs3jxUrVpT4Z5577jmuvfbakCqUMo995/A2b97M+++/z7vvvst7773H8uXLDxmT7Jol+pW4\nY8eODBgwgOuuu45WrVqlvF6pIrD3JLdr1y7mzJnDhx9+yOzZs/nkk09YtWpVwn5yuGv23T9z7LHH\ncvnll3PNNdfQq1evVJYtZTz7Tjh+85vfcM899xzR2FWrVtGyZcs0VyRFx76T2H333cd9990X2fHP\nO+88Zs6cGdnxpXSy76TGrl27eOWVV3jmmWeYNWsWe/bsOej90nwGdOKJJ+7/R+AXXngh2dnZaalZ\n0TAMI6lC+uyzzxg6dCizZs1K+EOtpNb23fHFY3v16sX48ePp0KFDaovNIEEQ8Lvf/Y777ruPbdu2\nJb0WySQaX6dOHe677z5uu+02/wWjKjX7Tunt2rWLRYsW7Q+9zJ07l2XLllFUVLR/zJH0jWeffdYw\njKok+07J1q5dy8svv8yf//xn5syZs/8cU3U/EgQB1apV48c//jG//OUvad++fUr2K2U6e09yn3zy\nCUOHDmXhwoUUFhbu357q34OKr9spp5zCr371K/r375/S/UuZxr4TnuXLl3Paaaexa9euEscFQUAs\nFmPlypWGYVQp2XdKVhyGieqz3nPPPdcwjCod+05q7Nq1i7Fjx/Lggw+yefNmIDW/jxVf05o1a/Ls\ns88yYMCAcu9TmSEr6gIkqbRee+01zjrrrINuGoIg2P+C+A+/ZK/vji/e/sEHH9C9e3emTJkS2bml\n05YtW7j00ku58847KSgoOORaQMnXLdn4goICbr/9dvr168eWLVuiOTkpzew7h7dnzx4WLlzIhAkT\nGDJkCGeccQZ169bl7LPPZvjw4fzxj3/ks88+O+j8E12bA6+pmW1VZfad5B577DHOPfdcWrVqxe23\n387s2bMBkp77kUp0fYuKipg0adL+B9IlTVssVQb2npKtWbOG2bNns3v37kPOGyh13/nun/vuNV68\neDFXXnklvXv3ZvXq1Sk7DymT2HfCNWTIEHbu3Akk/j3M38FUFdh3SidZr0j1q/hYUmVk30mNadOm\n0aFDB+6++27y8yaq5JMAACAASURBVPOTPrc6Esmu/+7du8nLy0tL/YqGYRhJFcrjjz/Oj370o/1h\njkQ/rI7k5vq7PySL//y2bdu48sorGTduXGTnmA6bNm3i7LPP5m9/+9shNweHeyCd6KbgwLHF26ZN\nm8Z55523P40rVRb2nSMzbdo0unXrxtChQ/nDH/7AokWL2Lt3b4kPivywVUrMvlOyu+66i48//hhI\nHIA5cHtp73GS7Wv37t3cf//99OrViw0bNoR6vlJY7D2lk+g+pjR9J1nPSnQt33//fU499VT++te/\nhn6eUjrZd8L11FNPMXPmzP3XVaqK7DupUdJD+7K+ivcrVTb2nfLbtWsXt9xyC3379mXt2rUlfg50\n4PYj/R2smPdHlZNhGEkVxvPPP8/w4cP3f3/gD6YDbxiO5OY6UbDjwP3ceuutvPjiiyGeXfps2bKF\niy66iKVLlya82YJDgzElXbeSbrw+/fRTLrroIrZu3RrNyUopZt8pvSN5AJ1srCT7TmmV9MFQovcO\nd4+TbD8Qv24ffvgh5557LitXrozsnKV0sPeU3pHc7xzp9Ur0O1rxfou3bdmyhX79+jFx4sSQz1RK\nD/tOuL788kvuvvvug3qMv4epqrHvpM6RPLgvz0uqLOw75ffNN9/Qp08fxo0bl/R5Vnk+A7LnVH7V\noy5Ako7EnDlzGDJkyP7vE900FH99zjnncPXVV3POOefQunVr6taty9atW/niiy/4v//7PyZOnMjs\n2bMPuVk48IdkUVERgwcPplOnTnTr1i3ck02x6667jkWLFh10neDgm6ZYLMYxxxzDgAEDuOSSSzjt\ntNM47rjjCIKATZs2sWjRIqZNm8ZLL73EN998s//PFDvw+4ULFzJo0CBeeeWVcE9USjH7Ttkl+iUi\n2Qet/sIhfcu+U3qJHhp/d/txxx3H6aefTtu2bWnRogV169alRo0a5Ofn89VXX5GTk8OHH37Itm3b\n9u/nux82Hbht1apV9O7dm9mzZ9OoUaOQzlRKH3tP2STrOQD16tWjffv2dOzYkRNOOIF69epRr149\nateuzbZt29iyZQt5eXn84x//YPHixQf1n+L9Jeo/e/fu5YYbbqBx48b06dMnpDOVUs++E75hw4bx\nzTffHNJfpKrCvpNahumkw7PvlF9eXh7//u//Tk5OTonPtw78vkOHDnTt2pUTTzyRhg0bkp2dzc6d\nO/n666/Jz89nxYoVLFy4kPXr1+/fl/dElVss8G9YUobbunUrXbt2JTc3F0h80xCLxejQoQPjxo2j\nV69eh93n9OnTGTZsGCtWrNi/LdG/xGvTpg2LFi2iTp06KTqbcI0dO5bbbrutxBuFrKwsbrvtNu69\n917q1atX4v6++eYbfvnLX/LYY4/tv+7J/j7Gjh3LLbfckp4Tk9LMvlN6b7zxBv379y/xA5GSQjLf\nfe/A6/zss89y7bXXprZgKcPYd45c7dq1KSws3P/9d8+pdu3aXHzxxfzgBz/gwgsvpHXr1ofdZ1FR\nEe+//z6jR49m+vTpCR9IH3gMgHPOOWf/UgNSRWXvKZ1p06bRt29f4NtzqVGjBmeccQbnn38+5513\nHmeddRbHH398qfY7Y8YMnn/+ef785z+zY8eOpL9rQfxaNm7cmE8++YTGjRun6Myk8Nh3wvfaa69x\n1VVXHfLgLdljgQP/HlauXEnLli3DLFdKOftO6d13333cd999CftGLBZjwoQJaT3+CSecwCWXXJLW\nY0jpZN8pv+3bt3PBBRcwf/78pM+hir/u2rUrN954I1deeeUR/y62adMm/v73v/PGG28wbdo0vvrq\nq/3vPfLIIwfN6KMKLpCkDDdixIggFosFWVlZQSwW2/8q/j4rKyu4+OKLgy1btpRqv998803Qu3fv\nw+779ttvT9OZpde6deuCOnXqBFlZWQed34Hf16pVK3jjjTdKve9XX301OOqoo0rcd7169YINGzak\n4cyk9LPvlN6UKVMO6QPffRW/V/w65phjgn/7t38LmjRpcsg1OfB6PP/881GfnpR29p0jV6tWrYT3\nH+eff37wwgsvBNu2bSvX/mfMmBE0b978oH6V7Lo99NBDKTorKRr2ntJ56623gqysrOD4448Pbrzx\nxmDq1KnBjh07Urb/3NzcoF+/fgddo2TXbtCgQSk7rhQm+064vvnmm6Bp06aH3NdkZWUFJ5544mGv\nV25ubtSnIJWbfaf0fvWrX5X4OY2kktl3yu+yyy477Hm2adMmeP3118t9rKKiomD69OlB//79gxo1\nagRjxoxJwRkoUxiGkZTRlixZEtSoUSNh6KL46/POO6/MH0AWFBQEPXr0SHhzX/x9zZo1g88++yzF\nZ5Z+AwYMKPG8qlWrFkyZMqXM+3/55ZcPezNyzTXXpPCMpHDYd8qmOAyTLPhSp06d4Pzzzw/+67/+\nK5g4cWKwbNmy/X+2V69ehmFUpdl3SqdWrVr7669Zs2YwaNCg4B//+EdKj7Fp06bgvPPOS3qvU7yt\nfv36wVdffZXSY0thsfeU3sqVK4O///3vaT/OPffcc9j+U7169WDFihVpr0VKJftO+AYPHnzI71fF\n/3377bcNw6jSs++UjWEYqezsO+U3evTow96jXH311cHWrVtTfuw1a9YEn376acr3q+hkRT0zjSSV\n5Fe/+hV79uwBEk/51rBhQ/70pz9Rq1atMu3/6KOP5s9//jPHHHPMQfsODphybc+ePdx///1l2n9U\nli5dyp/+9KeE0/YH+6bgu+OOO/jhD39Y5mNcddVV3Hbbbfv3d6DYvmnqJk+ezPLly8t8DCkK9p3y\nicVi1KpVi7POOothw4bxzDPP8Mknn7BlyxZmzpzJ7373O66++mo6dOgQdalSxrDvlF6NGjUYMmQI\ny5cv55lnnuHUU09N6f4bNmzIm2++yUknnXTIvc6B123r1q2MGTMmpceWwmLvKb3WrVtz7rnnpv04\no0aN4pZbbimx/xQVFfH000+nvRYplew74ZoxYwZPP/30/usQO2BZhgEDBtCnT5+IK5TSz74jKWz2\nnfJZuHAhI0eOTPrMKRaL8fOf/5yJEyemZSmo5s2b06VLl5TvV9ExDCMpY61cuZLXXnutxEDHr3/9\na5o2bVqu47Rs2ZL77rsv4VrJxT9gX375ZVavXl2u44Rp9OjR+88n0Q1Xq1atUnIz9Otf/5rmzZsf\ntP8Dr2MQBDz00EPlPo4UFvtO2XXo0IGnnnqK+fPns3XrVj766CMee+wxrrvuOrp06ZLwmkqy75TF\nFVdcQU5ODuPGjaNVq1ZpO06DBg144403qFGjBkDSD2Kef/75tNUgpYu9J/P99re/pVmzZsCh/Qfi\nf09vvvlm2GVJZWbfCdeuXbsYMmRIwveOOeYYHn300ZArksJn35EUNvtO+d10003s3r0bOPjZVvH1\nu/76633mpFIxDCMpY/3+979n7969QOJAR/v27Rk8eHBKjjVs2DDatm170DEOvJHYu3cvjz/+eEqO\nlW6bN29m8uTJJd5wjRo1ipo1a5b7WLVr1z7sTdeLL77I119/Xe5jSWGw75Rdp06duPHGGznttNOo\nVq1a1OVIFYZ9p/QmTpzIiSeeGMqx2rdvz7Bhww651znw+zVr1rBgwYJQ6pFSxd6T+bKzs/fPxHmg\nA2eLWbJkib9rqcKw74Tr/vvv5/PPPwe+Pffi/vHggw9y3HHHRVmeFAr7jqSw2XfK549//CNz584F\nDg3CAJxyyimMHz8+svpUMRmGkZSRioqKeOmll0oMdPz85z9P2UwD1apVY/jw4SWGOiZNmpSSY6Xb\nSy+9RGFhIZD4hqtZs2b85Cc/SdnxBg4cyPHHH3/QcQ68joWFhbz88sspO56ULvYdSWGz71QMd9xx\nx2HHfPDBB+kvREoRe0/Fcfnllx92zLJly0KoRCof+064PvnkEx5++OFDlkcCOOecc7jxxhujLE8K\nhX1HUtjsO+WzZ8+eQ5ZHOvDrrKwsnnvuuf2z90pHyjCMpIz03nvvsWHDBiBxoKNWrVoMHDgwpce8\n7rrr9s+WkijUsX79+grxoCPZDU7xDdegQYNSOmtDzZo1ue666xLedBWbOHFiyo4npYt9R1LY7DsV\nQ7NmzejatetBszF81+LFi0OuSio7e0/F0a5du/2zNyTrP19++WWYJUllYt8JTxAEDB48mD179hzy\nXo0aNXjyyScjqEoKn31HUtjsO+UzefJk1qxZAxx8DsWfxQwcOJDTTjstqvJUgRmGkZSRpk6dmnB7\n8Q++Sy+9lOzs7JQes379+vzgBz8oMdSRrK5MsXnzZj766KMS08U//vGPU37cAQMGJNxenED+8MMP\nnb5bGc++Iyls9p2Ko2fPniW+/8UXX4RUiVR+9p6KpXgWzmS2b98eUiVS2dl3wvPoo48esrxA8XW+\n44476Ny5c5TlSaGx70gKm32nfB555JESn2v9z//8T4jVqDIxDCMpI02fPr3EH3yXXnppWo5b0n6D\nIOCdd95Jy3FT5d133z3oww44OH3csmXLtHzw0bVrV5o1a3bQ8Q68ASsqKuK9995L+XGlVLLvSAqb\nfafiOOGEE5K+FwSBoV9VKPaeiqVevXolfrhdp06dEKuRysa+E45Vq1Zx7733HrQ8UrG2bdty7733\nRlWaFDr7jqSw2XfKbtGiRSxatAg4+LlWcZCoZ8+edOzYMcoSVYEZhpGUcb788kuWLl0KkPRDvwsv\nvDAtx+7Tp88h2w6cEj8nJ4d//etfaTl2Krz77rsJtxefQ7quG8T/Tkr6kHb69OlpO7ZUXvYdSWGz\n71QsjRo1Sri9+Jrt2LEjzHKkMrP3VDwbN24s8UP1hg0bhliNVHr2nfDcdNNNFBQUAIfOCvPEE09w\n1FFHRVmeFBr7jqSw2XfKZ9KkSSW+f/XVV4dUiSojwzCSMs6cOXMO2Xbgh38tWrTYPwtJqrVq1Yom\nTZoccswDFU83m4kSXbsDnXvuuWk79jnnnJP0vSAIDlubFCX7jqSw2XcqlmTLkBR/yFWrVq0wy5HK\nzN5TsRQVFbFhw4YSx7Rv3z6kaqSyse+E44UXXuDtt98+6F9RF//3Jz/5ScIHZVJlZd+RFDb7Tvm8\n/PLLJf4DgMsuuyzEalTZGIaRlHEWLFiQcHvxL/FnnHFGWo/fvXv3Emc4WbhwYVqPX1a7d+8mJyen\nxJuGdF677t27J9x+YAJ57969aTu+VB72HUlhs+9ULGvXrk36XiwWo0GDBiFWI5WdvadimTVr1v4w\nXqJlcDt27Jh05iopU9h30u+rr77i9ttvT7g8Uv369XnkkUeiKk2KhH1HUtjsO2X3+eefk5ubCyT/\nnac47COVhWEYSRmneG3AZE499dS0Hv9w+z9cfVHJyclh9+7dQOKbhmrVqtG5c+e0Hf/kk08mKyvr\noOMeeANWWFjIkiVL0nZ8qTzsO5LCZt+pWJJ9sFWsXbt2IVUilY+9p2JJNl148Yfq/gtJVQT2nfQb\nPnw4mzZtAg5dHum3v/0tjRs3jrI8KXT2HUlhs++U3QcffJBwe/G9TI8ePcItSJVO9agLkKTvWr58\neYmzm6R7GugTTzwx6XtBEPD555+n9fhltXz58hLfb9Wq1f9n777DoyrTN47fE5IASSAUFWkJ0RWU\nIkWQDtIhotKEVXEtoItr74oooC7q2gvsiosFC0WKIKAU6YIIBBABKRoCktBCC0kIKfP7w99kJ8n0\nzDlT/H6uay7NzMm8zzkJz5zMued9FRlpXNuPiopS/fr1deDAAafb7N27V82aNTOsBsBX9B0AZqPv\nhI6srCytXbvW5c+radOmJlYE+I7eEzq2bt2qDz/8sMTPq/SHHe67775AlAZ4hb5jrG+//VbTpk0r\nszySJLVv31533313gCsEzEffMdexY8eUmpqq9PR0nT17VoWFhapcubJiYmJUu3Zt1atXT7Vq1Qp0\nmYCh6Du+W716tcvHPZ1V58SJE9q5c6eOHTumrKwsVahQQbGxsbrwwgvVoEEDw5apQvAjDAMg6Ozf\nv9/l465e2P3B2fPb3lBwV1+gpKamOrzf9maI0cdN+uPYpaWlOT3xc1YjEGj0HQBmo++EjlmzZun8\n+fMlLi6V1rVrV5OrAnxD7wkNhw8f1k033aSioiJJJWfctP19d/vttyshISFQJQIeo+8YJzs7W/fc\nc4/D5ZGioqI0efLkQJUGBBR9x3iTJ0/W0qVLtX79eqWnp7vdvlq1amrVqpU6dOig5ORktW3b1mVw\nAAg19B3fbd261WU/cHXsVq9erS+//FILFy50u4/x8fFq166devXqpcGDBysxMdHXkhFiWCYJQFA5\ncuSIzp07J0lOLzbUqVPH0BocPb99LdnZ2cXTzwYTdy/2Rh83T8YgDINgRN8BYDb6Tmh55513ytxn\n/0ZNnTp1dNVVV5lZEuATek9o2L59u7p27ardu3dLcrwEbmJiot54442A1Ad4g75jrGeeeUZpaWmS\nyi6P9Oijjxq6VDYQrOg7xrHvM6NGjdLs2bOVkZEhi8Xi9nb69GktX75cL774ojp06KD69etr7Nix\nysjICPBeAeVH3/FdQUGB2xUPHC1LPX/+fLVq1UrXXHONJk6cWPwBbVe3M2fOaPHixXrssceUlJSk\nvn37asWKFUbtGoIIYRgAQcWTJPnFF19saA2ePP+hQ4cMrcEX7o6d0cfNkzGC8bgB9B0AZqPvhI4Z\nM2Zo27ZtDmeFsV1suuWWWwJUHeAdek9wS0tL06OPPqqrrrpK+/btK7Hkie3/rVarqlevrjlz5igu\nLi7QJQNu0XeM8+OPP+q9995zOCtMUlKSnnvuuUCVBgQUfccctvMTScXnKK5u9t9jsViUkZGhF154\nQZdeeqmeeOIJnT59OpC7A5QLfcd3e/fuVX5+viTnQSL7ZdaOHDmia6+9VgMGDCh+r8bTXiSV7ENL\nlixRjx49NGDAAB04cMDgPUUgEYYBEFQyMzPL3Gf/B33VqlUVFRVlaA2VK1cufmPR2fRsJ06cMLQG\nXzg6dvYuuugiw2twt/5rMB43gL4DwGz0ndCQm5urp59+uszxsf86MjJS9957r9mlAT6h9wSHc+fO\n6ejRo9qzZ4+++uorjRs3Tl26dNEll1yiN998U4WFhcXb2odgpD/+plu2bJlatGgRqPIBr9B3jFFQ\nUKCRI0eWmKXB9l+LxaKJEyeqUqVKgSwRCBj6jrHsLzyXvs/VzdlF6by8PL322mtq2rSpFi9eHIhd\nAsqNvuO7gwcPlrmv9Hsu8fHxkqQffvhBrVq10jfffFMiAGP/fa5utu1tN9v98+fPV8uWLbVgwQIj\ndxUBRBgGQFBxF+ioWrWqKXW4G8ddnYGQmZnpcm1FM46dqzGsVmtQHjeAvgPAbPSd0PDkk08WL0Pp\nbFaY2267TfXr1w9AdYD36D3mGD58uCIiIpzeYmJidPHFF+vyyy/XoEGD9Pzzz2vt2rWS5PBNWtv9\n/fr107Zt29SyZcuA7RvgLfqOMV5++WX9/PPPkv53TmL779ChQ9WnT58AVwgEDn3H/1xdTPb05uw5\nbM9/6NAhJScn66WXXgrYfgK+ou/4zt1SaVWqVJEkff/99+rdu7cOHz5cYuZeX2aosrG/7+TJkxow\nYIAmT57s931E4BGGARBUTp065fB+2wuT7cXPaO7GOXnypCl1eMPZsbMx49g5G8N2khGMxw2g7wAw\nG30n+H333XeaOHGiy1lhqlSpohdffNHs0gCf0XvMYb9kiTc3SQ4vGLVu3Vpz587VwoUL3c7ECQQb\n+o7/7d69W//85z8dLo8UHx+vt956K1ClAUGBvmMMZ8EWb89xpLIXo23PKUnPPPOM7r//fvN3ECgH\n+o7v3IVhoqOjtWfPHiUnJys7O1uSSvQMb/pS6X5T+vuLiop0zz336OOPPzZsfxEYkYEuAADs5ebm\nunw8NjbWlDri4uLKvDDaO3funCl1eCMYjp27deuD8bgBwfBvRwrNvgPAN/Sd4JaRkaFbbrml+Gtn\ns8K88MILpixDCfgLvcd8zta9d8T+wna9evU0dOhQDR48WO3atTOqPMBw9B3/u+uuu5SXl1diNhjb\nf1966SVCc/jTo+/4V+kAS9WqVdWxY0c1a9ZMzZo10+WXX64aNWooPj5eVatWVW5urjIzM3XixAnt\n3btXq1at0urVq7Vz584yz2d/nmR/MXvSpEmqUqWKJkyYYPLeAr6h7/ju9OnTDu+3D6gMHjxYWVlZ\nZc59pD96yWWXXaYbbrhBffr0UUJCgmrVqqXo6GgdPnxYGRkZWrlypebPn68ff/yxRPil9N9qtvtG\njRqlyy67TB07djR8/2EOwjAAgkp+fr7TxywWiyIjzWlb7sY5f/68KXV4w9Wxk9zvkz+E4nED6DsA\nzEbfCV4FBQUaNmyYjh49WubNEfuvu3btyicWEXLoPeZztYytvdIXho4ePaotW7aodu3aqlevnurV\nq2dkmYBh6Dv+9Z///Edr1651eDGoXbt2+vvf/x7gCoHAo+/4l8ViUWJiogYPHqxrr71WnTt3VoUK\nFZxuHxcXp7i4OCUmJqply5YaOnSoJGnHjh3617/+penTp6ugoMDhxWj7+1555RW1bNlSN954o+H7\nCJQXfcd3joJEtr5g+7vI/v0Z+/8mJCTotdde0+DBgx0+d2JiohITE9WuXTs99dRT2rRpk+6///7i\nUIx9D7IP5J0/f1633nqrtm/fblqQCcZimSQAQcXdCzInDs4Fw7ELxeMGBMO/HU/G4d8PED7oO8Fr\n1KhRJS4y2ZRegoBpcxGK6D3m8mTdekfLBUhSXl6eli9frscee0yXXnqpbr/9du3atSsQuwGUC33H\nfzIyMvT00087XB4pKipK77//fqBKA4IKfcc/KlSooOTkZH399df67bff9Oqrr+qaa65xGYRxpUmT\nJvrkk0/0yy+/qE2bNiUuaJdme+yuu+5yu4QKEAzoO75zN1uN/RJH9v+9/vrrtWvXLqdBGEdat26t\n9evXa8yYMQ7Pp+zfA0pLS9Nzzz3n5d4gWBGGARBUioqKXD7u6wm3t9yN467OQAiGYxeKxw0Ihn87\nnozDvx8gfNB3gtMbb7yhDz/80OF0udL/Pin0ySefKCEhIQAVAuVD7zGPJ2vWl1673j4YY38rKCjQ\n1KlT1bx5c7344othcXzw50Hf8Z9//OMfxUsJlP4U88MPP6ymTZsGsjwgaNB3/GP06NFasGCBkpOT\n/fq8SUlJWrt2rR544AG3F6OzsrL0yCOP+HV8wAj0Hd+5W+2g9LJGFotFw4YN0+zZs1WpUiWfxhw/\nfrxefvllp0va2sb697//rYMHD/o0BoILyyQBCCru0qsFBQWm1OFunKioKFPq8EZkZKTLus04dqF4\n3AD6DgCz0XeCz4wZM/T444+7/GSixWLRY489puuvvz4AFQLlR+8xx1133aVu3bo5fKyoqEinT5/W\nqVOndOLECf3000/asmVL8fTgpWeKsZ+uu7CwUM8995y+/fZbLVy4UPHx8ebsEFAO9B3/mDVrlubN\nm+dwJoXExESNGzcucMUBQYa+4x8REcZ9jj4yMlJvvvmmqlevrnHjxpX5G8z+wvfMmTP1zDPPEPhD\nUKPv+M6ToJD9B5YaN26sjz/+uNw96vHHH1dKSopmzJjhcLkk6Y/ZOt955x29+uqr5RoLgUcYBkBQ\niY6Odvm4WScO7hKpwXjiEB0dHfAwTCgeN4C+A8Bs9J3gsnTpUt12223FX5deHsn2ZsigQYP0yiuv\nBKJEwC/oPebo0qWLunTp4vH2RUVF2rx5s/773/9q2rRpys7OLhGCKT1jzLp169S7d28tXbpUVatW\nNWo3AL+g75Tf6dOnS8ygYGPrE5MmTfL5k9FAOKLvhI7nnntOO3fu1MyZM53OzilJr776qj755BOT\nqwM8R9/xnbtjZ3/+ExkZqU8++cTt93hq4sSJWrlypY4ePepwqWyr1aqPP/5YEyZMCMpjB8+xTBKA\noOLqhcxqtZq2rqG7Ewd/veD6k7uazDh2oXjcAPoOALPRd4LH+vXrNWjQoOJj4SwI0717d33xxReB\nKhPwC3pPcIqIiFCbNm30/vvvKz09Xffff78iIiLKXBCyD8Vs2rRJAwcODES5gFfoO+X36KOP6vDh\nw5JUZpmAIUOGqG/fvgGuEAgu9J3Q8p///EcXXHCBJJUJ/dn63ezZs4tn0QOCEX3Hd57UZP8BpVat\nWvlt7Bo1aujRRx91+neXJJ04cUIrV67025gIDMIwAIJKbGysw/ttJ8Nnz541pY6srCyH0+TbxMXF\nmVKHN5wdOxszjl1WVpbLx4PxuAH0HQBmo+8Eh23btql///7KycmR5DgII0lt27bVvHnz+CQQQh69\nJ/jFxcXprbfe0sqVK3XRRReVWQ7FfvrulStX6u233w5UqYBH6Dvls3LlSn300UfFtdvvQ9WqVekB\ngAP0ndBSrVo1PfPMMy4vRufm5mrRokVmlwZ4jL7jO3fXtOyNGjXK7+PfeeedxTPsOTt29J/QRxgG\nQFCpUaOGy8fPnDljSh3uxnFXZyDUqFHD6XSSkjnHztkYtrqC8bgB9B0AZqPvBN7u3bvVp08fnTp1\nSpLzIEzz5s21aNEixcTEBKROwJ/oPaGjU6dOWrJkiapXry7J+SelR48eXTxjBBCM6Du+y8vL0913\n3138tX0YzmKxaMKECbr44osDVR4QtOg7oWfkyJHFF8SdXYxmZgYEM/qO71zVZN8PEhISdM011xgy\n/nXXXef0uprVatX69ev9Pi7MRRgGQFCpWbOmy8dtFyyMdvr0aZePu6szEILh2Lkaw2KxBOVxA4Lh\n344Umn0HgG/oO4G1f/9+9ezZU8eOHZNUNghj06hRIy1ZskTVqlUzvUbACPSe0HLllVdq1qxZLj8p\nfe7cOb377rtmlwZ4jL7ju3Hjxmnfvn2SSi6PJP0xa90999wTyPKAoEXfCT2xsbFKTk7mYjRCFn3H\nd+5qsp0D8oRSzgAAIABJREFUdejQwbAanD237f2h7du3q6ioyLDxYTzCMACCim2NUHv2J8J5eXmG\nJ2lPnjxZvI6js5NwR3UGmruazPjEoLsxgvG4AfQdAGaj7wROenq6evToofT0dEmOgzBWq1VJSUla\ntmyZLrzwwoDUCRiB3hN6unXrpqFDh5ZZLkn63+wwkydPVn5+foAqBFyj7/hm27Ztev311x0ujxQV\nFaX3338/UKUBQY++E5q6devm8H5b/9u9e7eZ5QBeoe/4ztOa2rVrZ1gNbdu2LXNf6Q8gHDp0yLDx\nYTzCMACCSkJCgtttjhw5YmgNnjx//fr1Da3BF+6OndHHzZMxPPn5Amaj7wAwG30nMI4dO6YePXpo\n//79kpwHYerWravvvvtOdevWDUSZgGHoPaHpxRdfLHOfff86ceKENmzYYGZJgMfoO94rKirSyJEj\nVVhYKKns8kgPPfSQmjVrFsgSgaBG3wlNLVu2LHOf/flOTk5O8cyeQLCh7/jO0+tFjRs3NqwGT577\n999/N2x8GI8wDICgEhsbWzw1mrM1QtPS0gytwXaBxJ59LRdddJEqV65saA2+aNCggcvHjT5ukuNj\nZy8pKcnwGgBv0XcAmI2+Y76TJ0+qZ8+exZ8odBaEueiii/Tdd9+5Pa8CQhG9JzT95S9/KX6D1tnP\nbc2aNWaWBHiMvuO9adOmafPmzZJUZlaohIQEjRs3LkCVAaGBvhOaPPn76+jRo8YXAviAvuM7T68X\nGbl8ddWqVRUR8UdcwtnPLzMz07DxYbzIQBcAAKUlJSUpMzPT6QvP3r171bNnT8PGt63JXJrtTYhg\nDXQ4q8s2ffbevXsNr2Hfvn1Of24SYRgEL/oOALPRd8xz5swZ9erVS9u3by8+L7KxD8LUqFFDy5Yt\nU8OGDQNVKmA4ek9ouvbaa7Vz506nP7eUlBSTKwI8R9/xzvHjx8vcZ6u1Y8eO+uKLL/w2lrNlFOxN\nnz69+AKfI1WqVNHQoUP9VhPgD/Sd0BMfH+92m5ycHBMqAXxD3/FNbGysLrzwQh0/frzM+zX2jAzD\nSH/0oFOnTjl9nP4T2gjDAAg6TZo00aZNm5w+bvQaoe6ev0mTJoaO7ytHddl/iuj48eM6deqUYScO\nmZmZOnHihMuTlmA9dgB9B4DZ6DvmyM7OVr9+/ZSSkuIyCFO1alUtXrxYTZs2DVSpgCnoPaHJ3ZvX\nji6eA8GCvlM+9sskffHFF34Nw5Qew9GYTz31lMvvbdCgAWEYBB36TuiJjo52u01+fr4JlQC+oe/4\nrmnTplqxYoXLD1kbPatN5cqVXYZh6D+hjWWSAASdVq1auXx8y5Ytho7v7lN1jtYwDQaJiYmqUaOG\nJOfTuRl57BwdN/s6atasqbp16xo2PlAe9B0AZqPvGO/cuXPq37+/1q9f7zIIExsbq0WLFumqq64K\nVKmAaeg9oalWrVpOH7NarUzbjaBG3/Efi8Xi91t5xwSCEX0n9Hgy60IwLvEC2NB3fOfJezGnT582\ntAZ3z0//CW2EYQAEHWcnDraLGFu3bvVoKldfFBYWatu2bS7/oA/mE4eWLVu6PDa2daeN4Oy5bbPT\nBPNxA+g7AMxG3zHW+fPndcMNN2jVqlUugzCVKlXS/Pnz1aFDh0CVCpiK3hOaqlat6vB+27E8f/68\nmeUAXqHv+I/VavX7zZcx7R8DghF9J/QcOXLE7TZxcXEmVAL4hr7ju9atW7vdxtWsLeVVUFCg7Oxs\nSc7Pbeg/oY0wDICg07p1a1WqVElSyYsVNmfPnjUs1PHjjz8WJ9FtY9qfRFSuXNmjF+dA6dSpk8vH\nV65cadjYK1ascPl4586dDRsbKC/6DgCz0XeMU1BQoBtvvFFLly51GYSJjo7WnDlz1K1bt0CVCpiO\n3hOabG/OlmY7jrGxsWaWA3iFvuM7I2aC8cfMMECwo++Enn379rndhhnHEczoO75zd01Lko4ePWrY\n+J48N/0ntBGGARB0KlasqI4dO7pMyi5dutSQsZctW+bwftvsJp07d1ZUVJQhY/tDz549Hd5vuxC0\nevVqFRQU+H3cvLw8rV271uWbIr169fL7uIC/0HcAmI2+Y4yioiLdfPPN+vrrr10GYaKiojRjxgz1\n7ds3UKUCAUHvCU0HDx50+pjFYileLhcIRvQd3xgxC4y/Zobx9HuBQKHvhJ4NGzaUuc/+feaaNWsq\nJibGzJIAr9B3fFenTh01adJEkpxeX9q4caNh42/atMntNomJiYaND+MRhgEQlHr37u30MavVqjlz\n5hgy7qxZs1w+HuyBjnbt2qlKlSqSHCeQs7OztXjxYr+Pu2jRIuXm5pYYz/7EJT4+XldffbXfxwX8\nib4DwGz0Hf+74447NGvWLJdBmAoVKmjq1Km64YYbAlUmEFD0ntCzbds2l49feumlJlUC+Ia+4x0z\nZoQpz8wwzBSDUEDfCS0LFy50eL/tYn7z5s1NrgjwHn3Hd3379nUZJPrhhx8MG9vRc9uf3yQlJbFM\nUogjDAMgKA0ePLjMfbaTX0lKSUnR3r17/Trmjh07tH379hIXT+xf9CwWi4YMGeLXMf2tQoUKGjBg\ngMsThy+++MLv4zp7TtvPbODAgbxBgqBH3wFgNvqOf40aNUqffvqpyyBMRESEPvjgAw0bNixQZQIB\nR+8JPbZl35xp3LixidUA3qPveO7BBx9UYWGhaTep7KewbV9bLBbt37/f5ff/+uuvph8jwBP0ndDx\nyy+/aOPGjWX+jrPXoUMHk6sCvEff8d3QoUMd3m/brw0bNujs2bOGjL1kyRKH99t+dm3btjVkXJiH\nMAyAoHTJJZeoXbt2JU4WSnv33Xf9Oubbb7/t8H5bDR06dFBCQoJfxzTCLbfc4vB+24nD7Nmzdfjw\nYb+Nd/DgQc2bN8/lm7POagKCCX0HgNnoO/7z8MMPa/LkyU7fQLXt33vvvafbb7/d/AKBIELvCS0r\nVqxQWlqaJDm9QNSlSxczSwK8Rt8JXSyHhFBF3wkdEyZMcLtNnz59TKgEKB/6ju/atGmjyy+/XJLj\nFQ9ycnI0depUv4+7ceNGpaSkuAzj0X9CH2EYAEHrzjvvdHi/7YXpo48+0pEjR/wy1qFDh/TZZ5+5\nDHTccccdfhnLaD179lT9+vUlOT5xyM/P16uvvuq38f71r3+poKCgxDj2xzEhIUHdu3f323iAkeg7\nAMxG3ym/MWPG6O2333b45oXtPovFotdff12jRo0KUJVAcKH3hI5x48aVuc/+WF588cVq0aKFiRUB\nvqHvADAbfSf4rVu3Tp9//rnTGaokqW7duswMg5BB3/HdyJEjnQZSrFarJk2a5PeQ7jvvvFPmPvvj\nGRkZqf79+/t1TJiPMAyAoHXrrbfqoosukuQ8DfrUU0/5ZawnnnhC586dKzGG/YterVq1NHz4cL+M\nZbSIiAg99NBDDk8MbCddEydO9MuUfDt37tT777/v8ITLduHpkUceKfc4gFnoOwDMRt8pn5dfflkT\nJkxwG4T55z//qYceeihAVQLBh94TGiZNmqQ1a9Y47HG2/saxQ6ig7wAwG30nuGVmZurmm28u/trZ\nuc5dd91ldmmAz+g7vrv77rtVvXp1SSWPne3/d+3a5dcPeS9fvlxffPGFy2tbgwYNUo0aNfw2JgKD\nMAyAoFWxYkU9+OCDTk+ErVarpk6dqnnz5pVrnJkzZ2ratGku32B8+OGHFRUVVa5x0tLSFBER4fL2\n/PPPl2sMm7vvvrv4RdrZ7DDDhw8vntHFF+fPn9fw4cOL15h2dMJVo0YNjRgxwucxALPRdwCYjb7j\nu3fffVejR492G4QZM2aM395sAsIFvcc7p0+f1po1a8pVo7cWLlyohx9+2OUnpaOionTPPfeYWhfg\nK/oOALPRd7xz/vx5bd68uVw1eurkyZPq06ePDhw4IKnk+9b25zqxsbG67777TKkJ8Af6ju/i4uL0\nwAMPuPyQ99ixY7V9+/Zyj3Xq1KkS162czTjz4IMPlnssBB5hGABB7aGHHlL9+vUdrrNoewG87bbb\ntHHjRp+e/4cfftDIkSNdvsGYmJioBx54wKfnd8RisTi9+UtsbKzGjx/v8qRr06ZNuuOOO3yaWq6o\nqEh/+9vftHXr1uLndTTOiy++qJiYGN93BAgA+g4As9F3vPfRRx/poYcecvh89kGYxx57TOPHj/fL\nmEC4ofd47tSpU+ratat69eqldevW+alax4qKivTmm29q4MCBZZajtbH9zEaMGKEGDRoYWg/gT/Qd\nAGaj73guNzdXbdq00ZAhQwwNxfz4449q1aqVUlJSHF7Il/53rvPss88WzxQBhAr6ju8ef/zxMsfO\n/kPYeXl56t27d7kCMSdOnFCPHj2UlpZW4vltY9jGHjBggNq1a1eOvUGwIAwDIKhVrlxZb7zxRvHX\njl4Az5w5o969e2vhwoVePfe8efPUt29fZWdnl3hOG9uL3htvvKGKFSuWZzfKsFqtxTdHY/vDPffc\noyuvvLLMSZd9IObzzz/XkCFDlJWV5fHznjlzRgMHDtTMmTPL/MFiP06LFi109913+2dnABPRdwCY\njb7jnZkzZ5Y4x3D2xsW9996rV155xS9jAuGI3uO95cuXq1OnTurWrZs++OADZWZm+u25JWndunVq\n3bq1Hn300TIzcEol/96qW7euJkyY4NfxAaPRdwCYjb7jvTlz5qhNmzbq2rWrpk6dWrx/5XXq1CmN\nHz9enTt31oEDBxwGYezPdZo3b65HHnnEL2MDZqLv+C4mJkZvv/128deOjt2RI0d0zTXX+DS7zpYt\nW9SlSxdt2bLF5bWtuLg4vfbaa77uBoJMZKALAAB3Bg8erJtvvrl4/T7bi5Tthd128nD99dfrpptu\n0rPPPqtGjRo5fb5du3Zp/PjxxWEOyflFlOHDh2vAgAGG76MRIiIi9Omnn6pt27bKy8sr8eJuH5CZ\nO3euNm7cqBdeeEF//etfnZ4knTt3Tp9//rnGjRunQ4cOOT1ZsFqtiomJ0aeffsonoRCy6Du+yc7O\n1vTp073+voyMDJePr1q1Svn5+V49Z5UqVTR06FCvawEChb7jmQ0bNujWW29VUVGRJMf7JEkJCQm6\n8sorNWXKFNNq69+/v2rVqmXaeIA/0Hu8Z7FYtGrVKq1atUr33nuvunXrpgEDBqhjx45q1qyZ138D\n7du3T3PmzNFnn32mn3/+ucQnLJ39vRUdHa3PPvtM8fHx/tsxwCT0HQBmo+94x7ZPa9as0Zo1a3TP\nPfeoR48e6tevnzp16qSmTZt6fL5TWFiozZs3a9q0aZoyZYrOnj3r8JjZj2u1WlW9enXNmTNHFSpU\n8OOeAeah7/huwIABGjFihKZMmVLm2El/7OupU6c0cOBA9erVS2PGjFHHjh0VEeF8/o+dO3fq7bff\n1pQpU0p8WLw022PvvPOOkpKSDNtHmMtiJaoOIARkZ2erdevW2r17t9s3BiWpZcuW6tChg5KSkhQX\nF6esrCylpqbq+++/17Zt2xx+j+0+29eNGzfWjz/+6LdlftLS0pSUlOQwRGJ7kR07dqyee+45v4xn\nM2XKFN11111lZoexH992X7Vq1dStWzc1b95cF1xwgaxWq44fP65t27Zp+fLlOnPmjNvjb7FYNGXK\nFN1+++1+3Q/AbPQd38cLBg0aNNBvv/0W6DIAr9B33Pvkk090xx13OH3jIlAsFotWrFihLl26BLoU\nwGv0Hu+f39nfVjExMWrYsKEuu+wy1alTR7Vq1VJcXJwqVqyo8+fPKysrS2fOnNGJEye0Y8cO/fTT\nTyVm6XR1/G33R0REaOrUqbr55pt92hcgGNB3gkdERITLfUhNTVVCQkIAKwT8g77j3unTp1W9enW3\n5zuxsbFq1KiRGjZsqDp16uiiiy5STEyMKlasqOzsbJ04cUKZmZnau3ev1q9fXzyDhbv3pm33x8XF\nadGiRerUqZNP+wEEC/qO7/Ly8tSpUydt3rzZo2N3wQUXqGfPnkpISNDFF1+syMhIHT16VBkZGVq5\ncqV+/fVXh99X+j6LxaIHH3ywxMw+CH3MDAMgJMTGxmrx4sXq3LmzDh48KKnki5R9olb6Y7qzLVu2\nOHwuT148GzRooMWLF/vtpCGQRowYod9//13jx4+X9L/1HUvPEmOxWHT69GnNnTtXc+fOLfM8nnxC\n0WKxaPz48QRhEBboO77z9BNC9lxd1Pbl+YBQRN/xHzP7RjCFcgBf0Hu8Y/+3lP1xkaTc3Fxt3bpV\nW7du9fi5PL0wJEkVK1bUp59+qiFDhpRrH4BAo+8AMBt9x3vOzndycnKUkpKilJQUt8/h7blOjRo1\nNG/ePHXs2LHc9QOBRt/xXcWKFfXNN9+oe/fu+vnnnyWVPXb292VmZjqdrdxZHyp9n8Vi0d/+9jeC\nMGHI+ZxBABBkEhIStGLFCv3lL39x+Aak7UXQ/iTC0a30i2XpMEfDhg21fPly1a1bN2D76m9jx47V\n2LFjS+y/u2NS+iaVPUkr/Xzjxo3TmDFjArmrgF/Rd3xnf2w8ufnjuey3B0IVfcc/vO1Bvt6AcEHv\n8Y6jN1Td/T3l7m+s0sfW/jGLxaLLLrtMa9euJQiDsEHfAWA2+o7nXJ2vlH7cX+c6LVq00KZNmwjC\nIKzQd3x3wQUXaMWKFWrbtq3frmvZf7/9/RaLRY8++qg++uijgO0vjEMYBkBIueSSS7Rx40b16dPH\n5cmCK45eLG3f369fP/34449q0KCBofvhaa3+NHbsWM2YMUNVqlRxeQLlirMThSpVqmjWrFl69tln\nDd0HIBDoO+Ufz6wbEC7oO94/f6BuQDih93jGUSiuPOO5e6O2UqVKevLJJ7VlyxZdddVVftsPIBjQ\nd4JHOOwD4An6jnuuznV8Gc/duU7lypX1wgsvmHLcgECg7/iuZs2aWr16tUaNGlVm/+1rcsdZH7JY\nLKpRo4ZmzZqlf/3rX4buCwKHMAyAkBMfH69Fixbp448/Vq1atRyeSDv7pK6zk/latWpp6tSpWrBg\ngapWrWpo/aVrcFarEYYMGaJdu3Zp8ODBDk+eXNVSejvb9994443atWuXBg4caNp+AGaj75R/PDNv\nQDig73j//PQcoPzoPY7Vrl1bkydP1g033FD84QJnf095Oraz77E9b3x8vB5++GHt2bNHEyZMCIvp\nzgFH6DvBIRz2AfAUfcexihUrqkePHoqJiTHlXCc2NlYPPvig9u3bp9GjRysyMtIv+wEEI/qO76Ki\nojRx4kStWrVKzZs3L/d1LVsfio6O1qhRo7Rnzx6ubYU5wjAAQtatt96q3377TRMnTlTjxo1dpsxL\nnyjYbk2aNNGkSZOUmpqqW265xfCag+GTxXXq1NHMmTO1efNmDR8+3OM/cOy3iYmJ0d/+9jelpKRo\n+vTpqlOnjmn1A4FE3ynfeGbfgHBA3/Hu+ek5gH/Qe0qKjo7WyJEjNWfOHGVmZmrZsmV65pln1LNn\nT1WrVs3pmK4uHjn6npo1a+rGG2/U9OnTlZ6ertdee0316tUrd/1AKKDvBFY47APgLfpOSZUqVdLS\npUt16tQprVq1SuPGjVPv3r2LL9w7urkLypTePjY2Vn379tWUKVN0+PBhvfHGG6pdu3a5awdCBX3H\nd506dVJKSooWLFigfv36KSoqyqN+VLrmpKQkjR49WqmpqZo4caJq1Khh6n7AfBYrUW8AYWLfvn36\n9ttvlZKSoh07dujQoUPKyspSTk6OYmJiVKVKFdWrV0+NGzdWq1at1K9fP1166aWBLjvg8vLytHz5\ncq1atUo///yz9uzZo5MnTyorK0uSVKVKFdWoUUMNGzZUkyZNdM0116hbt26qWLFigCsHAo++A8Bs\n9B0AgUDvcW3Pnj3aunWrfvvtN6Wmpio1NVXp6enKyspSdna2srOzVVBQoIoVK6pixYqqVq2aatWq\npTp16qhhw4a64oor1Lp1a11xxRWB3hUgaNB3zPH888+7fPyhhx4y/NPmQLCg7zh3+PBhbd26Vb/8\n8osOHjxYfDt27JhycnKUk5Oj3NxcWa1WVapUSTExMbrwwgtVp04dJSUlqVmzZmrRooXatm3LDDCA\nHfqO77KysrRs2TJ9//332rVrl/bt21d8XauwsFCVK1dWtWrVlJCQoL/85S9q06aNOnXqpCuvvDLQ\npcNkhGEAAAAAAAAAAAAAAAAQNlgmCQAAAAAAAAAAAAAAAGGDMAwAAAAAAAAAAAAAAADCBmEYAAAA\nAAAAAAAAAAAAhA3CMAAAAAAAAAAAAAAAAAgbhGEAAAAAAAAAAAAAAAAQNgjDAAAAAAAAAAAAAAAA\nIGwQhgEAAAAAAAAAAAAAAEDYIAwDAAAAAAAAAAAAAACAsEEYBgAAAAAAAAAAAAAAAGGDMAwAAAAA\nAAAAAAAAAADCBmEYAAAAAAAAAAAAAAAAhA3CMAAAAAAAAAAAAAAAAAgbhGEAAAAAAAAAAAAAAAAQ\nNgjDAAAAAAAAAAAAAAAAIGwQhgEAAAAAAAAAAAAAAEDYIAwDAAAAAAAAAAAAAACAsEEYBgAAAAAA\nAAAAAAAAAGGDMAwAAAAAAAAAAAAAAADCBmEYAAAAAAAAAAAAAAAAhA3CMAAAAAAAAAAAAAAAAAgb\nhGEAAAAAAAAAAAAAAAAQNgjDAAAAAAAAAAAAAAAAIGwQhgEAAAAAAAAAAAAAAEDYIAwDAAAAAAAA\nAAAAAACAsEEYBgAAAAAAAAAAAAAAAGGDMAwAAAAAAAAAAAAAAADCBmEYAAAAAAAAAAAAAAAAhA3C\nMAAAAAAAAAAAAAAAAAgbhGEAAAAAAAAAAAAAAAAQNgjDAAAAAAAAAAAAAAAAIGwQhgEAAAAAAAAA\nAAAAAEDYIAwDAAAAAAAAAAAAAACAsEEYBgAAAAAAAAAAAAAAAGGDMAwAAAAAAAAAAAAAAADCBmEY\nAAAAAAAAAAAAAAAAhA3CMAAAAAAAAAAAAAAAAAgbhGEAAAAAAAAAH6SlpSkiIsLj24EDBwJdMgAA\nAAAAfwqRgS4AAAAAAAAACGUWi8Xl41ar1e02AAAAAADAfwjDAAAAAAAAAOVktVod3k8IBgAAAAAA\n87FMEgAAAAAAAAAAAAAAAMIGYRgAAAAAAAAAAAAAAACEDcIwAAAAAAAAAAAAAAAACBuEYQAAAAAA\nAAAAAAAAABA2CMMAAAAAAAAAAAAAAAAgbBCGAQAAAAAAAAAAAAAAQNggDAMAAAAAAAAAAAAAAICw\nQRgGAAAAAAAAAAAAAAAAYSMy0AUAAAAAAAAAoc5isQS6BAAAAAAA8P8IwwAAAAAAAADlYLVaA10C\nAAAAAACwQxgGAAAAAAAA8JGnM8IwcwwAAAAAAOaxWPnoCgAAAAAAAAAAAAAAAMJERKALAAAAAAAA\nAAAAAAAAAPyFMAwAAAAAAAAAAAAAAADCBmEYAAAAAAAAAAAAAAAAhA3CMAAAAAAAAAAAAAAAAAgb\nhGEAAAAAAAAAAAAAAAAQNgjDAAAAAAAAAAAAAAAAIGwQhgEAAAAAAAAAAAAAAEDYIAwDAAAAAAAA\nAAAAAACAsEEYBgAAAAAAAAAAAAAAAGGDMAwAAAAAAAAAAAAAAADCRmSgCwAAAAAAAMCfg9Vq1Y4d\nO/TTTz9p9+7d2rt3rzIyMnT06FFlZmbq3LlzysvLU35+vipWrKiYmJgStypVqqhevXpq0KCBEhMT\n1aBBg+JbVFRUoHcPYejAgQNav369du/erdTUVP3222/KyMhQdna2cnJylJ2drYiICMXGxio2NlbV\nq1dXUlKSLrnkEjVq1Ejt27dXs2bNZLFYAr0rAAAAAPCnYrFardZAFwEAAAAAAIDwlJ6ernnz5mnB\nggVat26dTp8+XWYbT4ICrt7Cio6OVsuWLdWuXbviW2JiYrnqDmb79+/XlClTAl2G3z3++OOqWrVq\nQGvIzs7W119/ra+++krff/+9Dh06VGYbV7+vjn5P4+Pj1aVLFw0bNkw33HCDYmNj/VozAAAAAKAs\nwjAAAAAAAADwq6KiIs2fP1+TJk3Sd999VxwQMHJ2jNJvcdWtW1cDBw7UjTfeqE6dOhkydlpampKS\nkjzefv/+/UpISCj3uKtWrVK3bt3K/TzBxGKxKDU11S/HxxerV6/We++9p4ULFyo3N7e4Jn+x/X7G\nxMRo6NChevLJJ9WoUSO/PT8AAAAAoKSIQBcAAAAAAACA8DF37lw1bdpUgwYN0rJlyyT9ESqwBQus\nVqvfb/Zj2G7p6el677331LVrV9WrV08PPPCADh48aMg+lx679M22jdnjhsotkObPn6/27dvrmmuu\n0axZs3Tu3Dm//75K//tZ5ebm6uOPP1aTJk00bNgwpaamBnL3AQAAACBsEYYBAAAAAABAuaWnp6tv\n374aPHiwdu/e7TRQYAR3AYSMjAxNnDhR69evN2R8ZzWYMSGzEeEiM2+B8ssvv6h79+4aMGCANmzY\nYOjvq6PfS6vVqi+//FLNmjXTq6++qsLCQr+MBQAAAAD4A2EYAAAAAAAAlMuyZcvUrFkzLVmyxLQA\njDuBDlsgOBUVFWncuHFq0aKFVq5cWRyCMev3tXQoJjc3V08++aQ6d+6sw4cPGzo2AAAAAPyZEIYB\nAAAAAACAzz755BMlJyfr1KlTJUIFngrFpXUQmo4fP65evXrp+eefV35+vqG/r+6UDsX88MMPuuqq\nq/TDDz/4vH8AAAAAgP8hDAMAAAAAAACfzJ49WyNGjChe4sWTUIGz0IC3y+oQkIE3tmzZopYtW2rF\nihUlZi9yx9HvmCe/o57+Xtpvn5GRoR49emjFihXl2VUAAAAAgAjDAAAAAAAAwAfbtm3T8OHDiy/m\nuwsWuAsTeDrjhj8CCOHE15l1zLgFi40bN6pHjx5KT0/3eDYYV7+v7vbZ2e+lM6WXTbr++usJxAAA\nAABAOUUGugAAAAAAAACElvPnz+uWW27R+fPnJXkWhLHfzj4YEB0draSkJCUkJOjCCy9U9erVValS\nJUV5AhiNAAAe40lEQVRHR6uwsFB5eXnKzc1VZmamjh49qoyMDO3fv18FBQUlxnA0a0y482Z5nz+r\nH374QX379lVWVpYk739X7e+TpPr16+uSSy5R/fr1FR8fr5iYGFksFmVnZ+v48eP69ddftXPnTuXk\n5JR4ntJhmdLsQzbZ2dkaMGCANmzYoMsvv7wcew8AAAAAf16EYQAAAAAAAOCVd955Rzt37iyeZcMV\n+20sFosqVaqkXr16qV+/furcubMuv/xyRUR4N3lxYWGhUlNTtW3bNm3atEkbNmzQ+vXrHYZzwjUU\nEwr7Feiwzq+//qr+/fv7FISx/X/t2rV1/fXXq3///mrXrp1q1KjhdtzCwkKlpKToq6++0rRp05SW\nllYmFOMuEHP27FkNGDBAGzduVJUqVbzabwAAAACAZLEG+q9SAAAAAAAAhIzs7GwlJibq5MmTklwH\nDGwX/S0Wi2rWrKknn3xSI0eOVHx8vN/rOnfunFatWqWvv/5as2fP1tGjR0vUZ7FYNG3aNA0dOtRv\nY6alpSkpKcllKMj+GKSmpiohIcFv4werY8eOqX379kpNTZXk+e+IP49PVlaW2rVrp19++cWjGuy3\nsVgs6tixox555BFdf/31Xoe17FmtVk2fPl3jxo3Tvn37SgRtPPmdGThwoGbNmuXz+AAAAADwZ+X7\nX3IAAAAAAAD405k2bZpOnDghyfOQw1//+lft3btXjz76qCFBGEmqVKmS+vTpo/fee0/p6elaunSp\nbrzxRkVHR4fELCrhIjc3V9dee61+++03SZ6FUCTp8ssv10UXXeS3Om699Vbt2rXLbQ02tt/VxMRE\nffXVV1q9erUGDBhQriCM9Mc+3nTTTdq+fbuefvppVahQweFyYY5qsVqtmjt3rmbPnl2uGgAAAADg\nz4gwDAAAAAAAADw2depUt9vYB2Geeuopff7554aFYJyN3717d02fPl0HDx7UM888o2rVqpk2/p9V\nUVGR/vrXv2rTpk1ul9Cynx2ldu3a+uabb1SpUiW/1DF16lTNnz/fq2W8LBaLhg8fru3bt+u6667z\nSx32oqOj9eKLL+rrr79WfHy8RwEdW20PPPCATp8+7feaAAAAACCcsUwSAAAAAAAAPJKVlaUaNWqo\nqKhIkuMZN4J1iZezZ88qKytLtWvX9ttzskxSSffdd58mTZrkVRAmNjZWq1evVsuWLf1Sw5EjR9Sk\nSRO3y3jZ1xAREaEJEyboiSee8EsN7mzcuFG9e/fW6dOnPf7defLJJzVhwgRT6gMAAACAcMDMMAAA\nAAAAAPDI999/r8LCQknOgzA20dHRevfdd02rzZ24uDi/BmFQ0quvvup1ECYyMlIzZszwWxBGkh55\n5BGPlvGyPW6xWPTWW2+ZFoSRpDZt2ujrr79WVFSUJOfLJdkes1qtmjhxYvF+AQAAAADcIwwDAAAA\nAAAAj+zYscPtNraAwaBBgwif/EnMmDFDTz31lMtQhz3b78i7776r5ORkv9Xx888/a8aMGW7rsJ9x\n5emnn9Z9993ntxo81alTJ7355psuAzv2j509e1ZvvPGGGaUBAAAAQFggDAMAAAAAAACP7Nu3z+Nt\n+/bta2AlCBZr1qzR7bffXvy1u1lh7Jf9+fvf/+7XWp599lmXS3jZ1yBJPXr00AsvvODXGrzxj3/8\nQ927dy8+Js7Yap4yZUrxzEwAAAAAANcIwwAAAAAAAMAjx44d83jbJk2aGFgJgsEvv/yigQMH6vz5\n85I8D8LcdNNNmjBhgl9r2blzp+bNm+dymSb7wElsbKw+/PBDj2ezMcrEiRNVoUIFSY6XS7Lfl6NH\nj2rBggWm1QYAAAAAoYwwDAAAAAAAADxy9uxZj7etVq2agZUg0I4cOaLk5GSdPHlSkudBmK5du+qj\njz7yez3vv/++R9vZ6hgzZozq1avn9zq81ahRI91yyy0uj5+9jz/+2NiCAAAAACBMEIYBAAAAAACA\nRwoKCjzeNisry8BKEEg5OTnq37+/9u/fL8l9EMamcePGmjt3rqKiovxaT15enj777DO3Sw3Z1KxZ\nU/fff79fayiPBx980O02tkDRsmXLlJ+fb0JVAAAAABDaCMMAAAAAAADAI5UrV/Z42wMHDhhYCQKl\nqKhIw4YN0+bNm10uSST9L4BitVpVp04dLVq0SPHx8X6v6auvvvJohhrbrDD33XefYmJi/F6Hr1q2\nbKkWLVoU11ea/T7l5ORozZo1ZpYHAAAAACGJMAwAAAAAAAA8UrNmTY+3XbhwoYGVIFDuu+8+LVy4\n0KsgTFxcnBYsWKD69esbUtPXX3/t8nH7gInFYtHtt99uSB3lcd1113m87ZIlSwysBAAAAADCA2EY\nAAAAAAAAeCQhIcHtNraQxJdffqnjx4+bUBXM8sorr+g///mPV0GYyMhIffnll2rRooUhNVmtVi1e\nvNjlEkm27SwWizp06ODR77HZ+vTp4/G2GzZsMLASAAAAAAgPhGEAAAAAAADgkSZNmrh83D4gcerU\nKf3jH/8wuiSYZPr06Ro9erTb0ImNLXzy73//26ugh7d+/PFHZWZmFo/pTr9+/QyrpTxatmypChUq\nSJLTY2wLIW3bts3M0gAAAAAgJBGGAQAAAAAAgEfatWvndhtbCMJqtWr27Nm68847VVRUZEJ1MMqq\nVatKLC3kblYY2+/A6NGjNWLECENrW7NmjVfb9+rVy6BKyqdy5cpq2LCh08ftj/np06eVlpZmRlkA\nAAAAELIIwwAAAAAAAMAjiYmJaty4sSTns1dI/wvESNLHH3+s9u3bs7RLiNq1a5cGDRqk/Px8SZ4H\nYYYPH64XXnjB8Pq2bNni8nH739OoqCg1b97c6JJ8lpiY6NHsNpK0e/dug6sBAAAAgNBGGAYAAAAA\nAAAeu+mmmzy6YG+1WouDERs3blT79u3Vq1cvzZ8/XwUFBSZUivI6cuSIkpOTderUKUmeB2G6d++u\nKVOmmFJjSkqK26WbbHU3btxYUVFRZpTlk7p163q87aFDhwysBAAAAABCH2EYAAAAAAAAeOzuu+9W\nxYoVJbmeHcbGFpCwWCz67rvvNGDAANWpU0ejRo3S4sWLlZeXZ3TJ8EFOTo6uvfba4uV43AVhbJo2\nbarZs2crMjLS8Bpzc3O1d+9ej7a1WCy69NJLDa6ofKpWrerxtoRhAAAAAMA1wjAAAAAAAADw2IUX\nXqiHHnqoOBzhaSDGPhSTmZmpyZMnq1+/fqpZs6aSk5P1+uuva9OmTSosLDR6F+BGUVGRhg4dWjzr\niidBGKvVqrp162rRokVehTrK48CBAyoqKioe352EhASjSyqXypUre7xtenq6gZUAAAAAQOizWD1d\niBYAAAAAAACQlJ2drRYtWujXX38tEYbwVOkAjf33xsTE6Oqrr1aHDh3Uvn17tWvXTjVr1vRP4X6W\nlpampKQkl4ER++WDUlNTgz6QIUmjRo3S5MmTvQrCVKlSRWvWrNGVV15pVpn67rvv1KtXL7d1hgv7\n36Wbb75Zn376aaBLAgAAAICgZfx8pQAAAAAAAAgrsbGxmjFjhrp06aKcnJziGV88DSTYb2f7Xpvc\n3FytXLlSK1euLL6vUaNG6tSpkzp37qwePXqobt26ftsXlPTSSy95HYSJiorSrFmzTA3CSNLvv//u\n1faezGIUaJ7+G8rNzTW4EgAAAAAIbYRhAAAAAAAA4LVWrVpp1qxZGjRokM6dOydJPs0SU3rb0uEY\nSdqzZ492796tKVOmSJKaNGmivn37asiQIWrbtm15dgN2vvjiC40ZM8bj0IhtlpL3339fvXr1Mri6\nsjIyMrzaPpxmjyEMAwAAAACuRQS6AAAAAAAAAISmvn37aunSpbrgggtKzCTiKNDiKavVWuZm/5wW\ni0U7d+7U66+/rvbt2ysxMVGjR4/Wr7/+6rf9+jNauXKl7rzzzuKv3c0KYwvCPPfcc7r99ttNqLCs\ns2fPBmTcYGALoAEAAAAAHCMMAwAAAAAAAJ917NhR27ZtU48ePYpDErabfYClPFyFY37//Xe9/PLL\natiwofr27VtieSV4ZufOnRo0aJDy8/MleR6Eue222zR27Fizyizjzzw7SjjNcgMAAAAARiAMAwAA\nAAAAgHKpXbu2lixZoi+++EKJiYkllktyNLNLeTkKxkjSkiVL1L17d11zzTXatGlTucf5M8jIyFBy\ncrJOnz4tyfMgTM+ePfXBBx+YVaZDzI4CAAAAAHCGMAwAAAAAAAD8YtiwYdq7d68mT56sK664ojj8\nUnpmF/tgTHkDMo4CN6tXr1bbtm117733Kicnx1+7F3ays7PVv39/HThwQJL7IIzNlVdeqVmzZqlC\nhQqG1+hKXl6eV9s7+r0LpZttHwAAAAAA7hGGAQAAAAAAgN9ERkZqxIgR2rFjh5YvX67bbrtN1apV\nK3FB39WyR76GY0qHbSTp3//+t1q1aqU9e/b4bwfDRGFhoW688UZt2bKlOLDkjP3PrX79+lq0aJGq\nVKliVqlORUVFebV96d+7UL4BAAAAAFwjDAMAAAAAAABDdO3aVR9++KGOHj2qb775Rg888ECJGWOc\nzRwjlS8cY/8ce/bsUbt27bRx40a/718ou+eee/Ttt996FYSJj4/XokWLVLt2bbPKdCkmJsar7QM9\ns4sRM8UAAAAAAByLDHQBAAAAAAAACG+RkZHq3bu3evfuLUk6ceKEvv/+e61Zs0Zr1qxRSkqKCgoK\nircvHc4offHfk5kx7JdjOnXqlPr166fvv/9ejRo18tNeha5//vOf+u9//+tVECY6OlqzZ89WkyZN\nzCrTrcqVK7vdxraPFotFzzzzjJ5//nkTKgMAAAAABBphGAAAAAAAAJiqRo0auu6663TddddJknJz\nc7V+/XqtXbtW69at04YNG3TmzJni7e0DG6WXW3LFPhBz8uRJDR48WBs3bvQoRBGuPv/8cz377LNu\ngzA2tmP4wQcfqHv37iZU6Lm4uDivtj937pxBlQAAAAAAgg1hGAAAAAAAAARU5cqV1b179+KwhdVq\n1ebNm7VixQotXrxYa9euVX5+fvFjkuehGFuYw2q1ateuXRo/frxefvllg/coOK1YsUIjRozwaIkd\n+xlVxo8fr1tvvdWECr1Tt25dr7bPyckxqBIAAAAAQLCJCHQBAAAAAAAAgD2LxaLWrVvr8ccf17Jl\ny5SZmalp06Zp8ODBqlSpUnFQwz4Y48lzWq1WvfXWWzp48KDRuxB0duzYoUGDBpUJFTliH4S58847\nNWbMGLPK9EpCQoJX2x85csSgSgAAAAAAwYYwDAAAAAAAAIJabGyshg4dqpkzZyo9PV2vvfaaEhIS\nSiz14yoQYx/8yM/P11tvvWV4zcEkIyNDycnJxUtPeRqE6dOnj95//32zyvSat2GY33//3aBKAAAA\nAADBhjAMAAAAAAAAQka1atX08MMPa+/evXrllVdUuXJll+EOe7agx2effebx94S67OxsXXvttcWz\n4bgLwti0aNFCX375pSIigvftw/r16ys6OlqS6zCU7eeemppqVmkAAAAAgAAL3r9mAQAAAAAAACei\noqL02GOPaeXKlapataokz2eHOX78uNasWWN4jYFWWFioIUOGaOvWrSVm0XHEduysVqsSEhK0cOFC\nxcbGmlWqTyIjI9W8eXOX+2X/2LFjx5Senm5GaQAAAACAACMMAwAAAAAAgJDVpk0bLVy4sDjM4SoQ\nY+/PEIYZNWqUFi9e7FUQplq1avrmm2908cUXm1VmuVx99dVebb9p0yaDKgEAAAAABBPCMAAAAAAA\nAAhpHTt21F133eXV0kebN282sKLAe+GFFzRlyhSvgjDR0dGaO3eurrjiCrPKLLe2bdt6tf2yZcsM\nqgQAAAAAEEwIwwAAAAAAACDkPfHEEx5va7ValZqaamA1gfXpp59q7NixboMwNlarVRaLRVOmTFHX\nrl1NqNB/evbs6dGsQLZjMX/+fLNKAwAAAAAEEGEYAAAAAAAAhLykpCQ1adJEkvtQhCSlp6ebUpfZ\nli9frpEjR3q0XJQtIGKxWPTiiy/qlltuMaFC/7r44ot19dVXuwz92D928OBBrVu3zozSAAAAAAAB\nRBgGAAAAAAAAYaF58+YeL5V09uxZg6sx388//6zBgweroKBAktwuj2QLwtx11116+umnzSrT7wYO\nHOjV9hMnTjSoEgAAAABAsCAMAwAAAAAAgLBQq1Ytj7fNz883sBLzpaenKzk5WWfOnJHkeRCmX79+\nmjRpklllGmLYsGGKiPjjbU5PlkqaPXt2WC+TBQAAAAAgDAMAAAAAAIAwUalSJY+3jYuLM7ASc509\ne1bJyck6dOiQJPdBGJtWrVpp5syZxUGSUJWYmKj+/ft7vFRSfn6+nnjiCTNKAwAAAAAESGj/pQsA\nAAAAAAD8v6NHj3q8bXx8vIGVmKewsFCDBw/WTz/9JMmzIIzValWDBg20YMECxcTEmFKn0R544AG3\n29hmw7FarZozZ44WLVpkQmUAAAAAgEAgDAMAAAAAAICwkJKS4nYbWyDi0ksvNaEi4919991aunRp\nccjDGfsgTPXq1bVo0SKvlpUKdt27d1erVq2Kf76u2I7VHXfcocOHD5tUIQAAAADATIRhAAAAAAAA\nEPJSU1O1ZcsWt6EQmyuuuMKEqow1fvx4ffTRR14FYSpWrKivvvpKl19+uVllmub11193u439cTp+\n/LiuvfZaZWVlGVkWAAAAACAACMMAAAAAAADArXXr1mnkyJH69ddfA12KQy+99JJX23fp0sWgSszx\nySef6P/au7vQKus4gOO/M90L5DSyGi1btihHswu1JLG5lBScSdCbgrFL10XSTXmXEKhBNxWhEWV5\nERF0YVGNBnbhcs6lmZKRNlFnEw1zldtabbp1ddZc03OWe9GnzwfOjefZ+f/O4+OF53z3f1566aVh\nhTA5OTmxdevWqKioGKsxx1RlZWU8+uijGXeHGXi7pP3790dVVVX89ttvYzjp8J07dy42btwYp06d\nGu9RAAAArgliGAAAAAAy6unpiXfffTfKysqiuro6Dhw4MN4j9aurq4stW7ZcNoAY+NyECRNiyZIl\nYzHaqNi+fXusXr064+2A0tLxx8aNG2PFihWjPN34evXVV6OwsDAiIqsgJiKioaEh5s2bd1WGXmfO\nnIl169bF7bffHi+++GJ0dXWN90gAAADXBDEMAAAAAFnr7e2N999/P2bNmhULFiyIjz76KM6fPz9u\n83z11VcXBR6X2yUlHUAsW7YspkyZMhbjjbjvvvsunnjiif5znmlXmPR7rqmpibVr147VmONm+vTp\n8cYbb/Sfl0xBTPqYw4cPx+zZs+Ptt98ekzkzaWpqiqeffjpuu+22WL9+ffz+++/jPRIAAMA1RQwD\nAAAAwLCkUqlIpVKxc+fOWLFiRdxyyy2xZs2a+Prrr8dshgsXLsRrr70WS5Ysifb29oi4fBgy0Jo1\na0ZztFH1/PPPx7lz5yIi+xBm2bJlsWnTprEacdxVV1fHypUrsw5i0uepo6MjampqoqKiInbu3DlW\n4/Y7fvx4bNiwIcrLy2PevHnxwQcfRE9PT9Y7AAEAAPCPieM9AAAAAADXlsGRQVtbW2zatCk2bdoU\nJSUl8cgjj8Ty5cujsrIyCgoKRnTt9M4069evjyNHjvTPkE0YEhHx0EMPxaJFi0Z0prHU3d2d8ZiB\n8UROTk7cddddsW7dutEca0S88MILMXny5BF5rXfeeSeOHDkSe/fu7Y+3stk1KJVKRUNDQyxYsCAq\nKyujpqYmHnvsscjLyxuRuQbq7e2NpqamqK2tjdra2vj2228j4p/YDAAAgP8u1Zftr8wAAAAA8L+1\nY8eOWLhw4ZBRweAv7tPP5+bmxpw5c+LBBx+M++67L8rLy+Puu++O3NzcYa198uTJaGxsjE8//TRq\na2vj7NmzF62ZKYRJH5Obmxv79u2L8vLyYa1/KS0tLXHHHXdcNrQYuEPLsWPHoqSk5IrWXLhwYezY\nsSNj3HGtGanzM9Avv/wS8+fPj+bm5qyiqYGzDDy2sLAwHn744Vi6dGnMnTs37rnnnpg4cXi/Y9jd\n3R3Nzc1x6NCh2LdvXzQ2NsaePXuis7PzX+sOnnPgNdTc3BylpaXDWhsAAOD/yM4wAAAAAFyRwV/c\np7/UP3/+fOzevTt2797d//zEiRNj2rRpceutt0ZxcXHccMMNUVBQEAUFBdHX1xednZ3R0dERHR0d\ncezYsfjxxx+jo6NjyNfPNgZJhwSvvPLKiIUw14prYYeR0Yp6brzxxqirq4tFixZFS0tL/3WQac3B\nOx91dHTEtm3bYtu2bRERkZeXF6Wlpf3XcWFhYRQUFEReXl789ddf8eeff0ZXV1ecOXMmfv755zh9\n+nS0trZGb2/vResM3gEmSXETAADAeBPDAAAAADBiLhXGpF24cCFaWlri+PHjWb3eUK8x3N09UqlU\nrFq1Kp577rms1kySqz2wGO1YZ/r06dHY2BhLly6NAwcOXHQ7pEznZmAUM3DOnp6eOHz4cBw6dCir\nGdI/O9R7vdr/fgAAAK5VOeM9AAAAAADJ1NfX969HWjowyPQY6nUyGRzCPP7447F169ZReY9c/YqK\niqK+vj4WL17cH8EMjGIyGYlreKjXEcIAAACMHjEMAAAAAMOSbUQwlKGCgEyP4c41MHZ49tln48MP\nP4ycHB+D/Z9NmjQpvvjii3j55ZcjLy/vop1hhns9/5dreLjhy1AxDQAAANnzKQAAAAAAWRv45f6l\ndsAYSwPXHzjX5MmT47333ovXX39dCEO/tWvXxq5du2LmzJkXXTMR4xugDP63NDiiSaVSUVhYGAUF\nBWM+GwAAwLXIJwEAAAAAZDR16tQoLi6+5O2LIoa+bcxIu9xtlNLPV1VVxcGDB6O6unrE1892rrGI\nKrK9Tc/V/BgPs2fPjv3798ebb74ZRUVFl4xPRnPGTLcDG3jMnDlz4q233oqTJ09GcXHxqMwDAACQ\nNBPHewAAAAAArn4zZ86M1tbWaGpqio8//jg+//zz+P777/ufH+o2MKMVEwxeK73GvHnzYsOGDVFZ\nWTniaw5nnqSumSSpVCpWr14dq1atis2bN8fmzZvjxIkTEXHxuR3NIOZS13FERFlZWaxcuTKeeuqp\nmDFjxqisDwAAkGSpPv9zBgAAAOA/OHXqVNTV1cWXX34Z9fX10draetHzmT52yhQZXO7n0z973XXX\nxZNPPhnPPPNM3H///VlOPjJaWlqitLQ0q2NTqVQcPXo0SkpKrmjNhQsXRn19/RW9xtVopM7Pf9XX\n1xeffPJJbNmyJbZv3x7d3d39f34pV3L9Dv75/Pz8mD9/flRVVUVVVZUABgAA4AqJYQAAAAAYES0t\nLdHQ0BB79+6Nb775Jg4cOBDt7e1DHpvNR1JDxQapVCpmzJgRFRUVsXz58li8eHHk5eVd8eyQ1tnZ\nGbW1tfHZZ5/Frl274ujRo/86JtuPVC8VzEybNi1mzZoVDzzwQFRUVMTcuXMjNzf3iuYGAADgH2IY\nAAAAAEZNa2tr/PDDD9Hc3BwtLS1x4sSJOH36dJw9ezba2tqivb09uru7o6enJyZMmBD5+fmRn58f\nU6ZMiZtvvjmKioqipKQkZsyYEWVlZTF79uy4/vrrx/tt8T/y66+/xp49e+LgwYP91/BPP/0UbW1t\n8ccff0RXV1d0dXVFREReXl7k5+fHpEmTYurUqXHTTTdFUVFRTJ8+PUpLS+POO++Me++91zUMAAAw\nysQwAAAAAAAAAAAkRs54DwAAAAAAAAAAACNFDAMAAAAAAAAAQGKIYQAAAAAAAAAASAwxDAAAAAAA\nAAAAiSGGAQAAAAAAAAAgMcQwAAAAAAAAAAAkhhgGAAAAAAAAAIDEEMMAAAAAAAAAAJAYYhgAAAAA\nAAAAABJDDAMAAAAAAAAAQGKIYQAAAAAAAAAASAwxDAAAAAAAAAAAiSGGAQAAAAAAAAAgMcQwAAAA\nAAAAAAAkhhgGAAAAAAAAAIDEEMMAAAAAAAAAAJAYYhgAAAAAAAAAABJDDAMAAAAAAAAAQGKIYQAA\nAAAAAAAASAwxDAAAAAAAAAAAiSGGAQAAAAAAAAAgMcQwAAAAAAAAAAAkhhgGAAAAAAAAAIDEEMMA\nAAAAAAAAAJAYYhgAAAAAAAAAABJDDAMAAAAAAAAAQGKIYQAAAAAAAAAASAwxDAAAAAAAAAAAiSGG\nAQAAAAAAAAAgMcQwAAAAAAAAAAAkhhgGAAAAAAAAAIDEEMMAAAAAAAAAAJAYYhgAAAAAAAAAABJD\nDAMAAAAAAAAAQGKIYQAAAAAAAAAASAwxDAAAAAAAAAAAiSGGAQAAAAAAAAAgMcQwAAAAAAAAAAAk\nhhgGAAAAAAAAAIDEEMMAAAAAAAAAAJAYYhgAAAAAAAAAABJDDAMAAAAAAAAAQGKIYQAAAAAAAAAA\nSAwxDAAAAAAAAAAAiSGGAQAAAAAAAAAgMcQwAAAAAAAAAAAkhhgGAAAAAAAAAIDEEMMAAAAAAAAA\nAJAYYhgAAAAAAAAAABJDDAMAAAAAAAAAQGKIYQAAAAAAAAAASAwxDAAAAAAAAAAAifE3gVf0DL3d\nzTcAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "execution_count": 76, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_compression_experiments(res_w, comp_ratios, \"figs/compression_wiki.png\", 20.)\n", - "Image(filename=\"figs/compression_wiki.png\")" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 1.24759097, 1.47684102, 1.64567719, 1.62750754, 1.91693145,\n", - " 1.75885185])" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "numpy.divide(res_w['GWT'], res_w['FSWT'])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "## Blogs" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "G = read_graph(polblogs[\"path\"] + \"polblogs.graph\", polblogs[\"path\"] + \"polblogs.data\")\n", - "F = read_values(polblogs[\"path\"] + \"polblogs.data\", G) " - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "#vertices = 1222\n", - "#edges = 16717\n" - ] - } - ], - "source": [ - "print(\"#vertices = \", G.number_of_nodes())\n", - "print(\"#edges = \", len(G.edges()))" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "algs = [OptWavelets(n=20), GRCWavelets(), Fourier()]\n", - "\n", - "comp_ratios = [0.1, 0.20, 0.30, 0.40, 0.50, 0.60]\n", - "\n", - "res_b, time_b = compression_experiment_static(G, F, algs, comp_ratios, 10)" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACLAAAAZxCAYAAACsEP0wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAuIwAALiMBeKU/dgAAIABJREFUeJzs3Xl81NW5x/HvZCEJCWiAIIGQEBCBKFtIZE+QaNVWrXir\nFm0FRVxq1a627rcu92q1VrEuXKSoiBYXRKkCIrIvskQIEPYlLIlAWAohhCzM/WP4xUlmyzK/+c0k\nn/frlZdhMnPOM3PiZOaZ55zHZrfb7QIAAAAAAAAAAAAAAAAsEmZ1AAAAAAAAAAAAAAAAAGjeKGAB\nAAAAAAAAAAAAAACApShgAQAAAAAAAAAAAAAAgKUoYAEAAAAAAAAAAAAAAIClKGABAAAAAAAAAAAA\nAACApShgAQAAAAAAAAAAAAAAgKUoYAEAAAAAAAAAAAAAAIClKGABAAAAAAAAAAAAAACApShgAQAA\nAAAAAAAAAAAAgKUoYAEAAAAAAAAAAAAAAIClKGABAAAAAAAAAAAAAACApShgAQAAAAAAAAAAAAAA\ngKUoYAEAAAAAAAAAAAAAAIClKGABAAAAAAAAAAAAAACApShgAQAAAAAAAAAAAAAAgKUoYAEAAAAA\nAAAAAAAAAIClKGABAAAAAAAAAAAAAACApShgAQAAAAAAAAAAAAAAgKUoYAEAAAAAAAAAAAAAAICl\nKGABAAAAAAAAAAAAAACApShgAQAAAAAAAAAAAAAAgKUoYAEAAAAAAAAAAAAAAIClKGABAAAAAAAA\nAAAAAACApShgAQAAAAAAAAAAAAAAgKUoYAEAAAAAAAAAAAAAAIClKGABAAAAAAAAAAAAAACApSKs\nDgAAQkFlZaW2b99e47I2bdooLIw6QAAAAAAAAAAAAACh7ezZszp69GiNy7p3766IiMCVlVDAAgB1\nsH37dqWlpVkdBgAAAAAAAAAAAAAERH5+vnr16hWw+Tg6AAAAAAAAAAAAAAAAAJaigAUAAAAAAAAA\nAAAAAACWooAFAAAAAAAAAAAAAAAAloqwOgAACAVt2rRxuSw/P1/t2rWzIBoAzcmpU6eUmpoqSdq9\ne7diY2MtjghAU8fzDoBA43kHQKDxvAMg0HjeARBoPO+gIYqLi5WWllbjMnefkZqJAhYAqIOwMNcD\nq9q1a6eEhAQLogHQnLRs2bL6+4SEBN5oADAdzzsAAo3nHQCBxvMOgEDjeQdAoPG8A39x9xmpqfMF\ndDYAAAAAAAAAAAAAAACgFgpYAAAAAAAAAAAAAAAAYCkKWAAAAAAAAAAAAAAAAGApClgAAAAAAAAA\nAAAAAABgKQpYAAAAAAAAAAAAAAAAYCkKWAAAAAAAAAAAAAAAAGApClgAAAAAAAAAAAAAAABgKQpY\nAAAAAAAAAAAAAAAAYCkKWAAAAAAAAAAAAAAAAGApClgAAAAAAAAAAAAAAABgKQpYAAAAAAAAAAAA\nAAAAYCkKWAAAAAAAAAAAAAAAAGApClgAAAAAAAAAAAAAAABgqQirAwAAAIBnsbGxstvtVocBoBnh\neQdAoPG8AyDQeN4BEGg87wAINJ53EKo4gQUAAAAAAAAAAAAAAACWooAFAAAAAAAAAAAAAAAAlqKA\nBQAAAAAAAAAAAAAAAJaigAUAAAAAAAAAAAAAAACWooAFAAAAAAAAAAAAAAAAlqKABQAAAAAAAAAA\nAAAAAJaigAUAAAAAAAAAAAAAAACWooAFAAAAAAAAAAAAAAAAlqKABQAAAAAAAAAAAAAAAJaigAUA\nAAAAAAAAAAAAAACWooAFAAAAAAAAAAAAAAAAlqKABQAAAAAAAAAAAAAAAJaigAUAAAAAAAAAAAAA\nAACWooAFAAAAAAAAAAAAAAAAlqKABQAAAAAAAAAAAAAAAJaigAUAAAAAAAAAAAAAAACWooAFAAAA\nAAAAAAAAAAAAlqKABQAAAAAAAAAAAAAAAJaigAUAAAAAAAAAAAAAAACWooAFAAAAAAAAAAAAAAAA\nloqwOgAAAALp7NmzOnLkiNVhAAAAAAAAAAAANFlt27ZVWBjnaaB+KGABADQrR44cUfv27a0OAwAA\nAAAAAAAAoMk6dOiQEhISrA4DIYaSJwAAAAAAAAAAAAAAAFiKE1gAoIFOnTqlli1bulweGxtrQTQA\nAAAAAAAAAAAA4NupU6fqdFmgUcACAA2Umprq9nK73R7gSAAAAAAAAAAAAACgbuLi4qwOwS0KWAAA\nzV5+fr7atWtndRgAAAAAAAAAAAAhp7i4WGlpaVaHgSaAAhYAaKDdu3crISHB6jDgB+3atWMtAQAA\nAAAAAAAA0CyUlJS4XHb48GGPHSgChQIWAGig2NhYxcbGWh0GAAAAAAAAAAAAANSZu884S0tLLYik\npjCrAwAAAAAAAAAAAAAAAEDzRgELAAAAAAAAAAAAAAAALEUBCwAAAAAAAAAAAAAAACxFAQsAAAAA\nAAAAAAAAAAAsRQELAAAAAAAAAAAAAAAALEUBCwAAAAAAAAAAAAAAACxFAQsAAAAAAAAAAAAAAAAs\nRQELAAAAAAAAAAAAAAAALEUBCwAAAAAAAAAAAAAAACxFAQsAAAAAAAAAAAAAAAAsRQELAAAAAAAA\nAAAAAAAALEUBCwAAAAAAAAAAAAAAACxFAQsAAAAAAAAAAAAAAAAsRQELAAAAAAAAAAAAAAAALEUB\nCwAAAAAAAAAAAAAAACxFAQsAAAAAAAAAAAAAAAAsRQELAAAAAAAAAAAAAAAALEUBCwAAAAAAAAAA\nAAAAACxFAQsAAAAAAAAAAAAAAAAsRQELAAAAAAAAAAAAAAAALEUBCwAAAAAAAAAAAAAAACxFAQsA\nAAAAAAAAAAAAAAAsRQELAAAAAAAAAAAAAAAALEUBCwAAAAAAAAAAAAAAACxFAQsAAAAAAAAAAAAA\nAAAsRQELAAAAAAAAAAAAAAAALEUBCwAAAAAAAAAAAAAAACxFAQsAAAAAAAAAAAAAAAAsRQELAAAA\nAAAAAAAAAAAALEUBCwAAAAAAAAAAAAAAACwVYXUAAADAf+x2uwoKCnTo0CGdPn1aZWVlkqTo6GjF\nxMSoffv2SklJkc1mszhS1BVrimBTXl6uvXv3qqioSMXFxSorK9OZM2cUFRWl2NhYxcXFKTY2Vu3b\nt1dycrLCw8OtDhkAAAAAXNjtdpWWllodhqVatmzZpPIJrGnTW9NgVF5ern379mn//v0qKSlRaWmp\nTp8+LcmRr4uOjlabNm10wQUXqEOHDmrVqpXFEQNAaKGABQCAEGW327V7926tXbtWa9as0dq1a5Wb\nm6tjx455vV18fLwGDBhQ4ys1NZU3t0GANUUw2rdvn+bOnasFCxYoNzdXO3bsUFVVVZ1uGx4erqSk\nJKWmpurCCy9URkaGMjIy1KdPH0VE8FYEABqqsrJSM2fOlCRdf/31PKc2AawpAAReaWmp4uLirA7D\nUiUlJYqNjbU6DL9hTZvemlrt1KlTWrx4sb799lt9++23Wr9+vQ4ePCi73V7nMRISEtSzZ09dfPHF\nGjhwoIYMGaLu3bubGDUAhDabvT7PsgDQTB0+fFjt27evcdmhQ4eUkJBgUURoqKawlgcOHNCkSZM0\nadIkFRYWuvy8haRESTGSos9dVibptKQiSeVuxuzYsaPGjx+vu+66Sx07djQpcnjCmoa2Dz/8UCdP\nnrQ6DEnSmDFj/PKBV2VlpaZNm6a33npLy5cvr07MNLQoqvZbjqioKPXt21eXXXaZrrrqKg0dOrTe\ncb/zzju6/fbbPf68ffv2+v777xsUb33069dPeXl5Xq9z4403avr06abGcezYMbVt29brdebOnasr\nrrhCJ0+e1IcffmhqPIF03XXXhdTfccAfvv76a11xxRWSpHnz5unyyy+3OCI0FmsanIL1dd62bdu0\nZMkSiyPyj7CwMK+v6QAznTp1imKHJlbswJo2vTW1wunTp/Xhhx9qxowZmjdvXvVpyJL/8iKJiYn6\n8Y9/rGuvvVZXXXWVWrRo0aiYx48fr8mTJ3v8+ahRo/TJJ580ag5fTpw4oTZt2ujs2bNer/fKK6/o\n/vvvNzWWL774Qtdee63Hn0dEROjo0aOKi4vTjh07tGjRIlPjCaRx48ZZNndT+OwFwbGOFLAAQB0E\nwxM2/CNU19Jut2vBggV6/fXXNXPmzOrTD1pI6iNpgNPXJecud6dc0kZJa899rZG0QT8UQISHh2vU\nqFH61a9+pREjRnCCh4lY06YjNTVVBQUFVochm82mY8eOqXXr1o0aZ+rUqXr00Ue1f//+6nFrq+tb\nCG+/b85jtGrVSjk5OXrkkUeUkZFRp7H37Nmjrl27eozPZrNp06ZN6tmzZ53Ga4jjx4+rXbt2Ph+P\n9u3bq6ioyLQ4JOnzzz/X9ddf7/HxiIyM1PHjxxUTE6OdO3c2md1eNptNS5Ys0ZAhQ6wOBQiou+66\nS5MmTar+fuLEiRZHhMZiTYNTsL7Omzx5ssaPH29xVP4RERGh8nJ3JfmA+WoUO/xBnt94NzXlkl50\nfNvUih1Y06a3poF04MABTZgwQW+99Vb1acie8hr1+WjV1xjx8fG6+eabdeeddyo9Pb2eUTu89957\nuu222zzO1bZtWx06dKhBY9fVl19+qWuuucZn7nHUqFH6+OOPTY3loYce0osvvugxloyMDH377beS\nfG+QCiU2m63OpyabIVQ/e0FNwbCOYQGbCQAA1Jvdbtf777+vtLQ05eTk6JNPPlFVVZWyJH0g6YSk\n1ZLelDReUrq8vzdvce4648/dZs25MT6QNFxSVVWVPv74Y40cOVJpaWl6//336/WGDL6xpk2TzWaz\n9Msf9u/fr+zsbI0ZM0YHDhyoMbbdbq/xe9OQuIwxnE9zMb5KSkr02Wefafny5XWOt0uXLkpJSXEZ\n39nChQvr+zDUy5IlS6p3FjnfP+dY7Ha7Dh06pC1btpgai/Nuodrz22w2ZWRkKCYmpsZtrP69DYbf\neyAUVVZW6tNPP63+94wZM1RZWWlhRGgs1jS4BfPfO6tj4285mpQWzeyrObD6MWZNQ0Zpaakef/xx\nde/eXS+88IKOHz9e42+Vu3xDQ//eucuLHD9+XG+++aYyMjKUk5OjOXPm1Ps+jBgxwmUO57zAkSNH\ntHHjxnqPWx/u8hK1Hzu73a7FixebGoenWIzvpZqPl8Hq10W8rgJ+QAELAABBqqioSD/96U916623\nasuWLYqT9Cs5TtdYJOnnkqL8ME/UubEWS8qTdK+kOElbtmzRrbfequuvv970kwOaC9a06XNXxGD2\nlz8sXbpU/fv315IlS1wSNEYBhLvL6xNj7TfV7hII9ZWdne31tmYfAVuf8a2OxV1yRrLmdzZYfu+B\nULVw4UIVFxdL550nnXeeiouLTS/Yg7lY09AQrH/vrP6bzN9xAEAomzdvnnr06KFnn31WZ86cMSUn\n4vz3z1NexLh8wYIF+vGPf6ysrKzqE0LqIikpSV27dq0eyx0r8xLOf/+PHDmiTZs2mRZHSUmJcnNz\nvRZ1kCMBghsFLAAABBm73a6pU6cqLS1Ns2bNUqSkpyUVSnpNjnYyZukt6fVzcz0tKVKOthQXX3yx\n3nvvPV4QNxBr2rwF+w6LefPm6corr9TRo0dls9l8JlYaEqOvpE1DeUo4GHOanZypz4eLZn4QeeLE\nCa1bt65ByZlA/j4G0+89EMo+/PBDxzfDh0vDhkmSPvroIwsjQmOxpqErGF7nheLfcgAArFZVVaWH\nH35YV111lQoLC11yH9IPf/c85TPq+7fP0zjuimWWLl2qIUOG6PTp03W+TyNGjPCa5zMzL1GXopFA\nxbJ06dLqNjrOj7UhPDxcw4cPd3vbUHxdxWsrNEURVgcAAAB+UFRUpLvvvluzZs2SJA2Q9LbMLXBw\np5WkxyRdL2mspLXHjumXv/ylPvroI7355ptKTEwMcEShizVFMBcJ5eXl6Wc/+5nKysok1YzVOcFi\n/DsiIkIjR47UpZdeqt69e6tXr146//zz1bp1a8XFxam8vFylpaUqKirSvn37tGnTJuXl5WnZsmXa\ntWtX9dju5mkId0UZRsJHkg4ePKht27bpoosuavAcnngqGnH3uNnt5h6Ra7QyMuZyjkOSIiIiNOzc\nB6LOAv27Gcz/LwChokarGeM58IsvNGPGDL322muKiCDNE2pY09Bm9d82/pYDAFB/ZWVluuGGGzRn\nzhyX9/CS+/f1kuO9db9+/XTppZcqPT1dKSkpSklJUXx8vGJiYhQTE6PTp0+rpKREx48f165du7Rz\n505t2LBBS5Ys0ZYtW6rH9LVxyFCfv70jRozQP//5T5fLA5GXWLZsmSorK2vkJZznrm3RokW67777\nTInF02YmI47+/fsrLi7O488DhddVgGe8CwYAIEhs2rRJP/rRj1RYWKhISU9KekiOEzOscomkFZKe\nl/SUHCd3rFmzRvPmzVNaWpqFkYUG1hRS4wo0zJznzJkzuvnmm1VSUiLJ/RtnI3HSuXNnPfzww7rx\nxhvVpk0bj2NGRUUpKipK8fHxSktL05VXXln9s6KiIn3xxRf697//rblz56q8vNzjvHXVpUsXpaSk\naO/evR6TIgsXLjSlgGXp0qUuRSOSXL431uX77783rZjGW3LGZrMpIyNDMTExNX5m1u+lt/U0Y052\nGqG5qdFqpl8/x4VOLWcuv/xyawNEvbGmoc3K13n8LQcAoP5OnDihn/zkJ1q2bJnP4hXj+5EjR+oX\nv/iFrrvuOsXHx3sd3yhkSUhIUPfu3Wv87OjRo/rss880ffp0LViwQJWVlW5PY2koX5t8iouLlZ+f\nb0r+z1deIpCbfLydxmuz2dw+TryuAoILLYQAAAgCq1evVlZWlgoLC9VL0lpJj8raQgdDpBwnd6yV\n1EtSYWGhsrKytHr1amsDC3KsafNmvGG02WyaMmWKqqqqTP+qrKxU69at6xzj008/ra1bt0pyTdYY\nCYXw8HA98cQT2rp1q+6++26vxSu+JCYm6s4779TMmTN18OBBTZo0SQMHDmz0cafZ2dleEwJmtRHy\nNK63+xPoWAy1kzPdunUz5XfwkUcekVQzYeL8/0JOTo4pv/dDhgzx7wMKBLEarWbCwx1ftJwJaaxp\n6AmG13njxo0zZR7jb6qnv+VPP/203+c8c+ZMAFcPANCcVVRU6JprrqkuXnFu5yOpxmU2m02jRo3S\nunXrNG/ePI0ZM8Zn8Yovbdq00e233645c+aooKBADz/8sNq2besyb0MlJSWpa9eu1ffFHStyJLVP\nnZGkw4cPa/PmzX6Po7S0VGvWrPH6ONbOkYwZM8aU11VZWVnVj4HB+XXVk08+acprRqApoIAFAACL\nrV69Wjk5OTp69KgyJS2R1NvqoNzoLUdsmZKOHDminJwcCh48YE0R7IqLizVhwgSv7W+ioqI0ffp0\nPfnkk4qKivLr/K1bt9Ydd9yh5cuXKzc3V2PHjlVkZMPKu7Kzs91ebiRJzErOOPdrdk5AJCUlKSkp\nqcbl7m7jL3XpM+1udxGA0OO21YwkXXaZJGnGjBkkLEMMawoAABA4d9xxh5YuXer2pBPjMpvNpuTk\nZM2dO1cff/yxevc2J6PXoUMHPfPMM9q3b5+efvpptW7dutEnsEi+N/mYkZeoXTTi/N9BgwbVuMzs\nWIxWRpJrCyhJCg8P1/Dhw/0+LwD/ooAFAAALbdq0SVdddZVOnjypbEnzJbW1Oigv2soRY5akkydP\n6qqrrlJ+fr7FUQUX1hShYPLkyR5bBxkJmzfeeEM33HCD6bH07dtXkydP1u7duzVy5Mh6397TEbmG\noqIi7dixozEhuvBWNJKdna1h53bOG8wsplm6dKmqqqokuU/OREREuMQDIDS5bTUjOb53ajmD0MGa\nAgAABMbLL7+sadOm+SxeycnJUW5ubsDaOEZHR+uRRx7R9u3bNXbsWFPaCEnmtu5Zvny5KioqJLnm\nmMaMGaPOnTu7PV3GjByJt1ZGktS/f3/FxcX5fV4A/kUBCwAAFikqKtKPfvQjHT16VJdKmiWpldVB\n1UErSf+W49SOo0eP6oorrlBRUZHFUQUH1hShwkjaOHNO2FxxxRUaO3ZsQGNKTEzUJZdcUu/bpaam\nKjk5WZLnI3L9/eHfsmXLXIpGDFlZWTV285hdTOOrz3RGRoZiYmL8OicAa7i0mjHQciZksaYAAADm\n27Jlix555BG3OQPnXMhPf/pTzZ49u1HtkxsqISFBkydP1r///W917NixweP42uRz6NAhbdmypcHj\nu+OtEKV2jkQyd5OPtzFtNhsn1AIhggIWAAAsYLfbdffdd6uwsFC9JH2p0Ch0MLSSNFtSL0mFhYW6\n5557Gn3EZahjTREqDh48qI0bN0pyLb4w/O53vwtkSI3m64hcfydFvI2XnZ1d3efY6lgk2gcBTYXH\nVjMGWs6EHNYUAAAgMMaOHaszZ85IqpkHcS5eufzyy/Xhhx8q3Lmo2AJXX321NmzY0OATYDp37qzU\n1FRJnjf5mJmXcJ4zISFBPXv2rJEjqV1Ms3XrVr/FUVZWptWrV9NiGWgCKGABAMAC06ZN06xZsxQp\nabqCu8WMJ23liD1S0ueff65p06ZZHJG1WFOEipUrV7pc5vzmPj4+Xjk5OYEMqdF8HZEbqOTMBRdc\noO7duystLU3t2rVz+Xnt2zZW7T7T7pCcAZoGj61mDLScCTmsKQAAgPn+9a9/adWqVZJci1cMSUlJ\n+uCDDxQRERHw+NyJj4/XnDlz9Pvf/97r+31PRowYEbBNPmVlZVq1alWNOI2iIOPklUBt8lmxYoXK\ny8urY5BqrnN4eLjLaTAAghMFLAAABFhRUZEeeOABSdKTknpbG06j9Jb0xLnvH3jggWbbdoY1RSjZ\ntm2b28uNBENaWprlO47qy9cRuQcOHNCuXbv8Mpe7ohHjsXNOygwbNsztzi5/JmeWLVtWvSvfXXIm\nIiJCw861oAAQ2jy2mjHQcibksKYAAADmqqqq0hNPPOGxCMR4Lz9lyhRL2gZ5ExYWpr/+9a8Nagkc\nyE0+7opGDNnZ2ZKknj17KiEhoToGZ/4s1PY0lhFX//79FRcX57f5AJiHAhYAAALIaDNz7NgxDZD0\nJ6sD8oM/SUqXdOzYsWbZdoY1Rag5cOCA158nJiYGKBL/SU1NVXJysiTzj8hdvny5KioqJLkmZ5wL\nWDwdkbt//37t3r3bL7F4uk9GEi4jI6NByS4AwcVnqxkDLWdCBmsKAABgvg8++EA7duyQ5Ll10M03\n36yRI0daFaIpfG3y+f7777V9+3a/zOUt1+KcFxk+fLjpm3y8jWWz2TihFgghFLAAABBAH3zwgWbN\nmqUWkt6WFBwHUzZOpBz3xWg788EHH1gbUICxpgg1JSUlXn8eHR0doEj8Kzs722uxlb929XhLiBi7\niyTvR+QGIhZJuuzcB58AQpvPVjMGWs6EDNYUAADAfBMnTnS5zHnTS1hYmJ5++ulAhhQQnTt3Vmpq\nqiTPm3zMyEs4z3X++eerT58+1f/2tMnHX8U0Z86c0bfffuu15RI5EiB0UMACAECA2O326jdFj0u6\nxNpw/Kq3HPdJkp555plmc2IHa4pQVFVV5fXnxcXFAYrEv5yLR5z5e1ePp+RMmzZtdPHFF1f/u1+/\nfmrdurXL9WqP0VBlZWVavXq11+QMu4uApsFnqxkDLWdCBmsKAABgrvz8fC1btqw6J+DMOH3lhhtu\nULdu3SyK0Fy+Nvn4Iy9RXl7uUjRiPLa12xl72+Tjj1i+/fZbnTlzpjoGqWYuJjw8XMOHD2/0PAAC\ngwIWAAACZOHChdqyZYviJD1odTAmeFBSnKTNmzf79fjHYMaaIhR5ailjJHXy8/MDHJF/+Doid9++\nfdqzZ0+j5igrK9OqVavcJmdqJ0LCwsI0ZMgQ047IXb58uUufaee4IiMjNXTo0EbPA8BadW41Y6Dl\nTNBjTQEAAMz3r3/9y+d17r777gBEYg1PG1r8mZdYuXKlysrKJLm2WK69yahv374677zzqmNw5o/T\nYDyNYcSVnp6u2NjYRs8DIDAoYAEAIEBee+01SdJtklpZG4opWkv65bnvjfva1LGmCEXt27d3ucw5\n0bB3715t3rw5kCH5RdeuXdW5c2dJno/IbWyCZsWKFS5FIwZ3J8B4OiJ37969KigoaFQsnu6LUVCT\nkZHhsVgJQOioc6sZAy1ngh5rCgAAYL4vvvjC5TLnXMEFF1zQpFvK+NrkU1hYqJ07dzZqjrq2WJYc\nj/3QoUNN2+TjbQybzcYJtUCIibA6AAAAmoMDBw5o5syZkqR7LY7FTPdKekPSp59+qsLCQnXs2NHq\nkEzDmiJUde3a1ed1nnvuOb3zzjsBiMa/srOz9d5773nt8TxmzJgGj+8tIeLuOFxvR+SaGYtE+yAg\nkOx2u0pLS00Zu3rnqK9WMwaj5cwXX+hf//qXBg8ebEpcLVu29NrCLNSxpgAAAKHr+++/13fffee1\nfdBPf/rTJv3aJzk5WV26dFFBQYHbx0Fy5CUa00LJU4vluLg4paenu1w/KytLX375paQf1kH6oZim\nobFUVFRo5cqVtFgGmhBOYAEAIAAmTZqkqqoqDZd0idXBmKi3pGGSqqqqNGnSJKvDMRVrilCVkZHh\n8WdGUuP999//ob1BCDH7iFxPyZnWrVurn5td9JmZmdWnoNROpDQmljNnzrj0ma6N5AwQOBs2bFBc\nXJwpX5MnT3ZMUp//p8/tJJ08ebJpcW3cuNH/D2QQYU0BAABC1+LFi31epzm8Zx4xYoTbwhVDY/IS\nFRUVWrFihdsWy0OHDnWbr/C2yacxsaxatUqnT5+ujkGqmYMJDw93afsMILhRwAIAgMnsdnv1B/+/\nsjiWQDDu46RJk7y+SQplrClCWVpamhITEyXJJdFgXFZVVaVbbrlFU6dOtSTGhvJ1RG5BQYH27t3b\noLHLy8tdikZ8JWciIyM1cOBAt0fkNqYNxLfffqszZ85Ux2CM6zzv0KFDGzw+gPr57LPPzJ1g+PC6\ntZox9OvnOLHDRKbfZ4uxpgAAAKErNzfX53XctQFuaszc5LN69WqXohGDp0KVjIwMtWzZsjoGZ43J\nkXhrsSxf3NGyAAAgAElEQVRJ6enpio2NbfD4AAKPFkIAAJhs9+7dKiwsVAtJo6wOJgBukBQpR4ud\nPXv2KDU11eqQ/I41bXpr2tz87Gc/06uvvuqSMHAuhigvL9eYMWP09ttv67HHHguJ3tBdu3ZVUlKS\nDhw44PGI3EWLFumXv/xlvcdeuXKlysrKqsd1fuy8Jb6ysrKqEzHOtysoKNC+ffvUuXPnesfiKbFj\njJ+RkVF98gsA891///3asGGDPvroI8cF/fpJf/qTdN55/pkgOlqqz/Hm4eHSU09JZWX+mf8//5Ge\ne05av16SdOONN+r+++/3z9hBijUFAAAIXe4KWJzfw7dv314dOnQIZEiW8LTJx3gs9u/fr927dzco\nz+et4MRTjiQiIkKDBg3SN998Ux2DP4ppvMVis9maxWk7QFPDCSwAAJhs7dq1kqQ+kqKsDSUgouS4\nr9IP972pYU0R6u677z6FhTneCrg7OcS5kGXBggXKycnRRRddpCeeeEKrVq0K6pN4srOzTTki19vt\nvB2Da8YRub5uR3IGCKzzzz9f06dP18SJExUdHS2tWyf9+tfSli1STEzjv+pT6GCw2fwz95Ytjvuy\nfr2io6M1ceJETZ8+Xef5q5AjSLGmAAAAoWvTpk0ecx02m01paWkWRBV4ycnJSklJkeQ+9yP5Jy/h\nPHZMTIwyMzM93s45R+Kcu9m/f7/27NlT7zgqKyu1fPlyWiwDTQwFLAAAmMz4wH+AxXEEknFfm2qx\nA2uKUHfRRRfp9ttvd9t+xmC326uTOzabTTt37tQzzzyjQYMGqU2bNvrJT36iv/zlL/ryyy91+PDh\nQN8Fj3wdkdvQY2k9JWdatmypjIwMj7cbPHiwIiMjXW4nNeyI3IqKCq1cuZLkDBBkbDab7rrrLq1a\ntUq9evWSjhyRfv97acoUqarK6vDqr6pK+uc/HffhyBH16tVLq1at0l133eX1+acpYU0BAABCT2Vl\npQ4ePOj1Oj169AhQNNYbMWKE100+DclLVFVVuRSNGPmjQYMGKSLCc/MPb5t8GhLLmjVrVFpaWh2D\nVDP3Eh4eruHDh9d7XADWooUQADTQqVOnqns2OqOfImpbs2aNpOZZ7GDc96aGNUV9LFq0SBUVFaaN\nP3jw4AbtHnrhhRf01Vdfad++fdVFKu6SGs4JACMJcOLECc2ePVuzZ8+uvl5ycrIyMzOVmZmpSy+9\nVJmZmZb8TfR1RO7u3bt14MABderUqc5jVlRUaMWKFW6TM4MHD1Z4eLjH28bExGjAgAE1ik4ac0Tu\nqlWrdPr06Rrr5RxXZGSkhg4dWu9xAfhH7969tXr1aj344IOaPHmy9O67jtM7HntMSkiwOry6OXxY\neuYZKS9PkjRu3Di98sorzfZ9DmsKb4L1dR4AAM1VYWGhzp496zHHIUmJiYkBjso6I0aM0DvvvONy\neWPyEmvWrNGpU6fctlj2VqAiSYMGDVKLFi1UUVHhUkS9aNEijR07tl6xeIrfWPv09HRe8wJenDp1\nqk6XBRoFLADQQJ56QwZzWwUEnt1ur+672hyLHdauXevyRibUsaZNb03NYPwtsNvtmjJliqZMmWLa\nXC+//HKDPtg4//zzNXPmTF122WU6ceKEpB8KIbwVshjXq/07sG/fPu3du1effPKJJCksLEy9e/fW\nFVdcoauvvlrZ2dnVbYvM1K1bNyUlJenAgQMeE1YLFy7UrbfeWucxaxeNON93T72dnWVlZWnlypWS\nahbT7Nq1q97FNJ52JBnjZmRkKCYmps7jAfC/2NhYvfXWW8rJydFdd92lkrw86c47pT//WRo82Orw\nvFu+XHr+eenECbVq1UoTJ07U6NGjrY7KcqwpnIXC6zwAAJqrAwcO+LxOhw4dAhBJcPC1yWfv3r0q\nKCiobjVUF95OSvGVI4mOjlZGRkaNE1waU0zjLRabzcYJtYAPcXFxVofgFi2EAAAwUUFBgY4dO6YW\nki6xOpgAukRSpKRjx46poKDA6nD8ijVtemtqNqPYw99fxtiN0b9/f82bN08XXHCBy4ke3sY22gs5\nf9W+r3a7XevXr9eLL76onJwcdezYUQ8++KDy8/MbFXNdZGdney0orW9SxNv1fe0ukuT1uFp/xiLR\nPggIJqNHj9Z3332n9PR06cQJ6ZFHpNdek8rLrQ7NVXm5I7ZHH5VOnNCAAQOUm5tLoUMtrClqC+bX\neQAANEcnT570eZ22bdsGIJLgkJKSUl2c4um1RWPyEs5jtmjRQoMGDfJ5e+cciXPupqCgQHv37q1z\nHFVVVVq2bBktloEmiBNYAKCBdu/erYRQOTIaljl06JAkKVFSC2tDCagoOe7zXkmHt21TlyZ0VOOh\nrVslNfM1PXxYXbp0sTagEGLGyVz+/EAjMzNTa9as0W233aaFCxe6nLRi8HU/av+8dhHM4cOH9eqr\nr+rVV1/VlVdeqaeeekqZmZl+uhc1jRgxQtOmTXO53CisqW9fZU/JmaioKA0cONDn7YcNG6awsDC3\npxctXLhQt9xyS53iqKysdOkzXRvJGSC4XHjhhVq+fLn+/Oc/6+WXX5Y+/tjRxuWJJ6R6nL5kqgMH\npL/8Rdq+XZJ09wMP6PFnn1WLFi10OBgLMyx2XnKyPlu4UM88+qgmvvpqSKzpb3/7Wz333HNq0aI5\nvXoNjGB/nQcAvhw+dVilKrU6DL8JhrYHsNbp06d9Xic6OjoAkQQPo42Qp9cYCxcu1G233Vansc6e\nPetSNGLkOjIzMxUVFeVzjKysLD3//PONjiU3N1clJSUeWyyHh4d73VAEQCopKXG57PDhwx47UAQK\nBSwA0ECxsbH0T4RPxpum5tjMwbjPp6+80tI4/M14G9ys17QOyQD8IBQ+hOjUqZPmz5+vd999V48+\n+qgKCwvdnqzirDEFLXPnztXcuXM1ZswYvfjii37f/eTriNydO3eqqKioTn2vq6qqXIpGjLEGDhxY\npw8DzzvvPPXu3Vvr169v1BG5a9asUWlpqcfkTGRkpIYOHVrn8QAERlRUlP7+979r5MiRGjt2rI5u\n2ybddZf0u99JOTnWBvf119JLL0mnT0utW0t//rMmDh6siWvWWBtXKLjhBqlDB0d7niBd07Zt2+rt\nt9/WNddcY21MTVgovM4DAG9SX0ltWrtzqL1t9uqSs6pLkUVDtWvXTkePHvXrmGPHjtU///nPBt/e\nKGCprSF5idzcXJ08ebLBLZYl75t8Fi1aVOcCFk9xG/mS9PR0Pr8BfHD3/0hpqfWFrbQQAgDARGVl\nZZKk5lXX72Dc56ZW6lB27r/Nek0pYKkXd+12/PFlhttuu027du3SxIkT1bt37xrtgLy1C/LVcqj2\n42Bc/5133lHfvn21dOlSv96Pbt26qdO5XfDedhjVxZo1a6p38dV+3OvSPsjddZ3H2bFjh4qKiuo0\nhrfkjLHbKSamOZbXAaHh2muv1fr16x27AEtLpWeekf76V0fxSKCdPu2Y+9lnHd/36SO99ZY0eHDg\nYwllQ4Y4Hrc+fYJuTbOysrRu3TqKV0wWSq/zAABoDiorK31eJyLCvL39ZrUWbAxPm3wMe/bs0b59\n++o0VmNbLEtSq1at1LdvX5cTgOt7Yq63WGw2my677LI6jwUguFDAAgAAAJjIjOSFv5IY7kRGRurO\nO+/U+vXrtWLFCj344INKSUmpMa+nD1rqGp/z9QsLC3X55Zfr448/9uv9yM7O9voBUF13GHlLntR1\nd5HkPZHjj1gk2gcBoSApKUnffPONHn/8ccfz5OzZ0r33Srt2BS6IXbscc86eLdls0m23OU7soD1q\nwyQkOB6/X/7S8XhavKY2m01PPPGE5s+fr6SkpMDF0EyF2us8AACaurqcrnLmzJkARNK4Qlfj9v6Q\nkpKilJQUSZ43+TQkL+E8VkRERL1OhPW0yWfPnj3av3+/z9ufPXtWS5cupcUy0ERRwAIAgImMnqpl\nPq7XFBn3uamdBWCcQtKs15QTHnxybhMzZcoUVVVVmfb1wAMPmHY/Lr30Ur300kvavXu38vPzNWHC\nBN10000uBS2+Tmlxx/k65eXluvXWW/XVV1/5LXZPiYr67upxTuLUbtczuB4nFXgrYKlLLFVVVS59\npmsjOQOEhoiICD311FOaP3++o5VZQYGj+ODzzyUzT16w2x1z3HuvY862baW//U26/XYpPNy8eZuD\n8HDpjjscj2fbtpataWJioubPn6+//OUvpu4sbu6ayus8AACaorrkrAJVwBJMhau+NvnUJS9ht9td\nikaMMfv376+WLVvWOZ7G5kjWrVun//znPzViqF1QM2zYsDrHAyC48G4WAAATGW+ammPDFeM+x8yd\nK/Xvb2ks/hSTmytddVXzXlMKWJqlHj16qEePHrrvvvskScXFxVq7dq1yc3OVm5urtWvXqqCgoPr6\ntY+CrX2Z8W8jWVNRUaGbb75Z69evV3JycqPj9XRErhHL9u3bdfDgQV1wwQUexzh79qxL0YgxxoAB\nA+r1/0JCQoJ69Oihbdu21fjgq679pnNzc1VSUlJ9G+P2hsjIyHrtdgJgvcsuu0zr1q3TmDFjNGfO\nHOnvf5dyc6U//EGKi/PvZCUl0osvSueeb3KuvFKvTp6sdpy64l9DhujwjTfq/nHj9M1XXwV0Ta++\n+mq98847SmBNAQD1sPvB3YqNjbU6DL85deqUUv8n1eowYKG6vE8vLS01NYZgbAc4YsQIvfvuuy6X\n1ycvYRSNGLdxzm3U54RaSY62qh4sWrRIv/jFL7ze3leL5fT09Cb13AY0NxSwAABgovbt20uSiiSV\nS2phaTSBc0aO+yxJCRdd1KSOpG/fo4ekZr6mTWg90XDt2rXTlVdeqSuvvLL6sqKiIi1atEgLFizQ\nzJkzVVxcLKnmbhhPRSySdOLECY0bN07z5s1rdHwXXnihOnXqpMLCQrfzSo6Ex0033eRxjNzcXJ08\nedIlOSPVvbezs6ysLG3dutVlvG3btunQoUPVfzPc8ZWcyczMrD71C0DoaN++vb744gu99NJLevjh\nh1W5aJF0+rT0/PP+nejpp6VVqxQREaHnnntOv/3tbxUWxqG8ZkhIStK82bNZUwBASEiITWhSH/K2\nVN1PgEDT1LZtW5/XOXjwoKkxNOREFbOLXnxt8tm1a5cKCwvVsWNHj2N4K3Kpb46kXbt26tWrl7Zs\n2dKgTT6+rsMJtUBoo4AFAAATpaSkKD4+XseOHdNGSelWBxQgGyVVSIqPj6/usdpUsKZNb03hP4mJ\nifr5z3+un//853rjjTc0d+5cvf766/ryyy8l/ZAc8VTEYrfb9c0332j27Nm6+uqrGx1Pdna23n//\nfY/Jo4ULF3otYPF2bG19dxdJjoTOpEmT/B6LRHIGCGVhYWH6wx/+oPPOO0933XWXtHOn/yc5N+br\nr7+u8ePH+3981MCaAgAAWCMpKcnndcwsYHnllVdUVla/xuOfffaZZs2a5XHzjT906dJFKSkp2rt3\nr8d5Fi5cqFtuucXjGM55Cec8S1hYmNcTVTzJysrS5s2bXTb57Ny502sxjd1u15IlS2ixDDRhbM0A\nAMBExpGFkrTW4lgCybivAwYMCEgf10BiTZvemsIcYWFhuvrqqzVr1iwtX75cGRkZbk8yceeFF17w\nSwzeEhZ12dXj/PPayZmG9FL2tiPJWyxnz5516TNdG8kZIPStXr3a8c3gwf4ffNAgSdKaNWv8PzY8\nYk0BAAACq127doqKipLk+SSUffv2mTb/LbfcojvuuKNeX0ae0WzZ2dleC2S85SXcFY0YY/Xu3Vut\nW7eudzwNzZHk5eXp2LFjNWJwjisiIqJBORsAwYMCFgAATJaRkSGpeRY7GPe9qWFNgfoZOHCgli1b\npnvvvdfjdZxPYVm0aJH27NnT6Hl9HZG7ZcsWHT582GM8tYtGjMRIv379FBcXV+94OnfuXH2CUe1x\nvZ2wsm7dOp04caJGDM63j4yM1NChQ+sdD4DgUVlZqU8//dTxDzMK0s6NOWPGDFVWVvp/fLhgTQEA\nAKzRpUsXjz+z2+3Kz88PXDBBxNPGFyMX4y0vsWHDBpeiEeO2DTmhVvJewOItFl8tltPT05tUazSg\nOaKABQAAkw0YMEBS8yx2MO57U8OaAvUXERGhf/zjH7r99tvrdArLrFmzGj3nhRdeWH3krKf5PCU+\n1q1bp//85z+SXJMz9e3t7CwrK6t6vLoW0/hKzmRmZio6OrrBMQGw3sKFC1VcXCydd57Ur5//J+jf\nX2rdWsXFxXXqKY/GY00BAACs0bdvX7cnjTi//26OPG3yMezYsUPff/+929t6e73Z0BxJp06dlJqa\nKumHtXHe2OSJr9e+nFALhD4KWAAAMJnxgX+epDPWhhIQZ+S4r1LTLXZgTYGGmzhxorp16ybJc1GJ\nJC1btswv8/k6ItfTrh5vCZGG7i6SGnZELskZoOn78MMPHd8MHy6Fh/t/gvBwx9jOc8FUrCkAAIA1\n3LXkcc4LnD59Wnl5eS7Xaeq6dOmi5ORkSZ7zMQ3Jkfhzk49h+/btHotpFi9eTItloImjgAUAAJOl\npqaqY8eOKpf0qdXBBMAMSRVyVNF7O7IzlLGmQMNFRETov//7vz0WlRi7bdatW+eX+bwlLrzt6nFO\n2jgnRmw2m4af+8CwIepbwOKuz3RtJGeA0GZ6qxkDLWcChjUFAACwTl3aX3trUdOU+drk4ylH4lw0\nYuRtJCktLU1t27ZtcDz1zZFs3LhRR44ckeS+xXJERISGDRvW4HgABAcKWAAAMJnNZtP48eMlSa9b\nHEsgGPdx/PjxPluEhCrWFGicG264QVFRUZI87/rZt2+fX+bydESuMW9+fn518sP557WLRozEyMUX\nX6z4+PgGx9O9e3d16NBBklzGd5dAy8vLc+kz7Xy7yMhIDR06tMHxALCe6a1mDLScCRjWFAAAwDpD\nhw5Vy5YtJXnOOXz11VeBDCloeNoAYxSluMtLbNq0yfHaVv5tsSx5L2BxF4uvFsvp6emKjY1tVEwA\nrEcBCwAAATB+/HiFh4driaQNVgdjog2SlkoKDw+vLvBoqlhToOFiYmI0ePBgl10/zv8uKytTSUlJ\no+fq3r27OnbsKMlz4qp2AmTDhg0uRSPG7RvTPsgwfPjwGkfkeium8ZWcyczMVHR0dKNjAmCdBrWa\n2bRJuvdex1d+ft1uQ8uZgGFNAQAArBMVFaWcnBy3J40YhRpff/21jh8/bkF01vK0ycewbds2HTp0\nqMbPzWqxLEndunVzydkYa+RuXlosA80DBSwAAARAp06ddP3110uS3rQ4FjO9ce6/o0aNqn7z0VSx\npkDjpKSk+LzO6dOn/TKXryNya+/qMau3c13GqD03yRmgaat3q5mqKmnqVOnBB6UtWxxfDzwgvfee\n42e+0HLGdKwpAACA9a699lqXy5zzAhUVFfroo48CGVJQSE1NVXJysiTPm3wCnSOpvcnHsHXrVpdi\nGudWRu6QIwGaBgpYAAAIkPvuu0+S9K6kk9aGYooTkqae+964r00dawo0XEJCgs/rhNd117oP3hIY\n7nb1eOuF7a/kjCe1YyE5AzRt9Wo1c+iQ9PvfS//8p1RVpdGjR2v06NGOIofJk6U//EE6fNj7GLSc\nMR1rCgAAYL2bbrrJaxshu92uV155JdBhBQVfm3zcbaxxPh3FcOGFF1a3SG6MuuZINm/eXF3Q4q7F\nckREhIYNG9boeABYjwIWAAACZMSIEerZs6dKJDXFt0evSCqR1KtXL7+02AgFrCnQcKWlpT6v46++\nxd56PEuOfs5Hjx6tvty5aMQ5GXLRRRepffv2jY6nd+/eOv/8813Gr91veuPGjdUthdwlZ1q0aKGh\nQ4c2Oh4A1qlzq5klS6Q775TWr1dcXJzeeecdTZs2TdOmTdPbb7/teL5ct04aN85xXU9oOWM61hQA\nAMB6rVu31s033+y2dbHxvnrz5s367LPPrAjPUr42+TjnJbZs2eJSNGI8hv7Y4CN53yjkHIuvFssD\nBgzwWx4JgLUoYAEAIEBsNpsef/xxSdJTkjZaG45fbZD09LnvH3vsMa+nBTQlrCnQcIWFhS6XOf+e\ntWrVSlFRUX6Zq3v37kpMTKwxh3MSy263a/HixZIcxSy1i0aMZIi/CrlsNpuGDRtWIwbnYppjx45J\n8p2cyczMVHR0tF9iAhB4dWo1U1YmvfSS9MQT0smTysjI0HfffafbbrtNNptNNptNY8aM0XfffaeM\njAzp5EnHdV96yXFbd2g5YxrWFAAAIHh4O03YZrPJbrfroYceUkVFRQCjsp673IZzYc+WLVt0+Nwp\ngN5O+PNXjuSSSy5RmzZtJLlu8nGenxbLQPNBAQsAAAE0evRoXXvttaqQNFZSU3h75HxfrrvuOsex\n580Iawo0zObNmz0e4ytJ3bp18+t8dT0i1+zezu7G8lRMQ3IGaNp8tprZsUO65x5p1ixJ0kMPPaRl\ny5bpwgsvdLlq9+7dtWzZMj300EOOC2bNctx2507XcWk5YxrWFAAAIHikp6dr1KhRNYozpJrvwXfs\n2KFnn33WivAs07VrV3Xu3FmS+/ZKkuqUl/BnjsR5k0/tU3KKi4urY6HFMtA8UMACAEAA2Ww2TZw4\nUfHx8Vor6a9WB+QHz0vKlRQfH68333yz2Z3UwZoC9Zefn6+tW7dKktuiEpvNpr59+/p1zroekRuI\n3UVS3Y7IdW5l5A7JGSC0eWw1Y7dLn3wi3XefVFCgxMREzZs3T88//7xatGjhcbwWLVro+eef17x5\n8xy96AsKpF/9SpoxwzGmgZYzpmFNAQAAgsuzzz6r8HOvy2q/vzZOYXn22Wc1f/58K8KzjK9NPs45\nEnctlpOTk5WcnOy3eLzlSBYtWqTt27fr+++/l+S+xXJERISGDRvmt3gAWIsCFgAAAiwxMVETJkyQ\nJP1FjlYtoSpPjtY5kjRhwoTqFh3NDWuKUBIMrQXeeustn9fxZ7GI5LnYw0h4bNiwQUePHvWYnOnS\npYs6derkt3icezO7OyJ38+bNLn2mna/XokULDRkyxG/xAAgsj61mjh+XHnlE+sc/pPJyXXPNNVq/\nfr0uv/zyOo99+eWXKy8vTz/5yU+k8nLp1VelRx91jG2g5YzfsaYAAADBp2fPnvrNb37j8r7a+d9V\nVVUaPXq0Nm3aZFmcgeZrk49RNFJUVFR9mfFfm83m19NXJN8FLEZBjbtYbTabBgwYoJYtW/o1JgDW\noYAFAAAL3HrrrdVtZ26WdMTqgBrgiKSf64c2M7feeqvFEVmLNUWoePfdd3XTTTdpx44dlsz/3Xff\n6R//+IfbnU+GiIgIx4d0fnTRRRdVF2TVTlgZ3//f//2fS9GIkQzxd0FNeHi4Bg8eXCMGI668vLwf\nPgStxYgnMzNT0dHRfo0JQOC4bTWzZo00bpy0cqWioqL06quv6vPPP1dCQkK9x09ISNCsWbM0YcIE\nRUVFSStWSHfeKa1d67gCLWf8jjUFAAAITs8884x69erlcuKIcxFLcXGxcnJytGFDKG9Lqztfm3zy\n8/P18ccfe7y9v3Mk6enpiouLqxGDYeHChbRYBpoZClgAALCA0XamY8eO2izpakknrQ6qHk7KEfNm\nSR07dqTNjFhThA673a6PP/5YaWlpGjdunLZt2xawuQsLC3XLLbeoqqqqOpbasdlsNv34xz9Wu3bt\n/D6/ryNy//a3v3m9rb857zCqXUzz97//3ettSc4Aoa1Gq5mzZ6U335T++Efp6FGlpaVp1apV+vWv\nf92ov8U2m03333+/Vq1apV69eklHjkh/+INjrrNnaTnjZ6wpAABAcIqKitLUqVMVHR1dnXdwdxLL\noUOHNGTIEE2fPt3KcAOia9eu6ty5syTPm3xeeuklj7f3d44kLCxMQ4YMcdnkY7fbtWnTJs2ZM8fr\n7cmRAE0LBSwAAFgkMTFRX331ldq0aaPVkq5VaBQ8nJR0jaTVktq2bat58+bRZuYc1hShpKqqSlOm\nTFFaWpp+9rOfacGCBabOt23bNg0bNkxbt26V5Fq84uyRRx4xJQZ3CQ3nk1aOHj3qMTZ/H4/rbkzn\neb3FIpGcAUJZjVYzF14o/frX0rkk+T333KPVq1erT58+fpuvT58+WrNmje655x7HBdOnS/ffL3Xv\nLomWM/7AmgIAAAS39PR0TZ06tbooQqpZuGEUtpSWlmr06NEaPXq0CgsLTY9r9+7dWrx4senzuONu\nk4+nvIRzEXZiYqK6devm93hqb/LxliOpfYrvsGHD/B4PAOtQwAIAgIUuvvhizZkzR61atdIiSTkK\n7tYzxZJGSlosqVWrVpo9e7bS0tIsjiq4sKYIJUbiZsaMGcrJyVHPnj31v//7v9q5c6ff5igtLdXj\njz+ufv36qaCgoEayqHYcNptNN910kzIzM/02v7P6FH04J0M6deqk1NRUv8czcOBARxuIWvO5K1px\n/nmLFi00ZMgQv8cDIDCqW81I0uuvS9u2qU2bNvr000/1xhtvmNK7vWXLlnrjjTc0Y8YMxcfHS1u3\nOuaWaDnjB6wpAABA8Puv//ovvfDCC26LWKSaxRHTp09Xjx499Jvf/Ea7d+/2eyzbtm3TuHHj1KNH\nDy1YsMBtrsRs3nIk7mIx8jZmbPCRvG8ccneKoRHPgAEDTHm9DcA6FLAAAGCxzMxMzZ8/v/rUjuGS\ngrHbap6kLElr5Dil45tvvjHtQ+ZQx5oiVDgnZ2w2m7Zv365HH31U3bt3V79+/fTHP/5Rc+fO1fHj\nx+s1blVVlRYvXqx77rlHKSkpevbZZ3XmzJkacxqckxAdOnTQa6+91sh75dlFF12kDh06uMxr8NTS\nyKzkTFRUlDIzMz0mhtxdZrPZlJmZqejoaFNiAmC+Gu1dyss1YsQIrV+/Xtdff73pc48aNUp5eXmO\nI7/Ly93HhHpjTQEAAELD7373O7388ssKCwurcfKKp9NYJkyYoO7duysrK0svv/yyNm7cqLNnz9Z7\n3miEgM8AACAASURBVNOnT2vlypV67LHH1Lt3b/Xs2VNTpkxRVVWVS/FKoFp6+2oD5KmgxqwcyaWX\nXlqd66hdWOStuIcTaoGmJ8LqAAAAgKPgYcmSJbriiiu0ubBQAyQ9IelPkiItjq1C0nOSnj73fceO\nHTVv3jxO6fCBNUWoqJ0kMZIEeXl5ysvL09/+9jdJUkpKitLS0pScnKykpCTFxcUpJiZGFRUVOnHi\nhE6ePKnCwkLl5eVp8+bN1QUr7npLG5c7xxAbG6vPP/9cbdq0MfX+Zmdna/r06fVKCPm7t7OzrKws\nLV26tF63ITkDhDbjiPDw8HA99dRT+tOf/qTw8PCAzZ+UlKT58+frueee05NPPllddIiGY00BAABC\nx/3336+2bdtq/PjxKisr81rEYhSXLF26tPq9e2xsrPr06aMuXbooOTlZbdq0UUxMjKKiolRWVqaT\nJ0+qpKREJ0+e1K5du7R582YVFBS4bCIy+DoNxp+tKJ1169ZNSUlJOnDgQL1OgDErR9KiRQtdeuml\nWrx4cb1yNuRIgKaHAhYAAIJEWlpadS/7zz//XI9L+lTSO5IusSimDZLGSso99+/rrrtOb775phIT\nEy2KKLSwpgh23na01E4W7N27VwUFBXUe11NLHHeXn3/++Zo5c6YGDBhQvzvQACNGjND06dPrdRuz\ndhcZY//P//xPvW5DcgYIbV9//bX++Mc/6sEHH9SgQYMsiSE8PFyPPvqoRo4cqQkTJuiFF16wJI6m\ngjUFAAAILbfccot69+6tm2++WVu3bnVbXOKp4KS0tFQrVqzQihUr6jSXcVtPBSqeNv306dNHb7zx\nhqmvL7OzszVt2jSvBSPOP2vXrp169eplWjxZWVk+C7Gd44mIiNCwYcNMiweANWghBABAEElMTNTM\nmTM1depUxcfHK1dSuhwnZZwIYBwnzs05QI5Ch/j/Z+/ew+Ks7/z/v27OMBwCBAjkBDlAQgATQ6rG\nmmg9VOt66Gp3NWrVXk1tXVe3bq/97bp1tyd3291e9mtbrddle9mDURvbeIj1UA+Nq2lrCImCSIAY\nkpCQcAhJYIYz3L8/JjMwmQEGmJl7GJ6P67ovw+cePp/3zeidOPcrn3d6up566im98MILBB0mifcU\n4coVWDn7bxb5+ltHZ3+wMtFx9veOdc4wDJWWlurPf/5zUEMio/kT/hj9YUh2draKioqCVs+FF17o\n/lv6Y31gNHo8Li5O69evD1o9AIJvwYIFeuaZZywLOox2wQUX6JlnntGCBQusLmVG4z0FAACYeUpL\nS1VZWamvf/3riouLc+9CMla4ZCqfj4z3l3vOnts1np+fr1/84heqrKwM+p8v/f0LMq7PcC666KKg\n1uPvZ0OuetauXaukpKSg1gQg9AiwAAAQZgzD0K233qqamhpdc801GpCz9cx8SXfLuYNGsFRL+tqZ\ntf5DzvYy1157rWpqanTLLbeErAdrpOE9nT3O/nAiHF1yySW65557tHDhwjE/jPH1gcxkTRRoSUxM\n1AMPPKCKigqtWLEicBc4gaKiIs2bN8+rRl/1huLDGZvNpjVr1ri/Hu/DLsMwtG7dOndP6HA2uvZw\n/28CAAB/zIQ/5wXSbLteAMDslJiYqB/+8IeqqqrSNddco6ioKI8gSyA+H3EZ6/MX17xr1qzRz3/+\nc9XX1+uOO+5QVFTwH+GODrBMFMCRgrtDrSStX79eMTExftczU3ao5c9VwOQQYAEAIEzl5ubqxRdf\n1JYtW7Ry5UrZJf1MUpmkDZKekdQXgHX6zsx10Zm5H5dkl7Ry5Upt2bKFHToCiPc0cp394YO/fYOt\nsGTJEv34xz/WoUOHtGvXLj3wwAMqKSkZN3AymWsb63tcc8+ZM0f33XefGhoa9N3vfldxcXGhuGwP\nGzduHPf6Rl9jsHo7j7Zhw4YJ63HVNBM+nJnKvzcAAISr2fh72my7XgAACgsL9cILL6impkZf/epX\nlZyc7P4cY6r/jzvR5yOGYSg7O1tf+cpXtHPnTlVWVurOO+90BzhCYenSpVqwYEHYfEaSlJSkc889\n1+96ZuJnJAAmFrq7IAAAmDTDMLRp0ybdfPPN2rFjhx577DE9//zzendoSO9KipNUKmdbGNdRembc\nl345d+SoHHVUybkrh+TsG/r5z39ed999tzZu3EgyPAh4TyPTTP25rl27VmvXrtV3v/tdtbe36733\n3nMfe/fu1eDgoNf3TPQ/3L5+Funp6br88st1/fXX69prr1ViYmJAr2OyLr74Ym3dunXC1xmGEZLW\nRhs2bNCPfvQjv+oJ9w9n/O2bDQDATDHbfv+abdcLuPVbXUAIzZZrnS3XKc2uaw2yoqIiPfroo3r4\n4Yf12muvadu2bXrjjTfU0tLi9dqJwgi+fk+NjY3V2rVrtXHjRn32s5/Vhg0bLP+9d+PGjXr66acn\nfN2cOXN0zjnnBL2eDRs2qKKiYsLXxcbG6tOf/nTQ65kOq99bYKYyTOJeADChtrY2ZWdne4y1trYq\nKyvLooowVZHwXjY3N+uJJ57QE088oaNHj3qdj5WUKylRkqvJRK+kHknHNBJsGG3+/PnavHmzNm/e\nrLy8vCBVjrHwniIc9fX1qa6uTvX19e6jsbFRp06dUmdnp7q6utTV1SXTNBUfH6+EhARlZGQoKytL\neXl5Wr58uVasWKFPfepTKioqsvpyAAAAAMCDw+FQcnKy1WVYym63y2azWV1GwPCeRt57Gi4OHz6s\nXbt2qaqqSgcPHtThw4d19OhR2e12dXd3q6enR5KzJVFCQoLS0tKUm5ur3NxcLV68WMXFxSopKVFJ\nSYni4+MtvhogOCLh2QvC430kwAIAfgiHGzYCI5LeS9M0dfDgQVVWVmr37t2qrKxUZWWlTp48Oe73\npaenq7y83L3zwtq1a5Wfn08iPAzwngIAAAAAEBqEHSIv7MB7GnnvKYCZI5Kevcxm4fA+0kIIAIAZ\nyjAMFRQUqKCgQDfeeKMkZwDi0KFDamtrU09Pj0f6PzExUVlZWVq8eDHBhjDFewoAAAAAQGgkJSXJ\nbrdbXYalkpKSrC4hoHhPI+89BQDMPgRYAACIIIZhKD8/X/n5+VaXggDhPQUAAAAAIPAMw2CnigjD\newoAwMwXZXUBAAAAAAAAAAAAAAAAmN0IsAAAAAAAAAAAAAAAAMBSBFgAAAAAAAAAAAAAAABgKQIs\nAAAAAAAAAAAAAAAAsBQBFgAAAAAAAAAAAAAAAFiKAAsAAAAAAAAAAAAAAAAsRYAFAAAAAAAAAAAA\nAAAAliLAAgAAAAAAAAAAAAAAAEsRYAEAAAAAAAAAAAAAAIClCLAAAAAAAAAAAAAAAADAUgRYAAAA\nAAAAAAAAAAAAYKkYqwsAAF+GhoZ05MgRNTU1qampSadPn1Z3d7cGBweVmpqqOXPmKCsrS2vWrFFG\nRobV5QIAAAAAAAAAAAAApoEACwDLDQ8P68MPP9TOnTu1e/duVVVVqba2Vn19fX59f35+vi677DJ9\n6Utf0vnnnx/kagEAAAAAAAAAAAAAgUaABYClqqurtX79ejkcDo9xwzBkGIZfcxw6dEg///nP9fOf\n/1xlZWV69NFHdeGFFwajXAAAAAAAAAAAAABAEERZXQCA2a27u1sOh8MdWHEdpmn6fUgjgZeqqipt\n2LBB99xzj4aGhiy+OgAAAAAAAAAAAACAPwiwAAgbo0MpZwdaxjpc3+fiGnvssce0adMmQiwAAAAA\nAAAAAAAAMAPQQghA2HCFUoqLi7VhwwaVlJSoqKhIS5YsUVpamlJSUjQwMKDTp0+rvr5eFRUVevbZ\nZ1VZWemxE4vL7373O82bN0+PPPKIVZcEAAAAAAAAAAAAAPADARYAlktNTdXVV1+t66+/XpdddpnS\n09PHfG10dLQSEhKUk5Ojiy66SPfff7/efvtt3XXXXfrkk0/cr3O1IXrsscd06623at26daG4FAAA\nAAAAAAAAAADAFBBgAWCp1atXq62tTbGxsVOe4zOf+Yz+8pe/aOPGjaqtrfXYhWV4eFgPPfSQXnjh\nhUCUCwAAAAAAAAAAAAAIgiirCwAwu8XHx08rvOIyd+5cbdmyRdHR0e4x1y4sf/zjH2W326e9BgAA\nAAAAAAAAAAAgOAiwAIgYq1ev1pVXXinTND3G+/r6tHPnTouqAgAAAAAAAAAAAABMhAALgIhy5ZVX\n+hxvbm4OcSUAAAAAAAAAAAAAAH8RYAEQURYuXOhzvLW1NcSVAAAAAAAAAAAAAAD8RYAFQESJi4vz\nOW6z2UJcCQAAAAAAAAAAAADAXwRYAESUY8eO+RxfsGBBiCsBAAAAAAAAAAAAAPiLAAuAiPL222/7\nHL/wwgtDXAkAAAAAAAAAAAAAwF8EWABEjKamJj3//PMyDEOSZJqmJOmKK65QVlaWlaUBAAAAAAAA\nAAAAAMZBgAVAROjt7dXtt9+u7u5uj/GoqCh985vftKgqAAAAAAAAAAAAAIA/CLAAmPE+/vhjXXLJ\nJdqxY4fH7iuGYegb3/gG7YMAAAAAAAAAAAAAIMzFWF0AAEzGwMCAOjs7dejQIe3Zs0fbtm3TG2+8\noaGhIUkjbYMMw9Bdd92l73//+1aWCwAAAAAAAAAAAADwAwEWAGGprq5OK1eu9Ou1hmG4d16RpMzM\nTD388MO69dZbg1UeAAAAAAAAAAAAACCACLAAEa6/v1/19fU6cuSIurq61N3draSkJKWkpGjBggUq\nKipSbGys1WWOaXQwZSyudkHr1q3Tpk2btHnzZiUmJoagOgAAAAAAAAAAAABAIBBgASLQ+++/rxde\neEGvvvqqampq3O11fImOjtaqVav0uc99Ttddd53OO++8EFbqH1dboLONDrfExsYqIyNDMTExGhwc\nDFVpAAAAAAAAAAAAAIAAiLK6AMBq+/fv17PPPqtvfOMb2rhxo1JTUxUVFTXmsWTJEqtLHtOzzz6r\n8vJyXXDBBfrBD36gqqoqDQ8Pu1vs+DqGh4dVVVWl73//+7rgggu0bt06bd261epL8TBW7aZpusMt\nAwMDeu2113TPPfdo0aJFeuihh8YN7gAAAAAAAAAAAAAAwgc7sGBWaWpqUkVFhXbv3q2KigpVVlbq\n1KlTHq9xhSNmkn379umuu+7Su+++67P+sXYwkbyvt7KyUjfddJMef/xxPf744yosLAxa3ePJysrS\n9773Pa9xu92uU6dO6cCBA6qoqHC/f642QpLU2dmpBx98UC+99JK2b9+u7OzskNYOAAAAAAAAAAAA\nAJgcAiyIWK2traqoqPAIrLS1tXm8ZqywytmBD9drxguCWGXbtm264447ZLfbfdbpTyDn7NdL0o4d\nO1ReXq5f//rXuv7664NQ+fgyMjL0wAMPTPi6HTt26Kc//amef/55jxCLYRiqqKjQpZdeqnfeeUcZ\nGRnBLhkAAAAAAAAAAAAAMEW0EELEuuKKK3TNNdfoO9/5jl555RW1t7d7taCR5G5DM/qYKR599FF9\n4QtfkMPh8Gqpc3abnfGOs38eru+32+264YYb9LOf/cyya5zIxRdfrN/97nd6+eWXNXfuXK/37+OP\nP9Zdd91lUXUAAAAAAAAAAAAAAH8QYEHEmmxY5ezXhrtf/epXuvfee91fn30tZ4dTxjtGh1ZGz+U6\n94//+I966qmnQnh1k3fVVVfpj3/8o9LS0txjrvq3bdumV1991cLqAAAAAAAAAAAAAADjIcCCiOYK\nYvjaWcVXwGX094SzXbt26Stf+Yr7a1/hFdev169fr5/+9Kfas2ePOjo6NDAwoI6ODu3evVs//vGP\ndd5553kFXkbPaRiGhoeHtXnzZlVWVobwKidv9erV+p//+R+f7+HDDz9sQUUAAAAAAAAAAAAAAH8Q\nYMGs4GvXEcn3jizhvgNLV1eXbrrpJg0ODkryHV4xDENFRUV666239O677+prX/uazjnnHKWlpSkq\nKkppaWlas2aN/uEf/kF//vOf9frrr2vZsmXua/cVYunv79ff//3fy263h/iKJ+fLX/6yCgoK3F+7\nfiZ/+tOfdPr0aQsrAwAAAAAAAAAAAACMhQALItrZO6v4Cqu4jqioKBUWFmrDhg1e3xtOHnzwQR08\neFDS2OGVyy+/XLt27dLFF1/s15yXXXaZdu/erUsuucRr95LRu9g0NjbqW9/6ViAuI2gMw9B1113n\n8zr+8pe/WFQVAAAAAAAAAAAAAGA8BFgQ0cYKqxiGoYKCAn3hC1/QD37wA7311ls6efKk9u3bF9YB\njdraWj322GNe4ZrRbYPWr1+vF154QSkpKZOaOzU1VS+99JI+9alP+dyJxrXGT37yE9XV1U3vQoJs\n9erVPscPHz4c4koAAAAAAAAAAAAAAP6IsboAIJhcIYwFCxaovLzc40hPT7e4usn71re+pcHBQY/A\nyuigSWZmpn77298qISFhSvMnJSVp69atWr16tU6fPu1eZ3SgZXBwUN/5zne0ZcuW6V9QkOTk5Pgc\n7+joCHElAAAAAAAAAAAAAAB/EGBBxLr33nuVk5OjdevWKSsry+pypq2xsVHbtm3z2drIFTB56KGH\nlJeXN611Fi1apG9/+9u67777xtyF5bnnntN///d/a9GiRdNaK1h6e3t9jsfEcMuDb+3t7VaXAAAA\nAAAAAAAAMCPxnAWBwtNcRKw777zT6hIC6qc//amGhobG3H1l+fLl2rx5c0DWuvvuu/XII4+osbHR\n5y4sQ0NDevTRR/WDH/wgIOsFWktLi8/xjIyMEFeCmaK4uNjqEgAAAAAAAAAAAIBZLcrqAgBMbHh4\nWM8+++y4u6/cf//9Ps9PRXR0tO699153UGY0V6Dl6aefDshawfDee+/5HF++fHmIKwEAAAAAAAAA\nAAAA+IMACzADvP322zp27Jgk+dx9JSEhQbfccktA17z99tsVFxfnsdboQEtzc7N27NgR0DUDoaen\nR6+88opXmCcmJkbl5eUWVQUAAAAAAAAAAAAAGA8BFmAG2L59u89x1+4rV199tWw2W0DXTEtL01VX\nXeVzF5aJ6rLSQw89pI6ODvfXrp/RJZdcosTERAsrAwAAAAAAAAAAAACMJcbqAgBM7M033xy3PdDV\nV18dlHWvvvpqvfjiiz7PmaapN954Y1rz79+/X4sXL1ZsbOy05nF56aWX9L//+78+f1Zf/epXA7IG\nZr7MzEy1trZaXQYAAAAAAAAAAEDEyszMtLoEzEAEWIAwd/z4cdXW1sowjDF3Q7nsssuCsvbll1/u\nNeba0cQ0TdXU1KilpUU5OTlTmn/Lli168skn9e///u/64he/qPj4+CnNMzw8rEceeUT/9m//psHB\nQa/z69at0/XXXz+luRF5oqKilJWVZXUZAAAAAAAAAAAAAEahhRAQ5nbt2uU1NnqHkYULF2r+/PlB\nWXvx4sXKzc31WnO0ioqKaa1x+PBh3XXXXcrJydHtt9+ul19+2aMF0HhOnDihRx99VKtXr9Y///M/\na2BgwOO8aZqy2Wz65S9/Oa0aAQAAAAAAAAAAAADBxQ4sQJjbs2ePz3HXTijnnntuUNcvLy/X9u3b\nxwyw7N27V3/zN38zrTUMw1BXV5d+85vf6De/+Y0kZzDnnHPOUXZ2ttLS0pSamqq+vj51dXXp+PHj\n+uCDD3TgwAH3rjSj63ONxcfHa+vWrVqxYsW06gMAAAAAAAAAAAAABBcBFiDMffDBB+OeLysrC+r6\nZWVl2r59+5jnJ6pvMkaHUI4cOaKmpqYJX+sruGIYhubPn6+nnnpKGzZsCFh9AAAAAAAAAAAAAIDg\noIUQEObq6+vH3P1EkpYvXx7U9ZctWzbmOdM01dDQMK35XddmmqbXYRjGmIev7zEMQ1FRUfra176m\nmpoawisAAAAAAAAAAAAAMEOwAwsQ5g4ePDju+fECJoEw1vyGYcg0zQnrG8/999+vVatW6dVXX9Uf\n//hHNTc3e5x37agy1vqjgz25ubn64he/qDvuuEOFhYVTrgkAAAAAAAAAAAAAEHoEWIAw1tLSot7e\nXndYxJe8vLyg1uBrftduJ5LkcDjU3t6uuXPnTnrulJQU3XjjjbrxxhslSU1NTXr//fe1Z88eHThw\nQAcOHNDx48fV1dWl7u5uxcTEKC0tTampqcrIyNCqVau0du1arV27VuXl5ePuVAMAAAAAAAAAAAAA\nCF8EWIAwdvaOJL7MmzcvqDX4M//Ro0enFGA528KFC7Vw4UJ3oAUAAAAAAAAAAAAAMDtEWV0AgLGd\nOHHCa2z0LiOpqamKjY0Nag2JiYlKTk72Wnu0jo6OoNYAAAAAAAAAAAAAAIhsBFiAMOYrwDJaampq\nSOqYaJ2J6gQAAAAAAAAAAAAAYDwEWIAwdurUKZ/jpmlKklJSUkJSx0TrnDx5MiR1AAAAAAAAAAAA\nAAAiEwEWIIz19PSMe95ms4WkjuTkZHdoxpfe3t6Q1AEAAAAAAAAAAAAAiEwEWIAwNjAwMOY5wzAU\nExMTkjomWqe/vz8kdQAAAAAAAAAAAAAAIhMBFiCMTRQMIcACAAAAAAAAAAAAAIgEBFiAMDY8PDzu\n+ejo6JDUMdE6E9UJAAAAAAAAAAAAAMB4CLAAYWyinU8GBwdDUsdE68TGxoakDgAAAAAAAAAAAABA\nZCLAAoSxuLi4cc+HKsAyMDAw7nkCLAAAAAAAAAAAAACA6Rh/ewcAlhovwGKapvr7+0NSx0QBlomC\nNpHK4XAoKSlpSt9rs9kCXA0AAAAAAAAAAACA2c7hcIT0+wKJAAsQxsYKORiGIdM0ZbfbQ1JHV1eX\nDMMY83xycnJI6gg3BQUFU/5e0zQDWAmAYDNNU93d3VaXYamkpKRxfy8AAAAAAAAAAADWm8nPbgmw\nAGEsIyNj3POdnZ0hqWOidSaqEwBmuu7u7hn9B75AsNvt7B4FAAAAAAAAAACChgALEMYyMzPHPX/q\n1KmQ1HH69Olxz09UZ6RqbGxUVlaW1WUAAAAAAAAAAAAAgCRNuYtHW1vbtDpQBAIBFiCMzZ0712vM\nNE13C4e+vj51dnYqNTU1aDWcPHlS/f397rZF/tY5G9hsNnYjAGajb0iKs7qIEOmX9EOriwAAAAAA\nAAAAAP6a6vPL7u7uAFcyeQRYgDC2aNGiCV/T0tIS1ABLS0vLhK9ZuHBh0NYHgLATp9kTYAEAAAAA\nAAAAAAiRKKsLADA2m83mbs/j2nXlbIcOHQpqDQcPHvQaG11Ldna2EhMTg1oDAAAAAAAAAAAAACCy\nEWABwlxBQcGYrXskqaGhIajr79+/3+e4q5WR1X3QAAAAAAAAAAAAAAAzHwEWIMytWrVq3PN1dXVB\nXX+i+SeqDwAAAAAAAAAAAACAiRBgAcLcueeeO+75vXv3BnX9PXv2jHt+zZo1QV0fAAAAAAAAAAAA\nABD5CLAAYW6sAIthGDJNUx988MG4LYamY2hoSB9++KEMwxjzNQRYAAAAAAAAAAAAAADTRYAFCHPl\n5eVKSEiQJHeQZHRgxW63q7KyMihr79q1S93d3R5rjg6zJCYmqry8PChrAwAAAAAAAAAAAABmDwIs\nQJiLj4/XhRdeOO4uK2+88UZQ1n7zzTd9jpumKcMwdNFFFyk2NjYoawMAAAAAAAAAAAAAZg8CLMAM\ncMUVV4x5zjRNbdu2LSjr/u53vxv3/OWXXx6UdQEAAAAAAAAAAAAAswsBFmAGuOGGG7zGXLugSNKe\nPXvU0NAQ0DVrampUXV0twzB8tg8yDEM33nhjQNcEAAAAAAAAAAAAAMxOBFiAGWDJkiU6//zzPUIr\nZ/vJT34S0DUfeeQRn+OuGtavX69FixYFdE0AAAAAAAAAAAAAwOxEgAWYIb70pS/5HHftkPLkk0+q\npaUlIGsdPXpUTz311JhhGUm68847A7LWTOZwOHweAAAAAAAAAAAAABCuwvU5JwEWYIa47bbblJ2d\nLWmklY+rtY8kdXd361//9V8Dsta//Mu/qLe312ON0WGWnJwc3XrrrQFZayYrKChQcnKy1wEAAAAA\nAAAAAAAA4crXM86CggKryyLAAswU8fHxuu+++zxCK9JISx/TNPXrX/9aL7744rTW2bp1q5555hn3\nnL7W+vrXv67Y2NhprQMAAAAAAAAAAAAAgAsBFmAG+ad/+ictXLjQHSQZzRU4uf3221VRUTGl+f/6\n17/qy1/+ss+5XRYvXqx77713SvNHmsbGRtntdq8DAAAAAAAAAAAAAMKVr2ecjY2NVpdFgAWYSRIT\nE/Xwww+7vz67lZBhGOrs7NQVV1yhP/zhD5Oa+8UXX9SVV17p7m021u4rDz/8sOLj46dzGRHDZrP5\nPAAAAAAAAAAAAAAgXIXrc84YqwsAgundd99VfX39pL6nrq5u3PN2u12/+MUvJl3LxRdfrKVLl076\n+852ww03aNOmTXr66adlGIZ75xVXwMQVYrn22mt1880368EHH1RRUdGY89XW1urb3/62tm7d6hWI\nkUZ2djEMQ7feequuv/76aV8DAAAAAAAAAAAAAACjGebZ2ywAEeTOO+/Ur371K6vLkGEYevLJJ/XF\nL34xIPM5HA6Vl5errq5uzNDJ6LE1a9Zo/fr1KigoUHJysrq6utTY2KidO3fqww8/9Pk9rjHX18XF\nxdq1a5eSkpICcg0zTVtbm7Kzsz3GWltblZWVZVFFAELJ4XAoOTnZ+cUDkuIsLSd0+iX9l/OXdrs9\nLNLXAAAAAAAAAAAg8MLheSg7sGBWcIUz/DVeriuQc02VzWbT66+/rosuukhNTU0edZ29G4sk7d27\nV3v37vU5lz8BmPz8fL3++uuzNrwCAAAAAAAAAAAAAAiuKKsLAELFFezw5wjFPNO1aNEi/elPf9Ky\nZcs8dko5u63Q6DCLr2N0raNDL67vKyws1Ntvv6358+cH9XoAAAAAAAAAAAAAALMXARbMGuOFOIJ1\nBNuSJUtUUVGhz372s+OGVvz9uZz9/VdddZV27dql/Pz8oF8LAAAAAAAAAAAAAGD2IsCCWWEygcg4\n5wAAIABJREFUu6YE+gi2tLQ0vfLKK/rlL3+pnJwcr1ZC49Xh6zWGYSgnJ0e//vWv9fLLLys1NTXo\n1wAAAAAAAAAAAAAAmN0IsCDiWbHzSqh3YpGk2267TQcOHNCjjz6q4uJir/XHCteMft2qVav02GOP\nqbGxUbfccktI6gYAAAAAAAAAAAAAwDBDsUUEgJDbv3+/XnvtNe3Zs0c1NTU6evSourq61N3draSk\nJKWkpGjBggUqLi7Wueeeq6uuukpLly61uuyw1dbWpuzsbI+x1tZWZWVlWVQRgFByOBxKTk52fvGA\npDhLywmdfkn/5fyl3W6XzWaztBwAAAAAAAAAABAc4fA8NCZkKwEIqWXLlumee+6xugwAAAAAAAAA\nAAAAACZECyEAAAAAAAAAAAAAAABYigALAAAAAAAAAAAAAAAALEWABQAAAAAAAAAAAAAAAJYiwAIA\nAAAAAAAAAAAAAABLxVhdAADMVA6HQ0lJSV7jNpvNgmoAAAAAAAAAAAAAYGIOh8OvsVAjwAIAU1RQ\nUOBz3DTNEFcCAAAAAAAAAAAAAP5JTk62ugSfaCEEAAAAAAAAAAAAAAAAS7EDCwBMUWNjo7Kysqwu\nAwBC4s4X7tS5i89VWU6ZynLKND9lvgzDsLosAAAAAAAAAAAwSXa73Wusra1tzA4UoUKABQCmyGaz\nyWazWV0GAITEcx8/p+f2P+f+Oj0h3R1mKc0uVVlOmUqyS2SL474IAAAAAAAAAEA48/WMs7u724JK\nPBFgAQAAwKSd7D2pdw69o3cOveMeM2RoacZSZ7Al+0y4JadUS9KXKMqgcyUAAAAAAAAAABgbARYA\nAAAEhClT+zv2a3/Hfm2r3eYet8XaVJJd4t6xxbVrS3piuoXVAgAAAAAAAACAcEKABQAAABP68rlf\nVu3pWlW1VKmrv2tS3+sYcOj9o+/r/aPve4wvTF2o0pxS924tZTllKswsVGx0bCBLBwAAAAAAAAAA\nMwABFgAAAEzo/135/2Sz2WSapg6dPqSqlir3Ud1arfoT9Ro2hyc1Z1Nnk5o6m/RKwyvusbjoOBVn\nFbt3aXEFW3JsOTIMI9CXBQAAAAAAAAAAwgQBFgAAAPjNMAzlz8lX/px8XVt0rXu8Z6BHH7d9PBJs\naXX+s727fVLz9w/164PjH+iD4x94jGclZXm1ICrOKlZibGJArgsAAAAAAAAAAFiLAAsAAACmLTE2\nUWvz1mpt3lr3mGmaanG0eOzWUtVSpY/bPtbA8MCk5m/rbtNbjW/prca33GNRRpQKMwudoZZRbYgW\npS1itxYAAAAAAAAAAGYYAiwAAAAICsMwNC95nuYlz9MVS69wjw8MDajuRJ2z/VBLtXu3liOdRyY1\n/7A5rH3t+7SvfZ+21mx1j6fGp3q0HyrLKVNJdolS41MDdm0AAAAAAAAAACCwCLAAAAAgpGKjY1WS\nXaKS7BKpdGS8o6fDGWg5s1NLdWu1qlur1T3QPan5O/s6tbNpp3Y27fQYL5hT4G4/5Aq2LMtYpuio\n6EBcFgAAAAAAAAAAmAYCLAAAAAgLGYkZ2pi/URvzN7rHhs1hHTh5wKsN0ScnP5n0/I2nGtV4qlEv\n1r3oHkuISVBJdom7BVFpjjPcMjdpbkCuCQAAAAAAAAAA+IcACwAAAMJWlBGlZRnLtCxjmf525d+6\nx+39dtW01oyEWs60ITrVe2pS8/cO9mp3827tbt7tMZ6bnOvRgqgsp0wr5q5QXHRcQK4LAAAAAAAA\nAAB4IsACAACAGSc5LlnnLThP5y04zz1mmqaOdB5RdWu1x24t+9r3acgcmtT8x+zHdMx+TK9/8rp7\nLCYqRivmrnAGWrJHgi15KXkyDCNg1wYAAAAAAAAAwGxEgAUAAAARwTAMLUxbqIVpC/W55Z9zj/cN\n9qm2vVZVLVWqbql279Zy3H58UvMPDg/qo9aP9FHrR3paT7vHMxIzVJpd6rFby6qsVbLF2QJ2bQAA\nAAAAAAAARDoCLAAAAIho8THxWj1vtVbPW+0x3upodQZaRrUgqmmtUd9Q36Tm7+jp0DuH3tE7h95x\njxkytCxjmcpyyjzCLQXpBYoyogJyXQAAAAAAAAAARBICLAAAAJiVsm3ZunTJpbp0yaXuscHhQe3v\n2O/RgqiqpUqHTh+a1NymTDV0NKiho0G/r/29e9wWa1NpTqlHC6LSnFLNSZgTsOtCZDBNU93d3VaX\nYamkpCTacwEAAAAAAACzCAEWAAAA4IyYqBitmLtCK+au0N+t+jv3+One0/qo9aORUMuZHVvs/fZJ\nze8YcOivR/6qvx75q8f4wtSFHi2IynLKVJhZqJgo/rg+W3V3dys5OdnqMixlt9tls9GKCwAAAAAA\nAJgt+EQcAKbI4XAoKSnJa5wHLQAQedIS0nThogt14aIL3WPD5rAOnTqkqpYqVbdWu8MtDR0NGjaH\nJzV/U2eTmjqb9IeGP7jH4qLjVJxV7Ay0jNqxJSc5J2DXBQAAAAAAAACYfRwOh19joUaABQCmqKCg\nwOe4aZohrgRAsPHfNT8DX6KMKBWkF6ggvUDXrbjOPd490K2P2z52B1qqW6v14fEPdaLnxKTm7x/q\n1wfHP9AHxz/wGM+2ZTtbD2WXukMtxVnFSohJCMh1IQx9Q1Kc1UWESL+kH1pdBAAAAAAAABDZwnX3\nZwIsAAAAEzh8+LDVJVju8OHDKi4utrqMGSEpNknleeUqzyt3j5mmqeP2414tiGrbajUwPDCp+Vsd\nrXrzwJt688Cb7rFoI1qFmYXuQIsr3LIobZEMwwjYtcEicZo9ARYAAAAAAAAAsxYBFgCYosbGRmVl\nZVldBoAQaGtrs7oEy7W3t1tdwoxmGIZyU3KVm5Krzy77rHu8f6hf9SfqR4ItZ46jXUcnNf+QOaTa\n9lrVttfqtzW/dY+nxaepNKfUowVRSXaJUuJTAnZtAAAAAAAAAICZxW63e421tbWN2YEiVAiwAMAU\n2Ww22Ww2q8sAEAI9PT1Wl2A5fgbBERcdp5LsEpVkl2hT6Sb3+InuE6purVZ1S7V7x5aPWj9S90D3\npOY/3Xda7x1+T+8dfs9jvGBOgTvQ4jqWpi9VdFR0QK4LAAAAAAAAABC+fD3j7O6e3OfPwUCABQAA\nYAJ9fX1Wl2C53t5eq0uYVTKTMnVx/sW6OP9i99jQ8JAOnDzg3qWlutUZbvnk5CeTnr/xVKMaTzXq\nxboX3WOJMYkqyS5xtx9yHZlJmYG4JAAAAAAAAAAAxkWABQAAAJgBoqOitTxzuZZnLtcNxTe4x7v6\nulTTVuPRgqi6tVqnek9Nav6ewR5VNFeoornCYzwvJc8ZZskuc7YjyinTirkrFBcdF5DrAgAAAAAA\nAABAIsACAAAwofj4eKtLsFxCQoLVJWAMKfEpOn/B+Tp/wfnuMdM0daTzyEiopdX5z7r2Og2ZQ5Oa\nv7mrWc1dzXpt/2vusZioGK2cu9K9S4tr15a8lDwZhhGwawMAAAAAAAAAzB4EWAAAACaQmJhodQmW\n42cwsxiGoYVpC7UwbaGuLrzaPd472Kt97fs8dmupaqlSi6NlUvMPDg+qurVa1a3V2lK9xT2ekZjh\n3q3FFW5Zlb1KSbFJAbs2AAAAAAAAAEBkIsACAAAwgaysrJEv+q2rI+RGXevczEzr6kDAJMQkaPW8\n1Vo9b7XHeIu9RdWt1e72Q1UtVapprVHfUN+k5u/o6dCOgzu04+AO95ghQ8sylrkDLa4jf06+ooyo\nQFwWAAAAAAAAACACEGABAACYwKJFi0a++KF1dVhp0caN0rnnSqtXjxyFhVIMf5yMBDnJOcpJztFl\nSy5zjw0OD6rhRINHG6LqlmodOn1oUnObMtXQ0aCGjgb9vvb37vHkuGSVZJd47NZSmlOqOQlzAnZd\nAAAAAAAAAICZwzBN07S6CAAId21tbcrOzvYYa21t9dyVAUDEcjgcSk5OtroMS9kl2c4eTEiQSks9\nQy1lZdIs/1lFulO9p/RR60ceLYiqW6tl77cHZP5FaYvcbYhKc0pVllOmwsxCxUTNrrCUx33nAUlx\nlpYTOv2S/sv5S7vdLpvN684DAAAAAAAAIAjC4Xno7PoUGAAAYAqSkpL09a9/XT/60Y/0JUk/trqg\nEPlHSU9Kul9Skq8X9PZKFRXOw8UwpGXLPEMtq1dLubnOc5jx5iTM0acXfVqfXvRp99iwOaxDpw55\n7NZS1VKlhhMNMjW5vPzh04d1+PRhvVz/snssPjpexVnFHi2ISrNLlZOcE7DrAgAAAAAAAABYiwAL\nAADABAzD0AUXXKAf/ehHqpKPnUgiVNWZf14gye/oiWlKDQ3O47nnRsazsrxDLbQgihhRRpQK0gtU\nkF6g61Zc5x7vHuhWTWuNqlur3eGWD1s+VEdPx6Tm7xvq097je7X3+F6P8Wxbtnu3FlewZWXWSiXE\nJATkugAAAAAAAAAAoUMLIQDwQzhsmQXAWgcOHNDSpUsVJ6lTUrzVBQVZn6QUSQOSDrz9tgpOnJA+\n+GDkOHp0+ovQgmhWMk1Tx+zHPNoPVbVUqbatVgPDA9OeP9qIVmFmocduLWU5ZVqYulDGDNoFiBZC\ntBACAAAAAAAAQikcnocSYAEAP4TDDRuAtUzT1IIFC9Tc3KxnJN1kdUFB9oykTZLmz5+vpqYm7wf/\nbW3Shx96hlr27ZOGhqa3sGFIy5d779Yybx4tiCJc/1C/6trrvNoQNXc1B2T+tPg0d+shV6ilJLtE\nKfEpAZk/0AiwEGABAAAAAAAAQikcnocSYAEAP4TDDRuA9b71rW/p29/+ti6S9H9WFxNkF0l6T85r\n/s///E//vqmnR6qp8Qy1fPihZLdPv6DsbN8tiKKjpz83wtqJ7hMeLYiqWqr0UetH6hnsCcj8S9KX\nuNsQleY4wy1L05cqOsraf7cIsBBgAQAAAAAAAEIpHJ6HEmABAD+Eww0bgPWOHj2qxYsXa2hoSFWS\nSq0uKEiqJZVJio6O1uHDh5WXlzf1yYaHpQMHPEMtgWpBlJjo3YKotJQWRLPA0PCQPjn5iapbqj12\nazlw8kBA5k+MSVRJdolHC6LS7FJlJmUGZH5/EGAhwAIAAAAAAACEUjg8DyXAAgB+CIcbNoDwcOON\nN+r3v/+97pb0qNXFBMndkn4m57U+99xzwVnEVwui2lpn4GU6aEE0q3X1demj1o9U1VLlsWvL6b7T\nAZk/LyXPvVuLK9hSNLdIcdGBT5cQYCHAAgAAAAAAAIRSODwPJcACAH4Ihxs2gPDwpz/9SZ/5zGeU\nLKlZUorVBQVYp6T5kuxyXuvFF18cusVpQYQgME1TTZ1NHi2IqlurVddepyFzaNrzx0bFamXWSpVm\nl3rs2JKbnCtjGqEpAiwEWAAAAAAAAIBQCofnoQRYAMAP4XDDBhAeTNNUcXGx9u3bp+9K+qbVBQXY\ndyX9h6SVK1eqpqZmWg/gA8LVgmjvXs9gS3Pz9Oce3YJozZqRFkQ8MJ8Vegd7VdtWOxJsOdOGqNXR\nGpD5MxMzPdoPleWUaVX2KiXFJvn1/QRYCLAAAAAAAAAAoRQOz0MJsACAH8Lhhg0gfDz99NO65ZZb\nFCtpj6QSqwsKkGpJayUNSNqyZYs2bdpkcUXjaG31bkG0b19gWhAVFvpuQYRZocXe4tF+qKqlSjVt\nNeof6p/23IYMLc9c7tGGqDSnVPlz8hVlRHm8lgALARYAAAAAAAAglMLheSgBFgDwQzjcsAGED9M0\ndd1112n79u1aK+kvkmKtLmqaBiSdL2cg59prr9ULL7xg/e4rk9XTI330kXcLIodj+nPn5HiHWpYv\npwXRLDE4PKj6E/XO9kMt1e7dWg6fPhyQ+ZPjkr1aEC2xLdH8ufOdLyDAAgAAAAAAACDIwuF5KAEW\nAPCDrxt2Y2Ojzxs2D1qA2eHYsWNatWqVTp48qe9J+nerC5qm70l6UFJ6erpqamqUm5trdUmBMTws\nffKJZ6glkC2Iyso8Qy20IJpVTvWecgZazuzUUt1arerWatn77dOffFSQgwALAAAAAAAAgEBy+PiL\nn21tbSooKPAYI8ACAGHIV4BlLNxWgdnjqaee0m233aZYSZWSSq0uaIqqJJXLuQvLb37zG916660W\nVxQCtCBCkAybwzp46qBHC6Kqlirt79gvU5P4MwIBFgIsAAAAAAAAQJD4uwM7ARYACEMEWAD4MrqV\n0EpJ70rKtLqoSToh6SJJtZrBrYMChRZECCJHv0Mft308Emo504aoo6fD9zcQYCHAAgAAAAAAAAQJ\nARYAmMFoIQRgLMeOHVN5ebmam5u1TtJbklKsLspPXZIulVQhKS8vT7t3746c1kGBEswWRElJvlsQ\nJSVNf27MCKZpqrmr2aMFUVVLlWrbazXYO0iAhQALAAAAAAAAEBS0EAKAGcxXgCXUN2wA4aumpkYb\nNmxQR0eHNkrarvAPsXRJ+htJ/ycpMzNT//d//6fi4mKLq5pBWlu9Qy11ddNvQRQV5bsFUU5OYOrG\njNA/1K89h/bogqUXOAcIsAAAAAAAAAAIsnB4HkqABQD8EA43bADhraKiQpdeeqm6urq0TtKrCt92\nQu2SrpK0W1JKSoreeustrVu3zuKqIkB3t+8WRN3d05973jzvUMuyZbQgimAOh0PJycnOLwiwAAAA\nAAAAAAiycHgeGhOylQAAACLYunXr9NZbb+nKK69URUeHLpL0W0mlVhd2lipJN0mqlXPnlddee03l\n5eUWVxUhkpKkT33KebgMDfluQXTs2OTmPn5ceu015zF6PVoQAQAAAAAAAAAiBAEWAACAAFm3bp3e\nffddXX755aptbtZaSf8h6f+TFGtxbQOSvi/pu2d+nZeXpzfeeIO2QcEWHe1sCVRYKP3d342Mt7Q4\nd2eZTgui7m7pr391Hi60IAIAAAAAAAAAzFC0EAIAP4TDllkAZo5jx47pq1/9ql566SVJ0rmSfiWp\nxKJ6qiXdIWnPma+vvfZaPf7448rNzbWoIvhECyKMQgshWggBAAAAAAAAoRQOz0MJsACAH8Lhhg1g\nZjFNU1u2bNG9996rkydPKlbSg5Luk5Qaoho6JT2ikV1X0tPT9ZOf/ESbNm2SYRghqgLTEqgWRL64\nWhCtWTMSaikpoQVRmCDAQoAFAAAAAAAACKVweB5KgAUA/BAON2wAM9OxY8d01113afv27ZKkZEm3\nSfqapNIgrVkt6TFJT0mynxlj15UI42pBtHevZwui6f7RPipKKiry3q3lrN8DEXwEWKTf7vmtzll4\njpakL1FstNWN2AAAAAAAAIDIFg7PQwmwAIAfwuGGDWDmMk1TzzzzjL73ve+ptrbWPX6RnEGWv5UU\nP801+iRtkzO48t6o8ZUrV+qb3/ymbr75ZnZdiXQOh3cLoqqqwLQgys313YIoKmr6c8MnAixyX3dM\nVIyWpC9RUWaRijKLVJhZqKK5zl9n27K5twEAAAAAAAABEA7PQwmwAIAfwuGGDWDmM01TO3bs0GOP\nPabnn39eQ0NDkpzPpUslrR11lGrs59X9cu6yUjnqqJKzTZAkxcTE6POf/7zuvvtubdy4kYe7s9nQ\nkLR/v3cLouPHpz+3zeZsQTQ61EILooAhwCK/rjstPs0dZinMLHSGXOYWaXnGciXGJga5WAAAAAAA\nACByhMPzUAIsAOCHcLhhA4gszc3NeuKJJ/TEE0/o6NGjXudjJeVKSpSUcGasV1KPpGMaCauMNn/+\nfG3evFmbN29WXl5ekCpHRDh+3NmCaHSohRZEYYUAi6Z13YYMLUpb5DPcsiB1gaIMdg8CAAAAAAAA\nRguH56EEWADAD+FwwwYQmUzT1MGDB1VZWandu3ersrJSlZWVOnny5Ljfl56ervLycq1du9Z95Ofn\ns9sKpi6ULYjWrJGWLqUF0TgIsEiZ38vUicETAV8iMSbR3YaoMGOkHVHR3CKlxqcGfD0AAAAAAABg\nJgiH56EEWADAD+FwwwYwe5imqUOHDqmtrU09PT3q6emRJCUmJioxMVFZWVlavHgxYRUEX7BbEJ1z\njncLokTavkgEWCTJbrerL6pP9SfqVddep7oTZ472Ou3v2K++ob6ALz8veZ7Xji1FmUUqSC9QTFRM\nwNcDAAAAAAAAwkU4PA8lwAIAfgiHGzYAAGFjdAuivXud/6yvD0wLohUrvFsQzcLfbwmwOAMsNpvN\n58uGhod0+PRhd6BldLjlaJd3W7bpio2K1dKMpT7DLXOT5hIoBAAAAAAAwIwXDs9DCbAAgB/C4YYN\nAEBYczik6mrvFkRndhCalrw871BLhLcgIsAyfoBlPPZ+uxpONHiFW+pP1Mvebw9svZLSE9Kd7Yhc\nwZYz4ZZlGcuUEJMQ8PUAAAAAAACAYAiH56EEWADAD+FwwwYAYMYZGpIaGjxDLXv3Sq2t0587wlsQ\nEWCZeoBlLKZp6pj92EiopX0k2NJ4qlHD5nDA1pIkQ4by5+Q7wy0Zhe4dW4rmFml+ynx2bUHYMU1T\n3d3dVpdhqaSkJP7bBAAAAADMWuHwPJQACwD4IRxu2AAARIzjxz1DLbQg8kKAJfABlvH0Dfbpk5Of\neLUjqj9RrxM9JwK+ni3WpsLMQq92RIWZhUqJTwn4eoA/PO47s1Qo7zsAAAAAAISbcHgeSoAFAPwQ\nDjdsAAAiGi2IPBBgCZ8HySe6T3jt2FJ3ok77O/arf6g/4OvlpeS5wyyjwy35c/IVHRUd8PUAFwIs\n4XPfAQAAAADACuHwPJQACwD4IRxu2AAAzDrBbEGUnOzdgmjVqrBpQUSAJfwfJA8OD+rQqUM+wy3N\nXc0BXy8uOk5L05eOtCIaFW7JTMoM+HqYfTzuO9/Q7Lrv/ND5y3C/7wAAAAAAEEzh8Dw0JmQrAQAA\nAMBkREc7WwKtWCHddNPIeCBaENnt0s6dzuPs9UaHWs45Z0a2IELwxUTFaGnGUi3NWKrPLf+cx7mu\nvi53mKWuvU71HfXulkSOAceU1usf6ldte61q22u9zmUmZjp3bDkr3LI0faniY+KntB5muTjNngAL\nAAAAAAAIG+zAAgB+CIfEIQAAGIfd7rsFUW/v9OeeP9+7BdGSJUFtQcQOLJG5E4JpmjraddS9Y8vo\ncMvBUwdlKrD/ex5lRCl/Tr7Xji1Fc4uUm5wrwzACuh5mNu47kXnfAQAAAADAX+HwPJQdWAAAAADM\nfMnJ0gUXOA+XwUHfLYja2iY399GjzuMPf/Bc7+wWRCUlUkJCYK4HEckwDC1IXaAFqQt06ZJLPc71\nDvZqf8d+r3ZEde11Otl7ckrrDZvDOnDygA6cPKBX97/qcS45Ltm5a8tZ4ZbCzELZ4niADwAAAAAA\ngNAjwAIAAAAgMsXESCtXOo+bb3aOmabvFkQNDcFpQbR6tTR3bmCvCxEpISZBJdklKsku8Rg3TVPt\n3e0jO7a4gi0n6vRJxycaGB6Y0nr2frv2HNujPcf2eJ1bkLrAZ7hlUdoiRUdFT2k9AAAAAAAAYCIE\nWAAAAADMHoYh5eY6j6uuGhkPRAuioSGppsZ5bNkyMj66BdGaNc5/FhQEtQURIodhGMqyZSnLlqVP\nL/q0x7nB4UE1nmwc2bHF1ZroRJ2O249Pec0jnUd0pPOI3m5822M8PjpeyzKWjbQiGhVuSU9Mn/J6\nAAAAAAAAgESABQAAAABC34IoJcW7BdGqVbQgwqTERMVoeeZyLc9c7nXudO9p924to9sR1Z+oV89g\nz5TW6xvqU01bjWraarzOzU2a6xVqKZpbpCXpSxQXHTel9QAAAAAAADC7EGABgClyOBxKSkryGrfZ\nbBZUAwAAAi6YLYi6uqT33nMeLtHRzrVWr3b+E5iGtIQ0rZu/Tuvmr/MYHzaHdaTziFc7orr2Oh0+\nfVimJvHv8Sjt3e1q727XzqadHuPRRrQK0gt8hltybDkyDGPK1wgAAAAAAICpcTgcfo2FmmGak/mU\nFQBmp7a2NmVnZ/v1Wm6rAADMQoFoQTSKQ1Ky64sHJM2WDSz6Jf2X85d2u51gcIj1DPSooaPBqx1R\nXXudTvedDvh6qfGpKsws9Aq3LM9crqRY76A4gsvhcCg5+cydh/sOAAAAAAARzd+/VNTa2qqsrKwg\nVzOCHVgAAAAAYLrGakFUX+/dgqi93bo6gXEkxiaqLKdMZTllHuOmaarV0TrSjmhUuOXAyQMaHB6c\n0nqdfZ3a3bxbu5t3e51bmLpwZLeWM+GWwsxCLUpbpCgjakrrAQAAAAAAILwRYAGAKWpsbAxp4hAA\nAMwwMTFScbHz2LTJOWaa0rFjvlsQAWHKMAzlJOcoJzlHGxZv8Dg3MDSgAycPjLQjGhVuaXW0TnnN\nps4mNXU26c0Db3qMJ8QkaHnGcp/hljkJc6a8HgAAAAAAwGxit9u9xtra2lRQUGBBNSMIsADAFNls\nNraXBgAAk2MYUl6e8/jc50bGu7o8WhCZu3c7d2uZxWjLODPERsc6wyRzi3SNrvE4d6r3lOra60bC\nLWcCLg0dDeodnFp7rd7BXlW3Vqu6tdrrXLYt26sdUWFmoZakL1FsdOyU1gMAAAAAAIhEvp5xdnd3\nW1CJJwIsAAAAAGC1lBRp/XrnIenwxx9Lq1ZZXJS1Dh8+rOLiYqvLwDTMSZij8xacp/MWnOcxPmwO\nq+l0k9eOLXXtdWrqbJryeq2OVrU6WvXu4Xc9xmOiYrQkfYnPcEu2Ldvvns8AAAAAAAAILgIsAAAA\nABBm2trarC7Bcu3t7VaXgCCJMqK0eM5iLZ6zWFcsvcLjnKPfof0d+32GW7r6u6a03uDwoOpP1Kv+\nRL22a7vHubT4NJ/tiJZnLFdibOKUrxEAAAAAAACTR4AFAAAAAMJMT0+P1SVYjp/B7GSLs+mceefo\nnHnneIyb5v/P3p1HV13f+R9/3ixAIBHDpgkqmwIJorIpoigqglrZ5NpF69hlqK127K+ddtqx2nZG\nu0xrZ6bWWltmpp2qta2XTVSQiCCoo6wikrCILEpQwiqBQEhyf39cIMSw3AD33m+S5+OfNZdnAAAg\nAElEQVScHJL7zSf3dfH4PSSfVz7vKB+Wf1g7juiIcsu6Heuojlaf1PPt2r+LBZsWsGDTgjqPhwhx\nXtvz6pRberbvSa8OvTjnjHNIC6Wd9GuUJEmSJEnS0VlgkSRJkqSA2b9/f6ojpNy+fftSHUEBEgqF\nyMvJIy8nj6u7Xl3nWmV1Je/teK+21HJEuWXr3pM7ySdKlA27NrBh1wZmrZ1V51pWRtbhMsvhYsvB\n01vOaHnGSb9GSZIkSZKk5s4CiyRJkiQFWWWqAyRRc3qtOm1apLegd4fe9O7Qu9617RXbY6e2fGIc\n0bvb32V/9ckVxSqqKlj20TKWfbSs3rWzs8+uN46oV/tedMvtRkaaP4KRJEmSJEk6Hn96IkmSJEkB\n07Jly9oPHk5djlRq1apVqiOoCWiX1Y7B5wxm8DmD6zxeXVPNxl0b653YsmrrKjbt3nTSz/dh+Yd8\nWP4hr2x4pc7jmWmZ9GjX46jllg6tOxAKhU76OSVJkiRJkpoKCyySJEmSFDBZWVmpjpBy/h0okdLT\n0umW241uud244fwb6lwrryxnzbY19cotq7etpryy/KSe70DNAVZuXcnKrSvrXcttlXt4HNHhkUQd\nenF+u/NplWGRS5IkSZIkNR8WWCRJkiQpYM477zwAMoGPgBYpTZM8+4GzgCrg3HPPTXEaNVfZLbLp\nl9ePfnn96jwejUbZXL65ttSytbbYsm7nOmqiNSf1fDv27eCND97gjQ/eqPN4iBBdz+x6uNxy6MSW\nXh160Tmns6e2SJIkSZKkJscCiyRJkiQFTNeuXcnNzWXHjh2sA/qnOlCSrCRWXsnNzaVr164pTiPV\nFQqFyM/JJz8nn2u6XVPn2v6q/azdsbbeOKLV21azrWLbST1flCjrdq5j3c51zHx3Zp1rbTLbHD6p\npWe7nnVKLjktc076NUqSJEmSJKWSBRZJkiRJCphQKET//v2ZPXs2i2k+BZbFB/8cMGCAp0uoUWmZ\n0ZLCjoUUdiysd23b3m1HHUf07vZ3qayuPKnn23NgD0s/XMrSD5fWu5afk19vHFGv9r3oemZX0tPS\nT+r5JEmSJEmSksECiyRJkiQF0MCBAw8XWCakOkySHCqwDFyzBv7t32DECLj4YkhLS2ku6VS0b92e\nIa2HMOTcIXUer6qpYsPODfXGEa3atorS3aUn/Xylu0sp3V3KnPVz6jzeIr0F57c7v944ol7te9G+\ndfuTfj5JkiRJkqTTxQKLJEmSJAXQgAEDgNpSR3Nw+ASWDRvge9+LvXXqBNdfHyuzXH895OWlNKN0\numSkZdCjXQ96tOvBTRfcVOfa7v27D5dZVm1dxertqw+PJNpzYM9JPV9ldSXFZcUUlxXXu9Y+qz3n\n55x/Ul9XkiRJkiTpdLHAIkmSJEkBdKjA8jawH2iZ0jSJt5/YawUYcOSFLVvgqadibwB9+8bKLCNG\nwNChkJWV3KBSEuS0zGFA/gAG5Nf5v4FoNMqm3ZtqxxEdUW5Zv3M9UaIn9XzbKraxbde20xFdkiRJ\nkiTppFlgkSRJkqQA6tatG/n5+ZSWljIF+GyqAyXYZOAA0BnoerxPXL489vbLX0LLlnDVVTByZKzQ\ncuGFEAolI66UEqFQiHPOOIdzzjiH67pfV+favqp9vLv93XrjiFZtXcWOfTtSlFiSJEmSJCl+Flgk\nSZIkKYBCoRATJkzgX/7lX3iMpl9geezgnxM++1lC7drBrFnw7rvHX7R/PxQVxd4Azj679nSW4cPh\nrLMSmlkKklYZrbiw04Vc2OnCOo9Ho1G27t1ae2LLoWLLtlWs3b6WAzUHUpRYkiRJkiSprlA0Gj25\n82UlqRkpKyujU6dOdR7bsmULHTt2TFEiSZLUHGzatIkuXbpQXV3N20DfVAdKkOXARUB6ejobN24k\nPz8/duG992LllFmzYPZs2LWrYV/4kktiZZaRI+GKK2Intkg6rKqminU71rFq2yqWf7Cc+667L3bh\nPqBFSqMlTyXwk9i75eXltGnTJqVxJEmSJElKlSDsh6Yl7ZkkSZIkSQ3SuXNnxo4dC8DjKc6SSL89\n+Oe4ceNqyysA3bvDXXfBpEmwdSu89hr88Idw+eWQFse3s2+9BT//OVx3HeTmwk03wX/+JxQXg7/L\nIZGRlsEF7S/g5p43c+9l96Y6jiRJkiRJauYssEiSJElSgN1zzz0A/AnYndooCfEx8MTB9w+91qPK\nyIAhQ+BHP4LXX4dt22LFlrvugq5dT/xEFRUwYwZ885vQpw+cey586Uvwl7/EyjGSJEmSJEmSUsoC\niyRJkiQF2LBhw+jduzflwK9SHSYBfgWUAwUFBVx99dXxLzzzTLjlFnj88dioodWr4dFHYfRoyM4+\n8fpNm+APf4DPfQ46dYJBg+D734dXXoHKypN9OZIkSZIkSZJOkgUWSZIkSQqwUCjEAw88AMC/Au+k\nNs5ptRx48OD7999/P6FQ6OS+UCgEF1wA99wD06bB9u0wbx7cfz9cemns+vFEo7BoEfzkJzBsGLRr\nB6NGwa9/DatWOW5IkiRJkiRJSoJQNOpP4iTpRMrKyujUqVOdx7Zs2ULHjh1TlEiSJDUn0WiUMWPG\nMH36dAYA/wdkpjrUKToADAaWAKNHj2bq1KknX2A5kW3bYPZsmDUr9vb++w1b36ULjBgRe7v22ljB\nRWpi9uzZQ/ah04vuA1qkNE7yVAI/ib1bXl5OmzZtUhpHkiRJkqRUCcJ+qAUWSYpDEG7YkiSpedu8\neTN9+vRhx44dPAR8P9WBTtFDwANAbm4uK1asIC8vLzlPHI3GTlU5VGaZMwf27o1/fVpabNzQoULL\nZZdBZmOvE0kWWMACiyRJkiSpeQvCfqgjhCRJkiSpEcjLy+ORRx4B4F+Ijd9prN4mNg4J4JFHHkle\neQVi44R694Z774XnnouNG5ozB773Pejf/8Tra2rgzTfhwQdh6FBo3x7GjoXf/hbWrk18fkmSJEmS\nJKmJ8gQWSYpDEBqHkiRJR44SKgDmA+1THaqBtgFDgRKSMDroZJSVwUsv1Z7QUlrasPXdu9cdN9S2\nbWJySqeZJ7B4AoskSZIkqXkLwn6oBRZJikMQbtiSJEkQGyU0cOBASktLGQTMBnJSHSpOu4HrgIVA\nfn4+ixYtSu7pKw0VjUJxcW2Z5ZVXoKIi/vXp6bERQyNHxgotAwdCRkbi8kqnwAKLBRZJkiRJUvMW\nhP1QRwhJkiRJUiOSl5fHrFmzaNeuHQuBUcSKIUG3G7iZWHmlffv2FBUVBbu8ArFxQ336wDe/CTNm\nxMYNFRXBd74DF1984vXV1fD66/DDH8Lll0PHjhAOw+9/D+vXJzy+JEmSJEmS1JhYYJEkSZKkRqZP\nnz7MnDmTnJwcXiF2qsm2VIc6jq3AtcA8ICcnhxkzZlBYWJjiVCehVSsYPhx+/nN46y3YvBmeeALu\nuAPOOuvE63fuhEmT4K67oFs36NkTvv51ePZZ2N0YakhS0/baxteorqlOdQxJkiRJkpotRwhJUhyC\ncGSWJEnSJy1cuJAbbriB7du3UwD8Feib6lCf8DbwWaCE2MkrM2fOZODAgSlOlQDRKCxfDi++GBs3\nNH8+7N8f//qMDBgyJDZqaMQI6N8/NoJIShJHCAH3wdntzuaW3rcQLgwztMtQMtIc+yVJkiRJah6C\nsB9qgUWS4hCEG7YkSdLRFBcXc/3111NaWkom8APgu0BminMdAH4GPHjw/fz8fIqKihrnySsnY+/e\nWIll1qzY2zvvNGx9u3ax014OFVrOPTcxOaWDLLBQ73V3aN2Bcb3HES4Mc03Xa8hMT/WdVZIkSZKk\nxAnCfqgFFkmKw9Fu2OvWrTvqDbtNmzbJiiVJkgTA5s2b+epXv8qzzz4LQH/gf4ELU5RnOfAFYMnB\nj0ePHs3jjz9OXl5eihIFwKZNUFQUK7MUFcHWrQ1bX1BQW2a5+mrw35w6zSywcNzXndsql7G9xxIu\nDDO8+3BapDeXvyBJkiRJUlO0Z8+eeo+VlZXRrVu3Oo9ZYJGkADpageVYvK1KkqRUiEajPPXUU9x7\n773s2LGDTOAB4BvAGUnK8DHwK2pPXcnNzeXXv/41t912G6FQKEkpGoGaGnjrrdrTWV59FQ4ciH99\nZiZceWVtoeWSSyAtLXF51SxYYCHu1922ZVtG9xpNuDDMiB4jaJXRKoEBJUmSJEk6/eL9WZ0FFkkK\nIAsskiSpsdi8eTN33XUX06dPByAbuAP4GtA3Qc+5HHgMeBIoP/iYp640QHk5zJtXW2gpKWnY+g4d\n4PrrYeTI2J/5+YnJqSbNAgss3bCUGRtmECmJsGTzkuMuOyS7RTajeo4iXBjmhvNvoHVm68RllSRJ\nkiTpNLHAIkmNmCOEJElSYxKNRnn66ad56KGHKDmiDDGUWJHlFqDlKT7HfmAyseLKq0c8XlBQwP33\n38/nPvc5T105WRs31o4beukl2L69YesvvLD2dJahQ6G1G+o6MQssUF5efvj7ufd2vMek4klMKpnE\nm5vejOtLtc5szU0X3MSthbdy0wU3kd0iO0GhJUmSJEk6NY4QkqRG7GgFlmTfsCVJkhoqGo0yd+5c\nHnvsMaZMmUJ1dTUQ25fuCww44q0vx96vriR2ysriI97eJjYmCCAjI4Nx48Zx9913c/XVV1tcOZ2q\nq2HJktrTWV5/Haqq4l/fsmWsxHKo0HLRReB/Hx2FBZa6BZYjbdy1kcklk4kUR3jt/dfi+rKtMlpx\nw/k3EC4Ic3PPm2nbqu1pDC1JkiRJ0ukXhP1QCyySFIcg3LAlSZJORWlpKRMnTmTixIls2rSp3vVM\nIA/IAlodfGwfUAFsprascqTOnTszYcIEJkyYQL5ja5Jj926YM6e20LJmTcPWn3VWbZnl+utjH0tY\nYIFjF1iOtOnjTUxZOYVIcYR5G+YR5cQ/VmuR3oIRPUYQLggzutdocrNyT0NwSZIkSZJOryDsh1pg\nkaQ4BOGGLUmSdDpEo1HWr1/P4sWLWbRoEYsXL2bx4sXs2LHjuOtyc3MZOHAgAwYMOPzWtWtXT1tJ\ntXXr6o4b2rWrYesvvri20HLlldCq1YnXqEmywBJfgeVIH5Z/yNSVU4kUR5izfg410ZoTrslIy2B4\n9+GEC8KM6T2GDq07nGRwSZIkSZJOryDsh1pgkaQ4BOGGLUmSlCjRaJQNGzZQVlZGRUUFFRUVAGRl\nZZGVlUXHjh3p0qWLZZWgq6qCRYvgxRdjhZY334yNIIpXVhZcfXVtoaWw0HFDzYgFloYXWI5UtqeM\naaumESmOMHvdbKpqTjzqKz2UzjXdriFcEGZs77Gcle2JSJIkSZKk1AnCfqgFFkmKQxBu2JIkSVKD\n7NxZO27oxRdjp7U0RH5+bZll+HDw375NmgWWUyuwHGl7xXaeXfUsk0omMWvtLCqrK0+4Ji2UxtDz\nhhIuDHNLwS3k5ziWTZIkSZKUXEHYD7XAIklxCMINW5IkSTola9fWns7y8suwe3fD1vfvDyNHxgot\nQ4ZAi+bScGgeLLCcvgLLkXbt28Vzq58jUhJhxpoZ7K/ef8I1IUIMOXcI4cIw4wvGc27bc09rJkmS\nJEmSjiYI+6EWWCQpDkG4YUuSJEmnzYEDsRFDs2bF3hYuhJqa+Ne3aQPDhtWe0NKrl+OGGjkLLIkp\nsBxp9/7dvLDmBSIlEZ5f/TwVVRVxrbus82WHyyzdcrslLJ8kSZIkqXkLwn6oBRZJikMQbtiSJElS\nwmzfHjuV5dC4oY0bG7b+3HNjRZaRI+G666Bdu8TkVMJYYEl8geVIeyr3MPPdmURKIjy3+jnKK8vj\nWjcgbwDjC8YTLgxzQfsLEpxSkiRJktScBGE/1AKLJMUhCDdsSZIkKSmiUVi9uvZ0ljlzYM+e+NeH\nQjBoUO3pLIMHQ2Zm4vLqtLDAktwCy5EqDlQwa+0sJpVMYtqqaXy8/+O41l101kWEC8KEC8MUdCxI\ncEpJkiRJUlMXhP1QCyySFIcg3LAlSZKklKishP/7v9pCy+LFsZJLvHJy4Jprak9o6dHDcUMBZIEl\ndQWWI+2v2s/sdbOJFEeYunIqO/btiGtdYcfCw2WWCztdSMj/xyRJkiRJDRSE/VALLJIUhyDcsCVJ\nkqRA2LoVXnqpttCyaVPD1nfrVns6y7XXwplnJianGsQCSzAKLEc6UH2AOevnECmOMGXlFLbu3RrX\nup7tex4us1xy9iWWWSRJkiRJcQnCfqgFFkmKQxBu2JIkSVLgRKNQUlJbZpk7Fyoq4l+flgaXXVZb\naLn0UsjISFhcHZsFluAVWI5UVVPFvA3ziBRHmFwymY/2fBTXuu653Q+XWQbmD7TMIkmSJEk6piDs\nh1pgkaQ4BOGGLUmSJAXevn3w+uvw4ouxQstbbzVsfdu2cN11tYWWbt0Sk1P1WGAJdoHlSNU11bz2\n/mtEiiNMKplE6e7SuNad1/Y8wgVhxheOZ/A5g0kLpSU4qSRJkiSpMQnCfqgFFkmKQxBu2JIkSVKj\n89FHdccNffhhw9aff35tmeWaa+CMMxKTUxZYaDwFliPVRGt444M3mFQ8iUhJhI27Nsa1Lj8nn/EF\n4wkXhrni3CtIT0tPcFJJkiRJUtAFYT/UAoskxSEIN2xJkiSpUYtG4Z13asss8+bFTmyJV3o6XH45\njBwZK7QMGBB7TKdFnQLLt2leBZaHY+82xgLLkaLRKItKFxEpjhApifDejvfiWndWm7O4peAWwoVh\nrupyFRlpjvGSJEmSpOYoCPuhFlgkKQ5BuGFLkiRJTUpFBcyfX1toWb68Yetzc2H48NoTWs47LzE5\nm4k6BZZmqrEXWI4UjUZ568O3iBRHeKb4GdZsXxPXug6tOzCu9zjChWGu6XoNmemZCU4qSZIkSQqK\nIOyHWmCRpDgE4YYtSZIkNWmlpXXHDZWVNWx9r16xIsvIkXD11dDMyxgNZYGlaRVYjhSNRnlnyzuH\nT2YpLiuOa11uq1zG9B5DuCDM8O7DaZnRMsFJJUmSJEmpFIT9UAsskhSHINywJUmSpGajpgaWLast\ns7z6KlRWxr8+MxOuuKL2dJZ+/SAtLXF5m4BoNMrevXsT9rXXr1/P0qVLWbJkCW+99RZvvfUWO3fu\nPO66M888k379+nHJJZfQr18/+vXrR9euXQmFQgnJ2bp164R97SApKSthUskkIsURln20LK41Z7Q8\ng9G9RhMuCDOixwiyMrMSnFKSJEmSlGxB2A+1wCJJcQjCDVuSJElqtvbsgXnzagstxfGdIHFYhw61\n44auvx7OOScxOVXHpk2bmDhxIhMnTqS0tLTe9RZAHpAFtDr42D6gAtgMHK2ylJ+fz4QJE/jKV75C\nfn5+gpI3H2u2rTlcZlm8eXFca7JbZHNzz5sJF4S58YIbaZ3ZOsEpJUmSJEnJEIT9UAsskhSHINyw\nJUmSJB30wQe1ZZaiIti+vWHr+/SpPZ3lqqugtRvwp0s0GmXOnDk89thjTJ06lerqaiBWVrkIGHDE\n24UHHz+aSuAdYPHBt0XAcmpLLenp6YwbN467776bYcOGNYuTUxJt3Y51h8ssb256M641rTNbc9MF\nNxEuCHPTBTeR0zInwSklSZIkSYkShP1QCyySFIcg3LAlSZIkHUV1NSxdWltoee01qKqKf32LFjB0\naG2h5aKLHDd0EqLRKE8//TQPPvggK1euPPz4VcDXgHFAy1N8jv3AFOAxYP4Rj/fu3ZsHHniAz33u\ncxZZTpONuzYyuWQykeIIr7//OlFO/OPDVhmtGNljJOHCMKN6jqJtq7ZJSCpJkiRJOl2CsB9qgUWS\n4hCEG7YkSZKkOOzeDa+8Ai++GCu0rF7dsPVnnRUbM3Ro3NDZZycmZxOyefNm7rrrLqZPnw5ANvB3\nxIorFyboOZcDvwWeAMoPPjZ69Ggef/xx8vLyEvSszVPp7lKmlEwhUhJh3oZ51ERrTrimRXoLru9+\nPeHCMKN7jaZdVrskJJUkSZIknYog7IdaYJGkOAThhi1JkiTpJKxfHxszNGsWvPQS7NzZsPUXXVR7\nOsuVV0JWVkJiNkbRaJQnn3ySe++9l507d5IJ/AD4BpCsQTK7gV8B/wocAHJzc3nkkUe4/fbbPY0l\nAT4q/4ipK6cSKYkwZ90cqqPVJ1yTkZbBdd2uI1wYZmzvsXRo3SEJSSVJkiRJDRWE/VALLJIUhyDc\nsCVJkiSdoupqWLQoVmZ58UV4443YY/Fq1QquugpGjowVWvr0gWZakvjkqSsDgD+SuBNXTuQd4AvA\n4oMfexpL4m3du5VpK6cRKYnw0nsvUVVz4tFd6aF0hnUdRrgwzLje4zgr+6wkJJUkSZIkxSMI+6EW\nWCQpDkG4YUuSJEk6zXbtgjlzYoWWWbNg7dqGrc/Lqz2dZfhw+MT3DE3VihUrGDFiBKWlpWQCPwT+\nCchMca4DwL9RexpLfn4+RUVFFBYWpjZYM7CjYgfPrnqWSEmEWWtnUVldecI1IUJc1eUqwoVhbim4\nhfyc/CQklSRJkiQdSxD2Qy2wSFIcgnDDliRJkpRga9fWjhuaPRs+/rhh6/v1i5VZRo6EIUOgZcvE\n5EyhhQsXcsMNN7B9+3YKgL8CfVMd6hOWA58BSoD27dszY8YMBg0alOJUzceufbt4bvVzREoizHx3\nJvuq9sW1bsi5QwgXhBlfOJ7z2p6X4JSSJEmSpE8Kwn6oBRZJikMQbtiSJEmSkqiqCt58s/Z0lgUL\noKYm/vWtW8OwYbUntPTu3ejHDS1cuJDrrruO3bt3MwiYAbRPdahj2AbcCCwEcnJymD17tiWWFCiv\nLOeFNS8QKY7w/Jrn2Xtgb1zrLu186eEyS/fc7glOKUmSJEmCYOyHWmCRpDgE4YYtSZIkKYV27ICX\nX46VWV58ETZsaNj6c86pO26ofVCrH0e3YsUKrrrqKrZv387VwHQgJ9WhTmA3cDMwD2jXrh3z5893\nnFAK7T2wl5nvziRSHGH66umUV5bHta5/Xv/DZZae7XsmOKUkSZIkNV9B2A+1wCJJcQjCDVuSJElS\nQESj8O67sSLLrFkwZw6Ux7cZD8ROYhk4sLbQMngwtGiRuLynaPPmzQwcOJDS0lIuBV4i+OWVQ3YD\n1xE7iSU/P59FixaRl5eX4lTaV7WPWWtnESmO8OyqZ9m1f1dc6y4666LDZZbCjpaRJEmSJOl0CsJ+\nqAUWSYpDEG7YkiRJkgKqshLeeKN23NCiRbGSS7yys+Gaa2oLLRdcEJhxQ9FolDFjxjB9+nQKgPkE\nd2zQsWwDhgIlwOjRo5k6dSqhgPz9CvZX7Wf2utlEiiNMWzWN7RXb41pX0KGAcGGYcGGYvp36+t9U\nkiRJkk5REPZDLbBIUhyCcMOWJEmS1Ehs2wazZ9eOG/rgg4at79q1tsxy7bWQm5uQmPF48sknueOO\nO8gEFgN9U5bk1CwHBgAHgCeeeILPf/7zKU6kozlQfYC56+cSKY4weeVktu7dGte6C9pdcLjM0u/s\nfpZZJEmSJOkkBGE/1AKLJMUhCDdsSZIkSY1QNAorV9aezjJ3LuzdG//6tDS49NLaQstll0FGRsLi\nHmnz5s306dOHHTt28BDw/aQ8a+I8BDwA5ObmsmLFCkcJBVxVTRXzN8w/XGb5sPzDuNZ1O7Pb4TLL\noPxBllkkSZIkKU5B2A+1wCJJcQjCDVuSJElSE7B/P7z+em2hZcmShq0/44zYqSwjR8YKLd27JyTm\nkaODBgBvAMmpzSTOAWAwsARHCTU21TXVvP7+60SKI0wqmcSm3ZviWnfuGecSLgwzvmA8l597OWmh\ntAQnlSRJkqTGKwj7oRZYJCkOQbhhS5IkSWqCtmyBl16qLbRs3tyw9T161J7Ocs010LbtaYn15z//\nmdtvv50WxEYHXXhavmrqHTlK6KmnnuK2225LcSI1VE20hjc/eJNIcYRISYSNuzbGtS4/J59bet9C\nuDDMleddSXpaeoKTSpIkSVLjEoT9UAsskhSHINywJUmSJDVx0SisWFFbZnnlFdi3L/716ekweHCs\nzDJyJAwcGHuswTGiFBYWsnLlSh4E7m/wVwi2B4EfAAUFBaxYscJTWBqxaDTKotJFh8ss7+14L651\nndp0Olxmubrr1WSkNfbzhSRJkiTp1AVhP9QCiyTFIQg3bEmSJEnNzL59MH9+baHl7bcbtv7MM2H4\n8NoTWrp0iWvZnDlzuPbaa8kGSoGcBgcPto+BzkA5sdc6bNiw1AbSaRGNRln20TIixRGeKX6G1dtW\nx7WufVZ7xvUeR7gwzLXdriUzPTPBSSVJkiQpmIKwH2qBRZLiEIQbtiRJkqRmbvPmuuOGtmxp2Pqe\nPWvLLMOGQc7RqynhcJhJkyZxN/CbUw4dTHcDvyX2Wp955plUx9FpFo1GWVG2InYyS3GEFWUr4lqX\n2yqXMb3HEC4IM7z7cFpmtExwUkmSJEkKjiDsh1pgkaQ4BOGGLUmSJEmH1dTA8uXw4ouxMsv8+VBZ\nGf/6zEwYMqS20NK/P6SlsWnTJrp06UJ1dTXLgQsT9gJSazlwEZCens7GjRvJz89PdSQlUElZCZNK\nJhEpjrDso2VxrTmj5RmM7jWa8QXjGdljJFmZWQlOKUmSJEmpFYT9UAsskhSHINywJUmSJOmY9u6F\nefNqT2dZEd+JE4e1bw/Dh/Ojigr+5dlnGQrMS0jQ4BgKvAr86Ec/4oc//GGq4yhJ1mxbw6SSSUwq\nmcSi0kVxrWmT2Yabe95MuDDMjeffSJsWbRKcUpIkSZKSLwj7oRZYJCkOQbhhS5IkSVLcNm2CoqLY\nCS1FRbBt2wmXRIFzgFLgaeCzCY6Yak8DtwGdO3fm/fffJxQKpTqSkmzdjnVMLplMpCTCGx+8Edea\nrIwsbrrgJsKFYT51wafIaXn0UVySJEmS1NgEYT/UAoskxeFoN+x169Yd9Ybdpo2/iSVJkiQpQGpq\nYOnS2tNZXnsNDhyo92nvAT2AFsDHQMskx0y2/UAOcAB477336NatW4oTKZXe30+zhO8AACAASURB\nVPX+4TLLaxtfI8qJf2TaMr0lN5x/A+HCMKN6jqJtq7ZJSCpJkiRJp27Pnj31HisrK6v3vbEFFkkK\noKMVWI7F26okSZKkQCsvh1deqS20rFwJwDPAp4GBwMJU5kuigcBi4JlnniEcDqc6jgKidHcpU0qm\nECmJMG/DPGqiNSdck5mWyYgeIxhfMJ4xvcfQLqtdEpJKkiRJ0smJ9xRSCyySFEAWWCRJkiQ1WRs3\nwqxZfO/hh/m3Vau4C3g81ZmS5C7g98D3vvc9fvrTn6Y6jgJoy54tTF05lUhxhJfXvUx1tPqEazLS\nMri227WEC8KM7T2Wjm0cPyxJkiQpWCywSFIj5gghSZIkSU3d8OHDmT17Nr8HJqQ6TJL8nliJZfjw\n4RQVFaU6jgJu295tTFs1jUhxhKL3iqiqqTrhmrRQGsO6DiNcEGZcwTjOzj47CUklSZIk6fgcISRJ\njdjRCizJvmFLkiRJUqJEo1Hat2/Pjh07WAz0T3WgJFlMbIxQbm4u27Zti/s30KQdFTuYvno6keII\nL659kcrqyhOuCRFiaJehhAvC3FJwC53P6JyEpJIkSZIUnyDsh1pgkaQ4BOGGLUmSJEmJsn79erp1\n60YLYDfQItWBkmQ/kAMcIHbKZteuXVMbSI3Sx/s/5rnVzxEpjjDj3Rnsq9oX17oh5w4hXBBmfOF4\nzmt7XoJTSpIkSdLxBWE/1AKLJMUhCDdsSZIkSUqUBQsWcNlll9EFWJ/qMEnWBdhI7O9g0KBBqY6j\nRq68spwX1rxApDjC82ueZ++BvXGtu7TzpYwvGE+4MEz33O4JThkM0WiUvXvj+/tpqlq3bu3JT5Ik\nSQqMIOyHZiTtmSRJkiRJkhRIFRUVAGSlOEcqHHrNh/4OpFOR3SKbT/f5NJ/u82n2HtjLi+++SKQk\nwvRV09ldufuY6xZsWsCCTQv47kvfpd/Z/QgXhgkXhunZvmcS0yfX3r17yc7OTnWMlCovL6dNmzap\njiFJkiQFhgUWSZIkSZKkZm7fvtjIk1YpzpEKh16zBRadbq0zWzOuYBzjCsaxr2ofRWuLiJREmLZy\nGrv27zrmuqUfLmXph0v5/svfp2+nvofLLIUdC5OYXpIkSZKSzwKLJEmSJEmSJCVQq4xWjOo1ilG9\nRlFZXcns92YTKY4wddVUtldsP+a65VuWs3zLcn4494cUdCg4XGbp26lv0xo9822gRapDJEkl8HCq\nQ0iSJEnBZIFFkiRJkiSpmWvVKnYOyb4U50iFQ685K6s5DlBSKrRIb8GNF9zIjRfcyOPVjzN3/Vwi\nxRGmrJxC2d6yY64r2VrCg/Me5MF5D3J+u/MJF8TKLP3z+jf+MksLmk+BRZIkSdIxpaU6gCRJkiRJ\nklLrUHmjOQ7ROfSaLbAoFTLTM7m+x/X8btTvKP3HUubcOYd7Bt3D2dlnH3fdu9vf5Wev/YyBEwfS\n/ZHufGfWd3jzgzeJRqNJSi5JkiRJp58FFkmSJEmSpGauU6dOAGwmNt2iudhP7DUDdOzYMZVRJDLS\nMhjWdRiP3vQoH3zzA+Z/cT7fuOwbdM7pfNx163eu5+H/e5jB/z2YLv/ZhW/O/CavbXyNmmhNkpJL\nkiRJ0ukRilrLl6QTKisrO/wD3UO2bNniDzglSZIkNQnRaJT27duzY8cOFgP9Ux0oSRYDA4Hc3Fy2\nbdvW+MewqEmqidawYNMCIsURIsURNuzaENe6vOw8xheMJ1wY5srzriQ9LT3BSRtmz549ZGdnxz64\nj+YzQqgS+Ens3fLyctq0aZPSOJIkSdIhQdgP9QQWSZIkSZKkZi4UCtG/f6y2sjjFWZLp0GsdMGCA\n5RUFVloojcHnDObhEQ+z7hvrWDhhId+94rv0yO1x3HWbyzfz6MJHGfa/w8j/93y++txXeem9l6iq\nqUpSckmSJElqGAsskiRJkiRJYuDAgUDzLLAceu1S0IVCIQbmD+Rnw3/Gmn9Yw9K7lvL9od+nV/te\nx123Zc8Wfrf4d1z/xPWc/fDZ/P2zf8/Md2dSWd2choZJkiRJCrqMVAeQJEmSJElS6g0YMABongWW\nQ69dakxCoRCXnH0Jl5x9CQ9e8yDFZcWxMUMlEd7Z8s4x122r2MZ/L/1v/nvpf3NmqzMZ02sM4cIw\n13e/npYZLZP4CiRJkiSprlA0Go2mOoQkBV0QZr5JkiRJUiK999579OjRgxbAx0BT38beD+QAB4i9\n9m7duqU4kXT6rNy6kknFk4iURHjrw7fiWnNGyzMY1XMU4cIwI3uMJCszK6EZ9+zZQ3Z2duyD+4AW\nCX264KgEfhJ7t7y8nDZt2qQ0jiRJknRIEPZDLbBIUhyCcMOWJEmSpESKRqOcc845lJaW8jTw2VQH\nSrCngduAzp078/777xMKhVIdSUqId7e/e7jMsqh0UVxr2mS24eaeNxMuDHPj+TfSpsXpL1lYYLHA\nIkmSpGAJwn5oWtKeSZIkSZIkSYEVCoWYMGECAI+lOEsyHHqNEyZMsLyiJu38dufz3Su/y8IJC1n3\njXU8fP3DDD5n8HHX7Dmwh7+u+Cu3PnMrHX/RkfF/G8/Ty59m9/7dSUotSZIkqTnyBBZJikMQGoeS\nJEmSlGibNm2iS5cuVFdX8zbQN9WBEmQ5cBGQnp7Oxo0byc/PT3UkKek++PgDJpdMJlIc4dWNrxLl\nxD8mbpnekpHnjyRcEGZUr1Gc2erMk35+T2DxBBZJkiQFSxD2Qz2BRZIkSZIkSUBsnM7YsWMBeDzF\nWRLptwf/HDdunOUVNVvnnHEO9152L/O+OI9N39rEb276Ddd0vYa00LF/ZLy/ej/PrnqWv5v6d3T6\nRSc+9edP8Yelf2B7xfYkJpckSZLUVHkCiyTFIQiNQ0mSJElKhjlz5nDttdeSDZQCOakOdJp9DHQG\nyom91mHDhqU2kBQwW/ZsYerKqUSKI7y87mWqo9UnXJORlsG13a5lfMF4xvYeS6c2nU64xhNYPIFF\nkiRJwRKE/VALLJIUhyDcsCVJkiQpGaLRKIWFhaxcuZIHgftTHeg0exD4AVBQUMCKFSsIhUKpjiQF\n1ra925i2ahqTSiZRtLaIAzUHTrgmLZTG1V2uJlwYZlzvceTl5B318yywWGCRJElSsARhP9QRQpIk\nSZIkSTosFArxwAMPAPCvwDupjXNaLSdWYAG4//77La9IJ9C+dXu+1O9LPH/b82z5zhb+NPZPjO41\nmpbpLY+5piZaw5z1c7jnhXvo/O+dueoPV/HIm4/wwccfJDG5JEmSpMbIE1gkKQ5BaBxKkiRJUrJE\no1HGjBnD9OnTGQD8H5CZ6lCn6AAwGFgCjD77bKYuXUro7LNTnEpqnD7e/zHPr36eSEmEF9a8wL6q\nfXGtu/ycywkXhhlfMJ4OmR08gcUTWCRJkhQgQdgPtcAiSXEIwg1bkiRJkpJp8+bN9OnThx07dvAQ\n8P1UBzpFDwEPALnACiCvfXv47W/h1ltTG0xq5Mory5mxZgaRkgjPrX6OvQf2xrWuf/v+LPmHJbEP\nLLBIkiRJKReE/VBHCEmSJEmSJKmevLw8HnnkEQD+hdj4ncbqbWLjkAAeAfIAtm2DT38aPve52PuS\nTkp2i2xu7XMrfw3/lbLvlDH505O5re9t5LTIOe66JZuXJCmhJEmSpMbCAoskSZIkSZKO6vbbb2fU\nqFEcAD4DNMaaxzbgs8RGCI1u0YLbP/kJf/kLXHghTJ+e9GxSU9M6szXjCsbx1C1PseU7W3j2s89y\n58V3cmarM1MdTZIkSVIjYIFFkiRJkiRJRxUKhfjd735Hfn4+JcCNwO5Uh2qA3cQylwD5+fk8vngx\nofHj63/ihx/C6NHwxS/Crl1JTik1Ta0yWjGq1yj+OPaPfPTtj5hx+wy+3O/LtMtql+pokiRJkgLK\nAoskSZIkSZKOKS8vj1mzZtGuXTsWAqNoHCWW3cDNwEKgffv2FBUVkXfhhfDMM/DnP0Nubv1Ff/wj\n9O0LRUXJDSs1cS3SW3DD+TfwX6P/iw//8UOK7ijiS/2+lOpYkiRJkgLGAoskSZIkSZKOq0+fPsyc\nOZOcnBxeAa4j2OOEtgLXAvOAnJwcZsyYQWFhYexiKASf+xy88w586lP1F7//PowYAXffDeXlSUwt\nNQ+Z6ZkM7z6cR258JNVRJEmSJAWMBRZJkiRJkiSd0KBBg5g9e/bhk1iGAstTHeoo3gauAhYRO3nl\n5ZdfZtCgQfU/MT8fpk+H//kfyMmpf/23v4WLL4Z58xKcWJIkSZIkgQUWSZIkSZIkxWnQoEHMnz+f\n/Px8SoABwEPAgRTngliGB4GBQAmQn5/PvHnzGDhw4LEXhULwxS/GTmMZPrz+9ffeg2HD4FvfgoqK\nhOSWJEmSJEkxFlgkSZIkSZIUt8LCQhYtWsTo0aM5ADwADAbeSWGm5Qcz/IBYkWX06NEsWrSodmzQ\niZx3HsyaBY89Bq1b170WjcJ//Af06wdvvnl6g0uSJEmSpMMssEiSJEmSJKlB8vLymDp1Kk888QS5\nubksAfoTOwHl4yTm+Pjgcw4AlgC5ubk8+eSTTJ06lby8vIZ9sVAIvvY1ePttuPLK+tdXrYIhQ+C+\n+2D//lMPL0mSJEmS6rDAIkmSJEmSpAYLhUJ8/vOfZ8WKFYwaNYoDxE5A6QzcTexUlERZDnzt4HMd\neerKihUruP322wmFQif/xXv0gLlz4Ze/hJYt616rqYGf/hQGDYK33jr555AkSZIkSfVYYJEkSZIk\nSdJJy8vLY9q0aTz11FMUFBRQDvwWuAi4CngaOB3nlew/+LWGHvzajwPlQEFBAU899dTJnbpyLOnp\n8K1vwdKlsbLKJy1fHnv8wQfhwIHT85ySJEmSJDVzFlgkSZIkSZJ0SkKhELfddhsrVqzg5ZdfJhwO\nk56eznzgNuAMYCBwF/B7YDFQeZyvV3nwc35/cM1AIOfg13oVyMjI4NZbb2XOnDmsWLGC22677dRO\nXTmWggJ4/XX48Y8hM7Putaoq+MEPYmOFiotP/3NLkiRJktTMhKLRaDTVISQp6MrKyujUqVOdx7Zs\n2ULHjh1TlEiSJEmSgq20tJSJEycyceJENm3aVO96JpAHZAGtDj62D6gANhMbC/RJnTt3ZsKECUyY\nMIH8/PwEJT+GZcvgzjtjf35Sy5ax01i+9a3Y6S2STmjPnj1kZ2fHPrgPaJHSOMlTCfwk9m55eTlt\n2rRJaRxJkiTpkCDsh1pgkaQ4BOGGLUmSJEmNUTQaZf369SxevJhFixaxePFiFi9ezI4dO467Ljc3\nl4EDBzJgwIDDb127dk3MSSvxqqyMFVV++lOorq5/fcgQ+OMf4YILkh5NamwssFhgkSRJUrAEYT/U\nAoskxSEIN2xJzVNVVRVTp04FYOzYsWRkZKQ4kSRJ0qmLRqNs2LCBsrIyKioqqKioACArK4usrCw6\nduxIly5dUltWOZ6FC2OnsZSU1L+WlQU//zncfTekOb1bOhYLLBZYJEmSFCxB2A91B0SSJCnA5s6d\ny6233gpAUVERw4cPT3EiSZKkUxcKhejatStdu3ZNdZSTM2gQLFkCDzwAv/wlHPn7YRUV8A//AJMn\nwx/+AF26pC6nJEmSJEmNiL8GIkmSFGB/+9vfDr//zDPPpDCJJEmS6mjVCn7xC5g3D3r0qH99zhzo\n2xf+67/qFlwkSZIkSdJRWWCRJEkKqKqqKqZMmXL448mTJ1NVVZXCRJIkSarnyith2TK4557613bv\nhgkT4FOfgtLS5GeTJEmSJKkRscAiSZIUUHPnzmXr1q3Qti20bcvWrVuZO3duqmNJkiTpk9q0gUcf\nhZdegvPOq399xgzo0weefNLTWCRJkiRJOgYLLJIkSQF1eHzQ0KGx3+zFMUKSJEmBdt11sHw5fPnL\n9a/t3Al33AHjx8OWLcnPJilwohbaJEmSpDpC0Sb4r+TS0lJeeumluD63oKCAQYMGJTiRpMaurKyM\nTp061Xlsy5YtdOzYMUWJJDV1VVVV5OXlxU5gefjh2IPf/jYdOnRg8+bNZGRkpDagJEmSju/552Pj\ngzZvrn+tQwd4/PFYmUVqpvbs2UN2dnbsg/uAFimNkzyVwE9i73b+aWduufgWxvUex9AuQ8lI8/s8\nSZIkpU4Q9kOb5L+II5EI3/zmN+P6XI/hlyRJQVRnfNAll8QePGKM0PDhw1MbUJIkScf3qU/BO+/A\nvffCU0/VvbZ1K4TDcNtt8OtfQ7t2qckoKaU27d7Erxf8ml8v+DXtstoxqucoxvYey4geI2id2TrV\n8SRJkqSka5IjhN566y2i0egJ3y6//HKGDh2a6riSJEn11BkflJ4ee3OMkCRJUuPSrh08+SREIrFT\nVz7pz3+GCy+MndYiqVnbXrGd/132v4z76zg6/LwDt/z1Fv607E9sr9ie6miSJElS0jTJAsvq1asB\nCIVCR307dO0zn/lMKmNKkiQdVVVVFVOmTIl9MGxY7YVrrgFg8uTJVFVVJT+YJEmSTs748bBiBdxy\nS/1rmzfDzTfDl78Mu3YlP5ukwKmoqmDKyincOfVOOv2iE8P/NJzfLPgNH3z8QaqjSZIkSQnVJAss\nGzduPFxU+eSpK0caPXp0KuJJkiQd11HHB0Hs/SPGCEmSJKkR6dQpdhLLk0/CmWfWv/4//wN9+8JL\nLyU/m6SUeOCqBxiQN+C4n1MdrWb2utl8fcbXOfc/zuXSiZfy0/k/paSsJEkpJUmSpORpkgWWrVu3\nHvXxQ6UWgA4dOtClS5dkRZIkSYpbvfFBhzhGSJIkqXELheD222Onsdx0U/3r778P118P99wDe/Yk\nP5+kpPruld9l0VcWseH/beBXN/yKYV2HkRY6/o/sF5Yu5L6X76PwsUJ6P9qbf37pn3nzgzepidYk\nKbUkSZKUOE2ywHLgwIFjXotGo4RCIfr06ZPERJIkSfE55vigQxwjJEmS1Pjl58Nzz8F//Rfk5NS/\n/thjcPHF8Oqryc8mKenOa3se9152L3PunMNH3/6IP4z5A6N7jaZVRqvjrlu1bRU/e+1nDP7vwZz7\nH+dyz/P3ULS2iAPVx/75uCRJkhRkTbLA0qZNmxN+TteuXRMfRJIkqYGOOT7oEMcISZIkNQ2hEHz5\ny7B8OVx7bf3ra9fCVVfBt78NFRXJzycpJTq07sAXLvkC0z47ja3f2cqkT0/i8xd9njNbHWX02BFK\nd5fy2KLHGPHkCDo93Ik7ptzBpOJJ7Kn0NCdJkiQ1Hk2ywJKdnX3Cz8k52m+3SJIkpdgxxwcd4hgh\nSZKkpqVLFygqgkcfhdat616LRuGXv4T+/WHBgtTkk5QybVq04ZaCW3hi3BNs+fYWiu4o4u6Bd5Of\nk3/cdTv37eTJt58k/EyYDr/owJi/jOEPS//A1r1bk5RckiRJOjnNtsASz+dIkiQl0wnHBx3iGCFJ\nkqSmJS0N7rkHli2DK66of33lShgyBO6/Hyork59PUsplpmcyvPtwfvOp3/D+N9/nzb9/k+9d8T16\nte913HX7qvbx7Kpn+dKzX+Ksh8/imv+9hl+98Ss27NyQpOSSJElS/JpkgaVDhw5Eo9Hjfk6l3+xL\nkqSAOeH4oEMcIyRJktQ0nX8+vPIK/OIX0LJl3WvV1fDjH8OgQbGii6RmKy2UxqWdL+Wnw3/Kyq+v\npOSeEn5y7U8YlD/ouOtqojXMXT+X//fi/6Prr7oy4PcDeGjeQ7yz5Z0T/jxdkiRJSoYmWWDp2bPn\nCT9nzx5nf0qSpGA54figQxwjJEmS1HSlp8O3vw1LlsDAgfWvv/12rMTy4x+Dp/FJAnp36M0/D/1n\nFkxYwPvffJ9Hb3yU4d2Hk5GWcdx1SzYv4YE5D9D3t33p+WhP/qnon3j9/depidYkKbkkSZJUV7Mt\nsHz00UdJSCJJkhSfuMcHHeIYIUmSpKatsBBefx0efBAyPrEJfeBAbJzQkCFQUpKafJIC6ZwzzuGe\nS++h6I4itnx7C38a+yfG9R5HVkbWcde9u/1dfvH6L7jif66g87935qvPfZWZ786kstqTzCVJkpQ8\nTbLA0qvX8ed+RqNR1q5dm6Q0kiRJJxb3+KBDHCMkSZLU9GVmxooqCxfCRRfVv75wIfTrB7/8ZWzE\nkCQdITcrlzsuvoPJn5nM1n/aytTPTOXOi++kXVa74677sPxDfrf4d9z41I10/EVHbpt0G39b8Td2\n79+dpOSSJElqro5/hmAjNWTIkGNeC4VCRKNR1qxZQ1VVFRmf/A0WSZKkY4hGo+zduzchX/svf/lL\n7J0TjQ865NAYoeef5y9/+QuXX355QnK1bt2aUCiUkK8tSZKkOF1yCSxYAP/6r/Czn0HNEeM99u+P\njRyaMgX++Ec4//yUxZQUXK0zWzOm9xjG9B5DVU0V8zfMZ8rKKUxdOZX3P37/mOs+3v8xT7/zNE+/\n8zQt01syvPtwxvYey+heo+nUplMSX4EkSZKag1A0Go2mOkQi9OvXj2XLlh0urBxy6ONQKMSrr76a\nsM0eSU1LWVkZnTrV/aZ83bp1dOzYsd7ntmnTJlmxJCXZ22+/zcUXX5zYJ3n4YRgwIL7PXbw4tlmR\nQG+//TZ9+/ZN6HNIkiSpARYsgDvvhJUr619r3Rp+/nP42tcgrUkevKwmZM+ePWRnZ8c+uA9okdI4\nyVMJ/CT2bnl5ecp/jhSNRlmyecnhMsuKshVxrUsLpXHFuVcwtvdYxvUeR7fcbglOKkmSpNNpz549\n9R4rKyujW7e6/67bsmXLUfdDE6XJfic7YsSIE37OzJkzk5BEUlPVrVs3srOz671JarqmTZuW2CcY\nOjS+8UGHXHJJ7BSWBEr4a5YkSVLDXHopLFkC3/oWfPKkvL174etfhxEjYOPG1OST1KiEQiEG5A/g\noWsf4p2732H111fzb8P/jcvPOf4vftZEa5i/cT7/OOsf6f5Idy55/BJ+NPdHLPtwGU30d2YlSZKa\nlKPtcX6yvJIKTfYElkWLFnHppZce9QQWiDXLe/TowZo1a1IVUVIjcrQTWI6lid5WJQE7d+7kK1/5\nCs8880zsgUsuge9+F9q2PT1P0KpV/U2IE4lGYd++0/P8u3bFjqRftgyAW2+9lYkTJ9L2dL0+SZIk\nnV7z58MXvgDvvVf/Wk4O/Od/whe/2PB/Y0pJ4AkswTiB5Xg2797MtFXTmLJyCi+ve5mqmqq41nU7\nsxvjeo9jbO+xDDl3COlpcYzJlSRJUlKF4vw+MdknsDTZAgvA4MGDWbBgwXHHCL3wwguMHDkyhSkl\nNQaOEJJ0SDQaZeLEiXzjG99g37590L49fP/70K9fqqOdmqVL4cc/hm3baNWqFb/61a+YMGFC3P+I\nlSRJUoqUl8dK1Y89dvTrN90EEydCfn5yc0knYIEl+AWWI+3ct5MX1rzAlJVTmLFmBnsO1D9y/mg6\ntenE6J6jGdt7LNd1v45WGa0SnFSSJEnxCOoIoSZdYHniiSe48847j1lggVjJ5fXXX09VREmNxNEK\nLMm+YUsKluXLl/P/2bvzuKjq/Y/jr2ETAQEVZiSX3MV917QyzcpMTcYlDVu0fpndbtktu/dWt1va\nclvs3va9TG/uFqNWmmHaprlWpgnu5joDIgqCrPP7Y4ILMsCoMDMM7+fjMY9gvuc753NGOB3m+z7f\n77hx49i5c6fjjtZbb4XbbgP/GnZnWUEBzJ4NH38Mdjvt27dn4cKFdO7c2dOViYiIiMj5SEyEO+6A\nQ4fKttWvD6+/DjffrNlYxGsowFKzAiwlnc0/S+K+RBJ2JrBs1zJSs1Jd6hcWFMbQ1kMxx5q5oc0N\nRARrtk8RERERb+IN46E+HWDJy8ujU6dO7NmzB6DcWVjee+897rjjDk+VKSI1gDecsEXE+5w5c4ap\nU6fywQcfOJ7o0gX+8Q+oKeeGlBR4+mnYtg2AO++8k1deeaVGfoAqIiIiIjiWhPzLX2DWLOfto0fD\nW2/VnOtV8WkKsNTcAEtJBYUF/HDoBxJ2JpCQlMDBUwdd6hfoF8jgloOJaxfHyNiRNAprVM2VioiI\niEhlvGE81KcDLABfffUVQ4YMcToLCzhCLREREWzdurXMdDgiIkW84YQtIt5r/vz5TJ48mczMTAgP\nh7//Hfr183RZFVu3Dp5/Hk6fpl69erzzzjvcfPPNnq5KRERERKrCZ5/BXXfB8eNl26Kj4e23YdQo\n99clUkKpAMs0aleAZabjS18IsJRkt9v5xfpLcZjlV9uvLvUzYKBf037EtYvD3N5M6watq7lSERER\nEXHGG8ZDfT7AAjBu3DgWL15cYYglNjaWdevWERkZ6akyRcSLecMJW0S82549exg3bhxbt251PDFm\njGPQIMjLPoXNzYX33oMlSwDo2bMnCxYsoHVrfUAoIiIi4lNOnID77oP58523T5gAr73mWF5IxANK\nBVhqKV8LsJxrb9peLEkWEpISWHdoHXZcG4roZOxUHGbp3qh78ef4IiIiIlK9vGE8tFYEWE6dOkWf\nPn0qXEoIoHv37qxYsaLMP4qIiDecsEXE++Xk5PD3v/+dl19+2fFE27bwz39C48aeLazIkSMwfTrs\n3g3AX/7yF5577jmCvC1kIyIiIiJVZ8kSuOceSE0t2xYTA++/Dzfc4P66pNZTgMX3AywlWTOtLEte\nhiXZQuK+RHILcl3q1yyiWXGY5YpmVxDgF1DNlYqIiIjUXt4wHlorAiwAu3bt4rLLLuPUqVNA+SGW\nli1bsnjxYrp37+6ROkXEO3nDCVtEao7ly5czceJE0tLSICQEHnwQBg/2bFGJifDvf0N2Ng0bNuSj\njz5i+PDhnq1JRERERNzDaoUpU8Bicd5+552Oa8XwcPfWJbWa3W4nKyvL02V4VEhISK2cXeR0zmlW\n7F5BQlICX+z+gozcDJf6NazbkBvb3UhcbBzXtryWuoF1q7lSERERkdrFG8ZDa02ABeDbb7/lxhtv\nJCPDcUFc3nJCQUFBPPHEE0ybNo3AwECP1Coi3sUbTtgiUrMcPnyY+Ph4UIEtaAAAIABJREFUvvvu\nO8cTQ4c6pnCv6+YP2LKzHVPDr1gBwIABA5g7dy5NmjRxbx0iIiIi4ll2O8yd67gmTU8v296sGcya\nBVdf7f7aRKTWysnP4ev9X5OQlMDS5KXYzthc6hcaGMr1ra8nLjaOYW2GUb+ulkMTERERuVjeMB5a\nqwIsAL/88gs33HADx48fL36u6C0oGWIxGAw0b96cGTNmMG7cOAICNDWhSG3mDSdsEal58vPzmTFj\nBk8//bTjeuPSSx1LCrVs6Z4C9u2DGTPg4EEMBgOPP/44jz/+uK5rRERERGqzI0fg//4PVq503v7n\nP8Nzz0EtWdZERLxHQWEBPx7+kYSkBBKSEth3cp9L/QL8AhjYfCDmWDMj242kcbiXLOMrIiIiUsN4\nw3horQuwABw4cIAxY8awdevWUssHQekQS9H3MTEx3HnnnYwdO5ZOnTp5pGYR8SxvOGGLSM21Zs0a\nJkyYwLFjxyAoCO69F0aMgOqaKtpuh+XL4Y03IDeXmJgY5s6dy6BBg6pnfyIiIiJSs9jt8P77jqUu\nMzPLtrduDR99BJdf7vbSRETA8fn8dtt2EpISsCRZ+On4Ty737du4L3GxcZhjzbSLaleNVYqIiIj4\nFm8YD62VARaAgoICnnnmGZ555hny8/OBsjOxOHuuRYsWXHXVVVxxxRV06dKF2NhYQnVHiojP84YT\ntojUbDabjdtvv52VRXe6XnUVTJsGYWFVu6PMTJg5E775BoDrrr+ej+fM0flKRERERMo6cADuuAPW\nrCnbZjDAQw/BU09BcLDbSxMRKelA+gEsSRYsSRa++/07Cu2FLvVrH9W+OMzS65JepT77FxEREZHS\nvGE81KcDLHfccUel22zbts3pTCzgPMhy7vMARqMRk8mEyWSiXr161KlTh6CgIK+6GDYYDHzwwQee\nLkOkxvKGE7aI1HyFhYX8+9//5pFHHnEEaPv0geefr9qd/O1vsHEj+PvD5MmE3HQTZqORCSYT19Sv\nT6CfX9XuT0RERERqtsJCx8x9f/sbZGeXbW/fHmbPht693V+biIgTKWdSWL5rOQlJCXy19ytyCnJc\n6tckvAkj243EHGtmwKUDCPQPrOZKRURERGoWbxgP9ekAi5+fn0shksregnNfo7ztvSmwUpLdbsdg\nMFBQUODpUkRqLG84YYuI73jvvfeYPHkyNGwIS5ZU7YuPGQMnTjjulh0+vFRTVGAgN0VHM8Fkol94\nuNdeu4iIiIiIB+zeDbffDuvXl23z94dHH4V//MOxJKaIiJfIzM1k5Z6VWJIsfLbrM07lnHKpX/3g\n+gxvOxxzrJkhrYcQEhhSzZWKiIiIeD9vGA+tFbfg2u32Ch/n0x8cQZVzH67sx1MPERER8S6bNm1y\nfNGvX9W/+GWXOf6bnFymKTUvjzePHuXyn36i5YYNPLpvHzvOnKn6GkRERESk5mnTBr77zjFD4Lkh\nlYICx1JCffvCtm2eqU9ExImwoDDGdBjDx6M+xvawjS9v+ZIpPacQExZTYb+TZ0/y323/ZdSiUUS9\nEEXcgjhm/zybtOw0N1UuIiIiIs5oBhYqn4GlMt5+97JmYBG5eN6QOBQR35Cfn09MTAypqakwcyb0\n7Fm1O9i8GR5+mMD69clfvBi7v3+lXbqEhhJvMnGz0Uiz4OCqrUdEREREap4dOxyzsWzZUrYtMBCe\nfBL++lcICHB7aSIirii0F7LxyEYSdiaQkJTA7rTdLvXzN/hzVfOriGsXR1xsHE0jmlZzpSIiIiLe\nwxvGQ2tFgMWHD7FSRcevAIvIxfGGE7aI+IbExESuvfZaiIiATz5xTMdelQoKYNQoOH2axStWcLRT\nJ+ZZrWzIyHCp+5UREUwwmRgTHU3DQK0HLiIiIlJr5eXBv/7lmHklP79se58+MHs2xMa6vzYRkfNg\nt9vZmbqzOMyy5ZiTcF45esb0xBxrxtzeTPuo9l5/M6uIiIjIxfCG8VAFWHycAiwiVcMbTtgi4hsm\nT57Me++9B8OHw0MPVc9OZs6Ezz9n8uTJvPPOOwDszc5mvtXKXJuNpKysSl8iwGDg+gYNmGA0MiIq\nitCqDtqIiIiISM3w009w222wfXvZtuBgeOYZmDq16oPZIiLV5NCpQ1iSLFiSLXxz4BsK7K59bt62\nYVvi2sVhbm+mT+M++Bn8qrlSEREREffyhvFQBVh8nAIsIlXDG07YIlLzVfvyQUX+WEYoKiqKY8eO\nEVBiane73c7PmZnMtVqZb7NxNDe30pcL9fPDHB1NvNHINfXrE+inD+lEREREapWcHJg+HZ5/HgoL\ny7ZfeSXMmgWtWrm/NhGRi3Ai6wSf7foMS7KFL/d8SXZ+tkv9YsJiGNluJOb2ZgY2H0iQf1A1Vyoi\nIiJS/bxhPFQBFh+nAItI1fCGE7aI1HzVvnxQkRLLCCUmJjJ48GDnm9ntfJeezlybjSUpKaQ7mxr+\nHNGBgdwUHU28yUS/8HBNnywiIiJSm/z4I9x+O+zaVbYtNBRefBGmTAFdI4pIDXQm9wyr9q4iISmB\nz3Z9xsmzJ13qF1EngmFth2GONXN96+sJCwqr5kpFREREqoc3jIcqwOLjFGARqRrecMIWkZrvgpYP\n2rEDXn/d8fV990GHDq71c7KMUEVyCgtZmZbGXKuV5SdOcNbZnbXnaB4cTLzRSLzJRMfQUNfqEhER\nEZGaLSsLHnsMXnkFnH3mds018MEH0KyZ+2sTEakieQV5fHvwWxKSErAkWTiSccSlfnX863Btq2sx\nx5oZ0XYE0aH67FBERERqDm8YD60VAZbaTgEWkYvnDSdsEanZznv5oIICmDcPZs92fA2OGVsmToSb\nb6589pYKlhGqzOn8fBJSU5lntZJ48iSVR1mgS2goE0wmxhuNNAsOdnlfIiIiIlJDffut49p0//6y\nbeHh8PLLjnZ9NiciNZzdbmfz0c3FYZadqTtd6udn8OOKZldgjjUTFxtH88jm1VuoiIiIyEXyhvFQ\nnw+wiIMCLCIXxxtO2CJSs53X8kE2Gzz7LPzyCwA333wzAPPnz3e0d+sGjz4KFZ2DXFxGqDLW3FwW\n2mzMs1rZkJHhUp8BERHEm0yMiY6mYWDgBe1XRERERGqAzEx4+GF4+23n7cOHw7vvQkyMe+sSEalG\nyanJxWGWDUc2uNyve6PuxMXGYY4108nYSTffioiIiNfxhvFQnw6wTJo0ydMleJVZs2Z5ugSRGssb\nTtgiUrO5vHzQd9/Biy9CRgZhYWG88cYb3HrrrQDMmTOHe++9lzNnzkC9eo7BgiuvLP+1znMZocrs\nycpivs3GXKuV5OzsSrcPNBi4vkED4o1GboyKIqSyWWNEREREpGZatQruvBMOHy7bVr8+vPkmjBun\n2VhExOccOX2EpclLsSRZWHNgDfmF+S71a1W/VXGY5bIml+Hvp7+XRURExPO8YTzUpwMsIiJVxRtO\n2CJSc7m0fNDZs44P9pcvB6BXr17Mnz+f1q1bl9ps9+7dxMfHs3nzZscTI0bAn/4EzpbtuYhlhCpi\nt9v5KTOTeVYr8202jubmVton1M8Pc3Q08UYj19SvT6BmyhMRERHxLenp8MADjiUwnRkzxnG9q7+j\nRcRHncw+yee7P8eSZGHFnhVk5WW51M8UauLGdjdijjVzdYurqRNQp5orFREREXHOG8ZDFWAREXGB\nN5ywRaTmqnT5oD174Omn4eBBAP7617/y1FNPERQU5PT1cnNzefzxx3nhhRccT1x6KTz+OLRqVXrD\nKlpGqCIFdjvfpqczz2ZjSUoK6fmV320WHRjITdHRxJtM9AsP17TJIiIiIr5k2TKYPBms1rJtRiO8\n8w7Exbm/LhERN8rOy+arfV9hSbKwLHkZJ7JPuNSvXlA9bmhzA+ZYM0PbDCW8Tng1VyoiIiLyP94w\nHqoAi4iIC7zhhC0iNVe5ywfZ7fDpp/Duu5CbS0xMDHPmzOGaa65x6XUTExO59dZbOX78OAQFwd13\ng9lcemr2Kl5GqCI5hYWsOHGCeTYby0+c4GxhYaV9mgcHE280MsFkokNoaLXWJyIiIiJucuIE3Hsv\nLFzovP2WW+DVVx3LC4mI+Lj8wny+//17EnYmYEm28Pup313qF+QfxOAWgzHHmrmx3Y2YwkzVXKmI\niIjUdt4wHqoAi4iIC7zhhC0iNVO5ywelp8Pzz8OPPwIwfPhwPvzww/M+r6SkpDBp0iQ+//xzxxP9\n+sFf/wqRkY7vq2kZocqczs8nITWVeVYriSdPUnmUBbqGhhJvMnGz0UhTZ0siiYiIiEjNsmiRY7nL\nE05mHrjkEvjgA7j+evfXJSLiIXa7nZ+O/1QcZtlu2+5SPwMG+jftjznWjLm9mZb1W1ZzpSIiIlIb\necN4qAIsIiIu8IYTtojUTE6XD9q8Gf71L0hLo06dOsycOZN77733gpfSsdvtvP766zz88MPk5ORA\nw4bwyCOOsIwblhGqzPGcHBalpDDXamVjRoZLfQZERBBvMjE2OpoGgYHVXKGIiIiIVBur1bGk0LJl\nztvvugteegnq1XNvXSIiXmD3id1YkixYki2sP7QeO64N13Q2di4Os3Q1ddXSvCIiIlIlvGE8VAEW\nEREXeMMJW0RqplLLB91/v+Mu0z+mUu/QoQPz58+nS5cuVbKvbdu2MX78eHbu3Ol4Ytw4uPNOeOUV\nty0jVJk9WVnMt9mYa7WSnJ1d6faBBgPXN2hAvNHIjVFRhPj7u6FKEREREalSdjv897+O6+FTp8q2\nN28OH34Igwa5vTQREW9xPPM4S5OWYkm2sHrfavIK81zq1zyyOXHt4jC3N3N508vx99PfzSIiInJh\nvGE8VAEWEREXeMMJW0RqnlLLBz3wAHzxBezaBcCUKVN46aWXCAkJqdJ9ZmVl8dBDD/H22287nmjX\nDoYOhZdfdvsyQhWx2+38lJnJXKuVBTYbR3NzK+0T6ueHOTqaCUYj19SvT4CfnxsqFREREZEqc/iw\nI2C9apXz9vvug+eegyq+RhYRqWlOnT3FF7u/wJJs4YvdX5CZm+lSv6iQKG5seyPm9mauaXkNwQFa\nnldERERc5w3joQqwiIi4wBtO2CJS8xQvHwQQFAS5uTRo0IAPPviAuLi4at13QkICd955JydPnize\nd1FNnlhGqCIFdjvfpqczz2ZjSUoK6fn5lfaJDgzkpuhoJphMXBYerumSRURERGoKux3eew8eeggy\nnQzItmkDH30E/fu7vTQREW90Nv8sq/etJiEpgWXJy0jJSnGpX2hgKEPbDMUca2ZYm2FEBEdUc6Ui\nIiJS03nDeKgCLCIiLvCGE7aI1DzFywf9YeDAgfz3v/+lSZMmbtn/4cOHueWWW/jmm29K1eTpZYQq\nklNYyIoTJ5hrs7E8NZUcFy5VWwQHE280Em8y0SE01A1VioiIiMhF278fJk2CEteqxfz8YNo0mD4d\ngjV7gIhIkYLCAtYdWkdCUgIJSQkcSD/gUr9Av0AGtRiEOdbMyHYjiakXU72Feim73U5WVpany/Co\nkJAQ3QQkIiLl8obxUAVYRERc4A0nbBGpeWJjY0lOTsbf358ZM2bwt7/9DX9/965FXVBQwHPPPccT\nTzxBQUEBsbGx7Ny50601XKjT+fkkpKYy12pl9cmTFLrQp2toKBNMJsYbjTTVYIeIiIiIdysshNde\ng7//Hc6eLdveoQPMmQM9e7q/NhERL2e329lm3UZCUgKWJAu/WH9xue9lTS7DHGvGHGumTcM21Vil\ndzlz5gxhYWGeLsOjMjMzCdXNPyIiUg5vGA9VgEVExAXecMIWkZrn8OHDPPzww0ydOpXLLrvMo7Ws\nX7+eV199lRdffNFtM8BUpeM5OSxMSWGe1crGjIxKtzcAAyIiiDeZGBMdTYPAwOovUkREREQuTHIy\nTJwIP/5Yts3fHx57zPEICnJ7aSIiNcW+k/uwJFmwJFn4/vfvsePa0E+H6A7FYZYeMT18enYOBVgU\nYBERkYp5w3ioAiwiIi7whhO2iIg47MnKYp7NxlyrlV3Z2ZVuH2gwcH2DBkwwmRjRsCEhbp4FR0RE\nRERcUFAAM2fCP/8Jubll27t3h9mzoXNn99cmIlLD2M7YWJa8jISkBBL3JZJb4OS86kTT8KbExcZh\njjVz5aVXEuAXUM2VulepAMs0oLbkInOBmY4vFWAREZGKeMN4qAIsIiIu8IYTtoiIlGa329mamck8\nq5X5NhvHnA10nCPM3x9zVBTxRiPX1K9PgJ+fGyoVEREREZdt3w633QY//VS2LTAQpk+Hhx+GAN8a\nVBURqS4ZORms2LMCS5KFz3d/zumc0y71a1C3ASPajsAca+baVtcSEhhSzZVWv1IBlkepXQGWZx1f\nKsAiIiIV8YbxUAVYRERc4A0nbBERKV+B3c436enMs1pZkpLCqYKCSvtEBwYyzmgk3mjksvBwn54m\nWURERKRGycuDZ5+Fp5+G/Pyy7X37OmZjadfO/bWJiNRgOfk5rDmwBkuShaXJSzmeedylfiGBIQxp\nNQRzrJlhbYfRoG6Daq60eijAogCLiIhUzBvGQxVgERFxgTecsEVExDU5hYV8ceIE82w2lqemkuPC\n5W6L4GDijUbiTSY66IMcEREREe+wZQvcfjvs2FG2LTgY/vUvuP9+0Kx6IiLnrdBeyI+HfyRhZwIJ\nSQnsPbnXpX7+Bn8GNh+IOdZMXGwcjcMbV3OlVUcBFgVYRESkYt4wHqoAi4iIC7zhhC0iIufvVH4+\nCSkpzLPZWH3yJIUu9OkWFka80cjNRiNNgoOrvUYRERERqUBODjzxBLz4IhQ6uZobMABmzYKWLd1f\nm4iIj7Db7exI2YElyUJCUgJbj211uW/vS3pjjjVjbm8mNiq2Gqu8eAqwKMAiIiIV84bxUAVYRERc\n4A0nbBERuTjHcnJYlJLCPKuVjRkZlW5vAAZERBBvMjEmOpoGgYHVX6SIiIiIOLd+vWM2lt27y7aF\nhsLMmXD33aBlIUVELtrB9INYkixYki18e/BbCu2u3A4C7Rq2Kw6z9LqkF34G75ohSwEWBVhERKRi\n3jAeqgDLRbLb7Rw5coSjR49y9OhRjh07Rnp6OmfPni1+AAQHBxMcHEzdunWJiIjgkksuKX40blxz\nptgTqa284YQtIiJVZ3dWFvNtNuZarezKzq50+0CDgaENGhBvMjGiYUNC/P3dUKWIiIiIlJKVBY8+\nCq+84rz9uuvg/fehaVP31iUi4sNSs1JZnrwcS7KFVXtXcTb/rEv9GtdrzMh2IzG3N3PVpVcR6O/5\nm0IUYFGARUREKuYN46EKsJynX3/9lbVr1/LLL7+wbds2duzYURxSuVB169alY8eOdO3alW7dujFw\n4EA6dOhQRRWLSFXwhhO2iIhUPbvdztbMTOZZrcy32TiWm1tpnzB/f8xRUcQbjVxTvz4Bft51R5mI\niIiIz1u7FiZNggMHyraFh8Orr8Jtt2k2FhGRKpaZm8mXe77Ekmzhs12fkX423aV+kcGRDG87HHOs\nmSGthhAa5JkAhQIsCrCIiEjFvGE8VAGWSuTm5rJ06VIsFgtff/01NputuK2q3zpDiT+qGzVqxODB\ngzGbzYwYMYKAgIAq3ZeInB9vOGGLiEj1KrDb+SY9nXlWK0tSUjhVUFBpn+jAQMYZjUwwGukbHl7q\nek5EREREqlFGBkybBu++67x9xAhHW6NG7q1LRKSWyCvIY+2BtcVLDR3NOOpSv+CAYK5rdR3mWDPD\n2w4nKiSqmiv9HwVYFGAREZGKecN4qAIs5di6dSvvvvsuixYt4tSpU4DzwEpVDVJU9NoNGjRg/Pjx\nTJ48mc6dO1fJ/kTk/HjDCVtERNznbEEBK9LSmGu18tmJE+S4cMncIjiYeKORCSYT7fVhkIiIiIh7\nrFwJ//d/cORI2bYGDeDNN2HcOPfXJSJSixTaC9l0ZBOWJAsJSQkkn0h2qZ+fwY8Blw7AHGsmLjaO\nZhHNqrVOBVgUYBERkYp5w3ioAiznWLduHU899RSrVq0CSgdLygurXOxb6MrrFm0zYsQIHnvsMXr3\n7n1R+xSR8+MNJ2wREfGMU/n5JKSkMNdm4+uTJyl0oU+3sDDijUZuNhppEhxc7TWKiIiI1Grp6TB1\nKsyZ47z9ppvgjTcgyn13+YuI1GY7U3aSkJSAJcnCpqObXO7XI6YH5lgz5lgzHaI7VPkspwqwKMAi\nIiIV84bxUAVY/nDw4EHuvfdeVqxYAfwvPHLuBZK73q7y9lv0fFxcHK+++iqNGzd2Sz0itZ03nLBF\nRMTzjuXksCglhblWK5syMird3gAMiIhggsnE6OhoGgQGVn+RIiIiIrXV0qUweTKUWAK8mNHoWFJo\n5Ej31yUiUosdOnWIpclLsSRZWHtgLQX2ypfrBWjdoHVxmKVvk774GfwuuhYFWBRgERGRinnDeGit\nD7DY7XZefPFFZsyYQXZ2ttPgiqffIme1GAwGQkNDeeqpp5g6daqnShOpNbzhhC0iIt5ld1YW8202\n5lqt7MrOrnT7QIOBoQ0aMMFkYnjDhoT4+7uhShEREZFaJjUV/vQnWLzYefttt8Err0BkpHvrEhER\n0rLT+GzXZ1iSLKzcs5Ls/Mr/lgZoFNaIke1GYo41M6jFIIL8Lyx5ogCLAiwiIlIxbxgPrdUBltTU\nVMaPH8+aNWvKBFe89W05tz6DwcCQIUOYO3cu9evX92RpIj7NG07YIiLinex2O1szM5lrtbLAZuNY\nbm6lfcL8/RkVFUW8ycTgyEgC/C7+TjIRERERKWHhQkeQJS2tbFvjxvDBBzBkiPvrEhERALLysli1\ndxWWJAvLdy0nLdvJ+dqJ8DrhDGszDHOsmetbX0+9OvVc3qcCLAqwiIhIxbxhPLTWBlg2b97M6NGj\nOXz4MHa73euDK+cqWa/BYKB58+Z8+umndO3a1cOViVStEydOsGPHDg4fPkx6ejqZmZmEhYXRoEED\nGjZsSLdu3dxy0vSGE7aIiHi/Arudb9LTmWu18klKCqcKKp8a2RgYyE1GIxOMRvqGh1f5Gt8iIiIi\ntdbx444lhZYvd94+eTLMnAn1XB/8FBGRqpdfmM+3B7/FkmQhISmBw6cPu9Svjn8drml5DeZYMyPa\njcAYaqxwewVYFGAREZGKecN4aK0MsHz33XcMHz6cjIwMwPtnXSnPuXVHRESwcuVK+vbt68myRC7K\nb7/9xurVq1m9ejUbNmzAarVW2qdVq1YMHDiQKVOm0LNnz2qpyxtO2CIiUrOcLSjgi7Q05lmtfHbi\nBDkuXGu2DA4m3mQi3mikvT5QEhEREbl4djvMmQP33w+nT5dtb94cZs2CgQPdXZmIiDhht9vZcmwL\nCTsTsCRb+C3lN5f6+Rn8uLzp5ZhjzcTFxtGifosy2yjAogCLiIhUzBvGQ2tdgGXNmjXceOONnDlz\npkqCK1V1h2xV1GC326lXrx5ffPEFl19+eZXUJeIOW7duZeHChSxatIiDBw8WP38+v19Fv0P9+vXj\nP//5D3369KnSGr3hhC0iIjXXqfx8Pk1JYZ7NxtcnT1LoQp9uYWFMMBoZbzTSJDi42msUERER8WmH\nDsGdd8JXXzlvnzoVnn0WQkLcW5eIiFRo14ldxWGWHw//6HK/rqauxWGWLqYuGAwGBVhQgEVERCrm\nDeOhtSrAsmPHDvr160dmZuYFh1fKG1C/0Lexql6v5PGEh4ezYcMG2rVrd0E1ibjTf/7zHx566CHA\n+e+DK78LJfvZ7Xb8/f155JFHeOKJJ/D396+SOr3hhC0iIr7hWE4OC2025tlsbPpjRsCKGICrIiOJ\nNxoZHR1Ng8DA6i9SRERExBfZ7fDOOzBtGpw5U7a9TRuYPRv69XN/bSIiUqmjGUdZmrQUS7KFr/d/\nTX5hvkv9WtZvSVy7OK6/9Hqua3+d40kFWERERMrwhvHQWhNgSUtLo0+fPuzbt++CwivnDpAXCQwM\npGXLlsTGxtKyZUtMJhNGo5GIiAjq1KlDcHAwdrudnJwccnJyOHXqFDabDZvNxt69e0lOTmbv3r3k\n5eVVui9Xa7Tb7bRt25YNGzYQERHhcn8RT3j++ed55JFHyv25d2UWFrvdXmY7u93OLbfcwpw5c6qk\nTm84YYuIiO/ZnZXFPJuNuVYru7OzK90+0GDghgYNiDeZGNGwIXWrKKgpIiIiUqvs2weTJsG335Zt\n8/ODhx+G6dOhTh331yYiIi5JP5vO57s+x5JsYcXuFZzJcxJMPFeJIIcCLCIiImV5w3horQmw3HDD\nDaxcufK8wyvnbh8QEMCAAQMYMmQIl19+Ob169SIo6OKucvLy8ti8eTPr1q3jyy+/5JtvvikOtFxI\nvUWD+cOHD2fp0qUXVZtIdSsZYCn6OS/6uW/fvj0DBw7kqquuom3btphMJqKiojhz5gzHjh3jhx9+\nYNGiRSQmJpbpW+See+7h9ddfv+g6veGELSIivstut7MlI4N5NhsLbDaO5eZW2ifM359RUVHEm0wM\njowkwM/PDZWKiIiI+IjCQnj1VXjkETh7tmx7p06O2Vh69HB/bSIicl6y87JJ3JeIJcnCsl3LSM1K\ndb6hAiwKsIiISIW8YTy0VgRYPv74Y2677bbzCoOcu2337t255557GD16NPXr16++YoFTp07x6aef\n8tZbb7F582an9VSkZIhl3rx5jBs3rlrrFbkY587A0rRpUyZPnkx8fDzNmzd36TV+/PFHbrnlluIZ\nlop+/ov+m5iYyKBBgy6qTm84YYuISO1QYLezNj2deVYrS1JSOF1QUGkfY2Ag44xG4o1G+oaHuzSD\nmYiIiIgAyclw++2wYUPZtoAA+Mc/4NFHQcs4iojUCPmF+fzw+w9YkiwkJCVw8NTB/zUqwKIAi4iI\nVMgbxkN9PsBy4sQJ2rdvz4kTJ4DzD68MGDCAp59+miuuuKJa6yzPjz/+yOOPP87q1atdDrGU3M5o\nNLJz585qD92IXKjnn3+eRx99lM6dO/PYY48xZsyYCxp0O3XqFANc5zTtAAAgAElEQVQGDODXX38t\n9TtgMBjo2LEj27Ztu6g6veGELSIitc/ZggK+SEtjntXKZydOkOPCtWzL4GDiTSbijUba60MpERER\nkcrl58PMmfDPf0KJZb6L9ejhmI2lUyf31yYiIhfMbrfz8/Gfi8Msvx7+VQEWBVhERKQC3jAe6vMB\nlocffpiXXnqp1PIk5Sk56N2kSRPefPNNhg8f7o4yK7Vq1SqmTJnCgQMHXAqylJx94uGHH+a5555z\nV6ki52X+/PkUFhYyYcKEi36tI0eO0LFjRzIyMoqfK/o9+O677+jfv/8Fv7Y3nLBFRKR2S8/LIyE1\nlblWK1+np+PKRXz3sDDijUbGG400CQ6u9hpFREREarRt2xyzsfz8c9m2oCCYMQOmTQN/f/fXJiIi\nF23boW10bdbV8Y0CLCIiImV4w3ioTwdY0tLSuPTSS8nKygIqD3wUbXPLLbfwxhtvUK9ePbfU6aoz\nZ85w//33M2vWrEpDLCXb69Wrx4EDBzQLi9QK//rXv3jsscfKzMLy0EMP8cILL1zw63rDCVtERKTI\nsZwcFtpszLXZ2FwiuFkeA3BVZCTxRiNjoqOprynwRURERJzLzYVnnnE8nC3l2K8ffPQRtG3r9tJE\nROTinDlzhrCwMMc3CrCIiIiU4Q3joX5u25MHvPLKK5w5cwaoOOhRcraSmTNnMmfOHK8LrwCEhoby\nwQcf8Morr+Dn5/inK2+plZLHm5mZyWuvveaWGkU87dZbb3X6/Pfff+/mSkRERKpPTJ06PNC0KZt6\n9iS5Tx+ebN6cNnXrlru9HVibns7kXbswrVtH3K+/sthmI9vZoIyIiIhIbRYUBNOnw48/QocOZdvX\nr4du3eCVV6Cw0P31iYiIiIiI+DCfDrCUnKnEmZIzNPj5+fH+++/z4IMPuqu8C3bffffx0UcfFddf\n2THa7XY+/PBDd5Un4lFNmjShWbNmxd8X/Q4cP37cg1WJiIhUn7YhITzRvDnJffqwqUcP/tKkCTFB\n5d9Glme3s/TECW767TdM69Zx+86drEpLI18DMCIiIiL/06sXbNkCf/0rnPvZW3Y2PPAADB4M+/d7\npj4REREREREf5LMBlu+//57Dhw8DFS8dVHLmlYkTJ7qpuos3YcIEXn311UqPrcihQ4c0A4XUGo0a\nNSrzu2G1Wj1UjYiIiHsYDAZ6hYfz79atOdSvH4lduzKpUSPC/f3L7ZNRUMAcq5Uh27bRZP16pu7e\nzYbTpyu8xhQRERGpNYKD4fnn4fvvoXXrsu1r10KXLvDuu6DrJxERERERkYvmswGWBQsWVNhectmg\nm266iQceeMBNlVWdP/3pT8THxxcfR2Xmz5/vhqpEPK/QyR3kwcHBHqhERETEM/wNBgbXr8+HsbFY\n+/fnk44dGRUVRVAF14zWvDxePXKEy7Zupc2GDfxz/36S/liOU0RERKRW698ffv4Z7ruvbFtmJtx9\nNwwdCn/cTCciIiIiIiIXxmcDLKtXry431FHy+YYNG/LWW2+5q6wq9+abbxIdHQ2Uv5RQUVhn9erV\n7ixNxGP27dtXaokwgJiYGE+WJCIi4jHB/v6Mio7mk06dsPbvzwft2jE4MpKK4s97z57lqYMHab9p\nEz02b+alQ4c4kpPjtppFREREvE5oKLz6KqxeDZdeWrb9yy+hUyeYM0ezsYiIiIiIiFwgnwywpKSk\nkJycDJS/fFDRrCUzZswgMjLSneVVqfDwcGbMmFHhcRbZvXs3qamp7ipNxCO2b99OWlpaqecMBgMt\nWrTwUEUiIiLeIzIwkDtiYkjs1o3D/frx71at6FWvXoV9fsrMZNrevTRdv55BP//M+0ePcjIvz00V\ni4iIiHiZq6+GbdvgrrvKtp06BbffDmYzaCljERERERGR8+aTAZYffvih3LZzZ1+544473FFStZo0\naVKls7AU+f77791RkojHzJkzx+nzQ4cOdXMlIiIi3u2SOnX4S9OmbOrZk+Q+fXji0ktpXbduudvb\ngbXp6dy1axeN1q3DvH07i202sgsK3Fe0iIiIiDcID4d334UvvoBLLinbvnQpdOwIixe7vzYRERER\nEZEazCcDLNu3b6+wvWj2lYkTJxIUFOSmqqpPUFAQEydOLHcWlpIqe29EarK0tDTee+89p0GuESNG\neKAiERGRmqFtSAhPtmjBrj592NijBw80aUKjCq6Tc+12LKmp3PTbb5jWrWPizp2sSksjv7DQjVWL\niIiIeNjQobB9O9xyS9m2Eyfgpptg/HjH1yIiIiIiIlIpnwyw7Nu3z6XtfGlAe+TIkS5t5+p7I1IT\nPfbYY5w6dar4+6Kw2rBhw2jatKkHKxMREakZDAYDvcPD+U/r1hzu14/Erl2Z1KgR4f7+5fbJKChg\nttXKkG3baLJ+PVN372bD6dMuhatFREREarz69eG//4VPP4U/ZkguZeFCx2wsy5e7vzYREREREZEa\nxicDLPv373f6fMlZGUJCQrj88svdVVK1u+yyywgLCwMqXkZIARbxVV9//TXvvvtumZ9/Pz8/ZsyY\n4aGqREREai5/g4HB9evzYWws1v79WdKxI6Oiogiq4FrTmpfHq0eOcNnWrbTZsIF/7t9P0pkzbqxa\nRERExEPMZtixA0aPLttmtcKNN8KkSVDixhsREREREREpLcDTBVSHI0eOlBviKLoTNDY2Fj8/38nv\n+Pn50b59ezZt2uT02A0GA3a7naNHj3qgOvG03Nxcdu3axeHDh8nIyCArK4uQkBDq1atHkyZNaNeu\nHYGBgZ4u84JZrVZuOWe63qLZV+6++266devmocpERER8Q7C/P6OjoxkdHU16Xh6fpqYyz2rl6/R0\nyptnZe/Zszx18CBPHTxIj7Aw4k0mxhuNNK5Tx621i4iIiLhNdDQsXgwLFsC998LJk6XbP/oIEhPh\ngw/guus8UqKIiIiIiIg388kAy5lK7vI0GAy0a9fOTdW4T9u2bdm0aVOF22RmZrqpGvG0DRs2YLFY\nWLFiBTt27KCgoKDcbf39/enYsSM33HADI0eOpG/fvm6s9OLk5eUxduxYjh8/Xia81aJFC1544QUP\nVSYiIuKbIgMDuSMmhjtiYjiak8NCm415NhubMzLK7bM1M5OtmZk8vHcvAyMjiTcaGR0dTf0aHKAV\nERERccpggJtvhoED4a674PPPS7cfPgxDhsCUKfDii/DHjMoiIiIiIiLio0sIVRZgAahfv74bKnEv\nV47JlfemNtqzZw8LFixg2rRpXHXVVYSHh+Pn51fuo2XLlp4uuVwLFiygV69e9OvXj+eff55t27ZR\nWFiIwWAo91FYWMi2bdt47rnn6NevH71792bRokWePhSXTJkyhe+//75UeMVut1OnTh0WLFhASEiI\nB6sTERHxbZfUqcNfmjZlU8+eJPXpwxOXXkrrunXL3d4OrElP565du2i0bh3m7dtZbLORXUHQVkRE\nRKRGiomB5cvhww+hXr2y7W+/DV26wDffuL82ERERERERL1UrZ2ABqOfsD8caLsyFOzays7PdUIl3\nO3ToEJs2bWLz5s1s2rSJLVu2kJ6eXmqbomBHTZKUlMTdd9/Nd99957T+ouWznDl3+y1btjB+/Hje\nfvtt3n77bdq2bVttdV+M6dOnM2vWrOIlskr+95VXXqFXr16eLlFERKTWaBcSwpMtWvBE8+Zszshg\nns3GApuN47m5TrfPtduxpKZiSU2lnr8/o6KiiDeZuDoykgAfWupTREREajGDASZNgsGD4c47HcsH\nlbR/PwwaBFOnwrPPQgVBYBERERERkdrAJwMsgYGB5OTkVLhNbjkfpNdkrhxTQIBP/pOXy2azsWnT\nplKBlZSUlFLblBdWOTfwUbRNRUEQT/n000+ZOHEimZmZTut0JZBz7vYAa9eupVevXsyZM4e4uLhq\nqPzCvfnmm0yfPt1peOXRRx9l8uTJni5RRESkVjIYDPQOD6d3eDgzW7VizcmTzLPZ+CQlhdPlzLSS\nUVDAbKuV2VYrpsBAxhmNTDCZ6F2vXo0LFYuIiIiU0awZrFrlmHVl2jTIyvpfm90OL78MK1bA7NlQ\ng5Z1FhERERERqWo+eWtjaGhopdtkZGS4oRL3yszMrHSb2racynXXXceIESOYMWMGX3zxBampqWWW\nzwFHeOPcR03xxhtvMHbsWM6cOVMc4iiqv+gYnR3fuY9z34+i/pmZmYwePZq33nrLY8d4rrlz53L/\n/fcX11syvDJlyhSeeuopD1coIiIiAP4GA9c0aMCHsbEc79+fJR07MioqiqAKQinWvDxePXKEvlu3\n0mbDBv65fz/JJQd5RERERGoigwHuuQe2bYMrryzbnpwM/fvDo49CJTfmiYiIiIiI+KpaG2A5dOiQ\nGypxr8OHD1e6jSvvjS8537DKudt6u9mzZ3P//fcXf3/usZwbTqnoUTK0UvK1itruu+8+Pv74Yzce\nnXMWi4VJkyaVOtaiY4yPj+eNN97wYHUiIiJSnrr+/oyOjuaTTp2w9u/PB+3acXVkJBVdde09e5an\nDh4kduNGem7ezEuHDnFEAzoiIiJSk7VqBWvWwEsvQZ06pdsKC+Ff/4LeveGnnzxTn4iIiIiIiAf5\nZIAlMjKy3Bk0igbjd+7c6eaqqt/OnTvLDV4UvR+RkZHuLMkrFB27s5lVnAVcSvbxZhs3biy1TI6z\n8ErR1/379+f1119n69atpKWlkZeXR1paGps3b+bVV1+lb9++ZQIvJV/TYDBQWFjIXXfdxZYtW9x4\nlKWtWrWKm2++mYISyw8U1RsXF8fs2bM9VpuIiIi4LjIwkDtiYljdrRuH+/Xj361a0TMsrMI+WzMz\nmbZ3L03Xr+fqn3/m/aNHOZmX56aKRURERKqQvz88+KAjpNK7d9n2X3+FPn1gxgzQ9Y6IiIiIiNQi\nPhlgad68udPnSw7w//7771itVjdVVP1SUlI4cOBAhdsYDIZy35vawNmsI+B8RhZvn4ElIyOD8ePH\nk5+fDzgPrxgMBtq1a8fq1av57rvvuOeee+jatSsRERH4+fkRERFB9+7duffee1m3bh1ffvklrVu3\nLrUsT8nXNhgM5ObmMm7cOJeWq6pq3377LaNGjSI3N7f4uaLjvO6661iwYAF+fj55ShMREfFpl9Sp\nw1+aNmVzr14k9enDPy+9lNZ165a7vR1Yk57OXbt20WjdOszbt7PEZiO7RMBVREREpEZo3x7WrYNn\nnoHAwNJt+fnwxBPQrx/s2OGZ+kRERERERNzMJ0d7W7Ro4dJ2X375ZTVX4j6rVq0qNdNIeVq2bOmu\nkrzGuTOrOAurFD38/Pxo27YtAwYMKNPXmzz++OPFgaXywivXXnstGzduZODAgS695jXXXMPmzZsZ\nNGhQmZ+hkj9b+/fv58knn6yKw3DZhg0bGDFiBNnZ2aVqMhgMDBgwgISEBALP/aBHREREapx2ISFM\nb9GCXX36sLFHD6Y2boypgv/H59rtWFJTGfvbb5jWrWPizp18lZZGfmGhG6v2Pfn5+SxZsoQlS5YU\nB6ZFRESkmgQEwKOPwqZN0LVr2fYtW6BHD3jxRVBgV0REREREfJxPBlhatWrl0nZz586t5krcZ/78\n+S5t17p162quxPuUF1YxGAy0aNGCsWPH8vzzz7N69WpOnjxJUlKS2wMa52Pnzp28+eabZcI1JZcN\n6t+/PxaLhXr16p3Xa4eHh7Ns2TL69OnjdCaaon289tprJCcnX9yBuOinn35i6NChpWZ9KaqtT58+\nLF++nODgYLfUIiIiIu5hMBjoHR7Oy23acLhfP77q0oWJjRpRz9+/3D4ZBQXMtlq5bts2mqxfzwO7\nd7Px9OkasTSkt1m7di1jx45l7NixrF271tPliIiI1A5du8LGjfCPfziWGCopNxf++lcYMAB27/ZM\nfSIi4hPe2PgGZ/PPeroMERGRcvlkgKVPnz4VthcNwq9evZrdPvBH3759+1i5cqVLs4X06tXLDRV5\nl6KwStOmTYmLi+Ppp59m5cqVpKamsnfvXhYsWMC0adMYOHDgeQc+POHJJ58ss3RQyX/7hg0bsnDh\nwgsOdYSEhLBo0SIiIyNLvXbJwZ/8/HxmzJhxQa9/Pnbs2MGQIUM4depU8XNFdXTt2pWVK1cSFhZW\n7XWIiIiI5wT4+XFNgwbMio3F2r8/Szp2xBwVRVAF177WvDxeOXKEvlu30nbjRp7Yv5/krCw3Vl2z\nLVq0qPjrxYsXe7ASERGRWiYoCJ56CtavdywvdK516xxBl9deA804JyIiF+BviX+j9auteXvz2+QW\n5Hq6HBERkTIMdh+8JTE/P5/IyMji5UbOPcSSy6yMGTOGhQsXeqLMKnPrrbcyd+7cUjNwFCkZPggJ\nCeHUqVP4V3Dnqq+ZNWsWJpOJ3r17Ex0d7XK/b775hkGDBpV6T0u+l82bN2ffvn3VUnNF9u/fT9u2\nbSn840OKkrUV/Uy/9dZbTJ48+aL39dprrzF16tRy34OAgAD27NlDs2bNLnpfzuzatYuBAwditVqL\nnyuqo0OHDqxdu5aoqKhq2bczKSkpGI3GUs/ZbLbz+rkSERGRqpOel8cnqanMs1pZk56OK3/U9AwL\nI95kYpzRSOM6daq9xpooPz+fmJgYUlNTAYiKiuLYsWMEBAR4uDIREZFa5uxZePxxeOklcPbx7aBB\n8OGH0Ly520sTEampzpw5878bIh8FgjxajvvkAs/+8XWJ424e2ZwnrnqCW7rcQoCf/uYTERHvGA/1\nyRlYAgIC6Nu3b7nThRcN9NvtdpYsWcKaNWvcXGHV+eGHH5g3b16Fs68UHW/fvn1rVXgFYNKkSdxw\nww0+EzJ4/fXXKfhjvWNns6+0adOGu+66q0r29ac//YmWLVuW2kfJ36mCggLeeOONKtnXufbv38/g\nwYNLhVeKtGnThtWrV7s1vCIiIiLeJzIwkDtjYljdrRuH+/XjpVat6FnJzGxbMjN5aO9emq5fz+Cf\nf+aDY8dIz8tzU8U1w9q1ax3hlYgIiIggNTVVywiJiIh4QnAwvPgifPstOFsufc0a6NwZ3n/fecBF\nRESkEgfSDzBp6SQ6vtmRBdsXUGjX7F4iIuJ5PhlgAbjxxhsr3aYoxHLrrbeSkpLihqqq1smTJ5kw\nYUJxqKCyyXRGjBjhjrKkmhQWFrJgwQKnYaWikNKDDz7o0lJSrvD39+f+++93+nNV9Lszb968KtlX\nSUeOHGHw4MEcPXq01PNFM9+sXr0ak8lU5fsVERGRmuuSOnV4sGlTNvfqxc7evfnnpZfSqoLlFO3A\n1+np/F9yMqZ16xi1fTtLbDay/wgK12bFywddeSVccQWgZYREREQ86oor4Jdf4M9/LtuWmQl33QXD\nhsGRI+6vTUREfMKuE7u4+ZOb6fp2VyxJlkrHmkRERKqTzwZYbrrpJvz8HIdX3oB/kaNHjzJ69Oji\nJYdqgpycHMaMGcPvv//udOkgKH3cfn5+jB8/3p0lShX7+uuvOXbsGOB89pXg4GAmTJhQpfu8/fbb\nCQoKKrWvc393qvKOXJvNxuDBgzl48GCp5+12O40bN2b16tU0adKkyvYnIiIivic2NJTpLVqwu29f\nNvTowdTGjTEFBpa7fa7dTkJqKmN/+41G69YxKSmJr9LSKKiFH9jl5+eTkJDg+GbgQMfSBMCnn35K\nfn6+5woTERGp7UJD4bXXIDERnC3lvGIFdOoEH3+s2VhERKRCn8d/Tv+m/Z22bbdtx7zQTO/3erNi\n9woFWURExCN8NsASExPDVVddVeH/YItmrQDHUjwjRowgKyvLXSVesJycHEaPHs2aNWsqnW2j6BgH\nDhxIo0aN3FShVIfly5c7fb7o33jYsGGEhoZW6T4jIiIYOnRohb9H5dV1vtLT07n22mvZtWtXqeft\ndjtGo5HExERatGhRJfsSERER32cwGOgTHs7LbdpwuF8/VnXpwsRGjahXwZKapwsK+Oj4ca7bto3G\n69bxwO7dbDx9utZ8aFdq+aBu3RwPLSMkIiLiPQYPhl9/hTvvLNuWng633gqjRoGTJZlFREQArmp+\nFd9P+p4VE1bQM6an0222HNvCDfNu4IpZV7Bm/xo3VygiIrWdzwZYAO6///5Ktyka/Lfb7axZs4bL\nL7+cQ4cOuaG6C3Ps2DEGDBjAihUrnM6IUZ6pU6dWd2lSzRITEysMLA0bNqxa9lvR69rtdr766quL\n3kdmZibXXXcdv/76a6ljtNvtNGzYkMTERNq1a3fR+xEREZHaKcDPj2sbNGBWbCzW/v1Z3KED5qgo\ngiq4trLm5fHKkSP03bqVths38sT+/STXgLD7xSi1fJC/v+OhZYRERES8S3g4vP8+fPYZxMSUbbdY\nHLOxLFni/tpERKRGMBgMXN/6ejbdtYmEcQl0MnZyut26Q+u4es7VDJ4zmPWH1ru5ShERqa18OsAy\ncuRIOnfuDDhfRqhIyRDLL7/8Qvfu3Zk7d667ynTZJ598Qvfu3dm8eXNxaKW88ErR8RgMBrp06cLw\n4cPdWapUsePHj7Nz506g/H/za665plr2fe2115Z5ruTsRTt27MB6EXf2nD17luHDh7N58+Yy4ZWI\niAhWrlxJp07OL6BFREREzlddf3/GGI182qkTx/v35/127bg6MpKK5jXck53NjIMHid24kV6bN/Pv\nQ4c4mpPjtprdoczyQUW0jJCIiIh3GjYMtm8HZ8tJp6bC2LEQHw9pae6vTUREagSDwUBcbBy/TPmF\n+aPn07ZhW6fbfb3/a/p/2J9h84ax9dhWN1cpIiK1jcHu4/NhL168mHHjxhUHOipSckYTg8HAkCFD\neOGFFzw+eJ6UlMQjjzzCsmXLio+hsuMpGWBZvHgxo0aNcle5PuGbb75h0KBBpd7nkj8fzZs3Z9++\nfW6rZ9myZcTFxZVbT7NmzThw4EC17b9x48YcP368eH9F+y/6GVu6dOkFh6QmTpzInDlzSr1e0X+H\nDx9Onz59quw4brvtNpo2bXpBfVNSUjAajaWes9lsREdHV0VpIiIi4mFHcnJYaLMxz2plS2Zmpdsb\ngEGRkcSbTIyOiiIyMLD6i6xGiYmJjuByRAR88olj9hWAggIYPRpOneKrr76qttC0iIiIXIRPP4Up\nUyAlpWxbo0bw3nugm9tERDhz5gxhYWGObx4FgjxajvvkAs86vszMzCQ0NNTpZvmF+Xy87WOmfzOd\nA+kHyn25Ue1HMX3g9HJnbhERkZrLG8ZDA9y2Jw8ZO3Ys7777LqtXr6409FE0aF603ZdffsmqVasY\nO3Ysf/7zn7n88svdWDls2LCB119/nQULFlBYWFhq1gtXwyvXXXedwis+YOtW56nmon/nHj16VOv+\ne/XqxfLly8udyeinn3664ADLwYMHS31fcnah5cuXs3z58gt63XMZDAauvPLKCw6wiIiIiG9rXKcO\nDzZtyoNNm5J05gzzbTbmWq3sPXvW6fZ24Ov0dL5OT+dPu3YxrGFDJphMDGvQgOCi8EcNUmb5oCJF\nywh9/jmLFy9WgEVERMQbjRrl+P/1Pfc4wiwlHT8OI0bApEnwn/84wqoiIiJOBPgFMLHbROI7x/Ph\nTx/y9LdPcyTjSJntPt35KQk7E7i58808cdUT5c7cIiIiciF8egmhIu+88w5169YFKl5KCMrOLlFY\nWMiiRYsYMGAAXbp04amnnmL79u3VVutvv/3Gs88+S/fu3enfvz/z5s2joKDgvMIrRUJDQ3nnnXeq\nrVZxn59//rnC9i5dulTr/it7/crqc1VRgKyqHyIiIiLnIzY0lOktWrC7b1829OjB1MaNMVUww0qu\n3U5CaipjduzAtG4dk5KSSExLo6CGTHZZ7vJBRbSMkIiIiPczGmHJEvj4Y4iMLNs+axZ07gyJie6v\nTUREapQg/yCm9JrCnvv38PKQlzGGGstsY8fOvF/n0eGNDtyx9I4KZ2wRERE5H7UiwNKyZUteeuml\nSpcQKmK328vMxmK329m+fTtPPvkkXbt25ZJLLmHMmDHMnDmTL774gr1791JQUOByTQUFBezbt48V\nK1bw0ksvMXbsWBo3bkznzp15/PHH+eWXX8qtw5X6DQYDL7/8Ms2aNXO5JvFeu3btqjCI0aZNm2rd\nf+vWrctts9vt7N69+6L3UfTzXR0PERERkQthMBjoEx7Oy23acLhfP1Z16cLtJhP1Kphh5XRBAR8d\nP86127bRZP16Hti9m02nT3v1NcnatWtJTU113JHdrVvZDbp1g4gIUlNTWbt2rdvrExERERcZDDBh\nAuzYATfcULb90P+zd9/hUdXp+8ffk5CeCUIgSBNCky6BhB6KgKjLIq64CoiirIhYWFZX+CpFmqIg\nCiiCiGIBBRVEFsEfNXRJAgIiVYKUhBYCpJEymd8fQyAhk54pSe7Xdc0lOeeTc57JsofMnHue5zT0\n6gUjRkABRiaKiEj55lnBk5HtR3Li5RNM6zGNSp6VcqwxmU18/tvnNJrTiBGrR3D2Ws6OLSIiIoVR\n5kcIZRo+fDi//fYbn3zySb6jhDJlDY9kfp35fefOnWPFihW3PqmI5Q3uSpUqERAQQMWKFfHw8MDD\nwwOz2UxqaiopKSlcvXqVCxcuEBcXl6OG27/OGlgoSL1ZRweNGDGCZ555Jt/vkdLh5MmTee7PK2BS\nEnI7fubfufzqy489uqSoE4uIiIgURwUXF3pVrkyvypX52GRidWwsiy9c4OfYWFJz+V39XGoqs86e\nZdbZszTw8mJgQACDqlWjkbe3navPW67jgzJpjJCIiEjpUqMG/O9/8NlnMGoUxMdn3//xx/DLL7Bo\nkeXffxERkTz4uPswuvNohgcP54NdHzBz10yupVzLtiYtI42PIz7ms72fMSJkBGM6j7HauUVERCQ/\nBrMzfxSwhKWnp3PfffexefPmAodYsrr9BnhBR/kU9XsKU1/WkE2vXr1Ys2YNLi7losGOTYSFhdG9\ne/dsf0+y/ozr1q3LiRMn7FLL+fPnqV69eo6/s1kDSydPnoNpowEAACAASURBVKR27do2qyEqKor6\n9evnWcP58+epUqWKzWpwtIsXLxIQkP0X7gsXLlC1alUHVSQiIiLOIC4tjeWXLrH4/Hk2X7lCQX6D\nb+Pry6Bq1XgsIIAaHh42rzEv6enpVK9e3dKBZcYMaNPG+sLISHj1VapUqUJMTAwVKpSbz0KIiIiU\nbn/9Bc88Axs35txnMFgCLlOmwI3x6yIiZVliYiK+vr6WL14H3B1ajv2kAm9Z/piQkICPj0+xDheb\nFMuMHTOYvXs2SWlJVtd4u3kzst1IXu34KpW9KhfrfCIiYj/OcD+0XCUcKlSowOrVq+nevfvNm+6F\ncftIkszuLLc/bl9b1O8rqKzf27t3b1auXKnwShkSHR2d75o777zTpjUU5Phnz6o1oIiIiJQ/ldzc\nGFq9OhtbteJ0hw68V78+rTPfEM1FZEIC//nzT2rt3EmP337js5gYrqSl2ani7PIdH5RJY4RERERK\npzp1YN06+PBDuL0LnNkMM2dC69awe7dj6hMRcZTUcvYoQf7e/rzd821OvHyCUe1H4eGa84MZSWlJ\nvL3tbQJnBTIpbFKOji0iIiK5KXcfm/Py8mL16tU8/PDD/PLLL9nCH4VhbX3msQoajCmJ5jdZ6+/b\nty/Lli3D3b28xIbLh9jY2Bzbsv4d8/Pzw83NzaY1eHl54evrS2JiYq7diy5fvmzTGkREREScXU0P\nD/5Tuzb/qV2bw4mJLLlwgSXnz/Pn9etW15uBjVeusPHKFUYcPcrf/P0ZWK0af6tcGU9ro3xsIN/x\nQZk0RkhERKT0cnGBF16A3r1hyBDYvj37/sOHoUMHGDMGxo8HB3eIExGxixmOLqD0q+ZbjZm9Z/JK\nh1eYunUqn+75lLSM7B/OuJZyjQmbJzDr11m81vE1Xmz7Ij7uxesAIyIiZVu5bNPh6enJ6tWreeWV\nV3KMhymO3Lqu5NWNpagyu7ZkHueNN95gxYoVCq+UQdYCLFn5+fnZpY78zpNfnSIiIiLlSWMfHyYF\nBnKsXTt+bd2al2vWJCCP0HGK2czyS5fof/Ag1Xbs4JnDh1l/+TImG058TU9PZ8WKFZYvunXL/xu6\ndwdg+fLlpKen26wuERERsZEGDSAsDKZPzxlSyciAt96Ctm1h3z7H1CciIqVSTb+azP3bXI68eISn\nWz2NiyHnrcfLyZcZs2EM9WbXY9auWVxPt/5BDxERkXLXgSWTi4sL06dPp3379jz77LNcuXKlyN1Y\n7C1rnZUrV2bRokX06dPHwVWJrVy5csXq9sy/p0aj0S51GI1GYmJict0fFxdnlzpEREREShODwUBb\nPz/a+vnxXv36bLxyhSXnz7P80iXiTSar33PNZOLzc+f4/Nw57nR35/GAAAYGBBBsNJZI8D5TgccH\nZbptjJC6sIiIiJRCrq7w6qvw4IPw1FMQEZF9//79EBJi6cQyZgxUKLdvH4tIGeTt7U1CQoKjy3Ao\n79vHyZWgwEqBfPbQZ4zuNJqJYRP59vdvMZP9ftuFxAv8+5d/M33HdMZ1GcfTQU/j7qoPZouIyC3l\n/hXII488QmhoKP/+97/59ttvb3Y2AecLstxe15NPPsmMGTOoUqWKI8sSG0tOTs5zv4+Pfdrt+fr6\nYjabc71pcj2X1vgiIiIiYlHBxYX7KlfmvsqV+dhk4n+xsSy5cIGfY2NJzeW1x7mUFD44dowPjh2j\nvpcX/6xalX8GBNCwBN50/Pbbby1/yG98UKYsY4S+/fZbOnToUOwarPH29i7RoI6IiIhY0bQp7NwJ\n06bBpEmQlmXkQ1oajBsHK1fCF19Y1oqIlAEGg8Fu76eXZ3dXuZsljyzh/zr/HxM2T2DF4RU51pyN\nP8vw1cN5Z/s7TOg6gUEtB1HBpdzfshQREcrpCKHbBQQEsGTJEv7f//t/tGnT5uaIn8wwiyPfPM1a\nQ2ZdHTp0ICwsjEWLFim8Ug6kpaXlus9gMFDBTp+Eye88qampdqlDREREpCzwcnXl0YAAVjRvzrmO\nHVnQqBHd77iDHK88TpywfEL6wQf5s3t33m7enKCAAHx9fYv9WLhwoeUcBRkflOnGGKGFCxeWSA3W\nHr///ntJ/IhFREQkPxUqwNixsHs3tGyZc39EBLRuDTNmQC6d40RERHLToloLlj+2nIhnI3iw4YNW\n10RdiWLIyiE0n9ucb3//lgxzhp2rFBERZ6MASxY9e/Zk9+7drFmzhtDQ0JuBEcgeJLFloMXaeTLr\n6NGjBxs3bmT79u2EhobarAZxLvkFQxRgERERESndKrm58a8aNdjYqhWn2rdnRv36tPb1tezcvt22\nJw8NLdj4oEytWlm6sNjQypUrbXp8ERERuU2rVpYQy+uvg8ttbxenpMB//wtdu8Lx446pT0RESrU2\nNdqweuBqtj+znXsD77W65kjsEQb8MIBW81rx4+EfnW5CgoiI2I/6cVnRu3dvevfuzdGjR/niiy9Y\nvHgxp06durk/vxBLfv+w5heAyfr99erV44knnmDw4MHUr1+/gM9AypKMjLwTx64FafdeAvI7T351\nioiIiEj+anl68krt2rxSuzaHEhP5vFIl5v71F4kbN1oWtGoFo0dDxYolc0JPTyhMQN/V1TJmoKTG\nR169ahldsG8fAI8++igvvfRSyRxbRERECs7DA6ZOhYcegqeegsOHs+/fvh3uuQfefReefz5n0EVE\nRCQfHWt3ZMOTG9gYtZFxm8ax4/SOHGsOXDjAw0sfJrhGMJO7T6Z3/d4aMSsiUs7olUYeGjVqxNSp\nUzl58iSRkZFMmzaNnj174unpebMrStZHptu7qOTWvcXaMby8vOjduzfTp0/nt99+4/jx47z55psK\nr5Rj+XU+SU9Pt0sd+Z3Hzc3NLnWIiIiIlBdNfHx49557uLZuHWM++ABXDw/47Td48UXLTSUvr+I/\nivJGoMFQMuc+fNjyXPbtw9PTk/nz57N06VIqllQ4R0RERAqvbVvYswf+85+cvyckJVn+7e7VC/76\nyzH1iYhIqXdv4L1se3obPw/8mdbVW1tdExEdwQOLHyD081A2n9xs3wJFRMSh1IGlgIKCgggKCuK1\n114jIyODI0eOcODAAQ4cOMDx48eJjo4mOjqamJgYkpKS8jyWj48P1atXp0aNGtSsWZP69evTsmVL\nWrRoQcOGDXHRJxgkC3d39zz32yvAkpaWluf+8hhgSUxMxNvbu0jf6+PjU8LViIiISFnl4uLC2yNH\nMvDee3nsscc4dOgQvPIKDB4MTz5p6YpSmphM8MUX8PXXYDbTpEkTli5dSosWLRxdmYiIiIAlaPre\ne9CvHwwZAidOZN+/cSO0aAHvvw/PPFO0QKyIiJRrBoOBBxo+wP0N7mflkZWM2zSO3y/8nmPd9tPb\n6f5Fd3oE9mBy98l0qN3BAdWKiJQ+iYmJdv2+kqQASxG4uLjQpEkTmjRpwj//+c8c+00mE8nJyVy/\nfp2UlBQAPD09bz7sNfJFyoa8Aixms5nU1FS71JFfgCW/oE1ZFBgYWOTv1QxPERERKawWLVoQHh7O\nyJEjWbhwIXz5paUjy9ixULWqo8srmIsXYcoU2L8fgKFDhzJr1iyFe0VERJxRaKhlzN/o0TB3bvZ9\n8fHwr3/B8uWwYAHUqOGYGkVEpFQzGAz0a9yPvnf3ZdnBZUzYPIGjsUdzrNsQtYENURv4W8O/Man7\npFw7t4iIiIWvr6+jSygytfqwAVdXV3x9falSpQo1a9akZs2a+Pv74+Pjo/CKFFpub+ZnjqNKSEiw\nSx3x8fF5zposzRdCERERkdLCx8eHTz/9lCVLllh+/9q/33LzaOdOR5eWvx07LLXu34/RaGTJkiV8\n+umnCq+IiIg4M19f+OgjWLcOatfOuf/nn6F5c1i8GPRhHRERKSIXgwuPN3+cgyMO8vlDn1P3jrpW\n160+tpo2n7ThkWWPWO3YIiIipZ86sIg4ucqVK+e5/9q1a3apI7/z5FdnWRQVFUXV0vJpZxERESlT\nBgwYQEhICI899hh79uyB11+H/v3h2WfB2TrjpaZaPpn9/fcAtGnThm+//ZYGDRo4uDAREREpsJ49\n4cABGDUKPv88+764OHjiCUs3lo8/hoAAx9SYD7PZzF9//cWFCxduds8GS+dsLy8vAgICqFOnTp4f\n4BIREduq4FKBIa2GMLDFQD7b+xmTt0wmOj46x7rlh5az4tAKBrQYwJtd36Shf0MHVCsi4ryK2gDh\n4sWLxZpAURIMZs2xEMkhLCyM7t27YzAYbo56yXzxajabqVu3Lidun/9rI1u3bqVr16651uLp6UlS\nUpLN6/D09Lw5RihrHWazGYPBwNatW+nYsaPN63CUixcvEnDbGzAXLlxQgEVEREQcKiUlhTFjxvDB\nBx9YNjRqBOPHQ82aji0s09mzMHEiHDsGwKhRo5g2bVq5HD8pIiJSZvzvf5bQ7LlzOfdVrQrz5sE/\n/mH/urIwm81ERUURGRlJREQEkZGR7Nmzh7i4uDy/r1KlSrRp0ybbIzAwUKEWEREHSU5LZn7kfN7e\n9jYXEi9YXeNqcOWpe55iXNdxuXZuERGRgnGG+6EKsIhY4UwBlkOHDtGsWbNstWTWkxkeiYuLw8/P\nz2Y1xMXF4e/vn2cNhw4dolGjRjarwdGc4YItIiIikptVq1YxZMgQLl++DN7e8J//QI8eji1q/XqY\nOROSk/H392fRokX06dPHsTWJiIhIyYiNhZdegm++sb5/4ECYMwfs3LH37NmzLFiwgAULFhAdnfMT\n++5AdcAL8Lyx7TqQDMQAqVaOWaNGDZ599lmGDRtGjRo1bFS5iIjkJSE1gQ93f8i7298l7rr1MKKb\nixvPtn6W10Nfp6afk3yoQ0SklHGG+6EKsIhY4UwBlsTERIxGY57hkcOHD9Owoe1a5B0+fJimTZvm\nWUNCQgJeXl42q8HRnOGCLSIiIpKXM2fOMHDgQLZu3WrZ8MADlhtL9v4dLTnZcsNqzRoAunTpwuLF\ni6lVq5Z96xARERHb+/57eP55uHQp577q1eHTT+HBB21agtlsZtOmTcydO5cff/wRk8kEWMIqLYE2\nWR7Nb2y3JhX4HYi88YgADnAr1OLq6srDDz/MiBEj6Natm7qyiIg4wNXrV/lg1we8t/M94lPjra7x\ncPVgRMgIxnQeQ4CPc461ExFxVs5wP9TFbmcSkSLx8fHB398fINcXxn/99ZdNazh58mSObVlrCQgI\nKNPhFREREZHSoFatWmzcuJFx48ZZfldbs8ZyQ8lOwWvAcq7nn4c1azAYDIwfP54NGzYovCIiIlJW\n9e8Pv/8O/frl3BcTA3/7GwwdCteulfipzWYzS5YsoWnTpvTo0YMffvgBk8lEF+Ab4BoQDswDngVa\nk3t4hRv7Wt9YOw9LgOXajWOFAiaTie+//557772Xpk2bsmTJEvTZUBER+6roWZEJ3SYQNTKKMZ3G\n4O3mnWNNiimF93e9T71Z9Xh9w+tcTr7sgEpFRKSoymQHlujoaNavX1+gtU2aNCEkJMTGFUlp40wd\nWADatm1LREREjnoyu598+OGHPP/88zY7/4cffsjLL7+c6/nbtWvHjh07bHZ+Z+AMiUMRERGRgtq0\naRODBg0iJiYG3N3hhRfg738HW31S2GyGVavgo48gNRUXf39Cpk3j/h49CPHzI8RoJMA9r1tGIiIi\nUqqZzbB4saX725UrOfffdRd89lmJjTiMiYnhueeeY9WqVQD4Ak8Cz2PpsmILB4CPga+AhBvb+vbt\ny7x586hevbqNzioiInk5n3Ceadum8XHEx6SYUqyu8fPw45UOr/Dv9v/Gz8PPzhWKiJQuznA/tILd\nzmRH33//PaNGjSrQ2s2bN9u2GJES0KxZMyIiInLdf+TIEZueP7/jN2vWzKbnFxEREZHC6d69O7/9\n9htPPfUUa9euhfffhz174NVXwde3ZE+WkAAzZkBYmOXrdu3IGDOGX++4g1+zdAq8y8ODYKOREKOR\nED8/go1GKlYoky9JRUREyh+DAZ54Arp3h3/9C9auzb7/1Cno2dMSqn3nHfDxKdJpzGYzX3/9NS+/\n/DJXrlzBDRgPjASMxX0O+WgBzAXeAWYBk4CffvqJrVu3Mnv2bAYNGqSxQiIidlbNtxrv3/8+r3R8\nhalbpvLp3k9Jz0jPtuZayjUmbJ7ArF9nMbrTaF4IeQEf96L9OyQiIrZXJkcI/fbbb5jN5nwfHTp0\nIDQ01NHliuSrdevWee7fu3evTc+/Z8+ePPcHBQXZ9PwiIiIiUngBAQGsXr2a6dOnU6FCBUvAZPLk\nkj/R5MmWY7u6WsYHvfUW3HFHjmWnUlJYfukS/xcVRc99+7hj2zbu/vVXnvjjDz44fZrtV6+SZDKV\nfH0iIiJiPzVrws8/w4IF1kOzH30E99wD27cX+tAxMTE89NBDPPnkk1y5coU2wB5gLLYPr2RlvHHO\nPUAbIC4ujsGDB9OvXz9L9zsREbG7Wn61+LjPxxx98ShDWg3BxZDz9ufl5MuMXj+a+rPrM/vX2VxP\nv+6ASkVEJD9lMsBy9OhRwDLixNojc99jjz3myDJFCiy3AEvmGJ/M0JYtmEwm9u3bl+cnSBRgERER\nEXFOLi4uvPrqq8ydO9ey4c8/S/4kN47Z5PXXuWPgQHAp+MvMo8nJLL5wgVF//knnvXvx27qVe8LD\n+dfhw8w7e5bI+HhSMzJKvmYRERGxHYPB0oXlwAFLR5bb/fknhIZaOsNdL9jNw4MHDxIcHMyqVatw\nA6YAO7HduKCCaH6jhsmAG5ZuLMHBwfzxxx8OrEpEpHwLrBTI5w99zh8j/mBA8wEYyHlf43zieUau\nHUnDOQ2ZHzGfVFOqAyoVEZHclMkAy6lTp27ebL+960pWffv2dUR5IoUWHByMp6cnQLa/25kSEhKI\njIy0ybl3795NUlJStnNmDbN4eXkRHBxsk3OLiIiISMkIDw+3/KFDh5I/ePv2AISeP8/lTp041rYt\nS5o0YVStWnSuWBHvQgRaTMD+xEQWnjvH88eOERwZid/WrbSLjOTFo0dZFBPDwcRETDYKb4uIiEgJ\nqlsX1q+H2bPByyv7PrMZ3nsPWreGzN9TchEeHk6XLl2Ijo6mCRAJvIElNOJobli6sUQCTYDo6Gi6\ndOly63cvERFxiLur3M2SR5awb/g+Hm78sNU1Z66dYfjq4TT+sDFf/PZFjtFDIiLiGGUywHLp0iWr\n27PedK9SpQp16tSxV0kixeLh4UGnTp3y7LKybt06m5x7/fr1VrebzWYMBgOhoaG4uTnDWwYiIiIi\nYk16ejorVqywfNGtW8mf4MYxly9fjslkooG3NwOqVWNmgwZsDQriWmgoB4KD+ezuu3m+Rg2CjUbc\n8ujud7sUs5nd8fF8FB3N00eO0Dw8nDu2baPr3r28evw4354/z5/JyTbrSCgiIiLF4OICL70E+/ZZ\nD9IeOmTZPm4cpOb8BHx4eDg9evTg8uXLhABbgRY2L7rwWmCpLQSIjY2lR48eCrGIiDiBFtVasPyx\n5YQ/G84DDR6wuibqShRDVg6h+dzmLP19KRlmdQEVEXGkMhlgSUtLy3Vf5k33Zs2a2bEikeK77777\nct1nNptZvny5Tc77/fff57m/V69eNjmviIiIiJSMzZs3W0L+FStCq1Ylf4KgIPDz49KlS4SFheXY\n7Wow0NzXl6erV2duo0aEt2lDfGgo4a1bM7dhQ56+806a+/gU6sVpgsnElqtXee/MGQYcOkSDX3+l\nyvbt9N63j7EnTrDy0iXOpqSU3HMUERGR4mnYELZuhXffBXf37PtMJpgyBdq2hf37b24+ePAg999/\nP/Hx8XQFNgD+di26cPyx1NgFiI+P5/7779c4IRERJxFcI5ifB/3Mtqe30b2ulfF2wJHYIzz+w+O0\nmteKlYdX6kMSIiIOUiYDLD4+PvmuqVu3ru0LESlBjzzySI5tmYEsgD179nDs2LESPefBgwc5cOAA\nBoPB6vggg8FA//79S/ScIiIiIlKyli1bZvlDaCi4upb8CVxdLcfOeq58eLi4EOznx/M1a/JZ48Yc\nCAnhWmgoW1u1Ymb9+gwICKDB7aMG8nE5PZ3/FxfH1FOn6Pf779TauZMaO3bw0IEDTDl5kl8uXyY2\njw87iIiIiI25usJ//wt79kCbNjn379sHwcEwdSoxp09z3333cfnyZdoCqwCjvestAiPwPyydWC5f\nvkyvXr2IiYlxcFUiIpKp012d2PjURjY8uYEOtayP2D1w4QD9lvaj7adtWXt8rYIsIiJ2ViYDLL6+\nvvmuMRpLw0sekVvq1atH+/bts4VWbjdnzpwSPeesWbOsbs+soWPHjtx1110les7SJDEx0epDRERE\nxFnYfHxQpixjhNLTizY33MfVlc533MGo2rVZ0rQpx9q143KnTqxr2ZK3AgN5uEoVanl4FOqYMamp\n/BQby7iTJ7l//36qbN9OvV27eOzgQWacOkXYlSvEF7FeERERKaJmzWDnTpg4ESpUyL4vLQ3z2LE8\n17Il0dHRNAF+pnSEVzIZgTVAEyA6Oprhw4fr5qeIiJO5N/Betj+znZ8H/kzr6q2tromIjuCBxQ8Q\n+nkom09utm+BIiJ24Kz3OQ3mMvjbc+PGjW92osj69DK7SBgMBsaMGcPUqVMdVaI4ubCwMLp37261\n84jZbKZu3bqcOHHC7nV9+umnDBs2LNe6fHx8OH78ONWqVSv2uc6ePUvDhg1JudF6Pev5Mv9/9Omn\nn/L0008X+1ylwcWLFwkICCjQ2jJ4WRUREZFSav369ZaRjxUrwg8/2KYDC1ha///jH3DtGuvXr6dH\njx62OQ9wLiWFiPh4wrM8LhWjs4oBaOztTYjRaHn4+XGPjw+etvpZiYiIyC1798KTT8Lvv9/c9DUw\nGHADIoEWDiqtuA4AbYA04KuvvuKJJ55wcEUiImKN2Wzmx8M/Mm7TOA5ePJjruh6BPZhy7xTa12pv\nx+pERGwnt4YJt7tw4QJVq1a1cTW3lMkOLFWqVMn3BnJqaqqdqhEpOYMHD74ZosgaXMmUlJTEmDFj\nSuRcr732GtevX892jqwXsmrVqumFt4iIiIiTK9L4oIMH4fnnLY8//ijY9xRhjFBR3enhQZ8qVZgY\nGMjPLVtyoWNHotq147umTXmtdm2633EHxkKET8zAoaQkvjx/npeOH6f9nj0Yt22jdUQEzx05wqfR\n0exLSCA9I8N2T0pERKS8CgqCiAj4v/8DFxdigJdv7JpA6Q2vgKX28Tf+/PLLL2uUkIiIkzIYDDzc\n5GH2Dd/Hkn8soWHlhlbXbYjaQIeFHeizpA97Y/bauUoRkfKjTAZYGjVqlO8aZ2h/I1JYHh4ejBw5\nMkdAK7Mjitls5ssvv2TlypXFOs+yZcv45ptvsnV6uf1co0aNws3NrVjnKe2ioqJISEjI8RARERFx\nBoUeH2QywVdfwciRcPiw5fHyy/D115Z9+SmBMUJFYTAYqOvlRf+AAN6pX5+NrVpxpXNnDoWE8GXj\nxrxcsyYd/PzwdCn4y990s5m9CQl8EhPDs0eP0ioiAuO2bXTcs4eRx47x9blzHElKIkOd90RERIrP\nwwPeegvz9u085+NDHJbOJaMdXVcJGA20BuLi4jRKSETEybm6uDKgxQD+eOEPPuv7GXUq1rG6bvWx\n1bT+pDX9l/Xn4IXcO7aIiDg7a/c4o6KiHF1W2RwhNG3aNF5//fUcN9+zjj7p168fP/zwgwOrFGfm\nrCOEAJKTk2ncuDGnT5/OtT4/Pz/WrVtHSEhIoY+/a9cu7rvvvpshr9ye/6FDh/Dw8CiJp1QqWBsh\nZO+WWSIiIiKFUajxQRcuwFtvwb59AAwYMACAb775xrK/VSt4/XXI63cfO44RKoq0jAwOJiYSHh9/\ncwTRgcRE0ovxktjP1ZU2maOHbowfusvDo8AtWEVEROSWJUuWMGjQINyxjA5q7uiCSkjWUUKLFy9m\n4MCBDq5IREQKItWUysI9C5mydQrR8dFW1xgwMLDFQCZ0nUBDf+udW0REShNnuB9aJjuw3H333Xnu\nN5vN/Pnnn3aqRqRkeXl5MXPmzJtf3z5KyGAwcO3aNe677z5Wr15dqGOvXLmS+++/P0d4JVNmAGzm\nzJnlKrwiIiIiUhoVeHzQ1q3wr3/Bvn34+vryxRdfsHjxYhYvXsyiRYvw8fGB336DoUMta3NjxzFC\nReHm4kIro5Fna9Rg/t13syc4mGudO7MzKIjZDRrwZLVqNPH2pjDRk2smE5uuXOHd06d59I8/qLtr\nF9V27ODB/fuZEBXF/y5d4rzG14qIiOTLbDYzefJkAMZRdsIrYBklNO7Gn6dMmaIuLCIipYS7qzvP\nhzzP8ZeO837v96nqnfPmrRkziw8spslHTRi6cignr5y0f6EiImVMmezAcv78eapXr261AwtYXhB5\neXlx9epVKlSo4KgyxU62bt3K0aNHC/U9R44cYcaMGbl2OKlSpQpvv/12oWvp1q0b9evXL/T3WfPE\nE0+wZMkSqwGWrAYMGMC4cePyDHYdOnSIiRMnsmzZshzHyzxmZnjliSee4IsvviiR51CaOEPiUERE\nRKSg0tPTqV69OpcuXYIZM6BNm5yLrl+HuXNh1SoAgoOD+eabb2jQoEG2ZceOHWPgwIFERERYNvz9\n7zBiBHh65jxmRAT8979UqVKFmJiYUvl661p6OntudGjJ7NQSdf16sY5Z28OD4CydWoKNRu4o5+M4\nRUREstq0aRP33nsvvkA0YHR0QSXsGlATSMDyXLsVZLyjiIg4lYTUBD7c/SHvbn+XuOtxVte4ubjx\nbOtneaPLG9Qw1rBzhSIixecM90PLZIAFICgoiH379uU5Rmjbtm106NDBgVWKPTz99NNOEbgwGAx8\n/vnnPPnkkyVyvMTERIKDgzly5EiuoZOs24KCgujYsSOBgYH4+voSHx9PVFQU27dvZ9+NVvF5hVcA\nmjZtyu7du/H29i6R51CaOMMFW0RERKSg8h0fdPw4nqWhDQAAIABJREFUTJkCf/0FwGuvvcbkyZNx\nd3e3erzU1FTGjRvHu+++a9lQpw6MGwe3h7OdfIxQUV1KTb0ZZsn8b0wxO6s09PLKFmoJMhrxyatT\njoiISBnWv39/fvjhB0YAHzm6GBsZAXyM5bl+9913ji5HRESK6Or1q7y/631m7pxJfGq81TWeFTwZ\nETyC0Z1HE+ATYHWNiIgzcob7oaXv43AFdN999928KZ+btWvXKsBSjhR2Dn1e2a6SPFZR+fj48Msv\nvxAaGsrp06ez1WU2m28GtTK37d27l71791o9VkECMHXr1uWXX34pl+EVERERkdIm1/FBZjMsXw6f\nfAKpqVSvXp0vv/ySnj175nk8d3d33nnnHXr16sXgwYM599dfli4szz0HDz8Mmb8fZ44RWr2aZcuW\nlZkASxV3d+739+d+f/+b286mpBB+7Vq2UEtcenqBj3ksOZljycl8c+ECYJnv28zH52aHlhCjkZa+\nvri7lMnJvyIiIjedPXuWH3/8EYDnHVyLLT2PJcCyYsUKoqOjqVFDn8wXESmNKnpW5M1ub/JS25eY\nvmM6c3bPISktKdua6+nXmblrJvMj5zOy3Uhe7fgqlbwqOahiEZHSpcy+E/boo4/mui+zo8SSJUvs\nWJE4g8xgR0Ee9jhOcd11111s2rSJBg0a5Bh3lPn17WEWa4+stWYNvWR+X6NGjdi4cSM1a9a06fMR\nERERkeJLT09nxYoVli+ytqe/cgVefx0+/BBSU+nTpw/79u3LN7ySVc+ePdm/fz9/+9vfIDUV5syB\nN96wHDvTjXMuX76c9EIEOkqbmh4e9Ktalan16vHLPfcQ26kTx9u145smTfhPrVp0qVgRn0KETzKA\nA4mJfHbuHCOOHSNkzx6MW7fSNjKSF44e5fOYGH5PSMBUNpuoiohIObZgwQJMJhOhQHNHF2NDLYDO\ngMlkYsGCBY4uR0REisnf259pPadx4uUTjGw3EnfXnB1NE9MSeWvbWwTOCmRy2GSupVxzQKUiIqVL\nmQ2wBAcH07Zt25s34DNlDRScOHGCX375xRHliYPkFeKw1cPW6tWrR3h4OL17984ztFLQn8vt3//A\nAw+we/du6tata/PnIiIiIiLFt3nzZi5dumQZH9SqlWVjRAQMHQq7duHh4cGcOXP46aefitT+s2rV\nqqxatYrZs2fj4eEBO3fCv/4FkZGWBUFB4OfHpUuXCAsLK8Fn5twMBgP1vbx4vFo13mvQgLCgIK6G\nhvJ7SAif3303I2rUoK3RiHshXiOkms2Ex8czNzqaZ44coUVEBBW3bqXL3r28cvw435w/z/GkJJsH\n50VERGzFbDbfDHOMcHAt9pD5HBcsWKB/v0VEyohqvtX44P4POP7ScZ5r8xwVXHIOv7iacpXxm8dT\nb1Y9pm+fnqNji4iI3FJmAywAL7zwQp77zWYzEydOtFM14miF6ZpS0g9bq1ixIj///DOLFi2iWrVq\nOUYJ5VWHtTUGg4Fq1arx5Zdf8r///Q8/Pz+bPwcRERERKRnZxgdlZMC8efDf/8LlyzRt2pTdu3fz\n4osvFitsbTAYeOmll9i9ezdNmjSB2Fh49VXLuTIyLOfOWks55Wow0MzHhyHVq/NRo0b82qYN8aGh\nRLRpw8cNG/LMnXfS0senUC/MEzMy2Hr1KjPPnGHgoUM03L0b/+3buW/fPt44cYIVFy9y5vp13RQT\nEZFSISoqiujoaNyBhx1djB38A3DDMjbp5MmTDq5GRERKUu2KtZnXZx5HXjzCkFZDcDHkfKUXmxzL\na+tfo96sesz+dTbX0687oFIREedWpgMsjz/+OA0bNgTI0YUl8+tff/2Vzz77zCH1if04ovOKvTux\nAAwePJgTJ07w0Ucf0bRp0xznzy1ck3Vds2bNmDt3LlFRUQwaNMgudYuIiIhIycg2PqhBA3jxRVi6\nFIDhw4cTHh5Oy5YtS+x8LVu2JCIiguHDh1s2LF0KL70EN16HlfUxQkXh7uJCG6OR4TVrsrBxY/aF\nhBAfGsq2oCDer1+fgQEBNPTyKtQx49LTWRcXx1unTvGPgwepvWsXNXbupO+BA0w+eZK1sbFcSk21\n0TMSEREpusgbHdxaAh6OLcUuPLA8V7j13EVEpGypV6kenz/0OX+M+IPHmz9udc35xPOMXDuShnMa\n8knkJ6SZ0uxcpYiI8zKYy/jHstatW5dttEqmrDf0K1asyJ49ewgMDHRUmSI2cfz4cdauXcuePXs4\nePAgZ8+eJT4+nqSkJLy9vTEajdSqVYumTZvSunVrHnjgAerXr+/osp3SxYsXCQgIyLbtwoULRWq7\nLyIiImIr69evp1evXpYv3N0hNZXKlSuzcOFC+vXrZ9Nzr1ixgqFDhxIXF3fz3Jk19ejRw6bnLouu\npKURmZBA+LVrhMfHEx4fz+mUlGIds66nJyFG481Ha6MRvwo521uLiIjYy5gxY3jnnXd4Dpjn6GLs\n5DngEyzP/e2333Z0OSIiYmP7z+9nwuYJ/Hj4x1zX1KtUjwldJzCoxSBcXVztWJ2ISHbOcD+0zAdY\nAB577DG+++67PEMsjRs3ZseOHdxxxx2OKlNEnJgzXLBFRERE8jNs2DAWLFhw8+tu3brx1VdfUatW\nLbuc/8yZMzzxxBOEhYVlq2n+/Pl2OX9Zdz41lYj4+GyhlotpRf+kngG429s7W6jlHl9fvFz1hqmI\niNhHz5492bBhA58Azzq6GDv5BEuIpWfPnqxbt87R5YiIiJ1EREcwftN41hxfk+uaxlUa82bXN3m0\n2aNWRxCJiNiaM9wPLRcBlqtXr9K2bVuOHz8OkCPEkvl1UFAQa9asyfE/ioiIM1ywRURERPLTuHFj\njhw5gqurK5MmTWL06NG42jmMYDKZmDZtGhMmTMBkMtG4cWMOHTpk1xrKC7PZzOmUFEuY5UaoJSI+\nnmsmU5GPWcFgoLmPT7ZQSzMfH9xc9OapiIiULLPZjL+/P3FxcUQCrR1dkJ1EAsFApUqViI2Ntdvo\ncRERcQ7bT21n7KaxbD65Odc1Lau1ZFK3SfS9u6/+nRARu3KG+6HlIsACcPToUdq3b8/Vq1eB3EMs\n9erV47vvviMoKMghdYqIc3KGC7aIiIhIfs6cOcN///tfRo4cSfv27R1ay86dO5k9ezbTp0+3WwcY\ngQyzmePJydlCLXsTEkjOyCjyMT1dXGjl65st1NLI2xsXvZEqIiLFcPLkSQIDA3EH4gF3RxdkJymA\nEUgDoqKiqFu3rmMLEhERh9gYtZGxG8ey88zOXNcE1whmSvcp3Ff/PgVZRMQunOF+aLkJsABs2bKF\nvn37Eh8fD+QMsWRuc3d3Z8KECbz66qu4ubk5pFYRcS7OcMEWERERESmK9IwMDiYlZRs/tD8xkfRi\nvB1gdHWlTZZAS4jRSB1PT72pKiIiBbZ7927atWtHHeCko4uxszrAKSw/g5CQEEeXIyIiDmI2m1lz\nfA1jN45l77m9ua7rfFdnpnSfQte6Xe1YnYiUR85wP7RcBVgA9u3bx4MPPsi5c+dubsv8EWQNsRgM\nBurWrcukSZN47LHHqFChgkPqFRHnYO2CHRUVZfWC7ePjY6+yRERERESK5LrJxL7ExGyhlkNJSRTn\nDYIqbm4E3xZqudPDo8RqlrIrPT2dH3/8EYB+/frpPRiRciIsLIxu3brRGChvwwYbA0ew/Ay6dOni\n6HJERMTBzGYzKw6vYPym8Ry8eDDXdT3r9WRy98m0r+XYjqsiUjYkJibm2Hbx4kUCAwOzbVOAxQ5O\nnjxJ//792bNnT7bxQZA9xJL5dfXq1Rk6dCiPPvoozZs3d0jNIuJY1gIsuSmHl1URERERKQPi09PZ\nk5CQLdRy4vr1Yh2zlodHtlBLsNFIJXU6ldusX7+eXr16AbBu3Tp69uzp4IpExB5++eUX7r//floB\nuX/mvGxqBewD1q5dS+/evR1djoiIOAlThomlB5cyYfMEjl8+nuu6Po36MKnbJIKqB9mxOhEpawra\nRVcBFjsxmUxMnTqVqVOnkp6eDuTsxGJtW2BgIF27dqVz5860bNmSxo0bq9uCSDmgAIuIiIiIlEex\naWlExMdnC7VEp6YW65gNvLyyhVpaG434uLqWUMVSGg0bNowFCxbc/PP8+fMdXJGI2IMCLAqwiIiI\ndekZ6Xy17ysmhk3kr6t/5brukSaPMLHbRJoFNLNjdSJSVijA4gDPPPNMvmv2799vtRMLWA+y3L4d\nICAggGrVqlGtWjWMRiMeHh64u7s71exvg8HAwoULHV2GSKmlEUIiIiIiIhbRKSmWQEuWUMvlGx8M\nKQoXoKmPT7ZQS0tfXzxcXEquaHFa6enpVK9enUuXLgFQpUoVYmJiNEZIpBzQCCGNEBIRkbylmlJZ\nuGchU7ZOITo+2uoaAwYGthjIhK4TaOjf0M4VikhpphFCDuDi4lKgEEl+P4Lbj5HbemcKrGRlNpsx\nGAyYTCZHlyJSalkLsNj7gi0iIiIi4ozMZjNR168TnqVTS2RCAgnFeA3qZjBwj6/vzbFDIUYjTX18\ncHXS191SdDfHB1WsaNlw9arGCImUE7t376Zdu3bUAU46uhg7qwOcwvIzCAkJcXQ5IiLi5JLTkpkX\nMY+3t73NxaSLVte4GlwZ0moI47qMo84ddexcoYiUFc5wP7RcBFhK8inmFlJx9h+jAiwixeMMF2wR\nERERkdLCZDZzJCkpW6jlt4QEUorx2tnbxYXWN8IsmaGWBl5eTvthEimYm+OD+vQBsxlWr9YYIZFy\n4uTJkwQGBuIOxAPuji7ITlIAI5CGpbtv3bp1HVuQiIiUGgmpCcz5dQ7Td0wn7nqc1TVuLm4MazOM\n10Nfp4axhp0rFJHSzhnuh5aLAEt+ivsjcPY3y9SBRaT4nOGCLSIiIiJSmqVmZPB7YmK2UMvviYkU\n55XqHRUq3AyzZP63loeH079OF4ts44NmzLBsfPVVjRESKSfMZjP+/v7ExcURCbR2dEF2EgkEA5Uq\nVSI2Nlb/ZomISKFdvX6V93e9z8ydM4lPjbe6xrOCJy+EvMDoTqOp6qP7GCJSMM5wP7RcBFjK8FPM\nV+bzV4BFpHic4YItIiIiIlLWJJlM/JaQkC3UciQ5uVjHrObmRoifX7ZQS1X38vK5/tIl2/igH36w\nbHzkEY0REilHevbsyYYNG/gEeNbRxdjJJ8BzQM/69Vn3+ecQEgKeno4uS0RESqHYpFim75jO7F9n\nk5xu/XWUj5sP/27/b17p8AqVvCrZuUIRKW2c4X6oi93OJCIiIiIiIiKShberKx0rVmRkrVp81aQJ\nh9u140rnzmy45x6m1avHI1WqUMfDo1DHPJ+Wxv9iY5lw8iR/O3CAgB07qLtzJ48ePMi7p06xKS6O\nq+npNnpGUhjLli2z/CE0FFxdLY/OnQH47rvvHFiZiNhLcHAwYOlKUl5kPtfgP/+ELl3gjjuga1cY\nNw7Wr4fERIfWJyIipYe/tz/Tek7jxMgTjGw3EnfXnMH9xLREpm6dSuCsQCaHTeZayjUHVCoiUnDq\nwFLGqQOLSMlwhsShiIiIiEh5dSE11dKh5UaXlvD4eC6kpRXrmHd7ed3s1BJiNNLK1xcvV9cSqljy\nk2N8UJs2lh2RkRojJFKOfPfdd/zzn/8kGAh3dDF2EowlxPId0N/aggoVLNfErl0tAZdOnSwhFxER\nkXycvnqaqVunsnDvQtIzrIf2/b38Gd1pNC+0fQFvN287Vygizs4Z7ocqwFLGKcAiUjKc4YItIiIi\nIiIWZrOZMykplkDLjVBLRHw8V4vxutcVaO7jky3U0tzHBzcXNa+1hRzjgzLDQyaTxgiJlCMnTpyg\nfv36uAPXgML13Cp9UgAjkAacAAIL8k0GA7RqZQmzdOli6Vql96NERCQPJ+JOMClsEl/t/4oMc4bV\nNdV8qvFG6BsMazMMjwpl/V9gESkoZ7gfqgBLGacAi0jJcIYLtoiIiIiI5C7DbObP5ORsoZY9CQkk\nZ1h/w7YgPAwGWvn6Zgu13O3tjYvBUIKVl0/Dhg1jwYIF0KcPvPJK9p0zZsDq1QwbNoz58+c7pkAR\nsQuz2UytWrWIjo7mG+BxRxdkY98AA4Gavr6cbtAAw759UJT3rps2tYRZMru01KhR0qWKiEgZcPjS\nYSaGTeTb37/NdU1tv9qM7TKWp1s9jZurmx2rExFn5Az3Q8tFgKW8U4BFpPic4YItIiIiIiKFk56R\nwaGkpGyhlv2JiaQV460QX1dX2twWaqnr6an3Hwoh1/FBmTRGSKRcefPNN5k4cSKhwBZHF2NjocA2\nLM95woQJcOUK7NgBYWGwZQtEREC69ZEPeapf/1aYpUsXqFvX0rlFREQE2H9+PxM2T+DHwz/muqZe\npXpM6DqBQS0G4eqi0aoi5ZUz3A8t8wEWsVCARaR4nOGCLSIiIiIixZeSkcH+hIRsoZZDSUkUvU8L\n+FeoQLDRmC3UUt1Dbbhzk+v4oEwaIyRSrpw9e5Y6depgMpnYD7RwdEE2cgBoCbi6unLq1ClqWOua\nkpgIO3dawixbtsCuXZCSUviT1a59K8zSpQvcfbcCLSIiQvjZcMZvHs/a42tzXdO4SmMmdptI/6b9\ncTHoPqtIeeMM90PL9EdYnnrqKUeXICIiIiIiIiJOxMPFxRI08fO7uS0hPZ29t4Va/rx+vcDHjE1P\n55e4OH6Ji7u5raa7e7ZQS7DRSGU3teQGWLZsmeUPoaE5wytg2da5M6xezXfffacAi0gZV7NmTfr1\n68cPP/zAPOAjRxdkIx/f+O/DDz9sPbwC4OMDPXtaHgDXr0N4uCXMEhZm6daSmJj/yU6fhsWLLQ+A\ngIBbYZauXaF5c9CHP0VEyp2QmiGsGbSGbae2MXbjWML+Csux5vClwzz2/WO0rNaSyd0n8/dGf1e3\nSRGxqzLdgUVEpKQ4Q+JQRERERETs53JaGpGZgZYboZazqanFOmZ9T89soZbWvr74lrPxOPmOD8qk\nMUIi5cqmTZu499578QWiAaOjCyph14CaQAKW59qtW7eiHSgtDfbuvTVyaOtWuHq18MepVMkSFMwc\nOxQUBLrOioiUK2azmY1RGxm7aSy7zuzKdV1IjRCm3DuFXvV6KcgiUg44w/1QBVhERArAGS7YIiIi\nIiLiWDEpKUTcFmqJTU8v8vFcgCbe3oT4+VmCLUYj9/j64lGGPxWf7/igTBojJFKumM1mmjZtyuHD\nh5kMjHV0QSVsMjAeaNKkCQcPHiy5G4AmExw4cGvk0JYtcPFi4Y/j6wudOt3q0hISAhqFJyJSLpjN\nZn4+9jPjNo1j77m9ua4LvSuUKfdOoUudLnasTkTszRnuhyrAIiJSAM5wwRYREREREediNpv56/r1\nW4GW+Hgi4+OJN5mKfEw3g4GWPj7ZRg819famQhkJtQwbNowFCxZAnz7wyit5L54xA1avZtiwYcyf\nP98+BYqIwyxZsoRBgwbhBuwBmju6oBJyAGgDpAGLFy9m4MCBtjuZ2QyHD98aORQWBtHRhT+Opye0\nb39r5FD79uDtXfL1ioiI08gwZ/Dj4R8Zt2kcf1z8I9d1Pev1ZHL3ybSv1d6O1YmIvTjD/VAFWERE\nCsAZLtgiIiIiIuL8MsxmjiQlZevUsjc+npRivP3i7eJCkK9vtlBLAy8vXEpZC+8Cjw/KpDFCIuWK\n2WzmoYceYtWqVbQBdgJuji6qmNKA9lgCOX379uXHH3+07/gFsxmiom6NHNqyBU6cKPxx3NwgOPjW\nyKFOncDPr+TrFRERhzNlmFh6cCkTNk/g+OXjua7r06gPk7pNIqh6kB2rExFbc4b7oQqwiIgUgDNc\nsEVEREREpHRKy8jg98TEbKGWAwkJFL1PC1R0dbWMHcoSaqnt4eHUc+kLPD4ok8YIiZQ7MTExNGvW\njLi4OKYAbzi6oGKaAowDKlWqxMGDB6levbqjS4IzZ26FWcLCLB1bCsvFBVq1uhVoCQ0Ff/+Sr1VE\nRBwmPSOdL/d9ycSwiZy6eirXdf2b9mdit4k0rdrUjtWJiK04w/1QBVhERArAGS7YIiIiIiJSdiSb\nTPyWkJAt1HIkKYnivEkT4OZGyG2hlgB390Idw2w2k5SUVIwqcjdy5EgWLlxYsPFBmW6MERo6dCiz\nZs2ySV3e3t5OHfwRKW++/vprBg8ejBsQCbRwdEFFtB8IxtKF5auvvuKJJ55wcEW5uHABtm69FWjZ\nv9/SuaWwmje3hFkyH84Q1hERkWJLSU9h4d6FTNkyhZiEGKtrDBgY1HIQE7pOoEHlBnauUERKkjPc\nD1WARUSkAKxdsKOioqxesH18fOxVloiIiIiIlCHX0tOJjI/PFmo5ef16sY55l4dHtlBLG6ORinmM\n4tm/fz/33HNPsc6Zr4KMD8p0Y4yQLe3fv58WLUrrLXKRsifrKKEmwFagtPX2iAVCgUM4aHRQccTF\nwfbtt8YORUZaOmIVVsOGliBLZpeWOnVKvlYREbGb5LRk5kXM4+1tb3Mx6aLVNa4GV4a0GsK4LuOo\nc4eu+yLOLjExMce2ixcvEhgYmG2bAiwiIk7IWoAlN7qsioiIiIhISbmYmnoz0JL533OpqcU6ZiMv\nr2yhlla+vnjfGOczefJkxo8fXxKlWxcaChMm5D8+KJPJBG++Cdu22aykyZMnM3bsWJsdX0QKLyYm\nhuDgYKKjowkBNgBGRxdVQPFADyAcqFGjBhEREc4xOqioEhJgx45bY4d+/RWK8u/QXXfdCrN06WIJ\nuJSWUI+IiNyUkJrAnF/n8O6Od7ly/YrVNW4ubgxrM4zXQ1+nhrGGnSsUkYIqaMBaARYRESekAIuI\niIiIiDgDs9nM2ZSUmx1aMkMtV9LTi3xMV6CZjw8hRiPNzGZ+fuMN1q9YYdnZqhWMHg0VK5bME/D0\nLPwNS7MZitmJ5qarV2HaNNi3D4BHH32UBQsWULGknp+IlJiDBw/SpUsXLl++TFdgFc4fYokH+gBb\nAH9/f7Zs2ULTpk0dXFUJS06G3btvjRzascOyrbDuvPNWmKVrV2jaFFxcSr5eERGxiSvXr/D+zveZ\nuWsmCakJVtd4VvDkhZAXGN1pNFV97HfzW0QKRgEWEZFSTCOERERERETEWZnNZv5MTs4WaomMjycp\nI6OoB6TC6tWYPvwQc0oK+PvDG29AUFDJFm5ve/fC1KkQG4unpyezZs3i2WefLT1jPUTKofDwcHr0\n6EF8fDwhwBqcd5zQJeABIAIwGo1s2LCBkJAQB1dlB6mpsGfPrZFD27bBtWuFP07lypYuXZmBlnvu\ngTxG3omIiHO4lHSJ6dunM2f3HJLTrQcafdx8+Hf7f/NKh1eo5FXJzhWKSG40QsiOoqOjWb9+fYHW\nNmnSpHy8kBCRYrEWYLH3BVtERERERKSgTGYzhxITs4Va9iUkkFqYt4FOnIBJk+CvvyxdUwYPhief\nLPj4H2dhMsEXX8DXX4PZTJMmTVi6dCktWrRwdGUiUgDh4eHcf//9XL58mSbAUsDZ/t+7H3gcOISl\n88ratWsJDg52cFUOYjJZulxljhzasgViYwt/HKMROnW6NXYoOBjc3Uu+XhERKRHnEs7x9ta3mRc5\nj1ST9VFzFT0q8mrHVxnZbiRGD2fvqyZSPjnD/dAyGWCZPXs2o0aNKtDazZs3ExoaauOKRKS0c4YL\ntoiIiIiISHGkZGRwICHhZqglPD6ePxITybNPS3IyfPgh/Pyz5euWLWHsWCgtr4UuXoQpU2D/fgCG\nDh3KrFmz1DlTpJT5448/6NWrF9HR0bgB44HRgJuD60oDpgGTb/y5Ro0arFu3ruyNDSqOjAw4dOjW\nyKEtWyAmpvDH8fKCDh1ujR1q396yTUREnMrpq6eZsmUKn/32GekZ1sec+nv5M6bzGEaEjMDbzdvO\nFYpIXpzhfmiZDLA888wzLFq0KN91HTt2ZNu2bbYvSERKPWe4YIuIiIiIiJS0RJOJvVkCLeHx8RxP\nttL6e8MGeO89S6DFzw/GjLHcSHRmO3bAO+/AtWsYjUbmz5/PgAEDHF2ViBRRTEwMw4cP56effgKg\nNfAF0NxB9RwAhgB7bnzdt29f5s2bR/Xq1R1UUSlhNsOff2YPtJw8WfjjuLlB27a3Rg517Gjp2iIi\nIk7hRNwJJoVN4qv9X5Fhth6Zv9P3Tl7v/DrD2gzDo4KHnSsUEWuc4X5omQywdO7cmR07duQ6w9hs\nNmMwGPjggw946aWX7FydiJRGznDBFhERERERsYe4tDQibwu1nElJgbNnYeJEOHbMsrB/f3j2Wecb\n6ZCaCgsWwPffA9CmTRu+/fZbGjRo4ODCRKS4zGYzixcv5uWXXyYuLg43YBwwEvCzUw3XgFnc6rpS\nqVIl5syZw8CBA3N9P1rycepU9pFDR44U/hiurhAUdGvkUOfOULlyydcqIiKFcvjSYd7c/CZLDy7N\ndU1tv9qM6zKOIa2G4Obq6P5qIuWbM9wPLZMBlrvuuouzZ88Clhc1WRkMhpsBlhMnTlCnTh1HlCgi\npYwzXLBFREREREQc5VxKChHx8ey8dIklU6dy8uuvLTsaNYLx46FmTccWmOm2kM2oUaOYNm0a7s4W\nshGRYomJieG5555j1apVAPgCg4HngRY2OucBYC7wNZBwY5u6rtjIuXOwdeutLi0HDhT+GAYDtGhx\na+RQly5QrVrJ1yoiIgWy//x+xm8az8ojK3NdU69SPd7s+iYDWwzE1cXVjtWJSCZnuB9aJgMs3t7e\npKSkANkDLJkJeLPZTNWqVTl//rxD6hOR0scZLtgiIiIiIiLO4qeffuKpp5/myuXL4O0N//kP9Ojh\n2KLWr4eZMyE5GX9/fxYtWkSfPn0cW5OI2IzZbOabb75hypQpHDp06Ob2UCxBln8AxR1GkAIsxxJc\nyTqIvkmTJowdO5YBAwao64o9XL4M27bdGjm0Zw9kWB9Hkae7774VZunaFWrXLvlaRUQkT+Fnwxm/\neTxrj6/NdU3jKo2Z2G0i/Zv2x8XgYsfqRMQoxYFmAAAgAElEQVQZ7oeWyQCLm5sbGTd+gb09wJLZ\nfaVr165s3LjRUSWKSCnjDBdsERERERERZ3LmzBkGDhzI1q1bLRseeABeegm8vOxbSHIyzJkDa9YA\n0KVLFxYvXkytWrXsW4eIOITZbGbz5s3MnTuXFStWYDKZAHDH0o2lTZZHixvbrUnF0mUlMstjP5Yx\nQQAVKlTg4YcfZsSIEXTt2lXBFUe6dg127Lg1cmj3bkhLy//7ble37q0wS5cuUL++pXOLiIjY3LZT\n2xi7cSxhf4Xluuaeavcwuftk/j97dx4eVX2+f/w9M8lkmUBANgMqsoiArIIKrQEUl7ZfpNpqFSi1\nimCrpdQKrigVUEFQixXFUrQuFZAKIkXtT6hs4kJAkgiouKFClIQ1M1kmkzm/P04mC8kkEzJ77td1\n5crkzJnPeQblZJhzz/OM6jFKv3dFwiQarofGZYClVatWFBYWAv4DLNdffz3PPvtspEoUkRgTDSds\nERERERGRaOPxeJg5cyazZ88234Pp3NkcKdS1a3gK+PJLmDkT9u3DYrEwffp07r//fhISEsJzfBGJ\nKgcOHGDx4sUsXry4csR8dYlABpACJFdsKwGKgTyqwirVderUiYkTJzJx4kQ6duwYosqlSYqK4IMP\nqgIt771nhhsbq2PHmiOHevdWoEVEJIQMw2D9V+uZ/r/pfLD/A7/7nd/pfGZdNItLu16qIItIiEXD\n9dC4DLCcdtpp5OXlAf4DLH/4wx9YsGBBpEoUkRgTDSdsERERERGRaPXOO+8wbtw48/0Yux1uvRWu\nuCJ0F/4MA9asgYULwe2GNm3g3ntJGzyYvg4H/RwO+qel0S8tjb4OBy0VaBFpVgzD4Ouvv2b79u1k\nZWWxfft2tm/fzpEjR+p9XOvWrRk8eDCDBg2q/DrzzDN1sSzWuN2QlWWGWTZuhHffhYoPvDZK27aQ\nmVnVpaVfP7DZgl+viEgzZxgGb+x9g+nvTGfn9zv97pd5RiazL57NsM7DwlidSPMSDddD4zLA0rNn\nT/bu3Qv4D7DcddddPPjgg5EqUURiTDScsEVERERERKLZwYMHuf7663nrrYp59sOHw9SpkJYW3AM5\nnTB/vnlREuCCC+Cuu6BVK78POTM5mX4OB/3S0iq/d09JwaaL0iLNhmEY7Nu3j/z8fIqLiymu6NCR\nkpJCSkoK7dq1o3PnzgqrxCOPB7Kzzd8bmzbB5s1w+HDj12nZEi68sGrk0KBBkJgY/HpFRJopr+Fl\n1Z5V3L/hfnbn7/a736VdL2XWRbO44LQLwlidSPMQDddD4zLAcuGFF7J169bKwIpP9QDLn//8Z+bN\nmxfBKkUklkTDCVtERERERCTaeb1eHnvsMe6++248Hg+cfz7MnRvcg9x5J3z4ofkp+EmT4OqrwWpt\n9DIpVivnOBz0rxZs6ZuWRhtdjBQRiW9eL+zaVTVyaONG+OGHxq+TmgpDh1YFWi64AJKTG36ciIjU\nq9xbzrKPl/GXjX/h88Of+93vih5XMPOimQw4dUAYqxOJb9FwPTQuAyw33ngj//znP+sNsNx88808\n9dRTEaxSRGJJNJywRUREREREYsXixYuZNGmSOdrn3/8O7uJXXw2HDnH9vHm0vvJKcpxOsp1ODnk8\nQVm+k91eo1NLP4eDs1NTSTyJkIyIiMQAw4C9e6vCLBs3wrffNn4du90MsQwbZn796EfB70ImItKM\neLweXsh+gQc2PsA3x77xu9/Vva/mgREP0Ltd7zBWJxKfouF6aFwOAO7Ro0eD+/xwMolqERERERER\nERFp0LZt28wbQ4cGf/EhQ2DtWpL27uXx7t0BczRInttNjtNJjstV+X1PURGeRn52a7/bzf7Dh3mz\n2ngJu8VCb4ej1hiiDnZ7UJ+aiIhEgMUCPXqYXzfdZG7bt69q5NCmTWbApSFutzmeaPNmePBBs1PY\noEFmmGX4cPjxj6F169A+FxGROJJgTeDGgTcyru84lny0hNmbZpPnzKu13793/5tXd7/KuH7jmDF8\nBt1P6R6BakUkWOKyA8uqVav45S9/6bcDC0C/fv3YuXNnpEoUkRgTDYlDERERERGRWODxeMjIyKCg\noADmzzcv3gVTVhZMm0bbtm3Jy8sjIcH/57PcXi+fFBWZXVqqBVu+d7uDUkr7xMQagZb+Dge9HA6S\n1K1FRCS+HDhgBlN8XVp27Wr8GhYL9OtXNXIoMxNOeL9RRET8Ky4r5umsp3l4y8MUFBXUuY/NYuOG\nATdw3/D7OCP9jDBXKBL7ouF6aFwGWH744QcyMjLqDLCA+amclJQUjh07Vu+bHCIiPtFwwhYRERER\nEYkF69at49JLL4X0dHj1VfMT6MFUXg6/+AUcP866desYOXJko5c46HaTWy3QkuN0ssvlojQIb5PZ\ngJ6pqbXGEHVKSqp8b0pERGJcQQFs2VIVaNm5E7zexq/Tq1fVyKHhw6FTp+DXKhFjGAb79u3j4MGD\nFBcXU1JSAkBycjIpKSm0b9+ezp076/WBSCM53U6e+OAJ5m2dx9GSo3XuY7fZmXTuJO7JvIeMFhlh\nrlAkdkXD9dC4DLAADBw4kOzsbL9dWCwWC1u2bGFoKFrZikjciYYTtoiIiIiISCyYNGkSixcvhlGj\n4PbbQ3OQ+fNh7VomTZrEM888E5QlPV4ve4uLyT5hDNG3paVBWb91QkJVp5aKUMs5DgepwQ74iIhI\n+B07Blu3Vo0d2rYNPJ7Gr9O1a81AS5cuZucWiXqGYfDVV1+xfft2srKy2L59Ozt27ODIkSP1Pq51\n69YMGjSoxleXLl0UahEJwNGSozz23mM8/v7jON3OOvdJTkjmD+f9gTt+fAftHLqeI9KQaLgeGrcB\nljvvvJN58+bVG2CZPn06DzzwQASrFJFYEQ0nbBERERERkWgX8vFBPo0YI9RUR8rKanVryXW5KDqZ\nT9qfwAKclZJSq1vLmcnJunAlIhLLXC54/30zzLJpk3m7ovtGo3TqVBVmGTYMevZUoCXK7N+/n8WL\nF7N48WIOHDhQ6347kAGkAMkV20qAYiAPqGuoYceOHZk4cSKTJk2iY8eOIapcJH4UFBXwyLuP8OSH\nT1LsKa5znzR7Gn+64E/c/qPbaZXcKswVisSOaLgeGrcBlqysLM4///x6xwh169aNvXv3RqpEEYkh\n0XDCFhERERERiXYhHx/kE4QxQk06vGHwZXFxjU4tOU4nX57Mxck6tLDZ6Ovr1lLxvY/DQUuNwhYR\niU2lpWZXFt/IoXffNUMujdWuXVWHlmHDoG/f0P2uFb8Mw+Cdd97hqaee4rXXXqO8vBwwwyr9gEHV\nvvpUbK+LG/gY2F7xlQXkUhVqsdlsXHXVVdxyyy2MGDFC4VaRBnzv/J6HNz/Mou2LcJfXFQ+D9KR0\npv5oKlMumEKLpBZhrlAk+kXD9dC4DbAADBkyhA8//LDeLixvvPEGl19+eQSrFJFYEA0nbBERERER\nkWh3UuODdu2CJ580b0+eDL17B/a4EIwRaqpCj4ePXa5awZbjFRe2mqpLcnKNTi390tLolpKCTRe0\nRERii8cDH31UNXJo82Y4erTx67RqBRdeWNWlZeBASEwMfr0CmMGVpUuXMmvWLD755JPK7cOA3wNX\nAUlNPEYpsAp4CthcbXvPnj257777GDNmjIIsIg349ti3zN40m2d3PovHW/c4tzYpbbjrwru45bxb\nSE1MDVkthmFQVFQUsvVjQWpqqs5bMSQarofGdYDlxRdf5Prrr/cbYAEz5LJ169ZIlSgiMaKuE/ZX\nX31V5wnb4XCEqywREREREZGo0ejxQeXl8PLL8Pzz5m0wP0X+29/CmDENf6I8jGOEmsIwDPaVlNQK\ntewtLqbpQ4gg1Wqlzwmhlr4OB6foAqaISOzweiE3t2rk0KZNcPBg49dxOOBHP6oaOXTeeZCc3PDj\npEF5eXncfPPNrFmzBoA04DeYwZU+ITpmLvA08CLgrNg2evRoFi1aREZGRoiOKhI/vjj8BTM3zeSl\nnJfwGnW/8j417VTuzbyXiedOJCmhqRG02lwuF2lpaUFfN5Y4nU5dN4tSrjq6weXn59OlS5ca2xRg\nCaKysjL69OnD559/DuC3C8vixYu58cYbI1WmiMSAugIs/sTxaVVERERERMSvRo0POngQHnoIsrMB\nGDNmDABLly417x8wAO65xxyV4E+Exwg1VVF5OburdWvJrvh+2FP3p0Qb67SkpFrdWs5OSSHBag3K\n+iIiEkKGAZ9+WjVyaONG2L+/8eskJcGQIVUjh4YONUMuEjDDMHjppZf44x//yNGjR0kE7gemAOEa\nPlIILABmAmVA69ateeKJJxg3bpy6GogEYE/+Hv6y8S+8susVv/uc3vJ07h9+P9f3v55EW/CC4Aqw\nKMASzQL9HaIAS5C9/fbbXH755XV2YQHzxUd6ejo7duyolSYSEfFRgEVERERERKR+AY8P2rwZ5s2D\nwkLS0tJYuHAh48ePB+CFF17g1ltvNT8J1qIFTJsGmZn+14rCMUJNYRgGB9zuGp1aclwuPikqwhOE\nf2vaLRbOcThqBVva2+1BqF5ERELGMODrr6tGDm3aBF980fh1EhJg8OCqkUM//rEZPJU6ndh1ZRDw\nT0LXcaUhHwO/BbZX/KxuLCKNk/19NjM2zGD1p6v97tO1dVf+MvwvjO07Fpu1gY6QAagRYJkKNJeX\n3W5gvnlTAZbopQBLBF177bWsWLGi3hBLz5492bp1K61atYpUmSISxTRCSERERERExL+AxgeVlMBT\nT0HFRaDBgwezdOlSunfvXmO3vXv3MnbsWLKysswNV1wBt9xS9wiEGBkj1FSlXi+fFBWR7XTWCLf8\nUFYWlPU7JCbWCLT0czjo5XCQpG4tIiLRa//+qjDLxo2wZ0/j17BaoX//qpFDmZnQtm3wa41Bu3bt\n4rLLLuPAgQMkAjOAO4BID+grA+ZS1Y2lY8eOvP322/Tu3TuyhYnEkA/3f8j979zPf7/4r999erXt\nxQMjHuCXvX+J1XLyr4lrBFjuoXkFWB4ybyrAEr00QiiCjh07xvnnn1/vKCGAgQMH8uabbwbcZUFE\nmo+6AizhPmGLiIiIiIhEqwbHB33+OcyeDfv2AXDHHXcwa9Ys7H46f7jdbu677z4eeeQRc0PnznDf\nfdCtW80dY3yMUFP94HaTe0K3ll0uF+4gvN2XYLHQMzW1VreWjna7xhWIiESjgwdhy5aqQEt2ttm5\npbF6964KtAwbBh07Br/WKLdt2zZ+8pOfcPjwYXoBy4G+kS7qBLnAtcAeoE2bNrz55pucd955Ea5K\nJLZs3reZ6e9MZ9O+TX736d+hP7MumsWoHqNO6jWwAiwKsMSaaLge2iwCLACfffYZQ4YM4dixY4D/\nEEvXrl1ZsWIFAwcOjEidIhKdouGELSIiIiIiEq38jg8yDFi5Ev7+d3C7ycjI4IUXXuCSSy4JaN11\n69Yxfvx4vv/+e7Db4eab4aqroPqbx3E2RqipyrxePisurjWG6LvS0qCsf0pCQmWgpX/F994OB6kn\nhpZERCSyjh6Fd9+tGjuUlWUGPxure/eqMMvw4WaoNI6DjNu2bWPkyJEUFhZyHvAm0CbSRflxCPgp\nsA1o0aIF69evV4hFpJEMw2D9V+uZ/r/pfLD/A7/7nd/pfGZfNJtLul7SqCCLAiwKsMSaaLge2mwC\nLACbNm1i9OjRFBYWArVDLL5tdrudGTNmMHXqVBITI90QTkSiQTScsEVERERERKKR3/FBR4/C3Lnw\n/vsAjBo1imeffbbR/47Kz8/nhhtuYO3ateaGoUPhjjvANwa6mYwRaqrDZWXkVgu0ZDudfOxyUez1\nNnltK3BWSkqtMUSdk5PVrUVEJFo4nfDee1Vjhz74AE4m3Hj66VVhlmHDoEePuAm07Nq1i2HDhnH4\n8GGGA2uAFpEuqgGFwChgE3DKKaewefNmjRMSOQmGYbB271rue+c+dn6/0+9+wzoPY9ZFsxjWeVhA\n6yrAogBLrImG66HNKsACkJ2dzc9+9jPzkzsVfH8E1UMsFouFM888k5kzZ3LttdfqzQ+RZi4aTtgi\nIiIiIiLRqM7xQVlZ8PDDcPgwSUlJzJ8/n1tvvfWkwwyGYfDkk08ybdo0SktLoU0buPtuMyzTzMcI\nNUW5YfBFHd1aviopCcr6LW02+vo6tVSEWvo4HLTQ+2wiIpFXUgIfflg1cmjrVigqavw6HTpUdWgZ\nNgz69AGrNfj1hlheXh6DBw/mwIEDnA+sI/rDKz6FwEjMTiwdO3YkKyuLjIyMCFclEpu8hpeVe1Yy\nY8MMdufv9rvfZd0uY9ZFszi/0/n1rqcAiwIssSYaroc2uwALwNdff83VV1/Njh07aowPgpohFt/P\nGRkZTJgwgWuuuYY+ffpEpGYRiaxoOGGLiIiIiIhEoxrjg/74R1iyBJYvB6B3794sXbqUfv36BeVY\nOTk5XHfddezZs8fccO21MGECLFigMUJBdNzj4eNqgRbf98KTGT1Rh67JybW6tXRLScEaJ5/gl+jn\n8Xh47bXXALjyyiv14UURgLIy2LGjauTQli1w7Fjj12ndGjIzq7q0DBgAUf53zDAMfv7zn7NmzRp6\nAZuJ3rFB/hwCMoE9wOjRo3nttdfUBU2kCcq95Sz7eBkzNszgiyNf+N3vih5XMPOimQw4dUCd9yvA\nogBLrImG66HNMsACUF5ezoMPPsiDDz6Ix+MBandiqWtbly5dGD58OBdeeCH9+vWjZ8+e+ksn0gxE\nwwlbREREREQk2tQYH/SnP8Ebb8BnnwHwu9/9jkcffZTU1NSgHrOoqIjbb7+dRYsWmRvOPht++lP4\n6181RiiEvIbBvpKSGoGWHKeTvcXFBOPNxVSrlT6+bi0VwZa+DgetNd5bQqCycxTw9ttvc8kll0S4\nIpEoVF4OOTlVI4c2bYKCgsavk5YGP/5xVaBl8GBISgp+vU3w0ksvMX78eBKB7UDfSBd0knKBQUAZ\n8OKLL/LrX/86whWJxL6y8jJeyH6BmZtm8s2xb/zud03va3hgxAP0aterxnYFWBRgiTXRcD00rgMs\nN954Y4P75OTk1NmJBeoOspy4HaB9+/Z06NCBDh060KJFC5KSkrDb7VGVbrVYLCxZsiTSZYjErGg4\nYYuIiIiIiESb6heBsdvB7eaUU05hyZIlXHnllSE99qpVq5gwYQJHjhypPLavJo0RCh9XeTm7XS5y\nXC6ync7KcMuRig+MNdXpSUk1OrX0S0ujR0oKCTE4nkKiR2XnqIrb6twkEgDDgD17qkYObdwIeXmN\nXyc5GYYMMcMsw4aZt4Mcdm2MvLw8zjnnHI4cOcJs4N6IVRIcs4H7gNatW7Nr1y6NEhIJklJPKf/Y\n8Q8e3Pwgec66z31Wi5VxfccxY/gMup3SDVCABRRgiTXRcD00rgMsVqs1oBBJQ38EJ67hb/9oCqxU\nZxgGFouF8iC1eRVpjqLhhC0iIiIiIhJtql8EBhgxYgQvvvgip512WliO/9133/HrX/+ajRs31qhJ\nF6MjyzAM9peW1urW8klREcF4dyrJYuGcE0It/RwO2tmbyxUBaYoanaNAnZtETpZhwJdfVgVaNm2C\nr75q/DqJiXDeeWaYZdgws1tLy5bBr7cO1UcHDQLeB2L9TFAGDAF2oFFCIqFQXFbM01lP8/CWhyko\nqrsrlc1i48aBNzJ92HTaJLRRgEUBlpgSDddDm0WAJZhP0d8v+mj/Y1SARaRpouGELSIiIiIiEm16\n9uzJp59+is1mY+bMmdx5553YbLaw1lBeXs6cOXOYMWMG5eXl9OzZkz179oS1BglMSXk5e4qKagRb\nsp1O8svKgrL+qXZ7jUBL/7Q0eqamYle3FqmmsnNUerq54dgxjRESCZZvv605cuiTTxq/htUKAwdW\njRy68EJo0yb4tQIvv/wy48aNw445OqhPSI4SftVHCf3rX/9i7NixEa5IJP4Ulhbytw//xryt8zha\ncrTOfew2OzeecyOLflEx+lQBFokB0XA9tFkEWBrS1D+CaE+vqgOLSNNFwwlbREREREQk2nz33XdM\nmzaNKVOmMGTIkIjW8t577/HEE08wb968sHWAkeD4we2u0aklx+Vit8uFOwhvWyZYLPRKTa01higj\nysZ/S/hUdo4aNcrsILF2rTo3iYTKDz/A5s1VXVpyc82/d43Vp09VoGXYMDj11CaXZhgGvXv35pNP\nPmEWML3JK0aXWcD9QK9evdi1a5d+54mEyNGSozz23mM8/v7jON3O2jtUC3IowCKxIBquhzaLAEsc\nP8UG+Z6/AiwiTRMNJ2wRERERERGR5qLM6+XTE7q15Did7He7g7J+m4SEGp1a+qWl0Ts1lZQwdxCS\n8KoxPmj+fHPj1KkaIyQSLocPw7vvVo0c2rEDTua6RY8eVSOHhg2Dzp0bvcQ777zDxRdfTBpwAGjR\n+Cqi2nGgE+DEfK4jRoyIbEEica6gqIBH3n2EJz98kmJPcdUdCrAowBJjouF6qAIscU4BFpHgiIYT\ntoiIiIiIiEhzd6isjNxqgZZsl4uPXS5KvN4mr20FetTRreWMpCR9cj1O1Bgf9Oqr5sZf/lJjhEQi\npbAQtm6tGjn04YdwMkHFzp2rwizDh0P37tDAefvqq6/m1Vdf5RZg4clVH/VuAZ7GfK4rVqyIdDki\nzUJeYR4Pb3mYZ7Y/g7vcrQALCrDEmmi4HqoAS5xTgEUkOKLhhC0iIiIiIiIitZUbBp8XF9caQ/R1\nSUlQ1k+32eiblkb/asGWPg4HaerWEXNqjA+6/XZz4/z5GiMkEi2Ki+GDD6oCLVu3mtsa69RTa44c\n6t0brNbKu/fv30/nzp0pLy8nF+gTvGcQVXKBfoDNZuObb76hY8eOkS5JpNn45tg3zN40m2c/fJby\n2RXXZxVgkRgQDddDFWCJcwqwiARHNJywRURERERERCRwxzwePvZ1aqkIteS6XDiD9B5Zt+TkGp1a\n+jkcdE1JwapuLVGp1vigQYPMO7Zv1xghkWjldpt/R30jh7ZsMbu2NFabNpCZWdml5S+rV/PArFlk\nApuCXnR0yQS2AH/5y1+YMWNGpMsRaXZyv82l3xn9zB8UYJEYEA3XQxVgiXMKsIgERzScsEVERERE\nRESkabyGwdclJbW6tXxeXEww3kF0WK30PSHU0tfhoFViYhBWl6aoNT7IZjPvKC/XGCGRWOHxQHZ2\nVYeWTZvg8OFGLWEAp1ksHDAMlgLXhaTQ6LEUGAt06tSJb7/9ViPxRMLM5XKRlpZm/qAAi8SAaLge\n2izi5PqFLCIiIiIiIiIiIlaLha4pKXRNSeHKam/CusrL2eVyVXZq8QVbjno8jVrf5fXy/vHjvH/8\neI3tZyQl1erWclZKCgnVRlpIaL3yyivmjczMqvAKmLcvvBDWrmXFihUKsIhEs4QEs3vSoEFw223g\n9cLu3VVhlo0b4fvv613iK+CAYWAHrgpL0ZH1CyARc2zS119/TZcuXSJdkoiISL3iPsDSnLuviIiI\niIiIiIiISMMcNhvnt2zJ+S1bVm4zDIPvSktrBFpynE4+LSqisX2Ovykt5ZvSUv5z6FDltmSrlXNS\nU2sFW9ram8tHc8PH4/GwatUq84cRI2rvcNFFsHYtK1euZOHChRojJBIrrFbo08f8uuUWMAz4/POq\nMMumTbBvX42HbK/43g9ICnvB4ZeE+Vy3A9u3b1eARUREol5cvxK//vrrI12CiIiIiIiIiIiIxCCL\nxcLpycmcnpzM/7VpU7m9pLyc3UVFNUIt2S4XBWVljVq/xOtlu9PJdqezxvYMu71GoKV/Whpnp6Zi\nV7eWk7ZhwwYKCgrM8UEDBtTeYcAASE+noKCADRs2qAuLSKyyWOCss8yvCRPMbfv21Rg5tP2zzwAY\nFMEyw20QVQGWq6++OtLliIiI1CuuAyzPPfdcpEsQERERERERERGROJJss3Fuixac26JF5TbDMPjB\n7a7RrSXb6WRPURFljewQned2k+d2898jRyq3JVos9KqjW8updrvGpwfA7/ggH40REolfnTvD+PHm\nF5CVmQlbtjS7AAtAVlZWROsQEREJRFwHWERERERERERERERCzWKxcGpSEqcmJXHZKadUbnd7vXxa\nVFRrDNEBt7tR65cZhvlYl6vG9raJiZWBlv4V33unppJcV0ijmWpwfJCPxgiJxD3DMNixaxfQ/Dqw\ngNmBxTAMBR9FRCSq6VW4iIiIiIiIiIiISAjYrVb6pqXRNy2NcR06VG4vcLvJrQikZDud5Did7Coq\nosTrbdT6BWVl/O/oUf539GjlNitwdmpqjU4t/dLSOD0pqVletGxwfJCPxgiJxL19+/Zx5MgR7ECf\nSBcTRn2ARODIkSPs27ePM888M8IViYiI+KcAi4iIiIiIiIiIiEgYtbXbuchu56LWrSu3ebxePi8u\nrtWtZV9paaPW9gJ7iorYU1TE8vz8yu3pNpvZqaVaqKWPw4Ejzru1NDg+yEdjhETi3sGDBwHIAOyR\nLSWskjCf8zdAfn6+AiwiIhLVFGARERERERERERERibAEq5WeDgc9HQ5+1b595fajZWV87HKRXS3Y\nkut04mpkt5Zj5eVsPnaMzceOVW6zAN1SUmp1a+mSnIw1Drq1BDw+yEdjhETiWnFxMQApEa4jEnzP\n2fdnICIiEq30ClxEREREREREREQkSrVKTOTCVq24sFWrym1ew+CrkpIanVpyXC4+b+SFSQP4vLiY\nz4uLWVlQULk9zWajr8NRI9jSNy2N9BgLdAQ8PshHY4RE4lpJSQkAyRGuIxJ8z1kBFhERiXax9S8O\nEZEo4nK5SE1NrbXd4XBEoBoRERERERERaS6sFgvdUlLolpLCVe3aVW53ejx87HLVGkN0rLy8Ues7\ny8t57/hx3jt+vMb2zklJNTq19HM4OCs1FVsTurUYhkFRUdFJP74+y5YtM280ND7Ip9oYoWXLljF0\n6NCQ1JWamoolDjrciIiIiEjscrlcAd+YqXsAACAASURBVG0LNwVYREROUpcuXercbhhGmCsRERER\nEREREYG0hASGpKczJD29cpthGHxbWlqrW8unRUU0bggR7CstZV9pKWsOHarclmy10ueEbi390tJo\nk5gY0Jq5ubn079+/kZU0UiDjg3wqxggtWbKEJUuWhKScnJwc+vbtG5K1RcS/5GSzD0lJhOuIBN9z\nTklpjgOURESkLmlpaZEuoU4KsIiIiIiIiIiIiIjEKYvFwhnJyZyRnMyotm0rtxeXl7O7qKhGsCXb\n6eSQx9Oo9Uu8XrIKC8kqLKyxvaPdXiPQ0t/h4OzUVBKt1hr7rV69+uSfXCAyMwMbH+QzYIDZhWXL\nlpCVtHr1agVYRCLAF95ojkN0fM9ZARYREYl2CrCIiJykr776inbV2vSKiIiIiIiIiMSKFJuNQS1a\nMKhFi8pthmHwvdtdI9CS43Kxp6gITyM7zh5wuzlw+DBvHT5cuS3RYqF3amqNYMuvJk0iNzeXFStW\nmDsNGAB33gnVusg0SXIyNGZcj80GM2dCSZB6NBw7BnPmQHY2ANdccw2TJ08Oztoi0ijt27cHIA9w\nA/aIVhM+pZjPGdD72SIiUsnpdNbalp+f73cCRbhYDM26EBFpUH5+fuU/cHwOHjyoF/wiIiIiIiIi\nEvfcXi+fnNCtJcflIs/tDsr6bRMSaPvf/7J33jzKS0uhTRu4914YODAo60fMRx/Bgw/CoUMkJyez\nYMECJk6ciKUxgRoRCRrDMGjTpg1HjhxhO3BupAsKk+3AYKB169YcOnRI5yCRMHK5XFVjWu6h+STn\n3MBD5k2n04nD4YhoORK4aLgeqg4sIiIiIiIiIiIiIuKX3Wo1u6b4LsBUyHe7yXW5Kju15Did7HK5\nKG3kZyYLPB4KRo6ELl3M7if79sHtt8P48fCb35hdUWJJeTk8/zy89BIYBr169WL58uUaGyQSYRaL\nhXPPPZf169c3uwALwKBBgxReERGRqKcAi4iIiIiIiIiIiIg0Wju7nYvtdi5u3bpym8frZW9xcY1O\nLTlOJ9+Ulja8YNeu8PTT8OST8MYb8MILsHMnTJ8OsdIFNz8fZs+GnBwAJkyYwIIFC/TJY5EoMXjw\n4MoAy8RIFxMmvgDL4MGDI1qHiIhIIBRgEREREREREREREZGgSLBa6eVw0Mvh4Npq7cePlJWRe0Ko\nJdflosjrrblASgpMmwbnnguPPmoGQW66Ce66C4YODfOzaaStW2HuXDh+nBYtWvDMM88wZsyYSFcl\nItUMGjQIqAp1NAfVO7CIiIhEOwVYRERERERERERERCSkWicmMqxVK4a1alW5zWsYfFlHt5YvSkpg\n5Ejo2RMeeAD27oV77oGrr4aJE8Fuj+AzqYPbDYsXw7//DZgXiZctW0b37t0jXJiInMgX4sgBSoGk\niFYTeqWYzxUUYBERkdigAIuIiIiIiIiIiIiIhJ3VYqF7airdU1P5RbURQYUeDx+7XOT06MFH/fuz\n5uGHOfDyy2ZAJCcH7r8fOnWKYOXV7N9fFbIBbrvtNubMmYM92kI2IgJAly5d6NixIwcOHGAVcF2Y\njusBXqu4fSXhuzi3EigDOnXqxJlnnhmmo4qIiJw8a6QLEBERERERERERERHxaZGQwND0dG7u2JFF\nffqw/1//YvXq1bQ65RT47DOYNAnWr490mbBundkRZu9e2rRpw5o1a3jssccUXhGJYhaLhYkTJwLw\nVBiPuwG4puJrQxiP63uOEydOxGKxhPHIIiIiJ8diGIYR6SLiwcGDByksLKS4uJji4mJKSkqo6492\n2LBhEahORJoqPz+f9tXmNoP5975dtU8HiYiIiIiIiIhI6Hz33XeMHTuWzZs3mxt++lOYPBlSUsJb\nSHEx/O1v8OabALQdPJjRjz1Gz86d6ZiURCe73fyelITDZgtvbSLSoP3799O5c2fKy8vJAfqG4ZiT\ngMXVbj8ThmPmAv0Am83GN998Q8eOHcNwVBGpzuVykZaWZv5wD9BcMq5u4CHzptPpxOFwRLQcCVw0\nXA/VCKFGcDqdbN++nZ07d7Jz504+/fRT9u/fz/fff4/H42nw8RaLJaD9RERERERERERERKSm0047\njf/973/MnDmT2bNnY7z5JuzebY4U6to1PEV8+SXMnAn79oHFAuPHU/Cb3/Bsebl53wla2mx0Skqi\no91ufj8h4NLRbudUu51Eq5qli4RLp06duPLKK3n11VdZBCwM8fE8wKpqP6+sOGaoL9A9XfH9qquu\nUnhFRERihjqwNCA7O5v//Oc//Pe//+WDDz6oFUBpzB+fxWKhvLw82CWKSBhEQ+JQRERERERERERM\n77zzDuPGjSMvLw/sdrj1VrjiCjNUEgqGAWvWwMKF4HZDmzZw770wcGCTl7YA7RMT/QZcfN/bJCZq\nBIhIkLzzzjtcfPHFpAEHgBYhPNY64FKA9HRzw7FjvA1cEsJjHgc6AU7M5zpixIgQHk1E/FEHFnVg\niTXRcD1UHVjqcPToUV588UWee+45srOzK7fXFVYJ9B8MwcwJLVq0iK1btza4X/v27Zk/f37Qjisi\nIiIiIiIiIiISDS666CJ27tzJ9ddfz1tvvQWPPw47dsDUqeC7UBQsTifMnw8bN5o/X3AB3HUXtGoV\nlOUN4IeyMn4oK2OH0+l3P7vFUm/AxReA0dgikYaNGDGCnj178sknn7AAmB7CY73iu5GZaYbh1q5l\nBaENsCzADK/06tWL4cOHh/BIIiIiwaUASzWHDx9m/vz5LFy4EKfTWSt0Ul9Ypb6ASrBT8X369OGW\nW25psB6LxcLYsWM599xzg3p8ERERERERERERkUhr3749a9eu5bHHHuPuu+/Gs3EjFBfD3LnBPdCs\nWfDhhyQkJPDgww9z7S238L3Hw/7SUg6UlrLf7Ta/l5ZywO1mf2kpx0PQidttGHxdUsLXJSX17pdu\ns9UbcOlkt9NBY4ukmbNYLNx3332MGzeOmcCVQJ8QHKfG+CBfF5S1a0M6RigXmFVxe/r06ercJCIi\nMUUBFsDr9TJv3jweeuihWsGVE3+xR8PEpQsvvJBhw4axadOmBvddvHgxTz/9dIP7iYiIiIiIiIiI\niMQaq9XK1KlTSU9PZ9KkSfDFF8E/SMWaTz31FBMnTgSgcwMPcXo8HPAFW+oIuPjuc4fg/eZj5eUc\nKypiT1GR330sQAe73W/AxReAOSUhQRe/JW6NGTOGZcuWsWbNGn4LvAckBvkYG4ACMMcHDRhgbkxP\np+DYMTYQ/C4sZcBvK76PHj2aMWPGBPkIIiIiodXsAyw7duzgpptuIjs7uzKcUv0FeTQEVupy9913\ns2nTpga7sCxdupS//vWvJCUlhbE6ERERERERERERkfDZtm2beWPo0OAvPmQIrF1LVlZWZYClIWkJ\nCfRISKBHaqrffQzD4FBZmd+Ai6/Dy8GyMoL9LrUBfO92873bXe/YoqSKsUUdNbZI4pDFYuGZZ55h\ny5YtbD9yhEeAe4N8jBrjg3x/Ty68MGRjhOYCO4DWrVuzaNEiBdBERCTmNOsAy6JFi/jTn/5EWVlZ\n5cgdn2gNrvhcfvnl9OjRg7179wK16/U9l8LCQv7zn//wy1/+Muw1ioiIiIiIiIiIiISax+Nh1aqK\nIR2+ER3BNGKEOfJj5UoWLlxIQkJw3la3WCy0tdtpa7fTPy3N735lXi/fnxhsqRZw8QVgQjG2qNQw\n+KqkhK80tkjiVEZGBk888QTjx4/nAWA00DdIa9c5PgjgootCMkYoB5hZcfuJJ54gIyMjSCuLiIiE\nT7MMsHg8Hn7/+9/z7LPP1uq6Eu3BlepuueUW/vSnPzWYoF2+fLkCLCIiIiIiIiIiIhKXNmzYQEFB\nQc0RHcE0cCC0bElBQQEbN25k5MiRwT9GPRKtVk5PTub05OR69/ONLTox4KKxRSL1GzduHK+88gpr\n1qzhWmAz0CYI626gjvFBYN4O8hihQ8B1VI0OGjduXBBWFRERCb9mF2ApKyvjV7/6Fa+//nqNriux\nFFzxueGGG7j77rspKSnBYrHU2YXFMAzeeOMNiouLSUlJiVClIiIiIiIiIiIiIqHxyisVQzqqj+gI\nJpvNXHvtWl555ZWwB1gCFY9ji+oKuPi2p2pskQSJb5TQ9u3b2XPgAD8F1gMtmrhuneODwLwdxDFC\nhcBPgT1Ax44dNTpIRERiWrMKsJSVlXHNNdfw+uuvA43vutLQL/xwh2BatGjB6NGjWb58ea3aqodz\niouLWb9+PaNGjQprfSIiIiIiIiIiIiKhFPLxQT4hGiMUbvE2tqi+gEtHu51T7XYSNLZIApCRkcH/\n+3//j2HDhrHt8GGuANZw8iEWv+ODfII0RqgQGAVsA9q0acPbb7+t0UEiIhLTYvNV9kn6wx/+wOuv\nv96o4EpdwZBoMnbsWJYvX97gfm+88YYCLCIiIiIiIiIiIhJXQj4+yCfCY4TCralji07s8FIWwrFF\nuwMYW+Qv4OILwGhskQCcc845vPXWW4wcOZKNhYWMBN7k5MYJbcDP+CCfIIwRKsDsvJKF+YHnN998\nk969e5/ESiIiItGj2QRY/v73v7N48eKAwyvVX6z69k1KSiIzM5PBgwczcOBAOnfuTKdOnWjZsiXJ\nyckkJSXVOconlH7605/SqlUrjh07Vu8YobfeeitsNYmIiIiIiIiIiIiEw0mND9q1C5580rw9eTIE\ncsE3RsYIhVsgY4u8FWOL6gu47K8YWxRs1ccWbQ9gbJG/gIsvAKOxRfHvvPPOY/369fzkJz9h2+HD\nZALLgb6NXMfv+CCfJo4RygGuwxwb1KZNG9566y0GDx7cyFVERESij8WItpYiIbB7927OPfdcyipe\nAAcaXjEMA5vNxs9+9jMmTJjApZdeSkpKit/HWa3WekMkFouF8hC0VLzuuut45ZVXGjz2119/zemn\nnx7044s0B/n5+bRv377GtoMHD9KuXbsIVSQiIiIiIiIi0rx5PB4yMjLMDizz58OgQfU/oLwcXn4Z\nnn/evA3mReTf/hbGjGk4AJOVBdOm0bZtW/Ly8mJ2jFC0cleMLfIXcPF9LwzBe+yBapWQUG/ApVNS\nEh0SEzW2KA7s3r2bSy+9lAMHDpAI3A/cCSQG8FgPkEFFB5b6zk3bt8PUqbQF8gjsE+dlwBxgVsXt\njh078vbbb6vzikiUcrlcpPlG9t0D2CNaTvi4gYfMm06nE4fDEdFyJHDRcD20WbzCnjRpEm63u8Hu\nKNWDKxaLhXHjxjFjxgy6d+8erlJPys9+9rOqTxrUY/PmzYwdOzYMFYmIiIiIiIiIiIiEVqPGBx08\nCA89BNnZAIwZMwaApUuXwpIl5oXke+6B+t6cb2ZjhMLNbrVyRnIyZzQwtqiwYmyRv4DLgRCOLTrq\n8XDU46l3bJEVc2xR9YCLxhbFnt69e5OVlcXvfvc7Xn/9de4DVgHPA30aeOwGGhgf5NPIMUK5wG+B\nHRU/jx49mkWLFpGRkdHAI0VERGJH3AdYFi9ezNatWxsVXunWrRtLlixh2LBh4SqzSX7yk58EtN+7\n776rAIuIiIiIiIiIiIjEhYDHB23eDPPmQWEhaWlpLFy4kPHjxwNw+eWXc+utt+LauRMmTIBp08z1\n6qIxQlGhRUICZyckcHYAY4v8BVx8HV5CMbbIC+S53eRpbFHMy8jI4LXXXuNf//oXf/zjH9lx5Ajn\nAvcBU4CWfh7X4PggnwDHCB0HFlDVdaV169b87W9/Y+zYsQpBiYhI3InrEUIej4du3brx3XffAf5H\nB1UPr/zsZz/j5ZdfpmVLfy89/IvUCCGAHj168MUXXwA1n2f1es477zw++OCDkBxfJN5FQ8ssERER\nERERERExBTQ+qKQEnnoK1qwBYPDgwSxdurRWx+29e/cyduxYsrKyzA1XXAG33AJ1dQLRGKG44htb\n5C/g4tuusUWSl5fHzTffzJqK80kaMB74PdC32n4Bjw/yqWeMUC7wFPAS4ItCqeuKSGzRCCGNEIo1\n0XA9NK5fXb/44ot8++239XZfqR4uGT9+PP/85z9jMrE6dOhQPv/88zpr9z3HXbt2VT5XERERERER\nERERkVjV4Pigzz+H2bNh3z4A7rjjDmbNmoXdXvvK0VlnncW7777LfffdxyOPPGIGXnJy4L77oFu3\nmjtrjFBcaezYIn8Bl2gcW1Q94OLb3lpji05aRkYGq1evZunSpcyePZs9e/bwNPA0kIkZZPkFsJkA\nxwf5nDBGKBNYiRlc2VJtt17t2zP98ccZM2aM/huKiEhci+sAy2OPPVbv/dXDK1dddRXPP/98mCoL\nvgsuuIAXX3yx1vbqgZXi4mI+++wzzj777HCXJyIiIiIiIiIiIhI0fscHGQasXAl//zu43WRkZPDC\nCy9wySX+hnOY7HY7c+fO5dJLL2X8+PF8v2+f2YXl5pvhqqvAd8FYY4SapXgZW5RstdLRF2ypI+DS\nsZmMLTIMg6J6AkH1+fnPf87o0aPZtGkTixcv5vXXX2ez18tmIJFqY4UaGh/kU22M0HXAMcwuLgA2\nYDQwEchMSsIyatRJ152amqrgi4iIxIS4DbDk5uaya9cuv91XqodXevfuzQsvvBCBKoPnnHPOCWi/\nPXv2KMAiIiIiIiIiIiIiMcvj8bBq1SrzhxEjqu44ehTmzoX33wdg1KhRPPvss41qeX7JJZeQk5PD\nDTfcwNq1a+FvfzPHBt1xB7RqVXXMtWtZuXIlCxcu1BghAcBqsdDObqed3U59fTciObaoxOvly5IS\nviwpqXe/VgkJfgMuvg4vsTy2KDc3l/79+wd93TLgkO+H6uemhlx0EaxdW/XYCuXAqoovvv3W7Opy\nknJycujbt2/DO4qIiERY3L6yfvnll/3eVz1larVaee6550itJzkdCwINpXz11VchrkRERERERERE\nREQkdOocH5SVBQ8/DIcPk5SUxPz587n11ltPquNAu3btWLNmDU8++STTpk2j9L334Kab4O67YdAg\njRGSJgnW2KL9paXkhXhs0a4Axhb5C7j4AjDROLZo9erVoT1AZmZg44N8Bgwwu7Bs2dLwvidp9erV\nCrCIiEhMiNsAy5o1a+p9UeTrvnLjjTcyePDgMFYWGqeeeiotW7aksLDQb9cZUIBFRERERERERERE\nYluN8UFeLyxeDMuXA9C7d2+WLl1Kv379mnQMi8XC5MmTGT58ONdddx179uyBqVPh2mthwgSNEZKQ\nC3RsUUFZmd+Ai+97fojHFtXHN7bIX8DFtz0ljGOLJk+eTG5uLitWrDA3DBgAd97ZpA4nNSQnV40d\nC4TNBjNnQgOdcQJ27BjMmQPZ2QBcc801TJ48OThri4iIhJjF8Jd0iGFHjhyhbdu2lT9Xf4q+UIth\nGCQmJvLZZ5/RuXPnoBzXarXWGR6pPq6oPARt/3z69Olj/kOK2s/Zd/yf//znrFy5MmQ1iMSr/Px8\n2rdvX2PbwYMHG9WCVkREREREREREmsbj8ZCRkWF2YPnTn+CNN+CzzwD43e9+x6OPPhr0bttFRUXc\nfvvtLFq0yNxw9tnw05/CX/9K27ZtycvL0xghiWpur5e8egIuvgCMM4TXLxrSOiGh3oBLp6Qk2gdx\nbJFhGCxevJgpU6ZQUlICbdrAvfeaHZZi2UcfwYMPwqFDJCcns2DBAiZOnBh1XXBEmguXy0VaWpr5\nw1TAHtFywscNzDdvOp1OHA5HRMuRwEXD9dC4fFX97rvvVgY26srn+O67/PLLgxZeiQYdOnRg9+7d\n9b4Qyc/PD2NFIvHN5XLV+YaIfhGLiIiIiIiIiIRG5fgggKeeArebU045hSVLlnDllVeG5Jipqak8\n/fTTXHbZZUyYMIEjn34KFZ2uNUZIYoHdaqVzcjKdAxhbVF/A5UDFNk8IPhd9xOPhSABji071BVvq\nCLh0bMTYIovFwqRJkxg6dCjXXnut+eHg22+H8ePhN78xu6LEkvJyeP55eOklMAx69erF8uXLNTZI\nJJrMj3QBIjW5XK6AtoVbXAZYPvroo4D2GzNmTIgrCa9TTz3V732+MI8CLCLB06VLlzq3x2FjKxER\nERERERGRqFA5PgjA7WbEiBG8+OKLnHbaaSE/9lVXXcV5553Hr3/9azZu3FijJgVYJB60SEigZ0IC\nPev5gJ5vbJG/gItve6jGFh1wuzngdpNVz36NGVvUt29ftm3bxpQpU1iyZAm88ALs3AnTp0OsdN/O\nz4fZsyEnB4AJEyawYMECfdBSRETqVdkdKMrEZYDlyy+/DGi/iy++OMSVhFfLli0b3Ofo0aNhqERE\nREREREREREQk+DZt2gSAzWZj5syZ3HnnndjC2CnhtNNOY/369cyZM4cZM2ZQXl5eWZNIc2C1WGhv\nt9Pebqe+YTulXi/f1xNw2V9x2+X1Br3GEq+XL0tK+LKkpN79aowtmjqVK/v04c3p0ynNyYGbboK7\n7oKhQ4NeX1Bt3Qpz58Lx47Ro0YJnnnkm7j68LRLLUlNTcTqdYTmWx+OhW7duHDp0yBwlduJItI8+\ngnvvpU2bNnzxxRdhG38Y7NGOEv+aVYClesu4M888kw4dOoSrpLBIbqD9H2DOchSRoPjqq6/COvNN\nRERERERERKS5W7duHdOmTWPKlCkMGTIkIjXYbDbuvfdeLr74Yp544gnmzZsXkTpEollSgGOLjns8\nfgMuvu954RpbNGAAPPMMPPAA7N0L99wDV18NEyeC3R704zeJ2w2LF8O//w3AoEGDWLZsGd27d49w\nYSJSncViCVs3pHXr1pnhlfR0uOCC2qPQLrgA0tM5dOgQ27Zt45JLLglLXRK96gpX5efn+51AES5x\nGWDZv3+/3/mGhmFgsVg466yzwlxV6AUSYCktLQ1DJSLNg8PhUBtGEREREREREZEwOu2001i6dGmk\nywBg6NChDI327gwiUa5lQgItAxhblF9W5jfg4gvAFARjbFGnTvDkk1XhkH//2xzNc//95n3RYP/+\nqpANcNtttzFnzhzs0RayEZGwqhyzmJlZO7wC5rYLL4S1a1mxYoUCLFLnNc4iX6gzguIywBJIK6bO\nnTuHoZLw8hfaqa4sBHMnRUREREREREREREREQsFqsdDBbqeD3c7AFi387lfq9ZJXEWxp0tgiux1u\nvdUcvzF3Lnz2GUyaBH/+M4wcGeRn10jr1sFjj0FxMW1OOYV/Pv88o0aNimxNIhJxHo+HVatWmT+M\nGOF/x4sugrVrWblyJQsXLgzbGCGRxojL/ysDSQa1qOdFTqwKZDyQErgiIiIiIiIiIiIiIhJvkqxW\nzkxJ4cyUlHr3C3hs0Y9+BP/4B8yebXZhmT0btm+HyZOhgWMEXXEx/O1v8Oab5s/9+uG8+25ubN2a\nlu+/T4uEBFrYbFVfFT+3rHb7xPta2Gy0rLidYrUG9CFpEYlOGzZsoKCgwBwfNGCA/x0HDID0dAoK\nCtiwYYO6sEhUissAS3FxcYP7BDJuJ9YE8rxTwv2iSkREREREREREREREJEo0dmzRN5mZLJ47l7UL\nFpgBkt27zZFCXbuGp+Avv4SZM2HfPrBYYPx4+M1vKLXZyC8rIz8Infet4DfcUl/wpa77WthsJFit\nTX/eIhKwBscH+WiMkMSAuAyw2O32BruRBBL2iDX5+fkN7pOamhqGSkRERERERERERERERGLTiWOL\nfv7447wzejTjxo0jb98++P3vzTFDV1xhhkpCwTBgzRpYuBDcbmjTBu691xxtFGRe4Fh5OcfKy4Oy\nXorV2ujgi7/71B1GpH4Bjw/y0RghiXJx+X+kw+FoMMASyJihWPPdd981uE9aWloYKhERERERERER\nEREREYkfF110ETt37uT666/nrbfegscfhx07YOpUCPa1F6cT5s+HjRsBsF5wAd677oJWrYJ7nBAp\n9nop9no5GITuMDYIaAxSoPfZFIaROBPw+CAfjRGSKBe3AZZDhw7Vu09eXl6Yqgmfffv2+U2hGoaB\nxWIhIyMjzFWJiIiIiIiIiIiIiIjEvvbt27N27Voee+wx7r77bjwbN0JxMcydG9wDzZoFH35IQkIC\nc+bM4bbbbsOwWHC++CKFt99OYWpq5dfxZ5+lsEMHCsvLKfR4zO8VX8er/3zCfR7DCG7NIVIOHPV4\nOOrxBGU9X3eYkx2RVP2+ZHWHkQAZhhGy5grLli0zbzQ0Psin2hihZcuWMXTo0JDUlZqaqr8fclLi\nMsCSnp5eGdioi2EYfPvtt2GuKrQOHjzIDz/8gMViwajnRccZZ5wRxqpERERERERERERERETih9Vq\nZerUqaSnpzNp0iT44ovgH6RizaeeeoqJEydWbk7/1a9I//Of4ZtvqvZ99llYsKBRyxuGQYnX6zfc\nUujxcLwR9xV5vUF52uEQyu4wJxuKUXeY+Jebm0v//v1De5BAxgf5VIwRWrJkCUuWLAlJOTk5OfTt\n2zcka0t8i8sAy5lnnklOTk6d9/kCHp9++ilerxer1Rrm6kLjo48+Cmg/BVhERERERERERERERESa\nZtu2beaNUHQvGDIE1q4lKyurRoCF5GSYMAEeeaRq2z//CQ8+2KgxRhaLhRSbjRSbjfZBKLfcMHCe\nRPDF333lQagpHILdHSa1ojvMieGWGuGXAO9Td5josnr16tAeIDMzsPFBPgMGmF1YtmwJWUmrV69W\ngEVOSlwGWLp27Vrn9updWYqLi9m9ezd9+vQJZ2kh88477wS0X7du3UJciYiIiIiIiIiIiIiISPzy\neDysWrXK/KExXQ8CNWIErF3LypUrWbhwIQkJ1S7n/e53MG8e+LrxHz8O//oX3Hxz8OsIkM1iIT0h\ngfSEpl92rKs7TH3Bl8LycvN+P/fFUneYIq+XIq+XH4LUHeZkgi913Zdms6k7TBNNnjyZ3NxcVqxY\nYW4YMADuvBPS04NzgORkaMx/I5sNZs6EkpLgHP/YMZgzB7KzAbjmmmuYPHlycNaWZicuAyxdunQJ\naL/169fHTYDljTfeCGi/wYMHhmiEEAAAIABJREFUh7gSERERERERERERERGR+LVhwwYKCgrMi8+N\n6XoQqIEDoWVLCgoK2LhxIyNHjqy6r0sX+L//g//8p2rbwoUwaVLjLmBHqWB3h/F4vWZ3mEYGX/zd\nF0vdYY54PBwJcneYkw3FtEhIoGXF7aRm2B2mVatWLF++nEsuuYQpU6ZQsnMn/OEPcO+95t/3SLBY\nICWl6et89JHZBerQIZKTk1mwYAETJ05sdv+NJXjiMsAyMMC/6GvWrGHKlCkhrib0PvvsMz7++OPK\n8UjVVT85OBwOevfuHe7yRERERERERERERERE4sYrr7xi3sjMNDsZBJvNZq69di2vvPJKzQALwK23\n1gyw5Oaao0AyM4NfS4xLsFppZbXSKjGxyWv5usOcTPClrvuKm2l3mASLxW+4pb7gS133xVJ3GIvF\nwqRJkxg6dCjXXnste/bsgdtvh/Hj4Te/Cc25JJTKy+H55+Gll8Aw6NWrF8uXL9fYIGkyi3Fi4iEO\nlJaWkp6eTlnFSbT6U/QFOgzDwGaz8cUXX3DGGWcE5bjWisRgXSES3/ii8vLgZzOnTZvGo48+2uCx\nMzMz2bBhQ9CPL9Ic5Ofn0759zbz3wYMHadeuXYQqEhEREREREREREZFw83g8ZGRkmB1Y5s+HQYNC\nc6CsLJg2jbZt25KXl1dzjJDXC2efDZ9/XrXt2mth2bLQ1CIhcWJ3mON+gi+B3hc7cZjgclitjQ6+\n+LsvXN1hXC4XU6ZMYcmSJeaGfv1g+nSIlWtO+fkwezbk5AAwYcIEFixYgMPhiHBh0lTRcD00Ljuw\nJCUlce655/L+++/XOsn4whwAXq+XZ555hgcffDASZQaF0+nkueeeC+hkWiuhKyIiIiIiIiIiIiIi\nIgEL+fggn/rGCFmt8Pvfm90bfF59FfLyICMjdDVJUAW7O0yx13tSwZe67oul7jAurxeX2833QVgr\nwWI56W4wJ96XZrNh9XP91uFw8I9//IORI0cyadIknDk5cNNNcNddMHRoEJ5JCG3dCnPnwvHjtGjR\ngmeeeYYxY8ZEuiqJI3EZYAEzrPH+++/7vd/XmeTJJ5/ktttuo23btmGsLngeffRRDh8+XGf3lRNd\neeWVYapKREREREREREREREQk/pzU+KBdu+DJJ83bkydD794NP6ahMUI33GB2bCguNn/2eGDxYrj/\n/sBqkrhisVhItdlItdnoYLc3eT2PLwxTR7ilVvglgPtiJQ7jMQwOezwc9nigtLTJ6/m6w/gNvpx/\nPhPWrOHVyZP57uOP4Z574OqrYeJECMJ/x6Byu81zzL//DcCgQYNYtmwZ3bt3j3BhEm/icoQQQG5u\nLv379/cb7Kg+WmfixIksWrSoyccM9wihb7/9lnPOOQeXywVQ53F927t27crn1VvJiUijREPLLBER\nERERERERERGJnEaPDyovh5dfhuefN2+DGUz57W9hzJiGAzD1jRECs2ODbwQJQMeO8PXXEISOHiLB\nUr07TGODL3XdVxJD3WECdkI4hB49zDBap06Rrctn/3544AHYuxeA2267jTlz5mCPtpCNNFk0XA+N\n2wALwDnnnMMnn3wC1A53QM1gyVtvvcWll17apOOFO8By2WWXsW7duoBCOnfddVdMj0oSibRoOGGL\niIiIiIiIiIiISOSsW7fOvJaUnm6O7KkvgHLwIDz0EGRnA1SO2Fi6dKl5/4ABZreF+t5jLi+HX/yC\n/8/evYdpXRb4438/DOeDlgImKi55Sv1lSWRq66HSUtOvmrlSaaZgKpO6W+q2mR1cO1htZTpA5rEg\nTQsrMtsFWzxli4iKa6bYooWpQIoCymFmnt8f08A8MMNxZj4PM6/XdX2u5r6f5/nc70dl8ro+b+87\nr76a6dOnr7sLy8MPJyNHVs7ddlvTDg7QRa1qbMzStXaHebWN4suGXqu63WFaHM+T/v2TT386WfvP\nfWebPj359reT11/P9ttvnxtvvDHHHntssZnoMNXwPLTLHiGUJKeddlo+97nPrd6JpDXNJY/TTjst\nM2fOzPDhwzsx4ea7/PLLN1heaVZTU5Nzzz23M+MBAAAAAAB0KRt9fNC99ybf/GayZEkGDhyYurq6\nnHbaaUmSD3zgA6mtrc2yRx5JxoxJLrqo6X6t2dAxQvvvnxx0UPLAA2vmxo9XYKFL69WjR97Yo0fe\n2A47DZXL5bzW2LjJxZe2Xtvi3WEOPji59trk8suTOXOa/vehh5qOHuvXb4u/7yZ5/fXkqquSO+9M\nkhx66KGZPHlydt55587NQbfTpXdgeeWVVzJ8+PAsXbo0Sdu7sDS/ts8++2TGjBkZPHjwZq3XWTuw\n/PjHP179LzrJhneXOfHEE/PT5i2ngM1SDY1DAAAAAACKsVHHBy1f3lQgmTo1STJq1KjcfPPN2X33\n3SveNnfu3Hz0ox/NrFmzmiaOOy4ZNy7p23fde27oGKHJk5NTT62ce/zxZJ99NverAptp1d+PStrc\n3WBebX7fihVZcsMNyaRJSbmc7Lpr05FCb35z53yR//u/5LLLkmefTalUyqWXXppLL7103d8/dDnV\n8Dy0SxdYkuTiiy/Ot771rTZ3KkkqSyx77713pk2blmHDhm3yWp1RYLnpppty1llnrb7P+r5T85r3\n3XdfDjrooC1aF7q7aviFDQAAAABAMTZ4fNDTTzftlvDss0mank/9+7//e3r37t3q/VauXJlLL700\n3/jGN5omdt01ufTSZLfdKt+4oWOEVqxIdtklWbhwzVxtbXL11VvydYGClcvl3HnXXTnz4x/Pi88/\nn/Tu3fRn+7jjkvWcPrKFizYV8OrqkpUrs+OOO2by5Ml5z3ve0zHrUXWq4Xloj05bqSCf+cxnMmjQ\noCRp8yih5hJIqVTKE088kZEjR2bGjBmdFXGjNDY25vOf/3zGjBmT+vr6JBtXXjn++OOVVwAAAAAA\nALZAm8cHlctNhZba2uTZZ7Pjjjtm2rRpueKKK9osryRJ7969c8UVV2TatGl505ve1FR8GTcumTKl\n6Z7Nmo8RapmhpT59krPOqpz74Q+TJUs296sCVaBUKuWYI47InEceyVFHHZWsXJl85zvJl7+c/P30\nkXa1dGnTvb/znWTlyhx99NF59NFHlVfodF2+wLLDDjvky1/+cptlj2YtSywLFizIkUcemQsuuCBL\nquD/4B977LEccsgh+drXvpbGxsY2izhJZUmnV69e+eY3v9kZEQEAAAAAALqk+vr63H777U2Dww9f\n88LixcnnPte028nKlTn22GPz6KOP5ogjjtjoex9xxBGZM2dOPvjBDzY9oL7qquSSS5ru3ezva06Z\nMmX1f+Rc4eyzkx4tHvktWZL86Ecb/wWBqjV06NDccccd+eY3v9l0hM/ddyf//u/tv9C//3ty993p\n2bNnvvWtb+VXv/qVUwgoRJcvsCTJ+eefn7e//e1J2t6FJakssTQ0NOTqq6/O7rvvnm9+85tZtmxZ\np2Rt6amnnsrYsWMzcuTI/P73v1+9q0rLrK1pft+nP/3p7Lb2VnMAAAAAAABstBkzZmTRokVNxwf9\n/XlTZs1KxoxJfv/79OnTJ1dddVV++ctfbtYD3yFDhmTq1Kn53ve+lz59+iQPPJCMHZs89FDTG/bf\nP9lmmyxatCh33333ujcYPjz5f/+vcq6urnInF2Cr1aNHj1x44YUZP35808Sf/tT+i/z9nuPHj89n\nPvOZ9OjRLWoEVKFu8U9ejx49cuONN6Zv375JNr7EUi6Xs3Dhwnz2s5/NsGHDctZZZ+W3v/1t6+3W\ndrJo0aLccMMNef/735+99947N9xwQxoaGjaqvNLy6KCRI0fmsssu67CcAAAAAAAA3UHF8UGNjcnE\niclFFyUvvZR99tknM2fOzKc+9an1Pn/akFKplPPOOy8zZ87M3nvvnfztb8mFFzat1di4/mOEkqYj\njFr6wx+admoAuowHH3yw6YeDDmr/mx94YJJk1qxZ7X9v2ASl8obO1ulCfvSjH+X0009fXfRYn5b/\nktGy1JIkAwYMyKGHHppRo0Zl5MiR2W233TJ8+PBsu+22rd67ZbGkvr4+r7/+el577bW8+OKLmT9/\nfubNm5fZs2dn1qxZeeyxx9LY2NjquuvL3PI9AwYMyOzZs7PHHntsyl8eYD0WLlyYoUOHVswtWLDA\n9mkAAAAAAF1YfX19dtxxx6YdWP75n5Nf/zp56qkkyTnnnJP/+I//SP/+/dt1zddeey2f+cxnMnHi\nxKaJvfZKjj46+e53M3jw4Dz//PNNR4m01NiY7L336mxJkg9/OLnttnbNBhSj4nfRt76VvOMd7bvA\nrFnJRRe1/TuGbqEanod2qwJL0nSc0NVXX71RJZak9SLL2vOtvb4x99vQ59tau617lsvl1NTU5Cc/\n+Uk+9KEPbTALsPGq4Rc2AAAAAACda/r06TnyyCObBr17JytXZrvttst1112XE044oUPXvv322zNm\nzJi8/PLLq9duzvS+971v3Q9ceWVTyaZZTU3y7LPJTjt1aE6g463+XbTttsnPftb057s9NTQkH/pQ\n8uqrbf+Oocurhueh3eIIoZauvPLKnHrqqRVH8qxPuVyu2Aml+Wqeb3ltjNY+tzFrbMx9S6VSrrzy\nSuUVAAAAAACAdlBxZM/KlTn88MPz6KOPdnh5JUlOPPHEzJkzJ4cddtjq8so6mVo6/fSk5W4wDQ3J\nNdd0cEqgM1QcZdbe5ZWk6Z4bOqoMOkG3K7CUSqXceOONGT169OrSx6YUWVormmzsPdr63Nr32JRC\nTMt1v/CFL2TcuHEb9TkAAAAAAADW75577kmS1NTU5Ctf+UqmT5+enXfeudPW33nnnXPXXXfl8ssv\nT83fH1o3Z1rHG96QnHpq5dw111SUX4CtT319fW6//famweGHd9xCf7/3lClTUl9f33HrwHp0uwJL\nkvTo0SOTJk3KeeedV1FI2Vjr20Flcz+7qfdZuzTzne98J1/84hc3+jsAAAAAAACwftOnT8/o0aNz\n33335XOf+9zqEklnqqmpySWXXJJ77703o0ePzrRp09p+c21t5fiFF5LmB9/AVmnGjBlZtGhR0/FB\nb397xy20//7JNttk0aJFufvuuztuHViPbllgSZpKLFdeeWWuueaa9OrVK8m6pZBq1XKnlt69e+fH\nP/5xLrjggoJTAQAAAAAAdC0777xzbr755hx44IFFR8lBBx2Um2++ef07wOy3X/KP/1g5V1fXscGA\nDrVZxwc9/nhy7rlN1x/+sHGfcYwQVaDbFliajR07Nvfcc0/22muvdY4HqkYtyyv77LNPZs6cmVNO\nOaXgVAAAAAAAAFSFtXdhuffe5LHHiskCbJFNPj6ooSH50Y+SCy5I/vjHpuv885NJk5pe2xDHCFGw\nbl9gSZIDDjggjzzySD772c+mpqamKosszVmas9XW1mbWrFl561vfWnAyAAAAAAAAqsaHPpTssEPl\nnF1YYKu0SccHLViQfOYzyfXXJw0N+chHPpKPfOQjTcWV665LLrwwWbhw/fdwjBAFU2D5u969e+er\nX/1q5syZk5NOOilJCi+yNK/bXFwpl8s5/PDDM2vWrFx11VXp27dvp2cCAAAAAACgivXunXzyk5Vz\nkyYlr7xSTB5gs2308UH33puMHZs8+mgGDhyYm266KZMnT87kyZNz4403ZsCAAckjjyRjxjS9ty2O\nEaJgCixrectb3pLbbrsts2fPzkknnZSePXuuU2TpyELL2vdvLq784z/+Y37xi1/kt7/9bfbff/8O\nWRsAAAAAAIAu4OyzKx92L1uW3HRTcXmATbZRxwctX558+9vJF76QLFmSUaNG5eGHH87HP/7x1c+c\nTz/99Dz88MMZNWpUsmRJ03u//e2mz7bGMUIUSIGlDW9729ty2223Zf78+fn617+ePffcc3WZpK1C\ny8aWWzb0ueY1Bg0alDPPPDOzZ8/OPffck+OOO67DvzcAAAAAAABbuZ12Sk44oXJu/Pjk78+4gOq3\nweODnn46OeecZOrUJMnFF1+c+++/P7vvvvs6b91jjz1y//335+KLL26amDq16bN/+tO693WMEAVS\nYNmAIUOG5OKLL84TTzyRp556Kt/97nfzgQ98IAMHDqwotLQstiQbV25p7fMjRozI2WefnTvvvDML\nFy7Mtddem7dv6DwzAAAAAAAAaKm2tnL85JPJXXcVkwXYZG0eH1QuJz/7WdOf8WefzY477php06bl\niiuuSO/evdu8X+/evXPFFVdk2rRpedOb3pQ8+2wyblwyZUpluc0xQhSoVC6rWm6uuXPnZvbs2Xn0\n0Uczb968zJ8/P/Pnz8/zzz+flStXtvm53r17Z6eddsrw4cMzfPjw7L777hk1alQOOOCAbL/99p34\nDYCNtXDhwgwdOrRibsGCBRkyZEhBiQAAAAAAYD3K5eT/+/+SP/xhzdwJJyTNR5IAVau+vj477rhj\n0w4s3/pW8o53NL2weHFyxRXJ73+fJDn22GNz/fXXb/LzqoULF+aMM87IHXfc0TRx0EHJxRcnb3hD\n03jWrOSiizJ48OA8//zz6dmzZ3t9NapYNTwPVWDpIPX19Xn99dezfPnyrFixIr169Ur//v3Tr18/\nf8BhK1QNv7ABAAAAAGCT1NUln/rUmnGPHsm8ecnw4cVlAjZo+vTpOfLII5uOD/rZz5p2RZk1K/na\n15KXXkqfPn3yrW99K7W1tRUngGyKcrmcq6++OhdddFFWrFiRbL998m//1lSWaWhIPvSh5NVXM336\n9Lzvfe9r529INaqG56GOEOogPXv2zKBBgzJkyJDsvPPO2WGHHTJo0CDlFQAAAAAAADrHaaclAweu\nGTc2Jt//fnF5gI1ScXxQY2MycWJy0UXJSy9ln332ycyZM/OpT31qs8srSVIqlXLeeedl5syZ2Xvv\nvZO//S258MKmtRobHSNEIRRYAAAAAAAAoCvaZpvk4x+vnPvBD5IVK4rJA2xQfX19bm8+6mv33Zt2\nUfrJT5Ik55xzTh588MHst99+7bbefvvtl1mzZuWcc85pmvjJT5Lzzkv22CNJMmXKlNTX17fberA+\nCiwAm2nZsmWtXgAAAAAAUDXGjascL1yY/PSnxWQBNmjGjBlZtGhR02D8+OSpp7Lddtvl9ttvz4QJ\nE9K/f/92X7N///6ZMGFCpkyZkje+8Y3Jk082rZ1k0aJFufvuu9t9TYpVrc85FVgANtOIESMycODA\ndS4AAAAAAKga++6bHH545VxdXSFRgA2rOLJn5cocfvjhefTRR3PCCSd0+Nonnnhi5syZk8MOOyxZ\nubL1THQJrT3jHDFiRNGxFFgAAAAAAACgS6utrRw/8EDy8MPFZAHW65577kmS1NTU5Ctf+UqmT5+e\nnXfeudPW33nnnXPXXXfl8ssvT01NTUUm6GgKLACbad68eVm6dOk6FwAAAAAAVJXjj0+GDaucswsL\nVKXp06dn9OjRue+++/K5z31udYmkM9XU1OSSSy7Jvffem9GjR2fatGmdnoGO1dozznnz5hUdK6Vy\nuVwuOgRAtVu4cGGGDh1aMbdgwYIMGTKkoEQAAAAAALAJLrss+eIX14z79Uueey554xuLywRA1aiG\n56F2YAEAAAAAAICu7qyzkp4914xffz254Ybi8gDAWhRYAAAAAAAAoKvbccfkpJMq58aPTxobi8kD\nAGtRYAEAAAAAAIDuoLa2cvynPyXTphWTBQDWosACAAAAAAAA3cE//mPy1rdWztXVFZMFANaiwAIA\nAAAAAADdQam07i4sv/pV8swzhcQBgJYUWAAAAAAAAKC7+NjHkm22WTMul5OJE4vLAwB/p8ACAAAA\nAAAA3cXAgcknPlE5d+21yfLlhcQBgGYKLAAAAAAAANCdjBtXOf7b35Jbby0mCwD8nQILAAAAAAAA\ndCd77ZUccUTlXF1dMVkA4O8UWAAAAAAAAKC7WXsXlpkzk1mziskCAFFgAQAAAAAAgO7nuOOSXXap\nnLMLCwAFUmABAAAAAACA7qZnz+Tssyvnbrkl+dvfiskDQLenwAIAAAAAAADd0dixSa9ea8bLlyfX\nX19cHgC6NQUWAAAAAAAA6I522CE5+eTKuQkTkoaGYvIA0K0psAAAAAAAAEB3VVtbOZ43L/nNb4rJ\nAkC3psACAAAAAAAA3dVBByVvf3vlXF1dMVkA6NYUWAAAAAAAAKC7KpXW3YXlN79J/vSnYvIA0G0p\nsAAAAAAAAEB39tGPJm94w5pxuZxMmFBcHgC6JQUWAAAAAAAA6M7690/OOKNy7vrrk9deKyYPAN2S\nAgsAAAAAAAB0d+eeWzl++eXklluKyQJAt6TAAgAAAAAAAN3dHnskH/hA5VxdXdNxQgDQCRRYAAAA\nAAAAgKS2tnI8e3byP/9TTBYAuh0FFgAAAAAAACA55phk110r5+rqiskCQLejwAIAAAAAAAAkNTXJ\nuedWzt16a7JgQTF5AOhWFFgAAAAAAACAJmPGJH36rBmvXJlcd11xeQDoNhRYAAAAAAAAgCaDByen\nnFI5N3Fi0tBQTB4Aug0FFgAAAAAAAGCN2trK8Z//nPzqV8VkAaDbUGABAAAAAAAA1jjggGTUqMq5\nurpisgDQbSiwAAAAAAAAAJXW3oVl2rTkqaeKyQJAt6DAAgAAAAAAAFQ65ZRku+0q58aPLyYLAN2C\nAgsAAAAAAABQqV+/ZMyYyrkbb0yWLSskDgBdnwILAAAAAAAAsK5zz01KpTXjV15JJk8uLg8AXZoC\nCwAAAAAAALCuESOSY46pnKurS8rlYvIA0KUpsAAAAAAAAACtq62tHM+Zk/zud8VkAaBLU2ABAAAA\nAAAAWveBDyS77VY5V1dXTBYAujQFFgAAAAAAAKB1PXok555bOffTnyYvvlhMHgC6LAUWAAAAAAAA\noG1nnJH07btmvGpV8oMfFJcHgC5JgQUAAAAAAABo23bbJR/9aOXc97+f1NcXkweALkmBBQAAAAAA\nAFi/ceMqx/PnJ7/8ZTFZAOiSFFgAAAAAAACA9XvHO5J3vatyrq6umCwAdEkKLAAAAAAAAMCG1dZW\njn/72+SJJ4rJAkCXo8ACAAAAAAAAbNjJJyeDB1fOjR9fTBYAuhwFFgAAAAAAAGDD+vZNxo6tnLvp\npmTJkmLyANClKLAAAAAAAAAAG+ecc5IeLR4xLlmSTJpUXB4AugwFFgAAAAAAAGDj7LprcuyxlXN1\ndUm5XEweALoMBRYAAAAAAABg49XWVo4ffzy5555isgDQZSiwAAAAAAAAABvviCOSPfaonKurKyYL\nAF2GAgsAAAAAAACw8Xr0SMaNq5y7/fbkr38tJg8AXYICCwAAAAAAALBpPvGJpH//NeP6+uSaawqL\nA8DWT4EFAAAAAAAA2DRveEPysY9Vzl1zTbJqVTF5ANjq9Sw6AGvU19fnD3/4QxYsWJDFixenoaEh\n2267bYYPH5699torNTU17b7mnDlz0tDQkLe85S3p169fu98fAAAAAACALqq2NvnBD9aMn3++6Sih\nf/qn4jIBsNVSYCnYc889l0mTJuX222/PnDlzsmLFilbf17t37xxyyCE54YQTcuqpp2abbbZpl/V/\n8IMfZPz48SmVStlll13ylre8JXvvvXfFtf3227fLWgAAAAAAAHQhb3tb8u53J/ffv2aurk6BBYDN\nUiqXy+WiQ3RH8+fPz+c///lMnjw5jY2N2Zi/DaVSKUnSv3//nH322fnCF76wxUWW8847L3V1deus\n0dL222/farFl+PDhW7Q2bE0WLlyYoUOHVswtWLAgQ4YMKSgRAAAAAABUgZtvTj760cq5OXOSt761\nmDwAbJZqeB6qwFKAiRMn5jOf+UyWL19eUVxprTzS0trvHTx4cL761a9mzJgxm53l6aefzu9+97v8\n4Q9/yGOPPZbZs2fnxRdfXOd9rWXr379/lixZstlrw9akGn5hAwAAAABA1Vm5Mhk+PGn5fOmcc5IJ\nE4rLBMAmq4bnoQosnai+vj6nn356brnlltVllLWLIW397WjrfaVSKQceeGBuu+22DBs2rF1y/vnP\nf87dd9+dX/ziF5k6dWrq6+tbzVUqldLQ0NAua0K1q4Zf2AAAAAAAUJUuvTS5/PI14wEDkueeS7bd\ntrhMAGySange2qPTVurmVq1alZNOOml1eaVUKq0upZTL5dVXW9Z+T/Pny+VyHnjggYwaNSoPPPBA\nu2QdPnx4TjvttPz0pz/N9OnTK/K2zA0AAAAAAAA5++ykpmbNeNmy5Ic/LC4PAFslBZZOMnbs2Eyd\nOjVJ1imubKrWiiwvvPBC3vOe9+SGG25ov9BJ9ttvv1bXBZJly5a1egEAAAAAQLey887J8cdXzo0f\nn3iuBFCVqvU5pyOEOsH111+fsWPHVhRXWtrUHU3a+nzzTilXXnllPvWpT21B4jVWrVqVPn36rN7t\npXm95rUcIUR30dqWWW3xaxUAAAAAgG7nt79N3ve+yrnp09edA6BwG9tRcIRQF7NgwYL8y7/8yzrl\nlbWP42l5RNCGrtY+23zPcrmcCy64IHV1de2Sv1evXu1yHwAAAAAAALqw97wn2Xvvyrl2el4FQPfQ\ns+gAXd3nP//5LFmyZJ0dTJI1xZPddtstH/jAB3LIIYdkr732yvDhwzNo0KCUSqUsXbo0zz33XObO\nnZuZM2fmv/7rvzJ79uzV91l795Xmdc4///z07ds3Y8aMKeBbQ/cwb968Tm0cAgAAAABA1SqVknHj\nkvPOWzP3i18kf/lLsssuxeUCYB1Lly5dZ27hwoUZMWJEAWnWcIRQB5o/f35GjBiRxsbGivlyuZya\nmpr80z/9Uy644IIccMABm3TfZ555JuPHj8/111+fl156qdXtfZrXuOWWW3LSSSdt0ffo0aOHI4To\n9lo7Qqizt8wCAAAAAICq9uqryU47JS0fjF5ySXL55cVlAmCjVMPzUEcIdaDvf//76xQ8yuVyDjjg\ngDzyyCOZPHnyJpdXkuT7CLAzAAAgAElEQVQf/uEf8o1vfCPz58/P+PHjM3To0KzdQ2oul5x66qn5\n7//+7y36HgAAAAAAALBB22yTnHZa5dwPfpCsWFFMHgC2KgosHejGG2+sOOKnXC5nzJgxuf/++7Pv\nvvtu8f379u2bc845J3Pnzs3FF1+c3r17VxRZSqVSVqxYkQ996EP53//93y1eDwAAAAAAANartrZy\nvGBBMmVKMVkA2KoosHSQOXPm5LnnnkuS1cftjBkzJj/4wQ9SU1PTrmsNHDgwX//61zNnzpwceOCB\n65RYXnnllRxzzDH561//2q7rAgAAAAAAQIV9900OO6xyrq6umCwAbFUUWDrIf/3Xf63+uVQq5R3v\neEcmTpzYoWvuscceue+++/LVr341vXr1qlh//vz5OeaYY7JkyZIOzQAAAAAAAEA3t/YuLPffnzz6\naDFZANhqKLB0kDlz5iTJ6t1QJkyY0O47r7SmR48e+exnP5t77rknw4YNq9iN5bHHHsuHP/zhNDQ0\ndHgOAAAAAAAAuqkTTkiGDaucswsLABugwNJBHn/88SRNu58ccsghecc73tGp6x9wwAF5+OGHc9hh\nh60+wqhcLmf69OkZO3Zsp2YBAAAAAACgG+nVK/nkJyvnJk9OFi8uJg8AWwUFlg7ywgsvrP75lFNO\nKSTD4MGDM23atJxxxhkVJZYf/vCHufTSSwvJBAAAAAAAQDdw1llJz55rxq+9ltx4Y2FxAKh+Ciwd\n5NVXX13984EHHlhYjp49e+a6667LF77whYoSy1e/+tXU2aoNAAAAAACAjjBsWHLiiZVz48cnjY3F\n5AGg6imwdJDly5ev/nnXXXctMEmTL33pS7nmmmvSo0eP1SWWCy64IDdqugIAAAAAANARamsrx3Pn\nJtOnF5MFgKqnwNJB+vfvv/rnN7zhDQUmWWPs2LH56U9/mj59+qRUKqWxsTFnnXVWbr311qKjAQAA\nAAAA0NUcemiy776Vc04IAKANCiwdZMcdd1z9c8vjhIp2/PHH584778ygQYNSKpXS0NCQ0047Lb/8\n5S+LjgYAAAAAAEBXUiqtuwvLr36VPPtsMXkAqGoKLB1kzz33XP3z888/X2CSdR122GG5++67s8MO\nO6RUKmXVqlU55ZRTMm3atKKjAQAAAAAA0JWcemoyaNCacWNjMnFicXkAqFoKLB3koIMOWv3zAw88\nUGCS1r3tbW/L/fffn9122y2lUikrVqzIiSeemHvuuafoaAAAAAAAAHQVgwYlp59eOXfttcny5cXk\nAaBqKbB0kKOOOmr1z3fccUeBSdo2YsSI/O53v8vIkSOTJK+99lqOO+64zJw5s+BkAAAAAAAAdBnj\nxlWOFy1KbrutmCwAVC0Flg6y//77Z6+99kq5XM7UqVPzl7/8pehIrRo8eHBmzJiRI444IkmyZMmS\nHHXUUXn00UcLTgYAAAAAAECXsPfeyXvfWzlXV1dMFgCqlgJLBzr//POTJA0NDfnXf/3X9b53+fLl\nueSSS/LmN785/fr1y1577ZWvfe1raWho6PCcAwYMyB133JFTTjklSbJ48eIceeSR+eMf/9jhawMA\nAAAAANAN1NZWjv/nf5KHHiomCwBVqVQul8tFh+iqVqxYkb333jvPPPNMSqVSfvazn+WEE05Y532r\nVq3K+973vtx///1p+bejVCrl6KOPztSpU1MqlTol8z//8z/ne9/7XpJk2LBhufvuu7PHHnukVCqt\nztb8c6lU6pSCDVSDhQsXZujQoRVzCxYsyJAhQwpKBAAAAAAAW5H6+mTEiGT+/DVzZ5yRXH99cZkA\nWK0anofagaUD9enTJ9/5zneSJOVyOaeddlpmz569zvu+/e1v57777kvSVA5pvsrlcu68885cddVV\nnZb5u9/9br7yla8kSZ5//vm8d+3t3AAAAAAAAGBT9eyZnH125dzNNyd/+1sxeQCoOgosHez444/P\n2LFjkyTLli3L+973vkyfPr3iPT/60Y9a/WxzieW6667r8Jwt/du//Vuuu+661NTUZP78+RW7rwAA\nAAAAAMBmOeuspFevNePly5MbbiguDwBVRYGlE9TV1eWQQw5Jkrzyyis55phjcuGFF+b1119Pkjz9\n9NOrjwgql8vrlEXmzp3buYGTnHHGGZkyZUr69u2bJJ12hBEAAAAAAABd1A47JB/+cOXchAlJY2Mx\neQCoKgosnaBXr16544478u53vztJ0tDQkO985zvZddddc8kll2zw8/379+/oiK069thjM23atLzh\nDW9IosQCAAAAAADAFqqtrRz/3/8lv/lNMVkAqCoKLJ1k4MCBmT59ek477bTVO6wsWrQoX//617Nq\n1apWd14pl8splUo59NBDi4icJDn44INz7733ZtiwYUmUWAAAAAAAANgCBx+cvO1tlXN1dcVkAaCq\nKLB0oj59+uSmm27Krbfemp122ilJVpdWSqVSxdWsV69e+fznP19I3mb77LNPfve732WvvfZap2QD\nAAAAAAAAG61UWncXljvvbNqJBYBuTYGlAB/+8Ifz9NNPZ/z48Rk5cuTq3VfWvvr3759JkyZl5MiR\nRUfOLrvskvvvvz8HHnigEgsAAAAAAACb76MfTbbdds24XE4mTCguDwBVoVTWRijcX//619x33315\n4oknsmDBgtTX12f33XfPqaeemh133LHoeBVef/31XHbZZXnhhReSJDfccEPBiaBzLFy4MEOHDq2Y\nW7BgQYYMGVJQIgAAAAAA2Ir9y78k3/3umvF22yXz5yf9+hWXCaAbq4bnoQosABuhGn5hAwAAAABA\nlzF3brLnnpVz11+fnHFGMXkAurlqeB7qCCEAAAAAAACgc+2xR/L+91fO1dU1HScEQLekwAIAAAAA\nAAB0vtrayvFDDyUzZxaTBYDCKbAAAAAAAAAAne+DH0x23bVyrq6umCwAFE6BBQAAAAAAAOh8NTXJ\nOedUzv3kJ8nChcXkAaBQCiwAAAAAAABAMcaMSXr3XjNeuTK57rri8gBQGAUWAAAAAAAAoBhDhiSn\nnFI5N3Fi0tBQTB4ACqPAAgAAAAAAABSntrZy/Oyzya9/XUwWAAqjwAIAAAAAAAAU54ADkne8o3Ku\nrq6YLAAURoEFAAAAAAAAKE6ptO4uLP/5n8ncucXkAaAQCixdwHbbbbfBa/vtty86JgAAAAAAALRu\n9Ohku+0q5yZMKCYLAIVQYOkCFi9enFdeeSWLFy9e7wUAAAAAAABVqV+/5MwzK+duuCF57bVi8gDQ\n6RRYupBSqdTqBQAAAAAAAFXvnHOajhNqtnhx8uMfF5cHgE6lwAIAAAAAAAAUb7fdkqOOqpyrq0vK\n5WLyANCpFFi6kHK5vM4FAAAAAAAAW43a2srxI48kDzxQTBYAOpUCCwAAAAAAAFAdjjoqGTGicq6u\nrpgsAHQqBRYAAAAAAACgOtTUJOeeWzl3223Jiy8WkweATqPAAgAAAAAAAFSPM89M+vZdM161Krn2\n2uLyANApFFgAAAAAAACA6rH99sno0ZVzEycm9fXF5AGgUyiwAAAAAAAAANWltrZyPH9+MnVqMVkA\n6BQKLAAAAAAAAEB1GTUqOeCAyrm6umKyANApFFgAAAAAAACA6rP2Lix33ZX88Y/FZAGgwymwAAAA\nAAAAANXnn/4pGTy4cm78+GKyANDhFFiAqvXkk09m0qRJueCCC3LwwQenf//+6dGjxzrXD3/4w6Kj\nAgAAAAAA7a1v32TMmMq5m25Kli4tJg8AHapn0QEAkuTPf/5zHnzwwdXXQw89lFdffbXiPaVSKaVS\nqaCEAAAAAABApzvnnOQb30jK5abxq68mkyY1zQPQpSiwAIX713/913zzm9+smGurrFL++7+glkql\nlMtlhRYAAAAAAOjK/uEfkmOPTaZOXTNXV5ecfXbiGQFAl+IIIaBwK1euTLKmtLJ2KaVcLq++AAAA\nAACAbqa2tnL8v/+b3HtvMVkA6DAKLEBVaVlWaVlacXwQAAAAAAB0U0cemey+e+VcXV0xWQDoMAos\nQNVYu6xSKpXSp0+fjBo1Kuecc05OPfXU1a8DAAAAAADdRI8eybhxlXNTpiTPP19MHgA6hAILUBVK\npVJ69uyZt771rTnjjDNSV1eXmTNnZsmSJZk5c2bq6ury3ve+t+iYAAAAAABAET7xiaRfvzXj+vrk\nmmsKiwNA++tZdACA0aNH5+STT87IkSPTt2/fouMAAAAAAADV5o1vTD72seTaa9fMff/7yec+l/Tq\nVVwuANqNHViAwr3rXe/KwQcfrLwCAAAAAAC0rba2cvz888nPf15MFgDanQILAAAAAAAAUP3e/vbk\n4IMr5+rqiskCQLtTYAEAAAAAAAC2DmvvwnL33cn//m8xWQBoVwosAAAAAAAAwNbhpJOSoUMr58aP\nLyYLAO1KgQUAAAAAAADYOvTpk5x1VuXcj36UvPpqMXkAaDcKLAAAAAAAAMDW4+yzkx4tHnMuXdpU\nYgFgq6bAAgAAAAAAAGw9dtklOf74yrm6uqRcLiYPAO1CgQUAAAAAAADYutTWVo6feCKZMaOQKAC0\nDwUWAAAAAAAAYOvy3vcmb3lL5VxdXTFZAGgXCiwAAAAAAADA1qVUSsaNq5z7+c+T+fOLyQPAFlNg\nAQAAAAAAALY+H/94MmDAmnFDQ3LNNcXlAWCL9Cw6ANCxVq5cmaeeeirz58/PkiVL8tprr6V///4Z\nNGhQdt555+y1117p1atX0TEBAAAAAAA2zbbbJqeemnz/+2vmrrkm+fznk969i8sFwGZRYIEu6H/+\n53/y85//PHfeeWcef/zxNDQ0tPnempqa7LvvvjnmmGNy/PHH513velcnJgUAAAAAANgCtbWVBZYX\nX0ymTElGjy4uEwCbxRFCdHtPP/10brnlllx44YU57LDDss0226RHjx5tXm9+85uLjtymW265JaNG\njcpBBx2UK664InPmzEljY2NKpVKbV2NjY+bMmZOvf/3rOeigg/LOd74zt956a9FfBQAAAAAAYMPe\n+tbkkEMq5+rqiskCwBaxAwvdyl/+8pc8+OCDmTVrVh588ME89NBDWbx4ccV7mosdW5M//vGPOfvs\ns3Pvvfe2mr9cLrf52bXf/9BDD2X06NGZOHFiJk6cmD333LPDcgMAAAAAAGyx2trk3nvXjO+7L5kz\nJ9lvv+IyAbDJFFjoshYsWJAHH3yworCycOHCive0VVZZu/DR/J71FUGKMmXKlHziE5/I0qVLW825\nMYWctd+fJDNmzMioUaPywx/+MCeccEIHJAcAAAAAAGgHJ56YvOlNyQsvrJmrq6s8WgiAqucIIbqs\n97///TnuuONy2WWX5de//nUWLVq0zvE5SVN5Y+1ra1FXV5eTTz45y5YtS6lUqsjf/B1b+35rX2v/\n9Wj+/NKlS3PSSSdlwoQJhX1HAAAAAACA9erdO/nkJyvnJk1K1tqFH4DqpsBCl7WpZZW131vtbrrp\nppx//vmrx2t/l7XLKeu7WpZWWt6r+bXzzjsvkyZN6sRvBwAAAAAAsAk++cmkpmbN+LXXkptuKi4P\nAJtMgYUurbmI0drOKq0VXFp+pprNnDkzn2zRJG6tvNL888EHH5yrr746s2fPzksvvZRVq1blpZde\nyqxZs/K9730v73rXu9YpvLS8Z6lUSmNjY84666w89NBDnfgtAQAAAAAANtJOOzUdJdTS+PFJY2Mx\neQDYZAosdAut7TqStL4jS7XvwLJkyZKMHj069fX1SVovr5RKpey111656667cu+99+bcc8/N2972\ntmy77bbp0aNHtt122+y///6pra3N7373u/znf/5ndt9999XfvbUSy8qVK3PKKadk6dKlnfyNAQAA\nAAAANkJtbeX4qaeSu+4qJgsAm0yBhS5t7Z1VWiurNF89evTInnvumUMPPXSdz1aTSy+9NM8880yS\ntssrRx55ZGbOnJnDDz98o+55xBFHZNasWXnPe96zzg40LXexmTdvXr70pS+1x9cAAAAAAABoX4cd\nluy7b+VcXV0xWQDYZAosdGltlVVKpVJGjBiRk08+OVdccUXuuuuuvPzyy/njH/9Y1QWNJ554IuPH\nj1+nXNPy2KCDDz44P//5zzNo0KBNuvc222yTX/7ylznggANa3YmmeY2rrroqTz755JZ9EQAAAAAA\ngPZWKiXjxlXOTZ2a/PnPxeQBYJP0LDoAdKTmEsbOO++cUaNGVVxvfOMbC0636b70pS+lvr6+orDS\nsmiy/fbb5yc/+Un69u27Wffv379/br311rz97W/PK6+8snqdloWW+vr6XHbZZZk8efKWfyEAAAAA\nAID2dNppyWc/myxZ0jRubEwmTky++tVicwGwQYUXWM4888yiI9BFnX/++dlhhx3yzne+M0OGDCk6\nzhabN29epkyZ0urRRs0Fk6985SsZNmzYFq0zfPjwfPnLX84FF1zQ5i4st912W772ta9l+PDhW7QW\nAAAAAABAuxo0KPn4xyuPDrr22uSLX0z69CkuFwAbVHiB5cYbb2z1gTybpnk3DtY444wzio7Qrq6+\n+uo0NDS0ufvKHnvskbPOOqtd1ho3blyuvPLKzJs3r9VdWBoaGlJXV5crrriiXdYDAAAAAABoN+PG\nVRZYFi5MbrstOfXU4jIBsEE9ig7QrPkBuWvTL7q+xsbG3HLLLevdfeXTn/50u5XBampqcv7557f6\nz1dzoeXHP/5xu6wFAAAAAADQrvbZJ3nPeyrnWhZaAKhKVVNgKZVKrs286Pp++9vf5vnnn0+yZred\nln/v+/btm4997GPtuubpp5+e3r17V6zVstDy17/+NTNmzGjXNQEAAAAAANpFbW3l+Pe/T2bPLiYL\nABulagosRe9isjVfdH1Tp05tdb5595UPfvCDGTBgQLuuue222+boo49e7z9jbeUCAAAAAAAo1PHH\nJzvtVDlnFxaAqlY1BRagbdOnT1/vbjsf/OAHO2Td9d23XC5n2rRpHbIuAAAAAADAFunZMzn77Mq5\nH/84eemlYvIAsEEKLFDlXnjhhTzxxBNJ0uZuKEcccUSHrH3kkUeuM9e860uSPP7443nxxRc7ZG0A\nAAAAAIAtctZZSa9ea8bLlyc33FBcHgDWq2fRAYD1mzlz5jpzLXdj2WWXXbLT2lvgtZNdd901O+64\nY1544YWUSqVWCzQPPvhgjj322C1ea9KkSXn22WfX+56HH3641flf/vKX+ctf/rLez+6666459dRT\nNzsfAAAAAACwlXnTm5KTTkpuuWXN3IQJyb/8S9LDf+cPUG0UWKDKzZ49u9X55p1QRo4c2aHrjxo1\nKlOnTm3zCKOHH364XQos1113Xe6+++6Nem/LIk25XM6UKVMyZcqU9X7m8MMPV2ABAAAAAIDupra2\nssDypz8l//mfydFHF5cJgFapFkKVe+SRR9b7+n777deh62/o/hvKtylKpVKHXQAAAAAAQDf07ncn\naz/rqKsrJgsA61U1O7B4wAyte+qpp9b752OPPfbo0PV33333Nl8rl8uZO3duu63V2hFFAAAAAAAA\nm61UatqF5eyz18z9+tfJvHnJiBHF5QJgHVWzA0u5XHZ10MXW7Zlnnlnv6+srmLSHtu7fXKrZUL5N\n0ZE7sCjJAQAAAABAN/WxjyXbbrtmXC4nEyYUlweAVhW+A8uhhx7qwTK04cUXX8zy5ctTKpXaLCMN\nGzasQzO0dv9yubz6z+2yZcuyaNGiDB48eIvW+e///u8t+jwAAAAAAECrBgxIPvGJ5Mor18xdd13y\n5S8n/foVFguASoUXWGbMmFF0BKhaf/3rXzf4nje96U0dmmFj7v/cc89tcYEFAAAAAACgw4wbV1lg\neeml5NZbk9NPLy4TABWq5gghYF1/+9vf1plruWPRNttsk169enVohn79+mXgwIHrrN3SSy+91KEZ\nAAAAAAAAtsieeyZHHlk5V1dXTBYAWqXAAlWstQJLS9tss02n5NjQOhvKCQAAAAAAULja2srxgw82\nXQBUBQUWqGKLFy9udb5cLidJBg0a1Ck5NrTOyy+/3Ck5AAAAAAAANtuxxybDh1fO2YUFoGoosEAV\ne/3119f7+oABAzolx8CBA1eXZlqzfPnyTskBAAAAAACw2WpqkrPPrpy75ZZk0aJi8gBQQYEFqtiq\nVavafK1UKqVnz56dkmND66xcubJTcgAAAAAAAGyRsWOT3r3XjFesSK6/vrg8AKymwAJVbEPFEAUW\nAAAAAACATTB0aHLyyZVzEyYkDQ3F5AFgNQUWqGKNjY3rfb2mpqZTcmxonQ3lBAAAAAAAqBq1tZXj\nZ55J7ryzkCgArKHAAlVsQzuf1NfXd0qODa3Tq1evTskBAAAAAACwxQ48MNl//8q5urpisgCwWuec\nPwJslt4tz2BsRWcVWFatWrXe17trgWXZsmXp37//Zn12wIAB7ZwGAAAAAADYKKVS0y4sY8eumfvN\nb5Knn0523724XADtYNmyZZ36ufakwAJVbH0FlnK5nJUrV3ZKjg0VWDZUtOmqRowYsdmfLZfL7ZgE\nAAAAAADYJB/5SHLRRcnLL6+ZmzAh+Y//KC4TQDsYOHBg0RE2myOEoIq1tUtHqVRKkixdurRTcixZ\nsmT1mq3Zmn8JAgAAAAAA3VD//skZZ1TOXX998tprxeQBwA4sUM2222679b7+6quvdkqODa2zoZxd\n1bx58zJkyJCiYwAAAAAAAJvj3HOTb397zXjx4uTmm5MxY4rLBLCFNncThIULF27RCRTtQYEFqtj2\n22+/3tcXL17cKTleeeWV9b6+oZxd1YABA9rcJQcAAAAAAKhyu++eHHVU8pvfrJmrq0vOPDNZz870\nANVsc59fvlYFO1A5Qgiq2ODBg9eZK5fLq39esWJFh+/C8vLLL2flypXrrN1SazkBAAAAAACqXm1t\n5fjhh5Pf/76YLADdnAILVLHhw4dv8D0vvvhih2bYmPvvsssuHZoBAAAAAACgQxx9dPIP/1A5V1dX\nSBSA7k6BBarYgAEDVh/PU2pjq7pnn322QzM888wz68y1zDJ06ND069evQzMAAAAAAAB0iJqa5Nxz\nK+duuy1ZsKCYPADdmAILVLkRI0a0eXRPksydO7dD13/66adbnS+XyymVShkxYkSHrg8AAAAAANCh\nzjwz6dNnzXjlyuTaa4vLA9BNKbBAldt3333X+/qTTz7Zoetv6P4bygcAAAAAAFDVBg9ORo+unJs4\nMamvLyYPQDelwAJVbuTIket9/eGHH+7Q9WfPnr3e1/fff/8OXR8AAAAAAKDD1dZWjv/yl+RXvyom\nC0A3pcACVa6tAkupVEq5XM4jjzyy3iOGtkRDQ0MeffTRlEqlNt+jwAIAAAAAAGz13vnOpqulurpi\nsgB0UwosUOVGjRqVvn37JsnqIknLwsrSpUvz0EMPdcjaM2fOzGuvvVaxZssyS79+/TJq1KgOWRsA\nAAAAAKBTrb0Ly/TpyZNPFpMFoBtSYIEq16dPn7z73e9e7y4r06ZN65C1p0+f3up8uVxOqVTKIYcc\nkl69enXI2gAAAAAAAJ3qlFOS7bevnBs/vpgsAN2QAgtsBd7//ve3+Vq5XM6UKVM6ZN2f/vSn6339\nyCOP7JB1AQAAAAAAOl3fvsmYMZVzN96YLF1aSByA7kaBBbYCJ5100jpzzbugJMns2bMzd+7cdl3z\n8ccfz2OPPZZSqdTq8UGlUikf/vCH23VNAAAAAACAQp1zTtLieUhefTWZPLm4PADdiAILbAXe/OY3\n58ADD6woraztqquuatc1r7zyylbnmzMcfPDBGT58eLuuubVZtmxZqxcAAAAAALCVGjEi+eAHK+fq\n6pK//8e+AF1BtT7nVGCBrcSZZ57Z6nzzDik33HBDXnzxxXZZ67nnnsukSZPaLMskyRlnnNEua23N\nRowYkf+fvTsNsrOu8wX+PVlJOqyShE3ZQQOMW5RRB4VR2UYWRS7IvgRCcq7OUlNTc19M3Zk7L67z\nYqyaqjmdhX0RGUAEBxGuAgq4sSpcwCDSwzZIZ5Al6RjIcu6L3NB5kg50Ot39P+f051P1VPH7cfrp\n7+FFv3m+/J9p06ZtcgEAAAAAAG2sXq/Ojz2W3HdfmSwAI2CgZ5x777136VgKLNAuzjzzzMyYMSNJ\n/6t8mhu0fVesWJG//du/HZbf9Td/8zdZuXJl5XdsWGaZOXNmzjjjjGH5XQAAAAAAAC3lyCOT/far\n7hqNMlkAxhAFFmgTkydPzp//+Z9XSitJ/yt9ms1mrrrqqtxyyy1b9Xuuv/76fOtb33r7ngP9rr/8\ny7/MxIkTt+r3dIKenp4sX758kwsAAAAAAGhj48Yl8+ZVd9/+dvLSS2XyAAyzgZ5x9vT0lI6lwALt\n5C/+4i/y3ve+9+0iyYbWF07OPvvsPPDAA0O6/89//vPMmTNnwHuvt+eee+ZrX/vakO7fabq6uga8\nAAAAAACANnfuucmUKf3z6tXJJZeUywMwjFr1OacCC7SRKVOm5Bvf+Mbb88avEqrVannjjTdy5JFH\n5nvf+94W3fuWW27J0Ucfnb6+vso911tfmvnGN76RyZMnb83XAAAAAAAAaG077picdlp1t2jRuiIL\nACNiQukAMJLuvffePPXUU1v0M0uWLHnHf798+fJceumlW5zl8MMPz7777rvFP7exk046Kaeddlqu\nvfba1Gq1t09eWV8wWV9iOf744/OVr3wlf/d3f5cDDzxws/d78skn8w//8A+5/vrrNynEJP0nu9Rq\ntZxxxhk58cQTt/o7AAAAAAAAtLx6PdnwmdCLLya33JKcdFK5TAAdrNbc+JgF6CDnnnturrzyytIx\nUqvVcvnll+ess84alvv19fVl9uzZWbJkyWZLJxvuPvzhD+eTn/xk9t5770ybNi3Lli1LT09PfvKT\nn+RXv/rVgD+zfrd+njVrVu6///5MnTp1WL5Du1m6dGlmzJhR2fX29mb69OmFEgEAAAAAACPuk59M\nfvaz/vmII5K77ocM/QoAACAASURBVCqXB2CEtMLzUCewMCasL2cM1jv1uobzXkPV1dWVO+64I4cd\ndlief/75Sq6NT2NJkkceeSSPPPLIgPcaTAFmr732yh133DFmyysAAAAAAMAYVa9XCyx335088UQy\na1a5TAAdalzpADBa1hc7BnONxn221vve977cfffd2W+//SonpWz8WqENyywDXRtm3bD0sv7nDjjg\ngNx1113ZfffdR/T7AAAAAAAAtJwvfznZ+PSB7u4yWQA6nAILY8Y7lThG6hpp++yzTx544IEcddRR\n71haGex/l41//phjjsn999+fvfbaa8S/CwAAAAAAQMuZPDmZM6e6u+qqZNmyMnkAOpgCC2PClpya\nMtzXSNt+++1z22235YorrsjMmTM3eZXQO+UY6DO1Wi0zZ87MVVddlVtvvTXbbbfdiH8HAAAAAACA\nlnXRRcm4DR6rLluWXH11uTwAHUqBhY5X4uSV0T6JJUnOPPPMPPPMM2k0Gpk1a9Ymv39z5ZoNP3fQ\nQQelu7s7PT09Of3000clNwAAAAAAQEt73/uS446r7hqNZBT+R2aAsaTWHI0jIoBR9/TTT+f222/P\nww8/nMcffzwvvvhili1blhUrVmTq1KnZdttts8cee2TWrFn5yEc+kmOOOSb77rtv6dgta+nSpZkx\nY0Zl19vbm+kbv/cSAAAAAADoPD/4QXLkkdXd3Xcnhx9eJA7AcGuF56EKLACD0Ap/sAEAAAAAgELW\nrk0+8IHkqaf6d1/+cnLDDeUyAQyjVnge6hVCAAAAAAAAAO9k3Lhk/vzq7jvfSV58sUwegA6kwAIA\nAAAAAADwbs4+O5k6tX9esyZZvLhcHoAOo8ACAAAAAAAA8G522CE544zqbvHi5K23yuQB6DAKLABD\n1NfXN+AFAAAAAAB0qHq9Ov/ud+teJQTQRlr1OWet2Ww2S4cAaHVLly7NjBkzBvVZf1YBAAAAAKCD\nHXZYct991fmee8rlAdhCtVptUJ/r7e3N9OnTRzhNPyewAAAAAAAAAAzWxqew3Htv8thjZbIAdBAF\nFoAh6unpyfLlyze5AAAAAACADvalLyUzZ1Z3jUaZLABDMNAzzp6entKxFFgAhqqrq2vACwAAAAAA\n6GCTJiUXXljdXXNN8vrrZfIAbKFWfc6pwAIAAAAAAACwJebOTcaP75/7+pIrryyXB6ADKLAAAAAA\nAAAAbIndd09OPLG66+5Oms0yeQA6gAILAAAAAAAAwJaq16vzkiXJnXeWyQLQARRYAAAAAAAAALbU\n4Ycns2ZVd41GkSgAnUCBBQAAAAAAAGBL1WrJ/PnV3Xe/mzz3XJk8AG1OgQUAAAAAAABgKM48M5k2\nrX9euzZZtKhcHoA2psACAAAAAAAAMBTbbZecdVZ1d/HFyZtvlskD0MYUWAAAAAAAAACGauPXCC1d\nmtx4Y5ksAG1MgQUAAAAAAABgqA46KDn88Oqu0SgSBaCdKbAAAAAAAAAAbI16vTr/7GfJI4+UyQLQ\nphRYAAAAAAAAALbGCScku+1W3TmFBWCLKLAAAAAAAAAAbI2JE5O5c6u7a69NXn21TB6ANqTAAgAA\nAAAAALC1LrggmTChf/7DH5IrrigWB6DdKLAAAAAAAAAAbK1dd01OOqm66+5O1q4tkwegzSiwAAAA\nAAAAAAyHer06P/108oMflMkC0GYmvPtHABhIX19fpk6dusm+q6urQBoAAAAAAKC4P/mT5JBDksce\n6981GslRR5XLBLCRvr6+Qe1GW63ZbDZLhwBodUuXLs2MGTMG9Vl/VgEAAAAAYAxbuDCZN69/rtWS\nZ55J9tqrWCSADdVqtUF9rre3N9OnTx/hNP28QggAAAAAAABguJxxRrLddv1zs7mu1ALAO1JgARii\nnp6eLF++fJMLAAAAAAAYw6ZNS84+u7q75JJk5coyeQA2MtAzzp6entKxFFgAhqqrq2vACwAAAAAA\nGOPmz6/Or7ySXH99mSwAG2nV55wKLAAAAAAAAADD6f3vTz772equ0SiTBaBNKLAAAAAAAAAADLd6\nvTrff3/y4INlsgC0AQUWAAAAAAAAgOF23HHJe99b3TmFBWCzFFgAAAAAAAAAhtuECcncudXdddcl\nr7xSJg9Ai1NgAQAAAAAAABgJc+YkEyf2zytXJpddVi4PQAtTYAEAAAAAAAAYCTNnJiefXN0tWJCs\nWVMmD0ALU2ABAAAAAAAAGCn1enXu6Uluv71MFoAWpsACAAAAAAAAMFI+8YnkQx+q7hqNMlkAWpgC\nCwAAAAAAAMBIqdU2PYXl9tuT3/62TB6AFqXAAgAAAAAAADCSTjst2WGH/rnZTBYsKJcHoAUpsAAA\nAAAAAACMpKlTk3PPre4uuyxZsaJMHoAWpMACAAAAAAAAMNLmzavOr76aXHddmSwALUiBBQAAAAAA\nAGCk7b9/ctRR1V2jse51QgAosAAAAAAAAACMinq9Oj/8cPKLX5TJAtBiFFgAAAAAAAAARsOxxyZ7\n7lndNRplsgC0GAUWAAAAAAAAgNEwfnwyb151d/31SW9vmTwALUSBBQAAAAAAAGC0nH9+Mnly//zW\nW8mll5bLA9AiFFgAAAAAAAAARsvOOyennFLdLVyYrFlTJg9Ai1BgAQAAAAAAABhN9Xp1fu655NZb\ny2QBaBEKLABD1NfXN+AFAAAAAADwjj7+8WT27Oqu0SiTBRhzWvU5Z63ZbDZLhwBodUuXLs2MGTMG\n9Vl/VgEAAAAAgHd1xRXJuedWd0uWJAccUCQOMHbUarVBfa63tzfTp08f4TT9nMACAAAAAAAAMNpO\nOSXZaafqbsGCMlkAWoACC8AQ9fT0ZPny5ZtcAAAAAAAA72rKlOT886u7yy9PWuA1HkBnG+gZZ09P\nT+lYCiwAQ9XV1TXgBQAAAAAAMCjz5iUbvsrj9deTa68tlwcYE1r1OacCCwAAAAAAAEAJe++dHHts\ndddoJM1mmTwABSmwAAAAAAAAAJQyf351/tWvkp/+tEwWgIIUWAAAAAAAAABKOfroZJ99qrtGo0wW\ngIIUWAAAAAAAAABKGTcumTevurvxxuTll8vkAShEgQUAAAAAAACgpPPOS7bZpn9etSq5+OJyeQAK\nUGABAAAAAAAAKGmnnZKvfKW6W7QoWb26TB6AAhRYAAAAAAAAAEqr16vzCy8k3/1umSwABSiwAAAA\nAAAAAJT20Y8mhx5a3TUaZbIAFKDAAgAAAAAAANAKNj6F5a67kiefLJMFYJQpsAAAAAAAAAC0gpNP\nTnbeubrr7i6TBWCUKbAAAAAAAAAAtIJttknmzKnurrwyWbasTB6AUaTAAgAAAAAAANAqLrooGbfB\nY9xly5JrrimXB2CUKLAAAAAAAAAAtIo990y+8IXqrtFIms0yeQBGiQILAAAAAAAAQCup16vz448n\n99xTJgvAKFFgAQAAAAAAAGgln/tcsv/+1V2jUSYLwChRYAEAAAAAAABoJePGJfPnV3ff+U7yn/9Z\nJg/AKFBgAQAAAAAAAGg155yTTJ3aP69enSxeXCwOwEhTYAEAAAAAAABoNTvskJx+enW3eHGyalWZ\nPAAjTIEFAAAAAAAAoBXV69X5pZfWvUoIoAMpsAAAAAAAAAC0og9+MPnUp6q7RqNMFoARpsACAAAA\nAAAA0Ko2PoXlnnuSxx4rkwVgBCmwAAAAAAAAALSqk05KZs6s7rq7y2QBGEEKLAAAAAAAAACtatKk\n5IILqrurr05ef71MHoARosACMER9fX0DXgAAAAAAAMNq7txk/Pj+ua8vueqqcnmAttaqzzlrzWaz\nWToEQKtbunRpZsyYMajP+rMKAAAAAAAMu5NOSm66qX9+//uTJ55IarVymYC2VBvk343e3t5Mnz59\nhNP0cwILAAAAAAAAQKur16vzr3+d3HVXmSwAI0CBBWCIenp6snz58k0uAAAAAACAYXfEEckHPlDd\nNRplsgBtbaBnnD09PaVjKbAADFVXV9eAFwAAAAAAwLCr1ZL586u7W25JXnihTB6gbbXqc04FFgAA\nAAAAAIB2cNZZybRp/fPatcmiReXyAAwjBRYAAAAAAACAdrDddsmZZ1Z3F1+cvPVWmTwAw0iBBQAA\nAAAAAKBdbPwaoZdfTr797TJZAIaRAgsAAAAAAABAuzj44OTTn67uGo0yWQCGkQILAAAAAAAAQDup\n16vzT36S/OpXZbIADBMFFgAAAAAAAIB28sUvJrvuWt05hQVocwosAAAAAAAAAO1k4sTkwguru29+\nM3nttTJ5AIaBAgsAAAAAAABAu7nwwmTChP55xYrkiiuKxQHYWgosAAAAAAAAAO1mt93WvUpoQ93d\nydq1ZfIAbCUFFgAAAAAAAIB2VK9X59/8JvnhD8tkAdhKCiwAAAAAAAAA7ejTn04OOqi6azTKZAHY\nSgosAAAAAAAAAO2oVtv0FJZbb02efbZMHoCtoMACAAAAAAAA0K7OOCPZdtv+ee3aZOHCcnkAhkiB\nBQAAAAAAAKBdbbttcvbZ1d0llyQrV5bJAzBECiwAAAAAAAAA7Wz+/Or8X/+V3HBDmSwAQ6TAAgAA\nAAAAANDOPvCB5E//tLprNMpkARgiBRYAAAAAAACAdlevV+df/CJ56KEyWQCGQIEFAAAAAAAAoN0d\nf3yyxx7VnVNYgDaiwAIAAAAAAADQ7iZMSObOre6+9a3klVfK5AHYQgosAAAAAAAAAJ3ggguSiRP7\n55Urk8svL5cHYAsosAAAAAAAAAB0gpkzky9/ubpbsCBZu7ZMHoAtoMACAAAAAAAA0Cnq9er8zDPJ\n7beXyQKwBRRYAAAAAAAAADrFJz+ZfPCD1V2jUSYLwBZQYAEAAAAAAADoFLXapqewfP/7605iAWhh\nCiwAAAAAAAAAneS005Ltt++fm81kwYJyeQAGQYEFAAAAAAAAoJN0dSXnnlvdXXZZ8oc/lMkDMAgK\nLAAAAAAAAACdZv786vz73yfXXVcmC8AgKLAAAAAAAAAAdJr990+OPLK6azTWvU4IoAUpsAAAAAAA\nAAB0onq9Oj/0UHL//WWyALyLCaUDALSrvr6+TJ06dZN9V1dXgTQAAAAAAAAb+bM/S/bcM3n22f5d\nd3dy6KHlMgHF9fX1DWo32mrNpjOiAN7N0qVLM2PGjEF91p9VAAAAAACgZXz968n/+B/98+TJyQsv\nJDvvXC4TUFStVhvU53p7ezN9+vQRTtPPK4QAAAAAAAAAOtX55yeTJvXPb76ZXHppuTwAm6HAAjBE\nPT09Wb58+SYXAAAAAABAy5g+PTnllOpuwYJkzZoyeYDiBnrG2dPTUzqWAgvAUHV1dQ14AQAAAAAA\ntJT586vzs88mt91WJgtQXKs+51RgAQAAAAAAAOhkhx6afOQj1V2jUSYLwGYosAAAAAAAAAB0slot\nqderuzvuSH7zmzJ5AAagwAIAAAAAAADQ6U49Ndlxx+puwYIyWQAGoMACAAAAAAAA0OmmTk3OO6+6\nu/zyZMWKMnkANqLAAgAAAAAAADAWzJu37nVC6732WnLtteXyAGxAgQUAAAAAAABgLNh33+Too6u7\nRiNpNsvkAdiAAgsAAAAAAADAWFGvV+df/jL52c/KZAHYgAILAAAAAAAAwFhx9NHJ3ntXd41GmSwA\nG1BgAQAAAAAAABgrxo9P5s2r7m64IXn55TJ5AP4/BRYAAAAAAACAseS885JttumfV61KLrmkXB6A\nKLAAAAAAAAAAjC3veU9y6qnV3cKFyerVZfIARIEFAAAAAAAAYOyp16vzCy8k//7vZbIARIEFAAAA\nAAAAYOyZPTv5+Meru0ajTBaAKLAAAAAAAAAAjE0bn8Jy553Jr39dJgsw5imwAAAAAAAAAIxF/+2/\nJTvvXN11d5fJAox5CiwAAAAAAAAAY9E22yTnn1/dXXllsnx5mTzAmKbAAgAAAAAAADBWXXRRUqv1\nz2+8kVxzTbk8wJilwAIAAAAAAAAwVu21V/KFL1R3jUbSbBaJA4xdCiwAAAAAAAAAY1m9Xp3/7/9N\n7r23TBZgzFJgAQAAAAAAABjLPv/5ZL/9qrtGo0wWYMxSYAEAAAAAAAAYy8aNS+bPr+5uuil56aUy\neYAxSYEFAAAAAAAAYKw755xkypT+efXqZPHiYnGAsUeBBQAAAAAAAGCs23HH5PTTq7tFi5JVq8rk\nAcYcBRYAAAAAAAAAknq9Or/0UnLzzWWyAGOOAgsAAAAAAAAAyYc+lHzyk9Vdo1EmCzDmKLAAAAAA\nAAAAsM7Gp7D8+MfJ44+XyQKMKQosAAAAAAAAAKxz0knJjBnVXXd3mSzAmKLAAgAAAAAAAMA6kycn\nF1xQ3V11VfLGG2XyAGOGAgsAAAAAAAAA/S68MBm3waPk5cuTq68ulwcYExRYAAAAAAAAAOj3vvcl\nxx9f3TUaSbNZJg8wJiiwAAAAAAAAAFBVr1fnJ59MfvSjIlGAsUGBBQAAAAAAAICqz342OfDA6q7R\nKJMFGBMUWAAAAAAAAACoqtWS+fOru5tvTl54oUweoOMpsAAAAAAAAACwqbPPTrq6+uc1a5LFi8vl\nATqaAgsAAAAAAAAAm9p+++SMM6q7xYuTt94qkwfoaAosAAAAAAAAAAysXq/OL7+c3HRTmSxAR1Ng\nAQAAAAAAAGBghxySHHZYdddolMkCdDQFFgAAAAAAAAA2b+NTWO67L3n00TJZgI6lwAIwRH19fQNe\nAAAAAAAAHeWLX0x22aW6cwoLtK1Wfc5ZazabzdIhAFrd0qVLM2PGjEF91p9VAAAAAACg4/zP/5n8\nr//VP0+dmrz4YrLDDuUyAUNSq9UG9bne3t5Mnz59hNP0cwILAAAAAAAAAO/swguT8eP75xUrkiuv\nLJcH6DgKLABD1NPTk+XLl29yAQAAAAAAdJzdd1/3KqENdXcna9eWyQMM2UDPOHt6ekrHUmABGKqu\nrq4BLwAAAAAAgI5Ur1fnp55K7ryzTBZgyFr1OacCCwAAAAAAAADv7jOfSQ46qLprNMpkATqOAgsA\nAAAAAAAA765WS+bPr+7+/d+T554rkwfoKAosAAAAAAAAAAzOmWcm227bP69dmyxcWC4P0DEUWAAA\nAAAAAAAYnG23Tc46q7q75JLkzTfL5AE6hgILAAAAAAAAAIO38WuEli5NbrihTBagYyiwAAAAAAAA\nADB4s2YlRxxR3TUaZbIAHUOBBQAAAAAAAIAtU69X55//PHn44TJZgI6gwAIAAAAAAADAljnhhGT3\n3as7p7AAW0GBBQAAAAAAAIAtM2FCMndudXfttcnvf18mD9D2FFgAAAAAAAAA2HIXXJBMnNg/r1yZ\nXH55uTxAW1NgAQAAAAAAAGDL7bJLctJJ1d2CBcnatWXyAG1NgQUAAAAAAACAoanXq/Nvf5vccUeZ\nLEBbU2ABAAAAAAAAYGg+9ankj/6ouuvuLpMFaGsKLAAAAAAAAAAMTa226Sks3/te0tNTJg/QthRY\nAAAAAAAAABi6009Pttuuf242k4ULy+UB2pICCwAAAAAAAABD19WVnHNOdXfppcnKlUXiAO1JgQUA\nAAAAAACArTN/fnV+5ZXk3/6tTBagLSmwAAAAAAAAALB1Djww+dznqrtGo0wWoC0psAAAAAAAAACw\n9er16vzAA+sugEFQYAEAAAAAAABg633hC8l731vdOYUFGCQFFgAAAAAAAAC23oQJyUUXVXfXXZf8\n13+VyQO0FQUWAAAAAAAAAIbHnDnJpEn985tvJpddVi4P0DYUWAAAAAAAAAAYHjNmJCefXN0tWJCs\nWVMmD9A2FFgAAAAAAAAAGD71enX+j/9Ivv/9IlGA9qHAAgAAAAAAAMDw+eM/Tj784equ0SiTBWgb\nCiwAAAAAAAAADJ9abdNTWG6/PXn66TJ5gLagwAIAAAAAAADA8PrKV5Idd6zuFiwokwVoCwosAAAA\nAAAAAAyvqVOTc8+t7i67LFmxokweoOUpsAAAAAAAAAAw/ObNq86vvZZ861tlsgAtT4EFAAAAAAAA\ngOG3337J0UdXd41G0myWyQO0NAUWAAAAAAAAAEZGvV6dH3kk+fnPy2QBWpoCCwAAAAAAAAAj45hj\nkr32qu4ajSJRgNamwAIAAAAAAADAyBg/Ppk3r7q74Yakt7dMHqBlKbAAAAAAAAAAMHLOOy+ZPLl/\nfuut5JJLyuUBWpICCwAAAAAAAAAjZ+edk1NPre4WLkxWry6TB2hJCiwAAAAAAAAAjKx6vTo//3xy\n661lsgAtSYEFAAAAAAAAgJH1sY+tuzbUaJTJArQkBRYAAAAAAAAARt7Gp7D88IfJkiVlsgAtR4EF\nAAAAAAAAgJF3yinJe95T3XV3l8kCtBwFFgAAAAAAAABG3jbbJOefX91dcUWyfHmROEBrUWABAAAA\nAAAAYHRcdFFSq/XPb7yRfPOb5fIALUOBBQAAAAAAAIDRsffeyZ/9WXXXaCTNZpk8QMtQYAEAAAAA\nAABg9NTr1fmxx5Kf/KRMFqBlKLAAAAAAAAAAMHqOPDLZb7/qrtEokwVoGQosAAAAAAAAAIyeceOS\nefOqu29/O/nd78rkAVqCAgsAAAAAAAAAo+ucc5JttumfV61KLr64WBygPAUWAAAAAAAAAEbXTjsl\np51W3S1alKxeXSYPUJwCCwAAAAAAAACjr16vzi++mNxyS5ksQHEKLAAAAAAAAACMvo98JPnjP67u\nGo0yWYDiFFgAAAAAAAAAKGPjU1juvjt54okyWYCiFFgAAAAAAAAAKOPkk5Pp06u77u4yWYCiFFgA\nAAAAAAAAKGPy5GTOnOruqquSZcvK5AGKUWABAAAAAAAAoJyLLkrGbfDoetmy5Oqry+UBilBgAQAA\nAAAAAKCc970vOe646q7RSJrNMnmAIhRYAAAAAAAAACirXq/OTzyR/PjHZbIARSiwAAAAAAAAAFDW\nZz+bHHBAdddolMkCFKHAAgAAAAAAAEBZ48Yl8+dXd9/5TvLii2XyAKNOgQVgiPr6+ga8AAAAAAAA\nGIKzz06mTu2f16xJFi8ulwc6VKs+56w1m81m6RAArW7p0qWZMWPGoD7rzyoAAAAAAMAQzZ1bLa3s\nskvy7LPJpEnlMkGHqdVqg/pcb29vpk+fPsJp+jmBBQAAAAAAAIDWUK9X59/9bt2rhICOp8ACMEQ9\nPT1Zvnz5JhcAAAAAAABD9Ed/lPzJn1R3jUaZLNChBnrG2dPTUzpWJpQOANCuurq60tXVVToGAAAA\nAABAZ6nXk/vu65/vvTd57LHkkEPKZYIOMtAzzhUrVhRIUuUEFgAAAAAAAABax5e+lMycWd05hQU6\nngILAAAAAAAAAK1j0qTkwguru2uuSV5/vUweYFQosAAAAAAAAADQWubOTcaP75/7+pIrryyXBxhx\nCiwAAAAAAAAAtJbdd09OPLG66+5Oms0yeYARp8ACAAAAAAAAQOup16vzkiXJnXeWyQKMOAUWAAAA\nAAAAAFrP4Ycns2ZVd41GkSjAyFNgAQAAAAAAAKD11GrJ/PnV3Xe/mzz3XJk8wIhSYAEAAAAAAACg\nNZ15ZjJtWv+8dm2yaFG5PMCIUWABAAAAAAAAoDVtt11y1lnV3cUXJ2++WSYPMGIUWAAAAAAAAABo\nXRu/Rmjp0uTGG8tkAUaMAgsAAAAAAAAAreugg5LDD6/uuruLRAFGjgILAAAAAAAAAK2tXq/OP/1p\n8stflskCjAgFFgAAAAAAAABa2wknJLvtVt01GmWyACNCgQUAAAAAAACA1jZxYnLhhdXdN7+ZvPpq\nmTzAsFNgAQAAAAAAAKD1XXhhMmFC//yHPyRXXFEsDjC8FFgAAAAAAAAAaH277pp86UvVXXd3snZt\nmTzAsFJgAQAAAAAAAKA91OvV+emnkx/8oEwWYFgpsAAAAAAAAADQHg47LDn44Oqu0SiTBRhWCiwA\nAAAAAAAAtIdabdNTWG69NfmP/ygSBxg+CiwAAAAAAAAAtI8zzki2265/bjaThQvL5QGGhQILAAAA\nAAAAAO1j2rTk7LOru0suSVauLJMHGBYKLAAAAAAAAAC0l/nzq/MrryTXX18mCzAsFFgAAAAAAAAA\naC/vf3/y2c9Wd41GmSzAsFBgAQAAAAAAAKD91OvV+f77kwcfLJMF2GoKLAAAAAAAAAC0n+OOS977\n3urOKSzQthRYAAAAAAAAAGg/EyYkc+dWd9ddl7zySpk8wFZRYAEAAAAAAACgPc2Zk0yc2D+vXJlc\ndlm5PMCQKbAAAAAAAAAA0J5mzkxOPrm6W7AgWbOmTB5gyBRYAAAAAAAAAGhf9Xp17ulJbr+9TBZg\nyBRYAAAAAAAAAGhfn/hE8qEPVXeNRpkswJApsAAAAAAAAADQvmq1TU9huf325Le/LZMHGBIFFgAA\nAAAAAADa22mnJTvs0D83m8mCBeXyAFtMgQUAAAAAAACA9jZ1anLuudXdZZclK1aUyQNsMQUWAAAA\nAAAAANrfvHnV+dVXk+uuK5MF2GIKLAAAAAAAAAC0v/33T446qrprNNa9TghoeQosAAAAAAAAAHSG\ner06P/xw8otflMkCbBEFFgAAAAAAAAA6w7HHJnvuWd01GmWyAFtEgQUAAAAAAACAzjB+fDJvXnV3\n/fVJb2+ZPMCgKbAAAAAAAAAA0DnOPz+ZPLl/fuut5NJLy+UBBkWBBQAAAAAAAIDOsfPOySmnVHcL\nFyZr1pTJAwyKAgsAAAAAAAAAnaVer87PPZd873tlsgCDosACAAAAAAAAQGf5+MeT2bOru0ajTBZg\nUBRYAAAAAAAAAOg88+dX5//zf5KnniqTBXhXCiwAAAAAAAAAdJ5TT0122qm6W7CgTBbgXSmwAAAA\nAAAAANB5pkxJzjuvurv88qSvr0we4B0psAAAAAAAAADQmebNS2q1/vn115Nrry2XB9isCaUDALyb\nJ554Io8//nhefvnl9PX1ZcqUKZk+fXo+8IEP5JBDDsn48eNLRwQAAAAAAKAV7bNPcswxyW239e8a\njWTOnGqxvos3oAAAIABJREFUBShOgQVoSU8++WT+5V/+JTfffHN6e3s3+7ntt98+xx13XL761a/m\nYx/72CgmBAAAAAAAoC3U69UCy69+lfz0p8mnPlUuE7AJrxACWsqyZcsyb968HHLIIVm8eHGWLl2a\nWq222euNN97INddck0MPPTSnnnrqO5ZdAAAAAAAAGIOOPnrdSSwbajTKZAE2S4EFaBnPPPNMDj30\n0CxatCjNZjO1/39sW7PZ3OyV5O0yy/XXX5/Zs2fnl7/8ZcmvAQAAAAAAQCsZNy6ZN6+6u/HG5OWX\ny+QBBqTAArSE559/PkcccUSWLFnydnElydtFls1d60ssyboiywsvvJDPf/7zeeKJJ0p8DQAAAAAA\nAFrReecl22zTP69alVx8cbk8wCYUWIDiVq1alS9+8Yt5/vnnK/tms5lx48bl1FNPzW233Zbe3t6s\nWrUqr7zySu68887MmTMnkyZN2qTE8sorr+T444/PsmXLRvurAAAAAAAA0Ip22in5ylequ0WLktWr\ny+QBNqHAAhT393//93n44Yc3OXllxowZufvuu/PNb34zRx11VN7znvdk3Lhx2WGHHXL44Ydn0aJF\nefDBB7PvvvtWSixJ0tPTk6997Wuj/VUAAAAAAABoVfV6dX7hheS73y2TBdiEAgtQ1DPPPJNvfOMb\nm5RXpk2blh/+8Ic57LDD3vHnDz744Nx9993ZZZdd3t6tf7XQ1Vdfnfvvv3/EsgMAAAAAANBGPvrR\n5NBDq7tGo0wWYBMKLEBRX//61/Pmm2++PTebzdRqtfzzP/9zDj744EHdY4899shll122ySkszWYz\n//iP/ziseQEAAAAAAGhjG5/CctddyZNPlskCVCiwAMW8+uqrufrqq98+fWV9AWXWrFm54IILtuhe\nRx99dI466qi377H+FJbbbrstv/nNb4Y3OAAAAAAAAO3p5JOTnXeu7rq7y2QBKhRYgGJuuOGGyukr\nybriyV/91V8N6X6b+7lrrrlmSPcDAAAAAACgw2yzTTJnTnV35ZXJsmVl8gBvU2ABirnxxhs32U2e\nPDknn3zykO73uc99Lrvuuuvb8/pTWG644YYhZwQAAAAAAKDDXHRRMm6DR+XLliX+h2goToEFKOLN\nN9/MfffdV3l9UK1Wy6c//elMmzZtSPes1Wo59thj336N0HpLlizJiy++uNWZAQAAAAAA6AB77pl8\n4QvVXaORbPSMCRhdCixAEQ888EBWrly5yf6II47Yqvtu7ud//OMfb9V9AQAAAAAA6CD1enV+/PHk\nnnvKZAGSKLAAhTz88MMD7j/60Y9u1X1nz5494P6RRx7ZqvsCAAAAAADQQT73uWT//au7RqNMFiCJ\nAgtQyKOPPjrgftasWVt13/322y+TJk3aZP/YY49t1X0BAAAAAADoIOPGJfPnV3ff+U7yn/9ZJg+g\nwAKU8cwzz2yymzJlSnbbbbetuu+4ceOy1157vT3XarU0m80Bfx8AAAAAAABj2DnnJFOn9s+rVyeL\nFxeLA2OdAgtQxLPPPptarVbZ7brrrsNy79122y3NZrOye+6554bl3gAAAAAAAHSIHXZITj+9ulu8\nOFm1qkweGOMUWIAient73/7nZrOZWq2WXXbZZVjuPdB9Vq1alddee21Y7g8AAAAAAECHqNer80sv\nrXuVEDDqFFiAUbdq1ar09fVtst9+++2H5f6bu8/vf//7Ybk/AAAAAAAAHeKDH0w+9anqrtEokwXG\nuAmlAwAj56233spTTz2VF154IcuWLcuKFSsyderUbLvtttljjz1y4IEHZuLEiaOea9myZQPup02b\nNiz333bbbbfo9wIAAAAAADCG1evJT37SP99zT/LYY8khh5TLBGOQAgt0mF/84he5+eab8/3vfz+P\nP/541qxZs9nPjh8/PgcddFCOPfbYnHDCCTn00ENHJeNbb7014H7SpEnDcv/NlXLefPPNYbk/AAAA\nAAAAHeSkk5KZM5OXX+7fdXcnCxaUywRjkFcIMaY9/fTTue666/LXf/3X+cxnPpPtttsu48aN2+y1\nzz77lI68Wdddd11mz56dT3ziE/mnf/qnPProo1m7dm1qtdpmr7Vr1+bRRx/N17/+9XziE5/Ixz72\nsVx//fUjnnXVqlUD7idMGJ5O3eYKLJv7vQAAAAAAAIxhkyYlF1xQ3V19dfL662XywBjlBBbGjOef\nfz4PPPBAHnzwwTzwwAN56KGH8tprr1U+s77Y0U5+/etfZ+7cubn33nsHzN9sNjf7sxt//qGHHsqp\np56ahQsXZuHChTnggANGJPO4cQN359auXTss99/cfTb3ewEAAAAAABjj5s5N/vf/Tta/3aCvL7nq\nquSrXy2bC8YQBRY6Um9vbx544IFKYWXp0qWVz2yurLJx4WP9Z96pCFLKTTfdlHPOOSfLly8fMOdg\nCjkbfz5JfvSjH2X27Nm56qqrcuKJJw577s29Kmj16tXDcv/N3We4XlEEAAAAAABAh9ljj+SEE5Kb\nburfdXcn//2/J232P8BDu1JgoSMdeeSRefTRR9+eB1tWaSeNRiNf+9rXkqz7fgMVUQbz/Tb8bLPZ\nfPu/1fLly3PSSSflX//1XzNv3rxhzb7NNtsMuP/DH/4wLPdfsWLFgPspU6YMy/0BAAAAAADoQPV6\ntcDy618nd9+d/OmflssEY4j3adCR1pcwNiyurC9obHgN9Pl2cOWVV75dXkk2PUVl4zLKO13rf3bj\n0sv6f/fVr34111xzzbDm33bbbTN+/PhN9suWLRuW+2/uPjvuuOOw3B8AAAAAAIAOdMQRyfv/H3t3\nHh9Vdf9//D1ZIJBNQcKeEFZl376iQRBFUMEiilUREfEhi+RXRMFqW0VwadVarWjAXaACKkpZpGpl\nV6qyL4YlqCEgBAgkkIUlJLm/P3DCTDIz2WbunUlez8djHjDnzpzzOZcHn7mZ+8k5lzu3JSVZEwtQ\nA1HAgmrLXohRslhFcl3g4vgef7ZhwwaNHTu2+Lmr4hX73xMSEvTGG29oy5YtyszM1Pnz55WZmalN\nmzZpxowZ6tWrV6mCF8c+bTabioqKNGbMGG3evNmr86hXr57Tc8MwdPz4ca/07a6fkmMCAAAAAAAA\nAAAAxWw2acIE57YlS6Rff7UmHqCGoYAF1Z6rVUck1yuy+PsKLDk5Obr77rtVUFAgyXXxis1mU7t2\n7bRy5Up98803euihh9SlSxdFR0crKChI0dHR6tatmxITE/W///1PX331lVq3bl08d1dFLPn5+brr\nrruUm5vrtbk0bdq01OovR44c8UrfR48eLdVWr1491a5d2yv9AwAAAAAAAAAAoJq67z4pPPzi88JC\n6a23rIsHqEEoYEG1VXJlFVfFKvZHUFCQ2rZtq759+5Z6rz956qmntH//fknui1cGDBigDRs2qF+/\nfuXq84YbbtCmTZt03XXXlVqBxnEVm9TUVE2bNs0b05AktWjRolTbsWPHdO7cuSr3nZqaWqoQJz4+\nvsr9AgAAAAAAAAAAoJqLjpZGjnRue+cdKT/fmniAGoQCFlRb7opVbDab4uPj9fvf/14vvviiVq5c\nqaysLO3Zs8erBRretnv3bs2cObNUcY3jtkEJCQlavHixIiMjK9R3VFSUli5dqiuvvNLlSjT2MV5/\n/XXt3bu3ahP5Tbt27Uq1GYahffv2Vanf7OxsZWRkOLXZbDa1bdu2Sv0CAAAAAAAAAACghkhMdH5+\n9Kj02WfWxALUICFWBwD4ir0Io1mzZurZs6fT49JLL7U4uoqbNm2aCgoKnApWHAtN6tevr48//lhh\nYWGV6r9u3br65JNP1LVrV506dap4HMeCloKCAj3zzDOaN29elefTrVs3l+3bt29Xx44dK93v1q1b\nKzQeAAAAAAAAAAAA4KRjR6lvX2nduottSUnS8OHWxQTUAKzAgmpp4sSJWrZsmY4cOaK0tDR99tln\n+tOf/qQBAwYEZPFKamqqFi1a5HJrI3uByfPPP68mTZpUaZzY2FhNnz691FZC0sVVWBYuXKgDBw5U\naRxJuvLKK122f/fdd1Xq9/vvv6/QeAAAAAAAAAAAAEApJVdhWb9e2r7dmliAGoICFlRLo0eP1qBB\ng9SgQQOrQ/GKN954Q4WFhZLkcvWVNm3aaMyYMV4Za8KECWrZsqXTGI4FLYWFhUpKSqryOC1atFCL\nFi2Kn9sLZL7++usq9evq/XXr1tXVV19dpX4BAAAAAAAAAABQg9x2m9S4sXObF+6RAXCPAhbAzxUV\nFemjjz7yuPrKo48+6vJ4ZQQHB2vixIkeV2GZP3++V8YaNGhQqXF++ukn7dixo1L9ZWRkaO3atU6F\nNzabTTfccINCQtgxDQAAAAAAAAAAAOUUGiqNHevcNm+edPKkNfEANQAFLICfW7VqldLT0yW5Xn0l\nLCxMI0aM8OqYo0aNUq1atZzGciw0OXz4sNasWVPlce655x6X7W+99Val+nv33XeLV6opzzgAAAAA\nAAAAAACAW2PHSo6/JH36tDR7tmXhANUdBSyAn1u2bJnLdvvqIoMHD1Z4eLhXx4yOjtbNN9/schWW\nsuKqiISEBLVv396pMMcwDM2ePVsHDx6sUF85OTl67bXXSq1EExMTo1tvvbXKsQIAAAAAAAAAAKCG\nadLkwlZCjmbOlIqKrIkHqOYoYAH83IoVKzxuDzR48GCfjOupX8Mw9PXXX3tlnMcee6xU29mzZzVu\n3LgK9TN58mQdO3as+Lm9wOfhhx8uXk0GAAAAAAAAAAAAqJDEROfn+/ZJK1ZYEwtQzVHAAvixI0eO\naPfu3ZLkdjWUG264wSdjDxgwoFSbvShEkpKTk3X06NEqjzNy5Eh17ty51CosX331lSZNmlSuPv7x\nj3/o3XffLVXo06xZMz388MNVjhEAAAAAAAAAAAA1VN++UocOzm1JSdbEAlRzFLAAfmzDhg2l2hyL\nNJo3b66mTZv6ZOy4uDg1bty41JiONm7cWOVxgoKC9NZbbynEYf9A+3gzZszQoEGD9PPPP7t8b3p6\nukaOHKnHHnvMKUZ7oc0bb7yhOnXqVDlGAAAAAAAAAAAA1FA2W+lVWD7/XEpLsyYeoBqjgAXwY1u2\nbHHZbi/Q6N69u0/H79mzp9uVXyRp69atXhmnV69eeuGFF2QYhtN4NptNX375pdq2bas+ffrokUce\n0TPPPKMpU6ZowIABiouL07x581wWrzzyyCP63e9+55X4AAAAAAAAAAAAUIPde68UGXnxeVGR9Oab\n1sUDVFMhZb8EgFW2bdvm8Xjnzp19On7nzp21bNkyt8fLiq8iHn30UWVkZOill15y2k7IXpyyfv16\nrV+/3uk9jscd3zNy5Ei9/PLLXosNAAAAAAAAAAAANVhkpDRqlPTGGxfb3n1XevppKSzMuriAaoYV\nWAA/lpKS4nb7Hklq06aNT8dv3bq122OGYWjfvn1eHe9vf/ubZs6cqbCwMNlstuIVWeyrqpR8OB6X\npJCQEE2bNk2zZ8/2alwAAAAAAAAAAACo4SZMcH5+/Li0cKE1sQDVFAUsgB/bv3+/x+OeCky8wV3/\n9qKasuKrjHHjxunHH3/U7bffruDgYJfFKq6KWgYOHKhNmzbpqaee8npMAAAAAAAAAAAAqOGuuEK6\n/nrntqQka2IBqim2EAL81NGjR3X27Nni4g1XmjRp4tMYXPVvLxyRpLy8PB0/flyXXXaZV8dt2bKl\nFi5cqAMHDmjRokVau3atdu3apSNHjujMmTMKCwvTZZddpiuuuEJ9+vTR0KFDdfnll3s1BgAAAAAA\nAAAAAMBJYqK0atXF5z/8IG3eLPXoYV1MQDVCAQvgpw4fPlzmaxo1auTTGMrT/6FDh7xewGIXGxur\nSZMmadKkST7pHwAAAAAAAAAAACi3IUOkZs2kX3+92JaUJL3/vnUxAdUIWwgBfurEiROl2uwrn0hS\nVFSUQkNDfRpDnTp1FBERUWpsR5mZmT6NAQAAAAAAAAAAAPALISHSuHHObQsWSC7u6wGoOApYAD/l\nqoDFUVRUlClxlDVOWXECAAAAAAAAAAAA1caYMZLjL5mfPSt98IF18QDVCAUsgJ86efKky3bDMCRJ\nkZGRpsRR1jhZWVmmxAEAAAAAAAAAAABYrmFD6Y47nNtmzZKKiqyJB6hGKGAB/NSZM2c8Hg8PDzcl\njoiIiOKiGVfOnj1rShwAAAAAAAAAAACAX0hMdH7+yy/Sl19aEwtQjVDAAvip8+fPuz1ms9kUEhJi\nShxljZOfn29KHAAAAAAAAAAAAIBfSEiQunRxbktKsiYWoBqhgAXwU2UVhlDAAgAAAAAAAAAAAFjA\nZiu9CssXX1xYiQVApVHAAvipojL2yQsODjYljrLGKStOAAAAAAAAAAAAoNq55x4pOvric8OQZs2y\nLh6gGqCABfBTZa18UlBQYEocZY0TGhpqShwAAAAAAAAAAACA3wgPl0aPdm57/33pzBlr4gGqAQpY\nAD9Vq1Ytj8fNKmA5f/68x+MUsAAAAAAAAAAAAKBGeugh5+eZmdLHH1sTC1ANeF7iAYBlPBWwGIah\n/Px8U+Ioq4ClrEKb6iwvL09169at1HvDw8O9HA0AAAAAAAAAAABM1batNGCA9PXXF9uSkqT777cs\nJCAvL8/U93kTBSyAn3JX4GCz2WQYhnJzc02JIycnRzabze3xiIgIU+LwR/Hx8ZV+r2EYXowEAAAA\nAAAAAAAAlkhMdC5g2bRJ2rBBuvJK62JCjRbI92/ZQgjwU/Xq1fN4PDs725Q4yhqnrDgBAAAAAAAA\nAACAauuWW6TYWOe2pCRrYgECHCuwAH6qfv36Ho+fPHnSlDhOnTrl8XhZcVZnqampatCggdVhAAAA\nAAAAAAAAwCrBwdL48dKf/3yx7eOPpX/8Q7rsMuviQo1V2Z08MjIyqrQDhTdQwAL4qctcfKAZhlG8\nnc+5c+eUnZ2tqKgon8WQlZWl/Pz84m2LyhtnTREeHu52qycAAAAAAAAAAADUEA8+KE2bJuXnX3h+\n7pz03nvS449bGhZqpsrevzx9+rSXI6k4thAC/FRsyaXGXDh69KhPYyhP/82bN/dpDAAAAAAAAAAA\nAIBfa9BAuvNO57ZZs6TCQmviAQIUBSyAnwoPDy/ense+6kpJaWlpPo1h//79pdocY4mJiVGdOnV8\nGgMAAAAAAAAAAADg9xITnZ+npUn/+Y81sQABigIWwI/Fx8e73bpHkvbt2+fT8X/66SeX7fatjKze\nAw0AAAAAAAAAAADwC716Sd27O7clJVkTCxCgKGAB/FiHDh08Ht+7d69Pxy+r/7LiAwAAAAAAAAAA\nAGoEm630KixffSX5+BfSgeqEAhbAj3UvWaVZwtatW306/pYtWzwe79atm0/HBwAAAAAAAAAAAALG\n3XdLl17q3DZrljWxAAGIAhbAj7krYLHZbDIMQ9u2bfO4xVBVFBYWavv27bLZbG5fQwELAAAAAAAA\nAAAA8Ju6daUHHnBu++AD6fRpa+IBAgwFLIAf69mzp8LCwiSpuJDEsWAlNzdXmzdv9snYGzZs0Onf\nPkztYzoWs9SpU0c9e/b0ydgAAAAAAAAAAABAQHrooQvbCdmdPCnNn29dPEAAoYAF8GO1a9dW7969\nPa6y8vXXX/tk7BUrVrhsNwxDNptNffr0UWhoqE/GBgAAAAAAAAAAAAJSq1bSTTc5tyUlST7aVQGo\nTihgAfzcwIED3R4zDEOLFi3yybiffvqpx+MDBgzwybgAAAAAAAAAAABAQEtMdH6+bZv03XfWxAIE\nEApYAD83bNiwUm32VVAkacuWLdq3b59Xx0xOTtbOnTtls9lcbh9ks9l0xx13eHVMAAAAAAAAAAAA\noFq46SYpPt65LSnJmliAAEIBC+DnWrZsqauuusqpaKWk119/3atjvvbaay7b7TEkJCQoNjbWq2MC\nAAAAAAAAAAAA1UJwsPTQQ85tCxdKR49aEw8QIChgAQLAAw884LLdvkLKBx98oKNe+sA7dOiQPvzw\nQ7fFMpI0evRor4wV6PLy8lw+AAAAAAAAAAAAUMM98IAUFnbx+fnz0rvvWhcP4MBf73NSwAIEgJEj\nRyomJkbSxa187Fv7SNLp06f1xBNPeGWsP/7xjzp79qzTGI7FLA0bNtS9997rlbECXXx8vCIiIko9\nAAAAAAAAAAAAUMPVry/dfbdz25tvSgUF1sQDOHB1jzO+5LZXFqCABQgAtWvX1sMPP+xUtCJd3NLH\nMAzNnTtXS5YsqdI4n3zyiRYsWFDcp6uxHnnkEYWGhlZpHAAAAAAAAAAAAKDaS0x0fv7rr9KyZdbE\nAgQACliAADFp0iQ1b968uJDEkb3gZNSoUdq4cWOl+v/+++/14IMPuuzbLi4uThMnTqxU/9VRamqq\ncnNzSz0AAAAAAAAAAAAA9ewpXXmlc1tSkjWxAA5c3eNMTU21OiwKWIBAUadOHb3yyivFz0tuJWSz\n2ZSdna2BAwdq+fLlFep7yZIluummm4r3NXO3+sorr7yi2rVrV2Ua1Up4eLjLBwAAAAAAAAAAACCp\n9CosK1dKe/ZYEwvwG3+9zxlidQCAr3zzzTdKSUmp0Hv27t3r8Xhubq7ee++9CsfSr18/tWrVqsLv\nK2nYsGG65557NH/+fNlstuKVV+wFJvYiliFDhmj48OF66qmn1K5dO7f97d69W9OnT9cnn3xSqiBG\nuriyi81m07333quhQ4dWeQ4AAAAAAAAAAABAjXHnndLkydLx4xfbZs6UZsywLibAT9mMkkstANXE\n6NGjNWfOHKvDkM1m0wcffKD77rvPK/3l5eWpZ8+e2rt3r9uiE8e2bt26KSEhQfHx8YqIiFBOTo5S\nU1O1fv16bd++3eV77G325+3bt9eGDRtUt25dr8whEGVkZCgmJsap7dixY2rQoIFFEQEAAAAAAAAA\nACAgPPGE9OKLF59HRUmHDkkREdbFBJTgD/dDWYEF1Z69OKO8PNV0ebOvygoPD9dXX32lPn366ODB\ng05xlVyNRZK2bt2qrVu3uuyrPAUwLVq00FdffVWji1cAAAAAAAAAAACAShs/XnrpJcl+Ty47W/rw\nwwvtAIoFWR0AYAZ7YUd5Hmb0U1WxsbFavXq1Wrdu7bRSSslthRyLWVw9HGN1LHqxv69t27ZatWqV\nmjZt6tP5AAAAAAAAAAAAANVWixbSLbc4tyUlXSxoASCJAhbUEJ6KOHz18LWWLVtq48aNuvHGGz0W\nrZT3vJR8/80336wNGzaoRYsWPp8LAAAAAAAAAAAAUK0lJjo///FH6ZtvrIkF8FMUsKDaq8iqKd5+\n+Fp0dLT+85//aPbs2WrYsGGprYQ8xeHqNTabTQ0bNtTcuXP1+eefKyoqyudzAAAAAAAAAAAAAKq9\nAQOk1q2d25KSrIkF8FMUsKBas2LlFbNXYpGkkSNH6pdfflFSUpLat29fanx3xTWOr+vQoYNmzpyp\n1NRUjRgxwpS4AQAAAAAAAAAAgBohKEiaMMG5bdEiKT3dmngAP2QzzFgmAoCpfvrpJ3355ZfasmWL\nkpOTdejQIeXk5Oj06dOqW7euIiMj1axZM7Vv317du3fXzTffrFatWlkdtl/LyMhQTEyMU9uxY8fU\noEEDiyICAAAAAAAAAABAQMnKkpo2lc6cudg2bZr09NOWhQTY+cP9UApYAKAc/CFhAwAAAAAAAAAA\nIMCNGSO9++7F502aSPv3S6GhloUESP5xP5QthAAAAAAAAAAAAAAAMEPJbYQOH5aWLLEmFsDPUMAC\nAAAAAAAAAAAAAIAZunWTrr7auS0pyZpYAD9DAQsAAAAAAAAAAAAAAGZJTHR+vmaNlJxsSSiAP6GA\nBQAAAAAAAAAAAAAAs9xxh9SggXPbzJnWxAL4EQpYAKCS8vLyXD4AAAAAAAAAAAAAt2rXlsaMcW6b\nO1fKzrYmHtQ4/nqf02YYhmF1EADg7zIyMhQTE1Ou15JWAQAAAAAAAAAA4NGBA1J8vFRUdLHtjTdK\nby8E+IDNZivX644dO6YGJVcL8iFWYAEAAAAAAAAAAAAAwEyxsdKQIc5tSUkSvyiNGowCFgCopNTU\nVOXm5pZ6AAAAAAAAAAAAAGUqudrK7t3SmjWWhIKaxdU9ztTUVKvDUojVAQBAoAoPD1d4eLjVYQAA\nAAAAAAAAACAQ9e8vtWsn7d17sS0pSbruOutiQo3g6h7n6dOnLYjEGSuwAAAAAAAAAAAAAABgNptN\nmjDBuW3xYunXX62JB7AYBSwAAAAAAAAAAAAAAFhh1CjJcTWMwkLp7betiwewEAUsAAAAAAAAAAAA\nAABYITpauvde57a335by862JB7AQBSwAAAAAAAAAAAAAAFglMdH5+dGj0qJF1sQCWIgCFgAAAAAA\nAAAAAAAArNKpk9Snj3NbUpI1sQAWooAFAAAAAAAAAAAAAAArlVyF5dtvpR07rIkFsAgFLAAAAAAA\nAAAAAAAAWOm226RGjZzbWIUFNQwFLAAAAAAAAAAAAAAAWKlWLWnsWOe2Dz+UTp60Jh7AAhSwAAAA\nAAAAAAAAAABgtbFjpeDgi89Pn5bmzLEuHsBkFLAAAAAAAAAAAAAAAGC1pk0vbCXkaOZMqajImngA\nk1HAAgAAAAAAAAAAAACAP0hMdH6ekiKtXGlNLIDJKGABAAAAAAAAAAAAAMAfXHut1KGDc1tSkjWx\nACajgAUAAAAAAAAAAAAAAH9gs0kTJji3LVsmHThgTTyAiShgAQAAAAAAAAAAAADAX4wcKUVGXnxe\nVCS9+aZ18QAmoYAFAAAAAAAAAAAAAAB/ERkp3Xefc9u770rnzlkTD2ASClgAoJLy8vJcPgAAAAAA\nAAAAAIAqKbmNUEaGtHChNbGg2vHX+5w2wzAMq4MAAH+XkZGhmJiYcr2WtAoAAAAAAAAAAIAqu/56\nafXqi8+vukr67jvr4kG1YbPZyvW6Y8eOqUGDBj6O5qIQ00YCAAAAAAAAAAAAAADlk5joXMDy/ffS\nli0rcFw0AAAgAElEQVRS9+6lXmoYhtLS0nTs2DGdOXNGZ8+elSSFhYWpTp06iomJUVxcXLkLFwAr\nUMACAJWUmppqasUhAAAAAAAAAAAAapBbb5WaNpUOHbrYlpQk4913lZqaqs2bN2vTpk3avHmztmzZ\noqysLI/dXXrpperRo4fTIz4+nqKWGig3N7dUW0ZGhuLj4y2I5iK2EAKAcnC1hZDZS2YBAAAAAAAA\nAACghnn2WWnqVEnSIUnvBAfrnQYNdPjIkVIvrSWpsaQ6ksJ+azsr6YykdEn5Lrpv0qSJxowZo7Fj\nx6pJkyY+mAAChT/cD6WABQDKwR8SNgAAAAAAAAAAAGoWIz1dq5s108yiIi2WVPhbey1JnSX1cHh0\n/K3dlXxJP0ra/Ntjk6SduljUEhwcrNtuu00TJkxQv379WJWlBvKH+6FBpo0EAAAAAAAAAAAAAADK\nZBiG5s+fr/bXX6/+RUX6TBeKV/pKWiApW9JGSW9KGiOpu9wXr+i3Y91/e+2bulDAkv1bX30kFRYW\n6tNPP9X111+v9u3ba/78+WItDJiNAhYAAAAAAAAAAAAAAPxEenq6br31Vo0YMUJ79uxRhKQJurBi\nylpJd0uq7YVxav/W1zpJOyQ9JClC0p49ezRixAgNHTpU6enpXhgJKB8KWAAAAAAAAAAAAAAAsJhh\nGPrXv/6l9u3ba9myZQqV9Kykw5KSdGGLIF/pJGnmb2M9KylU0tKlS9WhQwd9+OGHrMYCU1DAAgAA\nAAAAAAAAAACAheyrrtx33306efKkekjaIulJSZEmxhH525hbJPWQlJWVpZEjR7IaC0xBAQsAAAAA\nAAAAAAAAABZJTk5Wz549i1ddeU7Sd/Ltiitl6fhbDI6rsfTs2VO7du2yMCpUdxSwAAAAAAAAAAAA\nAABggY0bN6pv3746fPiwrpC0WdJfdKFoxGqhurAay2ZJV0g6fPiw+vbtq40bN1obGKotClgAAAAA\nAAAAAAAAADDZxo0b1b9/f2VmZur/JH0jqZPVQbnQSRdi+z9JJ06cUP/+/SligU9QwAIAAAAAAAAA\nAAAAgImSk5N10003KScnR9dKWimpvtVBeVBfF2LsKyknJ0c33XQT2wnB6yhgAQAAAAAAAAAAAADA\nJOnp6Ro4cKAyMzN1paRlkiKtDqocIiV9rgsrsWRmZmrAgAFKT0+3OCpUJxSwAAAAAAAAAAAAAABg\nAsMwNG7cOB0+fFhXSPqPAqN4xS5S0heSrpB0+PBhjR8/XoZhWBwVqgsKWAAAAAAAAAAAAAAAMMG8\nefO0bNkyhUr6WP69bZA79XUh9lBJS5cu1bx58yyOCNUFBSwAAAAAAAAAAAAAAPhYenq6Jk6cKEl6\nWlIna8Opkk6Spv7294kTJ7KVELyCAhYAAAA/lpeXJ5vNJpvNpry8PKvDAVADkHcAmI28A8Bs5B0A\nZiPvAJAubh2UlZWlHpIe9+FYeZJsvz18mXUel9RdUlZWFlsJwSsoYAEAAAAAAAAAAAAAwIcWLFig\nZcuWqZak2ZJCLI7HG0J1YS72rYQWLFhgbUAIeBSwAAAAAAAAAAAAAADgI4Zh6Nlnn5UkPSWpo7Xh\neFUnXZiTJD333HOswoIqoYAFAAAAAAAAAAAAAAAfWbNmjfbs2aMISQ9bHYwPPCwpQtLu3bu1du1a\nq8NBAKOABQAAAAAAAAAAAAAAH0lKSpIk3Scp0tpQfCJK0sjf/m6fK1AZFLAAAAAAAAAAAAAAAOAD\nhw4d0uLFiyVJD1kciy/Z5/bvf/9bhw8ftjQWBC4KWACgkvLy8lw+AAAAAAAAAAAAAEl65513VFhY\nqD6SOlodjA91knSNpMLCQr3zzjtWh4My+Ot9TgpYAKCS4uPjFRERUeoBAAAAAAAAAAAAGIZRXMwx\nweJYzGCf4zvvvCPDMCyNBZ65uscZHx9vdVgUsAAAAAAAAAAAAAAA4G2pqak6fPiwakm6zepgTHC7\npFBd2DZp//79FkeDQBRidQAAEKhSU1PVoEEDq8MAAAAAAAAAAACAH9q8ebMkqbOk2taGYoraujDX\nzbowd39Y0QOu5ebmlmrLyMiw/N+MFVgAoJLCw8NdPgAAAAAAAAAAAAB7AUsPi+Mwk32u9rnDP/nr\nfU4KWAAAAAAAAAAAAAAA8LJNmzZJqpkFLPa5AxVBAQsAAAAAAAAAAAAAAF5kGIa2bNkiqWYWsGze\nvFmGYVgaCwIPBSwAAAAAAAAAAAAAAHhRWlqasrKyVEtSR6uDMVFHSaGSsrKylJaWZnU4CDAhVgcA\nAIGgqKioVNvx48ctiARATZOXl1f894yMDJ0+fdrCaADUBOQdAGYj7wAwG3kHgNnIO0DNtHfvXklS\njKRTJo+d5/D3DElmZ50YSYckpaSkKDw83OTRUVmu7n26ukfqSzaDdXsAoEy7d+9W+/btrQ4DAAAA\nAAAAAAAAAEyxa9cuXXHFFaaNxxZCAAAAAAAAAAAAAAAAsBQFLAAAAAAAAAAAAAAAALAUBSwAAAAA\nAAAAAAAAAACwlM0wDMPqIADA3xUUFGjfvn1ObfXq1VNQEHWAAAAAAAAAAAAAAAJbUVGRMjMzndra\ntGmjkJAQ02KggAUAAAAAAAAAAAAAAACWYukAAAAAAAAAAAAAAAAAWIoCFgAAAAAAAAAAAAAAAFiK\nAhYAAAAAAAAAAAAAAABYigIWAAAAAAAAAAAAAAAAWIoCFgAAAAAAAAAAAAAAAFiKAhYAAAAAAAAA\nAAAAAABYigIWAAAAAAAAAAAAAAAAWIoCFgAAAAAAAAAAAAAAAFiKAhYAAAAAAAAAAAAAAABYigIW\nAAAAAAAAAAAAAAAAWIoCFgAAAAAAAAAAAAAAAFiKAhYAAAAAAAAAAAAAAABYigIWAAAAAAAAAAAA\nAAAAWIoCFgAAAAAAAAAAAAAAAFgqxOoAAECS8vPzlZKSol9//VU5OTk6ffq06tatq8jISDVr1kzt\n2rVTaGio1WH6paNHjyolJUVZWVnKzs6WJEVFRenSSy9V27Zt1bBhQ4sjBPwTeQeA2cg7AMxG3gFg\nNvIOALORdwBYgdwD+A4FLAAs88MPP2jx4sX64osvlJycrMLCQrevDQ4OVocOHTRo0CDdeuut6tWr\nl4mR+pdTp07ps88+03/+8x+tXr1aWVlZHl9fr1499evXT4MHD9btt9+u6OhokyIF/A95B4DZyDvl\nl5GRoZ07d+rHH39UcnKy9u7dqxMnTujkyZM6efKkzp49q7CwMIWHh6tRo0Zq2rSp2rdvry5duuja\na69V8+bNrZ4C4BfIO+WTl5dXnG/S0tJ04MABHTx4UIcOHVJubq5Onz6t06dPq6CgQLVr11bdunUV\nExOjxo0bq127durQoYMSEhLUuXNn2Ww2q6cDWIq8A8Bs5B0AViD3eE9ubq7Wrl2r77//Xnv37lVK\nSoqOHz9eXAxUu3ZtRUREKCIiQs2bN1fLli3VqlUrde3aVb169VL9+vWtngJ8yGYYhmF1EABqlo8+\n+kgvv/yytmzZUtxWni/8HNNVjx499Nhjj+nOO+/0SYz+6NChQ/rrX/+quXPnKi8vT1L5zpt08dyF\nh4fr/vvv1xNPPKGmTZv6LFbA35B3qiY3N1dbtmzRpk2btHHjRm3atEk///yzx/fMnj1b9913n0kR\nAv6HvFO2zMxMrV69WitXrtSqVauUkpJS6jXuzpmrH2PbtWun4cOHa9SoUYqLi/N6vIC/I++4d+7c\nOW3YsEHr16/XDz/8oB07dmj//v0uc0lZ56zke+rVq6ehQ4fq3nvvVb9+/bwZNuD3yDvm+Otf/6on\nn3yyXK/dv3+/YmNjfRwRYB3yjmvTp0/X9OnTLRv/mmuu0bp16ywbH/A1co93nDt3Tp9++qnef/99\nffPNNyooKHA6XpHvgFq3bl38i9s33HCDwsPDfRIzrEEBCwDT7NmzR+PGjdM333zj8oPIUzoq+Xr7\na/v166c333xTbdu29W6wfsQwDL3yyiuaPn26cnNz3Z4Ld1y9PiIiQtOnT9ekSZP4bUFUa+Sdijt3\n7py2bdtWXKiyceNG7d27V0VFRcWvKU/e+OCDDyhgQY1E3vHs119/1cKFC/XJJ59ow4YNxXP01vWI\nYRgKDg7WXXfdpaefflpt2rTxSr+APyPvuLdjxw6NGzdOW7duVX5+fnG7t38Gsp+3Tp06adq0abrt\nttu82j/gb8g75klJSVHXrl117tw5j68zDEM2m02pqakUsKBaIu94Zi9gsep73t69e1PAgmqJ3OMd\n586d04wZM/Tiiy8qMzNTknd+JrOf01q1aumDDz7Q8OHDq9wn/EOQ1QEAqBkWLVqkK6+80umD3jCM\n4od04QPL3aPk6+3ta9asUc+ePbV48WLL5uZL2dnZGjx4sB577DHl5eWVOheS5/Pm7vV5eXmaPHmy\nhgwZouzsbGsmB/gYeadsBQUF2rp1q9555x2NHTtW3bt3V2RkpK6++mpNnDhRc+fO1Z49e5zm7+rc\nOJ5TaqNRk5F33Hv99dfVu3dvxcXFafLkyfrhhx8kye3cy8vV+S0qKtL8+fOLbyR7WtIXCHTkHc8O\nHjyoH374QefPny81b0kVzjkl31fyHO/cuVPDhg1T//79deDAAa/NA/An5B1zjR07VmfPnpXk+mcw\nfv5CTUDeqRh3ucLbD/tYQHVF7vGO5cuXq23btnr88ceVlZXl9r5Vebg7/+fPn1dGRoZP4oc1KGAB\n4HNJSUn6/e9/X1yA4eoDpjwXxSU/2Ozvz83N1bBhwzRr1izL5ugLx48f19VXX60vv/yy1Ad6WTeR\nXX2QO77W3rZ8+XJdc801xVWvQHVB3imf5cuXq0ePHho3bpzeffddbdu2TYWFhR5v8PAlKeAaecez\nP/7xj/r+++8luS5acWyv6DWOu77Onz+vZ555Rv369VN6erqp8wXMQN6pGFfXMBXJOe7ylatzuXr1\nanXu3FlffPGF6fMEfIm8Y663335b69atKz6vQE1E3vEOTzfZK/uw9wtUR+Seqjt37pwSExP1u9/9\nTr/++qvH74Ec28v7c5gd10jVEwUsAHxqzpw5mjhxYvFzxw8Txw/58lwUuyrGcOznD3/4gz788EMT\nZ+c72dnZGjhwoHbv3u3yAkkqXczi6bx5ulj68ccfNXDgQOXk5FgzWcDLyDsVV56bxu5eC4C8U1Ge\nvsxxdaysaxx3/UgXztv69evVu3dvpaamWjZnwNvIOxVXnmud8p4vVz+f2fu1t2VnZ2vIkCGaN2+e\nyTMFfIO8Y64jR47o8ccfd8ox/AyGmoa84z3ludFelQdQnZB7qu7UqVMaMGCAZs2a5fZ+VlW+AyLv\nVH8hVgcAoPrasGGDxo4dW/zc1Qe9/e8JCQm65557lJCQoBYtWigyMlI5OTn65Zdf9L///U/z5s3T\nDz/8UOoD3vGDraioSGPGjNEVV1yhHj16mDtZLxs1apS2bdvmdJ4k5wsdm82mSy65RMOHD9egQYPU\ntWtXXXbZZTIMQ8ePH9e2bdu0fPlyffTRRzp16lTxe+wcn2/dulWjR4/Wp59+au5EAS8j71Seqwt/\nd1+Q8kMCcBF5p+Jc3ewt2X7ZZZepW7duatmypZo3b67IyEiFhoYqKytLJ06cUHJystavX6/c3Nzi\nfkp+QeTYtn//fvXv318//PCDGjRoYNJMAd8g71SOu3wjSVFRUWrTpo3atWunRo0aKSoqSlFRUapT\np45yc3OVnZ2tjIwMbd++XTt37nTKPfb+XOWewsJCPfDAA4qJidGAAQNMmingfeQd802YMEGnTp0q\nlV+AmoK8410UwAHlQ+6puoyMDF1//fVKTk72eH/L8Xnbtm3VpUsXtW7dWvXr11d4eLjOnj2rkydP\nKisrSz///LO2bt2qw4cPF/fFdVH1ZjP4FwbgAzk5OerSpYvS0tIkuf6gt9lsatu2rWbNmqV+/fqV\n2eeKFSs0YcIE/fzzz8Vtrn7rLT4+Xtu2bVNERISXZmOuGTNmaNKkSR4/3IOCgjRp0iRNnTpVUVFR\nHvs7deqUnn76ab3++uvF593dv8eMGTOUmJjom4kBPkbeqbglS5botttu8/hFhqfClpLHHM/zBx98\noPvuu8+7AQN+hrxTfnXq1FF+fn7x85JzqlOnjm688UbdfPPNuuGGG9SiRYsy+ywqKtLq1av10ksv\nacWKFS5vJDuOIUkJCQnFS/EDgYi8UzHLly/X7373O0kX5xIaGqru3burT58+uuaaa3TllVeqYcOG\nFep37dq1mjNnjj755BOdOXPG7c9Z0oVzGRMTox07digmJsZLMwPMQ94x36JFi3THHXeUulHm7mt8\nx3+H1NRUxcbGmhku4HXknYqbPn26pk+f7jJv2Gw2vfPOOz4dv1GjRho0aJBPxwB8jdxTdadPn9a1\n116rzZs3u70PZf97ly5d9OCDD2rYsGHl/nns+PHj+vbbb7VkyRItX75cJ06cKD726quvOq2cgwBn\nAIAPPPzww4bNZjOCgoIMm81W/LA/DwoKMm688UYjOzu7Qv2eOnXK6N+/f5l9T5482Ucz861Dhw4Z\nERERRlBQkNP8HJ+HhYUZS5YsqXDfn332mVG7dm2PfUdFRRnp6ek+mBnge+Sdilu8eHGpPFDyYT9m\nf1xyySXGddddZzRu3LjUOXE8H3PmzLF6eoDPkXfKLywszOX1R58+fYx//etfRm5ubpX6X7t2rdGs\nWTOnfOXuvP3973/30qwA85F3Kubzzz83goKCjIYNGxoPPvigsWzZMuPMmTNe6z8tLc0YMmSI0zly\nd+5Gjx7ttXEBM5F3zHXq1CmjSZMmpa5pgoKCjNatW5d5vtLS0qyeAlBl5J2KmzZtmsfvaACUjdxT\ndbfcckuZ84yPjzf+/e9/V3msoqIiY8WKFcZtt91mhIaGGq+99poXZgB/QQELAK/btWuXERoa6rJQ\nwv73a665ptJfHObl5Rm9evVyeVFuf16rVi1jz549Xp6Z7w0fPtzjvIKDg43FixdXuv+FCxeWeQFx\n7733enFGgDnIO5VjL2BxV6wSERFh9OnTx3jkkUeMefPmGXv37i1+b79+/ShgQY1G3qmYsLCw4vhr\n1apljB492ti+fbtXxzh+/LhxzTXXuL3WsbdFR0cbJ06c8OrYgBnIOxWXmppqfPvttz4f58knnywz\n94SEhBg///yzz2MBvIm8Y74xY8aU+tnK/ud///tfClhQ7ZF3KocCFqBqyD1V99JLL5V5nXLPPfcY\nOTk5Xh/74MGDxo8//uj1fmGdIKtXgAFQ/UybNk0FBQWSXC+HVr9+fX388ccKCwurVP9169bVJ598\noksuucSpb8NhObKCggI988wzlerfKrt379bHH3/sckl747fl6aZMmaJbb7210mPccccdmjRpUnF/\njmy/LeG2YMECpaSkVHoMwArknaqx2WwKCwvTlVdeqQkTJuj999/Xjh07lJ2drXXr1umVV17RPffc\no7Zt21odKuA3yDsVFxoaqrFjxyolJUXvv/++Onfu7NX+69evr6VLl+ryyy8vda3jeN5ycnL02muv\neXVswAzknYpr0aKFevfu7fNxnn32WSUmJnrMPUVFRXrvvfd8HgvgTeQdc61du1bvvfde8XmwOWxX\nMHz4cA0YMMDiCAHfI+8AsAK5p2q2bt2qp556yu09J5vNpkcffVTz5s3zyTZJzZo1U4cOHbzeL6xD\nAQsAr0pNTdWiRYs8FmE8//zzatKkSZXGiY2N1fTp013u/2v/UFy4cKEOHDhQpXHM9NJLLxXPx9VF\nUlxcnFcuYJ5//nk1a9bMqX/H82gYhv7+979XeRzALOSdymvbtq3efvttbd68WTk5Ofruu+/0+uuv\na9SoUerQoYPLcwqAvFMZt99+u5KTkzVr1izFxcX5bJxLL71US5YsUWhoqCS5/fJkzpw5PosB8AXy\njv974YUX1LRpU0mlc4904d9p6dKlZocFVBp5x1znzp3T2LFjXR675JJL9M9//tPkiADzkXcAWIHc\nU3Xjx4/X+fPnJTnf27Kfv/vvv597TqgQClgAeNUbb7yhwsJCSa6LMNq0aaMxY8Z4ZawJEyaoZcuW\nTmM4fvgXFhYqKSnJK2P5WmZmphYsWODxIunZZ59VrVq1qjxWnTp1yrxQ+vDDD3Xy5MkqjwWYgbxT\neVdccYUefPBBde3aVcHBwVaHAwQM8k7FzZs3T61btzZlrDZt2mjChAmlrnUcnx88eFBbtmwxJR7A\nG8g7/i88PLx4tUtHjquy7Nq1i5+zEDDIO+Z65plntG/fPkkX527PHy+++KIuu+wyK8MDTEHeAWAF\nck/VzJ07Vxs3bpRUunhFkjp16qQ333zTsvgQmChgAeA1RUVF+uijjzwWYTz66KNe+43+4OBgTZw4\n0WMhxvz5870ylq999NFHys/Pl+T6Iqlp06a6++67vTbeiBEj1LBhQ6dxHM9jfn6+Fi5c6LXxAF8h\n7wAwG3knMEyZMqXM16xZs8b3gQBeQN4JHEOHDi3zNXv37jUhEqBqyDvm2rFjh15++eVSWwdJUkJC\ngh588EErwwNMQd4BYAVyT9UUFBSU2jrI8e9BQUGaPXt28Sq5QHlRwALAa1atWqX09HRJroswwsLC\nNGLECK+OOWrUqOJVSVwVYhw+fDggbk64uyixXySNHj3aq6sj1KpVS6NGjXJ5oWQ3b948r40H+Ap5\nB4DZyDuBoWnTpurSpYvTygcl7dy50+SogMoh7wSOVq1aFa+S4C73HDlyxMyQgEoh75jHMAyNGTNG\nBQUFpY6FhobqrbfesiAqwHzkHQBWIPdUzYIFC3Tw4EFJznOwfxczYsQIde3a1arwEMAoYAHgNcuW\nLXPZbv+wGjx4sMLDw706ZnR0tG6++WaPhRju4vIXmZmZ+u677zxW8d51111eH3f48OEu2+2VvuvX\nr2d5a/g98g4As5F3Akffvn09Hv/ll19MigSoGvJOYLGvdOnO6dOnTYoEqDzyjnn++c9/llp2336e\np0yZovbt21sZHmAa8g4AK5B7qubVV1/1eF/rz3/+s4nRoDqhgAWA16xYscLjh9XgwYN9Mq6nfg3D\n0Ndff+2Tcb1l5cqVTl9SSM5VvrGxsT75wqJLly5q2rSp03iOF01FRUVatWqV18cFvIm8A8Bs5J3A\n0ahRI7fHDMOgUBcBg7wTWKKiojx+GR0REWFiNEDlkHfMsX//fk2dOtVp6yC7li1baurUqVaFBpiO\nvAPACuSeytu2bZu2bdsmyfm+lr34p2/fvmrXrp2VISKAUcACwCuOHDmi3bt3S5LbL+tuuOEGn4w9\nYMCAUm2Oy8UnJyfr6NGjPhnbG1auXOmy3T4HX5036cK/iacvV1esWOGzsYGqIu8AMBt5J7A0aNDA\nZbv9nJ05c8bMcIBKIe8EnmPHjnn8Erx+/fomRgNUHHnHPOPHj1deXp6k0quvzJw5U7Vr17YyPMA0\n5B0AViD3VM38+fM9Hr/nnntMigTVEQUsALxiw4YNpdocv7Rr3rx58Wof3hYXF6fGjRuXGtORfTlW\nf+Tq3Dnq3bu3z8ZOSEhwe8wwjDJjA6xE3gFgNvJOYHG3TYf9i6mwsDAzwwEqhbwTWIqKipSenu7x\nNW3atDEpGqByyDvm+Ne//qX//ve/Tr+pbP/z7rvvdnljC6iuyDsArEDuqZqFCxd6LNy/5ZZbTIwG\n1Q0FLAC8YsuWLS7b7T98d+/e3afj9+zZ0+NKIlu3bvXp+JV1/vx5JScne/yg9+W569mzp8t2x0rf\nwsJCn40PVAV5B4DZyDuB5ddff3V7zGaz6dJLLzUxGqByyDuB5ZtvvikunnO1PWy7du3crg4F+Avy\nju+dOHFCkydPdrl1UHR0tF599VWrQgMsQd4BYAVyT+Xt27dPaWlpktz/3GMv0AEqgwIWAF5h3+vO\nnc6dO/t0/LL6Lys+qyQnJ+v8+fOSXH/QBwcHq3379j4bv2PHjgoKCnIa1/GiKT8/X7t27fLZ+EBV\nkHcAmI28E1jcfRll16pVK5MiASqPvBNY3C2jbf8SnN9CRCAg7/jexIkTdfz4cUmltw564YUXFBMT\nY2V4gOnIOwCsQO6pvDVr1rhst1/P9OrVy9yAUO2EWB0AgOohJSXF4yoivl4muXXr1m6PGYahffv2\n+XT8ykpJSfF4PC4uTiEhvkvVoaGhat68uQ4cOOD2Nfv27VOnTp18FgNQWeQdAGYj7wSOnJwcffvt\ntx7/vTp27GhiREDlkHcCx7Zt2/T+++87/XuV/OWE//f//p8VoQEVQt7xrS+//FILFiwotXWQJF19\n9dUaO3asxREC5iPvmCsjI0Opqak6fPiwcnNzVVhYqDp16qhu3bpq3LixmjVrpoYNG1odJuBz5J7K\nW7duncfj5V29JjMzU7t27VJGRoZycnIUHBys8PBwNWjQQC1atPDZFk7wfxSwAPCK/fv3ezzu6cPY\nG9z1b/8ioKz4rJKamuqy3f4lhq/Pm3Th3KWlpbm9WHMXI2A18g4As5F3Asenn36q/Px8p5tCJV17\n7bUmRwVUHHknMBw5ckTDhw9XUVGRJOdVLe0/291///2KjY21KkSg3Mg7vpOXl6eHHnrI5dZBoaGh\nevvtt60KDbAUecf33n77bX399df67rvvdPjw4TJff8kll6h79+5KSEjQoEGD1KtXL483+oFARO6p\nvG3btnnMCZ7O3bp167Rw4UItX768zDlGR0frqquu0oABAzRs2DDFxcVVNmQEGLYQAlBlR48e1dmz\nZyXJ7Q2CJk2a+DQGV/07xpKXl1e8PKs/KesD2tfnrTxjUMACf0TeAWA28k5gmTFjRqk2xy9XmjRp\noh49epgZElBh5J3AsHPnTl177bXau3evJNdbw8bFxemVV16xJD6gIsg7vvWXv/xFaWlpkkpvHTR5\n8mSfbiEN+Cvyju845pnx48frs88+U3p6umw2W5mPU6dOadWqVXruueeUkJCg5s2b6+mnn1Z6embg\nsb0AACAASURBVLrFswK8g9xTeQUFBWXuLOBqy+alS5eqe/fu6tevn5KSkop/qdrTIzs7W1999ZWm\nTJmi+Ph43XTTTVq9erWvpgY/QgELgCorT9V2o0aNfBpDefo/dOiQT2OojLLOna/PW3nG8MfzBpB3\nAJiNvBM4Pv74Y23fvt3l6iv2m0QjRoywKDqg/Mg7/i0tLU2TJ09Wjx499NNPPzltB2L/u2EYuvTS\nS7Vo0SJFRERYHTJQJvKO72zYsEFvvPGGy9VX4uPjNXXqVKtCAyxF3jGH/fpEUvE1iqeH43tsNpvS\n09P17LPPqlWrVvrjH/+oU6dOWTkdoMrIPZW3b98+nT9/XpL74h/HbciOHj2qwYMHa+jQocXf1ZQ3\nH0nOuei///2v+vfvr6FDh+rAgQM+nimsRAELgCo7ceJEqTbHH8SjoqIUGhrq0xjq1KlT/IWgu6XL\nMjMzfRpDZbg6d45iYmJ8HkNZe5r643kDyDsAzEbeCQxnzpzRn/70p1Lnx/F5SEiIEhMTzQ4NqDDy\njn84e/asjh07ppSUFC1evFjTpk1T37591bJlS7366qsqLCwsfq1j4Yp04ee5FStWqGvXrlaFD1QI\necc3CgoK9OCDDzqthmD/02azKSkpSWFhYVaGCFiGvONbjjeKS7Z5eri7iXzu3Dm9/PLL6tixo776\n6isrpgR4Bbmn8g4ePFiqreR3LtHR0ZKk77//Xt27d9cXX3zhVLTi+D5PD/vr7Q97+9KlS9WtWzd9\n/vnnvpwqLEQBC4AqK6sIIyoqypQ4yhqnrDitcOLECY97BZpx7jyNYRiGX543gLwDwGzkncDw+OOP\nF2/R6G71lVGjRql58+YWRAdUDHnHHPfee6+CgoLcPurWratGjRrp8ssv1+23365nnnlG3377rSS5\n/FLV3n7zzTdr+/bt6tatm2VzAyqKvOMbL7zwgn788UdJF69H7H/eeeeduvHGGy2OELAOecf7PN38\nLe/DXR/2/g8dOqRBgwbpb3/7m2XzBKqC3FN5ZW0lFhkZKUlav369Bg4cqCNHjjitkFuZ1aDsHNuy\nsrI0dOhQvf32216fI6xHAQuAKjt58qTLdvuHif0Dy9fKGicrK8uUOCrC3bmzM+PcuRvDfmHgj+cN\nIO8AMBt5x/+tXLlSSUlJHldfiYyM1HPPPWd2aEClkHfM4bidR0Ueklze5OnZs6f+/e9/a/ny5WWu\ndgn4G/KO9+3du1fPP/+8y62DoqOj9c9//tOq0AC/QN7xDXfFKBW9xpFK3zy29ylJf/nLX/SHP/zB\n/AkCVUTuqbyyClhq1aqllJQUDRo0SHl5eZLklDcqkptK5pyS7y8qKtJDDz2k2bNn+2y+sEaI1QEA\nCHxnzpzxeDw8PNyUOCIiIkp9mDk6e/asKXFUhD+cu7L2YvfH8wb4w/8dKTDzDoDKIe/4t/T0dI0Y\nMaL4ubvVV5599llTtmgEvIG8Yz53e7i74ngzulmzZrrzzjs1bNgwXXXVVb4KD/A58o73jRkzRufO\nnXNadcX+59/+9jcK3VDjkXe8q2TRSVRUlHr37q1OnTqpU6dOuvzyy1WvXj1FR0crKipKZ86c0YkT\nJ5SZmal9+/Zp7dq1WrdunXbt2lWqP8frJMebzzNnzlRkZKT++te/mjxboPLIPZV36tQpl+2ORSXD\nhg1TTk5Oqesf6UI+adOmjW699VbdeOONio2NVcOGDVWrVi0dOXJE6enpWrNmjZYuXaoNGzY4FayU\n/HnN3jZ+/Hi1adNGvXv39vn8YQ4KWABU2fnz590es9lsCgkxJ9WUNU5+fr4pcVSEp3MnlT0nbwjE\n8waQdwCYjbzjvwoKCnTXXXfp2LFjpb7QcHx+7bXX8tuBCCjkHfN52t7VUcmbOceOHdPWrVvVuHFj\nNWvWTM2aNfNlmIDPkHe8680339S3337r8ubNVVddpXHjxlkcIWA98o532Ww2xcXFadiwYRo8eLD6\n9Omj4OBgt6+PiIhQRESE4uLi1K1bN915552SpOTkZL300kv66KOPVFBQ4PLmsWPbiy++qG7duun3\nv/+9z+cIeAO5p/JcFf/Yc4P9ZyPH72cc/4yNjdXLL7+sYcOGuew7Li5OcXFxuuqqq/TEE09o06ZN\n+sMf/lBcyOKYhxwL6fLz8zVy5Ejt3LnTtOIj+BZbCAGosrI+RPmwd88fzl0gnjfAH/7vlGcc/v8A\n1Qd5x3+NHz/e6eaQXckl+llSFoGGvGOu8uzB7mopfUk6d+6cVq1apSlTpqhVq1a6//77tXv3bium\nAVQJecd70tPT9ac//cnl1kGhoaF66623rAoN8CvkHe8IDg7WoEGDtGzZMv3yyy/6+9//rn79+nks\nXvGkQ4cOmjNnjvbs2aP/+7//c7oBXZL92JgxY8rcWgTwF+SeyitrVRjH7X8c/xwyZIh2797ttnjF\nlZ49e+q7777Tk08+6fKayvE7oLS0NE2dOrWCs4G/ooAFQJUVFRV5PF7ZC+WKKmucsuK0gj+cu0A8\nb4A//N8pzzj8/wGqD/KOf3rllVf0/vvvu1xKVrr4Gzlz5sxRbGysBREClUfeMU959l8vuQ+7YzGL\n46OgoEBz585Vly5d9Nxzz1WL84Oag7zjPRMmTCheYr/kbwo/8sgj6tixo5XhAX6DvOMdf/7zn/X5\n559r0KBBXu03Pj5e3377rSZOnFjmzeOcnBw9+uijXh0f8BVyT+WVtatAyS1/bDab7rrrLn322WcK\nCwur1JjTp0/XCy+84HbLV/tYs2bN0sGDBys1BvwLWwgBqLKyqkQLCgpMiaOscUJDQ02JoyJCQkI8\nxm3GuQvE8waQdwCYjbzjfz7++GM99thjHn8L0GazacqUKRoyZIgFEQJVQ94xx5gxY3Tddde5PFZU\nVKRTp07p5MmTyszM1I4dO7R169biZbNLrsjiuIx1YWGhpk6dqi+//FLLly9XdHS0ORMCqoC84x2f\nfvqplixZ4nLFgri4OE2bNs264AA/Q97xjqAg3/2uekhIiF599VX9f/buOzyqMn//+D0hjYRQgoqA\nBIK7gESlKALSpFeVjgUriPhd67qWtQEWdl1X1wa76mZBVJoUEYhLkSpNIMAiIEVDKKGGlgaEZH5/\n7G9mJ8n0zJwzE96v65rrkpmT83zOyfiZyZx7nqdGjRoaO3Zsmb+/HC9Uz5w5Uy+//DIhPYQ8eo//\nvAn3OH7JqGnTppo8eXK5+9Rzzz2n9PR0zZgxw+lSQtJ/Z8b88MMP9c4775RrLJiPAAuAcouOjnb7\nuFEv9p6Sn6H4Yh8dHW16gCUczxtA3wFgNPpOaFmyZIkeeOAB+79LLx1k+wBj4MCBevvtt80oESg3\n+o4xOnbsqI4dO3q9fXFxsTZv3qx//vOfmjZtmvLy8koEV0rPzLJ27Vr16NFDS5YsUdWqVYN1GEBA\n0HfK7+zZsyVmKrCx9YmJEyf6/e1joCKi74SP1157TTt37tTMmTNdzoApSe+8844+//xzg6sDfEPv\n8Z+nc+f4HigyMlKff/65x5/x1oQJE7RixQodP37c6TLSVqtVkydP1vjx40Py3MF7LCEEoNzcvfhY\nrVbD1unz9GIfqBfJQPJUkxHnLhzPG0DfAWA0+k7oWLdunQYOHGg/F67CK126dNHUqVPNKhMoN/pO\naIqIiFCrVq30ySefKCsrS0888YQiIiLKXMRxDLJs2rRJAwYMMKNcwCf0nfJ79tlndfToUUkqM33+\n4MGD1atXL5MrBEILfSe8/OMf/9AVV1whSWWCerZ+N3v2bPtsdUCoovf4z5uaHL9U1LJly4CNnZiY\nqGeffdbl316SdOrUKa1YsSJgY8IcBFgAlFt8fLzT+21vYnNzcw2pIycnx+kU8jZVqlQxpA5fuDp3\nNkacu5ycHLePh+J5A+g7AIxG3wkN27ZtU79+/ZSfny/JeXhFklq3bq158+bxjRuENfpO6KtSpYre\nf/99rVixQldddVWZpUIcp7VesWKFPvjgA7NKBbxC3ymfFStWaNKkSfbaHY+hatWq9ADACfpOeKle\nvbpefvlltxePCwoKlJaWZnRpgE/oPf7zdE3L0ejRowM+/sMPP2yfzc7VuaMHhT8CLADKLTEx0e3j\n586dM6QOT+N4qtMMiYmJLqdblIw5d67GsNUViucNoO8AMBp9x3y7d+9Wz549debMGUmuwyvNmjVT\nWlqa4uLiTKkTCBT6Tvho3769Fi9erBo1akhy/Y3kl156yT4zAxCK6Dv+u3DhgkaNGmX/t2OAzWKx\naPz48br66qvNKg8IWfSd8DNy5Ej7BWxXF4+Z/QChjt7jP3c1OfaEpKQk3XbbbUEZ//bbb3d5Xc1q\ntWrdunUBHxfGIsACoNxq1qzp9nHbRYZgO3v2rNvHPdVphlA4d+7GsFgsIXnegFD4f0cKz74DwD/0\nHXPt379f3bp104kTJySVDa/YNG7cWIsXL1b16tUNrxEINPpOeLnxxhs1a9Yst99IPn/+vD766COj\nSwO8Rt/x39ixY7Vv3z5JJZcOkv47M9xjjz1mZnlAyKLvhJ/4+Hj16dOHi8cIa/Qe/3mqyfY+6NZb\nbw1aDa72bft8aPv27SouLg7a+Ag+AiwAys227qUjxzewFy5cCHpi9fTp0/Z1CV29eXZWp9k81WTE\nt/M8jRGK5w2g7wAwGn3HPFlZWeratauysrIkOQ+vWK1WJScna+nSpbryyitNqRMINPpO+OncubOG\nDh1aZikh6X+zsHz66ace17oHzELf8c+2bdv07rvvOl06KCoqSp988olZpQEhj74Tnjp37uz0flv/\n2717t5HlAD6j9/jP25ratGkTtBpat25d5r7SXxw4fPhw0MZH8BFgAVBuSUlJHrc5duxYUGvwZv/1\n6tULag3+8HTugn3evBnDm98vYDT6DgCj0XfMceLECXXt2lX79++X5Dq8UrduXX3//feqW7euGWUC\nQUHfCU9vvvlmmfsce9epU6e0YcMGI0sCvEbf8V1xcbFGjhypoqIiSWWXDnr66ad1ww03mFkiENLo\nO+GpRYsWZe5zfL+Tn59vnz0TCEX0Hv95e72oadOmQavBm30fOnQoaOMj+AiwACi3+Ph4+7Rhrta9\nzMzMDGoNtosajhxrueqqq1S5cuWg1uCPBg0auH082OdNcn7uHCUnJwe9BsBX9B0ARqPvGO/06dPq\n1q2b/dt7rsIrV111lb7//nuP76uAcEPfCU+/+c1v7B+ouvq9rV692siSAK/Rd3w3bdo0bd68WZLK\nzL6UlJSksWPHmlQZEB7oO+HJm7+9jh8/HvxCAD/Re/zn7fWiYC7tXLVqVUVE/Dfi4Or3l52dHbTx\nEXyRZhcAoGJITk5Wdna2yxeLvXv3qlu3bkEb37bOcGm2Dw9CNYThqi7b9NJ79+4Neg379u1z+XuT\nCLAgdNF3ABiNvmOcc+fOqXv37tq+fbv9fZGNY3glMTFRS5cuVaNGjcwqFQgq+k546tu3r3bu3Ony\n95aenm5wRYD36Du+OXnyZJn7bLW2a9dOU6dODdhYrpYXcDR9+nT7BTlnEhISNHTo0IDVBAQCfSf8\nVKtWzeM2+fn5BlQC+I/e45/4+HhdeeWVOnnyZJnPaxwFM8Ai/bcPnTlzxuXj9KDwRoAFQECkpKRo\n06ZNLh8P9rqXnvafkpIS1PH95awux2/snDx5UmfOnAnai312drZOnTrl9o1GqJ47gL4DwGj0HWPk\n5eWpd+/eSk9PdxteqVq1qhYtWqTrr7/erFKBoKPvhCdPHzY7u+ANhAr6Tvk4LiE0derUgAZYSo/h\nbMwXX3zR7c82aNCAAAtCDn0n/ERHR3vcprCw0IBKAP/Re/x3/fXXa/ny5W6/GB3s2WMqV67sNsBC\nDwpvLCEEICBatmzp9vEtW7YEdXxP32Bzti5nKKhfv74SExMluZ7qLJjnztl5c6yjZs2aqlu3btDG\nB8qDvgPAaPSd4Dt//rz69eundevWuQ2vxMfHKy0tTTfddJNZpQKGoO+Ep1q1arl8zGq1Mp01Qhp9\nJ3AsFkvAb+UdEwhF9J3w483MBqG49AngiN7jP28+izl79mxQa/C0f3pQeCPAAiAgXL3Y2y48bN26\n1aupTv1RVFSkbdu2uf1DPJRf7Fu0aOH23NjWUg4GV/u2zQITyucNoO8AMBp9J7guXryoO++8UytX\nrnQbXomNjdW3336rW2+91axSAcPQd8JT1apVnd5vO5cXL140shzAJ/SdwLFarQG/+TOm42NAKKLv\nhJ9jx4553KZKlSoGVAL4j97jv5tvvtnjNu5mRymvS5cuKS8vT5Lr9zf0oPBGgAVAQNx8882KjY2V\nVPICg01ubm7Qghg//vijPfVtG9Pxhb9y5cpevaCapX379m4fX7FiRdDGXr58udvHO3ToELSxgfKi\n7wAwGn0neC5duqQhQ4ZoyZIlbsMr0dHRmjNnjjp37mxWqYCh6DvhyfZhamm28xgfH29kOYBP6Dv+\nC8aMK4GYgQUIdfSd8LNv3z6P2zCrN0Idvcd/nq5pSdLx48eDNr43+6YHhTcCLAACIiYmRu3atXOb\nSF2yZElQxl66dKnT+22ziHTo0EFRUVFBGTsQunXr5vR+28WbVatW6dKlSwEf98KFC/rhhx/cfpjR\nvXv3gI8LBAp9B4DR6DvBUVxcrHvuuUfz5893G16JiorSjBkz1KtXL7NKBQxH3wlPBw8edPmYxWKx\nLyMLhCL6jn+CMdtKoGZg8fZnAbPQd8LPhg0bytxXeln6uLg4I0sCfEbv8V+dOnWUkpIiSS6vL23c\nuDFo42/atMnjNvXr1w/a+Ag+AiwAAqZHjx4uH7NarZozZ05Qxp01a5bbx0M9hNGmTRslJCRIcp70\nzcvL06JFiwI+blpamgoKCkqM5/hmo1q1arrlllsCPi4QSPQdAEaj7wTeQw89pFmzZrkNr1SqVElT\npkzRnXfeaVaZgGnoO+Fn27Ztbh+/9tprDaoE8A99xzdGzLxSnhlYmJEF4YC+E14WLlzo9H7bxfdm\nzZoZXBHgH3qP/3r16uU2/LN+/fqgje1s347vcZKTk1lCKMwRYAEQMIMGDSpzn+1NqySlp6dr7969\nAR1zx44d2r59e4kLHo4vVBaLRYMHDw7omIFWqVIl9e/f3+2L/dSpUwM+rqt92n5nAwYM4IMNhDz6\nDgCj0XcCa/To0friiy/chlciIiL02WefadiwYWaVCZiKvhN+bMuhudK0aVMDqwF8R9/x3lNPPaWi\noiLDblLZbzrb/m2xWLR//363P//LL78Yfo4Ab9B3wsfPP/+sjRs3lvkbztGtt95qcFWAf+g9/hs6\ndKjT+23HtWHDBuXm5gZl7MWLFzu93/a7a926dVDGhXEIsAAImIYNG6pNmzYlXuBL++ijjwI65gcf\nfOD0flsNt956q5KSkgI6ZjDce++9Tu+3vdjPnj1bR48eDdh4Bw8e1Lx589x+qOqqJiCU0HcAGI2+\nEzjPPPOMPv30U5cffNqO7+OPP9aDDz5ofIFAiKDvhJfly5crMzNTklxe1OnYsaORJQE+o++EL5YK\nQrii74SP8ePHe9ymZ8+eBlQClB+9x3+tWrVSkyZNJDlfWSA/P19TpkwJ+LgbN25Uenq62xAdPSj8\nEWABEFAPP/yw0/ttLyaTJk3SsWPHAjLW4cOH9eWXX7oNYTz00EMBGSvYunXrpnr16kly/mJfWFio\nd955J2Dj/eUvf9GlS5dKjON4HpOSktSlS5eAjQcEE30HgNHoO+X3yiuv6IMPPnD6gYPtPovFonff\nfVejR482qUogdNB3wsfYsWPL3Od4Lq+++mo1b97cwIoA/9B3ABiNvhP61q5dq6+++srlTFCSVLdu\nXWZgQVih9/hv5MiRLkMkVqtVEydODHi49sMPPyxzn+P5jIyMVL9+/QI6JoxHgAVAQN1333266qqr\nJLlOXb744osBGev555/X+fPnS4zh+EJVq1YtDR8+PCBjBVtERISefvpppy/mtjdKEyZMCMh0dTt3\n7tQnn3zi9E2S7WLR73//+3KPAxiFvgPAaPSd8vnzn/+s8ePHewyvvPXWW3r66adNqhIILfSd8DBx\n4kStXr3aaX+z9TbOHcIFfQeA0eg7oS07O1v33HOP/d+u3us88sgjRpcGlAu9x3+jRo1SjRo1JJU8\nd7b/3rVrV0C/mL1s2TJNnTrV7bWtgQMHKjExMWBjwhwEWAAEVExMjJ566imXb2CtVqumTJmiefPm\nlWucmTNnatq0aW4/GHzmmWcUFRVVrnEyMzMVERHh9vb666+XawybUaNG2V9YXc3CMnz4cPvMKf64\nePGihg8fbl832dmbpMTERI0YMcLvMQCj0XcAGI2+47+PPvpIL730ksfwyiuvvBKwD4iAioC+45uz\nZ89q9erV5arRVwsXLtQzzzzj9hvJUVFReuyxxwytC/AXfQeA0eg7vrl48aI2b95crhq9dfr0afXs\n2VMHDhyQVPIza8f3OvHx8Xr88ccNqQkIFHqP/6pUqaInn3zS7Rezx4wZo+3bt5d7rDNnzpS4buVq\nZpennnqq3GPBfARYAATc008/rXr16jldN9D2ovXAAw9o48aNfu1//fr1GjlypNsPBuvXr68nn3zS\nr/07Y7FYXN4CJT4+XuPGjXP7RmnTpk166KGH/Jp2rbi4WPfff7+2bt1q36+zcd58803FxcX5fyCA\nCeg7AIxG3/HdpEmT9PTTTzvdn2N45Q9/+IPGjRsXkDGBioS+470zZ86oU6dO6t69u9auXRugap0r\nLi7W3/72Nw0YMKDMMq02tt/ZiBEj1KBBg6DWAwQSfQeA0eg73isoKFCrVq00ePDgoAZZfvzxR7Vs\n2VLp6elOL7xL/3uv8+qrr9pnYwDCCb3Hf88991yZc+f4xekLFy6oR48e5QqxnDp1Sl27dlVmZmaJ\n/dvGsI3dv39/tWnTphxHg1BBgAVAwFWuXFnvvfee/d/OXrTOnTunHj16aOHChT7te968eerVq5fy\n8vJK7NPG9kL13nvvKSYmpjyHUYbVarXfnI0dCI899phuvPHGMm+UHEMsX331lQYPHqycnByv93vu\n3DkNGDBAM2fOLPOHhuM4zZs316hRowJzMICB6DsAjEbf8c3MmTNLvMdw9WHD7373O7399tsBGROo\naOg7vlu2bJnat2+vzp0767PPPlN2dnbA9i1Ja9eu1c0336xnn322zCyXUsm/terWravx48cHdHwg\n2Og7AIxG3/HdnDlz1KpVK3Xq1ElTpkyxH195nTlzRuPGjVOHDh104MABp+EVx/c6zZo1Y1l6hC16\nj//i4uL0wQcf2P/t7NwdO3ZMt912m1+z2GzZskUdO3bUli1b3F7bqlKliv7617/6exgIMZFmFwCg\nYho0aJDuuece+3p0thcW24ux7QX/jjvu0N13361XX31VjRs3drm/Xbt2ady4cfYAhuT6wsfw4cPV\nv3//oB9jMEREROiLL75Q69atdeHChRIvyI6hlrlz52rjxo164403dNddd7l8Y3P+/Hl99dVXGjt2\nrA4fPuzyBd5qtSouLk5ffPEF3zpC2KLv+CcvL0/Tp0/3+eeOHDni9vGVK1eqsLDQp30mJCRo6NCh\nPtcCmIW+450NGzbovvvuU3FxsSTnxyRJSUlJuvHGG5WammpYbf369VOtWrUMGw8oL/qO7ywWi1au\nXKmVK1fqd7/7nTp37qz+/furXbt2uuGGG3z++2ffvn2aM2eOvvzyS/30008lvsXo6m+t6Ohoffnl\nl6pWrVrgDgwwCH0HgNHoO76xHdPq1au1evVqPfbYY+ratat69+6t9u3b6/rrr/f6/U5RUZE2b96s\nadOmKTU1Vbm5uU7PmeO4VqtVNWrU0Jw5c1SpUqUAHhlgLHqP//r3768RI0YoNTW1zLmT/nusZ86c\n0YABA9S9e3e98sorateunSIiXM+zsXPnTn3wwQdKTU0t8QXv0myPffjhh0pOTg7aMcJYFisRcwBB\nkpeXp5tvvlm7d+/2+IGeJLVo0UK33nqrkpOTVaVKFeXk5CgjI0Nr1qzRtm3bnP6M7T7bv5s2baof\nf/wxYEvgZGZmKjk52Wnww/bCOGbMGL322msBGc8mNTVVjzzySJlZWBzHt91XvXp1de7cWc2aNdMV\nV1whq9WqkydPatu2bVq2bJnOnTvn8fxbLBalpqbqwQcfDOhxAEaj7/g/Xiho0KCBfv31V7PLAHxC\n3/Hs888/10MPPeTywwazWCwWLV++XB07djS7FMAn9B3f9+/q76q4uDg1atRIv/3tb1WnTh3VqlVL\nVapUUUxMjC5evKicnBydO3dOp06d0o4dO/Sf//ynxEyY7s6/7f6IiAhNmTJF99xzj1/HAoQC+k7o\niIiIcHsMGRkZSkpKMrFCIDDoO56dPXtWNWrU8Ph+Jz4+Xo0bN1ajRo1Up04dXXXVVYqLi1NMTIzy\n8vJ06tQpZWdna+/evVq3bp19lghPn0vb7q9SpYrS0tLUvn17v44DCCX0Hv9duHBB7du31+bNm706\nd1dccYW6deumpKQkXX311YqMjNTx48d15MgRrVixQr/88ovTnyt9n8Vi0VNPPVViBh2EP2ZgARA0\n8fHxWrRokTp06KCDBw9KKvnC4phclf47FdiWLVuc7subF7wGDRpo0aJFAXuhN9OIESN06NAhjRs3\nTtL/1issPRuLxWLR2bNnNXfuXM2dO7fMfrz5NqDFYtG4ceMIr6BCoO/4z9tv4zhydyHan/0B4Yi+\nEzhG9o1QCtIAvqLv+Mbx7yjH8yJJBQUF2rp1q7Zu3er1vry9mCNJMTEx+uKLLzR48OByHQNgNvoO\nAKPRd3zn6v1Ofn6+0tPTlZ6e7nEfvr7XSUxM1Lx589SuXbty1w+EAnqP/2JiYvTdd9+pS5cu+umn\nnySVPXeO92VnZ7ucFdxVLyp9n8Vi0f333094pQJyPTcPAARAUlKSli9frt/85jdOPzi0LuZuawAA\nIABJREFUvXA5vvA7u5V+gSsdwGjUqJGWLVumunXrmnasgTZmzBiNGTOmxPF7Oielb1LZN1al9zd2\n7Fi98sorZh4qEFD0Hf85nhtvboHYl+P2QLii7wSGrz3I3xtQEdB3fOPsA1BPf0t5+vuq9Ll1fMxi\nsei3v/2tfvjhB8IrqDDoOwCMRt/xnrv3K6UfD9R7nebNm2vTpk2EV1Dh0Hv8d8UVV2j58uVq3bp1\nwK5rOf684/0Wi0XPPvusJk2aZNrxIngIsAAIuoYNG2rjxo3q2bOn2xd4d5y9wNl+vnfv3vrxxx/V\noEGDoB6Ht7UG0pgxYzRjxgwlJCS4fdPjjqsX94SEBM2aNUuvvvpqUI8BMAN9p/zjGXUDKgr6ju/7\nN+sGVBT0He84C7GVZzxPH6zGxsbqhRde0JYtW3TTTTcF7DiAUEDfCR0V4RgAb9B3PHP3Xsef8Ty9\n16lcubLeeOMNQ84bYBZ6j/9q1qypVatWafTo0WWO37EmT1z1IovFosTERM2aNUt/+ctfgnosMA8B\nFgCGqFatmtLS0jR58mTVqlXL6RtgV9+IdfUmvFatWpoyZYoWLFigqlWrBrX+0jW4qjUYBg8erF27\ndmnQoEFO3/C4q6X0drafHzJkiHbt2qUBAwYYdhyA0eg75R/PyBtQEdB3fN8/PQcoH/qOc7Vr19an\nn36qO++80/5lAFd/S3k7tqufse23WrVqeuaZZ7Rnzx6NHz++QkwDDjhD3wkNFeEYAG/Rd5yLiYlR\n165dFRcXZ8h7nfj4eD311FPat2+fXnrpJUVGRgbkOIBQRe/xX1RUlCZMmKCVK1eqWbNm5b6uZetF\n0dHRGj16tPbs2cO1rQqOAAsAQ91333369ddfNWHCBDVt2tRtorv0i7vtlpKSookTJyojI0P33ntv\n0GsOhW/w1qlTRzNnztTmzZs1fPhwr/8wcdwmLi5O999/v9LT0zV9+nTVqVPHsPoBM9F3yjee0Teg\nIqDv+LZ/eg5QfvSdkqKjozVy5EjNmTNH2dnZWrp0qV5++WV169ZN1atXdzmmuws+zn6mZs2aGjJk\niKZPn66srCz99a9/1TXXXFPu+oFwQN8xV0U4BsBX9J2SYmNjtWTJEp05c0YrV67U2LFj1aNHD/uF\ndmc3T+GW0tvHx8erV69eSk1N1dGjR/Xee++pdu3a5a4dCCf0Hv+1b99e6enpWrBggXr37q2oqCiv\nelLpmpOTk/XSSy8pIyNDEyZMUGJioqHHAeNZrES0AZho3759+ve//6309HTt2LFDhw8fVk5OjvLz\n8xUXF6eEhARdc801atq0qVq2bKnevXvr2muvNbts0124cEHLli3TypUr9dNPP2nPnj06ffq0cnJy\nJEkJCQlKTExUo0aNlJKSottuu02dO3dWTEyMyZUD5qPvADAafQeA0eg77u3Zs0dbt27Vr7/+qoyM\nDGVkZCgrK0s5OTnKy8tTXl6eLl26pJiYGMXExKh69eqqVauW6tSpo0aNGum6667TzTffrOuuu87s\nQwFCBn3HGK+//rrbx59++umgf6MbCBX0HdeOHj2qrVu36ueff9bBgwfttxMnTig/P1/5+fkqKCiQ\n1WpVbGys4uLidOWVV6pOnTpKTk7WDTfcoObNm6t169bMtAKUQu/xX05OjpYuXao1a9Zo165d2rdv\nn/26VlFRkSpXrqzq1asrKSlJv/nNb9SqVSu1b99eN954o9mlw2AEWAAAAAAAAAAAAAAAAGAqlhAC\nAAAAAAAAAAAAAACAqQiwAAAAAAAAAAAAAAAAwFQEWAAAAAAAAAAAAAAAAGAqAiwAAAAAAAAAAAAA\nAAAwFQEWAAAAAAAAAAAAAAAAmIoACwAAAAAAAAAAAAAAAExFgAUAAAAAAAAAAAAAAACmIsACAAAA\nAAAAAAAAAAAAUxFgAQAAAAAAAAAAAAAAgKkIsAAAAAAAAAAAAAAAAMBUBFgAAAAAAAAAAAAAAABg\nKgIsAAAAAAAAAAAAAAAAMBUBFgAAAAAAAAAAAAAAAJiKAAsAAAAAAAAAAAAAAABMRYAFAAAAAAAA\nAAAAAAAApiLAAgAAAAAAAAAAAAAAAFMRYAEAAAAAAAAAAAAAAICpCLAAAAAAAAAAAAAAAADAVARY\nAAAAAAAAAAAAAAAAYCoCLAAAAAAAAAAAAAAAADAVARYAAAAAAAAAAAAAAACYigALAAAAAAAAAAAA\nAAAATEWABQAAAAAAAAAAAAAAAKYiwAIAAAAAAAAAAAAAAABTEWABAAAAAAAAAAAAAACAqQiwAAAA\nAAAAAAAAAAAAwFQEWAAAAAAAAAAAAAAAAGAqAiwAAAAAAAAAAAAAAAAwFQEWAAAAAAAAAAAAAAAA\nmIoACwAAAAAAAAAAAAAAAExFgAUAAAAAAAAAAAAAAACmIsACAAAAAAAAAAAAAAAAUxFgAQAAAAAA\nAAAAAAAAgKkIsAAAAAAAAAAAAAAAAMBUBFgAAAAAAAAAAAAAAABgKgIsAAAAAAAAAAAAAAAAMBUB\nFgAAAAAAAFw2MjMzFRER4fXtwIEDZpcMAAAAAMBlIdLsAgAAAAAAAACjWSwWt49brVaP2wAAAAAA\ngMAhwAIAAAAAAIDLktVqdXo/wRUAAAAAAIzHEkIAAAAAAAAAAAAAAAAwFQEWAAAAAAAAAAAAAAAA\nmIoACwAAAAAAAAAAAAAAAExFgAUAAAAAAAAAAAAAAACmIsACAAAAAAAAAAAAAAAAUxFgAQAAAAAA\nAAAAAAAAgKkIsAAAAAAAAAAAAAAAAMBUBFgAAAAAAAAAAAAAAABgqkizCwAAAAAAAADMYLFYzC4B\nAAAAAAD8fwRYAAAAAAAAcNmxWq1mlwAAAAAAABwQYAEAAAAAAMBlxduZV5ihBQAAAAAA41isfN0E\nAAAAAAAAAAAAAAAAJoowuwAAAAAAAAAAAAAAAABc3giwAAAAAAAAAAAAAAAAwFQEWAAAAAAAAAAA\nAAAAAGAqAiwAAAAAAAAAAAAAAAAwFQEWAAAAAAAAAAAAAAAAmIoACwAAAAAAAAAAAAAAAExFgAUA\nAAAAAAAAAAAAAACmIsACAAAAAAAAAAAAAAAAUxFgAQAAAAAAAAAAAAAAgKkIsAAAAAAAAAAAAAAA\nAMBUkWYXAAAAAAAAgNBltVq1Y8cO/ec//9Hu3bu1d+9eHTlyRMePH1d2drbOnz+vCxcuqLCwUDEx\nMYqLiytxS0hI0DXXXKMGDRqofv36atCggf0WFRVl9uGhAjpw4IDWrVun3bt3KyMjQ7/++quOHDmi\nvLw85efnKy8vTxEREYqPj1d8fLxq1Kih5ORkNWzYUI0bN1bbtm11ww03yGKxmH0oAAAAAHBZsVit\nVqvZRQAAAAAAACB0ZGVlad68eVqwYIHWrl2rs2fPltnGm4v77j52io6OVosWLdSmTRv7rX79+uWq\nO5Tt379fqampZpcRcM8995yqVq1qag15eXmaP3++vvnmG61Zs0aHDx8us42756uz52m1atXUsWNH\nDRs2THfeeafi4+MDWjMAAAAAoCwCLAAAAAAAAFBxcbG+/fZbTZw4Ud9//739on4wZ6Eo/bFU3bp1\nNWDAAA0ZMkTt27cPytiZmZlKTk72evv9+/crKSmp3OOuXLlSnTt3Lvd+QonFYlFGRkZAzo8/Vq1a\npY8//lgLFy5UQUGBvaZAsT0/4+LiNHToUL3wwgtq3LhxwPYPAAAAACgpwuwCAAAAAAAAYK65c+fq\n+uuv18CBA7V06VJJ/w0C2MIAVqs14DfHMWy3rKwsffzxx+rUqZOuueYaPfnkkzp48GBQjrn02KVv\ntm2MHjdcbmb69ttv1bZtW912222aNWuWzp8/H/Dnq/S/31VBQYEmT56slJQUDRs2TBkZGWYePgAA\nAABUWARYAAAAAAAALlNZWVnq1auXBg0apN27d7sMAQSDp9DAkSNHNGHCBK1bty4o47uqwYjJioMR\nCDLyZpaff/5ZXbp0Uf/+/bVhw4agPl+dPS+tVqu+/vpr3XDDDXrnnXdUVFQUkLEAAAAAAP9FgAUA\nAAAAAOAytHTpUt1www1avHixYaEVT8wOSCA0FRcXa+zYsWrevLlWrFhhD64Y9XwtHWQpKCjQCy+8\noA4dOujo0aNBHRsAAAAALicEWAAAAAAAAC4zn3/+ufr06aMzZ86UCAJ4KxyXnUF4OnnypLp3767X\nX39dhYWFQX2+elI6yLJ+/XrddNNNWr9+vd/HBwAAAAD4HwIsAAAAAAAAl5HZs2drxIgR9uVPvAkC\nuLrQ7+uSM4Ra4IstW7aoRYsWWr58eYlZgjxx9hzz5jnq7fPScfsjR46oa9euWr58eXkOFQAAAAAg\nAiwAAAAAAACXjW3btmn48OH2C/CewgCeAgDezmwRiNBAReLvDDZG3ELFxo0b1bVrV2VlZXk964q7\n56unY3b1vHSl9JJCd9xxByEWAAAAACinSLMLAAAAAAAAQPBdvHhR9957ry5evCjJu/CK43aOF/Oj\no6OVnJyspKQkXXnllapRo4ZiY2MVHR2toqIiXbhwQQUFBcrOztbx48d15MgR7d+/X5cuXSoxhrPZ\nWSo6X5a+uVytX79evXr1Uk5OjiTfn6uO90lSvXr11LBhQ9WrV0/VqlVTXFycLBaL8vLydPLkSf3y\nyy/auXOn8vPzS+yndMClNMdgTF5envr3768NGzaoSZMm5Th6AAAAALh8EWABAAAAAAC4DHz44Yfa\nuXOnfTYLdxy3sVgsio2NVffu3dW7d2916NBBTZo0UUSEbxP7FhUVKSMjQ9u2bdOmTZu0YcMGrVu3\nzmmgpqIGWcLhuMwO2Pzyyy/q16+fX+EV23/Xrl1bd9xxh/r166c2bdooMTHR47hFRUVKT0/XN998\no2nTpikzM7NMkMVTiCU3N1f9+/fXxo0blZCQ4NNxAwAAAAAki9Xsv0oBAAAAAAAQVHl5eapfv75O\nnz4tyX0owHah3mKxqGbNmnrhhRc0cuRIVatWLeB1nT9/XitXrtT8+fM1e/ZsHT9+vER9FotF06ZN\n09ChQwM2ZmZmppKTk90GeRzPQUZGhpKSkgI2fqg6ceKE2rZtq4yMDEneP0cCeX5ycnLUpk0b/fzz\nz17V4LiNxWJRu3bt9Pvf/1533HGHzwErR1arVdOnT9fYsWO1b9++EuEYb54zAwYM0KxZs/weHwAA\nAAAuV/7/JQcAAAAAAICwMG3aNJ06dUqS98GEu+66S3v37tWzzz4blPCKJMXGxqpnz576+OOPlZWV\npSVLlmjIkCGKjo4Oi9lKKoqCggL17dtXv/76qyTvgiOS1KRJE1111VUBq+O+++7Trl27PNZgY3uu\n1q9fX998841WrVql/v37lyu8Iv33GO+++25t375df/zjH1WpUiWnS2k5q8VqtWru3LmaPXt2uWoA\nAAAAgMsRARYAAAAAAIAKbsqUKR63cQyvvPjii/rqq6+CFlxxNX6XLl00ffp0HTx4UC+//LKqV69u\n2PiXq+LiYt11113atGmTx+WlHGchqV27tr777jvFxsYGpI4pU6bo22+/9WmJK4vFouHDh2v79u26\n/fbbA1KHo+joaL355puaP3++qlWr5lWoxlbbk08+qbNnzwa8JgAAAACoyFhCCAAAAAAAoALLyclR\nYmKiiouLJTmf2SJUlz/Jzc1VTk6OateuHbB9soRQSY8//rgmTpzoU3glPj5eq1atUosWLQJSw7Fj\nx5SSkuJxiSvHGiIiIjR+/Hg9//zzAanBk40bN6pHjx46e/as18+dF154QePHjzekPgAAAACoCJiB\nBQAAAAAAoAJbs2aNioqKJLkOr9hER0fro48+Mqw2T6pUqRLQ8ApKeuedd3wOr0RGRmrGjBkBC69I\n0u9//3uvlriyPW6xWPT+++8bFl6RpFatWmn+/PmKioqS5HopIdtjVqtVEyZMsB8XAAAAAMAzAiwA\nAAAAAAAV2I4dOzxuYwsFDBw4kMDIZWLGjBl68cUX3QYxHNmeIx999JH69OkTsDp++uknzZgxw2Md\njjOb/PGPf9Tjjz8esBq81b59e/3tb39zG7JxfCw3N1fvvfeeEaUBAAAAQIVAgAUAAAAAAKAC27dv\nn9fb9urVK4iVIFSsXr1aDz74oP3fnmZfcVwS59FHHw1oLa+++qrb5a0ca5Ckrl276o033ghoDb74\nv//7P3Xp0sV+Tlyx1ZyammqfAQkAAAAA4B4BFgAAAAAAgArsxIkTXm+bkpISxEoQCn7++WcNGDBA\nFy9elOR9eOXuu+/W+PHjA1rLzp07NW/ePLdLGDmGROLj4/Wvf/3L61ljgmXChAmqVKmSJOdLCTke\ny/Hjx7VgwQLDagMAAACAcEaABQAAAAAAoALLzc31etvq1asHsRKY7dixY+rTp49Onz4tyfvwSqdO\nnTRp0qSA1/PJJ594tZ2tjldeeUXXXHNNwOvwVePGjXXvvfe6PX+OJk+eHNyCAAAAAKCCIMACAAAA\nAABQgV26dMnrbXNycoJYCcyUn5+vfv36af/+/ZI8h1dsmjZtqrlz5yoqKiqg9Vy4cEFffvmlx2V4\nbGrWrKknnngioDWUx1NPPeVxG1sIaOnSpSosLDSgKgAAAAAIbwRYAAAAAAAAKrDKlSt7ve2BAweC\nWAnMUlxcrGHDhmnz5s1ul+uR/hcasVqtqlOnjtLS0lStWrWA1/TNN994NROMbfaVxx9/XHFxcQGv\nw18tWrRQ8+bN7fWV5nhM+fn5Wr16tZHlAQAAAEBYIsACAAAAAABQgdWsWdPrbRcuXBjESmCWxx9/\nXAsXLvQpvFKlShUtWLBA9erVC0pN8+fPd/u4YyjEYrHowQcfDEod5XH77bd7ve3ixYuDWAkAAAAA\nVAwEWAAAAAAAACqwpKQkj9vYgg1ff/21Tp48aUBVMMrbb7+tf/zjHz6FVyIjI/X111+refPmQanJ\narVq0aJFbpcPsm1nsVh06623evU8NlrPnj293nbDhg1BrAQAAAAAKgYCLAAAAAAAABVYSkqK28cd\nQw1nzpzR//3f/wW7JBhk+vTpeumllzwGRWxsgZG///3vPoUzfPXjjz8qOzvbPqYnvXv3Dlot5dGi\nRQtVqlRJklyeY1twaNu2bUaWBgAAAABhiQALAAAAAABABdamTRuP29iCC1arVbNnz9bDDz+s4uJi\nA6pDsKxcubLEsjueZl+xPQdeeukljRgxIqi1rV692qftu3fvHqRKyqdy5cpq1KiRy8cdz/nZs2eV\nmZlpRFkAAAAAELYIsAAAAAAAAFRg9evXV9OmTSW5niVC+l+IRZImT56stm3bsuxJmNq1a5cGDhyo\nwsJCSd6HV4YPH6433ngj6PVt2bLF7eOOz9OoqCg1a9Ys2CX5rX79+l7NIiNJu3fvDnI1AAAAABDe\nCLAAAAAAAABUcHfffbdXF9mtVqs9zLBx40a1bdtW3bt317fffqtLly4ZUCnK69ixY+rTp4/OnDkj\nyfvwSpcuXZSammpIjenp6R6XNbLV3bRpU0VFRRlRll/q1q3r9baHDx8OYiUAAAAAEP4IsAAAAAAA\nAFRwo0aNUkxMjCT3s7DY2EINFotF33//vfr37686depo9OjRWrRokS5cuBDskuGH/Px89e3b175U\njafwis3111+v2bNnKzIyMug1FhQUaO/evV5ta7FYdO211wa5ovKpWrWq19sSYAEAAAAA9wiwAAAA\nAAAAVHBXXnmlnn76aXugwdsQi2OQJTs7W59++ql69+6tmjVrqk+fPnr33Xe1adMmFRUVBfsQ4EFx\ncbGGDh1qn93Em/CK1WpV3bp1lZaW5lMQozwOHDig4uJi+/ieJCUlBbukcqlcubLX22ZlZQWxEgAA\nAAAIfxart4u0AgAAAAAAIGzl5eWpefPm+uWXX0oEGLxVOvTi+LNxcXG65ZZbdOutt6pt27Zq06aN\natasGZjCAywzM1PJycluQx6OS+tkZGSEfIhCkkaPHq1PP/3Up/BKQkKCVq9erRtvvNGoMvX999+r\ne/fuHuusKByfS/fcc4+++OILs0sCAAAAgJAV/HlBAQAAAAAAYLr4+HjNmDFDHTt2VH5+vn1mFW9D\nBI7b2X7WpqCgQCtWrNCKFSvs9zVu3Fjt27dXhw4d1LVrV9WtWzdgx4KS/vSnP/kcXomKitKsWbMM\nDa9I0qFDh3za3pvZgszm7f9DBQUFQa4EAAAAAMIbARYAAAAAAIDLRMuWLTVr1iwNHDhQ58+flyS/\nZmMpvW3pQIsk7dmzR7t371ZqaqokKSUlRb169dLgwYPVunXr8hwGHEydOlWvvPKK10EP22wgn3zy\nibp37x7k6so6cuSIT9tXpFlaCLAAAAAAgHsRZhcAAAAAAAAA4/Tq1UtLlizRFVdcUWLGDmchFG9Z\nrdYyN8d9WiwW7dy5U++++67atm2r+vXr66WXXtIvv/wSsOO6HK1YsUIPP/yw/d+eZl+xhVdee+01\nPfjggwZUWFZubq4p44YCW2gMAAAAAOAcARYAAAAAAIDLTLt27bRt2zZ17drVHmyw3RxDJ+XhLtBy\n6NAh/fnPf1ajRo3Uq1evEksPwTs7d+7UwIEDVVhYKMn78MoDDzygMWPGGFVmGZfzLCQVaTYZAAAA\nAAgGAiwAAAAAAACXodq1a2vx4sWaOnWq6tevX2IpIWczqJSXszCLJC1evFhdunTRbbfdpk2bNpV7\nnMvBkSNH1KdPH509e1aS9+GVbt266bPPPjOqTKeYhQQAAAAA4AoBFgAAAAAAgMvYsGHDtHfvXn36\n6ae67rrr7IGV0jOoOIZZyhtqcRaSWbVqlVq3bq3f/e53ys/PD9ThVTh5eXnq16+fDhw4IMlzeMXm\nxhtv1KxZs1SpUqWg1+jOhQsXfNre2fMunG62YwAAAAAAeEaABQAAAAAA4DIXGRmpESNGaMeOHVq2\nbJkeeOABVa9evcRFeHdLAvkbaCkdkJGkv//972rZsqX27NkTuAOsIIqKijRkyBBt2bLFHjJyxfH3\nVq9ePaWlpSkhIcGoUl2KioryafvSz7twvgEAAAAA3CPAAgAAAAAAALtOnTrpX//6l44fP67vvvtO\nTz75ZImZWVzN0CKVL9DiuI89e/aoTZs22rhxY8CPL5w99thj+ve//+1TeKVatWpKS0tT7dq1jSrT\nrbi4OJ+2N3sGlWDMyAIAAAAAcC7S7AIAAAAAAAAQeiIjI9WjRw/16NFDknTq1CmtWbNGq1ev1urV\nq5Wenq5Lly7Zty8dqCh9wd6bGSgclyo6c+aMevfurTVr1qhx48YBOqrw9dZbb+mf//ynT+GV6Oho\nzZ49WykpKUaV6VHlypU9bmM7RovFopdfflmvv/66AZUBAAAAAMxGgAUAAAAAAAAeJSYm6vbbb9ft\nt98uSSooKNC6dev0ww8/aO3atdqwYYPOnTtn394xZFF6KSJ3HEMsp0+f1qBBg7Rx40avgg8V1Vdf\nfaVXX33VY3jFxnYOP/vsM3Xp0sWACr1XpUoVn7Y/f/58kCoBAAAAAIQaAiwAAAAAAADwWeXKldWl\nSxd7QMJqtWrz5s1avny5Fi1apB9++EGFhYX2xyTvgyy2AIbVatWuXbs0btw4/fnPfw7yEYWm5cuX\na8SIEV4tP+M4c8m4ceN03333GVChb+rWrevT9vn5+UGqBAAAAAAQaiLMLgAAAAAAAADhz2Kx6Oab\nb9Zzzz2npUuXKjs7W9OmTdOgQYMUGxtrD1c4hlm82afVatX777+vgwcPBvsQQs6OHTs0cODAMkEg\nZxzDKw8//LBeeeUVo8r0SVJSkk/bHzt2LEiVAAAAAABCDQEWAAAAAAAABFx8fLyGDh2qmTNnKisr\nS3/961+VlJRUYhkcdyEWx7BGYWGh3n///aDXHEqOHDmiPn362Jdl8ja80rNnT33yySdGlekzXwMs\nhw4dClIlAAAAAIBQQ4AFAAAAAAAAQVW9enU988wz2rt3r95++21VrlzZbSDDkS2c8eWXX3r9M+Eu\nLy9Pffv2tc864ym8YtO8eXN9/fXXiogI3Y/86tWrp+joaEnuA0y233tGRoZRpQEAAAAATBa6f80C\nAAAAAACgQomKitIf/vAHrVixQlWrVpXk/SwsJ0+e1OrVq4Neo9mKioo0ePBgbd26tcRsNc7Yzp3V\nalVSUpIWLlyo+Ph4o0r1S2RkpJo1a+b2uBwfO3HihLKysowoDQAAAABgMgIsAAAAAAAAMFSrVq20\ncOFCewDDXYjF0eUQYBk9erQWLVrkU3ilevXq+u6773T11VcbVWa53HLLLT5tv2nTpiBVAgAAAAAI\nJQRYAAAAAAAAYLh27drpkUce8WlZoM2bNwexIvO98cYbSk1N9Sm8Eh0drblz5+q6664zqsxya926\ntU/bL126NEiVAAAAAABCCQEWAAAAAAAAmOL555/3elur1aqMjIwgVmOuL774QmPGjPEYXrGxWq2y\nWCxKTU1Vp06dDKgwcLp16+bV7Du2c/Htt98aVRoAAAAAwEQEWAAAAAAAAGCK5ORkpaSkSPIcZJCk\nrKwsQ+oy2rJlyzRy5EivllKyhTosFovefPNN3XvvvQZUGFhXX321brnlFrdBHcfHDh48qLVr1xpR\nGgAAAADARARYAAAAAAAAYJpmzZp5vYxQbm5ukKsx3k8//aRBgwbp0qVLkuRx6SBbeOWRRx7RH//4\nR6PKDLgBAwb4tP2ECROCVAkAAAAAIFQQYAEAAAAAAIBpatWq5fW2hYWFQazEeFlZWerTp4/OnTsn\nyfvwSu/evTVx4kSjygyKYcOGKSLivx9NerOM0OzZsyv0ElIAAAAAAAIsAAAAAAAAMFFsbKzX21ap\nUiWIlRgrNzdXffr00eHDhyV5Dq/YtGzZUjNnzrSHP8JV/fr11a9fP6+XESosLNTzzz9vRGkAAAAA\nAJOE91+6AAAAAAAACGvHjx/3ettq1aoFsRLjFBUVadCgQfrPf/4jybvwitVqVYM93gaVAAALx0lE\nQVQGDbRgwQLFxcUZUmewPfnkkx63sc06Y7VaNWfOHKWlpRlQGQAAAADADARYAAAAAAAAYJr09HSP\n29hCDNdee60BFQXfqFGjtGTJEnswwxXH8EqNGjWUlpbm05JLoa5Lly5q2bKl/ffrju1cPfTQQzp6\n9KhBFQIAAAAAjESABQAAAAAAAKbIyMjQli1bPAY5bK677joDqgqucePGadKkST6FV2JiYvTNN9+o\nSZMmRpVpmHfffdfjNo7n6eTJk+rbt69ycnKCWRYAAAAAwAQEWAAAAAAAACqotWvXauTIkfrll1/M\nLsWpP/3pTz5t37FjxyBVYozPP/9c48aN8ym8EhERocmTJ6tDhw5GlWmoTp066c477/Q4C4vjUkJb\nt25Vnz59dObMGQMr9d25c+c0fvx4HTlyxOxSAAAAACAsEGABAAAAAACooAoLC/Wvf/1LTZo00f33\n369t27aZXZLdokWLlJqa6ja04PhYpUqV1KNHDyNKC4qlS5dq1KhRHpfKsbEFNsaPH69hw4YFuTpz\n/e1vf1NCQoIkeRVikaQ1a9aobdu2IRnOOnHihF577TXVr19fr776qgoKCswuCQAAAADCAgEWAAAA\nAACACq64uFhffvmlWrRooY4dO+rrr7/WpUuXTKtn9erVJUIZ7mYjsYUW+vbtq2rVqhlRXsBt375d\ngwcPtp9zT7Ov2I750Ucf1fPPP29UmaZp0KCBPvroI/t58RRisW2ze/dutWzZUp999pkhdXqyYcMG\nDR8+XPXq1dObb76ps2fPml0SAAAAAIQVAiwAAAAAAACXAYvFIovFoh9++EHDhg1T7dq19cQTT+jH\nH380rIaioiK9//776tGjh3JyciS5D3M4euKJJ4JZWlD94Q9/0Llz5yR5H17p27evJkyYYFSJprv/\n/vt11113eR1isZ2n3NxcPfroo+rQoYN++OEHo8q1279/v9566y2lpKSobdu2mjp1qgoLC72eaQcA\nAAAA8D+RZhcAAAAAAACA4CsdDDh16pQmTJigCRMmKCkpSf369dPtt9+uTp06KTY2NqBj22aAefPN\nN7Vv3z57Dd6EOSTptttuU5cuXQJak5EuXrzocRvHwENERIR++9vf6rXXXgtmWQHx3HPPqWrVqgHZ\n1z//+U/t27dPmzZtsgeuvJmdx2KxaM2aNerYsaM6deqkRx99VAMHDlR0dHRA6nJUXFysDRs2KC0t\nTWlpadqyZYuk/wXEAAAAAAD+s1i9/ZoLAAAAAAAAwsrKlSvVuXNnp0GA0hfbbY9HRUXppptuUvv2\n7XXzzTcrJSVFjRo1UlRUlE9jHz58WOvWrdP8+fOVlpam7OzsEmN6Cq/YtomKilJ6erpSUlJ8Gt+V\nzMxMJScnuw1HOM6EkpGRoaSkpHKN2blzZ61cudJjICPcBOr8ODp58qTatWunvXv3ehV0cqzFcduE\nhAR169ZNvXv31i233KKmTZsqMtK37/JdvHhRe/fu1c8//6z09HStW7dOGzduVF5eXplxS9fp+Bza\nu3evGjZs6NPYAAAAAHA5YgYWAAAAAACAy1Dpi+22C/GXLl3S+vXrtX79evvjkZGRuuaaa1S3bl3V\nqVNHiYmJio2NVWxsrKxWq/Ly8pSbm6vc3FxlZGRoz549ys3Ndbp/bwMctov/f/nLXwIWXgkX4TCT\nR7CCOFdccYUWLVqkLl26KDMz0/488DRm6RmGcnNzNXfuXM2dO1eSFB0drYYNG9qfxwkJCYqNjVV0\ndLQuXLig8+fPq6CgQCdOnNCxY8d09OhRHTp0SMXFxSXGKT3TSkUKJAEAAACA2QiwAAAAAAAAXOZc\nhVlsioqKlJmZqf3793u1P2f78HUWDYvFonvvvVdPPfWUV2NWJKEeigh2wKZBgwZat26devfurW3b\ntpVYKsjTuXEMsjjWWVhYqN27d+vnn3/2qgbbzzo71lD//QAAAABAuIowuwAAAAAAAACEDqvVWuZm\nYwsFeLo5248npcMrgwYN0uTJk4NyjAh9tWrV0qpVq9S9e3d7cMUxyOJJIJ7DzvZDeAUAAAAAgocA\nCwAAAAAAwGXA2wv/zji7iO/p5mtdjgGFxx9/XNOnT1dEBB9dXc6qVKmif//73/rTn/6k6OjoEjOw\n+Pp89uc57GtYxVkABgAAAADgPT4FAAAAAAAAqOAcL8i7mmnCSI7jO9ZVtWpVTZo0SR988AHhFdg9\n//zzWrt2ra6//voSzxnJ3NBI6f+XSgdfLBaLEhISFBsba3htAAAAABCO+CQAAAAAAACggqpZs6bq\n1KnjcmkfyfmSKoHmbokh2+N9+vTRTz/9pPvvvz/g43tblxFBCG+XsAnlmxlatmyprVu36u9//7tq\n1arlMjASzBo9LZXluM1NN92kTz75RIcPH1adOnWCUg8AAAAAVDSRZhcAAAAAAACA4Lj++ut16NAh\nbdiwQd98840WLlyoHTt22B93tkRKsAIApceyjdG2bVu99dZb6tSpU8DH9KWeijpmRWKxWDRq1Cjd\ne++9mjhxoiZOnKgDBw5IKnlugxlicfU8lqQmTZrorrvu0tChQ9W4ceOgjA8AAAAAFZnFyl/OAAAA\nAAAAl40jR45o0aJF+v7777Vq1SodOnSoxOOePiryFAxw9/O2n42Pj9eQIUM0evRotWrVysvKAyMz\nM1MNGzb0aluLxaJff/1VSUlJ5Rqzc+fOWrVqVbn2EYoCdX78ZbVaNW/ePKWmpmrp0qW6ePGi/X5X\nyvP8Lf3zMTExateunfr06aM+ffoQWgEAAACAciLAAgAAAAAAcBnLzMzUmjVrtGnTJm3evFnbtm1T\nTk6O0229+RjJWUDAYrGocePG6tChg26//XZ1795d0dHR5a4dsMnLy1NaWpoWLFigtWvX6tdffy2z\njbcfg7oKuVxzzTVq0aKF2rRpow4dOuiWW25RVFRUueoGAAAAAPwPARYAAAAAAACUcOjQIe3atUt7\n9+5VZmamDhw4oKNHjyo7O1unTp1STk6OLl68qMLCQlWqVEkxMTGKiYlRtWrVdNVVV6lWrVpKSkpS\n48aN1aRJE7Vs2VLVq1c3+7BwGTl9+rQ2btyon376yf4cPnjwoE6dOqX8/HwVFBSooKBAkhQdHa2Y\nmBhVqVJFNWvW1JVXXqlatWqpQYMGatiwoa699lrdcMMNPIcBAAAAIMgIsAAAAAAAAAAAAAAAAMBU\nEWYXAAAAAAAAAAAAAAAAgMsbARYAAAAAAAAAAAAAAACYigALAAAAAAAAAAAAAAAATEWABQAAAAAA\nAAAAAAAAAKYiwAIAAAAAAAAAAAAAAABTEWABAAAAAAAAAAAAAACAqQiwAAAAAAAAAAAAAAAA4P+1\na8cCAAAAAIP8rYexpzhaCSwAAAAAAAAAAKwEFgAAAAAAAAAAVgILAAAAAAAAAAArgQUAAAAAAAAA\ngJXAAgAAAAAAAADASmABAAAAAAAAAGAlsAAAAAAAAAAAsBJYAAAAAAAAAABYCSwAAAAAAAAAAKwE\nFgAAAAAAAAAAVgILAAAAAAAAAAArgQUAAAAAAAAAgJXAAgAAAAAAAADASmABAAAAAAAAAGAlsAAA\nAAAAAAAAsBJYAAAAAAAAAABYCSwAAAAAAAAAAKwEFgAAAAAAAAAAVgILAAAAAAAAAAArgQUAAAAA\nAAAAgJXAAgAAAAAAAADASmABAAAAAAAAAGAlsAAAAAAAAAAAsBJYAAAAAAAAAABYCSwAAAAAAAAA\nAKwEFgAAAAAAAAAAVgILAAAAAAAAAAArgQUAAAAAAAAAgJXAAgAAAAAAAADASmABAAAAAAAAAGAl\nsAAAAAAAAAAAsBJYAAAAAAAAAABYCSwAAAAAAAAAAKwEFgAAAAAAAAAAVgILAAAAAAAAAAArgQUA\nAAAAAAAAgJXAAgAAAAAAAADASmABAAAAAAAAAGAlsAAAAAAAAAAAsBJYAAAAAAAAAABYCSwAAAAA\nAAAAAKwEFgAAAAAAAAAAVgILAAAAAAAAAAArgQUAAAAAAAAAgJXAAgAAAAAAAADAKnbMPv9pi2/L\nAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "execution_count": 77, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_compression_experiments(res_b, comp_ratios, \"figs/compression_blog.png\", 4000.)\n", - "Image(filename=\"figs/compression_blog.png\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### FSWT x FT" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 1.18970511, 1.20880759, 1.52070644, 2.9339968 ,\n", - " 2.56411917, 87.36908629])" - ] - }, - "execution_count": 78, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "numpy.divide(res_b['GWT'], res_b['FSWT'])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "## Average Computation times" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "### Small Traffic" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FT 0.0120865980784\n", - "FSWT 0.330213073889\n", - "SWT 0.693568921089\n", - "GWT 0.22568975687\n", - "HWT 8.12668774128\n" - ] - } - ], - "source": [ - "for alg in time_smt:\n", - " print(alg, \" \" ,numpy.mean(time_smt[alg]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Traffic" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FT 35.4420957287\n", - "FSWT 18.375430127\n", - "GWT 5.96227147182\n" - ] - } - ], - "source": [ - "for alg in time_t:\n", - " print(alg, \" \", numpy.mean(time_t[alg]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Human" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FT 2.81663463513\n", - "FSWT 14.0157053073\n", - "GWT 11.5385679166\n" - ] - } - ], - "source": [ - "for alg in time_h:\n", - " print(alg, \" \", numpy.mean(time_h[alg]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Wikipedia" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FT 381.24113421\n", - "FSWT 424.825737035\n", - "GWT 386.143908437\n" - ] - } - ], - "source": [ - "for alg in time_w:\n", - " print(alg, \" \",numpy.mean(time_w[alg]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Blogs" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FT 7.84694833755\n", - "FSWT 38.6995140592\n", - "GWT 47.0106969635\n" - ] - } - ], - "source": [ - "for alg in time_b:\n", - " print(alg, \" \", numpy.mean(time_b[alg]))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.4.3" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/figs/compression_blog.png b/figs/compression_blog.png index bca7081..33442a3 100644 Binary files a/figs/compression_blog.png and b/figs/compression_blog.png differ diff --git a/figs/compression_blog2.png b/figs/compression_blog2.png new file mode 100644 index 0000000..13ba16d Binary files /dev/null and b/figs/compression_blog2.png differ diff --git a/figs/compression_human.png b/figs/compression_human.png index a382eaa..6a7753f 100644 Binary files a/figs/compression_human.png and b/figs/compression_human.png differ diff --git a/figs/compression_human2.png b/figs/compression_human2.png new file mode 100644 index 0000000..0c4cb63 Binary files /dev/null and b/figs/compression_human2.png differ diff --git a/figs/compression_small_traffic.png b/figs/compression_small_traffic.png index 44c3466..08ec021 100644 Binary files a/figs/compression_small_traffic.png and b/figs/compression_small_traffic.png differ diff --git a/figs/compression_traffic.png b/figs/compression_traffic.png index 6b9a87c..f7d1cc4 100644 Binary files a/figs/compression_traffic.png and b/figs/compression_traffic.png differ diff --git a/figs/compression_wiki.png b/figs/compression_wiki.png index 4ea45bb..134eaa3 100644 Binary files a/figs/compression_wiki.png and b/figs/compression_wiki.png differ diff --git a/figs/compression_wiki2.png b/figs/compression_wiki2.png new file mode 100644 index 0000000..85045f0 Binary files /dev/null and b/figs/compression_wiki2.png differ diff --git a/lib/__init__.py b/lib/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/lib/datasets.py b/lib/datasets.py index ceb7df3..6363389 100644 --- a/lib/datasets.py +++ b/lib/datasets.py @@ -1,35 +1,52 @@ +r""" -#small traffic -#Speeds from traffic sensors -#vertices: 100 +This module provides path to the dataset in data. +Each one is in a directory with the following structure: + + datasetname + |- datasetname.data + |- datasetname.graph + +datasetname.data has info about the graph signal. +Row format : "vertex_id, vertex_value" + +datasetname.graph has info about edges. +Row format: "vertex_A, vertex_B[, edge_weight]" + +""" + + +# Small traffic (weighted) +# Speeds from traffic sensors +# Vertices: 100 small_traffic = {} small_traffic["path"] = "data/small_traffic/" -#Large traffic -#Speeds from traffic sensors -#vertices: 1923 +# Large traffic (weigthed) +# Speeds from traffic sensors +# Vertices: 1923 traffic = {} traffic["path"] = "data/traffic/" -#Human -#Gene expression data -#vertices: 3628 +# Human (unweighted) +# Gene expression data +# Vertices: 3628 human = {} human["path"] = "data/human/" -#Wikipedia data -#Number of views of wikipedia pages -#Vertices: 4871 +# Wikipedia data (unweighted) +# Number of views of wikipedia pages +# Vertices: 4871 wiki = {} wiki["path"] = "data/wiki/" -#Political blogs -#Link network of congressman's blogs with democrat/republican (0/1) as signal -#vertices: 1490 +# Political blogs (unweighted) +# Link network of congressman's blogs with democrat/republican (0/1) as signal +# Vertices: 1490 polblogs = {} polblogs["path"] = "data/polblogs/" diff --git a/lib/experiments.py b/lib/experiments.py index 3b86267..f0c4d78 100644 --- a/lib/experiments.py +++ b/lib/experiments.py @@ -1,422 +1,471 @@ -import matplotlib.pyplot as plt -from matplotlib.lines import Line2D -from lib.static import * -from mpl_toolkits.mplot3d import axes3d -import numpy -from matplotlib.mlab import griddata -from matplotlib import cm -from lib.syn import * +import math import time -import sys + +import numpy as np +import matplotlib.pyplot as plt + +import lib.optimal_cut as oc +import lib.syn as syn + def L2(F, F_approx): - """ - Sum of squared errors - """ - e = 0 - for i in range(F.shape[0]): - e = e + ((F[i]-F_approx[i])**2).sum() + """ + Sum of squared errors + """ + return sum([(F[i] - F_approx[i])**2 for i in range(F.shape[0])]) - return float(e) def size_time_experiment(sizes, balance, sparsity, energy, noise, num): - """ - Size x time experiment using synthetic data. - Input: - * sizes: many - * balance - * sparsity - * energy - * noise - * num: number of repetitions - Output: - * res_time: time results - """ - res_time = [] - - for s in range(len(sizes)): - res_t = [] - for i in range(num): - (G,F,cut) = synthetic_graph(sizes[s], 3*sizes[s], sparsity, energy, balance, noise) - - j = 0 - ind = {} - for v in G.nodes(): - ind[v] = j - j = j + 1 - - k = int(len(G.edges())*sparsity) - start_time = time.time() - c = one_d_search(G, F, k, ind) - time_slow = time.time()-start_time - - start_time = time.time() - c = fast_search(G, F, k, 5, ind) - time_5 = time.time()-start_time - - start_time = time.time() - c = fast_search(G, F, k, 20, ind) - time_20 = time.time()-start_time - - start_time = time.time() - c = fast_search(G, F, k, 50, ind) - time_50 = time.time()-start_time - - res_t.append([time_slow, time_5, time_20, time_50]) - - r = numpy.mean(numpy.array(res_t), axis=0) - res_time.append(r) - - return numpy.array(res_time) + """ + Size x time experiment using synthetic data. + Input: + * sizes: list of sizes + * balance + * sparsity + * energy + * noise + * num: number of repetitions + Output: + * res_time: time results + """ + res_time = [] + + for s in range(len(sizes)): + res_t = [] + for i in range(num): + # synthetic_graph(size, num_edges, sparsity, energy, balance, + # noise, seed=None) + (G, F, k) = syn.synthetic_graph(sizes[s], 3 * sizes[s], sparsity, + energy, balance, noise) + + ind = {v: i for i, v in enumerate(G.nodes())} + + start_time = time.time() + oc.one_d_search(G, F, k, ind) + time_slow = time.time() - start_time + + start_time = time.time() + oc.fast_search(G, F, k, 5, ind) + time_5 = time.time() - start_time + + start_time = time.time() + oc.fast_search(G, F, k, 20, ind) + time_20 = time.time() - start_time + + start_time = time.time() + oc.fast_search(G, F, k, 50, ind) + time_50 = time.time() - start_time + + res_t.append([time_slow, time_5, time_20, time_50]) + + r = np.mean(np.array(res_t), axis=0) + res_time.append(r) + + return np.array(res_time) + def sparsity_acc_experiment(sparsity, size, balance, energy, noise, num): - """ - Sparsity x accuracy experiments using synthetic data. - Input: - * sparsity: many - * size - * balance - * energy - * noise - * num: number of repetitions - Output: - * res: accuracy results - """ - res = [] - - for s in range(len(sparsity)): - res_a = [] - for i in range(num): - (G,F,k) = synthetic_graph(size, 3*size, sparsity[s], energy, balance, noise) - - j = 0 - ind = {} - for v in G.nodes(): - ind[v] = j - j = j + 1 - - c = one_d_search(G, F, k, ind) - acc_slow = c["energy"] - - c = fast_search(G, F, k, 5, ind) - acc_5 = c["energy"] - - c = fast_search(G, F, k, 20, ind) - acc_20 = c["energy"] - - c = fast_search(G, F, k, 50, ind) - acc_50 = c["energy"] - - res_a.append([acc_slow, acc_5, acc_20, acc_50]) - - r = numpy.mean(numpy.array(res_a), axis=0) - res.append(r) - - return numpy.array(res) + """ + Sparsity x accuracy experiments using synthetic data. + Input: + * sparsity: many + * size + * balance + * energy + * noise + * num: number of repetitions + Output: + * res: accuracy results + """ + res = [] + + for s in range(len(sparsity)): + res_a = [] + for i in range(num): + (G, F, k) = syn.synthetic_graph(size, 3 * size, sparsity[s], + energy, balance, noise) + + ind = {v: i for i, v in enumerate(G.nodes())} + + c = oc.one_d_search(G, F, k, ind) + acc_slow = c["energy"] + + c = oc.fast_search(G, F, k, 5, ind) + acc_5 = c["energy"] + + c = oc.fast_search(G, F, k, 20, ind) + acc_20 = c["energy"] + + c = oc.fast_search(G, F, k, 50, ind) + acc_50 = c["energy"] + + res_a.append([acc_slow, acc_5, acc_20, acc_50]) + + r = np.mean(np.array(res_a), axis=0) + res.append(r) + + return np.array(res) + def noise_acc_experiment(noise, size, sparsity, energy, balance, num): - """ - Noise x accuracy experiments using synthetic data. - Input: - * noise: many - * size - * sparsity - * energy - * balance - * num: number of repetitions - Output: - * res: accuracy results - """ - res = [] - - for s in range(len(noise)): - res_a = [] - for i in range(num): - (G,F,k) = synthetic_graph(size, 3*size, sparsity, energy, balance, noise[s]) - - j = 0 - ind = {} - for v in G.nodes(): - ind[v] = j - j = j + 1 - - c = one_d_search(G, F, k, ind) - acc_slow = c["energy"] - - L = networkx.laplacian_matrix(G) - c = fast_search(G, F, k, 5, ind) - acc_5 = c["energy"] - - c = fast_search(G, F, k, 20, ind) - acc_20 = c["energy"] - - c = fast_search(G, F, k, 50, ind) - acc_50 = c["energy"] - - res_a.append([acc_slow, acc_5, acc_20, acc_50]) - - r = numpy.mean(numpy.array(res_a), axis=0) - res.append(r) - - return numpy.array(res) + """ + Noise x accuracy experiments using synthetic data. + Input: + * noise: list of noises + * size + * sparsity + * energy + * balance + * num: number of repetitions + Output: + * res: accuracy results + """ + res = [] + + for s in range(len(noise)): + res_a = [] + for i in range(num): + (G, F, k) = syn.synthetic_graph(size, 3 * size, sparsity, + energy, balance, noise[s]) + + ind = {v: i for i, v in enumerate(G.nodes())} + + c = oc.one_d_search(G, F, k, ind) + acc_slow = c["energy"] + + c = oc.fast_search(G, F, k, 5, ind) + acc_5 = c["energy"] + + c = oc.fast_search(G, F, k, 20, ind) + acc_20 = c["energy"] + + c = oc.fast_search(G, F, k, 50, ind) + acc_50 = c["energy"] + + res_a.append([acc_slow, acc_5, acc_20, acc_50]) + + r = np.mean(np.array(res_a), axis=0) + res.append(r) + + return np.array(res) + def energy_acc_experiment(energy, size, sparsity, noise, balance, num): - """ - Energy x accuracy experiments using synthetic data. - Input: - * energy: many - * size - * sparsity - * noise - * balance - * num: number of repetitions - Output: - * res: accuracy results - """ - res = [] - - for s in range(len(energy)): - res_a = [] - for i in range(num): - (G,F,k) = synthetic_graph(size, 3*size, sparsity, energy[s], balance, noise) - - j = 0 - ind = {} - for v in G.nodes(): - ind[v] = j - j = j + 1 - - c = one_d_search(G, F, k, ind) - acc_slow = c["energy"] - - c = fast_search(G, F, k, 5, ind) - acc_5 = c["energy"] - - c = fast_search(G, F, k, 20, ind) - acc_20 = c["energy"] - - c = fast_search(G, F, k, 50, ind) - acc_50 = c["energy"] - - res_a.append([acc_slow, acc_5, acc_20, acc_50]) - - r = numpy.mean(numpy.array(res_a), axis=0) - res.append(r) - - return numpy.array(res) + """ + Energy x accuracy experiments using synthetic data. + Input: + * energy: list of energies + * size + * sparsity + * noise + * balance + * num: number of repetitions + Output: + * res: accuracy results + """ + res = [] + + for s in range(len(energy)): + res_a = [] + for i in range(num): + (G, F, k) = syn.synthetic_graph(size, 3 * size, sparsity, + energy[s], balance, noise) + + ind = {v: i for i, v in enumerate(G.nodes())} + + c = oc.one_d_search(G, F, k, ind) + acc_slow = c["energy"] + + c = oc.fast_search(G, F, k, 5, ind) + acc_5 = c["energy"] + + c = oc.fast_search(G, F, k, 20, ind) + acc_20 = c["energy"] + + c = oc.fast_search(G, F, k, 50, ind) + acc_50 = c["energy"] + + res_a.append([acc_slow, acc_5, acc_20, acc_50]) + + r = np.mean(np.array(res_a), axis=0) + res.append(r) + + return np.array(res) + def plot_size_time_experiment(results, sizes, output_file_name): - """ - Plots size x time experiment. - Input: - * results: time results - * sizes: graph sizes - * output_file_name: output file name - Output: - * None - """ - plt.clf() - - ax = plt.subplot(111) - - ncol=2 - ax.plot(sizes, results[:,0], marker="x", color="cyan", label="SWT", markersize=15) - ax.plot(sizes, results[:,1], marker="o", color="orangered", label="FSWT-5", markersize=15) - ax.plot(sizes, results[:,2], marker="o", color="darkgreen", label="FSWT-20", markersize=15) - ax.plot(sizes, results[:,3], marker="o", color="k", label="FSWT-50", markersize=15) - plt.gcf().subplots_adjust(bottom=0.15) - ax.legend(loc='upper center', prop={'size':20}, ncol=ncol) - ax.set_ylabel('time (sec.)', fontsize=30) - ax.set_xlabel('#vertices', fontsize=30) - ax.tick_params(labelsize=23) - #plt.rcParams['xtick.labelsize'] = 80 - #plt.rcParams['ytick.labelsize'] = 80 - ax.set_xlim([180,1020]) - ax.set_ylim([0.01,50000]) - ax.set_yscale('log') - - plt.savefig(output_file_name, dpi=300, bbox_inches='tight') + """ + Plots size x time experiment. + Input: + * results: time results + * sizes: graph sizes + * output_file_name: output file name + Output: + * None + """ + plt.clf() + + ax = plt.subplot(111) + + ax.plot(sizes, results[:, 0], marker="x", color="cyan", + label="SWT", markersize=15) + ax.plot(sizes, results[:, 1], marker="o", color="orangered", + label="FSWT-5", markersize=15) + ax.plot(sizes, results[:, 2], marker="o", color="darkgreen", + label="FSWT-20", markersize=15) + ax.plot(sizes, results[:, 3], marker="o", color="k", + label="FSWT-50", markersize=15) + plt.gcf().subplots_adjust(bottom=0.15) + ax.legend(loc='upper center', prop={'size': 20}, ncol=2) + ax.set_ylabel('time (sec.)', fontsize=30) + ax.set_xlabel('#vertices', fontsize=30) + ax.tick_params(labelsize=23) + # plt.rcParams['xtick.labelsize'] = 80 + # plt.rcParams['ytick.labelsize'] = 80 + ax.set_xlim([180, 1020]) + ax.set_ylim([0.01, 50000]) + ax.set_yscale('log') + + plt.savefig(output_file_name, dpi=300, bbox_inches='tight') + def plot_sparsity_acc_experiment(results, sparsity, output_file_name): - """ - Plots sparsity x accuracy experiment. - Input: - * results: accuracy results - * sparsity: sparsity values - * output_file_name: output file name - Output: - * None - """ - plt.clf() - - ncol=2 - ax = plt.subplot(111) - width = 0.04 # the width of the bars) - ax.bar(numpy.array(sparsity)-2*width, results[:,0], width, color='cyan', label="SWT", hatch="/") - ax.bar(numpy.array(sparsity)-width, results[:,1], width, color='orangered', label="FSWT-5", hatch="\\") - ax.bar(numpy.array(sparsity), results[:,2], width, color='darkgreen', label="FSWT-20", hatch="-") - ax.bar(numpy.array(sparsity)+width, results[:,3], width, color='k', label="FSWT-50", hatch="*") - plt.gcf().subplots_adjust(bottom=0.15) - ax.legend(loc='upper center', prop={'size':20}, ncol=ncol) - ax.set_ylabel(r'L$_2$ energy', fontsize=30) - ax.set_xlabel('sparsity', fontsize=30) - plt.rcParams['xtick.labelsize'] = 20 - plt.rcParams['ytick.labelsize'] = 20 - ax.set_xlim([0.1,0.9]) - ax.set_ylim([0,150]) - - plt.savefig(output_file_name, dpi=300, bbox_inches='tight') + """ + Plots sparsity x accuracy experiment. + Input: + * results: accuracy results + * sparsity: sparsity values + * output_file_name: output file name + Output: + * None + """ + plt.clf() + + ax = plt.subplot(111) + width = 0.04 # the width of the bars) + ax.bar(np.array(sparsity) - 2 * width, + results[:, 0], width, color='cyan', label="SWT", hatch="/") + ax.bar(np.array(sparsity) - width, results[:, 1], + width, color='orangered', label="FSWT-5", hatch="\\") + ax.bar(np.array(sparsity), results[:, 2], width, + color='darkgreen', label="FSWT-20", hatch="-") + ax.bar(np.array(sparsity) + width, results[:, 3], + width, color='k', label="FSWT-50", hatch="*") + plt.gcf().subplots_adjust(bottom=0.15) + ax.legend(loc='upper center', prop={'size': 20}, ncol=2) + ax.set_ylabel(r'L$_2$ energy', fontsize=30) + ax.set_xlabel('sparsity', fontsize=30) + plt.rcParams['xtick.labelsize'] = 20 + plt.rcParams['ytick.labelsize'] = 20 + ax.set_xlim([0.1, 0.9]) + ax.set_ylim([0, 150]) + + plt.savefig(output_file_name, dpi=300, bbox_inches='tight') + def plot_noise_acc_experiment(results, noise, output_file_name): - """ - Plots noise x accuracy experiment. - Input: - * results: accuracy results - * noise: noise values - * output_file_name: output file name - Output: - * None - """ - plt.clf() - - ax = plt.subplot(111) - ncol=2 - width = 0.04 # the width of the bars) - rects1 = ax.bar(numpy.array(noise)-2*width, results[:,0], width, color='cyan', label="SWT") - rects2 = ax.bar(numpy.array(noise)-width, results[:,1], width, color='orangered', label="FSWT-5") - rects3 = ax.bar(numpy.array(noise), results[:,2], width, color='darkgreen', label="FSWT-20") - rects4 = ax.bar(numpy.array(noise)+width, results[:,3], width, color='k', label="FSWT-50") - - plt.gcf().subplots_adjust(bottom=0.15) - ax.legend(loc='upper center', prop={'size':20}, ncol=ncol) - ax.set_ylabel(r'L$_2$ energy', fontsize=30) - ax.set_xlabel('noise', fontsize=30) - plt.rcParams['xtick.labelsize'] = 20 - plt.rcParams['ytick.labelsize'] = 20 - ax.set_xlim([0.1,0.9]) - ax.set_ylim([0,150]) - - plt.savefig(output_file_name, dpi=300, bbox_inches='tight') + """ + Plots noise x accuracy experiment. + Input: + * results: accuracy results + * noise: noise values + * output_file_name: output file name + Output: + * None + """ + plt.clf() + + ax = plt.subplot(111) + + width = 0.04 # the width of the bars) + ax.bar(np.array(noise) - 2 * width, results[:, 0], + width, color='cyan', label="SWT") + ax.bar(np.array(noise) - width, + results[:, 1], width, color='orangered', label="FSWT-5") + ax.bar(np.array(noise), results[:, 2], + width, color='darkgreen', label="FSWT-20") + ax.bar(np.array(noise) + width, results[:, 3], + width, color='k', label="FSWT-50") + + plt.gcf().subplots_adjust(bottom=0.15) + ax.legend(loc='upper center', prop={'size': 20}, ncol=2) + ax.set_ylabel(r'L$_2$ energy', fontsize=30) + ax.set_xlabel('noise', fontsize=30) + plt.rcParams['xtick.labelsize'] = 20 + plt.rcParams['ytick.labelsize'] = 20 + ax.set_xlim([0.1, 0.9]) + ax.set_ylim([0, 150]) + + plt.savefig(output_file_name, dpi=300, bbox_inches='tight') + def plot_energy_acc_experiment(results, energy, output_file_name): - """ - Plots energy x accuracy experiment. - Input: - * results: accuracy results - * energy: energy values - * output_file_name: output file name - Output: - * None - """ - plt.clf() - ncol=2 - ind = numpy.array(list(range(4))) - ax = plt.subplot(111) - width = 0.2 # the width of the bars) - rects1 = ax.bar(ind-width, results[:,0], width, color='cyan', label="SWT", log=True) - rects2 = ax.bar(ind, results[:,1], width, color='orangered', label="FSWT-5", log=True) - rects3 = ax.bar(ind+width, results[:,2], width, color='darkgreen', label="FSWT-20", log=True) - rects4 = ax.bar(ind+2*width, results[:,3], width, color='k', label="FSWT-50", log=True) - - plt.gcf().subplots_adjust(bottom=0.15) - ax.legend(loc='upper left', prop={'size':20}, ncol=ncol) - ax.set_ylabel(r'L$_2$ energy', fontsize=30) - ax.set_xlabel(r'L$_2$ energy (data)', fontsize=30) - plt.rcParams['xtick.labelsize'] = 20 - plt.rcParams['ytick.labelsize'] = 20 - ax.set_yscale('log') - ax.set_xticks(ind + width) - ax.set_xticklabels((r'10$\mathregular{^1}$', r'10$\mathregular{^2}$', r'10$\mathregular{^3}$', r'10$\mathregular{^4}$')) - ax.set_ylim(0.1,1000000) - ax.set_xlim(-0.3,3.7) - - plt.savefig(output_file_name, dpi=300, bbox_inches='tight') - -def plot_compression_experiments(results, comp_ratios, output_file_name, max_y): - """ - Plots compression size x accuracy experiment. - Input: - * results: accuracy results - * comp_ratios: compression ratios - * output_file_name: output file name - * max_y: maximum y-axis - Output: - * None - """ - plt.clf() - - for alg in results: - for i in range(1,results[alg].shape[0]): - if results[alg][i] > results[alg][i-1]: - results[alg][i] = results[alg][i-1] - - ax = plt.subplot(111) - ncol = 3 - - ax.semilogy(comp_ratios, results["FSWT"], marker="o", color="r", label="FSWT", markersize=15) - ax.semilogy(comp_ratios, results["FT"], marker="*", color="c", label="FT", markersize=15) - - if "SWT" in results: - ax.semilogy(comp_ratios, results["SWT"], marker="x", color="b", label="SWT", markersize=15) - - ax.semilogy(comp_ratios, results["GWT"], marker="s", color="g", label="GWT", markersize=15) - - if "HWT" in results: - ax.semilogy(comp_ratios, results["HWT"], marker="v", color="y", label="HWT", markersize=15) - - plt.gcf().subplots_adjust(bottom=0.15) - ax.legend(loc='upper center', prop={'size':20}, ncol=ncol) - ax.set_ylabel(r'L$_2$ error', fontsize=30) - ax.set_xlabel('size', fontsize=30) - plt.rcParams['xtick.labelsize'] = 20 - plt.rcParams['ytick.labelsize'] = 20 - ax.set_xlim(0.,0.65) - ax.set_ylim(0., max_y) - - plt.savefig(output_file_name, dpi=300, bbox_inches='tight') - -def compression_experiment_static(G, F, algs, comp_ratios, num): - """ - Runs compression experiment static. - Input: - * G: graph - * F: graph signal - * algs: compression algorithms/transforms - * comp_ratios: compression ratios - * num: number of repetitions - Output: - * results: compression results - * times: compression times - """ - results = {} - times = {} - - for alg in algs: - results[alg.name()] = [] - times[alg.name()] = [] - - for r in range(len(comp_ratios)): - T = [] - R = [] - for i in range(num): - start_time = time.time() - alg.set_graph(G) - tr = alg.transform(F) - size = int(F.size * comp_ratios[r]) - appx_tr = alg.drop_frequency(tr, size) - appx_F = alg.inverse(appx_tr) - t = time.time()-start_time - T.append(t) - R.append(L2(F, appx_F)) - T = numpy.array(T) - R = numpy.array(R) - times[alg.name()].append(numpy.mean(T)) - results[alg.name()].append(numpy.mean(R)) - - results[alg.name()] = numpy.array(results[alg.name()]) - - times[alg.name()] = numpy.array(times[alg.name()]) - - return results, times - - + """ + Plots energy x accuracy experiment. + Input: + * results: accuracy results + * energy: energy values + * output_file_name: output file name + Output: + * None + """ + plt.clf() + + ind = np.array(list(range(4))) + ax = plt.subplot(111) + width = 0.2 # the width of the bars) + ax.bar(ind - width, results[:, 0], + width, color='cyan', label="SWT", log=True) + ax.bar(ind, results[:, 1], + width, color='orangered', label="FSWT-5", log=True) + ax.bar(ind + width, results[:, 2], + width, color='darkgreen', label="FSWT-20", log=True) + ax.bar(ind + 2 * width, results[:, 3], + width, color='k', label="FSWT-50", log=True) + + plt.gcf().subplots_adjust(bottom=0.15) + ax.legend(loc='upper left', prop={'size': 20}, ncol=2) + ax.set_ylabel(r'L$_2$ energy', fontsize=30) + ax.set_xlabel(r'L$_2$ energy (data)', fontsize=30) + plt.rcParams['xtick.labelsize'] = 20 + plt.rcParams['ytick.labelsize'] = 20 + ax.set_yscale('log') + ax.set_xticks(ind + width) + ax.set_xticklabels((r'10$\mathregular{^1}$', r'10$\mathregular{^2}$', + r'10$\mathregular{^3}$', r'10$\mathregular{^4}$')) + ax.set_ylim(0.1, 1000000) + ax.set_xlim(-0.3, 3.7) + + plt.savefig(output_file_name, dpi=300, bbox_inches='tight') + + +def get_children(tree, chil_list): + c = tree.children + if c != []: + chil_list.append(c[0]) + if len(c) == 2: + chil_list.append(c[1]) + get_children(c[0], chil_list) + if len(c) == 2: + get_children(c[1], chil_list) + + +def compression_experiment(G, F, algs, comp_ratios, num): + r""" + Runs compression experiment static. + Input: + * G: graph + * F: graph signal + * algs: compression algorithms/transforms + * comp_ratios: compression ratios + * num: number of repetitions + Output: + * results: compression results + * times: compression times + + The following DOCTEST is designed for NetworkX 1.11. Different versions + (ex 2.0) return slightly different Fiedler vectors. Furthermore to get the + same vector you should also set PYTHONHASHSEED=0. 'tracemin_lu' seems to + be faster and give more stable results than 'lobpcg'. The resulting + accuracy of the two method is similar. + + >>> from lib import io_utils, static + >>> import lib.datasets as data + >>> + >>> G = io_utils.read_graph(data.small_traffic["path"] + "traffic.graph", + ... data.small_traffic["path"] + "traffic.data") + >>> F = io_utils.read_values(data.small_traffic["path"] + + ... "traffic.data", G) + >>> algs = [static.OptWavelets(n=5, method='lobpcg'),\ + ... static.OptWavelets(method='tracemin_lu'), static.Fourier(),\ + ... static.GRCWavelets(method='tracemin_lu'), static.HWavelets()] + >>> comp_ratios = [0.1, 0.2] + >>> res_smt, time_smt = \ + ... compression_experiment(G, np.array(F), algs, + ... comp_ratios, 1) + >>> print(res_smt['FT']) + [ 0.17681431 0.1036391 ] + >>> print(res_smt['FSWT']) + [ 0.16306688 0.03567735] + >>> print(res_smt['SWT']) + [ 0.15091373 0.05312383] + >>> print(res_smt['GWT']) + [ 0.1988195 0.10399963] + >>> print(res_smt['HWT']) + [ 0.27003969 0.23748869] + """ + results = {} + times = {} + + for alg in algs: + results[alg.name()] = [] + times[alg.name()] = [] + for r in range(len(comp_ratios)): + T = [] + R = [] + for i in range(num): + start_time = time.time() + alg.set_graph(G) + tr = alg.transform(F) + size = int(F.size * comp_ratios[r]) + appx_tr = alg.drop_frequency(tr, size) + appx_F = alg.inverse(appx_tr) + t = time.time() - start_time + T.append(t) + R.append(L2(F, appx_F)) + T = np.array(T) + R = np.array(R) + times[alg.name()].append(np.mean(T)) + results[alg.name()].append(np.mean(R)) + results[alg.name()] = np.array(results[alg.name()]) + times[alg.name()] = np.array(times[alg.name()]) + return results, times + + +def plot_compression_experiments(results, comp_ratios, output_file_name): + """ + Plots compression size x accuracy experiment. + Input: + * results: accuracy results + * comp_ratios: compression ratios + * output_file_name: output file name + Output: + * None + """ + + # Get range of values + highest_val = max([max(results[res]) for res in results]) + lowest_val = min([min(results[res]) for res in results]) + + plt.clf() + ax = plt.subplot(111) + + legend_columns = 3 + + # Add some white space at the top to place the legend + white_space = 0.3 * (len(results) // legend_columns + + bool((len(results) % legend_columns))) + max_y = 10**(1 * math.log(highest_val, 10) + + white_space * (math.log(highest_val, 10) + - math.log(lowest_val, 10))) + + ax.semilogy(comp_ratios, results["FSWT"], marker="o", color="r", + label="FSWT") + ax.semilogy(comp_ratios, results["FT"], marker="*", color="c", + label="FT") + if "SWT" in results: + ax.semilogy(comp_ratios, results["SWT"], marker="x", color="b", + label="SWT") + ax.semilogy(comp_ratios, results["GWT"], marker="s", color="g", + label="GWT") + if "HWT" in results: + ax.semilogy(comp_ratios, results["HWT"], marker="v", color="y", + label="HWT") + + ax.legend(loc='upper center', ncol=legend_columns) + ax.set_ylabel(r'L$_2$ error') + ax.set_xlabel('size') + + ax.set_ylim(lowest_val, max_y) + + plt.savefig(output_file_name, dpi=300, bbox_inches='tight') diff --git a/lib/graph_signal_proc.py b/lib/graph_signal_proc.py index 4b39851..954dde8 100644 --- a/lib/graph_signal_proc.py +++ b/lib/graph_signal_proc.py @@ -1,988 +1,620 @@ -import networkx import math +from collections import deque + +import networkx as nx +import numpy as np +from numpy import dot, diag import scipy.optimize -import numpy -import sys from scipy import linalg -import matplotlib.pyplot as plt -from IPython.display import Image -import pywt import scipy.fftpack -import random -import operator -import copy -from collections import deque -from sklearn.preprocessing import normalize -from sklearn.cluster import SpectralClustering -import statistics -from numpy import log, mean, dot, diag, sqrt -from numpy.linalg import eigh def compute_eigenvectors_and_eigenvalues(L): - """ - Computes eigenvectors and eigenvalues of the matrix L - Input: - * L: matrix - Output: - * U: eigenvector matrix, one vector/column, sorted by corresponsing eigenvalue - * lamb: eigenvalues, sorted in increasing order - """ - lamb, U = linalg.eig(L) - - idx = lamb.argsort() - lamb = lamb[idx] - U = U[:,idx] - - return U, lamb - -def s(x): - """ - Cubic spline. - Input: - * x - Output: - * spline(x) - """ - return -5 + 11*x - 6*pow(x, 2) + pow(x, 3) + """ + Computes eigenvectors and eigenvalues of the matrix L + Input: + * L: matrix + Output: + * U: eigenvector matrix, one vector/column, sorted by corresponding + eigenvalue + * lamb: eigenvalues, sorted in increasing order + """ + lamb, U = linalg.eig(L) + + idx = lamb.argsort() + lamb = lamb[idx] + U = U[:, idx] + + return U, lamb + def g(x): - """ - Wavelet kernel. - Input: - * x - Output: - * kernel of x - """ - a = 2 - b = 2 - x_1 = 1 - x_2 = 2 - - if x < x_1: - return pow(x_1, -a)*pow(x, a) - elif x <= x_2 and x >= x_1: - return s(x) - else: - return pow(x_2, b)*pow(x, -b) + """ + Wavelet generating kernel, see Hammond, D. K.,Vandergheynst, P., + & Gribonval, R. (2011). "Wavelets on graphs via spectral graph theory". + Input: + * x + Output: + * kernel of x + """ + a = 2 + b = 2 + x_1 = 1 + x_2 = 2 + + if x < x_1: + return pow(x_1, -a) * pow(x, a) + elif x <= x_2 and x >= x_1: + return -5 + 11 * x - 6 * pow(x, 2) + pow(x, 3) + else: + return pow(x_2, b) * pow(x, -b) + def comp_gamma(): - """ - Computes gamma function - Input: - * None - Output: - * Gamma function (array) - """ - gn = lambda x: -1 * g(x) - xopt = scipy.optimize.fminbound(gn, 1, 2) - return xopt + """ + In Hammond, D. K.,Vandergheynst, P.,& Gribonval, R. (2011). + "Wavelets on graphs via spectral graph theory" gamma is a parameter + used to determine the scaling function h. It is such that h(0) = max(g) + Input: + * None + Output: + * Gamma function (array) + """ + # fminbound finds the minimum within the optimization bounds + xopt = scipy.optimize.fminbound(lambda x: -g(x), 1, 2) + return xopt + def h(x, gamma, lamb_max, K): - """ - Scaling function (see details in the paper "Graph wavelets via spectral theory". - Input: - * x - * gamma - * lamb_max: upper bound spectrum - * K: normalization - Output: - * value of scaling function - """ - lamb_min = float(lamb_max) / K - return gamma * math.exp(-pow(float(x/(lamb_min * 0.6)), 4)) + """ + Scaling function see Hammond, D. K.,Vandergheynst, P., + & Gribonval, R. (2011). "Wavelets on graphs via spectral graph theory". + Input: + * x + * gamma + * lamb_max: upper bound spectrum + * K: normalization + Output: + * value of scaling function + """ + lamb_min = float(lamb_max) / K + return gamma * math.exp(-pow(float(x / (lamb_min * 0.6)), 4)) + def comp_scales(lamb_max, K, J): - """ - Computes wavelet scales - Input: - * lamb_max: upper bound spectrum - * K: normalization - * J: number of scales - Output: - * scales array - """ - lamb_min = float(lamb_max) / K - s_min = float(1)/lamb_max - s_max = float(2)/lamb_min - - return numpy.exp(numpy.linspace(math.log(s_max), math.log(s_min), J)) - -def graph_low_pass(lamb, U, N, T, gamma, lamb_max, K): - """ - Low-pass filter. - Input: - * lamb: eigenvalues - * U: eigenvector matrix - * N: number of nodes - * T: wavelet scales - * gamma: - * lamb_max: upper-bound spectrum - * K: normalization - Output: - * s: Low-pass filter as a #vertices x #vertices matrix - """ - s = [] - - for n in range(0, len(N)): - s.append([]) - - for n in range(0, len(N)): - for m in range(0, len(U)): - s_n_m = 0 - - for x in range(0, len(U)): - s_n_m = s_n_m + U[n][x] * U[m][x] * h(T[-1] * lamb[x], gamma, lamb_max, K) - - s[n].append(s_n_m) - - return s + r""" + Computes wavelet scales see Hammond, D. K.,Vandergheynst, P., + & Gribonval, R. (2011). "Wavelets on graphs via spectral graph theory". + Input: + * lamb_max: upper bound spectrum + * K: desired ratio for lambda_max / lambda_min + * J: number of scales + Output: + * scales array + """ + lamb_min = float(lamb_max) / K + s_min = float(1) / lamb_max + s_max = float(2) / lamb_min + + return np.exp(np.linspace(math.log(s_max), math.log(s_min), J)) + + +def graph_low_pass(lamb, U, T, gamma, lamb_max, K): + """ + Low-pass spectral filter (square matrix). + See "The emerging field of signal processing on graph" + Input: + * lamb: eigenvalues + * U: eigenvector matrix + * N: number of nodes + * T: wavelet scales + * gamma: scaling function parameter + * lamb_max: upper-bound spectrum + * K: normalization + Output: + * s: Low-pass filter as a N x N matrix + """ + + h_vector = [h(T[-1] * l, gamma, lamb_max, K) for l in lamb] + + return dot(U, dot(diag(h_vector), U.T)) + def graph_wavelets(lamb, U, N, T): - """ - Graph wavelets. - Input: - * lamb: eigenvalues - * U: eigenvector matrix - * N: number of nodes - * T: wavelet scales - Output: - * w: wavelets as a #vertices x #vertices x #scales matrix - """ - w = [] + """ + Graph wavelets. + Input: + * lamb: eigenvalues + * U: eigenvector matrix + * N: number of nodes + * T: wavelet scales + Output: + * w: wavelets as a len(T) x N x N matrix + """ - for t in range(0, len(T)): - w.append([]) - for n in range(0, len(N)): - w[t].append([]) + w = [] + for t in range(len(T)): + g_vector = [g(T[t] * l) for l in lamb] + w.append(dot(U, dot(diag(g_vector), U.T))) - for t in range(0, len(T)): - for n in range(0, len(N)): - for m in range(0, len(U)): - w_t_n_m = 0 + return np.asarray(w) - for x in range(0, len(U)): - w_t_n_m = w_t_n_m + U[n][x] * U[m][x] * g(T[t] * lamb[x]) - w[t][n].append(w_t_n_m) +def graph_fourier(F, U): + """ + Graph Fourier transform. + Input: + * F: Signal in the vertex domain + * U: Eigenvectors matrix + Ouput: + * F_hat: Signal in the graph spectral domain + """ + F_hat = [] - return w + for i in range(0, len(U)): + F_hat.append(dot(F, U[:, i])) + + F_hat = np.array(F_hat) + + return F_hat + + +def graph_fourier_inverse(F_hat, U): + """ + Graph Fourier inverse: + Input: + * F_hat: Signal in the graph spectral domain + * U: Eigenvectors matrix + Output: + * F: Signal in the vertex domain + """ + F = np.zeros(U.shape[0]) + for v in range(U.shape[0]): + for u in range(U.shape[1]): + F[v] = F[v] + (F_hat[u] * U[v][u]).real + + return F -def graph_fourier(F, U): - """ - Graph Fourier transform. - Input: - * F: Graph signal as a #vertices size array, values ordered by G.nodes() - * U: Eigenvectors matrix - Ouput: - * lambdas: Graph Fourier transform - """ - lambdas = [] - - for i in range(0, len(U)): - lambdas.append(numpy.dot(F, U[:,i])) - - lambdas = numpy.array(lambdas) - - return lambdas - -def graph_fourier_inverse(GF, U): - """ - Graph Fourier inverse: - Input: - * GF: Graph fourier transform - * U: Eigenvectors matrix - Output: - * F: Inverse - """ - F = numpy.zeros(U.shape[0]) - for v in range(U.shape[0]): - for u in range(U.shape[1]): - F[v] = F[v] + (GF[u]*U[v][u]).real - - return F def hammond_wavelet_transform(w, s, T, F): - """ - Hammond wavelet transform. - Input: - * w: wavelets - * s: low-pass wavelets - * T: wavelet scales - * F: graph signal - Output: - * C: Hammond's wavelet transform - """ - C = [] - - for i in range(len(T)): - C.append([]) - for j in range(len(F)): - dotp = numpy.dot(F, w[i][j]) - C[i].append(dotp) - - C.append([]) - for j in range(len(F)): - dotp = numpy.dot(F, s[j]) - C[-1].append(dotp) - - return numpy.array(C) + r""" + Hammond wavelet transform. + Input: + * w: wavelets + * s: low-pass wavelet (scaling function) + * T: wavelet scales + * F: graph signal + Output: + * C: Hammond's wavelet transform. (len(T) + 1) x len(F) + matrix of transform coefficients + """ + C = [] + + for i in range(len(T)): + # Each wavelet is represented by an N x N matrix + C.append(dot(F, w[i].T)) + # Append output of scaling function application at the end + C.append(dot(F, s.T)) + + return np.asarray(C) + def hammond_wavelets_inverse(w, s, C): - """ - Hammond's wavelet inverse. - Input: - * w: wavelets - * s: low-pass wavelets - * C: transform - Output: - * F: inverse - """ - w = numpy.array(w) - Wc = numpy.append(w, numpy.array([s]), axis=0) - - nWc = Wc[0,:,:] - nC = C[0] - for i in range(1,Wc.shape[0]): - nWc = numpy.append(nWc, Wc[i,:,:], axis=0) - nC = numpy.append(nC, C[i], axis=0) - - nWc = numpy.array(nWc) - nC = numpy.array(nC) - - F = numpy.linalg.lstsq(nWc, nC)[0] - - return F + r""" + Hammond's wavelet inverse. + Input: + * w: wavelets + * s: low-pass wavelet (scaling function) + * C: Hammond's wavelet transform. (len(T) + 1) x len(F) + matrix of transform coefficients + Output: + * F: Reconstructed signal in the vertex domain + """ + nC = np.ravel(C) + Wc = np.append(w, np.array([s]), axis=0) + nWc = Wc.reshape(Wc.shape[0] * Wc.shape[1], Wc.shape[2]) + # Search a least square solution F, solving: + # nWc F = nC + F = np.linalg.lstsq(nWc, nC)[0] + + return F + class Node(object): - """ - Generic tree-structure used for hierarchical transforms. - """ - def __init__(self, data): - """ - Initialization. - Input: - * data: Anything to be stored in a node - """ - self.data = data - self.children = [] - self.avgs = [] - self.counts = [] - self.diffs = [] - self.scale = 0 - self.ftr = [] - self.L = [] - self.U = [] - self.cut = 0 - - if data is None: - self.count = 0 - else: - self.count = 1 - - def add_child(self, obj): - """ - Adds obj as a child to a node. - Input: - * obj: anything - """ - obj.scale = self.scale + 1 - self.children.append(obj) - self.count = self.count + obj.count - -def get_children(tree, part, G): - """ - Recursively gets all the children of a given node. - Input: - * tree: tree node - * part: list that will contain children - * G: graph - Output: - * None - """ - if tree.data is not None: - part.append(G.nodes()[tree.data]) - else: - for c in tree.children: - get_children(c, part, G) + """ + Generic tree-structure used for hierarchical transforms. + """ + + def __init__(self, data): + """ + Input: + * data: Anything to be stored in a node. + Usually only leaf nodes have data != None + data != None often used as stopping condition + """ + self.data = data + self.children = [] + self.diffs = [] + # Level on the tree. The root has scale = 0 + self.scale = 0 + # count: number of leaves (data != None) of its subtree + if data is None: + self.count = 0 + else: + self.count = 1 + + def __str__(self): + descr = "Node id: {}, data: {}, scale: {}, count: {}" + return descr.format(id(self), self.data, self.scale, self.count) + + def __repr__(self): + return self.__str__() + + def add_child(self, obj): + """ + Adds obj as a child to a node. + Input: + * obj: anything + """ + obj.scale = self.scale + 1 + self.children.append(obj) + self.count = self.count + obj.count + def set_counts(tree): - """ - Sets counts for intermediate nodes in the tree. - Input: - * tree: tree node - Output: - * count: count for the tree node - """ - if tree.data is not None: - tree.count = 1 - return 1 - else: - count = 0 - for c in tree.children: - count = count + set_counts(c) - - tree.count = count - - return count - -def partitions_level_rec(tree, level, G, l, partitions): - """ - Recursively extracts partitions up to a certain level in the tree. - Input: - * tree: tree - * level: max level - * G: graph - * l: current level - * partitions: partitions recovered - Output: - None - """ - if l >= level: - part = [] - get_children(tree, part, G) - if len(part) > 0: - partitions.append(part) - else: - if tree.data is None: - for c in tree.children: - partitions_level_rec(c, level, G, l+1, partitions) - else: - partitions.append([tree.data]) - -def partitions_level(tree, level, G): - """ - Recovers partitions at a certain level of the three. - Input: - * tree: tree - * level: level - * G: graph - Output: - * partitions: set of vertices in each partition - """ - partitions = [] - partitions_level_rec(tree, level, G, 0, partitions) - - return partitions - -def build_matrix(G, ind): - """ - Builds graph distance matrix. - Input: - * G: graph - * ind: dictionary vertex: unique integer - Output: - * M: matrix - """ - M = [] - dists = networkx.all_pairs_dijkstra_path_length(G) - - M = numpy.zeros((len(G.nodes()), len(G.nodes()))) - - for v1 in G.nodes(): - for v2 in G.nodes(): - M[ind[v1]][ind[v2]] = dists[v1][v2] - - return M - -def select_centroids(M, radius): - """ - Selects half of the vertices as centroids. - Input: - * M - * radius - Output: - * centroids - """ - nodes = list(range(M.shape[0])) - random.shuffle(nodes) - nodes = nodes[:int(len(nodes)/2)] - cents = [nodes[0]] - mn = sys.float_info.min - - for i in range(1, len(nodes)): - add = True - for j in range(len(cents)): - if M[cents[j]][nodes[i]] <= radius*mn: - add = False - break - if add: - cents.append(nodes[i]) - - return cents - -def coarse_matrix(M, H, cents, nodes): - """ - Makes matrix coarser based on centroids. - Input: - * M: distance matrix - * H: - * cents: centroids - * nodes: list of nodes - Output: - * Q: new matrix - * J - * new_nodes: new node list - """ - Q = numpy.zeros((len(cents), len(cents))) - J = [] - assigns = [] - new_nodes = [] - - for i in range(len(cents)): - J.append([]) - assigns.append([]) - new_nodes.append(Node(None)) - - for i in range(M.shape[0]): - min_dist = M[i][cents[0]] - min_cent = 0 - - for j in range(1, len(cents)): - if M[i][cents[j]] < min_dist: - min_dist = M[i][cents[j]] - min_cent = j - - J[min_cent].append(H[i]) - assigns[min_cent].append(i) - new_nodes[min_cent].add_child(nodes[i]) - - for i in range(len(cents)): - if len(new_nodes[i].children) == 1: - new_nodes[i] = new_nodes[i].children[0] - - for j in range(len(cents)): - if i != j: - for m in assigns[i]: - for k in assigns[j]: - Q[i][j] = Q[i][j] + pow(M[m][k], 2) - - Q = normalize(Q, axis=1, norm='l1') - - return Q, J, new_nodes - -def get_partitions(x, node_list): - """ - Gets partitions given indicator vector. - if x < 0: partition 1 - if x <= 0: partition 2 - Input: - * node_list: list of nodes - * x: indicator vector - Output: - * P1: partition 1 - * P2: partition 2 - """ - P1 = [] - P2 = [] - - for i in range(x.shape[0]): - if x[i] < 0: - P1.append(node_list[i]) - else: - P2.append(node_list[i]) - - return P1, P2 - - -def get_new_laplacians(L, P1, P2, ind): - """ - Compute new Laplacian matrices for partitions P1 and P2. - Input: - * L: Higher-level laplacian - * P1: partition 1 - * P2: partition 2 - * ind: node index vertex: unique integer - Output: - * L1: Laplacian P1 - * L2: Laplacian P2 - """ - data = [] - row = [] - col = [] - - for i in range(len(P1)): - d = 0 - for j in range(len(P1)): - if i != j and L[ind[P1[i]],ind[P1[j]]] != 0: - row.append(i) - col.append(j) - data.append(float(L[ind[P1[i]],ind[P1[j]]])) - d = d - L[ind[P1[i]],ind[P1[j]]] - - row.append(i) - col.append(i) - data.append(float(d)) - - L1 = scipy.sparse.csr_matrix((data, (row, col)), shape=(len(P1), len(P1))) - - data = [] - row = [] - col = [] - - for i in range(len(P2)): - d = 0 - for j in range(len(P2)): - if i != j and L[ind[P2[i]],ind[P2[j]]] != 0: - row.append(i) - col.append(j) - data.append(float(L[ind[P2[i]],ind[P2[j]]])) - d = d - L[ind[P2[i]],ind[P2[j]]] - - row.append(i) - col.append(i) - data.append(float(d)) - - L2 = scipy.sparse.csr_matrix((data, (row, col)), shape=(len(P2), len(P2))) - - return L1, L2 - -def laplacian_complete(n): - """ - Laplacian of a complete graph with n vertices. - Input: - * n: size - Output: - * C: Laplacian - """ - C = numpy.ones((n, n)) - C = -1 * C - D = numpy.diag(numpy.ones(n)) - C = (n)*D + C - - return C - -def sqrtmi(mat): - """ - Computes the square-root inverse of a matrix. - Input: - * mat: matrix - Output: - * square root inverse - """ - eigvals, eigvecs = eigh(mat) - eigvecs = eigvecs[:, eigvals > 0] - eigvals = eigvals[eigvals > 0] - - return dot(eigvecs, dot(diag(1. / sqrt(eigvals)), eigvecs.T)) - -def create_linked_list(L): - """ - Creates linked list from a Laplacian matrix. - Input: - * L: matrix - Output: - * linked_list: linked list - """ - linked_list = {} - - for i in L.nonzero()[0]: - linked_list[i] = [] - for j in range(L.shape[1]): - if L[i,j] < 0: - linked_list[i].append(j) - return linked_list + """ + Input: + * tree: tree node + Output: + * count: count for the tree node + """ + if tree.data is not None: + tree.count = 1 + return 1 + else: + count = 0 + for c in tree.children: + count = count + set_counts(c) + + tree.count = count + + return count + + +def set_fiedler_method(method): + # Set method for Fiedler vector computation + global _method + _method = method + def sweep(x, G): - """ - Sweep algorithm for ratio-cut (2nd eigenvector of the Laplacian) based on vector x. - Input: - * x: vector - * G: graph - Output: - * vec: indicator vector - """ - best_val = networkx.number_of_nodes(G)-1 - sorted_x = numpy.argsort(x) - size_one = 0 - edges_cut = 0 - nodes_one = {} - - for i in range(x.shape[0]): - size_one = size_one + 1 - - nodes_one[G.nodes()[sorted_x[i]]] = True - - for v in G.neighbors(G.nodes()[sorted_x[i]]): - if v not in nodes_one: - edges_cut = edges_cut + 1 - else: - edges_cut = edges_cut - 1 - - den = size_one * (networkx.number_of_nodes(G)-size_one) - - if den > 0: - val = float(edges_cut) / den - else: - val = networkx.number_of_nodes(G) - - if val <= best_val: - best_cand = i - best_val = val - - vec = [] - - vec = numpy.zeros(networkx.number_of_nodes(G)) - - for i in range(x.shape[0]): - if i <= best_cand: - vec[sorted_x[i]] = -1. - else: - vec[sorted_x[i]] = 1. - - return vec + """ + Sweep algorithm for ratio-cut (2nd eigenvector of the Laplacian). + Based on vector x. + Input: + * x: vector + * G: graph + Output: + * vec: indicator vector + """ + sorted_x = np.argsort(x) + part_one = set() + N = nx.number_of_nodes(G) + best_val = N - 1 + edges_cut = 0 + nodes_list = list(G.nodes()) + + for i in range(N - 1): + part_one.add(nodes_list[sorted_x[i]]) + + for v in G.neighbors(nodes_list[sorted_x[i]]): + if v not in part_one: + edges_cut = edges_cut + 1 + else: + edges_cut = edges_cut - 1 + + den = len(part_one) * (N - len(part_one)) + + if den > 0: + val = float(edges_cut) / den + if val <= best_val: + best_cand = i + best_val = val + + vec = np.ones(nx.number_of_nodes(G)) + + for i in range(x.shape[0]): + if i <= best_cand: + vec[sorted_x[i]] = -1. + + return vec + def separate_lcc(G, G0): - """ - Separates vertices in G0 (LCC) from the rest in G using indicator vector. - Input: - * G: Graph - * G0: Subgraph - Output: - * x: indicator vector - """ - x = [] - - for v in G.nodes(): - if v in G0: - x.append(-1) - else: - x.append(1.) - - return numpy.array(x) + """ + Separate vertices in G0 (LCC) from the rest in G returning + an indicator vector. + Input: + * G: Graph + * G0: Subgraph + Output: + * x: indicator vector + """ + + return np.array([-1. if v in G0 else 1. for v in G.nodes()]) + def ratio_cut(G): - """ - Computes ratio-cut of G based on second eigenvector of the Laplacian. - Input: - * G: Graph - Output: - * x: Indicator vector - """ - - Gcc=sorted(networkx.connected_component_subgraphs(G), key = len, reverse=True) - G0=Gcc[0] - - if networkx.number_of_nodes(G) == networkx.number_of_nodes(G0): - x = networkx.fiedler_vector(G, method='lobpcg',tol=1e-5) - - x = sweep(x, G) - else: - #In case G is not connected - x = separate_lcc(G, G0) - - - return numpy.array(x) - -def eig_vis_rc(G): - """ - Second and third eigenvectors of the graph Laplacian. For visualization. - Input: - * G: Graph - Output: - * x1: Second eigenvector - * x2: Third eigenvector - """ - L = networkx.laplacian_matrix(G).todense() - (eigvals, eigvecs) = scipy.linalg.eigh(L,eigvals=(1,2)) - - x1 = numpy.asarray(eigvecs[:,0]) - x2 = numpy.asarray(eigvecs[:,1]) - - return x1, x2 + """ + Computes ratio-cut of G based on second eigenvector of the Laplacian. + Input: + * G: Graph + Output: + * x: Indicator vector + """ + + Gcc = sorted(nx.connected_component_subgraphs(G), key=len, reverse=True) + G0 = Gcc[0] + + if nx.number_of_nodes(G) == nx.number_of_nodes(G0): + scipy.random.seed(1) + x = nx.fiedler_vector(G, method=_method, tol=1e-5) + x = sweep(x, G) + else: + # In case G is not connected + x = separate_lcc(G, G0) + return np.array(x) + def get_subgraphs(G, cut): - """ - Compute subgraphs generated by a cut. - Input: - * G: Original graph - * cut: cut indicator vector - Output: - * G1: subgraph 1 - * G2: subgraph 2 - """ - G1 = networkx.Graph() - G2 = networkx.Graph() - - i = 0 - P1 = [] - P2 = [] - for v in G.nodes(): - if cut[i] < 0: - P1.append(v) - else: - P2.append(v) - i = i + 1 - - G1 = G.subgraph(P1) - G2 = G.subgraph(P2) - - return G1, G2 + """ + Return the two subgraphs as two lists of nodes + Input: + * G: Original graph + * cut: cut indicator vector + Output: + * G1: subgraph 1 + * G2: subgraph 2 + """ + G1 = nx.Graph() + G2 = nx.Graph() + i = 0 + P1 = [] + P2 = [] + for v in G.nodes(): + if cut[i] < 0: + P1.append(v) + else: + P2.append(v) + i = i + 1 + + G1 = G.subgraph(P1) + G2 = G.subgraph(P2) + + return G1, G2 + def rc_recursive(node, G, ind): - """ - Recursively computes ratio-cut. - Input: - * node: tree node - * G: graph - * ind: vertex index v: unique integer - Output: - * none - """ - if networkx.number_of_nodes(G) < 3: - n = Node(None) - n.add_child(Node(ind[G.nodes()[0]])) - n.add_child(Node(ind[G.nodes()[1]])) - node.add_child(n) - else: - C = ratio_cut(G) - - (G1, G2) = get_subgraphs(G, C) - - if networkx.number_of_nodes(G1) > 1: - l = Node(None) - rc_recursive(l, G1, ind) - node.add_child(l) - else: - l = Node(ind[G1.nodes()[0]]) - node.add_child(l) - - if networkx.number_of_nodes(G2) > 1: - r = Node(None) - rc_recursive(r, G2, ind) - node.add_child(r) - else: - r = Node(ind[G2.nodes()[0]]) - node.add_child(r) - -def ratio_cut_hierarchy(G): - """ - Computes ratio-cut hierarchy for a graph. - Input: - * G: graph - Output: - * root: tree root - * ind: graph index v: unique integer - """ - i = 0 - ind = {} - for v in G.nodes(): - ind[v] = i - i = i + 1 - - root = Node(None) - - rc_recursive(root, G, ind) - - return root, ind - -def gavish_hierarchy(G, radius): - """ - Builds Gavish's hierarchy of a graph. - Input: - * G: graph - * radius: radius - Output: - * tree root - * ind: vertex index v: unique integer - """ - H = [] - nodes = [] - ind = {} - i = 0 - for v in G.nodes(): - ind[v] = i - nodes.append(Node(i)) - H.append(i) - i = i + 1 - - M = build_matrix(G, ind) - - while M.shape[0] > 1: - cents = select_centroids(M, radius) - Q, J, new_nodes = coarse_matrix(M, H, cents, nodes) - M = Q - H = J - nodes = new_nodes - - return nodes[0], ind + """ + Recursively computes ratio-cut. + The leaves store, as data, the integer returned by ind for the + inserted node. + Input: + * node: tree node + * G: graph + * ind: index with unique integers as values + (see ratio_cut_hierarchy for definition) + Output: + * none + """ + if nx.number_of_nodes(G) < 3: + n = Node(None) + n.add_child(Node(ind[list(G.nodes())[0]])) + n.add_child(Node(ind[list(G.nodes())[1]])) + node.add_child(n) + else: + C = ratio_cut(G) + + (G1, G2) = get_subgraphs(G, C) + + if nx.number_of_nodes(G1) > 1: + l = Node(None) + rc_recursive(l, G1, ind) + node.add_child(l) + else: + l = Node(ind[list(G1.nodes())[0]]) + node.add_child(l) + + if nx.number_of_nodes(G2) > 1: + r = Node(None) + rc_recursive(r, G2, ind) + node.add_child(r) + else: + r = Node(ind[list(G2.nodes())[0]]) + node.add_child(r) + + +def ratio_cut_hierarchy(G, method='lobpcg'): + """ + Computes ratio-cut hierarchy for a graph. + The leaves store, as data, the integer returned by ind for the + inserted node. + Input: + * G: graph + * method: method for Fiedler vector computation. + The default value is 'lobpcg' however 'tracemin_lu' seems + faster and it appears to give more stable results when used + with PYTHONHASHSEED set to a constant value. + Output: + * root: tree root + * ind: index with unique integers as values + + """ + global _method + _method = method + + ind = {v: i for i, v in enumerate(G.nodes())} + + root = Node(None) + + rc_recursive(root, G, ind) + + return root, ind + def compute_coefficients(tree, F): - """ - Computes tree coefficients for Gavish's transform. - Input: - * tree: tree - * F: graph signal - Output: - * None - """ - if tree.data is None: - avg = 0 - count = 0 - for i in range(len(tree.children)): - compute_coefficients(tree.children[i], F) - avg = avg + tree.children[i].avg * tree.children[i].count - count = count + tree.children[i].count - - if i > 0: - tree.avgs.append(float(avg) / count) - tree.counts.append(count) - tree.diffs.append(2*tree.children[i].count*(tree.children[i].avg-float(avg)/count)) - tree.avgs = list(reversed(tree.avgs)) - tree.avg = float(avg) / tree.count - else: - tree.avg = F[tree.data] + """ + Compute tree coefficients for Gavish's transform. + Input: + * tree: tree + * F: graph signal + Output: + * None + """ + if tree.data is None: + tot = 0 + count = 0 + for i, child in enumerate(tree.children): + compute_coefficients(child, F) + tot += child.avg * child.count + count += child.count + + if i > 0: + tree.diffs.append(2 * child.count * + (child.avg - float(tot) / count)) + tree.avg = float(tot) / tree.count + else: + tree.avg = F[tree.data] + def reconstruct_values(tree, F): - """ - Reconstructs values for Gavish's transform based on a tree. - Input: - * tree: tree - * F: graph signal - Output: - * None - """ - if tree.data is None: - avg = tree.avg * tree.count - count = tree.count - for i in reversed(range(len(tree.children))): - if i == 0: - tree.children[i].avg = avg / tree.children[i].count - reconstruct_values(tree.children[i], F) - else: - tree.children[i].avg = float(avg)/count + 0.5*float(tree.diffs[i-1]) / tree.children[i].count - reconstruct_values(tree.children[i], F) - count = count - tree.children[i].count - avg = avg - tree.children[i].avg * tree.children[i].count - tree.avgs.append(float(avg)/count) - - tree.avgs = list(reversed(tree.avgs)) - else: - F[tree.data] = tree.avg + """ + Reconstruct values for Gavish's transform based on a tree. + Input: + * tree: tree + * F: graph signal + Output: + * None + """ + if tree.data is None: + tot = tree.avg * tree.count + count = tree.count + for i in reversed(range(len(tree.children))): + if i == 0: + tree.children[i].avg = tot / tree.children[i].count + reconstruct_values(tree.children[i], F) + else: + tree.children[i].avg = float(tot) / count + 0.5 * \ + float(tree.diffs[i - 1]) / tree.children[i].count + reconstruct_values(tree.children[i], F) + count = count - tree.children[i].count + tot = tot - tree.children[i].avg * tree.children[i].count + + else: + F[tree.data] = tree.avg + def clear_tree(tree): - """ - Clears tree info. - Input: - * tree - Output: - * None - """ - tree.avg = 0 - tree.diffs = [] - tree.avgs = [] - - if tree.data is None: - for i in range(len(tree.children)): - clear_tree(tree.children[i]) + """ + Clear tree info. + tree.count is kept + Input: + * tree + Output: + * None + """ + tree.avg = 0 + tree.diffs = [] + + if tree.data is None: + for i in range(len(tree.children)): + clear_tree(tree.children[i]) + def get_coefficients(tree, wtr): - """ - Recovers wavelet coefficients from the wavelet tree. - Input: - * tree - * wtr: wavelet coefficients - Output: - * None - """ - Q = deque() - scales = [] - wtr.append(tree.count*tree.avg) - - Q.append(tree) - - while len(Q) > 0: - node = Q.popleft() - scales.append(node.scale) - - for j in range(len(node.diffs)): - wtr.append(node.diffs[j]) - - for i in range(len(node.children)): - Q.append(node.children[i]) - -def get_cut_sizes(tree): - """ - Recovers cut sizes from tree. - Input: - * tree - Output: - * None - """ - Q = deque() - cut_sizes = [] - - Q.append(tree) - - while len(Q) > 0: - node = Q.popleft() - cut_sizes.append(node.cut) - - for i in range(len(node.children)): - Q.append(node.children[i]) - - return cut_sizes + """ + Recover wavelet coefficients from the wavelet tree. + Input: + * tree + * wtr: list of wavelet coefficients + Output: + * None + """ + Q = deque() + wtr.append(tree.count * tree.avg) + + Q.append(tree) + + while len(Q) > 0: + node = Q.popleft() + + for j in range(len(node.diffs)): + wtr.append(node.diffs[j]) + + for i in range(len(node.children)): + Q.append(node.children[i]) + def set_coefficients(tree, wtr): - """ - Sets wavelet tree coefficients. - Input: - * tree - * wtr: wavelet coefficients - """ - Q = deque() - tree.avg = float(wtr[0]) / tree.count - p = 1 - Q.append(tree) - - while len(Q) > 0: - node = Q.popleft() - - for j in range(len(node.children)-1): - node.diffs.append(wtr[p]) - p = p + 1 - - for i in range(len(node.children)): - Q.append(node.children[i]) - -def gavish_wavelet_transform(tree, ind, G, F): - """ - Gavish's wavelet transform. - Input: - * tree - * ind: vertex index v : unique integer - * G: graph - * F: graph signal - Output: - * wtr: wavelet transform. - """ - wtr = [] - clear_tree(tree) - compute_coefficients(tree, F) - get_coefficients(tree, wtr) - - return numpy.array(wtr) + """ + Sets wavelet tree coefficients. + Input: + * tree + * wtr: list of wavelet coefficients + """ + Q = deque() + tree.avg = float(wtr[0]) / tree.count + p = 1 + Q.append(tree) + + while len(Q) > 0: + node = Q.popleft() + + for j in range(len(node.children) - 1): + node.diffs.append(wtr[p]) + p += 1 + + for i in range(len(node.children)): + Q.append(node.children[i]) + + +def gavish_wavelet_transform(tree, G, F): + """ + Gavish's wavelet transform. + Input: + * tree + * ind: vertex index v : unique integer + * G: graph + * F: graph signal + Output: + * wtr: wavelet transform. + """ + wtr = [] + clear_tree(tree) + compute_coefficients(tree, F) + get_coefficients(tree, wtr) + return np.array(wtr) -def gavish_wavelet_inverse(tree, ind, G, wtr): - """ - Gavish's wavelet inverse. - Input: - * tree - * ind: vertex index v: unique integer - * G: graph - * wtr: wavelet transform - Output: - * F: wavelet inverse - """ - F = [] - - for i in range(len(G.nodes())): - F.append(0) - - clear_tree(tree) - set_coefficients(tree, wtr) - reconstruct_values(tree, F) - - return numpy.array(F) +def gavish_wavelet_inverse(tree, ind, G, wtr): + """ + Gavish's wavelet inverse. + Input: + * tree + * ind: vertex index v: unique integer + * G: graph + * wtr: wavelet transform + Output: + * F: wavelet inverse + """ + F = [] + + for i in range(len(G.nodes())): + F.append(0) + + clear_tree(tree) + set_coefficients(tree, wtr) + reconstruct_values(tree, F) + + return np.array(F) diff --git a/lib/io.py b/lib/io.py deleted file mode 100644 index 10f5c72..0000000 --- a/lib/io.py +++ /dev/null @@ -1,154 +0,0 @@ -import networkx -import math -import scipy.optimize -import numpy -import sys -from scipy import linalg -import matplotlib.pyplot as plt -from IPython.display import Image -import pywt -import scipy.fftpack -import random -import operator -import copy -from collections import deque -from sklearn.preprocessing import normalize -from sklearn.cluster import SpectralClustering -import pandas as pd -from datetime import datetime, date, time, timedelta -import statsmodels.api as sm - - -def read_graph(input_graph_name, input_data_name): - """ - Reads graph from file. - Input: - * input_graph_name: csv edge list - * input_data_name: csv node-value pairs - Output: - * networkx graph - """ - - #Reading input data - input_data = open(input_data_name, 'r') - values = {} - - for line in input_data: - line = line.rstrip() - vec = line.rsplit(',') - - vertex = vec[0] - value = float(vec[1]) - values[vertex] = value - - input_data.close() - - #Reading graph data - G = networkx.Graph() - input_graph = open(input_graph_name, 'r') - - for line in input_graph: - line = line.rstrip() - vec = line.rsplit(',') - v1 = vec[0] - v2 = vec[1] - - if v1 in values and v2 in values: - G.add_edge(v1,v2, weight=1.) - - #Extracting largest connected component from graph - Gcc=sorted(networkx.connected_component_subgraphs(G), key = len, reverse=True) - - G = Gcc[0] - - values_in_graph = {} - - #Setting values as node attributes - for v in values.keys(): - if v in G: - values_in_graph[v] = values[v] - - input_graph.close() - networkx.set_node_attributes(G, "value", values_in_graph) - - return G - -def read_values(input_data_name, G): - """ - Reads node values. - Input: - * input_data_name: csv node-value pairs - * G: networkx graph - Output: - * F: normalized node values array, ordered by G.nodes() - """ - D = {} - input_data = open(input_data_name, 'r') - - #Reading file - for line in input_data: - line = line.rstrip() - vec = line.rsplit(',') - - vertex = vec[0] - value = float(vec[1]) - D[vertex] = value - - input_data.close() - - F = [] - for v in G.nodes(): - if v in D: - F.append(float(D[v])) - else: - F.append(0.) - - #Normalization - F = numpy.array(F) - F = F / numpy.max(F) - F = F - numpy.mean(F) - - return F - -def read_dyn_graph(path, num_snapshots, G): - """ - Reads a dynamic graph. - Input: - * path: Path containing a files for each graph snapshot - (e.g. folder/traffic_, for files folder/traffic_0.data ... - folder/traffic_100.data) - * num_snapshots: number of snapshots - * G: networkx graph - Output: - * FT: array #snapshots x #vertices - - """ - FT = [] - for t in range(num_snapshots): - in_file = path + "_" + str(t) + ".data" - F = read_values(in_file, G) - FT.append(F) - - return numpy.array(FT) - -def clean_traffic_data(FT): - start_time = datetime.strptime("1/04/11 00:00", "%d/%m/%y %H:%M") - c_FT = [] - for i in range(FT.shape[1]): - #removing daily seasonality - data = pd.DataFrame(FT[:,i], pd.DatetimeIndex(start='1/04/11 00:00', periods=len(FT[:,i]), freq='5min')) - data.interpolate(inplace=True) - - res = sm.tsa.seasonal_decompose(data.values, freq=288) - F = FT[:,i] - res.seasonal - - #removing weekly seasonality - data = pd.DataFrame(F, pd.DatetimeIndex(start='1/04/11 00:00', periods=len(FT[:,i]), freq='5min')) - res = sm.tsa.seasonal_decompose(data.values, freq=288*7) - F = F - res.seasonal - - c_FT.append(F) - - return numpy.array(c_FT).transpose() - - diff --git a/lib/io_utils.py b/lib/io_utils.py new file mode 100644 index 0000000..1754acf --- /dev/null +++ b/lib/io_utils.py @@ -0,0 +1,97 @@ +""" +This module read graph's info from files with the following format: +input_graph_name has info about edges. +Row format: "node_A, node_B[, edge_weight]" +input_data_name has info about the graph signal. +Row format : "node_id, node_value" +""" + +import networkx as nx +import numpy as np + + +def read_graph(input_graph_name, input_data_name): + """ + Read graph from file. + Input: + * input_graph_name has info about edges. + Row format: "node_A, node_B[, edge_weight]" + * input_data_name has info about the graph signal. + Row format : "node_id, node_value" + Output: + * networkx graph + """ + + # Reading input data + input_data = open(input_data_name, 'r') + graph_signal = {} + + for line in input_data: + line = line.rstrip() + node, value = line.rsplit(',') + value = float(value) + graph_signal[node] = value + + input_data.close() + + # Reading graph data + G = nx.Graph() + input_graph = open(input_graph_name, 'r') + + for line in input_graph: + line = line.rstrip() + node_A, node_B = line.rsplit(',')[:2] + # Note that the edge weight is always set to 1 + # even when provided available in input_graph_name + if node_A in graph_signal and node_B in graph_signal: + G.add_edge(node_A, node_B, weight=1.) + + input_graph.close() + + # Extracting largest connected component from graph + Gcc = sorted(nx.connected_component_subgraphs(G), key=len, reverse=True) + + G = Gcc[0] + + # Setting the graph_signal as node attribute + for node, value in graph_signal.items(): + if node in G: + G.node[node]["value"] = value + + return G + + +def read_values(input_data_name, G): + """ + Read the graph signal from file + Input: + * input_data_name has info about the graph signal. + Row format : "node_id, node_value" + * G: networkx graph + Output: + * F: normalized node values array, ordered by G.nodes() + """ + graph_signal = {} + input_data = open(input_data_name, 'r') + + # Reading file + for line in input_data: + line = line.rstrip() + node, value = line.rsplit(',') + graph_signal[node] = float(value) + + input_data.close() + + F = [] + for node in G.nodes(): + if node in graph_signal: + F.append(graph_signal[node]) + else: + F.append(0.) + + # Normalization + F = np.array(F) + F = F / np.max(F) + F = F - np.mean(F) + + return F diff --git a/lib/optimal_cut.py b/lib/optimal_cut.py index 1b0c852..4ca3399 100644 --- a/lib/optimal_cut.py +++ b/lib/optimal_cut.py @@ -1,585 +1,535 @@ -import networkx import math -import numpy -import scipy -import sys -from scipy import linalg -import time -from numpy import log, mean, dot, diag, sqrt + +import networkx as nx +import numpy as np +from numpy import dot, diag, sqrt from numpy.linalg import eigh -from lib.graph_signal_proc import * -from scipy import sparse - -def sqrtm(mat): - """ - Matrix square root. - Input: - * mat: matrix - Output: - * matrix square root - """ - eigvals, eigvecs = eigh(mat) - - eigvecs = eigvecs[:, eigvals > 0] - eigvals = eigvals[eigvals > 0] - - return dot(eigvecs, dot(diag(sqrt(eigvals)), eigvecs.T)) - -def sweep_opt(x, beta, F, G, k, ind): - """ - Sweep algorithm for sparse wavelets. - Input: - * x: continuous indicator vector - * beta: beta parameter for regularization - * F: graphsignal - * G: graph - * k: max number of edges to be cut - * ind: vertex index v: unique integer - Output: - * vec: indicator vector - * best_val: score value - * best_edges_cut: number of edges cut - * energy: wavelet energy value - """ - best_val = 0. - best_edges_cut = 0 - sorted_x = numpy.argsort(x) - size_one = 0 - sum_one = 0 - sum_two = 0 - - for v in G.nodes(): - sum_two = sum_two + F[ind[v]] - - edges_cut = 0 - nodes_one = {} - total_size = networkx.number_of_nodes(G) - - for i in range(x.shape[0]): - size_one = size_one + 1 - sum_one = sum_one + F[ind[G.nodes()[sorted_x[i]]]] - sum_two = sum_two - F[ind[G.nodes()[sorted_x[i]]]] - - nodes_one[G.nodes()[sorted_x[i]]] = True - - for v in G.neighbors(G.nodes()[sorted_x[i]]): - if v not in nodes_one: - edges_cut = edges_cut + 1 - else: - edges_cut = edges_cut - 1 - - den = size_one * (total_size-size_one) * total_size - if den > 0: - val = math.pow(sum_one*(total_size-size_one) - sum_two*size_one, 2) / den - else: - val = 0 - - if val >= best_val and edges_cut <= k: - best_cand = i - best_val = val - best_edges_cut = edges_cut - - if total_size * size_one * (total_size-size_one) > 0: - energy = math.pow(sum_one*(total_size-size_one) - sum_two*size_one, 2) / (total_size * size_one * (total_size-size_one)) - else: - energy = 0 - - vec = numpy.zeros(total_size) - - for i in range(x.shape[0]): - if i <= best_cand: - vec[sorted_x[i]] = -1. - else: - vec[sorted_x[i]] = 1. - - return vec, best_val, best_edges_cut, energy - -def laplacian_complete(n): - """ - Laplacian of a complete graph with n vertices. - Input: - * n: size - Output: - * C: Laplacian - """ - C = numpy.ones((n, n)) - C = -1 * C - D = numpy.diag(numpy.ones(n)) - C = (n)*D + C - - return C +import scipy -def weighted_adjacency_complete(G, F, ind): - """ - Computes weighted adjacency complete matrix (w(v)-w(u))^2 - Input: - * G: graph - * F: graph signal - * ind: vertex index vertex: unique integer - Output: - * A: nxn matrix - """ - A = [] - for v in G.nodes(): - A.append([]) - for u in G.nodes(): - A[-1].append(pow(F[ind[v]]-F[ind[u]],2)) - - return numpy.array(A) +from lib.graph_signal_proc import Node +import lib.graph_signal_proc as gsp + + +def sweep_opt(x, F, G, k, ind): + """ + Sweep algorithm for sparse wavelets. + Input: + * x: continuous indicator vector + * F: graph signal + * G: graph + * k: max number of edges to be cut + * ind: vertex index v: unique integer + Output: + * vec: indicator vector + * best_energy: max energy value + * best_cut_size: number of edges in the returned cut + """ + sorted_x = np.argsort(x) + part_one = set() + N = nx.number_of_nodes(G) + best_energy = 0. + cut_size = 0 + best_cut_size = 0 + sum_one = 0 # sum of the graph signal values for the nodes in part_one + sum_two = 0 # sum of the graph signal values for the nodes in part_two + + for v in G.nodes(): + sum_two += F[ind[v]] + + nodes_list = list(G.nodes()) + + for i in range(N): + part_one.add(nodes_list[sorted_x[i]]) + sum_one += F[ind[nodes_list[sorted_x[i]]]] + sum_two -= F[ind[nodes_list[sorted_x[i]]]] + + for v in G.neighbors(nodes_list[sorted_x[i]]): + if v not in part_one: + cut_size += 1 + else: + cut_size -= 1 + + den = N * len(part_one) * (N - len(part_one)) + if den > 0: + energy = math.pow(sum_one * (N - len(part_one)) - sum_two * + len(part_one), 2) / den + else: + energy = 0 + + if energy >= best_energy and cut_size <= k: + best_cand = i + best_energy = energy + best_cut_size = cut_size + + vec = np.ones(nx.number_of_nodes(G)) + + for i in range(x.shape[0]): + if i <= best_cand: + vec[sorted_x[i]] = -1. + + return vec, best_energy, best_cut_size + + +############################################################################### +# List of functions used only by the SWT: # +# - sqrtmi() # +# - spectral_cut() # +# - complete_graph_laplacian # +# - weighted_adjacency_complete # +# - one_d_search # +############################################################################### + + +def sqrtmi(mat): + """ + Computes the square-root inverse of a matrix. + Input: + * mat: matrix + Output: + * square root inverse + """ + eigvals, eigvecs = eigh(mat) + eigvecs = eigvecs[:, eigvals > 0] + eigvals = eigvals[eigvals > 0] + + return dot(eigvecs, dot(diag(1. / sqrt(eigvals)), eigvecs.T)) -def fast_cac(G, F, ind): - """ - Computes product C*A*C, where C is the Laplacian of a complete graph and A is a pairwise squared difference matrix. - Input: - * G: graph - * F: graph signal - * ind: vertex index v: unique integer - Output: - * CAC: matrix product - """ - CAC = [] - for v in G.nodes(): - CAC.append([]) - for u in G.nodes(): - CAC[-1].append(F[ind[v]] * F[ind[u]]) - - CAC = numpy.array(CAC) - CAC = -2 * math.pow(networkx.number_of_nodes(G), 2) * CAC - - return CAC -def power_method(mat, start, maxit): - """ - Power method implementation. - Input: - * mat: matrix - * start: initialization - * maxit: number of iterations - Output: - * vec: largest eigenvector of mat - """ - vec = numpy.copy(start) - vec = vec/numpy.linalg.norm(vec) +def spectral_cut(CAC, L, C, A, start, F, G, beta, k, ind): + """ + Spectral cut implementation. + Input: + * CAC: C*A*C where C is the Laplacian of a complete graph and + A is a pairwise squared difference matrix + * L: graph laplacian matrix + * C: laplacian complete graph + * A: pairwise squared difference matrix + * start: initialization + * beta: regularization parameter + * k: max edges cut + * ind: vertex index vertex: unique integer + Output: + * res: dictionary with following fields: + - x: indicator vector + - size: number of edges cut + - energy: cut energy + """ + isqrtCL = sqrtmi(C + beta * L) + M = np.dot(np.dot(isqrtCL, CAC), isqrtCL) + + (eigvals, eigvecs) = scipy.linalg.eigh(M, eigvals=(0, 0)) + x = np.asarray(np.dot(eigvecs[:, 0], isqrtCL))[0, :] + + res = {} + res["x"], res["energy"], res["size"] = sweep_opt(x, F, G, k, ind) + + return res + + +def complete_graph_laplacian(n): + """ + Laplacian of a complete graph with n vertices. + Input: + * n: size + Output: + * C: Laplacian + """ + C = np.ones((n, n)) + C = -1 * C + D = np.diag(np.ones(n)) + C = (n) * D + C + + return C - for i in range(maxit): - vec = numpy.dot(vec, mat) - return vec +def weighted_adjacency_complete(G, F, ind): + """ + Computes weighted adjacency complete matrix (w(v)-w(u))^2 + Input: + * G: graph + * F: graph signal + * ind: vertex index vertex: unique integer + Output: + * A: nxn matrix + """ + A = [] + for v in G.nodes(): + A.append([]) + for u in G.nodes(): + A[-1].append(pow(F[ind[v]] - F[ind[u]], 2)) + + return np.array(A) -def spectral_cut(CAC, L, C, A, start, F, G, beta, k, ind): - """ - Spectral cut implementation. - Input: - * CAC: C*A*C where C is the Laplacian of a complete graph and A is a pairwise squared difference matrix - * L: graph laplacian matrix - * C: laplacian complete graph - * A: pairwise squared difference matrix - * start: initialization - * beta: regularization parameter - * k: max edges cut - * ind: vertex index vertex: unique integer - Output: - * res: dictionary with following fields: - - x: indicator vector - - size: number of edges cut - - score: cut score - - energy: cut energy - """ - isqrtCL = sqrtmi( C + beta * L) - M = numpy.dot(numpy.dot(isqrtCL, CAC), isqrtCL) - - (eigvals, eigvecs) = scipy.linalg.eigh(M,eigvals=(0,0)) - x = numpy.asarray(numpy.dot(eigvecs[:,0], isqrtCL))[0,:] - - (x, score, size, energy) = sweep_opt(x, beta, F, G, k, ind) - - res = {} - res["x"] = numpy.array(x) - res["size"] = size - res["score"] = score - res["energy"] = energy - - return res - -def eig_vis_opt(G, F, beta): - """ - Computes first and second eigenvector of sqrt(C+beta*L)^T CAC sqrt(C+beta*L) matrix for visualization. - Input: - * G: graph - * F: graph signal - * beta: regularization parameter - Output: - * v1: first eigenvector - * v2: second eigenvector - """ - ind = {} - i = 0 - - for v in G.nodes(): - ind[v] = i - i = i + 1 - - C = laplacian_complete(networkx.number_of_nodes(G)) - A = weighted_adjacency_complete(G, F, ind) - CAC = numpy.dot(numpy.dot(C,A), C) - L = networkx.laplacian_matrix(G).todense() - - isqrtCL = sqrtmi( C + beta * L) - M = numpy.dot(numpy.dot(isqrtCL, CAC), isqrtCL) - - (eigvals, eigvecs) = scipy.linalg.eigh(M,eigvals=(0,1)) - x1 = numpy.asarray(numpy.dot(eigvecs[:,0], isqrtCL))[0,:] - x2 = numpy.asarray(numpy.dot(eigvecs[:,1], isqrtCL))[0,:] - - return x1, x2 +def one_d_search(G, F, k, ind): + """ + Cut computation. Perform 1-D search for beta using golden search. + Input: + * G: graph + * F: graph signal + * k: max edges to be cut + * n: number of chebyshev polynomials + * ind: vertex index vertex: unique integer + Output: + * cut + """ + C = complete_graph_laplacian(nx.number_of_nodes(G)) + A = weighted_adjacency_complete(G, F, ind) + CAC = np.dot(np.dot(C, A), C) + start = np.ones(nx.number_of_nodes(G)) + L = nx.laplacian_matrix(G).todense() + + # Upper and lower bounds for beta + gr = (math.sqrt(5) - 1) / 2 + a = 0. + b = 1000. + c = b - gr * (b - a) + d = a + gr * (b - a) + + # Tolerance + tol = 1. + + resab = {} + resab["size"] = k + 1 + + # golden search + while abs(c - d) > tol or resab["size"] > k: + resc = spectral_cut(CAC, L, C, A, start, F, G, c, k, ind) + resd = spectral_cut(CAC, L, C, A, start, F, G, d, k, ind) + + if resc["size"] <= k and (resc["energy"] > resd["energy"]): + start = resc["x"] + b = d + d = c + c = b - gr * (b - a) + elif resd["size"] <= k and (resc["energy"] < resd["energy"]): + start = resd["x"] + a = c + c = d + d = a + gr * (b - a) + else: + start = resc["x"] + a = c + c = d + d = a + gr * (b - a) + + resab = spectral_cut(CAC, L, C, A, start, F, G, (b + a) / 2, k, ind) + + return resab + + +############################################################################### +# List of functions used only by the FSWT: # +# - trans() # +# - isqrt() # +# - coef() # +# - chebyshev_approx_2d() # +# - chebyshev_approx_1d() # +# - fast_cac() # +# - power_method() # +# - cheb_spectral_cut() # +# - fast_search() # +############################################################################### + def trans(L, min_v, max_v): - """ - Chebyshev polynomial translation. - Input: - * L: Laplacian matrix - * min_v: lower bound - * max_v: upper bound - Output: - * translation - """ - return (float(2.) / (max_v-min_v)) * L, -(float(max_v+min_v) / (max_v-min_v)) - -def fun(k, n, beta, min_v, max_v, x): - """ - Function to be integrated in Chebyshev polynomial computation. - Input: - * k: coefficient number - * n: number of polynomials - * min_v: lower bound - * max_v: upper bound - Output: - * function value - """ - y = 0.5 * math.cos(x) * float(max_v - min_v) + (0.5 * (max_v + min_v)) - - return math.cos(k*x)*(float(1.) / math.sqrt(beta*y)) - -def coef(k, n, beta, min_v, max_v): - """ - Chebyshev polynomial coefficients. - Input: - * k: coefficient number - * n: number of polynomials - * min_v: lower bound - * max_v: upper bound - Output: - * coefficient - """ - return float(2. * scipy.integrate.quad(lambda x: fun(k, n, beta, min_v, max_v, x), 0., math.pi)[0]) / math.pi - + """ + Chebyshev polynomial translation. + Input: + * L: Laplacian matrix + * min_v: lower bound + * max_v: upper bound + Output: + * translation as tuple of a sparse matrix and a scalar + """ + return (2. / (max_v - min_v)) * L, -(float(max_v + min_v) / + (max_v - min_v)) + + +def isqrt(k, beta, min_v, max_v, x): + """ + Inverse square root function to be integrated in + Chebyshev polynomial computation. + Input: + * k: coefficient number + * beta: regularization parameter + * min_v: lower bound + * max_v: upper bound + * x: function variable + Output: + * function value + """ + y = 0.5 * (math.cos(x) * float(max_v - min_v) + (max_v + min_v)) + + return math.cos(k * x) * (1. / math.sqrt(beta * y)) + + +def coef(k, beta, min_v, max_v): + """ + Get the k-th Chebyshev polynomial coefficient for the inverse + square root + Input: + * k: coefficient number + * min_v: lower bound + * max_v: upper bound + Output: + * coefficient + """ + return (2. / math.pi) * (scipy.integrate.quad( + lambda x: isqrt(k, beta, min_v, max_v, x), 0., math.pi)[0]) + + def chebyshev_approx_2d(n, beta, X, L): - """ - Approximates sqrt((L)^+)^T * X * sqrt((L)^+)^T using Chebyshev polynomials (twice) - Input: - * n: number of polynomials - * beta: regularization parameter - * X: matrix - * L: Laplacian matrix - Output: - * P2: approximation - """ - max_v = beta * L.shape[0] - min_v = 1 - - ts1, ts2 = trans(L, min_v, max_v) - P1 = 0.5 * coef(0, L.shape[0], beta, min_v, max_v) * X - tkm2 = X - tkm1 = scipy.sparse.csr_matrix.dot(ts1, X) + ts2 * X - P1 = P1 + coef(1, L.shape[0], beta, min_v, max_v) * tkm1 - - for i in range(2, n): - Tk = 2. * (scipy.sparse.csr_matrix.dot(ts1, tkm1) + ts2 * tkm1) - tkm2 - P1 = P1 + coef(i, L.shape[0], beta, min_v, max_v) * Tk - tkm2 = tkm1 - tkm1 = Tk - - P1 = P1.transpose() - P2 = 0.5 * coef(0, L.shape[0], beta, min_v, max_v) * P1 - tkm2 = P1 - tkm1 = scipy.sparse.csr_matrix.dot(ts1, P1) + ts2 * P1 - - P2 = P2 + coef(1, L.shape[0], beta, min_v, max_v) * tkm1 - - for i in range(2, n): - Tk = 2. * (scipy.sparse.csr_matrix.dot(ts1, tkm1) + ts2 * tkm1) - tkm2 - P2 = P2 + coef(i, L.shape[0], beta, min_v, max_v) * Tk - tkm2 = tkm1 - tkm1 = Tk - - return P2 + """ + Approximates sqrt((beta * L)^+) * X * sqrt((beta * L)^+) using + Chebyshev polynomials (twice) + Input: + * n: number of polynomials + * beta: regularization parameter + * X: matrix + * L: Laplacian matrix + Output: + * P2: approximation + """ + N = L.shape[0] + max_v = beta * N + min_v = 1 + # ts1 is a sparse matrix, ts2 is a scalar + ts1, ts2 = trans(L, min_v, max_v) + # Recurrence relation for Chebyshev polynomials + # Tk = 2 * y * Tk_1 - Tk_2 + # 0,5 * c_n0 * x + sum_{k=1}^{inf} (c_nk * Tk) * x + P1 = 0.5 * coef(0, beta, min_v, max_v) * X + tkm2 = X + tkm1 = scipy.sparse.csr_matrix.dot(ts1, X) + ts2 * X + P1 = P1 + coef(1, beta, min_v, max_v) * tkm1 + + for i in range(2, n): + Tk = 2. * (scipy.sparse.csr_matrix.dot(ts1, tkm1) + ts2 * tkm1) - tkm2 + P1 = P1 + coef(i, beta, min_v, max_v) * Tk + tkm2 = tkm1 + tkm1 = Tk + + P1 = P1.transpose() + P2 = 0.5 * coef(0, beta, min_v, max_v) * P1 + tkm2 = P1 + tkm1 = scipy.sparse.csr_matrix.dot(ts1, P1) + ts2 * P1 + + P2 = P2 + coef(1, beta, min_v, max_v) * tkm1 + + for i in range(2, n): + Tk = 2. * (scipy.sparse.csr_matrix.dot(ts1, tkm1) + ts2 * tkm1) - tkm2 + P2 = P2 + coef(i, beta, min_v, max_v) * Tk + tkm2 = tkm1 + tkm1 = Tk + + return P2 + def chebyshev_approx_1d(n, beta, x, L): - """ - Approximates x*sqrt(L^+) using Chebyshev polynomials. - Input: - * n: number of polynomials - * beta: regularization parameter - * x: vector - * L: graph Laplacian - Output: - * P: approximation - - """ - max_v = beta * L.shape[0] - min_v = 1 - - ts1, ts2 = trans(L, min_v, max_v) - P = 0.5 * coef(0, L.shape[0], beta, min_v, max_v) * x - tkm2 = x - tkm1 = scipy.sparse.csr_matrix.dot(ts1, x) + ts2 * x - P = P + coef(1, L.shape[0], beta, min_v, max_v) * tkm1 - - for i in range(2, n): - Tk = 2. * (scipy.sparse.csr_matrix.dot(ts1, tkm1) + ts2 * tkm1) - tkm2 - P = P + coef(i, L.shape[0], beta, min_v, max_v) * Tk - tkm2 = tkm1 - tkm1 = Tk - - return P + """ + Approximates x*sqrt((beta * L)^+) using Chebyshev polynomials. + Input: + * n: number of polynomials + * beta: regularization parameter + * x: vector + * L: graph Laplacian + Output: + * P: approximation + + """ + N = L.shape[0] + max_v = beta * N + min_v = 1 + # ts1 is a sparse matrix, ts2 is a scalar + ts1, ts2 = trans(L, min_v, max_v) + # Recurrence relation for Chebyshev polynomials + # Tk = 2 * y * Tk_1 - Tk_2 + # 0,5 * c_n0 * x + sum_{k=1}^{inf} (c_nk * Tk) * x + Tk_2 = x + Tk_1 = scipy.sparse.csr_matrix.dot(ts1, x) + ts2 * x + P = 0.5 * coef(0, beta, min_v, max_v) * x + P += coef(1, beta, min_v, max_v) * Tk_1 + """(2./ (max_v - min_v)) * L, -(float(max_v + min_v) / + (max_v - min_v))""" + for i in range(2, n): + Tk = 2. * (scipy.sparse.csr_matrix.dot(ts1, Tk_1) + ts2 * Tk_1) - Tk_2 + P += coef(i, beta, min_v, max_v) * Tk + Tk_2 = Tk_1 + Tk_1 = Tk + + return P -def cheb_spectral_cut(CAC, start, F, G, beta, k, n, ind): - """ - Fast spectral cut implementation using chebyshev polynomials. - Input: - * CAC: C*A*C where C is the Laplacian of a complete graph and A is a pairwise squared difference matrix - * start: initialization - * F: graph signal - * G: graph - * L: graph laplacian matrix - * beta: regularization parameter - * k: max edges cut - * n: number of polynomials - * ind: vertex index vertex: unique integer - Output: - * res: dictionary with following fields: - - x: indicator vector - - size: number of edges cut - - score: cut score - - energy: cut energy - """ - L = networkx.laplacian_matrix(G) - M = chebyshev_approx_2d(n, beta, CAC, L) - - eigvec = power_method(-M, start, 10) - x = chebyshev_approx_1d(n, beta, eigvec, L) - - (x, score, size, energy) = sweep_opt(x, beta, F, G, k, ind) - - res = {} - res["x"] = numpy.array(x) - res["size"] = size - res["score"] = score - res["energy"] = energy - - return res -def fast_search(G, F, k, n, ind): - """ - Efficient version of cut computation. Does not perform 1-D search for beta. - Input: - * G: graph - * F: graph signal - * k: max edges to be cut - * n: number of chebyshev polynomials - * ind: vertex index vertex: unique integer - Output: - * cut - """ - start = numpy.ones(networkx.number_of_nodes(G)) - C = laplacian_complete(networkx.number_of_nodes(G)) - A = weighted_adjacency_complete(G, F, ind) - CAC = fast_cac(G, F, ind) - - return cheb_spectral_cut(CAC, start, F, G, 1., k, n, ind) - -gr=(math.sqrt(5)-1)/2 +def fast_cac(G, F, ind): + """ + Computes product C*A*C, where C is the Laplacian of a complete graph + and A is a pairwise squared difference matrix. + Input: + * G: graph + * F: graph signal + * ind: vertex index v: unique integer + Output: + * CAC: matrix product + """ + sorted_F = np.array([F[ind[v]] for v in G.nodes()]) + return -2 * math.pow(len(sorted_F), 2) * np.outer(sorted_F, sorted_F) -def one_d_search(G, F, k, ind): - """ - Cut computation. Perform 1-D search for beta using golden search. - Input: - * G: graph - * F: graph signal - * k: max edges to be cut - * n: number of chebyshev polynomials - * ind: vertex index vertex: unique integer - Output: - * cut - """ - C = laplacian_complete(networkx.number_of_nodes(G)) - A = weighted_adjacency_complete(G,F, ind) - CAC = numpy.dot(numpy.dot(C,A), C) - start = numpy.ones(networkx.number_of_nodes(G)) - L = networkx.laplacian_matrix(G).todense() - - #Upper and lower bounds for search - a = 0. - b = 1000. - c=b-gr*(b-a) - d=a+gr*(b-a) - - #Tolerance - tol = 1. - - resab = {} - resab["size"] = k + 1 - - #golden search - while abs(c-d)>tol or resab["size"] > k: - resc = spectral_cut(CAC, L, C, A, start, F, G, c, k, ind) - resd = spectral_cut(CAC, L, C, A, start, F, G, d, k, ind) - - if resc["size"] <= k: - if resc["score"] > resd["score"]: - start = numpy.array(resc["x"]) - b = d - d = c - c=b-gr*(b-a) - else: - start = numpy.array(resd["x"]) - a=c - c=d - d=a+gr*(b-a) - else: - start = numpy.array(resc["x"]) - a=c - c=d - d=a+gr*(b-a) - - resab = spectral_cut(CAC, L, C, A, start, F, G, (b+a) / 2, k, ind) - - return resab - -def get_subgraphs(G, cut): - """ - Compute subgraphs generated by a cut. - Input: - * G: Original graph - * cut: cut indicator vector - Output: - * G1: subgraph 1 - * G2: subgraph 2 - """ - G1 = networkx.Graph() - G2 = networkx.Graph() - i = 0 - P1 = [] - P2 = [] - for v in G.nodes(): - if cut[i] < 0: - P1.append(v) - else: - P2.append(v) - i = i + 1 - - G1 = G.subgraph(P1) - G2 = G.subgraph(P2) - - return G1, G2 - -def optimal_wavelet_basis(G, F, k, npol): - """ - Computation of optimal graph wavelet basis. - Input: - * G: graph - * F: graph signal - * k: max edges to be cut - * npol: number of chebyshev polynomials, if 0 run exact version - Output: - * root: tree root - * ind: vertex index vertex: unique integer - * size: number of edges cut - """ - - #Creating index - ind = {} - i = 0 - for v in G.nodes(): - ind[v] = i - i = i+1 - - #First cut - root = Node(None) - size = 0 - cand_cuts = [] - - if npol == 0: - c = one_d_search(G, F, k, ind) - else: - c = fast_search(G, F, k, npol, ind) - - c["parent"] = root - c["graph"] = G - - cand_cuts.append(c) - - #Recursively compute new cuts - while size <= k and len(cand_cuts) > 0: - best_cut = None - b = 0 - - for i in range(0, len(cand_cuts)): - if cand_cuts[i]["size"] + size <= k and cand_cuts[i]["score"] > 0: - if best_cut is None or cand_cuts[i]["score"] > best_cut["score"]: - best_cut = cand_cuts[i] - b = i - if best_cut is None: - break - else: - #Compute cut on left and right side - (G1, G2) = get_subgraphs(best_cut["graph"], best_cut["x"]) - best_cut["parent"].cut = best_cut["size"] - size = size + best_cut["size"] - - if networkx.number_of_nodes(G1) == 1: - n = Node(ind[G1.nodes()[0]]) - best_cut["parent"].add_child(n) - elif networkx.number_of_nodes(G1) > 0: - n = Node(None) - - if npol == 0: - c = one_d_search(G1, F, k, ind) - else: - c = fast_search(G1, F, k, npol, ind) - - c["parent"] = n - c["graph"] = G1 - cand_cuts.append(c) - - best_cut["parent"].add_child(n) - - if networkx.number_of_nodes(G2) == 1: - n = Node(ind[G2.nodes()[0]]) - best_cut["parent"].add_child(n) - elif networkx.number_of_nodes(G2) > 0: - n = Node(None) - - if npol == 0: - c = one_d_search(G2, F, k, ind) - else: - c = fast_search(G2, F, k, npol, ind) - - c["parent"] = n - c["graph"] = G2 - cand_cuts.append(c) - - best_cut["parent"].add_child(n) - - del cand_cuts[b] - - #Compute remaining cuts using ratio cuts once budget is over (not optimal) - for i in range(0, len(cand_cuts)): - rc_recursive(cand_cuts[i]["parent"], cand_cuts[i]["graph"], ind) - - set_counts(root) - - return root, ind, size +def power_method(mat, start, maxit): + """ + Power method implementation. + Input: + * mat: matrix + * start: initialization + * maxit: number of iterations + Output: + * vec: largest eigenvector of mat + """ + vec = np.copy(start) + vec = vec / np.linalg.norm(vec) + + for i in range(maxit): + vec = np.dot(vec, mat) + return vec + + +def cheb_spectral_cut(CAC, start, F, G, beta, k, n, ind): + """ + Fast spectral cut implementation using chebyshev polynomials. + Input: + * CAC: C*A*C where C is the Laplacian of a complete graph and + A is a pairwise squared difference matrix + * start: initialization + * F: graph signal + * G: graph + * beta: regularization parameter + * k: max edges cut + * n: number of polynomials + * ind: vertex index vertex: unique integer + Output: + * res: dictionary with following fields: + - x: indicator vector + - size: number of edges cut + - energy: cut energy + """ + L = nx.laplacian_matrix(G) + M = chebyshev_approx_2d(n, beta, CAC, L) + + eigvec = power_method(-M, start, 10) + x = chebyshev_approx_1d(n, beta, eigvec, L) + res = {} + res["x"], res["energy"], res["size"] = sweep_opt(x, F, G, k, ind) + + return res + + +def fast_search(G, F, k, n, ind): + """ + Efficient version of cut computation. + Does not perform 1-D search for beta. + Input: + * G: graph + * F: graph signal + * k: max edges to be cut + * n: number of chebyshev polynomials + * ind: vertex index vertex: unique integer + Output: + * cut + """ + start = np.ones(nx.number_of_nodes(G)) + CAC = fast_cac(G, F, ind) + + return cheb_spectral_cut(CAC, start, F, G, 1., k, n, ind) + + +# optimal_wavelet_basis() builds the wavelet basis tree. To do so, +# it calls either the SWT (one_d_search()) or the FSWT (fast_search()) + + +def optimal_wavelet_basis(G, F, k, npol, method='lobpcg'): + """ + Computation of optimal graph wavelet basis. + Input: + * G: graph + * F: graph signal + * k: max edges to be cut + * npol: number of chebyshev polynomials, if 0 run exact version + * method: method used for Fiedler vector computation. + The default value is 'lobpcg' however 'tracemin_lu' seems + faster and it appears to give more stable results when used + with PYTHONHASHSEED set to a constant value. + Output: + * root: tree root + * ind: vertex index vertex: unique integer + * size: number of edges cut + """ + + gsp.set_fiedler_method(method) + + # Creating index + ind = {v: i for i, v in enumerate(G.nodes())} + + # First cut + root = Node(None) + size = 0 + cand_cuts = [] + + if npol == 0: + c = one_d_search(G, F, k, ind) + else: + c = fast_search(G, F, k, npol, ind) + + c["parent"] = root + c["graph"] = G + + cand_cuts.append(c) + # Recursively find the best cut. Each time it tries first the supposedly + # biggest subgraphs inserted earlier in cand_cuts until the list is emptied + # or no new best cut is found + while size <= k and len(cand_cuts) > 0: + best_cut = None + for i, c in enumerate(cand_cuts): + if (c["size"] + size <= k and c["energy"] > 0 and + (best_cut is None or c["energy"] > best_cut["energy"])): + best_cut = c + b = i + + # Exit iteration if no better cut is found + if best_cut is None: + break + else: + # Compute cut on left and right side + G1, G2 = gsp.get_subgraphs(best_cut["graph"], best_cut["x"]) + + size += best_cut["size"] + + for Gi in (G1, G2): + if nx.number_of_nodes(Gi) == 1: + best_cut["parent"].add_child( + Node(ind[list(Gi.nodes())[0]])) + elif nx.number_of_nodes(Gi) > 1: + n = Node(None) + + if npol == 0: + c = one_d_search(Gi, F, k, ind) + else: + c = fast_search(Gi, F, k, npol, ind) + + c["parent"] = n + c["graph"] = Gi + cand_cuts.append(c) + + best_cut["parent"].add_child(n) + + del cand_cuts[b] + + # Compute remaining cuts using ratio cuts once the budget k is over + # until the tree is completely built. (Not optimal search) + for i in range(0, len(cand_cuts)): + gsp.rc_recursive(cand_cuts[i]["parent"], cand_cuts[i]["graph"], ind) + + gsp.set_counts(root) + + return root, ind, size diff --git a/lib/static.py b/lib/static.py index eb3fd74..038b21a 100644 --- a/lib/static.py +++ b/lib/static.py @@ -1,233 +1,210 @@ -import networkx import math -import scipy.optimize -import numpy -import sys -from scipy import linalg -import matplotlib.pyplot as plt -from IPython.display import Image -import pywt -import scipy.fftpack -import random import operator -import copy -from collections import deque -from sklearn.preprocessing import normalize -from sklearn.cluster import SpectralClustering -from lib.graph_signal_proc import * -from lib.optimal_cut import * - -class Fourier(object): - """ - Graph Fourier transform. - """ - def name(self): - return "FT" - - def set_graph(self, _G): - self.G = _G - L = networkx.laplacian_matrix(self.G) - L = L.todense() - self.U, self.lamb_str = compute_eigenvectors_and_eigenvalues(L) - - def transform(self, F): - """ - """ - return graph_fourier(F, self.U) - - def inverse(self, ftr): - """ - """ - return graph_fourier_inverse(ftr, self.U) - - def drop_frequency(self, ftr, n): - """ - Keeps only the n top-energy coefficients of ftr. - Input: - * ftr: transform - * n: number of coefficients - Output: - * ftr_copy: changed transform - """ - coeffs = {} - - for i in range(ftr.shape[0]): - coeffs[i] = abs(ftr[i]) - - sorted_coeffs = sorted(coeffs.items(), key=operator.itemgetter(1), reverse=True) - - ftr_copy = numpy.copy(ftr) - - for k in range(n, len(sorted_coeffs)): - i = sorted_coeffs[k][0] - - ftr_copy[i] = 0 - - return ftr_copy + +import numpy as np +import networkx as nx + +import lib.graph_signal_proc as gsp +import lib.optimal_cut as oc + + +class Fourier(object): + """ + Graph Fourier transform. + """ + + def name(self): + return "FT" + + def set_graph(self, _G): + self.G = _G + L = nx.laplacian_matrix(self.G) + L = L.todense() + self.U, self.lamb_str = gsp.compute_eigenvectors_and_eigenvalues(L) + + def transform(self, F): + return gsp.graph_fourier(F, self.U) + + def inverse(self, ftr): + return gsp.graph_fourier_inverse(ftr, self.U) + + def drop_frequency(self, ftr, n): + """ + Keeps only the n top-energy coefficients of ftr. + Input: + * ftr: transform + * n: number of coefficients + Output: + * ftr_copy: changed transform + """ + coeffs = {i: abs(ftr[i]) for i in range(ftr.shape[0])} + sorted_coeffs = sorted(coeffs.items(), key=operator.itemgetter(1), + reverse=True) + ftr_copy = np.copy(ftr) + # Set the other coefficients to 0 + for k in range(n, len(sorted_coeffs)): + ftr_copy[sorted_coeffs[k][0]] = 0 + + return ftr_copy + class HWavelets(object): - """ - Hammond's wavelets (spectral theory) - """ - def name(self): - return "HWT" - - def set_graph(self, _G): - """ - """ - self.G = _G - L = networkx.normalized_laplacian_matrix(self.G) - L = L.todense() - self.U, self.lamb_str = compute_eigenvectors_and_eigenvalues(L) - lamb_max = max(self.lamb_str.real) - - #default parameters defined by author - K = 100 - J = 4 - gamma = comp_gamma() - self.T = comp_scales(lamb_max, K, J) - self.w = graph_wavelets(self.lamb_str.real, self.U.real, range(len(self.G.nodes())), self.T) - self.s = graph_low_pass(self.lamb_str.real, self.U.real, range(len(self.G.nodes())), self.T, gamma, lamb_max, K) - - def transform(self, F): - """ - """ - return hammond_wavelet_transform(self.w, self.s, self.T, F) - - def inverse(self, wtr): - """ - """ - return hammond_wavelets_inverse(self.w, self.s, wtr) - - def drop_frequency(self, wtr, n): - """ - Keeps only the n top-energy coefficients of wtr. - Input: - * wtr: transform - * n: number of coefficients - Output: - * wtr_copy: changed transform - """ - coeffs = {} - for i in range(len(wtr)): - for j in range(len(wtr[i])): - coeffs[(i,j)] = abs(wtr[i][j]) - - sorted_coeffs = sorted(coeffs.items(), key=operator.itemgetter(1), reverse=True) - - wtr_copy = numpy.copy(wtr) - - for k in range(n, len(sorted_coeffs)): - i = sorted_coeffs[k][0][0] - j = sorted_coeffs[k][0][1] - - wtr_copy[i][j] = 0.0 - - return wtr_copy + """ + Hammond's wavelets (spectral theory) + """ + + def name(self): + return "HWT" + + def set_graph(self, _G): + """ + """ + self.G = _G + L = nx.normalized_laplacian_matrix(self.G) + L = L.todense() + self.U, self.lamb_str = gsp.compute_eigenvectors_and_eigenvalues(L) + lamb_max = max(self.lamb_str.real) + + # default parameters defined by author + K = 100 + J = 4 + gamma = gsp.comp_gamma() + self.T = gsp.comp_scales(lamb_max, K, J) + self.w = gsp.graph_wavelets(self.lamb_str.real, self.U.real, + len(self.G.nodes()), self.T) + self.s = gsp.graph_low_pass(self.lamb_str.real, self.U.real, + self.T, gamma, lamb_max, K) + + def transform(self, F): + return gsp.hammond_wavelet_transform(self.w, self.s, self.T, F) + + def inverse(self, wtr): + return gsp.hammond_wavelets_inverse(self.w, self.s, wtr) + + def drop_frequency(self, wtr, n): + """ + Keeps only the n top-energy coefficients of wtr. + Input: + * wtr: transform + * n: number of coefficients + Output: + * wtr_copy: changed transform + """ + coeffs = {} + for i in range(len(wtr)): + for j in range(len(wtr[i])): + coeffs[(i, j)] = abs(wtr[i][j]) + + sorted_coeffs = sorted(coeffs.items(), key=operator.itemgetter(1), + reverse=True) + + wtr_copy = np.copy(wtr) + + for k in range(n, len(sorted_coeffs)): + i = sorted_coeffs[k][0][0] + j = sorted_coeffs[k][0][1] + + wtr_copy[i][j] = 0. + + return wtr_copy + class GRCWavelets(object): - """ - Gavish's wavelet transform. - """ - def name(self): - return "GWT" + """ + Gavish's wavelet transform. + """ - def set_graph(self, _G): - """ - """ - self.G = _G - (self.tree, self.ind) = ratio_cut_hierarchy(self.G) + def __init__(self, method='lobpcg'): + # Method for Fiedler vector computation + self.method = method - def transform(self, F): - """ - """ - return gavish_wavelet_transform(self.tree, self.ind, self.G, F) + def name(self): + return "GWT" - def inverse(self, wtr): - """ - """ - return gavish_wavelet_inverse(self.tree, self.ind, self.G, wtr) + def set_graph(self, G): + self.G = G + (self.tree, self.ind) = gsp.ratio_cut_hierarchy(self.G, self.method) - def drop_frequency(self, wtr, n): - """ - Keeps only the n top-energy coefficients of wtr. - Input: - * wtr: transform - * n: number of coefficients - Output: - * wtr_copy: changed transform - """ - coeffs = {} - for i in range(len(wtr)): - coeffs[i] = abs(wtr[i]) + def transform(self, F): + return gsp.gavish_wavelet_transform(self.tree, self.G, F) - sorted_coeffs = sorted(coeffs.items(), key=operator.itemgetter(1), reverse=True) + def inverse(self, wtr): + return gsp.gavish_wavelet_inverse(self.tree, self.ind, self.G, wtr) - wtr_copy = numpy.copy(wtr) + def drop_frequency(self, wtr, n): + """ + Keeps only the n top-energy coefficients of wtr. + Input: + * wtr: transform + * n: number of coefficients + Output: + * wtr_copy: changed transform + """ + coeffs = {i: abs(wtr[i]) for i in range(len(wtr))} + sorted_coeffs = sorted(coeffs.items(), key=operator.itemgetter(1), + reverse=True) - for k in range(n, len(sorted_coeffs)): - i = sorted_coeffs[k][0] + wtr_copy = np.copy(wtr) - wtr_copy[i] = 0.0 + for k in range(n, len(sorted_coeffs)): + i = sorted_coeffs[k][0] - return wtr_copy + wtr_copy[i] = 0. + return wtr_copy -class OptWavelets(object): - """ - Sparse wavelet transform. - """ - def __init__(self, n=0): - """ - """ - self.n = n - - def name(self): - """ - """ - if self.n == 0: - return "SWT" - else: - return "FSWT" - - def set_graph(self, _G): - self.G = _G - - def transform(self, F): - """ - """ - self.F = F - return None - - def inverse(self, wtr): - """ - """ - return gavish_wavelet_inverse(self.tree, self.ind, self.G, wtr) - - def drop_frequency(self, wtr, n): - coeffs = {} - - k = n - #Computing optimal basis - (self.tree, self.ind, s) = optimal_wavelet_basis(self.G, self.F, k, self.n) - - #Gavish's wavelet transform - tr = gavish_wavelet_transform(self.tree, self.ind, self.G, self.F) - - for i in range(len(tr)): - coeffs[i] = abs(tr[i]) - - sorted_coeffs = sorted(coeffs.items(), key=operator.itemgetter(1), reverse=True) - - wtr_copy = numpy.copy(tr) - - #Computing number of integers required to represent the edges cut (rounded) - v = n - int(math.ceil(float(s * math.log2(len(self.G.edges()))) / 64)) - - for k in range(v, len(sorted_coeffs)): - i = sorted_coeffs[k][0] - - wtr_copy[i] = 0.0 - - return wtr_copy +class OptWavelets(object): + """ + Sparse wavelet transform. + """ + + def __init__(self, n=0, method='lobpcg'): + self.n = n + # Method for Fiedler vector computation + self.method = method + + def name(self): + if self.n == 0: + return "SWT" + else: + return "FSWT" + + def set_graph(self, G): + self.G = G + + def transform(self, F): + self.F = F + return None + + def inverse(self, wtr): + return gsp.gavish_wavelet_inverse(self.tree, self.ind, self.G, wtr) + + def drop_frequency(self, wtr, n): + # The number of edges to be cut is set equal to the number of + # Chebyshev polynomials + k = n + # Computing optimal basis + (self.tree, self.ind, size) = \ + oc.optimal_wavelet_basis(self.G, self.F, k, + self.n, self.method) + # Gavish's wavelet transform + tr = gsp.gavish_wavelet_transform(self.tree, self.G, self.F) + + coeffs = {i: abs(tr[i]) for i in range(len(tr))} + sorted_coeffs = sorted(coeffs.items(), key=operator.itemgetter(1), + reverse=True) + + wtr_copy = np.copy(tr) + + # Computing number of integers required to represent the + # edges cut (rounded) + v = n - int(math.ceil(float(size * + math.log(len(self.G.edges()), 2)) / 64)) + + for k in range(v, len(sorted_coeffs)): + i = sorted_coeffs[k][0] + + wtr_copy[i] = 0. + + return wtr_copy diff --git a/lib/syn.py b/lib/syn.py index f5b01f0..c31aed1 100644 --- a/lib/syn.py +++ b/lib/syn.py @@ -1,262 +1,107 @@ -import networkx import math -import scipy.optimize -import numpy -import sys -from scipy import linalg -import matplotlib.pyplot as plt -from IPython.display import Image -import pywt -import scipy.fftpack import random -import operator -import copy -from collections import deque -from sklearn.preprocessing import normalize -from sklearn.cluster import SpectralClustering -import random - -def synthetic_graph(size, num_edges, sparsity, energy, balance, noise): - size_part_a = int(math.ceil(float(size * balance) / 2)) - size_part_b = size - size_part_a - F = [] - edges = {} - - avg_a = float(numpy.sqrt(float(energy * size) / (size_part_a * size_part_b))) / 2. - - avg_b = -float(numpy.sqrt(float(energy * size) / (size_part_a * size_part_b))) / 2. - - for v in range(size): - if v < size_part_a: - F.append(random.gauss(avg_a, noise*avg_a)) - else: - F.append(random.gauss(avg_b, noise*avg_a)) - - G = networkx.Graph() - - for v in range(size-1): - G.add_edge(v,v+1) - edges[(v,v+1)] = True - - remaining_edges = num_edges - len(G.edges()) - edges_accross = int((size_part_a * size_part_b * (1.-sparsity) * remaining_edges) / (size * (size-1))) - edges_within = remaining_edges - edges_accross - - for e in range(edges_accross): - v1 = random.randint(0, size_part_a-1) - v2 = random.randint(size_part_a, size-1) - - while (v1,v2) in edges or v1 == v2: - v1 = random.randint(0,size_part_a-1) - v2 = random.randint(size_part_a, size_part_a+size_part_b-1) - - G.add_edge(v1,v2) - edges[(v1,v2)] = True - - for e in range(edges_within): - v1 = random.randint(0,size-1) - v2 = random.randint(0,size-1) - - if v1 > v2: - tmp = v1 - v1 = v2 - v2 = tmp - - while (v1,v2) in edges or v1 == v2 or (v1 < size_part_a and v2 >= size_part_a) or (v1 >= size_part_a and v2 < size_part_a): - v1 = random.randint(0,size-1) - v2 = random.randint(0,size-1) - - if v1 > v2: - tmp = v1 - v1 = v2 - v2 = tmp - - G.add_edge(v1,v2) - edges[(v1,v2)] = True - - return G, numpy.array(F), edges_accross+1 - -def compute_distances(center, graph): - distances = networkx.shortest_path_length(graph, center) - - return distances - -def compute_embedding(distances, radius, graph): - B = [] - s = 0 - nodes = {} - for v in graph.nodes(): - if distances[v] <= radius: - B.append(1) - s = s + 1 - else: - B.append(0) - - return numpy.array(B) - -def generate_dyn_cascade(G, diam, duration, n): - Fs = [] - - for j in range(n): - v = random.randint(0, len(G.nodes())-1) - distances = compute_distances(G.nodes()[v], G) - - if diam > duration: - num_snaps = diam - else: - num_snaps = duration - - for i in range(num_snaps): - r = int(i * math.ceil(float(diam)/duration)) - - F = compute_embedding(distances, r, G) - Fs.append(F) - - return numpy.array(Fs) - -def generate_dyn_heat(G, s, jump, n): - Fs = [] - L = networkx.normalized_laplacian_matrix(G) - L = L.todense() - F0s = [] - seeds = [] - - for i in range(s): - F0 = numpy.zeros(len(G.nodes())) - v = random.randint(0, len(G.nodes())-1) - seeds.append(v) - F0[v] = len(G.nodes()) - F0s.append(F0) - - Fs.append(numpy.sum(F0s, axis=0)) - - for j in range(n): - FIs = [] - for i in range(s): - FI = numpy.multiply(linalg.expm(-j*jump*L), F0s[i])[:,seeds[i]] - FIs.append(FI) - - Fs.append(numpy.sum(FIs, axis=0)) - - return numpy.array(Fs)[1:] - -def generate_dyn_gaussian_noise(G, n): - Fs = [] - - for j in range(n): - F = numpy.random.rand(len(G.nodes())) - Fs.append(F) - - return numpy.array(Fs) - -def generate_dyn_bursty_noise(G, n): - Fs = [] - bursty_beta = 1 - non_bursty_beta = 1000 - bursty_bursty = 0.7 - non_bursty_non_bursty = 0.9 - bursty = False - - for j in range(n): - r = random.random() - - if not bursty: - if r > non_bursty_non_bursty: - bursty = True - else: - if r > bursty_bursty: - bursty = False - - if bursty: - F = numpy.random.exponential(bursty_beta, len(G.nodes())) - else: - F = numpy.random.exponential(non_bursty_beta, len(G.nodes())) - - Fs.append(F) - - return numpy.array(Fs) - -def generate_dyn_indep_cascade(G, s, p): - Fs = [] - - seeds = numpy.random.choice(len(G.nodes()), s, replace=False) - - F0 = numpy.zeros(len(G.nodes())) - - ind = {} - i = 0 - - for v in G.nodes(): - ind[v] = i - i = i + 1 - - for s in seeds: - F0[s] = 2.0 - - while True: - F1 = numpy.zeros(len(G.nodes())) - new_inf = 0 - for v in G.nodes(): - if F0[ind[v]] > 1.0: - for u in G.neighbors(v): - r = random.random() - if r <= p and F0[ind[u]] < 1.0: - F1[ind[u]] = 2.0 - new_inf = new_inf + 1 - F1[ind[v]] = 1.0 - F0[ind[v]] = 1.0 - elif F0[ind[v]] > 0.0: - F1[ind[v]] = 1.0 - - Fs.append(F0) - - if new_inf == 0 and len(Fs) > 1: - break - - F0 = numpy.copy(F1) - - return numpy.array(Fs) - -def generate_dyn_linear_threshold(G, s): - Fs = [] - - seeds = numpy.random.choice(len(G.nodes()), s, replace=False) - - F0 = numpy.zeros(len(G.nodes())) - thresholds = numpy.random.uniform(0.0,1.0,len(G.nodes())) - - ind = {} - i = 0 - - for v in G.nodes(): - ind[v] = i - i = i + 1 - - for s in seeds: - F0[s] = 1.0 - - while True: - F1 = numpy.zeros(len(G.nodes())) - new_inf = 0 - for v in G.nodes(): - if F0[ind[v]] < 1.0: - n = 0 - for u in G.neighbors(v): - if F0[ind[u]] > 0: - n = n + 1 - - if (float(n) / len(G.neighbors(v))) >= thresholds[ind[v]]: - F1[ind[v]] = 1.0 - new_inf = new_inf + 1 - else: - F1[ind[v]] = 1.0 - - Fs.append(F0) - - if new_inf == 0 and len(Fs) > 1: - break - - F0 = numpy.copy(F1) - - return numpy.array(Fs) +import networkx as nx +import numpy as np + + +def synthetic_graph(size, num_edges, sparsity, energy, balance, noise, + seed=None): + r""" + Build a synthetic connected graph and a graph signal starting from two + sets of vertices. These sets have sizes depending on size and balance. + Input: + * size: number of vertices + * num_edges: number of edges + * sparsity: higher values penalize the creation of edges + having vertices in different sets + * energy: is the coefficient's energy obtained from the generated + graph signal and using as partitions the two vertex sets + * balance: takes values in (0,2). If 1 the two sets from which the + synthetic graph is built have similar size. + * noise: part of the std dev used for generating the noisy signal + * seed: optional seed for the random module + Output: + * G: connected graph + * np.array(F): graph signal + * edges_accross + 1: number of edges having vertices in different + sets + """ + if seed: + random.seed(seed) + + if balance <= 0 and balance >= 2: + raise ValueError("'balance' should be in (0,2)") + + if num_edges < size: + raise ValueError("The graph returned by synthetic_graph() is assumed " + + "to be connected: choose num_edges >= size - 1") + + size_part_a = int(math.ceil(size * balance / 2.)) + size_part_b = size - size_part_a + + if size_part_a == 0: + raise ValueError("'size_part_a'==0 try bigger values " + + "for 'size' or 'balance'") + if size_part_b == 0: + raise ValueError("'size_part_b'==0 try a bigger value " + + "for 'size' or a smaller value for 'balance'") + + avg_a = np.sqrt(float(energy * size) / + (size_part_a * size_part_b)) / 2. + avg_b = - avg_a + + F = [] + for v in range(size): + if v < size_part_a: + F.append(random.gauss(avg_a, noise * avg_a)) + else: + F.append(random.gauss(avg_b, noise * avg_a)) + + G = nx.Graph() + + edges_set = set({}) + for v in range(size - 1): + G.add_edge(v, v + 1) + edges_set.add((v, v + 1)) + + remaining_edges = num_edges - len(G.edges()) + edges_accross = int((size_part_a * size_part_b * (1. - sparsity) + * remaining_edges) / (size * (size - 1))) + edges_within = remaining_edges - edges_accross + + for e in range(edges_accross): + v1 = random.randint(0, size_part_a - 1) + v2 = random.randint(size_part_a, size - 1) + + while (v1, v2) in edges_set or v1 == v2: + v1 = random.randint(0, size_part_a - 1) + v2 = random.randint(size_part_a, size_part_a + size_part_b - 1) + + G.add_edge(v1, v2) + edges_set.add((v1, v2)) + + for e in range(edges_within): + v1 = random.randint(0, size - 1) + v2 = random.randint(0, size - 1) + + if v1 > v2: + tmp = v1 + v1 = v2 + v2 = tmp + + while ((v1, v2) in edges_set or v1 == v2 or + (v1 < size_part_a and v2 >= size_part_a) or + (v1 >= size_part_a and v2 < size_part_a)): + v1 = random.randint(0, size - 1) + v2 = random.randint(0, size - 1) + + if v1 > v2: + tmp = v1 + v1 = v2 + v2 = tmp + + G.add_edge(v1, v2) + edges_set.add((v1, v2)) + + return G, np.array(F), edges_accross + 1 diff --git a/lib/vis.py b/lib/vis.py index b5e9557..df29f97 100644 --- a/lib/vis.py +++ b/lib/vis.py @@ -1,197 +1,321 @@ -import networkx -import math -import scipy.optimize -import numpy -import sys -from scipy import linalg -import matplotlib.pyplot as plt -from IPython.display import Image -import pywt -import scipy.fftpack -import random -import operator -import copy -from collections import deque -from sklearn.preprocessing import normalize -from sklearn.cluster import SpectralClustering import os -def set_f(G,F,ids=None): - if ids is None: - i = 0 - for v in G.nodes(): - G.node[v]["value"] = F[i] - i = i + 1 - else: - i = 0 - for v in range(len(ids)): - G.node[ids[v]]["value"] = F[i] - i = i + 1 - -def get_f(G): - F = [] - for v in G.nodes(): - F.append(G.node[v]["value"]) - - return numpy.array(F) - -def rgb_to_hex(r,g,b): - return '#%02x%02x%02x' % (r,g,b) +import numpy as np +import networkx as nx +import scipy + +import lib.optimal_cut as oc + + +def add_signal_to_graph(G, F, identifiers=None): + r""" + Assign the signal to the graph's nodes. + Note that G.node[v] returns a dict. + Input: + * G: networkx graph + * F: graph signal + * identifiers: list of node identifiers. It's used to guarantee that + the graph signal values are assigned to the right nodes + """ + if identifiers is None: + for i, v in enumerate(G.nodes()): + G.node[v]["value"] = F[i] + else: + for i, v in enumerate(identifiers): + G.node[v]["value"] = F[i] + + +def get_signal_from_graph(G): + r""" + Get the signal along with the list of nodes identifiers + """ + F = [] + identifiers = [] + for v in G.nodes(): + identifiers.append(v) + F.append(G.node[v]["value"]) + + return np.array(F), identifiers + + +def rgb_to_hex(r, g, b): + r""" + Convert integer numbers to hexadecimal format. + Input range for r, g, b: [0 - 255] + Examples: + black: (0, 0, 0) -> #000000 + white: (255, 255, 255) -> #ffffff + """ + return '#%02x%02x%02x' % (r, g, b) -def rgb(minimum, maximum, value): - mi, ma = float(minimum), float(maximum) - ratio = 2 * (value-mi) / (ma - mi) - b = int(max(0, 255*(1 - ratio))) - r = int(max(0, 255*(ratio - 1))) - g = 255 - b - r - - return rgb_to_hex(r, g, b) - -def draw_graph_with_values(G, dot_output_file_name, maximum=None, minimum=None): - output_file = open(dot_output_file_name, 'w') - output_file.write("graph G{\n") - output_file.write("rankdir=\"LR\";\n") - output_file.write("size=\"10,2\";\n") - - if maximum is None: - maximum = -sys.float_info.max - minimum = sys.float_info.max - - for v in G.nodes(): - if G.node[v]["value"] > maximum: - maximum = G.node[v]["value"] - - if G.node[v]["value"] < minimum: - minimum = G.node[v]["value"] - - for v in G.nodes(): - color = rgb(minimum, maximum, G.node[v]["value"]) - if G.node[v]["value"] != 0.0: - output_file.write("\""+str(v)+"\" [shape=\"circle\",label=\"\",style=filled,fillcolor=\""+str(color)+"\",penwidth=\"2\",fixedsize=true,width=\"1\",height=\"1\"];\n") - else: - output_file.write("\""+str(v)+"\" [shape=\"circle\",label=\"\",style=filled,fillcolor=\""+str(color)+"\",penwidth=\"0\",fixedsize=true,width=\"1\",height=\"1\"];\n") - - for edge in G.edges(): - output_file.write("\""+str(edge[0])+"\" -- \""+str(edge[1])+"\"[dir=\"none\",color=\"black\",penwidth=\"1\"];\n") - - - output_file.write("}") - - output_file.close() - -def draw_graph_dynamic_values(G, FT, fig_output_file_name): - maximum = -sys.float_info.max - minimum = sys.float_info.max - - for i in range(FT.shape[0]): - for j in range(FT.shape[1]): - if FT[i][j] > maximum: - maximum = FT[i][j] - - if FT[i][j] < minimum: - minimum = FT[i][j] - - svg_names = "" - - for i in range(FT.shape[0]): - set_f(G, FT[i]) - #draw_graph_with_values(G, "dyn_graph-"+str(i)+".dot", maximum, minimum) - draw_graph_with_values(G, "dyn_graph-"+str(i)+".dot") - os.system("sfdp -Goverlap=prism -Tsvg dyn_graph-"+str(i)+".dot > dyn_graph-"+str(i)+".svg") - os.system("rm dyn_graph-"+str(i)+".dot") - svg_names = svg_names + " dyn_graph-"+str(i)+".svg" - - os.system("python lib/svg_stack-master/svg_stack.py --direction=v --margin=0 "+svg_names+" > "+fig_output_file_name) - - for i in range(FT.shape[0]): - os.system("rm dyn_graph-"+str(i)+".svg") - -def draw_partitions_with_values(G, partitions, dot_output_file_name, maximum=None, minimum=None): - output_file = open(dot_output_file_name, 'w') - output_file.write("graph G{\n") - output_file.write("rankdir=\"LR\";\n") - output_file.write("size=\"10,2\";\n") - - if maximum is None: - maximum = -sys.float_info.max - minimum = sys.float_info.max - - for v in G.nodes(): - if G.node[v]["value"] > maximum: - maximum = G.node[v]["value"] - - if G.node[v]["value"] < minimum: - minimum = G.node[v]["value"] - - part_map = {} - - for p in range(len(partitions)): - for i in range(len(partitions[p])): - part_map[partitions[p][i]] = p - - for v in G.nodes(): - color = rgb(minimum, maximum, G.node[v]["value"]) - if G.node[v]["value"] != 0.0: - output_file.write("\""+str(v)+"\" [shape=\"circle\",label=\"\",style=filled,fillcolor=\""+str(color)+"\",penwidth=\"2\",fixedsize=true,width=\"0.5\",height=\"0.5\"];\n") - else: - output_file.write("\""+str(v)+"\" [shape=\"circle\",label=\"\",style=filled,fillcolor=\""+str(color)+"\",penwidth=\"0\",fixedsize=true,width=\"0.5\",height=\"0.5\"];\n") - - for edge in G.edges(): - if part_map[edge[0]] == part_map[edge[1]]: - output_file.write("\""+str(edge[0])+"\" -- \""+str(edge[1])+"\"[dir=\"none\",color=\"black\",penwidth=\"4\"];\n") - else: - output_file.write("\""+str(edge[0])+"\" -- \""+str(edge[1])+"\"[dir=\"none\",color=\"black\",penwidth=\"1\"];\n") - - output_file.write("}") - - output_file.close() - -def draw_graph(G, dot_output_file_name): - output_file = open(dot_output_file_name, 'w') - output_file.write("graph G{\n") - output_file.write("rankdir=\"LR\";\n") - output_file.write("size=\"10,2\";\n") - - for v in G.nodes(): - color = rgb_to_hex(0,255,0) - output_file.write("\""+str(v)+"\" [shape=\"circle\",label=\"\",style=filled,fillcolor=\""+str(color)+"\",penwidth=\"2\",fixedsize=true,width=\"1\",height=\"1\"];\n") - - for edge in G.edges(): - output_file.write("\""+str(edge[0])+"\" -- \""+str(edge[1])+"\"[dir=\"none\",color=\"black\",penwidth=\"1\"];\n") - - - output_file.write("}") - - output_file.close() - -def draw_time_graph(G, fig_output_file_name): - svg_names = "" - - for i in range(G.num_snaps()): - draw_graph(G.snap(i), "graph-"+str(i)+".dot") - os.system("sfdp -Goverlap=prism -Tsvg graph-"+str(i)+".dot > graph-"+str(i)+".svg") - os.system("rm graph-"+str(i)+".dot") - svg_names = svg_names + " graph-"+str(i)+".svg" - - os.system("python lib/svg_stack-master/svg_stack.py --direction=v --margin=0 "+svg_names+" > "+fig_output_file_name) - - for i in range(G.num_snaps()): - os.system("rm graph-"+str(i)+".svg") - -def draw_time_graph_eig(G, eig, fig_output_file_name): - svg_names = "" - G.set_values(eig) - maximum = numpy.max(eig) - minimum = numpy.min(eig) - - for i in range(G.num_snaps()): - draw_graph_with_values(G.snap(i),"graph-"+str(i)+".dot", minimum, maximum) - os.system("sfdp -Goverlap=prism -Tsvg graph-"+str(i)+".dot > graph-"+str(i)+".svg") - os.system("rm graph-"+str(i)+".dot") - svg_names = svg_names + " graph-"+str(i)+".svg" - - os.system("python lib/svg_stack-master/svg_stack.py --direction=v --margin=0 "+svg_names+" > "+fig_output_file_name) - - for i in range(G.num_snaps()): - os.system("rm graph-"+str(i)+".svg") +def rgb(minimum, maximum, value): + r""" + Map 'value', from the range [minimum - maximum], to an RGB tuple. The + output color scale covers a subset of the RGB spectrum + Examples: + value = maximum -> red : #ff0000 + value = 0.5 * (maximum - minimum) -> green : #00ff00 + value = minimum -> blue : #0000ff + """ + minimum, maximum = float(minimum), float(maximum) + ratio = 2 * (value - minimum) / (maximum - minimum) + b = int(max(0, 255 * (1 - ratio))) + r = int(max(0, 255 * (ratio - 1))) + g = 255 - b - r + + return rgb_to_hex(r, g, b) + + +def quote(s): + return '"' + str(s) + '"' + + +def graph_to_dot(G, dot_output_file_name, nodes_color=(0, 255, 0)): + r""" + Write the graph description in .dot format to a file for visualization + The graph doesn't need to have an attached signal + Input: + * G : networkx graph + * dot_output_file_name : name of the output file (.dot format) + * nodes_color : tuple of RGB coordinates (default is green) + """ + output_file = open(dot_output_file_name, 'w') + output_file.write('graph G{\n') + output_file.write('rankdir="LR";\n') + output_file.write('size=\"10,2\";\n') + + for v in G.nodes(): + color = rgb_to_hex(*nodes_color) + output_file.write(quote(v) + '[shape=circle, label="", ' + 'style=filled, fillcolor=' + quote(color) + ', ' + 'penwidth=2, fixedsize=true, width=1, height=1]; \n') + + for edge in G.edges(): + output_file.write(quote(edge[0]) + ' -- ' + quote(edge[1]) + + ' [penwidth=1];\n') + + output_file.write("}") + + output_file.close() + + +def graph_with_values_to_dot(G, dot_output_file_name, maximum=None, + minimum=None, draw_zero_valued_nodes=False): + r""" + Write the graph description in .dot format to a file for visualization + The graph needs to have an attached signal + Input: + * G : networkx graph with values (attached graph signal) + * dot_output_file_name : name of the output file (.dot format) + * minimum, maximum : are passed as arguments to the rgb() function + * draw_zero_valued_nodes : if False, set penwidth = 0 for nodes + with value 0 + """ + + output_file = open(dot_output_file_name, 'w') + output_file.write("graph G{\n") + output_file.write("rankdir=LR;\n") + output_file.write("size=\"10,2\";\n") + + if maximum is None: + maximum = max([G.node[v]["value"] for v in list(G.nodes())]) + if minimum is None: + minimum = min([G.node[v]["value"] for v in list(G.nodes())]) + + for v in G.nodes(): + color = rgb(minimum, maximum, G.node[v]["value"]) + + msg = (quote(v) + ' [shape=circle, label="", ' + + 'style=filled, fillcolor=' + quote(color) + ', ' + + 'penwidth={}, fixedsize=true, ' + + 'width=1, height=1]; \n') + + if G.node[v]["value"] != 0.0 or draw_zero_valued_nodes: + output_file.write(msg.format(2)) + else: + output_file.write(msg.format(0)) + + for edge in G.edges(): + output_file.write(quote(edge[0]) + ' -- ' + quote(edge[1]) + ' ' + + '[penwidth=1];\n') + + output_file.write("}") + + output_file.close() + + +def dyn_graph_with_values_to_svg(G, FT, fig_output_file_name, + path_to_svg_stack, fixed_color_scale=False, + maximum=None, minimum=None, + draw_zero_valued_nodes=False): + r""" + Create an .svg file of a dynamic graph. It stacks the various + graph snapshots vertically. The graph signal change with time + Input: + * G : networkx graph + * FT : temporal graph signal + * fig_output_file_name : name of the output file (.svg format) + * path_to_svg_stack : path to svg_stack.py, clone it from + https://github.com/astraw/svg_stack + * fixed_color_scale : if True the same maximum and minimum are used + for every intermediate figure + * minimum, maximum : are passed as arguments to the rgb() function. + Not used if fixed_color_scale is set to False + * draw_zero_valued_nodes : if False, set penwidth = 0 for nodes + with value 0 + """ + + if fixed_color_scale: + if maximum is None: + maximum = max([max(FT[i]) for i in range(FT.shape[0])]) + if minimum is None: + minimum = min([min(FT[i]) for i in range(FT.shape[0])]) + + svg_names = '' + + for i in range(FT.shape[0]): + add_signal_to_graph(G, FT[i]) + + dot_file_name = "dyn_graph-" + str(i) + ".dot" + svg_file_name = "dyn_graph-" + str(i) + ".svg" + + graph_with_values_to_dot(G, dot_file_name, maximum, minimum, + draw_zero_valued_nodes) + + # Use Scalable Force Directed Placement (sfdp), a fast multilevel force + # directed algorithm to layout very large graphs with high quality. + # It is available as part of the graphviz software. + os.system('sfdp - Goverlap=prism - Tsvg ' + dot_file_name + ' > ' + + svg_file_name + ' ; rm ' + dot_file_name) + svg_names += ' ' + svg_file_name + + # Stack all the previously created svg images vertically with no margin + # in between the figures + os.system("python " + path_to_svg_stack + " --direction=v --margin=0 " + + svg_names + " > " + fig_output_file_name) + + for i in range(FT.shape[0]): + os.system("rm dyn_graph-" + str(i) + ".svg") + + +def partitions_with_values_to_dot(G, partitions, dot_output_file_name, + maximum=None, minimum=None, + draw_zero_valued_nodes=False): + r""" + Create a .DOT file of a graph. The nodes within the same partition + are connected by edges with thicker penwidth (4 vs 1). + The graph doesn't need to have an attached signal + Input: + * G : networkx graph with values (attached graph signal) + * dot_output_file_name : name of the output file (.dot format) + * minimum, maximum : are passed as arguments to the rgb() function + * draw_zero_valued_nodes : if False, set penwidth = 0 for nodes + with value 0 + """ + output_file = open(dot_output_file_name, 'w') + output_file.write('graph G{\n') + output_file.write('rankdir=LR;\n') + output_file.write('size="10,2";\n') + + if maximum is None: + maximum = max([G.node[v]["value"] for v in G.nodes]) + if minimum is None: + minimum = min([G.node[v]["value"] for v in G.nodes]) + + part_map = {} + + for p in range(len(partitions)): + for i in range(len(partitions[p])): + part_map[partitions[p][i]] = p + + for v in G.nodes(): + color = rgb(minimum, maximum, G.node[v]["value"]) + msg = (quote(v) + '[shape=circle, label="", style=filled, fillcolor=' + + quote(color) + ', penwidth={}, fixedsize=true, width=0.5, ' + 'height=0.5]; \n') + if G.node[v]["value"] != 0.0 or draw_zero_valued_nodes: + output_file.write(msg.format(2)) + else: + output_file.write(msg.format(0)) + + for edge in G.edges(): + if part_map[edge[0]] == part_map[edge[1]]: + output_file.write(quote(edge[0]) + ' -- ' + quote(edge[1]) + + ' [penwidth=4];\n') + else: + output_file.write(quote(edge[0]) + ' -- ' + quote(edge[1]) + + ' [penwidth=1];\n') + + output_file.write("}") + + output_file.close() + + +def time_graph_to_svg(G, fig_output_file_name, path_to_svg_stack, + nodes_color=(0, 255, 0)): + r""" + Create an .svg file of a dynamic graph. It stacks the various + graph snapshots vertically. The edges change with time + Input: + * G : the graph has an associated list of snapshots (G.snap). + Each of them is a networkx graph. They all have the same + number of nodes and do not need to have an attached signal. + The associated edges can vary + * fig_output_file_name : name of the output file (.svg format) + * path_to_svg_stack : path to svg_stack.py, clone it from + https://github.com/astraw/svg_stack + * nodes_color : tuple of RGB coordinates (default is green) + """ + + svg_names = '' + + for i in range(G.num_snaps()): + snap_dot_file_name = "graph-" + str(i) + ".dot" + snap_svg_file_name = "graph-" + str(i) + ".svg" + graph_to_dot(G.snap(i), snap_dot_file_name, nodes_color) + + # Use Scalable Force Directed Placement (sfdp), a fast multilevel force + # directed algorithm to layout very large graphs with high quality. + # It is available as part of the graphviz software. + os.system("sfdp -Goverlap=prism -Tsvg " + snap_dot_file_name + + "> " + snap_svg_file_name + " ; rm " + snap_dot_file_name) + svg_names += " " + snap_svg_file_name + + # Stack all the previously created svg images vertically with no margin + # in between the figures + os.system("python " + path_to_svg_stack + " --direction=v --margin=0 " + + svg_names + " > " + fig_output_file_name) + + for i in range(G.num_snaps()): + os.system("rm graph-" + str(i) + ".svg") + + +def eig_vis_opt(G, F, beta): + """ + Computes first and second eigenvector of sqrt(C+beta*L)^T CAC + sqrt(C+beta*L) matrix for visualization. + Input: + * G: graph + * F: graph signal + * beta: regularization parameter + Output: + * v1: first eigenvector + * v2: second eigenvector + """ + + ind = {v: i for i, v in enumerate(G.nodes())} + + C = oc.complete_graph_laplacian(nx.number_of_nodes(G)) + A = oc.weighted_adjacency_complete(G, F, ind) + CAC = np.dot(np.dot(C, A), C) + L = nx.laplacian_matrix(G).todense() + + isqrtCL = oc.sqrtmi(C + beta * L) + M = np.dot(np.dot(isqrtCL, CAC), isqrtCL) + + (eigvals, eigvecs) = scipy.linalg.eigh(M, eigvals=(0, 1)) + v1 = np.asarray(np.dot(eigvecs[:, 0], isqrtCL))[0, :] + v2 = np.asarray(np.dot(eigvecs[:, 1], isqrtCL))[0, :] + + return v1, v2 diff --git a/notebooks/compression-experiments.ipynb b/notebooks/compression-experiments.ipynb new file mode 100644 index 0000000..68824fa --- /dev/null +++ b/notebooks/compression-experiments.ipynb @@ -0,0 +1,785 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Compression Experiments using Real Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import sys\n", + "\n", + "from IPython.display import Image\n", + "\n", + "sys.path.append('../')\n", + "\n", + "import lib.io_utils as io\n", + "import lib.experiments as exp\n", + "import lib.static as static\n", + "import lib.datasets as data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Small Traffic" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "G = io.read_graph(\"../\" + data.small_traffic[\"path\"] + \"traffic.graph\",\n", + " \"../\" + data.small_traffic[\"path\"] + \"traffic.data\")\n", + "F = io.read_values(\"../\" + data.small_traffic[\"path\"] + \"traffic.data\", G)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#vertices = 100\n", + "#edges = 128\n" + ] + } + ], + "source": [ + "print(\"#vertices = \", G.number_of_nodes())\n", + "print(\"#edges = \", len(G.edges()))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "algs = [static.OptWavelets(n=20), static.OptWavelets(), static.GRCWavelets(),\n", + " static.Fourier(), static.HWavelets()]\n", + "\n", + "comp_ratios = [0.1, 0.20, 0.30, 0.40, 0.50, 0.60]\n", + "\n", + "res_smt, time_smt = exp.compression_experiment(G, np.array(F),\n", + " algs, comp_ratios, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmkAAARLCAYAAABvHEdXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAuIwAALiMBeKU/dgAAIABJREFUeJzs3Xt4VeWdN/xfEkgIJBwkCGICgdGqgIIDInIKjrbPtNbq\njK2dqZ02Hcep7fWMtqNO+9jHqtPW6cE6r3WqXrUH+k7baattbZ9xZt6prQaKAoJn8PGE4eABlIOQ\nAElI8v6RspudhGTvkOyVhM/nunI1973XuteP/nGbvb5r3Xdea2trawAAAAAAAJBT+UkXAAAAAAAA\ncCwS0gAAAAAAACRASAMAAAAAAJAAIQ0AAAAAAEAChDQAAAAAAAAJENIAAAAAAAAkQEgDAAAAAACQ\nACENAAAAAABAAoQ0AAAAAAAACRDSAAAAAAAAJEBIAwAAAAAAkAAhDQAAAAAAQAKENAAAAAAAAAkQ\n0gAAAAAAACRASAMAAAAAAJAAIQ0AAAAAAEAChDQAAAAAAAAJENIAAAAAAAAkQEgDAAAAAACQACEN\nAAAAAABAAoQ0AAAAAAAACRDSAAAAAAAAJEBIAwAAAAAAkAAhDQAAAAAAQAKENAAAAAAAAAkQ0gAA\nAAAAACRASAMAAAAAAJAAIQ0AAAAAAEAChDQAAAAAAAAJENIAAAAAAAAkYFjSBcBQsWfPnqipqUm1\nKyoqoqioKMGKAAAAAADoqKGhIbZu3ZpqV1VVxdixYxOpRUgDfaSmpiYuvvjipMsAAAAAACAL999/\nf1x00UWJXNtyZwAAAAAAAAkQ0gAAAAAAACTAcmfQRyoqKtLa999/f5x00kkJVQMAAAAAQFdeeuml\ntK0rOt7bzSUhDfSRoqKitPZJJ50UM2fOTKgaAAAAAAAy0fHebi5Z7gwAAAAAACABQhoAAAAAAIAE\nCGkAAAAAAAASIKQBAAAAAABIgJAGAAAAAAAgAUIaAAAAAACABAhpAAAAAAAAEiCkAQAAAAAASMCw\npAuAwWb58uWxfPnyTv319fW5LwYAAAAAgEFLSANZqq2tjZqamqTLAAAAAABgkBPSQJYqKyujqqqq\nU399fX2sW7cugYoAAAAAABiMhDSQperq6qiuru7Uv2HDhpg1a1buCwIAAAAAYFDKT7oAAAAAAACA\nY5GQBgAAAAAAIAGWOwOAAaS1tTVaWlqitbU16VIAAAAGtLy8vMjPz4+8vLykSwHoNSENACSoubk5\n6uvrY9++fVFfXx/Nzc1JlwQAADCoFBQUxKhRo6K0tDRGjRoVBQUFSZcEkDEhDQAkoLm5OV5//fXY\nt29f0qUAAAAMas3NzbF3797Yu3dvRESUlpbGCSecIKwBBgUhDQDkWFNTU2zdujUaGhqSLgUAAGDI\n2bdvXzQ2NkZFRUUMHz486XIAupWfdAEAcCxpaGiI2tpaAQ0AAEA/8t0LGCy8SQMAObR9+/Y4dOhQ\nWl9eXl6MHDkySktLo7i4OAoKCmx8CQAA0IPW1tZobm6OAwcOxL59+2L//v3R2tqa+vzQoUOxffv2\nmDJlSoJVAnRPSAMAOdLU1BT19fVpfYWFhVFRURGFhYUJVQUAADB4DR8+PEaMGBHjxo2LxsbG2Lp1\nazQ2NqY+r6+vj6amJsueAQOW5c4AIEfefvvttHZ+fn5MnTpVQAMAANAHCgsLY+rUqZGfn37Ls+N3\nMYCBREgDADnS8YvB6NGjY9gwL7UCAAD0lWHDhsXo0aPT+oQ0wEAmpAGAHGhtbU175T4iOn1xAAAA\n4Oh1/K7V1NSUtlcNwEAipAGAHGhpaenUZ01kAACAvtfxu1Zra6uQBhiwhDQAkANdfSHouE4yAAAA\nR6+r71pdPTgHMBC4OwQAAAAAAJAAuxVDlpYvXx7Lly/v1F9fX5/7YgAAAAAAGLSENJCl2traqKmp\nSboMAAAAAAAGOSENZKmysjKqqqo69dfX18e6desSqAgAAAAAgMFISANZqq6ujurq6k79GzZsiFmz\nZuW+IAAAAAAABqX8pAsAAAAAAAA4FglpAAAAAAAAEiCkAQAAAAAASICQBgAAAAAAIAHDki4AAIDk\nHThwIB5//PF48cUXY/fu3VFfXx/FxcUxevTomDJlSvzRH/1RTJ8+PfLzPeMD5IZ5CQCAY4G/ZgEA\nBqDKysrIy8s7qp9PfepT3V6jtbU1fvnLX8a73/3uGD16dCxevDg+9rGPxd///d/HDTfcENdee238\n7d/+bfzpn/5pnHzyyTF27Ng499xz46abboo1a9ZES0tLpzEbGxtj5MiRaXU8//zzWf3bf/jDH3b6\nt9xwww1ZjdHQ0BDFxcVpYzz77LNx0003HfX/r5n81NbWZlUv0Kav5yVzkjlpqDl06O3Yt+/J2L//\nhTh4cFs0Ne2OlpaGaG1tTbq0Ia/j32YPP/xwv421devWtM+HDx8e9fX1WV3jS1/6Uqe54Dvf+U5W\nY2zevDnt/IKCgnj77bejuro6J3MXwLHCmzQAQN9rbY3Yty+isTGisDCitDTCF60BZfPmzfHXf/3X\n8dvf/jbjc/bt2xcPP/xwPPzww3HzzTfH/fffHxdddFHaMYWFhbFgwYJ46KGHUn0rVqyIU045JePr\n1NTUdOpbsWJFxudHRKxZsyYOHjyYao8fPz5mzpwZ9913X1bjALnTH/OSOYmhJy+efHJZNDe/3aE/\nPwoKRkZ+/qjf/+/IKCgYGQUFo1K/t/1v53b749PPT/8sL6/QjfMcqaioiGnTpsUrr7wSERGHDh2K\nRx55JN75zndmPMaR5q7LL7+812PMmTMnxowZk/H5AGRGSAMA9I1nnon4t3+LWLs24vHHI3bv/sNn\n48ZF/PEfR8yfH/GhD0XMmpVcncSmTZti6dKl8eqrr3b6rLCwMKZNmxZjxoyJhoaG2LVrV7z66qtd\nvjVzpKd2q6qqOt0QveKKKzKur6ubn2vXro2GhoYoKirq1RhLly51Y4leeeSRiIULB8+4g1V/zkvm\nJIaSYcNGx4knfiK2bPlyh09aorm5Lpqb66KpqX+unZdXFPPnPxfFxdP65wKkqaqqSoU0EW3zSKYh\nzaFDh+LRRx/t1J9twNzx+KqqqqzOByAzQhoA4Og88EDEV74SsXLlkY/ZvTviN79p+/mnf4pYsiTi\ns5+NeM97clfnIHfrrbfG7NmzszpnypQpnfqampriwgsvTLsRmpeXF5dddll8/OMfjwULFsSwYel/\nItbV1cX69evjP//zP+O+++6Ll19+udvrLl26NK2dzQ2BHTt2dLkU0cGDB2Pt2rWxZMmSjMY50k2F\nj3zkI7F48eKMxrjmmmvi6aefTrWvu+66eNe73pXRuZMmTcroOAa2m26KuPnmiFtvjbjmmr4b9+tf\nj7j22ogbb2y7xrGuv+clc5I5aag58cSrY+vW26K1tTGn15048cMCmhxaunRpLF++PNXOZu56/PHH\no66urlN/bW1tbN26NSoqKjIa50hz1z/8wz/Ehz/84YzG+PCHPxzbt29PtXvzNy3AUCekAQB6Z+fO\niL/7u7a3Z7K1cmXbz4c+FPGNb0SMH9/39Q0xc+fOjWXLlh31OHfffXds3Lgx1R4xYkT87Gc/i/d0\nE5iVlJREVVVVVFVVxZe//OWoqamJf/7nf46CgoIuj1+wYEEUFhZGY2PbzaMtW7ZEbW1tVFZW9lhf\n+5sBhYWFcfLJJ8eGDRsiom3JjUxuiHb19OjhmwrTp0+P6dOn9zhGRMS4cePS2jNmzIjzzz8/o3MZ\n/A4HNBFtgUpE3wQ1hwOaiD+Mf6wHNf09L5mTGGqKiibFpEkfjddfvydn18zLK4zKys/n7Hp0fmtl\nzZo1Gb/B137uKi8vj4aGhnjzzTcjom3uyiRgeeONN+LFF19MtfPy8lJz3owZM2LGjBkZ/TtGjBiR\n1u6rv2kBhpL8pAsAAAahp5+OOOOM3gU07f3oR23jPPNM39RFj77//e+ntW+88cZub4R2paqqKu6/\n//648MILu/y8uLg45s+fn9aX6dOf7Y+bN29e2lPimY7R8enRsWPHxhlnnJHRuRDRthTZ4QDlsGuv\nbQtYjkb7gOawm29uu96xrL/nJXMSQ1FFxTURkbsl8yZP/niMGNH5DV36z/Tp06O8vDzVbmhoiDVr\n1mR0bvv5aenSpWlv7PVm/ouIOP300+O4447L6FwAsiOkAQCy8/TTEcuWRbz2Wt+M99prEVVVgpoc\n2LVrV6xfvz7Vzs/Pz2pfhmz0dnmhjjcV2j+l/uijj8ahQ4eyGiMiYsmSJZGf789eMrdwYdsSZx0d\nTVDTVUAT0XadY3lvmlzNS+YkhpqRI0+JsrKLc3Kt/PzimDLl+pxci3S9mbtaW1vjd7/7XdoY7eeu\n3oY09qMB6D/+MgQAMrdzZ8S73922x0xf2r074k//tG18+k3HDbnLyspifD8tNdfxi3wmNwT27NkT\nz7QL65YsWZL25GddXV08/vjjPY7jpgJ94Zpr+i6o6S6g6cu9bgajXM1L5iSGooqKf8jJdcrLr46i\nIvsaJaE3c9czzzwTu9v9rb5kyZK0kOb5559P2yPmSMxdALkjpAEAMvd3f9d3b9B09NprEVdd1T9j\nExER+/btS2s3Nzf327UWLlyYttH3iy++GK+//nq356xcuTJaWloiou1p+kWLFsWECRPi1FNPTR1T\nU1PT7RgtLS1pT49GuKlA7/VFUCOg6V6u5iVzEkPRmDELYsyYnvdFOhoFBaOjouK6fr0GR9Zxvnjk\nkUd6fIOv/bxUVlYWp512Wpx55plRUlKS6u8p7Nm1a1c8++yzaX0d3+oBoO8IaQCAzDzwwNHvQdOT\nH/2o7Tr0i7Fjx6a1d+7cGS+99FK/XKukpCTmzp2b1tfTDYH2n59xxhkxZsyYiIislujo+PRoaWlp\nnHnmmRnXDR0dTVAjoOlZruYlcxJDVX+/TVNRcW0MH24fkqSccsopMXHixFS7vr4+bYnIrrSflxYv\nXhx5eXlRUFAQ55xzTpfHdGXlypXR2tqaas+YMSMmTJiQbfkAZEhIAwBk5itfyc11vvrV3FznGDR9\n+vQYMWJEWt9nPvOZtC/hfSnbddQ77v1wWPvlhX73u9+lnmzvaYzD5xYUFGRULxxJb4IaAU1mcjkv\nmZMYisaPf0+MHDmjX8YePrwsyss/1S9jk7ls566VK1d2eW77uSub+S/CG4AA/U1IAwD07JlnItp9\n4etXK1ZEdFhegb4xYsSIOO+889L6fv7zn8d5550Xq1at6vPrdfxC392yQPX19Wl7O7S/qdD+qfU9\ne/bE008/fcRx3FSgv2QT1AhoMpfLecmcxFCUl5cfU6b0z9s0U6Z8NoYNK+2XsclcNnNXx/1mjjR3\ndXzLryNzF0BuDev5EAAgcYcORWzbltz17747t9e7666I6xJY/7y8PGLYwPzzaP369T2uQd7e3Llz\nY9y4cZ36P/vZz8YDHZaUe+ihh2Lx4sUxderUeNe73hXnnHNOzJ8/P0477bTIz+/9Mz2LFy+O/Pz8\n1FPmGzdujJ07d3a5KXjHNdbb30iYNm1anHjiiakNxlesWBFz5szp8porO4SJbioMTklPeUdyySUR\nu3ZF3HJLev+117b1X3FFxD33dP48IuL669vOr63NSakZGShTXq7mJXMSfa2l5VA0NCQ/WZWWnhPD\nh0+KpqY3+mzM4cMnxnHHXRAHDtT22Zi9VVRUHvn5A2Cy6iDbv83aO3jwYMbHdpw3Vq1aFS0tLV3O\nhe3DldLS0rS56eyzz47hw4dHU1NTtLa2xsqVK+N973tfpzHq6uriiSee6LYGAPrWwPuvHADQ2bZt\nEdOmJV1F7tx5Z9tPrr3ySkRlZe6vm4Fru3osvxsPPfRQLFu2rFP/4sWL44YbbogvfOELnT7bvHlz\n3HPPPXHPPfdERNseDvPnz49ly5bFu9/97pg3b15WNYwZMyZmz56d+qJ/+IbAxRdf3OnY9jcVTjnl\nlDj++OPTPl+yZEn8+Mc/Th171VVXdRqj49Ojo0aNyrpmBobBOOXdckvX4UymnydhoEx5uZqXzEn0\ntYaGbbFmzSCbrDLU1LQ9HnvstKTLiIiIs89+JYqLK5Muo5Ns/zbrrZkzZ8b48eNj586dEfGHN/i6\nCofbz10LFy5MW15x5MiRMXfu3Fi9enXq2K5CmlWrVkVzc3Oq/Y53vCMmTZrUZ/8eADqz3BkAwDHm\nH//xH+P222/vtA9ER3V1dfHb3/42Pv/5z8dZZ50Vs2bNiu9+97vd7r/QUccnL4+0Bnr7/vZPrHfV\n1/HJ9CONvXDhwhg2EF4TAHqUq3nJnAQMNnl5eZ3mob6YuzIZI8JbNAC5IKSBLC1fvjyWLVvW6ae6\nujrp0gAgY1dddVW8+OKL8clPfjLGjBmT0TkbNmyIyy+/PObPnx+bN2/O6JxM1lFvaGiItWvXptod\nN8iNSL+psGPHjnjuuec6HeOmAgxuuZiXzEnAYJTJ3LV58+bYsmVLqt3T3PX4449HXV1dp2PMXQC5\nJ6SBLNXW1kZNTU2nn3Xr1iVdGgBD2EMPPRStra0Z/3S11FlH5eXl8c1vfjO2b98ev/rVr+LTn/50\nzJs3LwoLC7s9b/369TF//vx4+eWXe7zGkiVLIi8vL9V+6qmnYu/evWnHrFmzJm1t9q6e/Jw1a1ba\nHjtdPf3ppgIMfv09L5mTgL6S7d9m7X+mTp2a1bU6zh9dvcHXPrgpKiqK+fPndzpm0aJFqTmwubk5\nVq1alfb5wYMH00Lqrq4NQN8T0kCWKisro6qqqtOP9aUBGKyKioriwgsvjNtuuy0ee+yx2LdvX6xb\nty5uv/32uPDCC7u8Obpjx4645JJL0tYs78r48eNj5syZqXZXNwTa38isqKiIyi42ycjLy4tFixZ1\neU5E20MU7Z8eLS4u7vLmBDA49Ne8ZE4CBqPZs2envWH45ptvdnqDr/08NH/+/CgqKuo0znHHHZc2\nB3acu1avXh2NjY2p9vTp06O8vPyo6wege0IayFJ1dXU8/PDDnX6WL1+edGkA0CcKCwtj7ty5cdVV\nV8WvfvWreO211+K6665L23w2ou0J9MMbZ3enpyU6elo/vavPOt5U6NhesGBBj0/eA4NHX85L5iRg\nsMnPz4/Fixen9fXF3NXdGBHeogHIFbsWAsBgUF4e8coryV3/wx+O6PCkcb9atCjiBz/I3fUO86Rg\nl8aPHx9f/epXY+nSpXHxxRenPaX+gx/8IC677LJuz6+qqopvfvObqXb7GwCHDh2KRx99NNXuav30\nw9rfVNi2bVts2rQppk+f3mnMw9dk8Ep6yuvJPfdE3HJL5/6JEyO2b+/cf/31EVdc0f91ZWswT3lH\nMy+Zk+grRUXlcfbZA2+yeuGFK2P37v8v6/NOOeW7MXbsuf1Q0dEpKhrEk1UfqqqqigceeCDVXrFi\nRVx55ZUREfHGG2/Eiy++mPqsp7nrrrvuioiIxx57LA4ePBgjRoxIjdnxmgD0PyENAAwGw4ZFdLHc\nSs4sXZrbkKaqKtl/L11673vfGx/96Efju9/9bqrvd7/7XY/ndbxRsG7dujhw4EAUFxd32rS2uyc/\n586dG8XFxXHgwIGIaLuR4Ibo0JT0lNedr3+964Dm1lsjrrmm7fNrr03/7JZbIo47ru1z+lZv5iVz\nEn0lP39YFBdXJl1GJ5WVN2Ud0owevTAmTapO27OJgaXj3NV+X5r2c05BQUEsXLjwiOO0n9caGxtj\n9erVsWzZsmhqaorVq1enHWvuAsgNy50BAD37y78c2tcjY5deemlau66uLt5+++1uz5k4cWKccsop\nqXZTU1PqSfX2NxXKyspixowZRxynsLAwzj777FT78Lkdnx4tKiqKBQsWZPCvgex0FcBE/CGgiWj7\n31tv7XzMtde2nU/fy3ZeMicx1I0ZsyDGjDlywNiV6dNvEdAMcHPnzo2SkpJU+/AbfBHpc9ecOXOi\ntLT0iOOUl5en7bV1+Nz169dHfX19qn/KlCld7skFQN8T0gAAPTv99IhunibuU0uXRsyalZtrkbWu\nvqzv37+/x/OOtAdEpuund3VMV2NEtG2We3jZDugrmQQ0hwlqcqs385I5iaGuouIfMj523Lh3xtix\n3pgY6IYNG9bpDZmu5p3uljo7LJO5y1s0ALkjpAEAMvOZzwyt69Ar7Z+wPGz8+PE9ntfxi/6KFSui\npaUlbVmibG+Ibtq0KV599VU3Feh32QQ0hwlqcqc385I5iaFu/Pj3xMiRR34TrL1p077Yz9XQV7qa\nu3bt2hXPPvtsqi/buWv16tXR1NRk7gJIkJAGAMjMBRf0/zJkH/pQxHve07/X4Kg89thjae1JkyZF\nYWFhj+d1fKpzzZo1sX79+ti9e/cRj+nKOeecEwUFBan2ihUrUk+AHuamAn2pNwHNYYKa3OjNvGRO\nYqjLy8uPiorrejxu/PiLYvTo+TmoiL7QcV5asWJFrFy5MlpbW1N92YY0+/fvjzVr1nTaz8vcBZA7\nQhoAIHN33BExeXL/jD15csQ3vtE/YxMREW+99Vb86Ec/ipaWll6d39jYGHfccUda3//4H/8jo3PL\ny8tTG2pHRBw4cCBubXf3urS0NObMmdPjOCUlJXHmmWem2r/4xS9iw4YNqfbw4cO73SwXsnE0Ac1h\ngpruJTUvmZM4Fkyc+KEoLOzu77a8mDbtCzmrh6M3f/78KC4uTrU3bdoUP/rRj1Lt0047LcrKynoc\n59RTT40JEyak2nfccUfaXl6TJ0+Ok046qY+qBqAnQhoAIHPjx0f8139FjBvXt+OOG9c2bgbLZtF7\ndXV1cdlll8Xpp58eP/jBD+LAgQMZn3vw4MH48Ic/nHbzMSLiIx/5SMZjdHwi87777kv9vnDhwrSn\n0bvT/unPn/3sZ2lPj86bNy9GjhyZcU1wJH0R0BwmqDmyJOclcxJDXX5+YZSXf/qInx9//F9EScnp\nOayIo1VYWBgLFixI62s/d2XyBuBhixcv7nKMCG/RAOSakAYAyM7pp0fU1PTdGzWTJ7eNd7qbBLmy\ncePG+Ku/+quYNGlSXHHFFXHvvffG66+/3uWxr732Wtx5551x2mmnxb333pv22Z//+Z/Hn/zJn2R8\n3Y43Dto/OZ/J0hxdHdvx6Xs3FegLjzzSdwHNYd0FNY880rsxh5Ik5iVzEseCyZP/NgoKxnTxSUFU\nVt6c83o4euYugKFnWNIFAACD0OmnRzz9dMRVV0W0W2Ihax/6UNsSZ96gScTevXvj29/+dnz729+O\niLaNtsvKymLs2LFx8ODBeP3112PHjh1dnnv22WfH9773vayu190X/t4++ZnNNSBTCxdG3HhjxM3t\n7l8eTUBz2OHz2wdAN97Ydj3a5HJeMidxLBg2bHSceOInYsuWL6f1n3DCx2LkyJMTqoqj0VdzV3eB\njrkLILe8SQMA9M748RE//GHEv/97RBZfCCOi7fgHHmg7X0CTMyUlJTF79uwjfr5z5854/vnnY82a\nNfHUU091eSM0Pz8/rrzyyvj1r38do0ePzur606ZNi4qKik79RUVFMX9+5psWT5gwIU499dRO/QUF\nBbFo0aKsaoIjuemmtgAlom8CmsPav1Fz441t1zmWJTkvmZM4Vpx44lWRl1eYauflFcbUqTckWBFH\nY8GCBVFYWNipf+rUqV3OaUdy5plnRklJSaf+iRMndjmnAdB/hDQAwNG54IK25cqeeSbi+usjzj+/\n854148a19V9/fdtxNTUR73lPMvUew8rKyuLJJ5+Ml19+OW677ba48MILY1yG+wudcMIJcfXVV8eT\nTz4Zd911V5SWlvaqhq6ezJw/f34UFRVlNU5XT3+eeeaZva4LunLTTRGrVvVdQHPYNde0jXusBzQR\nyc9L5iSOBUVFJ8SkSX/Yq2ny5CtjxIgpCVbE0SguLu4ySM7mLZqItiD5nHPO6dSfzZJpAPSNvNb2\nuxoCvbZhw4aYNWtWqv3ss8/GzJkzE6wIGEgOHToUL774YlrfySefHMOGDdGVR1tbI+rqIhoaIoqK\nIkpKIvLykq6KLrS2tsbmzZvjhRdeiC1btsTbb78dBw4ciJEjR0ZpaWlMnjw5Zs+eHeXl5UmXChwj\nzEvQ9/bvfz7Wrj0t8vOLY8GCTVFYODHpkqBfHXPfv4CsDaR7uWYmAKDv5eVFlJa2/TCg5eXlRWVl\nZVRWViZdCkBEmJegP4wceUqUlV0UI0eeKqABgAFGSAMAAAAwxE2dekOMGFGZdBkAQAdCGgAAAIAh\nrrT0j5MuAQDoQn7SBQAAAAAAAByLhDQAAAAAAAAJENIAAAAAAAAkQEgDAAAAAACQACENAAAAAABA\nAoQ0AAAAAAAACRDSAAAAAAAAJEBIAwAAAAAAkAAhDQAAAAAAQAKENAAAAAAAAAkYlnQBMNgsX748\nli9f3qm/vr4+98UAAAAAADBoCWkgS7W1tVFTU5N0GQAAAAAADHJCGshSZWVlVFVVdeqvr6+PdevW\nJVARAAAAAACDkZAGslRdXR3V1dWd+jds2BCzZs3KfUEAAAAAAAxK+UkXAAAAAAAAcCwS0gAAAAAA\nACRASAMAAAAAAJAAIQ0AAAAAAEAChDQAAAAAAAAJENIAAAAAAAAkQEgDAAAAAACQACENAAAAAABA\nAoQ0AAAAAAAACRDSAAAAAAAAJEBIAwAAAAAAkAAhDQAAAAAAQAKGJV0AAAAA9GT79u3x1FNPxebN\nm2PPnj3R0NAQJSUlMXbs2JgwYULMnj07ysvLky4TAACyIqQBAABgQHrxxRfjnnvuiV/84hfx0ksv\n9Xj8hAkTYunSpfHBD34w3vve90ZxcXGXx61cuTKWLl2aap9wwgnx2muvZVXbFVdcEd/+9rfT+h58\n8ME477zzMh6jpqYmli1blmqXlZXFjh074txzz42ampqs6snW1KlTo7a2tl+vAQBAzyx3BgAwAFVW\nVkZeXt5R/XzqU5+K2traox4nk5+bbrop6f/LgCHk1VdfjcsuuyxOPfXU+NrXvpZRQBMR8eabb8bP\nfvazuPTSS2PixIlxww03xJ49ezodN3/+/BgxYkSq/frrr8eLL76YVY1dhSgrVqw4qjGWLl0aeXl5\nWY0BAMDoJRegAAAgAElEQVTg5k0aAACA32tpbYmd+3fm/LrjR46P/DzP0EVEPPDAA/GRj3wkdu3a\n1eXno0aNirKysigrK4uGhobYvn177Ny5M1paWtKO27dvX3zxi1+Mf/mXf4nNmzfH6NGjU58VFRXF\nggUL4uGHH071rVixIk4++eSManzjjTe6DHWyDWk6Hl9VVZXV+QAADH5CGgAAgN/buX9nHH/r8Tm/\n7o5rd8SEURNyft2B5l//9V/jYx/7WDQ3N6f1z5w5M/7mb/4mzjvvvDj99NM7ndfY2BgrVqyI//zP\n/4yf/exnsXnz5tRne/bsicbGxk7nLF26tFNIc/nll2dU55HCmDVr1kRjY2MUFhb2OEZTU1OsXr06\nre9wSPP1r389du/enVEt73znO9PaP/jBD2LixIk9nnekpeAAAMgtIQ0A0Kd2NTXFBzduTOv7yYwZ\ncdzw4QlVNDTceuutMXv27KzOmTJlSkyaNCl+/etfZ3T8f//3f8fXvva1VPuMM86Ir3/96xmdO336\n9KxqA+ho7dq1cfnll6cFNGPHjo1vfOMbcdlll0V+/pHfNCosLIzzzz8/zj///Pjyl78cy5cvjy99\n6UtpYU1HHd9ayWYPmPYhzezZs+OZZ56JlpaWOHDgQKxduzYWL17c4xjr16+P+vr6VHvcuHGpAGru\n3LkZ19LRokWLorKystfnAwCQW0IaAKBP/XjHjniww9O/P9mxIz5x4okJVTQ0zJ07N21z6Wycf/75\nGR23bdu2tPa4ceMyPhfgaOzatSsuvfTSaGpqSvWVl5fHf/3Xf8XMmTOzGmv48OFxxRVXxEc+8pH4\n9Kc/HXfddVeXx51zzjlRWFiYestm8+bNsXXr1qioqOjxGu1DmgsuuCDy8/PjiSeeSH2WSUjT8W2c\nJUuWdBtEAQAwNPkLEADoU8vfeCOjPgA47Kabbkp762X48OHxq1/9KuuApr2ioqK4884747777uty\n+bHi4uKYN29eWl8mb9Ps3r07nn322VR76dKlsWTJklQ7031p7EcDAECEkAYA6EMb6uvjsX37OvWv\n3bcvNrZb0gUADtu5c2d85zvfSeu7/vrr48wzz+yT8S+55JIYPXp0l591DEYyCVhWrlwZra2tERFR\nUFAQCxcuTAtpHnnkkU576nTU0tISq1at6rYWAACODUIaAKDPfL+bN2a6+wyAY9ddd90V+/fvT7VH\njhwZn/70p3Ny7d7sS9P+mDlz5kRpaWlaSLNv3754/PHHux3jqaeeij179qTao0ePjjlz5mRaNgAA\nQ4iQBgDoE4daWuJft28/4uf/un17HGppyWFFAAwGv/zlL9PaH/jAB2LMmDE5ufaiRYti2LA/bNX6\nwgsvxPZu/lsWkf62zeFwZuLEiXHyySd3eUxPY0RELF68OAoKCjKuGwCAoUNIAwBkpLW1Nd5sbDzi\nz8/feive+P3my115vbExfvHWW92OcXj5GACODXV1dfHEE0+k9V1wwQU5u35JSUmnZdW6C1g61rt0\n6dLU74sXL85ojK4+t9QZAMCxa1jPhwAARDxVVxdnrl9/VGNcunFjt58/OW9ezC4pOaprADB4PPro\no532b5k3b15Oa6iqqorHHnss1a6pqYkPfOADXR67atWqtHrbL3O2ZMmS+N73vhcRf9i3Ji8vr8tx\nVq5c2akGAACOTd6kAQAy8vO33ur/a7z5Zr9fA4CB44UXXkhrjx49OqZNm5bTGjoGJN29BdP+s9NO\nOy3KyspS7faBze7du+OZZ57pcoznnnsu3mz337uSkpKYO3du1nUDADA0eJMGAAaBQy0tsa2hIdEa\nfrJjR06u8bFJk/r9OkdSXlQUw/IH5jMs69evj0OHDmV8/Ny5c2PcuHH9WBH0n0Mth2Lb3m2JXHvn\n/p2JXHfL21uivqk+p9csH10ew/KT/Uq4a9eutHb70CNXFi9eHPn5+dHy+33Tnn322di9e3eXc2j7\nkKb9UmcRESeddFJMmjQp3njjjdSxZ5xxRrdjREQsXLgwbV8cAACOLf4SBIBBYFtDQ0xbsybpMvrd\n8wcOJPrvfOXss6OyuDix63fn2muvzer4hx56KJYtW9Y/xUA/27Z3W0y7PbdvUyRt3j25XeIrIuKV\nq1+JyrGVOb9uex1DmjFjxmR1/ooVK6Kxm/3QDisuLo5FixZ1+dnYsWPjjDPOiCeffDIi2vZgW7ly\nZbzvfe9LO+7gwYNpy6K1f3Omfd+9996bqu1//s//2WXN7VnqDADg2CakAQAAIBH79u1La48aNSqr\n8//8z/88du7s+e2nqVOnRm1t7RE/r6qqSoU0EW370nQMadasWRMN7d5q7fgmTUTnkKYrQhoAANob\nmOt5AAAAMOSVlpamtevrc7vk22GZ7EtTU1OT+n3q1KlRUVHR6Zj2b9ds3749nn/++bTPN23aFNu2\n/WEpv+Li4jjrrLN6XTcAAIOfkAYAYBB46KGHorW1NeMfS50Bg8Fxxx2X1n777bcTqWPJkiWRl5eX\naj/xxBOd3vLpbj+aw84444y0Jds6hj0d2+ecc04UFhb2um4AAAY/IQ0AAACJ6BjSZLJ0WXtvvfVW\nl0H1Qw89lNU4ZWVlMWPGjFS7ubk5Vq1alWo3NTXF6tWrU+2u9qOJiMjPz4+FCxem2u3fvomw1BkA\nAJ0JaQAAAEjEO97xjrT222+/3e3eMf2puyXP1q9fn7YU25HepIlID3BWrlx5xDG7uiYAAMeeYUkX\nAAD0rLyoKF45++yky+jkiuefjwf37OnVue8cNy6+1eHmXNLKi4qSLgGIiPLR5fHK1a8kcu2d+3fG\nvHvm5fy6665YF+NHjs/pNctHl+f0el0555xzoqCgIJqbm1N969ati8rKypzXsnTp0rjzzjtT7faB\nSvvfjz/++DjllFOOOE77kGbLli1RW1sblZWV8dprr8XLL7+c+qyoqCjOHoD/bQcAILeENAAwCAzL\nz4/K4uKky0jT2toaTx3FBs9P1dXF1BEj0vYAAIiIGJY/LCrHViZy7VHDRyVy3SljpsSEURMSuXaS\nSkpK4swzz4x169al+v7jP/4j3v/+9+e8lo5vtTz22GNx4MCBKC4uTgtpjrTU2WFnnXVWFBUVRUND\nQ0S0BTyVlZWd3qI5++yzY8SIEX1UPQAAg5XlzgCAXtl08GC82dTU6/N3NDXFKwcP9mFFAAxGF110\nUVr7pz/9aezduzfndUyaNClt+bXGxsZYvXp1tLS0pO1P091SZxFtb8jMnz8/1T68L42lzgAA6IqQ\nBgDolUfffvvox0jgJhwAA8snPvGJGDlyZKpdX18ft99+eyK1dLUvzdNPPx172i3t2dObNB2PORzO\nCGkAAOiKkAYA6JWeApbpI0bEtB6WcemLoAeAwW38+PHx13/912l9X/ziF+Ppp5/OeS0d35JZsWJF\n6k2YiIgxY8bE7NmzexynfUjz0ksvxTPPPBMbN25M9Q0fPjzOOeecPqgYAIDBTkgDAPRKdyHNRyZO\njCfmzYsn582Lv5o4sVdjAHDsuOmmm6KioiLVbmxsjPe9733xf//v/81pHR3fbnn00UfjN7/5Taq9\ncOHCyM/v+Wt0x+O++MUvRmtra6p91llnpb09BADAsWtY0gXAYLN8+fJYvnx5p/76o9g8G2CwaW1t\njf3NzZ36xxQUxN3veEf8Rbtg5v897bR493HHxZUvvBB7O5xT39wcra2tkZeX1+81AzBwjR8/Pn7y\nk59EVVVVNP1+v7PNmzfHokWL4pvf/GZ88IMfzOq/FS+88EKv6qioqIhp06bFK6+8EhERBw4ciAce\neCD1eU/70Rw2evTomD17djzxxBMREXHfffelfW6pMwAADvMmDWSptrY2ampqOv2sW7cu6dIAciYv\nLy/Wz5sXV594Yhy+ZbZ4zJh46qyz0gKaw/5y4sR4at68WDR6dNv5EfGp8vJYP2+egAaAiIg455xz\n4lvf+lbaGyi7du2Kv/zLv4wzzzwz7rjjjnjuuee6PLe1tTVeeeWVuPvuu2Px4sXx8Y9/vNd1dAxi\nWlpaUr9nsh9NV8e2HyNCSAMAwB94kwayVFlZ2eWXqvr6ekENcEwZVVAQ/8/JJ8f7J0yIR/fujU+X\nl8ewbpaAqSwujofnzInbtm2LhaNHx+KxY3NYLQCDQXV1dYwbNy6qq6tjz549qf6nnnoqrrrqqoiI\nKCkpiQkTJkRZWVm0trbGvn37Ytu2bUd8s72srCw+//nPZ1xDVVVVfP/73+/UP2LEiDjrrLMyHmfJ\nkiXxjW98o1P/sGHDYtGiRRmPAwDA0CakgSxVV1dHdXV1p/4NGzbErFmzcl8QQMIWjx2bceAyLD8/\n/mHKlH6uCIDB7KKLLoqnn346rrvuuvjpT3+atpdLRERdXV3U1dWlliQ7knHjxsXll18en/vc52Js\nFg8GHOktl7PPPjsKCwszHudIb9388R//cZSUlGQ8DgAAQ5vlzgAAABhQKioq4sc//nE899xzcc01\n18T06dMzOm/ixIlx8cUXx49//ON4/fXX42tf+1pWAU1ExPTp06O8vLxTf6b70bSv5eSTTz7qcQAA\nGNq8SQMAAMCAdMopp8Stt94at956a7z++uvx9NNPx+bNm2P37t3R2NgYpaWlMW7cuBg/fnycfvrp\nMXXq1D657tatW/tknBdeeKFPxulOxzeNAAAYXIQ0AAADUG1tbc6veaQlPeFYMn7k+Nhx7Y5Erkv3\nTjjhhDjhhBOSLgMAAPqUkAYAAOD38vPyY8KoCUmXAQAAHCPsSQMAAAAAAJAAIQ0AAAAAAEAChDQA\nAAAAAAAJENIAAAAAAAAkQEgDAAAAAACQACENAAAAAABAAoQ0AAAAAAAACRDSAAAAAAAAJEBIAwAA\nAAAAkAAhDQAAAAAAQAKENAAAAAAAAAkQ0gAAAAAAACRASAMAAAAAAJAAIQ0AAAAAAEAChDQAAAAA\nAAAJENIAQA7k5eV16mtpaUmgEgAAgKGtq+9a+flugwIDk9kJAHKgqy8ETU1NCVQCAAAwtHX8rpWX\nl9flg3MAA4GQBgByIC8vLwoLC9P69u7dm1A1AAAAQ1fH71rDhw8X0gADlpAGAHJkzJgxae29e/fG\noUOHEqoGAABg6Dl06FCnkKbjdzGAgURIAwA50vGLQUtLS2zevDkaGxsTqggAAGDoaGxsjM2bN3fa\nk0ZIAwxkw5IuAACOFcOHD49Ro0ZFfX19qq+xsTE2bdoUI0eOjJKSkhg5cmQUFBR4FR8AAKAHra2t\n0dzcHPv374+6urrYv39/tLa2ph0zatSoGD58eEIVAvRMSAMAOTRx4sTYsmVL2jJnra2tUV9fnxbe\nAAAAcHSGDx8eEydOTLoMgG5Z7gwAcqioqCgqKyujqKgo6VIAAACGrKKiopg6darvXsCAJ6QBgBwb\nPnx4TJ06NUpLS5MuBQAAYMgpLS2NqVOnWuYMGBQsdwYACSgoKIjy8vJobm6O+vr6qKuri7q6umhu\nbk66NAAAgEGloKAgSkpKoqSkJEaNGhUFBQVJlwSQMSENACSooKAgRo8eHaNHj46Itv1pWlpaOm12\nCQAAQLq8vLzIz8+PvLy8pEsB6DUhDQAMIHl5eZ76AgAAADhG2JMGAAAAAAAgAUIaAAAAAACABAhp\nAAAAAAAAEiCkAQAAAAAASICQBgAAAAAAIAFCGgAAAAAAgAQIaQAAAAAAABIgpAEAAAAAAEiAkAYA\nAAAAACABQhoAAAAAAIAECGkAAAAAAAASIKQBAAAAAABIgJAGAAAAAAAgAUIaAAAAAACABAhpAAAA\nAAAAEiCkAQAAAAAASICQBgAAAAAAIAFCGgAAAAAAgAQIaQAAAAAAABIgpGHQ2LNnT9xyyy1x1lln\nxfjx42PkyJFx0kknxRVXXBHr169PujwAAAAAAMjKsKQLgEysXbs2Lrnkkti2bVta/8svvxwvv/xy\nfO9734sbb7wxbrjhhoQqBAAAAACA7HiThgFv06ZNccEFF8S2bdsiLy8vPv7xj8eDDz4Yq1evjttv\nvz1OOOGEaG5ujs9//vNxxx13JF0uAAAAAABkxJs0DHh///d/H2+99VZERNx9993xt3/7t6nPzj77\n7PizP/uzmDt3brz55pvx2c9+Ni655JKYPHlyUuUCAAAAAEBGvEnDgLZx48b45S9/GRERixcvTgto\nDquoqIhbbrklIiL2798ft99+e05rBAAAAACA3vAmDX3u5ZdfjrVr18a2bduisbExxo0bF6eeemos\nXLgwRowYkdVY9913X+r3K6644ojHXXbZZXH11VfH/v3747777ouvfOUrva4fAAAAAAByQUgzxL36\n6quxdu3aWLNmTaxduzbWrVsX+/btS30+derUqK2t7ZNr3X///fGFL3whHn/88S4/Lykpierq6rjx\nxhujrKwsozFrampSv//Jn/zJEY8rLi6OBQsWxG9/+9vYtGlTbN26NSoqKrL7BwAAAAAAQA4JaYag\nVatWxde//vVYs2ZNvPbaa/1+vYaGhrj88svjhz/8YbfH1dXVxb/8y7/ET37yk7jvvvti6dKlPY69\nYcOGiIgYPXp0lJeXd3vsjBkz4re//W1EtC2TJqQBAAAAAGAgsyfNEPTYY4/FL37xi5wENC0tLfHB\nD36wU0BTUFAQ06ZNizlz5sSYMWPSPnvzzTfj3e9+dzz66KPdjt3Q0BDbt2+PiMgocGl/zObNmzP9\nJwAAAAAAQCKENMeYkpKSPh3va1/7Wvzyl79M67vyyitjy5YtsWnTpnjiiSdi165d8fOf/zymTJmS\nOmb//v1x6aWXxttvv33Esdsvy5ZJ3aWlpV2eCwAAAAAAA5GQZggrLS2NZcuWxXXXXRf33ntv1NbW\nxv/5P/+nz8bfuXNnfOlLX0rr+6d/+qe46667YvLkyam+/Pz8+LM/+7N45JFHorKyMtW/bdu2uO22\n2444/oEDB1K/FxYW9lhPUVFRl+cCAAAAAMBAZE+aIejCCy+Md73rXXHqqadGfn56DvfKK6/02XW+\n+tWvpr2xsnTp0vjMZz5zxONPPPHE+Pa3vx3nn39+qu+f//mf46qrrorx48d3Or64uDj1e2NjY4/1\nNDQ0dHkuAAAAAAAMRN6kGYL+6I/+KGbMmNEpoOlLLS0t8b3vfS+t76abboq8vLxuzzvvvPNiyZIl\nqfa+ffvipz/9aZfHtl++rK6ursea2h/T/lwAAAAAABiIhDT0yiOPPBJvvvlmqj19+vRYtmxZRude\nfvnlae3777+/y+OKiori+OOPj4iIrVu39jjuli1bUr+33/8GAAAAAAAGIiENvfLAAw+ktd/5znf2\n+BZN+2Pbe/jhh6O+vr7LY2fOnBkREXv37o1t27Z1O+7GjRs7nQcAAAAAAAOVkIZeefLJJ9PaCxcu\nzPjcyZMnR2VlZard2NiYFrC0V1VVlfr9oYceOuKYBw4ciNWrV0dExLRp06KioiLjegAAAAAAIAlC\nGnrlueeeS2vPmDEjq/M7Ht9xvMPe//73p36/5557jjjej370o9i/f3+ncwAAAAAAYKAS0pC1AwcO\npO3/EhFZv7nS8fjnn3++y+NmzpwZF154YURErFy5Mr71rW91Ombr1q1x/fXXR0REcXFxXH311VnV\nAgAAAAAASRiWdAEMPm+99Va0tram2sOHD4/jjz8+qzFOPPHEtPaOHTuOeOxtt90Wq1atil27dsWV\nV14ZTzzxRHzgAx+IkpKSWLt2bdxyyy2p82+55ZZOY/fGjh074s0338zqnJdeeumorwsAAAAAwLFD\nSEPW6urq0tojR46MvLy8rMYYNWpUt2O2d9JJJ8UDDzwQl1xySbz22mtx9913x9133512TH5+ftxw\nww3xqU99Kqs6juTOO++Mm2++uU/GAgAAAACArghpyFrHQGXEiBFZj1FcXNztmB0tWLAgNmzYEN/8\n5jfjF7/4Rbz88stx8ODBOOGEE+Lcc8+NT3ziEzFv3rys6wAAAAAAgKQIacjawYMH09qFhYVZj1FU\nVJTWPnDgQI/njB07Nj73uc/F5z73uayvBwAAAAAAA42Qhqx1fHOmsbEx6zEaGhq6HTNpn/zkJ+MD\nH/hAVue89NJLcfHFF/dTRQAAAAAADDVCGrJWUlKS1u74Zk0mOr4503HMpB1//PFx/PHHJ10GAAAA\nAABDWH7SBTD4dAxU9u/fH62trVmNUV9f3+2YAAAAAAAw1AlpyFpZWVnk5eWl2k1NTbFjx46sxnj1\n1VfT2t5aAQAAAADgWCOkIWvFxcUxZcqUtL4tW7ZkNUbH40899dSjrgsAAAAAAAYTIQ290jFU2bhx\nY1bnP/fcc92OBwAAAAAAQ52Qhl6ZM2dOWvuRRx7J+NzXX389amtrU+3hw4fHjBkz+qo0AAAAAAAY\nFIQ09Mp73/vetPaDDz4Yra2tGZ373//932ntc889N0pKSvqsNgAAAAAAGAyGJV0Ag9PChQujrKws\n3nrrrYiI2LRpUzz88MNx7rnn9njud77znbT2RRdd1C819pfly5fH8uXLO/XX19fnvhgAAAAAAAYt\nIQ29kp+fH9XV1XHrrbem+m6++eZYtmxZ5OXlHfG83/zmN7Fy5cpUu7S0NC699NJ+rbWv1dbWRk1N\nTdJlAAAAAAAwyAlp6LXPfOYzcffdd0ddXV1ERNTU1MRXvvKV+OxnP9vl8a+++mr8zd/8TVrf1Vdf\nHWVlZf1ea1+qrKyMqqqqTv319fWxbt26BCoCAAAAAGAwEtIMUatWrYoDBw506n/qqafS2gcPHowH\nH3ywyzEmT54cM2bMOOI1ysrK4vrrr4/rr78+1fe//tf/ii1btsT//t//OyZPnhwRES0tLfGrX/0q\nrr766tiyZUva+Ndcc01W/66BoLq6Oqqrqzv1b9iwIWbNmpX7ggAAAAAAGJTyWjPd7Z1BpbKyMjZv\n3nxUY3z0ox/tcu+V9lpaWuKiiy6Kf//3f0/rLygoiKlTp8aYMWPilVdeiT179qR9XlxcHL/+9a9j\n0aJFR1XjQNIxpHn22Wdj5syZCVYEAAAAAEBHA+lebn4iV2XIyM/Pj3vvvTf+4i/+Iq2/ubk5Nm3a\nFE888USngGb8+PHxH//xH0MqoAEAAAAAgGwJaThqI0aMiH/7t3+L++67L+bMmXPE40aNGhWf/OQn\nY+PGjbFs2bLcFQgAAAAAAAOQPWmGqNra2pxf85JLLolLLrkkXnrppVizZk28+uqr0djYGGPHjo3T\nTjstFi1aFCNGjMh5XQAAAAAAMBAJaehzJ510Upx00klJlwEAAAAAAAOa5c4AAAAAAAASIKQBAAAA\nAABIgJAGAAAAAAAgAfakgSwtX748li9f3qm/vr4+98UAAAAAADBoCWkgS7W1tVFTU5N0GQAAAAAA\nDHJCGshSZWVlVFVVdeqvr6+PdevWJVARAAAAAACDkZAGslRdXR3V1dWd+jds2BCzZs3KfUEAAAAA\nAAxK+UkXAAAAAAAAcCwS0gAAAAAAACRASAMAAAAAAJAAIQ0AAAAAAEAChDQAAAAAAAAJENIAAAAA\nAAAkQEgDAAAAAACQACENAAAAAABAAoQ0AAAAAAAACRDSAPD/s3fn0VHcd773P1W9SGpJLYEECAkJ\nAcJ4AS+YAF4wxKvwzf5M8iSejAfHcTKZMzeOx47HzmScGydOMnls38zMfXLujHkccjKZyc048Z07\nyUi2Y8fYxizGBsJuxG5bLBKgHfVS9fwhqZHQ1i1Vd1VL79c5HKTqqt/vV4kbUH36+/0BAAAAAAAA\ncAEhDQAAAAAAAAAAgAv8bi8AyDbr1q3TunXrBh3v6OjI/GIAAAAAAAAAAFmLkAZI0ZEjR7R+/Xq3\nlwEAAAAAAAAAyHKENECKqqurtXLlykHHOzo6tHXrVhdWBAAAAAAAAADIRoQ0QIrWrFmjNWvWDDq+\ne/duLVy4MPMLAgAAAAAAAABkJdPtBQAAAAAAAAAAAExGhDQAAAAAAAAAAAAuIKQBAAAAAAAAAABw\nASENAAAAAAAAAACACwhpAAAAAAAAAAAAXEBIAwAAAAAAAAAA4AJCGgAAAAAAAAAAABcQ0gAAAAAA\nAAAAALiAkAYAAAAAAAAAAMAFhDQAAAAAAAAAAAAuIKQBAAAAAAAAAABwASENAAAAAAAAAACAC/xu\nLwDINuvWrdO6desGHe/o6Mj8YgAAAAAAAAAAWYuQBkjRkSNHtH79ereXAQAAAAAAAADIcoQ0QIqq\nq6u1cuXKQcc7Ojq0detWF1YEAAAAAAAAAMhGhDRAitasWaM1a9YMOr57924tXLgw8wsCAAAAAAAA\nAGQl0+0FAAAAAAAAAAAATEaENAAAAAAAAAAAAC4gpAEAAAAAAAAAAHABIQ0AAAAAAAAAAIALCGkA\nAAAAAAAAAABcQEgDAAAAAAAAAADgAkIaAAAAAAAAAAAAFxDSAAAAAAAAAAAAuICQBgAAAAAAAAAA\nwAWENAAAAAAAAAAAAC4gpAEAAAAAAAAAAHABIQ0AAAAAAAAAAIALCGkAAAAAAAAAAABcQEgDAAAA\nAAAAAADgAkIaAAAAAAAAAAAAF/jdXgCQbdatW6d169YNOt7R0ZH5xQAAAAAAAAAAshYhDZCiI0eO\naP369W4vAwAAAAAAAACQ5QhpgBRVV1dr5cqVg453dHRo69atLqwIAAAAAAAAAJCNCGmAFK1Zs0Zr\n1qwZdHz37t1auHBh5hcEAAAAAAAAAMhKptsLAAAAAAAAAAAAmIwIaQAAAAAAAAAAAFxASAMAAAAA\nAAAAAOACQhoAAAAAAAAAAAAXENIAAAAAAAAAAAC4gJAGAAAAAAAAAADABYQ0AAAAAAAAAAAALiCk\nAQAAAAAAAAAAcAEhDQAAAAAAAAAAgAsIaQAAAAAAAAAAAFxASAMAAAAAAAAAAOACQhoAAAAAAAAA\nAAAXENIAAAAAAAAAAAC4gJAGAAAAAAAAAADABYQ0AAAAAAAAAAAALiCkAQAAAAAAAAAAcAEhDQAA\nAKYYv1UAACAASURBVAAAAAAAgAsIaQAAAAAAAAAAAFxASAMAAAAAAAAAAOACQhoAAAAAAAAAAAAX\n+N1eAJBt1q1bp3Xr1g063tHRkfnFAAAAAAAAAACyFiENkKIjR45o/fr1bi8DAAAAAAAAAJDlCGmA\nFFVXV2vlypWDjnd0dGjr1q0urAgAAAAAAAAAkI0IaYAUrVmzRmvWrBl0fPfu3Vq4cGHmFwQAAAAA\nAAAAyEqm2wsAAAAAAAAAAACYjAhpAAAAAAAAAAAAXEBIAwAAAAAAAAAA4AJCGgAAAAAAAAAAABcQ\n0gAAAAAAAAAAALiAkAYAAAAAAAAAAMAFhDQAAAAAAAAAAAAuIKQBAAAAAAAAAABwASENAAAAAAAA\nAACACwhpAAAAAAAAAAAAXEBIAwAAAAAAAAAA4AJCGgAAAAAAAAAAABcQ0gAAAAAAAAAAALiAkAYA\nAAAAAAAAAMAFhDQAAAAAAAAAAAAuIKQBAAAAAAAAAABwASENAAAAAAAAAACACwhpAAAAAAAAAAAA\nXEBIAwAAAAAAAAAA4AJCGgAAAAAAAAAAABcQ0gAAAAAAAAAAALiAkAYAAAAAAAAAAMAFfrcXAMBb\nYrEWdXUdls8XkmmG5PPly+cLyTCCMgzD7eUBAAAAAAAAwIRBSAPgIoa2b1+leLzlouNmb3CT3y/A\n6Qlx+r7uC3Uu/r7/+QOvH/gaQRAAAAAAAACAyYSQBsAAfn9YFRVf0bFjP7joFUvxeLvi8XZFo+mZ\n2zBytHTpXuXlzUnPBAAAAAAAAADgIexJA2CQior7ZRjBjM87Y8bnCWgAAAAAAAAATBpU0gApWrdu\nndatWzfoeEdHR+YXkyY5OWUqK/tTNTY+k7E5DSOo6urHMjYfAAAAAAAAALiNkAZI0ZEjR7R+/Xq3\nl5F2lZUPqrFxrSQ7I/OVl39ZublVGZkLAAAAAAAAALyAkAZIUXV1tVauXDnoeEdHh7Zu3erCitIj\nFFqg0tJPqKnp+bTPZZp5qqr6RtrnAQAAAAAAAAAvIaQBUrRmzRqtWbNm0PHdu3dr4cKFmV9QGlVW\nPpyRkGbWrPuVk1OW9nkAAAAAAAAAwEtMtxcAwLuKiparqGhFWufw+cKqrPx6WucAAAAAAAAAAC8i\npAEwosrKh9M8/kMKBKamdQ4AAAAAAAAA8CJCGgAjKim5U6HQ5WkZOxAo1axZX0vL2AAAAAAAAADg\ndYQ0AEZkGKaqqtJTTVNV9Yj8/sK0jA0AAAAAAAAAXkdIA2BU06d/TsFghaNjBoPlKi//c0fHBAAA\nAAAAAIBs4nd7AQC8zzSDqqx8QAcPPuTYmMFguRoavia/PyyfLyyfr7D368IhjoXl9xfKMHyOzQ/g\nglisRV1dh+XzhWSaIfl8+fL5QjKMoAzDcHt5AAAAAAAAExYhDYCkzJx5n44c+Y7i8RZHxmtv36r2\n9q0pXWOaoUSQ0xPcjBzq9D9n4Nf5MgwKCYELDG3fvmqI97fZG9zk9wtwekKcvq/7Qp2Lv+9//sDr\nB75GEAQAAAAAACYzQhoASfH7w6qo+IqOHfuBa2uwrE5FIp2SToxzJKM3rEku1BkpBDLNXB4wI+sN\n//62FI+3Kx5vVzSanrkNI0dLl+5VXt6c9EwAAAAAAADgYYQ0AJJWUfFVHT/+tGw74vZSxslWPN6q\neLxVkcj74xrJMPzjqOwZeMw0gw7dH5C6ior7XXl/z5jxeQIaAAAAAAAwaRHSAEhaTs5MlZXdrcbG\ntW4vxTNsO6ZY7KxisbPq7h7fWIaRM+YWbgPPZ/8epC4np0xlZX+qxsZnMjanYQRVXf1YxuYDAAAA\nAADwGkIaACmprHxIjY3/nyTb7aVMOLbdrWj0tKLR0+MeyzTzx9zCrf/5Pfv30M5tsqisfLA3hM3M\n+7u8/MvKza3KyFwAAAAAAABeREgDICWh0AKVln5CTU3Pp3xtWdm9ysmpUDzeqlisrff3VsXjA7+O\nxVolxZ1f/CRiWR2KRDrk1P4946vs6Wvnxv49Xjee93eqTDNPVVXfSPs8AAAAAAAAXkZIA2AQy7bU\n3Nk87OuF0+5L+SFuXsGHNHXW90Z8SF8SKpFpmLJtW5bVlQhskgl1evaYGXx+PN6W0jpxsQv794xX\nz/494wl6LpxvmgEH7g1Dqax8OCMhzaxZ9ysnpyzt8wAAAAAAAHgZIQ2AQZo7mzX9yekjnvOjq6Sr\nipMf88tvvKUdv50x4jmnHjqlafnTZBiGfL6QfL6QgsGRrxmNbVuKxzuSDnUGhkADj1lW57jWMtn1\n7N9zRrHYmXHv32OauWNu4Tbw/AL277lIUdFyFRWtUEvL62mbw+cLq7Ly62kbHwAAAAAAIFsQ0gAY\nk18cTz6keeuMtKMlvesZjmGY8vsL5fcXKienYlxjWVasN8BJJegZKhhqkW1HHbrDycmyzsuyzju4\nf8/4Knt6zp04+/dUVj6c1pCmsvIhBQJT0zY+AAAAAABAtiCkATAmm89IRzqk6vzRz332SNqXkxGm\n6ZdpTlEgMGXcY1lW95hbuF18vmSN/+YmsQv79zSOcySzN8AZW9DT/3zTzHE18CkpuVOh0OXq7Nzj\n+NiBQKlmzfqa4+MCAAAAAABkI0IaAGNiq6ea5pFLRz7vjSZpH9vCDGKaOQoGcySVjmucvv17xtrC\nbeDX/B81Ppbi8RbF4+MvGzOMwDhauPX/unBM+/cYhqmqqoe1b9+acd/LxaqqHpHfX+j4uAAAAAAA\nANmIkAbAmL18Srp3jjQtZ+jXLXviVNF4Vf/9e6TxbcLes39P+xhbuA0837K6nLnBScq2o4n9e8ar\nZ/+e1Ct7cnPnKRCYoWj0pAN31CMYLFd5+Z87Nh4AAAAAAEC2I6QBMGYxW3ruPekr84Z+/fenpMMd\nmV0Txq5n/56eB/jO7d8zthZu/c9h/57xubB/zym3l6LZs78pny/P7WUAAAAAAAB4BiENgHH5TaP0\nJ7Olgov+NInb0k+OurMmuM/5/XvG1sLt4mCI/XvcZOjo0e+rsfEZ+f1TFQiUJH75/SUKBKb2+7rv\neLEMw3R74QAAAAAAAGlDSANgXDrj0r9/IP1x1cDjdSek9+l4BQf07N8zTdK0cY3Ts39P55hbuPU/\nPx5vd+bmJhVbkchxRSLHU7jGkN8/5aIwpyfQ6R/m9Lx2IfgxzZAMw0jbnQAAAAAAADiFkAbAuP36\nfenTs6Rg7wfeI5b0M6po4DE9+/fky+fLl1P794y1hVv/ry3rvDM3OCHZib15uroOJH2VYeQMGd6M\nXLUzRaYZSOO9AAAAAAAADEZIA2DczkSkF09KH5nZ8/1/fCCd6nZ3TUA69d+/Z7wsK9ovtBkq1Em2\n2qdFth1z4O6yn213KxL5QJHIByld5/OFU67a8fnCVO0AAAAAAIAxI6QB4IhfHpfuLJO6Lennx9xe\nDZA9TDMg05yqQGDquMbpaefWPeYWbhefL9nO3GAW6fnfqVXnzx9O+hrD8CdCm+SrdqbK58tN450A\nAAAAAIBsQUgDwBHHu6QNzdKxTuls1O3VAJNPTzu33N6H/07t33Mh1Dl48AG1tLzhzGInENuOKRo9\npWj0VErXmWYo5aodv79YhuFL051gMonFWtTVdVg+X0imGeptBRmSYQSpDAMAAACADCOkAeCYnx2V\nTrC9BpD1Bu7f09PHcO7c/0fbtl2X0jiFhUu0YMFPFIudUTTarGi0WbFYc+/XZ/p9feG1ydKyzbI6\n1d3dqe7u4ylcZcjvn5JS1U4gUCLTDPHgHRcxtH37KsXjLRcdN3uDm/x+AU5PiNP3dV+oc/H3/c8f\neP3A1wiCAAAAAGAgQhoAjjnQ7vYKAKRLUdFyFRWtUEvL60lfM2/ekyooWJj0+bZtKx5vvyjMaR4Q\n8gwV9MRi58ZyS1nIVix2RrHYmZSuMozgGKp2pso0A2m6D7jN7w+rouIrOnbsBxe9Yikeb+99H6Zn\nbsPI0dKle5WXNyc9EwAAAABAliGkAeAZpztPa1r++No0AUifysqHkw5ppky5TcXFK1Ma3zAM+f2F\n8vsLJVUnfZ1lxRSLnR0U6IxWtWNZk6P0z7YjikQaFYk0pnSdzxdOuWrH5wtTJZElKiru1/HjT8u2\nIxmdd8aMzxPQAAAAAEA/hDQAPOOKH1+ha2deq9U1q1VbU6tls5bJb/LHFOAVJSV3KhS6XJ2de0Y9\nd86c72ZgRT1M069gcJqCwdRC3ni8K+WqnWj0jCQrPTfiMfF4z55E0uEUrvINEeCMVrVT0ruXEjIp\nJ6dMZWV/qsbGZzI2p2EEVV39WMbmAwAAAIBswNNPAJ7yduPbervxbX339e+qOLdYt829TatrVuuO\nmjtUXlju9vKASc0wTFVWfl37998z4nklJR9XOLw0Q6saO58vTz7fLEmzkr7Gti3FYi0jVO0MHfTE\n45OlH2Rc0ehpRaOnU7rKNEMpVe30nDdFhuFL031MDpWVD6qxca0kOyPzlZd/Wbm5VRmZCwAAAACy\nBSENAM86d/6c/m3Pv+nf9vybJOmqGVeptqZWq2tW6/rK6xXwsV8CkGkzZtylw4f/WpHIB8OcYWjO\nnO9kdE2ZZBimAoEpCgSmpHSdZUWGabs2cns2207TxiAeY1md6u7uVHf38RSuMuT3F4+haieflmy9\nQqEFKi39hJqank/7XKaZp6qqb6R9HgAAAADINoQ0ALLGjpM7tOPkDv3thr9VYbBQt869VbU1taqt\nqVVVEZ/MBTLBNIOaNesBHTr09SFfnz79syooWJThVXmfaQaVk1OmnJyypK+xbbt3A/fmRKu1ZKp2\nYrFzabwTL7EVi51VLHZWUkPSVxlGMOW9dvz+qTLNifnBgMrKhzMS0syadX9K//0DAAAAwGRBSAMg\nK7VF2vT8vuf1/L6eB0uXT7s8sZfNiqoVyvHnuLxCYOIqL/+Sjh79ruLxlote8am6+tuurGkiMgxD\nfn+h/P5CSdVJX2dZMcVi55Ks2rlw3LK60nYvXmLbEUUijYpEGlO6zucrTKJqZ2DQ4/cXeb5qp6ho\nuYqKVqil5fW0zeHzhVVZOXSwCwAAAACTHSENgAlhz+k92nN6j57a+JRCgZBunnNzIrSZO2Wu28sD\nJhS/P6yKiq/o2LEfDDg+c+Y9CoXmu7Qq9DFNv4LBUgWDpSldF493pVy1E42ekWSl50Y8Jh5vUzze\nJulIClf5esOc1Kp2fL68NN3F0CorH05rSFNZ+ZACgalpGx8AAAAAshkhDQDP+N7N39OG4xv0yuFX\n1BUb+ye6O6Od+s27v9Fv3v2NJOmSkktUO69Wq+ev1srZK5UXyOzDL2Aiqqj4qo4ff1q2HZHU00Jq\n9uy/cXlVGA+fL08+3yxJs5K+xrYtxWKtKVft9IQdk0Fc0ehpRaOn1ZXCX2ummZdy1U4gMEWG4RvT\nKktK7lQodLk6O/eM6fqRBAKlmjXra46PCwAAAAATBSENAM/44uIv6tEVj+p87LxeP/q66hrqVN9Q\nr71Ne8c17rvN7+rd5nf191v+Xrn+XK2qXpUIbeZPne/5VjSAF+XkzFRZ2d1qbFwrSSov/zPl5rI3\n1GRjGKYCgWIFAsXKy5uX9HWWFVE0eqZfgHMmqaDHtqNpvBvvsKwudXe/p+7u91K4ypDfXzyGqp0C\nGYapqqqHtW/fGsfvparqkd6WfQAAAACAoRi2bdtuLwKYCHbv3q2FCxcmvt+1a5euuOIKF1c0dqc7\nTmv6k9MzPu+ph05pWv60QcePnDuiFxpeUF1DnV4+/LLaI+2OzTmneE6iLdrNc25WfjDfsbGBia6z\nc7+2bLlMppmn5csPKRic4faSMIHZtq14vGOIMGfk9myx2Fm3l+5phhFUIDBVPt8UnT9/MFEd54Rg\nsFzLljVkvH0bgMFisRZ1dR2WzxeSaYbk8+XL5wvJMIJ8YAkAAExKXnqWSyUNAM+rLq7Wl5d8WV9e\n8mVF4hFtOLZB9Q31qmuo085TO8c19uFzh/XjrT/Wj7f+WEFfUCuqViRCm8unXc4PrcAIQqEFKi39\nuEKhSwlokHaGYcjvL5DfX6Dc3NlJX2fbcUWjZ1Ou2rGssbfdzCa2HVEkckLSCcfHzsubr6NHH5dp\n5svnK+h9KFxw0dc9v/edY5o5/N0LpIWh7dtXKR5vuei42Rvc5PcLcHpCnL6v+0Kdi7/vf/7A6we+\nRhAEAAAwMippAId4KX0dL69V0ozk/db3Vd9Qr/qD9Xrp4Etq6b74B8+xqwxXqramVqtrVuuWubco\nnBN2bGxgomhre0e5udVsCo4JJx7vGhDejFS1cyHoOSMp7vbSs5w5bKAzOOwZOugZ+rU8HhJj0jt0\n6FEdO/aDjM9rGDlaunSv8vLmZHxuAACA4XjpWS6VNECK1q1bp3Xr1g063tHRkfnFQBXhCt27+F7d\nu/heReNRbX5/s+oO1Kn+YL3eaXxnXGMfbz2uZ955Rs+884z8pl83VN6QqLK5csaVPOwBJBUWLnZ7\nCUBa+Hx58vkqlJNTkfQ1tm0pFmsdpWpncNATj7el8U6yjaV4vFXxeKvD4xq9lQDJV/UMFwYNPCck\nwzAdXiuQHhUV9+v48acdbWuYjBkzPk9AAwAAMAJCGiBFR44c0fr1691eBoYQ8AV0Y9WNurHqRj1x\nyxM60X5CLx58UXUNdXrx4Is603VmzGPHrJjWH12v9UfX65GXH9HMgpmJKptb596qKXlTHLwTAEA2\nMgxTgUCxAoFi5eXNS/o6y4ooFjs7RJgzcnu2TD9ozW624vF2xePtikZPOjryhfZOyVX1jB4G9Xxt\nGD5H1wnk5JSprOxP1dj4TMbmNIygqqsfy9h8AAAA2YiQBkhRdXW1Vq5cOeh4R0eHtm7d6sKKMJyy\ngjLdfdXduvuquxW34nrrg7cSe9m89f5bsjX2bo+N7Y36yfaf6CfbfyLTMHXdrOsSoc01M6+Ryadq\nAQBJMs2ggsEZKe3tZNu24vGOlKt2YrFz0jj+/sNgltUpy+pUNHra0XFNM3dcLd6GC4NMM+DoOpFd\nKisfVGPjWmXqz4Hy8i8rN7cqI3MBAABkK/akARzipT6G42XZlpo7m5M+//YdO7S9vX3AsWsKCvTC\nVVelNG9JqCRj4UZTZ5NePPhiz342DfU63encg5Xp+dN1x7w7VFtTq9vn3a7SUKljYwMAMB62HVcs\ndm7Eqp2uriM6e7be7aUiTQwjOM4Wb0P/zubw2WPXrk+pqen5tM9jmnlatuyQcnLK0j4XAABAqrz0\nLNezlTTxeHzAHh95eXkKBPjUF5AJpmFqWv60pM7d3dGh7RG/FCwecHxbRDqtkC7Pz0/HEsetNFSq\nuxbdpbsW3SXLtrStcZvqGupU11CnTe9tkmVbYx77VMcp/ewPP9PP/vAzGTL0oYoPJfay+VD5h+Qz\naV8CAHCHYfgUCJQoECgZ8byxPsQtKfmEgsHpisc7Eu3FLKvv6wu/W1bnWG8B42TbEcViPS32nOUb\nd4u3oSt/cgl/HFZZ+XBGQppZs+4noAEAAEiCZ0Oan/70p7rvvvsS37/00ku6+eabXVwRgKH89MSJ\nEV/723nJ9+R3i2mYurb8Wl1bfq2+edM3dbbrrF469FKiyqaxvXHMY9uyteX9Ldry/hZ9e/23NTVv\nqm6fd7tW16zWHfPu0IyC5FvbAACQKWN5iBsOX6+FC3+d1AN127YUj3deFOIMDHL6/z5U0HPxNT3n\ndIh2bm6JKx5vUTze4vC4Zm9gk3xVz+DXhzonT8YkbU9bVLRcRUUr1NLyetrm8PnCqqz8etrGBwAA\nmEg8G9KcPHlSfZ3YiouLCWgAD4pZln52cvjNd3928qSemDNHfjO7fgCekjdFn7niM/rMFZ+Rbdv6\nw8k/qK6hTvUN9dpwfINiVmzMY5/pOqNf7PqFfrHrF5KkxTMXq3ZerVbPX63ls5bLb3r2j2UAwCQy\nloe4c+d+L+mKB8Mw5fcXyO8vGOsSh2Tbtiyra5SgZ2xhkDT2KluMh6V4vE3xeJvjI/eEOclX9SS3\nJ1BIhuH9qunKyofTGtJUVj6kQGBq2sYHAACYSDz7NLCgoOcHNsMwNHv2bJdXA0xOtm2rKRod9vXf\nnzunE5HIsK83RiJ6vqlJq4qLhz2nNBDwdAsLwzB0VdlVuqrsKj1y4yNq7W7Vy4deToQ2x1uPj2v8\ndxrf0TuN7+h7b3xPRTlFum3ebaqdV6vamlpVhCscugsAAFKXykPcKVNuU3HxyjSvaHSGYcjnC8nn\nCzk6bk/40z1KkDOWMKhdtj32D39gfCyrQ5bVoWj0lKPjmmbeuFq8DbcnkOngh3lKSu5UKHS5Ojv3\nODZmn0CgVLNmfc3xcQEAACYqz4Y0M2fOdHsJwKS3o71d17z99rjG+MyekX/w275kia4qcPZTtOkU\nzgnrk5d9Up+87JOybVt7Tu9RfUO96hrq9Pqx1xWJDx9ajaalu0XP7XlOz+15TpK0aPqixF42N1Td\noKAv6NRtAAAwqlQe4s6Z890MrMg9PeFPrny+XEmljo5tWZER2rcNH/SMdo5tdzu6TiTPsrpkWV2K\nRpscHdcwcsbZ4m3g9xUVf64DB/7C0TVKUlXVI/L7Cx0fFwAAYKLybEhz2WWXSer51Nrx4+P7pDqA\nsfl1k7M/WA45x+nTWRXS9GcYhq6YfoWumH6FHrz+QbVH2vXqkVdVd6BOdQ11Onzu8LjG33lqp3ae\n2qkfvvlDFQQLdMucWxKhzexiKgwBAOllGKYqK7+u/fvvGfG8kpKPKxxemqFVTTymGZRpBhUITHF0\nXMuKDRHipNLibegwyLK6HF0nkmfb3YrFuhWLnXF7KcMKBstVXv7nbi8DAAAgqxh238YvHrRo0SLt\n3r1bhmHozTff1LJly9xeEjCs3bt3a+HChYnvd+3apSuuuMLFFY3fwi1btLuzM71z5Odr54c+lNY5\n3GDbtg6cOZCosnn1yKs6Hzvv2PiXlV6m2ppara5ZrRWzVyjXn+vY2AAA9LGsiDZtmqNI5INhzjC0\nZMkOFRQsyui64B7bjise7xwl6Ek9DLKsDrdvDY7wKRAokd9fJL+/SD5fUe/XxUkc6/neNANu3wQA\nAJgEvPQs17OVNJL0pS99Sffff78k6Vvf+pbq6+tdXhEweZyKRLQvzQGNJO3t6NCpSETTgxOrlZdh\nGLqk5BJdUnKJvrrsq+qKdmn90fWqO1Cn+oP1erf53XGNv7dpr/Y27dV/3/TfFQqE9OHqDydCm3lT\n5zl0FwCAyc40g5o16wEdOvT1IV+fPv2zBDSTjGH45PcXOt7OyrYtWVZXknv5pBYGSZaja8VI4opG\nT41rnx/TzBsU3AwV5lz4Vdwv+CmSzxd2dP8eAACAdPN0JU08HteqVau0YcMGGYahBx54QE8++aTb\nywKG5KX01SkbW1r0x3v36vB55ypA+qvKydH/uvxyLS8qSsv4Xnbo7KFElc0rh19RZ9S5QKxmak2i\nLdqq6lUKBZzdPBkAMLnEYq3auLFK8XjLRa/4tHTpXoVC811ZF5AM27ZlWeeT3ssn2TAoHm+XFHf7\n9jCMnr13BgY5A6t4RjtWKMMw3b4NYMxisRZ1dR2WzxeSaYZ696IKyTCCMgzD7eUBgCd46Vmup0Ma\nSTp37pw+9rGP6Y033pBhGLrhhhv0+OOPa9WqVW4vDRjAS29sJ7XGYvqLAwf0s5Mn0zL+nNxcXRcO\n67pwWMvDYV1VUKCAObl+IOqOdev1Y68nQps9p0ffoDlZOb4craxemQhtFpQs4B/lAICUHTr0qI4d\n+8GAYzNnflELFjzj0ooAd9m2LduODBnepNLibagQyLYjbt8eZMjnKxwmzEmudZvPl8+/u+Ga4T9g\nYfYGN/n9ApyeEKfv675Q5+Lv+58/8PqBrxEEAcgWXnqW6+mQ5vHHH5ckRaNRrV27VidPnkz8QT9j\nxgwtWbJEc+bMUTgcViCQWt/axx57zPH1YnLz0hs7Hf715En92bvvqjWe3k8M5pmmlhQWDghuynJy\n0jqn1xxrOab6hnrVN9Trd4d+p7ZIm2NjVxdXq3ZerVbPX62b59ysgmCBY2MDACau7u5GbdpUnXh4\nbBhBLVt2QLm5VS6vDJh4LCuaRNCTehhkWempjsdwfPL7w+Nq3WaaeTzsxpgN9QGLTDCMHC1duld5\neXMyPjcApMJLz3I9HdKYpjnoHyT9lzuef6zE0/ygGZOPl97Y6XKkq0t37d2rja2tGZ23ul+1zXWT\nrNomEo9o4/GNqmuoU31DvXac3OHY2AEzoBWzVyRCmyumXcEPgQCAYe3ff58aG9dKkioqvqr58//O\n5RUBSIVtx4cNcrq63lVDw9ckefbxwKRkGP5Bwc1QYc5IrdtMc3J94A0XdHef0KZNszNenVdWdq8u\nvXRtRucEgLHw0rPcrAtpxsu2bRmGQUgDx3npjZ1OPzh6VI8ePuzqGnIvqra5bhJV23zQ9oFeaHhB\ndQ11eunQSzp3/pxjY88Kz1LtvFrV1tTq1rm3qih38u0VBAAYXmfnfm3ZcplMM0/Llx9SMDjD7SUB\ncNCuXZ9SU9PzKV+3YME6FRYuVizWoni8RbFY369zFx07l3it71g87lzFOIZmGDkptGkb+phppta5\nBN6xf/+X1NiYudakVNoCyCZeepbrd2XWFHg4QwImpUxX0QzlvGXpjZYWvdFyob9udW6ulvcLba6e\noNU25YXluueae3TPNfcoZsW0+b3Nib1s3m58e1xjv9f6ntZuW6u129bKZ/h0feX1ib1sri67miob\nAJjkQqEFKi39uEKhSwlogAmosvLhlEOacPh6lZXdPeZ/J9p2XLFY6yhhzrl+wc/gY5bVOaa5Jwvb\n7lY0ekrR6Kkxj2GaoRHbtI3eui0sw/A5eFdIVmXlg71VsJl5tlZe/mUCGgAYA09X0qxfvz5tY69c\nuTJtY2Ny8lL6mi62bWvGm2/qdDQ6pusLfD59ZOpUbWpr05Hz6e2J3b/api+8mTnBq21OdZzSzVYK\nawAAIABJREFUCw0vqP5gvV5oeEHNXc2OjV1WUKY75t2h1TWrddu82zQ1b6pjYwMAskdb2zvKza1W\nIMDfA8BEtG3bTWppeT3p86+++lUVF7v7s7VlRYeo4ukJcpI9Ztvdrt7DZODzFYyrdZvPVyDDmHgf\nwsuEsVbJpco087Rs2SHl5JSlfS4AcIKXnuV6OqQBsomX3tjpcrCrSzWbN49vjGXLNDcvT43d3drU\n2qqNvb+2trXpvGU5tNKhzc7J0XVFRYng5uqCAgUnYLWNJMWtuN5ufFt1B+pUf7Bem9/bLNuhT0+Z\nhqllFctUW1Or1TWrdW35tTL5gQkAACDrNTX9Rrt2fTSpc6dMuU1XXfVimleUGZbVPUKbtuSO2fbY\nPsiGZBny+cIjhDmjt27z+fInZXeAlpZN2rbturTPU1X1iObO/X7a5wEAp3jpWS4hDeAQL72x0+Wf\nT5zQn+zbN74xLrtMfzxjcIuUqGVpR3t7IrTZ2NqakWqbawsKBgQ35RO02qa5s1kvHXpJdQ11qm+o\n16mOsbc7uFhpqFR3zLtDtTW1umPeHZqWP82xsQEAAJA5tm3prbcWqbNzz6jnLl68WeHw0gysyvts\n25ZldQ3ac2eofXhGaucmpfdDa/CN2qZttNZtppmblUFPqlVyqfL5wlq+/DCVtgCyipee5Xp+TxoA\n3jHafjRzc3NlSzo8QriysaVlyJAmYJpaEg5rSTis/9p77MQQ1TZdDlbbnLcsbWht1YZ+91WVk9Oz\nr01vcDNRqm1KQiX67MLP6rMLPyvLtrT9xPbEXjYbj29U3I6Peeymzib9fOfP9fOdP5chQ0vKlySq\nbJZWLJXPpP80AABANjAMU5WVX9f+/feMeF5JyccJaPoxDEM+X0g+X0g5OTPHNIZt24rHO5Lah2e4\n1m3xeKsytfdIdoorFjujWOzMmEcwjMAwbdqSbd1WJNPM/AcDKysfTmtIU1n5EAENAIwDlTSAQ7yU\nvqbL4q1bta29fcjX7p4xQ/8wf74k6S8OHNDPTp4ceoyCAr29ZMmY5u+rtukf3IwUCDkhxzB0be/e\nNn3BzUSrtjl3/px+d+h3idDmg7YPHBt7Su4U3T7vdtXW1Kq2plZlBfQnBgAA8DLLimjTpjmKRIb7\nN6GhJUt2qKBgUUbXhdHZtqV4vG2UMGfk1m3x+NA/78E5ppk7Spgzeus200ztM9epVMmlKhAo1bJl\nh+T3Fzo+NgCkk5ee5U6IkKa9vV1tbW0qLCxUQUGB28vBJOWlN3Y62Laty7Zs0f6urgHHi3w+/c9L\nLtFnL6qO+deTJ/Vn776r1vjACo0FeXnau3SpYyXifdU2fcHNWw5X2wylr9pmeW9wc80EqbaRev5/\n3nVqV6It2hvH3lDUcq6/9tVlV2t1zWrV1tTqulnXKeALODY2AAAAnHHs2JM6dOjrQ742ffrndPnl\n/5LhFSFTbDuuWKx1iDAnmdZtPccsq2v0iTAuphkaIswZuXXbuXPrdeTIY46vZd68J1VZ+aDj4wJA\nunnpWW7WhTRtbW36l3/5F7322mvatGmTjh8/rni/h8A+n09VVVVavny5Vq5cqc997nMEN8gIL72x\n06UjHtdfHzqkv3//fdmSbiwq0j9fdplm5+YOef6Rri59fu9ebWhtlSHp/lmz9N05c5TvS1/7q6hl\n6Q8dHdrY0uJKtU1fcFMxQapt2rrb9MrhV1TXUKe6hjodaznm2NjhnLBunXtrIrSZFZ7l2NgAAAAY\nu1isVRs3Vikeb7noFZ+WLt2rUGi+K+tCdrCs6LBt2pI7dk62HXH7NpCEYLBcy5Y1yOfLc3spAJAy\nLz3LzZqQprOzU9/85je1du1adXR0SOr5xPdw+j6lX1BQoPvuu0/f+c53lJfHXxpIHy+9sdPtjXPn\ntLG1VQ/MmiX/KBUkMcvS0++9p+vDYd1YXJyhFQ50MhLpqbTpDW4yUW1T2be3TW9oc3VBgXKyvNrG\ntm3ta9qXqLJZf3S9InHnfnhaOH2haufVavX81bqh8gbl+CdG0AUAAJCNDh16VMeO/WDAsZkzv6gF\nC55xaUWYTOLx84P23BlqH56R2rnZdszt25jwQqHLVFCwWMHgNAUC0xQIlPb+Pi1xzO8vlmFk98/C\nACYmLz3LzYqQZseOHfr0pz+tgwcPJoKZZFol9T+3pqZGv/zlL3XVVVelda2YvLz0xsbIopalnR0d\nPZU2vcHNoQxU2yzu29tmglTbdEQ69OqRVxNVNofOHnJs7PxAvm6Ze0sitKkurnZsbAAAAIyuu7tR\nmzZVJyoaDCOoZcsOKDe3yuWVAaOzbVuW1ZXUPjzDt25rkZTeD/dNDj4FAiX9gpsLQU5fsHMh5On5\n3jRpiw0g/bz0LNfzIc3+/ft14403qrm5WVJP4NJ/yYWFhSopKVF+fr46OjrU3Nystra2xOv9zy8t\nLdWGDRs0fz6l2XCel97YSN3JSESbe9ujbWxp0VttbepMc7XNrP7VNuGwrikszOpqmwPNB1TfUK+6\nhjr9/sjvdT7mXPC1oGRBoi3ayuqVyvUP3WIPAAAAztm//z41Nq6VJFVUfFXz5/+dyysCMse2bcXj\n7aOEOSO3bovHW92+jazk8xUNCm76V+dcXLHj8+W7vWQAWchLz3I9HdJEo1EtXLhQBw4cSFTO2Lat\n5cuX6wtf+IJuueUWzZkzZ9B1hw8f1iuvvKJnn31WGzduHHDtggULtHPnTvn9/ozeCyY+L72xMX6x\n3r1tNvULbg6mudomeHG1TTisWcPs9+N1XdEuvXb0tURos795v2Nj5/nztKp6VSK0mV9C8A4AAJAO\nnZ37tWXLZTLNPC1ffkjB4Ay3lwRkFdu2FI+3DQpzkmvd1nPMsjrcvg3PM828IVqtDV+xQws2AJK3\nnuV6OqT50Y9+pL/8y79MVMOEw2H90z/9kz7zmc8kPcZzzz2n++67T62trbJtW4Zh6Omnn9b999+f\nxpVjMvLSGxvpcapvb5vWVm1qbdWW1taMVtssD4e1OEurbQ6fPaz6hnrVH6zXy4deVkfUuR805k2Z\np9qaWq2uWa1V1auUH+RTVAAAAE7ZteuTCoUu1dy533d7KcCkZFkxxeOtKbRuG3zMsrrcvg2P8fWG\nOINbrQ1dsUMLNmAi8tKzXE+HNJdcckliH5pQKKTXXntNixcvTnmc7du368Ybb1RXV5ds21ZNTY3e\nfffdNKwYk5mX3tjIjFj/vW1cqrZZHg6rMsuqbbpj3dpwfIPqDtSp/mC9dp3a5djYOb4c3TT7pkRo\nc2nppUntYQYAAIChtbW9o9zcagUCU91eCoAxsqzIgJZs7e27tH//PZI8+0jQc/z+4iFbrQ1XsUML\nNsD7vPQs17MhzYEDB7RgwYLEw7Uf/vCHevDBB8c83pNPPqmHH35YUs8+Nfv27WNvGjjKS29suOd0\nv2qbjRmqtqkIBnVdUVEiuMm2apvjLcf1wsEXVNdQp98d+p1au53r2zy7aLZqa2pVW1OrW+bcosKc\nQsfGBgAAAIBstWvXp9TU9HzK182e/U3l5MxWNHpa0WhT7++nFYlc+N6yOtOw4uzS04JtcKu14Sp2\naMEGZJ6XnuV6NqT55S9/qc9+9rOSpGAwqBMnTqi4uHjM4507d04zZsxQNBqVYRj6xS9+oU9/+tNO\nLRfw1Bsb3hGzLO3qX23T2qqGrvSWmgcNQ9cUFAwIbrKl2iYaj2rjexsTe9lsP7HdsbH9pl83Vt2Y\n2Mtm0fRFVNkAAAAAmJRaWjZp27brUromHL5e11zzxqg/R8XjnYkQpye86f/r4mNNisXOjudWJghf\nvzBnYHXO0BU7JbRgwwCxWIu6ug7L5wvJNEPy+fLl84VkGEGefQzDS89y/a7MmoRTp05J6ql6mTNn\nzrgCGkkqLi7W3LlztX9/z+bVJ0+eHPcaAfRj21JbmxSJSMGgVFgo8ZeA/KapqwsLdXVhob5SUSHp\nQrXNpn7VNh0OVttEbFub29q0ua1NP+o9VhEMank4nAhuFhcUKNfnc2xOpwR8Ad00+ybdNPsmfe+W\n76mxrVEvHHxB9Q31evHgizp7fuz/eI9ZMb165FW9euRV/dXv/krlheWqnVer1fNX69a5t6o4d3x/\nzwAAAABAtigqWq6iohVqaXk96Wvmzv1eUg97fb6QfL7Zys2dndS4lhVVNNo8THXO0BU7UjzpdWeH\nuKLRk4pGk39eeaEFW3IVOz5fKI3rh/sMbd++SvF4y0XHzd7gJr9fgNMT4vR93RfqXPx9//MHXj/w\nNYKg8fNsSNPe3p74OhwOOzJmYeGFNjcdHc5tWg1MdG++KV1//RAv7Nwp/eu/Slu2SO+8I53t9wB9\nyhRp8WJp6VLprrukfsn0qONOcNOCQX20tFQfLS2VNLDapi+4OeBwtc37kYh+1dSkXzU1SZIChqHF\nBQUDgpvKnBzP/aU6s3Cm1ly9RmuuXqOYFdNb77+luoY61TfUa+sHW2WPo4fyB20f6Nntz+rZ7c/K\nZ/h0XeV1idDm6rKrZVJqDgAAAGACq6x8OOmQZsqU21RcvDIt6zDNgHJyypSTU5bU+bZtKxY7N0J1\nzuBjlpXejhZuiMXOKRY7p66uA0md378FWzIVOz0t2Lz1jADD8/vDqqj4io4d+8FFr1iKx9sVj7cr\nGk3P3IaRo6VL9yovb056JpgEPNvubO3atfrSl74kSSovL9d777037jFnzZqlDz74QIZh6B//8R/1\nxS9+cdxjAn28VCLnpP/236Rvf1t68kkpsS3Ub38r/e3fSq8n/4kbrVghPfKIdOedkqSnnpIeekj6\n1rd65sBATUPsbeNktc1QyoPBnvZoRUVaHg7rWo9W2/Q53XFaLx58UXUNdXrh4Atq6mxybOwZ+TN0\nR80dqp1Xq9vn3a6SUIljYwMAAACAF9i2pbfeWqTOzj2jnrt48WaFw0szsKr06GvBNnx1zsBjsdg5\nt5fsOsPwy+8vGWU/nf7BTqlM07P1AJNCd/cJbdo0W7Ydyei8ZWX36tJL12Z0Tid46VmuZ0Oa//zP\n/9RHPvIRST0tz3bs2DHgf7RU7d69W4sWLUqM9x//8R+6s/dhMeAEL72xndIX0PR58tsdenDffT3V\nM2N11116asE/6aFv5ScOEdSMLm7bPdU2LS2J4MbpapuLBfr2tvF4tY0kWbaltz94O7GXzeb3N8uy\nnQm1DBlaWrE0sZfNkvIl8pneDa8AAAAAIFmNjeu0f/89I55TUvJxLVr0vzO0Im8Y2IItmYqdidiC\nLXV+/5QB1TijVezQgs15+/d/SY2Nz2RsPsMIatmyA8rNrcrYnE7x0rNcz4Y0LS0tmjZtmuLxnj/g\nPvnJT+q5554b83if/vSn9atf/UqSFAgEdPr0acfaqAGSt97YTnjzTemGGwYff1IP6kE9PeZxn9Jf\n6iE9Nej4hg2Ts/XZeDRFItrc1pYIbra0tak9nt5/FM7sq7bpDW68Wm1zpuuMXjr4kuoP1qu+oV4n\n2k84NnZJXolun3e7Vtes1u3zbteMghmOjQ0AAAAAmWRZEW3aNEeRyAfDnGFoyZIdKihYlNF1ZRvb\ntnpbsDVdVJ1zeohjTRO2BVuqTDOU1H46fcdowTa6zs792rLlMmkc7eFTUVHxXzV//t9nZC6neelZ\nrmdDGkm65ZZb9Pvf/15ST/XLt771LT322GMpj/PEE0/ob/7mbxJv4ptvvlkvvfSSo2sFvPTGdkpf\nS7KLjTWoGS6gGdBKDWPWV22zqbU1Edy8m4Fqm6v7qm16g5sqj1XbWLalP5z8g+oO1Kn+YL02HNug\nuO1cmHXtzGtVW1Or1TWrtWzWMvkp7wYAAACQRY4de1KHDn19yNemT/+cLr/8XzK8oskhHu9IVOH0\nr84Z6lg02kQLNvW0YOvfXm2kip2e7ydnC7Zduz6lpqbn0z6PaeZp2bJDSe8n5TVeepbr6ZDmtdde\n06pVq2QYhmzblmEY+uhHP6qnnnpK8+bNG/X6Q4cO6aGHHtK///u/S1JijFdffVUrVqxI9/IxyXjp\nje2kpx7vGNCarE+qQc2wAc23O/TgY4PHhzOao1Ftam1NBDebM1hts7w3uLm2sFB5Hqq2aTnfopcP\nv6y6A3Wqa6jT+23vOzZ2cW6xbpt7m2pralVbU6vywnLHxgYAAACAdIjFWrVxY5Xi8ZaLXvFp6dK9\nCoXmu7IuDNTTgq1pmOqcoY41ixZsfS3YpiVdsePz5bm95HFradmkbduuS/s8VVWPaO7c76d9nnTx\n0rNcT4c0knT33Xfrn//5nwcENYZh6MYbb9TNN9+sK6+8UqWlpcrPz1dHR4eam5u1Y8cOvfLKK3rj\njTdk23biOkn6/Oc/r5/+9Kcu3xUmIi+9sR1111166l9nDh2wJBnUDBvQ6EE9eNcJ6ec/d2SpGF3c\ntrW7o6NnX5uWFm1qbdX+NFfb+PvtbdMX3MzOzfVEtY1t29p9endiL5vXj76uqBV1bPwrZ1yp1TWr\ntbpmta6vvF4BX8CxsQEAAADAKYcOPapjx34w4NjMmV/UggWZ29sCzrrQgm3o6pyhjlnWebeX7bq+\nFmwXgpuRK3b8/iJPPN+42LZtN6ml5fW0je/zhbV8+WEFAlPTNke6eelZrudDmmg0qjvvvFMvv/xy\n4j/4/qHLSPqfZ9u2brvtNv32t7+V3z/5ytyQfl56Yzvmt7+VPvIRSaMELSMENUld95vfSP/lvziz\nZqSsORrV5tbWRHCzpa1NbWmutinrt7fN8nBYSzxSbdMeadcrh19JhDZHzh1xbOzCYKFunXtrosqm\nqij7NtUDAAAAMDF1dzdq06Zq2XZEUnZvBo6xsW1bltU5SnXOwGODq68mn4Et2Eav2PH7SzLSgq2p\n6TfateujaRu/uvpxVVf/TdrGzwQvPcv1fEgjSZFIRI8++qh+9KMfDQpehtP/HNM09cADD+iJJ55Q\nMBjMyJox+Xjpje2Ym26SXr+Quqca1CR9/k03SevXO7NmjFvctrWnr9qmN7jJRLXNgL1tPFBtY9u2\n3m1+V3UNdapvqNerR15Vd7zbsfEvn3a5VtesVm1NrVZUrVCOP8exsQEAAAAgVfv336fGxrWSpIqK\nr2r+/L9zeUXwOsuKKBptHrE6Z+CxJkmW28t2nd8/dYhWa8NX7IylBZttW3rrrUXq7Nzj+PoDgVIt\nW3ZIfn+h42Nnkpee5WZFSNNn69atevrpp/XrX/9akUhk1PODwaD+6I/+SA888ICuvfbaDKwQk5mX\n3tiO2LlTuvLKQYeHC17u0bP6n/ozBRUd8bxhK2927pT6/e8HbznTv9qmtVWbW1szUm2zvF9o43a1\nTWe0U+uPrE+ENgfOHHBs7FAgpJvn3JwIbeZOmevY2AAAAACQjM7O/dqy5TKZZp6WLz+kYHCG20vC\nBNPTgu2sotGmpCt2aMEmmWb+ENU5w1fs9LVgO3Hip9q3b43j65k370lVVj7o+LiZ5qVnuVkV0vRp\naWnRxo0btXnzZh09elRnz55Ve3u7CgoKNGXKFM2ePVvLly/X8uXLVVRU5PZyMUl46Y3tiG98Q/r+\n0Jt/DRfA5KtNX9Iz8imuJ/X1Qa+P2BrtG9+QnnhiXEtG5vRV22zqF9zs6+xM65x91Tb9g5tqF6tt\nDp45mAhsXjn8irpizlUbXVJyiWrn1Wr1/NVaOXul8gLZv3EhAAAAAO/bteuTCoUuzerNwDFx2Lat\neLxjQGgzWsUOLdgkwwgoECiV3z9VXV0Nsm3nuoIEg+VatqxhTNU9XuOlZ7lZGdIAXuSlN7Yjbr1V\nevnlYV8eLqgZzmh71+jWW6WXXkplhfCY/tU2m3qrbVrTXG0zIxDQdUVFieBmSWGhQi5U25yPndfr\nR19PhDZ7m/Y6NnauP1erqlclQpv5U+enJZiybEvNnc2OjzuaklCJTMPM+LwAAAAABmtre0e5udVZ\nvRk4JreeFmwX2quNXrHTLFqwJW/+/B+rouIrbi/DEV56luvZkCYej6ujoyPxfV5engKBgIsrAkbm\npTf2uNm2VFIinT074mnJBjVX6x39UH+lW/SyTA3zR86UKVJzs+TiHiRwVty2tbff3jabWlu1NwPV\nNlfl5w8Ibua4UG1z5NwRvdDwguoa6vTy4ZfVHml3bOw5xXMSbdE+POfDKggWODLu6Y7Tmv7kdEfG\nSsWph05pWv60jM8LAAAAAEBfC7YLwc3oFTtOVqZkk9zcOVq6dJ9Mc2Ls+e6lZ7meDWmeffZZ3Xff\nfYnvX3rpJd18880urggYmZfe2OPW2iol2Srwk/qV/rc+ldS5VTqqP9VPtUbrNFeHh563MLs3HcPI\nzg6xt026q22mBwI97dGKilyptonEI9pwbIPqG+pV11Cnnad2OjZ20BfUiqoVidDm8mmXjzmQIqQB\nAAAAAGBkA1uwnU6qYiceb3V72Y649NKfqqzsbreX4RgvPcv1bEjz/e9/X3/9138tSSouLtaZM2dc\nXhEwMi+9scetqUmaltxD08V6W9u0OOUpVun3ukc/0f+lXylfvdUVp09LpaUpj4XsZdm29nZ2amNL\nSyK4SXe1jU/SVQUFA4KbTFbbvN/6vuob6lV/sF4vHXxJLd3O9cutDFeqtqZWq2tW65a5tyicE076\nWkIaAAAAAACcZ1ndikabL2q1dnHFTv9j3mvBFgpdpg99aKcMI/Mt5tPFS89y/a7MmoSCgp72LYZh\naPbs2S6vBphkgsmVLXYrqICiY5riVX1Yr+rD+gv9D/3f+l/6gp7V8mCOaHY2uZiGoSvy83VFfr6+\nWF4uqafaZktbWyK42dzaqhYHq23ikt5pb9c77e36fz/4QFJPtU1fe7Trioq0pLBQ+WmqtqkIV+je\nxffq3sX3KmbFtOm9Tao7UKf6g/V6p/GdcY19vPW4nnnnGT3zzjPym37dUHlDIrS5csaVGW/7BgAA\nAADAZGeaOcrJKVdOTnlS59t2XNHo2UGt1kaq2El3C7bq6scnVEDjNZ4NaWbOnOn2EoDJq7CwZ4+Y\nUfak+R/6C23RsnFN1aaw1uo+rdV9unSZrXvukf7kTyT+CJi8pgQCumPqVN0xtWejyv7VNpt6q232\nOFxtcyoa1f9pbtb/aW6WdKHapn9wMzcN1TZ+068bq27UjVU36olbntCJ9hN68eCLqmuo04sHX9SZ\nrrFXkcasmNYfXa/1R9fr0Zcf1cyCmaqtqVVtTa1um3ubpuRNcfBOAAAAAACAEwzDp2CwVMFgqaRL\nRz2/pwVb+5Ct1vq+P3/+sM6de3VM6ykouEbTpiW31QHGxrPtznbv3q1FixZJkqZOnaqmpiaXVwSM\nzEslco649Vbp5ZeHffkp/aUe0lODjs/QCZ1U2bim9vmk1aule+6RPvKRpAt7MImci0a1ubfaZlNr\nqzY5XG0zlP7VNsvDYX0oHE5btY0kxa243vrgrcReNm+9/5ZsOfNXtmmYWj5reWIvm8UzF6u5s5l2\nZwAAAAAATFC7dn1KTU3Pp3zdokW/VUnJnWlYkbu89CzXsyGNJC1atEi7d++WYRh68803tWzZ+D6x\nD6STl97YjvjGN6Tvf3/Il4YLaJ7Ug3pQTw/7+liUlkqf/3xPYHPllY4MiQnIsm3t6+zs2demt02a\n09U2F/NJurJvb5ve4GZeXl7aWoo1dTbpxYMv9uxn01Cv052nHRt7WmiaVlav1HN7nnNszGQR0gAA\nAAAAkH4tLZu0bdt1KV0TDl+va655Y0K2T/fSs1xPhzT/8A//oPvvv1+GYei2225TfX2920uCS1pb\nW7Vt2zZt3bpVW7du1dtvv62Ghgb1/ed7+PBhVVdXu7pGL72xHbFz55CpyGgBzWjnjce11/aENXfd\n1dONDRjJub69bXqDm0xU20zrv7dNOKwlhYUq8DvfWdSyLW1r3Ka6hjrVN9Rr43sbZdne2lQwWYQ0\nAAAAAABkxrZtN6ml5fWkz7/66ldVXLwyjStyj5ee5Xo6pInH41q1apU2bNggwzD0wAMP6Mknn3R7\nWXDBNddco+3btw/7OiFNmtx0k/T6hT+4kw1oRjt/hV7THl2uZpWOaVk5OdInPiF94QvSLbf0tEcD\nRmPZtvb3Vdv0Bjd7OjsdaiA2NJ+kRf2qba5LU7XN2a6z+t2h3yVCm8b2RkfHTydCGgAAAAAAMqOp\n6TfateujSZ07ZcptuuqqF9O8Ivd46Vmup0MaSTp37pw+9rGP6Y03esqqbrjhBj3++ONatWqV20tD\nBl199dXasWOHJKmoqEjXXHON9u3bpxMnTkgipEmb3/62Z1MYpR7Q9Bnuuh/oYdXooH6ie1Sn1bI0\ntqRl1ixpzZqeX/PmjWkITGItsZg29+5ps7H393OxWFrnLL2o2uZD/z979x0fVZX/f/w1mfRkEkpo\nofeEIgIBKQGl2RUSdREUKVstq+uqu+6uK7Du96fuqlt0FVlNggj2BEREFilKUEpQUCChN2mhpEx6\nmfn9cWEkECDTkknyfj4e81junXvPObOPvdnkvOdzjoerbex2O9+d+M6xl826w+uosHn3M7lDIY2I\niIiIiIhI7bDbbWza1Jeioh1XvHbAgA1ERAyuhVHVDV+ay/XpkOYvf/kLAOXl5bzxxhucOHHC8e3j\nVq1aERcXR+fOnYmIiCAgIMCptp9++mmPj1e859///jctWrQgLi6Obt26YTKZuO666/jiiy8AhTRe\nNXkyL77TxqWA5pzLBjyBr3C0rDnzmUISM9hFT5eHeu21xnJod94JYWEuNyON2IXVNuvz89leWOjV\nahs/jL1tzg9uunmw2ia/NJ+V+1Y6QpvD+Yc90q6nKKQRERERERERqT3HjqWwc+f0y17TvPl4+vZd\nVEsjqhu+NJfr0yGNn5/fRZNU5w/XnQmsSi/vSyDep5Cmdrz4l0Ien3lx4lHTgMbRzqWCmqdyeazr\nIpgzB/uGDXzNUJKZzrvcTQEWl8YcHg4TJxqBzbBh0AD3NpNalFdRwcZzS6TVQbXNkIjNx7rfAAAg\nAElEQVQIBnuo2sZut5N5KpNlu5fx2d7P+PLgl5RVlnlgxK5TSCMiIiIiIiJSe2y2Mtav70xZ2dFL\nXGEiLm4r4eF9a3Vctc2X5nLrXUjjLrvdjslkavQhzd69e9m4cSM//PADZWVlNG3alJiYGIYNG0Zw\ncHBdD69GFNJ434svwuOPX3ze2YDG0d6lgpoX4LHHgG+/hddegwULKCyCj7iDJGbwBdc5P/izevQw\nwpr77oPoaJebEXGw2e3sOn9vm1qqtukbFsbQyEiPVtsUlBWw5sAalu1exie7PuFQ/iHPDNgJCmlE\nREREREREatehQy+wb98T1b7XsuUkevVaWMsjqn2+NJfr8yGNN/haSHPkyBE2btzIhg0b2LhxIxkZ\nGVitVsf7HTt25MCBAx7pa9GiRTzzzDN888031b4fHh7OtGnTmDlzJlFRrm3qXlsU0njXV1/B8OEX\nn3c1oDnnUkHNunVG1QsAeXnw9ttGYLN9O3vpQgrTmMdUDtPBpX79/ODGG2HGDLjtNggMdPkjiFwk\nv5pqmxwvV9s09/c3qm3OBjfuVttkF2TT6sVWHhxhDftVSCMiIiIiIiJSqyoq8vn66w5UVuZd8I6Z\nwYMzCQ3tXifjqk2+NJfruZ2KvWD16tV1PQSvWbduHS+++CIbNmzg6NFLlZZ5TmlpKT/96U9ZsGDB\nZa8rKCjglVde4b333uPDDz9k5MiRXh+b+KZhw2DmTJg9+8dzL8wu5LGdx8GNMP2xycehZ9Ul1GbO\nPC+gAYiMhAcfhAcegPR0us6ZwzMf/pVZZbNYxWiSmEEaCZRS86ovmw0+/dR4NW8O995rVNj06+f6\nZxE5J8Lfn7HNmjG2WTPgx2qb9ecFN9s8XG1zuqKCpWfOsPTMGcCotukTFmZU2pwNbro7UW3j6cpV\nEREREREREfFN/v4RtG17P4cOPVflfJs20xtFQONrfLqSpiH75z//yaOPPlqja92tpLHZbCQmJrJ4\n8eIq581mMx06dCAyMpL9+/eTl1c1OQ0NDeXzzz9n6NChLvftTaqkqR2zZhlBjWNJMoClS+Fvf4Mv\nv6x5QyNHwu9/DzffDPy4lNrMmUYfV5SdDcnJ8PrrsH8/OTThHSaRxAw2E+fkp/rRgAFGWDN5Mpyd\nXxfxinPVNuvPq7Y54+Vqm2bnqm3OBjeDLRYsl6i2OVl4kpYvtPTqeKozuc9k7rnqHsZ0HkOQf1Ct\n9y8iIiIiIiLSGJWWHmP9+k7Y7cZetSZTINdcs5vgYNdWsalvfGkuVyFNHblcSBMeHk5BQYHj2N2Q\n5vnnn+fJJ5+scu5Xv/oVf/7zn4k+u0mHzWZj8eLF/OY3v+HQoR/3JGjXrh3btm0jMjLS5f69RSFN\n7fnqqwsqXc7Ztg3eeQc2boTNmyEn58f3mjaFgQNh8GCYNAnO++/miu1ejs0G//ufsRTaJ5+Azcb3\n9CGZ6cxnCqdwbdmkwECYMMEIbMaNA7PZpWZEasxut7OruJiv8/K8Vm1zofOrbc4tldbjbLVNXYU0\n51gCLdzS4xYSYhK4qdtNWIIsdTYWERERERERkcZg586fc+zYGwC0bfsw3bv/q45HVHt8aS7XZ0Oa\nyspKCgsLHcchISEEBATU4Yg861xIY7FYGDhwIIMGDWLw4MEMGjSI/fv3M2rUKMe17oQ0p0+fpnPn\nzlX2uHn22WcvCm3OOXLkCPHx8VX6e/rpp5l9/ppX1Vi1ahVFRUUujfF8/fv3p23btjW6ViGNj7Hb\noaAASkshKAjCw8HbyycdOgT//S+88QYcP04ZASzlFpKYwTJuotLFFR3btYP77jMCm27dPDxmkcuw\nVlSw0Wp1BDe1WW1zVWA5z73nelWaJwWZgxjXdRyJMYnc1vM2okJ9e480ERERERERkfqoqGgnGzfG\n4ucXwpAh+wgMrP29auuKL83l+mxIk5SUxM9//nPH8YoVKxg9enQdjsiz9u7dS2lpKTExMfj5+VV5\nb82aNR4LaX7/+9/zt7/9zXE8cuRI1qxZc9m9B1auXMnYsWMdxxaLhf3799O8efNL3tOpUycOHjzo\n0hjPN3/+fO69994aXauQRhzKy2HxYqO6ZtUqAI7RmvlMIZnpZBHrctMjRsCMGXDnnUbuJFKb7HY7\nu4uLjUqbs8HNtsJCbN7orCwXvk7wRstu8TP5cW3Ha0mISWBCzATaR7av6yGJiIiIiIiINBjbtiUQ\nGhpDly7P1vVQapUvzeX6XfmSunHixAnsdjt2u53IyMgGFdAAdO3alV69el0U0HiSzWYjOTm5yrlZ\ns2ZdcXPoMWPGMGLECMex1Wrl/fff98oYRTwiIMBIUVauhKwsePRR2jQt5Xf8nR304iuG8nPmYiHf\n6abXrjUqalq3hp/+FNLTjaIhkdpgMpnoERrK1NatmdOzJ1sHDSI3Pp6V/frx186duaVZM5pfYo+Z\nhsJmt7H6wGoe/uxhOvyzA4P/O5jn0p9j1+lddT00ERERERERkXqvY8c/0779E3U9jEbNZ2d2ws9+\nZd1kMtGxY8c6Hk399NVXX3Hy5EnHcZcuXbjuuutqdO9Pf/pT1q5d6zhetGgR999//yWvX79+PRUe\nWJKnmXZuF3f17AkvvQT/93/w3nuYXnuNoRvXM5T1/INHSSWRJGawhlFXbus8hYWQlGS8unc3gpv7\n7oMars4n4jEWf39GN23K6KZNgarVNuvPVtx8761qGx+w6egmNh3dxB9W/oFeLXqRGJNIQmwC/Vv3\nv+KXEERERERERESkKotlQF0PodHz2ZCmTZs2dT2Eem/p0qVVjseNG1fjCaxx48ZVOV6zZg2FhYWE\nhYVVe33r1q1dG6SIt4SEwLRpxuubb2DOHMIWLGBK0dtM4W320ZkUpjGPqRzCuSB492744x/hqafg\nhhuMwOb2242teERq27lqm3MVN2DsbbPJaq0S3Jz28t42rrIEWrCWWa98YTV2nNzBjpM7+Ovav9Ix\nsiMJMQkkxiYyrP0wzH5mD49URERERERERMTzfHa5s9hYYw8Ju93O4cOH63g09dOWLVuqHA8bNqzG\n90ZHR1fZ46WsrIwdO3Z4amgitWvAAJg7F44ehZdfhl696MJ+/sJM9tOZFYxlEgsJosSpZm02WLYM\nfvITiI6Ghx+GCx47kTpxrtrmTx07sqRvX04OH86uwYOZFxPDr6Kj6RcW5jO/AGQ+mMnye5fzy4G/\npFWY6xsUHsw7yD83/JORKSOJfimaXyz5Bct2L6O0otSDoxURERERERER8SxfmaO5SO/evR0b9eTk\n5LBhw4Y6HlH9k5mZWeW4V69eTt1/4fUXtidS70RGwkMPwbZt8OWXMGkSfgH+jGUlC7mHY7ThVe5n\nEBudbvrMGSP/6d/feL38Mpw+7YXPIOICk8lE99BQ7mvdmtd69GDLoEHkxcezql8//q9zZ25t3pym\n/nVTeZJvg+u7Xs+cW+dw5LdHSJ+ezmNDH6Nzk84ut5ldmM1/v/kvNy+8mZYvtGTyR5P5cMeHFJQV\neHDkIiIiIiIiIiLu89mQBuAXv/iF498zZ86sw5HUP8XFxRw6dKjKufbt2zvVxoXX79y50+1xifgE\nkwlGjICFC+GHH+C556BzZ5qSy/3MYSPX8D19+C0v0oJsp5vfssWoqomONqpsli2DykovfA4RN4T7\n+zOqaVP+eLbaJmvwNXUyjl4bN9Hp66+5c9s2XvjhCKWWXvx59HPsfXgvW365hadHPk3fln1dbj+/\nNJ93tr3DXR/cRYu/t2D8u+NJ2ZLC6SKlqCIiIiIiIiJS93x2TxqABx54gPfff59169axYsUKHn/8\ncV544YW6Hla9cOrUKex2u+M4ICCAli1bOtVG2wt2RM/Odn6y2lP27NlDenp6lXPHjx93/PvDDz8k\nKirKcRweHs6dd95Za+OTeqxlS/j97+GJJ2D5cnjtNVi6lD627bzI4zzLH/iUm0lmOku5hUonfmyW\nlcEHHxivtm3hvvuM/Wu6d/fi5xFxUU33LPOGg6WlHCwt5aNTpxzneoSEEGexMKjbz3i1/6NElJ9g\n+a6PSc1KZf0P613qp6SihI93fszHOz/GbDJzbadrSYxJZELMBNpGtL1yAyIiIiIiIiIiHubTIY3Z\nbGbJkiXcfvvtpKen849//IONGzfyl7/8heuuu66uh+fTCgqqLukSGhrq9ARcWFjYZdusTenp6Uyf\nPv2S7z/xxBNVjjt27OhWSJOdnc3JkyedumfPnj0u9yc+wM8PbrrJeB06BP/9L7zxBoHHjzOBxUxg\nMcdpxdvcSxIzyMS55QOPHIFnnzVe8fEwYwbcdReEh3vp84jUc7uKi9lVXMzCs18Q8AN6hV3HoOG3\ncbtfAbknviBj/zK+OLCGSrvzpWqV9kpW7V/Fqv2reGjZQ1zT9hoSYhJIjE2ke3MlqSIiIiIiIiJS\nO3w6pPnLX/4CwLXXXsvu3bs5ceIE69atY8yYMbRq1Yq4uDg6d+5MREQEAQEBTrX99NNPe2PIPuPC\nQCU4ONjpNkJCQi7bZkP26quvMnv27LoehtSVDh3gmWfg6adh8WKjumbVKlpzgsd5kcd4kY0MJokZ\nvMvd5BPpVPPp6cbr1782gpoZM4zgpg4LGUR8ng3YVljItsLCs2cGEtAxjj7d/kAz62Zyjq0i88gX\nlFaUuNT+hiMb2HBkA0+ufJLeLXqTGJtIQkwCV7e+uk6rjERERERERESkYfPpkGbWrFlVJkZMJpNj\nCa/jx4+zdOlSl9tu6CFNSUnVSarAwECn2wgKCqpyXFxc7NaY3DFt2jSmTZtWZ/1LIxUQAHfeabx2\n7oQ5cyAlBVNuLtewkWvYyD94lFQSSWY6qxjjVPOFhZCSYry6dTOWQrvvPmjXziufRqTBKbfb2Vpm\nhqDB0GkwtH+EwJwMInK/Jj97LWXlrn25YPvJ7Ww/uZ1nvnyGTk06kRiTSEJsAkPbDcXsZ/bwpxAR\nERERERGRxsynQ5rquPttVrvd3ii+EXth5UxZWZnTbZSWll62TZFGpWdP+Mc/4P/+D95/36iu2biR\nUIq5lwXcywL204l5TCWZ6Ryio1PN79kDf/oT/PnPcP31RmAzfjxckJWKeE3z0OZkP37x3mP7S4q5\nZvM3brW9ceAAIsz+bCksYGtBAd9arWwpKOB4WTkERLjVdhXmEMqiRnAqagR0eRRyv4VTazGdWoe9\nPMelJg/kHuCl9S/x0vqXaBXWivE9x5MYm8iozqMINDv/BQgRERERERERkfP5fEhzrnJGnBN+wUYX\nF1bW1MSFlTMXttmQPfDAA9x1111O3bNnzx4mTJjgpRGJzwgNhWnTjNc33xjVNQsWQFERnTnALGbz\nNH9hNaNIYgapJFJCyJVadbDZ4LPPjFfTpnDPPcZyaP37e+0TiQDgZ/KjRViLi84vtx6HwCZutb2r\nIoh7mreiZxOYeN75Y6WlZFitbLJaHf95qrzcrb4c/AKg2WBoNhh7999A/g44tdZ4lRx3qckThSeY\n+81c5n4zl8igSG7tcSsJMQnc2O1GwgLDrtyAiIiIiIiIiMgFfDqkWb16dV0Pod66MFApKipyuoqo\n0LHuf/VtNmQtW7akZcuWdT0M8XUDBsDcufD3v8P8+UZ1zY4d+GFnDKsYwypyieQ9JpLEDDZyjVPN\n5+TAK68Yr379jOqae+6BqCgvfR6Ranydn3/Z97sEB2MH9l/mywBf5+VxT6tWF51vExTEbUFB3Hb2\nf9R2u52DJSVVgpsMq5X8ykq3PgMmM0T2NV5d7ofCvXDySzidDoX7XWoyrzSPBd8vYMH3Cwj2D+aG\nrjeQGJvIrT1upVlIM/fGKyIiIiIiIiKNhk+HNNdee21dD6HeioqKqrKHT3l5OdnZ2bSqZpLsUo4c\nOVLlWKGFyCVERsJDD8GDD8LatUZ1zYcfQnk5Tcjjl8zll8xlO71IZjrzmUI2NX8WAbZuhd/8Bp54\nAm6/3aiuuf568Pfpn+LSEFwupLmvVSte7t4dgId272b+iRNOt3E+k8lEp5AQOoWEcOfZ/8+x2e3s\nLi42gpv8fDKsVr4pKKDYZnPykzg6gfBuxqvzDCg6DKfSjQoba6ZLTZZUlLB452IW71yM2WRmVOdR\nJMQkMCFmAtGWaNfGKSIiIiIiIiKNgl9dD0C8IyQkhA4dOlQ5d+jQIafauPD6mJgYt8cl0qCZTDBy\nJCxcCD/8AM8+C506Od7uzQ5e4Al+oB2LGM94FmGmwqkuysvho4/gllugQwf4wx9g1y4Pfw6Rs+x2\nO0XVVLFEms28ExvLvNhYIvz9ifD3563YWBbGxhJhNl90fWFlpcvLl/qZTPQMDeWeVq34Z/fupA8Y\nQH58PN/FxfFmz57cHx1NnMVCgKv7zYW2hw6TYMCrMOR96PYwNOmPq78iVdor+Xzf5zz46YO0fakt\nQ98cyt/X/Z09Z/a4Nj4RERERERERadAU0jRgF4YqO3bscOr+zMyq3yhWSCPihJYt4cknYe9e+PRT\nuO028DN+5AZQwXg+ZhEJHKEtL/AYvdjudBfHjsFzz0HPnhAfD2++CVarpz+INGYmk4nNcXE80rYt\n5yKQ+MhItg4axN3VVGZOatWKrXFxDI+IMO4HftOuHZvj4pxabvNK/P386Bsezow2bXi1Rw82DRyI\ndcQINg0YwKvduzOjdWv6hoU5/0tOUAtomwD9XoJhqdDz99B8GJgCXB7r+h/W87vPf0f3l7tz1WtX\nMXP1TLYe36o990REREREREQEAJNdswQ+Z82aNYwaNcpx3LFjRw4cOOB0O08++STPP/+84/gXv/gF\nr7/+eo3uPXbsGNHRPy7REhAQwJkzZxrVvjTO2r59O3369HEcb9u2jd69e9fhiMTnHDpk7GHzxhtw\nwbJQdmATg0hiBu8wiXwiXeoiNBTuustYDm3ECKO4R8QT0nNz+To/n0fbtcPf7/LxR4XNxks//MCw\niAjimzSppRFerLCyki0FBY5l0jZZrewqLna+ocpiOLMRTn0JpzdAZeGV77mCzk06kxibSEJMAkPb\nD8XPpO/NiIiIiIiIiNQWX5rLVUjjgzwV0qSnpzNixAjHcZcuXdizZ0+Nvs08b948pk2b5ji+/vrr\nWb58udNjaEx86cEWH1deDosWwWuvwerVF71dTDBpJJDEDFYy1uVuunaFadNg6lRo396N8Yo0IHkV\nFWy2Wh2hzab8fA6Wlta8AVsZ5HwLp9fCqXVQnuv2mFqHt2Z8z/EkxiZyXafrCDQHut2miIiIiIiI\niFyaL83l1tuQ5syZM2RmZnLmzBny8vKw2WzccMMNtKpm+ZX6xlMhjc1mo1WrVpw6dcpxbtWqVVXa\nvpSRI0eydu1ax/F//vMfHnjgAafH0Jj40oMt9UhWFrz+OqSkQO7Fk70H6Mg8ppLCNA7Q2aUuTCYY\nN86orhk/HoKD3RyzSANzsqyMjPODG6uV42VlV77RXgl52+HUWuNVeuLK91xBRFAkt/e4jYTYBG7o\negNhgWFutykiIiIiIiIiVfnSXG69Cmmys7N55ZVX+Oijj8jKyrro/RUrVjB69OiLzicnJ3P48GEA\noqOj+dnPfub1sbrDUyENwBNPPMELL7zgOL722mtZvXr1ZatpVq5cydixP35732KxsG/fPqKiolwa\nQ0OTkpJCSkrKRecLCwvJyMhwHCukEacUFcF778GcObBx40Vv2zCxhutIZjofciclhLjUTdOmMHky\nTJ8OAwZoOTSRSzlSWlplmbQMq5UzFRWXvsFuh4LdcCrdWBat6KDbY/A3BzOo4xgm97qDe3pNoGlI\nU7fbFBERERERERGFNC75+9//ztNPP01ZWVm1m+2aTKZLhjQvv/wyjzzyCCaTCbPZzOHDh3264saT\nIc2pU6fo3LkzBQUFjnPPPvssTz75ZLXXHzlyhPj4+Cr9PfXUUzzzzDMu9d8QzZo1i9mzZ1/xOoU0\n4rLNm42wZuFCI7y5QB4RvMdEkpjBBoa43M1VVxlhzT33QIsW7gxYpOGz2+3sLympskza5oICCior\nq7+h6NDZwGYtWC/+YonTTGZathjMkC63MKlXAte37k6zgAD32xURERERERFphBTSOKGyspK77rqL\nxYsXY7fbMZlMVUKac8eXC2mKioqIjo4mPz8fk8nECy+8wKOPPlqbH6Na69ato7iaDYy3bt3K448/\n7jhu1aoVb7/9drVtREdH06tXr8v28+yzz/LHP/6xyrn777+fp556iujoaMBYGu3jjz/mkUce4dCh\nQ1Xa3759O03qcONnX6NKGqk1eXkwf76xd82OHdVesoNYkpnOfKZwgtYudRMQALfdZiyHdsMN4O/v\nzqBFGg+b3c7OoqIq1TbfFhRQYrNVvbD05I+BTe5WwFZtezVngoheNG89iiFdb2FUm94MsljoHx6O\nRQ+wiIiIiIiIyBUppHHCr371K+bOnQv8GMj079+f66+/ng4dOvDggw863rtUSAMwZcoUFixYgMlk\nYvTo0axYsaLWPsOldOrUiYMH3VsOZerUqdUGBuez2WyMHz+eTz75pMp5s9lMx44diYyMZP/+/eRe\nsB9GSEgIK1asYPjw4W6NsbHwpQdbGhi7HdauNcKajz6C8vKLLinHn8+4kSRm8Am3UoFr37Bv0wam\nTDEqbGJi3B24SONTbrOxo6iITfn5juDmu8JCKs79ulWeB6e/MkKbM5vAfvHz7LSwLhA1EqLiiW3R\nh0EREQyyWBgUEUG/sDCCzWb3+xARERERERFpQHxpLtenQ5r09HRGjhzp2D8lKiqKlJQUbrrpJsc1\nfn5+jvcvF9J89NFH3HXXXQAEBweTm5tLYGCglz/B5dVWSANQUlLC9OnTeffdd2vUbvPmzfnwww+5\n7rrr3BpfY+JLD7Y0YNnZkJQEr78Ol1gGMZsWvM29JDGD7fSp9pqaGDrUqK75yU8gIsLlZkQavZLK\nSr4rLHSENpvy89lRVIS9oghyNsLJtXBmPVRevLyh04KjIWqE8YqIxd/PTN+wMOIsFgZZLMRZLPQJ\nCyPAz8/9vkRERERERETqKV+ay/XpkGb06NGsWbMGgIiICNavX0/MBV/trmlI88MPP9ChQwfAqLrZ\nsmULffv29d7ga6A2Q5pzPvroI/7617+yZcuWat8PCwtj6tSpzJw5k5YtW7o1tsbGlx5saQQqK+F/\n/zOqa5YuhQuXVwLsQAZxJDOdhUwmD9eWLQwNhTvvNKprRo4Eze2KuK+gooJvCwocwc3GvNPsPbrO\nqLA5nW5U3LgrsDlEDYfmI6DJ1eBnLIUWZDJxdXi4o+ImzmKhZ2go5rO/T4mIiIiIiIg0dL40l+uz\nIU1OTg4tW7bEdnbi8fnnn6+yT8s5NQ1pwKgOycnJwWQy8e677zoqaxqjPXv2sGHDBo4cOUJZWRlN\nmjQhNjaW4cOHExwcXNfDq5d86cGWRubQIZg7F954A06cqPaSYoJZxASSmMFKxmDHtaSlSxeYNg2m\nToWzubeIeEhOeTmbrVY25uWy/MCXfHNgGQUnvoDS6p9rp/hboPkQY1m0pnFgrvr/9eFmMwPCwx2h\nzaCICLoEBzt+xxIRERERERFpSHxpLtdnQ5olS5Ywfvx4wNg75eTJk9VuXu9MSBMbG8vOnTsxmUz8\n+9//duxnI+IJvvRgSyNVVgaLFxvVNatXX/Kyg3RgHlNJYRr76eJSVyYTjB1rVNdMmAAhIa4OWkQu\n53hpKe/tS+ejzFS+PfAZBdZ97jfqFwzNBhlLojUfCv7h1V7W1N+/yjJpgywW2gYFKbgRERERERGR\nes+X5nL966TXGjh69ChgLE3WpUuXagMaZ0VGRjr+bbVa3W5PRMSnBAbCXXcZr6wsY9+alBTIza1y\nWUcO8TTP8BR/5QuuJZnpfMidFBNa467sdlixwng1aQKTJhn71wwcaAQ4IuIZrYOCeCR2DI/EjgEg\n82QmKds+5KPMVPaerH7p0iuylcCptcbLZIYmAyAq3ngFNnNcllNRwYqcHFbk5Pw4nsDAi4KbFnW8\nx5+IiIiIiIhIfeazOwucOXPG8e9mzZpd5sqaKy0tdfw7ICDAI22KiPikmBj4xz/gyBFISoJBgy66\nxA87o1jDW0zlGG2Yy88ZyldOd5WbaxTvDBoEV11ldHvypCc+hIhcKLZFLM+P+jN7HviWg785yL9u\n/BfXdbwOP5OLv9LZKyFnE+z+B3x9J3z7azj8PhQfq/by42VlfHL6NDMPHOCW77+n5Vdf0fHrr7lz\n2zaeO3iQlTk55JaXu/EJRURERERERBoXnw1pvFH1kp2d7fh3VFSUR9oUEfFpoaHGmmQbN0JGBvzs\nZ8a5C0SSz895g68Yzg5i+R3P05rqJ2kvZ9s2+O1vIToaEhNhyRKoqPDEBxGRC3WI7MDD1zzM6mmr\nOf7Ycd68/U1u6X4LgWZXK1vskL8N9r0GGyfD5p/DgXlQuN8on7uEQ6WlfHTqFH/Yv5+xW7fSdN06\nemzYwD07dvCPw4dJz82lsLLSxTGJiIiIiIiINGw+uyfNBx98wMSJEwEICwsjLy8PP7+LM6Wa7klz\n+PBhOnbsCBhLqH322WeMGzfOS6OXxsiX1jEUuazcXJg/H+bMgR07LnlZBWY+40aSmMESbqMC1yoQ\nW7eGKVOMrCg21tVBi0hN5Zfms2z3MtKy0li6eykFZQXuNxrS1tjDJmoEWGLAycodP6BXWFiVZdKu\nCg8nqJrf7URERERERES8zZfmcn02pNm1axcxMTGAEaqsWbOGESNGXHRdTUOal156iccffxwAf39/\nTp8+jcVi8dLopSFLSUkhJSXlovOFhYVkZGQ4jhXSiM+z22HtWmOtso8+gsssUXSSKN7mXpKZzvdc\n5XKXQ4YYYc3EiXBewaSIeElJRQkr960kNTOVj3d9zKmiU+43GhgFUcONwCayH/i5tsVhgMnEVWFh\nRmgTEUGcxULv0FD8FdyIiIiIiIiIlymkqaGuXbty4MABAG6//XbS0tIuuqYmIUuoi5YAACAASURB\nVE1+fj69e/fm6NGjAAwZMoR169Z5b+DSoM2aNYvZs2df8TqFNFKvnDgBycnw+utw9ududezAZgaS\nzHQWMplcmrrUXUgI3HEHzJgB114LmpMV8b4KWwXph9JJy0wjNSuVH/J/cL9Rfws0HwZR8dB0EJiD\n3GouxM+P/uHhjmqbOIuFHqGh+J39XU9ERERERETEExTS1NDs2bMdk+Emk4mkpCSmTp1a5ZorhTSV\nlZXccccdfPzxx4523nrrLe65555a+ATSEKmSRhq0ykpYvtyorlm69LL7UJQQxCImkMx0VjAOu4vb\nnHXuDNOmwdSpcHZVShHxMrvdzuZjm0nNTCU1M5Wdp3e636hfMDQbbFTYNB8C/uHutwlYzGYGng1t\nzgU3nYKDHb//iYiIiIiIiDhLIU0NFRYW0rVrV06ePIndbsdsNvP//t//47e//S1msxm4fEiTlZXF\nL3/5S9LT0x3nevTowY4dO/SHvXicLz3YIh5x8CD897/wxhtGpc1lHKI9b3EfyUxnH11d6s5kgjFj\njOXQEhKMahsRqR2ZJzNJy0ojNTOVzcc2u9+gyR+aDDAqbKKGQ2Az99s8T3N//yrLpA2yWIgOcq+K\nR0RERERERBoPX5rL9emQBuCTTz4hISEBm82G3W7HZDLRoUMHJk2axMCBA7nrrrsAo0Lmueeeo3Pn\nzuzZs4dVq1axatUq7HY75z5iSEgI6enp9O/fvy4/kjRQvvRgi3hUWRksWgRz5sDq1Ze91IaJtYwg\niRl8yJ0UEeZSl5GRMGmSEdgMGmQEOCJSOw7mHmRR1iLSstJYe2gtNrvNzRZNENEHWowwqmyCW3tk\nnBeKDgysskxanMVCVGCgV/oSERERERGR+s2X5nJ9PqQBmDt3Lg888ECVwOVcJcz5w7+wOuZcqGO3\n2wkICGD+/Pn85Cc/qb2BS6PiSw+2iNdkZRlhzbx5kJt72UvzsfA+PyGZ6XzFcJe77N3bCGvuvRda\ntXK5GRFxwcnCk3y882NSs1L5fN/nlFWWud2mKbw79qh4I7AJ7eTVFLZTcLAjtBlksTDQYiHC399r\n/YmIiIiIiEj94EtzufUipAFYuXIlU6ZM4fjx41UCmvODmeoCG7vdTqtWrfjggw+Ij4+v3UFLo+JL\nD7aI1xUVwXvvGXvXbNp0xcuz6EkK05jHVI7TxqUu/f3hlltgxgy46SYICHCpGRFxUX5pPp/u/pS0\nrDSW7lpKYXmh221GWjoR0vJaTkZeQ2V4TzC5treVM3qGhFRZJu3q8HBCzy6jKyIiIiIiIo2DL83l\n1puQBiAvL4/XXnuNV155haNHj17x+qZNm/Kb3/yGRx55hIiIiFoYoTRmvvRgi9SqzZuNsGbhQigu\nvuylFZhZzg0kMYMl3EY5ri1F1KoVTJliVNj06uVSEyLihpKKEj7f9zmpmaks3rmYM8Vn3G6zZXg0\nvTpcT3DLazkS3JMdxaVUemCsV2IGeoeF/VhxExFB37AwAv28HxiJiIiIiIhI3fCludx6FdKcY7PZ\n2Lp1K2vXriUzM5PTp0+Tm5tLaGgoUVFRdO7cmVGjRjF48GD8taSF1BJferBF6kRuLsyfbwQ2mZlX\nvPwUzVnAPSQxg+/o53K311xjhDV3323sZSMitavCVsHag2tJzUwlLSuNI9YjbrfZPKQ5N3W/lT6d\nbsTcNI4tRWVkWK3svEIQ7CmBJhP9wsOr7HHTKywMszbIEhERERERaRB8aS63XoY0Ir7Ilx5skTpl\nt8OXXxp713z0EZSXX/5y4Fv6k8QMFjKZHJq51G1wMNxxhxHYjBoF+hK8SO2z2W1kHM0gLTON1KxU\ndp3e5XabYQFh3Nz9ZhJiEojvcgN7ykxsslrZZLWSYbVyoKTEAyO/slA/Pwact79NnMVCt5AQ/BTc\niIiIiIiI1Du+NJerkEbEQ3zpwRbxGSdOQFISvP46HDx4xctLCGIx40lmOv/jeuy4lrR07AjTphmv\nTp1cakJE3GS328k8lemosPnm2DdutxloDmRM5zEkxiZye8/baRnWkpNlZWw+L7TZZLVyrKzMA5/g\nyiLNZuLOWyYtzmKhQ1BQlT0TRURERERExPf40lyuQhoRD/GlB1vE51RWwvLlxlJoS5ca1TZXcJh2\nvMV9JDOdvXRzuevRo2HGDEhIgNBQl5sRETcdyD3AoqxFpGamkn4oHTvu/QrqZ/IjvkM8CTEJJMQk\n0LFJR8d7R0pLjcAmP98R3JypqHD3I9RIi4CAKtU2gywWWgcF1UrfIiIiIiIiUjO+NJerkEbEQ3zp\nwRbxaQcPwty58MYbkJ19xcvtwFpGkMx03ucnFBHmUrcRETBpkrEc2uDBoC+6i9SdEwUn+Hjnx6Rm\npbJy30rKbZdfFrEmBrQZQGJMIomxicS2iK3ynt1u50BJSZVl0jZbrVgrK93utybaBQVVCW7iLBaa\nBQTUSt8iIiIiIiJyMV+ay1VII+IhvvRgi9QLZWWwaJFRXbNmTY1usRLOB9xFEjNYR7zLXffqZYQ1\nU6ZAq1YuNyMiHpBXksfS3UtJy0rj092fUlRe5HabPZv3JDE2kYSYBOKi46pdfsxmt7OrqKjKMmnf\nFhRQYrO53X9NdAkOZtB5y6QNCA/H4u9fK3274kx5ORN37Khy7r1evRQ2iYiIiIhIveRLc7kKaUSc\nlJKSQkpKykXnCwsLycjIcBwrpBFxQmamsW9NSgrk5dXolp30IIVpvMV9HKWtS92azXDLLUZgc8st\noLlGkbpVXF7Min0rSM1MZcmuJZwpPuN2m+0j2jMhZgKJsYnEd4jH3+/SQUiFzcb2oqIqy6R9V1hI\nRS38umwCYkJDqyyTdnV4OMFms9f7rolXjxzhwd27q57r3p3727r281dERERERKQuKaQRqcdmzZrF\n7Nmzr3idQhoRFxQVwbvvGtU154Wel1OBmf9xPclMZzHjKSfQpa5btoR77zX2r9GjK1L3yivL+fLg\nl6RlpZGWlcZR61G322we0pzxPceTEJvA2C5jCfYPvuI9JZWVfFdY6AhtNuXnk1lURG3U2/ibTPQJ\nC6sS3PQJCyPAz68Weq9q8ObNbLJaq56zWNgwcGCtj0VERERERMRdCmlE6jFV0ojUkowMmDMHFi6E\n4uIa3XKK5ixkMknMYCtXu9z1oEFGWHP33dCkicvNiIiH2Ow2Nh3ZRGpmKqlZqew5s8ftNsMDw7m5\n+80kxiRyc/ebsQRZanxvQUUF3xYUOIKbDKuV3TX8OeWuIJOJq8PDjdAmIoJBFgs9Q0Mxe3Gjre2F\nhfTZtKn69wYNoleYa3uFiYiIiIiI1BWFNCINkC892CINSm4uzJ9vVNdkZtb4tm+5mmSm8zb3kkMz\nl7oODobERGM5tNGjoQ6+vC4iF7Db7Ww/uZ20zDRSs1LZcnyL220GmgMZ12UcCTEJ3N7zdlqEtXC6\njZzycjaft79NhtXKodJSt8dWE+FmMwPOBTdnq266hoRUuxePK363dy9/P3y4+vfat+f5rl090o+I\niIiIiEht8aW5XIU0Ih7iSw+2SINkt8OXXxphTWoqlJfX6LZSAvmY20liBsu5ATuuJS0dO8LUqTBt\nGnTu7FITIuIF+3P2O5ZEW3doHXbc+9XWz+THiA4jSIxNZELMBDpEdnC5rRNlZWw+b5m0TVYr2TX8\n2eWupv7+xJ23TFqcxUK7oCCng5sKm43269dzvKys2vfbBAZyaMgQ/JVii4iIiIhIPeJLc7kKaUQ8\nxJcebJEG78QJSEqC11+HgwdrfNsPtOUt7iOZ6eyhu8vdjxplVNfccQeEhrrcjIh42PGC43y882NS\nM1NZtX8V5Tb3A5G46DgSYhJIjE0kJirGrbbsdjs/lJZWqbbJsFrJqahwe5w10SogoMoyaXEWCy0C\nAjh1meBodW4uE3fsuGy77/fqxXWXWRsyKiDAY1U9IiIiIiIinuBLc7kKaUQ8xJcebJFGo7ISPvvM\n2Ltm6VKj2qYG7EA68SQznfdNEym0u7afQkQETJxo7F9zzTWgOUgR35FbksvSXUtJy0pj2Z5lFJUX\nud1mTFQMiTGJJMQmMLDNQI8ED3a7nX0lJY5Kmwyrlc1WK4U2m9tt10TrgACOe7m6Z0tcHP3Cw73a\nh4iIiIiIiDN8aS5XIY2Ih/jSgy3SKB08CHPnwhtvQHZ2jW8rIIwPuIskZpDOCJe7j4kxwpopU6B1\na5ebEREvKCovYsXeFaRmpbJk5xJySnLcbrNDZAcm9JxAYmwi8R3iMfuZPTBSQ6Xdzs6iIkdosyk/\nny0FBZTW01/bn+7YkdlaJ1JERERERHyIL83lKqQR8RBferBFGrWyMkhLM6pr1qxx6tbddCOFaaSY\nf8rRSteSFrMZbr7ZWA7tllsgMNClZkTES8ory/ni4BekZRr72BwrOOZ2m1GhUYzvOZ6EmATGdhlL\nkH+QB0ZaVZnNxvbCwh+DG6uV7wsKqPR4T57XJyyM7wcNquthiIiIiIiIOPjSXK5CGhEP8aUHW0TO\nysw0wpp58yAvr8a3VeLHCsaR5PczFjOeMluAS923aAH33msENn37utSEiHiRzW5j45GNpGamkpqZ\nyt6cvW63aQm0cHP3m0mMTeSmbjdhCbJ4YKTVK66sZGtBQZXgJquoCF/75d4MHB02jJZKrUVERERE\nxEf40lyuQhoRD/GlB1tELlBUBO++C6+9BhkZTt16mmYsZDLJwffzbUkvl4cQF2csh3b33dC0qcvN\niIiX2O12tmVvIy0rjdTMVLae2Op2m0HmIMZ1HUdCTAK397ydqNAoD4z08qwVFXxTUOBYJi3DamVv\nSYnX+72UzsHBLIyNZUhkZJ2NQURERERE5EK+NJerkEbEQ3zpwRaRy8jIMKprFi6E4mKnbt1CP5L9\nf8Hb5vs4U+raJthBQZCQYAQ2o0cby6OJiO/Zl7OPtMw0UrNS+frw19jdrE/xM/kxsuNIEmMSmRAz\ngfaR7T000is7U15OxnnVNhlWKz+Ulnq933A/P25r3pzRTZsyokkTeoSEYDKZvN6viIiIiIjIlfjS\nXK5CGhEP8aUHW0RqIDcX3nrLCGwyM526tZRAlnAbSZG/ZXn+EGx2P5eG0L49TJtmvLp0cakJEakF\nx6zHWLxzMWlZaazav4oKW4XbbQ6KHkRibCIJMQn0jOrpgVE651hpaZXgZpPVyqnycq/2GRUQQHxk\nJCMiI4mPjKR/eDgBfq79/BQREREREXGHL83lKqQR8RBferBFxAl2O3z5pbEUWmoqODlJeYRo3gr+\nJcnBv2J3bkuXh3HddcbeNXfcAWFhLjcjIl6WU5zD0t1LSc1M5bM9n1Fc4VxFXnV6tehFQkwCibGJ\n9G/dv06qTex2O4dKS/n09Gn+evAgR8vKvN5nqJ8fQyIiHMHNkIgIwv39vd6viIiIiIiIL83lNpiQ\npqSkhM8//5xdu3ZhNpvp3bs3o0aNwlyDdWSOHj3KU089hclk4s0336yF0UpD5EsPtoi46MQJePNN\nmDsXDh506lY7sI7hJLf5E+/njKWgJMClIVgsMHGisRzakCGglYFEfFdReRHL9ywnLSuNJbuWkFuS\n63abHSM7khCTQEJsAsPbD8fsV/trIj538CB/2L+/1vs1A/0tFuLPVtrER0bSKjCw1schIiIiIiIN\nny/N5TaIkOaDDz7goYce4tSpU1XOt23blueee47Jkydf9v7t27fTt29fTCYTlZWV3hyqNGC+9GCL\niJsqK+Gzz4zqmk8/NaptnFBAGB9G/ozkyN/w5aFOLg+jZ08jrJkyBdq0cbkZEakF5ZXlrDmwhtTM\nVBbtXMTxguNut9kitAXje44nMTaR0Z1HE+Qf5IGRGmx2G6eLTlf73pTMHSw/k+OxvqoIiABTzZc4\n6x4S4lgeLT4ykm7a10ZERERERDzAl+Zy631Is2DBAqZOnYrdbqe6j2IymZg0aRL//e9/CQkJqbYN\nhTTijJSUFFJSUi46X1hYSEZGhuNYIY1IA3HwoFFZ88YbkJ3t9O17TN1J6f5XUk7fzpHTwS4NwWyG\nG280AptbbwV9sVzEt9nsNtb/sJ60zDRSs1LZl7PP7TYjgiK4pfstJMYmcmO3GwkPDHervZOFJ2n5\ngutLNLpsaBoENnH59lbn9rVp0oT4yEj6hYXhr31tRERERETESQppPCQ7O5sePXqQn58PwIQJExgz\nZgxlZWWsXr2aZcuWUVlZiclkYsiQISxbtoyIiIiL2lFII86YNWsWs2fPvuJ1CmlEGpiyMkhLM6pr\nvvjC6dsr8ePz1lNIavkki7J6Ulbm2jfBo6Lg3nuN/WuuusqlJkSkFtntdr7P/p7UzFTSstL47sR3\nbrcZZA7ihm43kBCTwG09bqN5aHOn26ivIc2Fws1mhp63r801ERGE1mC5YxERERERadwU0njIs88+\ny5/+9Cf8/PxYsGABEydOrPJ+RkYG06ZNY8eOHZhMJgYMGMD//vc/mjZtWuU6hTTiDFXSiAiZmTBn\nDsybB3l5Tt9+JqAVC696jmTrnXyzy/Vvww8caIQ1kyZBs2YuNyMitWjvmb2kZaWRmpnK1z987XZ7\nZpOZaztdS2JMIhNiJtA2om2N7qurkGb4jSv5ptSfYpvNK+37m0wMCA+vskRalMoPRURERETkAgpp\nPGTUqFF8+eWX3HvvvcybN6/aawoLC5k8eTJLlizBZDLRr18/Pv/8c5qdN5ulkEY8wZcebBGpJYWF\n8N57RnXNeSGtM7Z2TSS5w9O8vbUvp8+4tmRPUBBMmGAshzZmjLE8moj4vqPWoyzOWkxaVhqrD6ym\nwlbhdpvXtL2GhJgEEmIT6NG8xyWvq6uQJvvxbCJDmvNtQQHpeXmszc0lPS+P0xXuf/ZLiQkNdVTa\nxEdG0jk4WPvaiIiIiIg0cr40l1uvQ5pWrVpx6tQpFi9ezK233nrJ6+x2Oz/72c9ITk7GZDJx1VVX\n8fnnn9O8ubE0hEIa8QRferBFpA5kZBhhzTvvQHGx07eXhTZhybBnSS6dxLJ1kbj6JfN27WDqVJg2\nDbp1c60NgK++gmHDXL+/ttsVqe9yinP4ZNcnpGalsnzPcoornP85cqHeLXqTGJtIQkwCV7e+ukow\nUZchTYuwFlXO2e12soqKSM/LM4KbvDz2l5R4bQzRgYGOKpsRkZH0DQ/HrNBGRERERKRR8aW53Hod\n0gQFBVFRUcE333xDv379rnj9/fffz+uvv47JZKJPnz6sXLmSqKgohTTiEb70YItIHcrJgfnzjcAm\nK8ulJo72v4X53WaTtKU/u3a7viH2yJFGdc2dd0JYWM3vmzULZs+GF16Axx5zufuLvPgiPP44zJxp\n9CEi1SssK2T53uWkZaWxZOcS8kqdX1bxQp2adCIhJoHE2ESGthvKmeIzPhPSVOdIaakjtEnPy2Nr\nQQHe+qMlwmxm2HnLow22WAhRSaKIiIiISIPmS3O59TqkiYiIoLCwkC+++IL4+Pga3fPQQw/x6quv\nOoKaVatWcfz4cYU04jZferBFxAfY7fDFF8beNampUF7ufBNNm/H1DbNIqriP9z6LpKDAtaGEh8PE\nicb+NcOGweW+MH4uoDnHU0HNuYDmHAU1IjVTVlnGmgNrSM1MZVHWIk4UnnC7zZZhLbmhyw3M/36+\nB0bonJqGNBfKq6jg67NVNul5eWzIz6fUS3/GBJhMxFksjkqb4ZGRNAsI8EpfIiIiIiJSN3xpLrde\nhzS9evVi586dzJ07l5/+9Kc1vu/Xv/41//nPfzCZTPTu3Zt///vfjB49WiGNuMWXHmwR8TEnTsCb\nb8Lrr8OhQy41UXjdLXzYZybJ3w3kiy9dr67p0cMIa+67D6Kjq7731VcwfPjF97gb1FwY0Jyzbp2W\nPhNxRqWtkvU/rCctK43UzFT25+6v6yE5zdWQ5kKlNhubrVbH8mjr8vLI8eK+Nr3P7msTHxnJiCZN\n6BAUpH1tRERERETqMV+ay63XIc3dd9/N+++/z6RJk1iwYIFT9z788MO88sormEwmWrRoQXZ2tkIa\ncYsvPdgi4qMqK2HZMqO65tNPjWobZ7Vpw97EJ0gxz2BeWiSHD7s2FD8/uPFGYzm0226DwEDj/KUC\nFVeDGk+3JyIGu93O1hNbSctMIzUrlW3Z2+p6SDXiqZDmQja7ncyiItbm5jqCm0OlpR7v55x2QUGM\nOG+JtD5hYfgptBERERERqTd8aS63Xoc0r776Kg899BDh4eEcP36c0NBQp+5/5JFHePnllzGZTNjt\ndoU04hZferBFpB44cADmzjUqbLKznb/fz4/KW8ez8po/kvzdQNIWmXB1PrJ5c7jnHiOw6dfPc8GK\nAhqR2rP79G7SstJIy0pj/Q/r63o4l+StkKY6h0pKWHfeEmnbCgu9tq9NE39/hkVEOIKbOIuFYO1r\nIyIiIiLis3xpLrdehzT79u2jW7dumEwm/vWvf/HQQw853cajjz7Kv/71LwCFNOIWX3qwRaQeKSuD\ntDR47TVjDxtXdOlCzpSHeSdkBkkfWNi82fXh9O9vhDU5OfD00xe/X9OARQGNSN05kn+ExTsXk5qZ\nypoDa6i0+87vt7UZ0lwop7ycr/LzjUqb3Fw2Wa2UeelPoSCTiUEREY59bYZFRNBE+9qIiIiIiPgM\nX5rLrdchDcC0adM4cuQIbdu2JSUlxaU2fv/73/P+++8DsH9//VvbW3yDLz3YIlJP7dhh7Fszbx7k\n5Tl/f2Ag3HUX3439Lclb+vP2AhOnTrk2lMBAiI2FrVsvfs8RtNjtYLUaQVNgIFgsYDIpoBHxIWeK\nz7Bk5xLSstJYvnc5JRUldTqeugxpLlRSWUmG1eqotFmXl0eel76wZQL6hIU5Km1GREbSLjjYK32J\niIiIiMiV+dJcbr0PaUR8hS892CJSzxUWwrvvGtU1rpbF9OlD2c8f5JNm95H8XijLlhlb4njKC93m\n8NjpPxolN+c0bcqLzf8fj+/51cXXK6ARqXOFZYV8tuczUrNS+XjnxxSUFdT6GHwppLlQpd3O9sJC\nx542a3NzOVJW5rX+OgYFGYFNkybER0YSGxqqfW1ERERERGqJL83lKqQR8RBferBFpAHJyDDCmnfe\ngeJi5+8PC4N77uHYnb9m/rd9SE6GrCzPDO0FHuMxXnIcv8hveZwXL75OAY2IzzmSf4R2/2hX6/36\nckhzIbvdzsGSEtLPVtqszctjR1GR1/pr5u/P8LNVNvGRkQy0WAj08/NafyIiIiIijZkvzeU2mpBm\n5cqVXH/99YCx90xFRUUdj0gaGl96sEWkAcrJgbfegjlzXE9ZhgzB/qv7Wd9xIskLg3j3XWO1Mnc8\nyCu8zK956VIBDY/x2OTj8O9/Q/Pm7nUmIh5zsvAkLV9oWev91qeQpjqny8tZdza0Sc/LI8NqpdxL\nf04F+/lxjcXiqLYZGhFBhL+/V/oSEREREWlsfGkut1GFNOPGjQOMkKbSS+tNS+PlSw+2iDRgdjt8\n8YVRXZOaCq586aBZM5g2jcL77if1u24kJcGaNa4PyUwFlVw8cVil0iY6Gj77DPr2db0jEfGYugpp\nrm51NTd1v4mxXcYyrP0wgv3r974sRZWVbLJaWZubS3peHl/l52P10t8ZfsBV4eGOSpv4yEiig4K8\n0peIiIiISEPnS3O5CmlEPMSXHmwRaSSOH4ekJHj9dTh0yLU2xo6FX/2KfX1uJ2VBACkpcPiw+0P7\nHc/zPE9WPdm0qREwKagRqXN1FdKcL8Q/hBEdRzC281jGdhlLv9b98DPV7+W9Ku12viso+HFfm7w8\njntxX5suwcFGpc3Z0KZnaCgm7WsjIiIiInJFvjSXq5BGxEN86cEWkUamshKWLTOqa5YtM6ptnNWm\nDfz851TO+DmrMiJInrKS1OKbKMX1b7lfxVYm8h4TeY+u7DNORkfDd99p6TOROuYLIc2FokKjGNN5\nDGO7jGVcl3F0bNKxrofkNrvdzv6SEtae29cmN5edruwvVkNRAQGOKpsRkZH0Dw8nQPvaiIiIiIhc\nxJfmchXSiHiILz3YItKIHTgAc+fCm29Cdrbz9/v5GYHNkSPk0IR3uZtkprOJwW4NayAZTOQ9fsL7\ndJwcDwsWuNWeiLjHF0OaC3Vr1o2xnccyrus4RnUaRdOQpnU9JI84WVbGurNVNul5eXxTUECFl/4k\nC/XzY0hEhCO4GRoRQbj2tRERERER8am5XIU0Ih7iSw+2iAhlZcaeNXPmGEuMuWkbvUlmOvOZwknc\nm9i9hvVM/FkEd83sRbt2bg9NRFxQH0Ka8/mZ/BjYZqCjymZY+2EE+TeM/VgKKyvZkJ/vWCLt67w8\nCm02r/RlBq4OD2dEkyaO4KZVYKBX+hIRERER8WW+NJerkEbESSkpKaSkpFx0vrCwkIyMDMexQhoR\n8Rk7dhhhzbx5kJ/vVlPP8wRP8jcPDQzi42HiRLjzTmjd2mPNisgV1LeQ5kLn9rMZ12UcY7uM5apW\nV9X7/WzOqbDZ2HJ2X5tzwU12ebnX+useElJlX5tuISHa10ZEREREGjyFNHVAIY14yqxZs5g9e/YV\nr1NIIyI+p7AQ3n3X2Ltm82anb3+R3/I4L150PpBSynDvG+1+fnDttUZgk5gILVq41ZyIXEFdhTQ3\nd7uZdYfXkVea59F2W4S2YEyXMYztPJaxXcY2iP1szrHb7ewpLnYsj5ael8duL+5r0+r8fW2aNKFf\nWBj+2tdGRERERBoYhTR1QCGNeIoqaUSkQdi0yQhr3n0XajDZd6mA5gUe4zFe4mlm8QwzPTI0sxlG\njzYCm4QEaNbMI82KyHnqKqTJfjybZiHN2HxsM5/v+5wV+1aw7tA6ym2erRTp3qw7Y7sYgU1D2s/m\nnOOlpaw7t0Rabi7fFhTgnQXSIMzPj6HnVdpcExFBmNnspd5ERERERGqHQpo6oJBGvM2XHmwRkRrL\nyYG33jKWQ8vKqvaSKwU0V7rOHf7+cP31RmAzfjxERnq0eZFGqy5DmhZh8hfcvwAAIABJREFUVUvl\nCssKST+Uzop9K/h83+dsPbHVo336mfyIi45jbOexjOs6jqHthjaY/WzOsVZUsP5saJOel8f6/HyK\nvLSvjb/JxIDwcMcSacMjI2mhfW1EREREpJ7xpblchTQiHuJLD7aIiNNsNmjSBKzWKqdrGtBc6fpo\njnCUtm4NMTAQbrzRCGxuuw0sFreaE2nUfCmkueiawmxW7lvpqLQ5nH/Yo2MI8Q9hZMeRjO0ylnFd\nxtG3Vd8Gs5/NOeW2/8/enQdFfeb74n93Nw0N9Ia44oLgblQUXFAhGIVMErOMUSSaZSYLzJIxp85J\n7uSee+reMVW36nfunJlT9UvOmTMXNGMm2yAxkzhxMhlao+KuoBH3KLihoii9sdP9vX986QZ3u7/f\nLzzA+1VFVdLL53lS8QF83v08Hz8Oer03XZFWp2Ffm4kxMZ1XpNlsSDKZ2NeGiIiIiIQm0l5uRI+M\nSkRERGLxehUHNACCj9/6vksYjrfxrzDDi2Lk4QimhjzF1lZg40b5y2QCFi+WA5vFi4GYmJDLEZGg\nBscOxoqpK7Bi6gpIkoTvb3wPR5UDjioHtlRvUdzPpqm9Cd+c+QbfnPkGQGc/m5zkHGQnZ2OUbZQa\n/xk9yqjXY7bVitlWK94cORKSJOFkY6N8PVpHaFPV3KzaeCcaG3GisRFrLl8GAAyLjAxej5Zhs2Ga\n2QwDQxsiIiIiojviSRoilYiUvhIRhayuDhjU+en2cAKaru73/mOYhGLkoXjsv+DkaWWfGYmNlU/W\nLF8OPP64HOAQ0b2JfJLmXtr97Si/JPezcVQ7NOtnEwhsHkl6BHaTXdX6orjU0hI8ZVPmcuE7rxda\n/cXQYjBgntUqn7Sx2zHbYkE0+9oQERERUQ8SaS+XIQ2RSkRa2EREIXO7gw1flAY0AQ9SR3K5cbja\ngvXrgeJi4MyZMOffwWKRe9fk5cm9bNgmgejOemtIc6uG1gaUnS8LXo12uPawarWBzn42gdCmL/az\nCXB19LUpczqxw+XCXo8HzRr1tTHqdJhpsQRP2sy32RBvNGoyFhERERHRnYi0l9ujIc327du7bawD\nBw7grbfeAsCQhrQh0sImIgqZJAHx8fht/cuqBDQB9w1q5s6Vj8AsWwZp+AhUVMhhzfr1wLlzYf2X\nBNntwJIlcmCzcCHA/T+iTn0lpLlVrbcWW6q3oLSqFI4qh+r9bGKMMXI/m6RsZCdn98l+NgEtfj8q\nPJ6brkirb2/XbLzJMTE3XZGWyL42RERERKQhkfZyezSk0ev13f6LtyRJDGlIEyItbCKicOya+Qbm\nl7972+PhBjQBdwtqdmIe5mF35wO3BDZ798qBTUkJUFMT9vAAgPh44Nln5cBmwQKAt+xQf+eX/Lje\neL3bx42Pie+2UKNrP5vSqlJ8W/2t4n42txocOxiLkhYhOzm7z/SzuRu/JOF4R1+bHS4XypxOnGtp\n0Wy8EVFR8vVoHaHNlNhY6BnaEBEREZFKRNrLFSKk6a4pBMZiSENaEGlhExGF5X/8D6z+/yLxDlYH\nH1Ia0ATcGtT8CquxGu/c/Q1dAht/wgjs2tUZ2NTWKpvL4MHAsmVyYJORAej75ofgiegWgX42gVM2\nuy7sUr2fzfj48chOykbOmBwsGL2gz/azCbjQ3BwMbXa4XKhsaNCsr43NYMD8jsAm02bDTIsFJibu\nRERERBQmkfZyhQhpuhNDGtKKSAubiCgslZXAtGlYjV/hHaxWLaAJCAQ19w1objV3LpCbCyxbBl/C\nSGzfLgc2GzYAdXXK5jRsmFw6Lw9IT2dgQ9SfNLQ2YPu57XBUOeCodmjSz2ZWwixkJ2cjJzkH6SPS\n+2w/m4D6tjbsdruD16Ptc7vRqtFfNyN1OsyyWJBpt8t9baxW2HmvJRERERE9IJH2cns0pBk9enSP\n3TNcXV3dI+NS3yXSwiYiCtvDDwNlZdiFuTdfRaYSxXW7BDbtw0Ziyxa5f83nnwP19crmNnKkfHgn\nLw+YORPgrTpE/UuttxabqzcHr0e76L6oav1AP5uc5By5n83gqX2+50qzz4cDHX1tdrhc2Ol2w6lR\nXxsdgCmxsTddkTbSZNJkLCIiIiLq/UTay+3RkIaoLxFpYRMRhW3TJuDJJ3t6Fg+mS2DTOmQkHA75\nhM0XXwBut7LSycmdgU1KCgMbov5GkiScun4qeMpmS/UWuFsUfmO5xeDYwXIvmyS5n81I20hV64vI\nL0k42tAQPGlT5nLhooZ9bRI7+tpk2GzItNsxKSaGfW2IiIiICIBYe7kMaYhUItLCJiJSZOVK4NNP\nta3/P/+n3GCmpES+Zk2p9PRgD5vmQSPxzTdyYLNxI9DQoKz0+PGdgU2Xb/NE1I+0+9tx4NKB4Cmb\n3Rd2q97PZkL8BDm0Sc7uF/1sAs519LUpczqxw+XC0cZGzcYaEBER7GuT0dHXJpL3XBIRERH1SyLt\n5TKkIVKJSAubiEiR69eBadOAS5fUr52QABw+DMTHdz528qQc1qxfr15g03HCpnHgKHz9tRzYfPUV\n0NSkrPTkyXJYk5cHTJigfKpE1Dt5W70oO1eG0qpSOKocqLyqwveuLvQ6PWYPnx08ZTN35FxEGiJV\nHUNUN9rasLPLSZsDHg/aNPorq0mvx2yLJXg92lybDbaICE3GIiIiIiKxiLSXy5CGSCUiLWwiIsUq\nK4GsLOWNXrqKiwO2bQOmTr37awKBTUmJHOYo1SWw8Q4Yha++kgObr78GlN6wk5LSecJmzBjlUyWi\n3uuK9wq2VG9BaVUpSs+UosZTo2r9GGMMshKzkJ2cjZzkHEwZPKXP97MJaPL5sN/jCV6Rtsvlgtvn\n02QsPYBpZvNNfW0SoqI0GYuIiIiIepZIe7kMaYhUItLCJiJSRWUl8Nhj6pyoSUgA/va3ewc0t9Iw\nsHHbR2HjRjmw+eYboE3hrUVpaXJYs3w5kJiofKpE1HsF+tkETtl8e/Zb1fvZDIkdgkXJi5CTnIPs\n5GyMsI5Qtb7IfJKESq83eNKmzOXC5dZWzcZLMpmCgU2mzYYJMTH9JiAjIiIi6stE2stlSEOkEpEW\nNhGRaq5fB954A/jkk/BrrFwJvPvuzVechUrtwGbOnGAPm3rLKHzxhRzYOByA0g9op6fLgc2yZcCI\n/rNvSkR30e5vx/6a/XBUOeCodmjWzyYQ2CwYvQA2k03V+iKTJAnVHX1tAsHNCQ372gw0GjHfakWm\n3Y4Mmw2pZjOM7GtDRERE1OuItJfLkIZIJSItbCIi1W3aBPz618D27Q/+nocfBt5+G3jiCXXncupU\nZw8blQObuphR+PxzufS33wJ+v7LSGRmdgc3QocqnSkS9n7fVi+3ntsNR5UBpVSmOXD2ian2DziD3\ns0mW+9mkj0jvN/1sAq61tgb72uxwuVDu9aJdo7/2Ruv1SLdagydt0q1WWNjXhoiIiEh4Iu3lMqQh\nUolIC5uISDNHjgCffgrs2weUl9/csyYuTr73a/ZsYMUKoMv3RM1oEdh0XIlWa0rEhg3yCZuyMkDJ\nb0x6vdziJy8PePZZYNAg5VMlor7hivcKNldthqPaoUk/m1hjLLJGZyE7SQ5t+lM/m4AGnw/73O5g\nX5vdbje8GvW1MQCY3tHXJvA1lH1tiIiIiIQj0l4uQxoilYi0sImIuoUkAV4v0NICREUBZjPQkxt/\ngcCmpAT47jvl9boENjURifjsMzmw2b1bWVmDAVi4UA5sliwBBgxQPlUi6hskScLJ6yeDp2y+rf4W\nnlaPqmMMiR0SPGXT3/rZBLT7/fiuoUG+Hs3pxA6XC7VKm5Pdw9jo6GBfmwybDeOio/tdUEZEREQk\nGpH2chnSEKlEpIVNRNTvaRjYnNcloqREDmz271dW1mgEcnLkwOaZZwBb/2kjQUQPINDPprSqFI4q\nB3Zf3I12f7uqY0wcOBHZSdnIGZODrMSsftXPJkCSJJxuarqpr833TU2ajTfYaAxej5Zhs2G62YwI\n9rUhIiIi6lYi7eUypCEK0bp167Bu3brbHm9oaMCBAweC/86QhohIEGoHNrNnB3vYVPkSsX69HNgc\nOqSsbGQk8Pjjcumnn5YPJhERdRXoZ1N6phSOaoem/WxyknMwZ8ScftfPJqC2o69N4Iq0gx4PtLkg\nDYjV6zG3I7DJtNkwx2pFrMGg0WgP7kZbG/KOHbvpseLJkzHAaOyhGRERERGphyENUS+2evVqvPPO\nO/d9HUMaIiIBnToFfPaZ3MNG5cDmVEsiiovl0kcU7puaTMDixfIJm8WLgZgY5VMlor7nsucyNldv\nDl6PdslzSdX6gX42Ock5yE7OxkODHuq313R529uxx+0OnrTZ43aj0e/XZCwDgFSL5aYr0gZFdn9Y\n9ruaGrz+/fc3PzZuHH42fHi3z4WIiIhIbQxpiHoxnqQhIuojvv9ePl2jZmCTmwvk5uKot/OEzcmT\nysrGxgJPPSUHNo89Jgc4RES3kiQJJ+pOwFHlgKPaoUk/m6HmoXIvmyS5n81wa//drG/z+3HI6w2e\ntNnhcuGahn1tJkRHyydt7HZk2GxINpk0D8xml5djv+fmP0OzLRbsTUvTdFwiIiKi7sCQhqgPEmlh\nExFRiAKBTUmJ8nvLgGBgIy1dhsPu0SgulgObqiplZS0WuXdNXh7w6KPyFWlERHfS5mvD/kv7g6ds\n9lzco3o/m0kDJ8mhTXI2FoxeAGuUVdX6vYkkSTjV1IQypzMY2pxpbtZsvGGRkcFTNpk2G6aZzTCo\nGNocbWjAlLs0Xjs6axYmx8aqNhYRERFRTxBpL5chDZFKRFrYRESkgIaBTcWN0cEr0c6dU1bWbgeW\nLJEDm4ULAbYIIKJ78bR4sP3c9mBoc/TaUVXrG3QGzBkxJ3jKJn1EOoyG/v2N6VJLy019bb7zeqHN\nBWmAxWDAXKs1eEXaHKsV0Qr62vzyzBn824ULd35u5Ej8nzFjwq5NREREJAKR9nIZ0hCpRKSFTURE\nKlE7sJk1C1i+HNLSZdhbKwc2JSVATY2ysvHxwNKlcnucBQsAAfpNE5HgAv1sSqtK4ahyqN7Pxhxp\nRlZiFrKTs5GTnIPJgyb32342Ae72duwO9LVxOrHX40GzRn1tjDod0rr0tZlvsyH+AdP8dr8fI/fs\nwZXW1js+PywyEufT0xGh16s5ZSIiIqJuJdJeLkMaIpWItLCJiEgD338PfPaZfAxGrcAmNxf+pbnY\nWTMa69fLgU1trbKygwcDy5bJJ2wyMgDuoRHR/QT62QQCm61nt2rWzyYnOQeLkhb16342Aa1+Pyo8\nnpv62txoV/dKuq4mx8TIV6RZrZgcG4uRUVF3DM6+dTqRd+zYPWutnzwZC+z2uz4/0Gjs96EcERER\niU2kvVyGNEQqEWlhExGRxk6f7jxhc/Cg8nodgY3v2VxsPy+fsNmwAairU1Z22DAgN1cObNLTGdgQ\n0YMJ9LMpPVMKR7VDs342Ock5yE7ORtborH7dzybAL0k40dgon7TpCG3OatjXRkuHZs5Eitnc09Mg\nIiIiuiuR9nIZ0hCpRKSFTURE3UijwKZ9SS62VMmBzZ//DNTXKys7cqR8HVpeHjBzJsAPOBPRg/K0\neLDt3DY4qhxwVDk062cTCG3mDJ/T7/vZBFxsbg6esilzuVDZ0IDe8Bf4/5WYiHeSknp6GkRERER3\nJdJeLkMaIpWItLCJiKiHqB3YzJwJLF+O1qeXwXEmCcXFwBdfAG63srLJyZ2BTUoKAxsiCs0lzyVs\nrtoMR7UDpWdKcdl7WdX65kgzFoxegOykbGQnZ7OfTRfOtjbs6uhrs8Plwj63Gy0C/pV+SmwsKmfN\n6ulpEBEREd2VSHu5DGmIVCLSwiYiIgGcPt3Zw0bFwKb5qVx8c1I+YbNxI9DQoKzs+PGdgU2XH2NE\nRA9EkiQcrzsOR5UDpVWl2Hp2K7ytXlXHGGYehuzk7OBXgiVB1fq9WbPPh3KvF2VOJ3a4XNjpdsOp\nYV+bB2UAcGnePAyOjOzpqRARERHdkUh7uQxpiFQi0sImIiLBaBHY5Oai8cnl+Pq4HNh89RXQ1KSs\n7OTJcliTlwdMmKB8mkTU/7T52rCvZl8wtNlzcQ98kk/VMSYPmozspGzkjMlBVmIWLFEWVev3Zn5J\nwtGGhpuuSLvQ0tKtc0gymfDJpElIt9m6dVwiIiKiUIi0l8uQhkglIi1sIiISWCCwKSkBKiqU1+sI\nbLxPLMdXR+TA5uuvAaV7cikpnSdsxoxRPk0i6p/cLW5sP7cdpWdK4ah24Ni1Y6rWj9BHYM7wOchO\nzkZOcg5mD5/Nfja3ON/cjLKO0GaHy4UjSo9g3kOUTofsuDgsjItDps2GGWYzIvR6zcYjIiIiCpdI\ne7kMaYhUItLCJiKiXuLMmc4eNioGNu7HluPL7+TA5u9/B9ralJVNS5PDmuXLgcRE5dMkov7rkucS\nHFWO4JdW/WxyknOQnZyNSQMnsZ/NLW60tWFXxymbP9fV4XulxzDvIVavR7rViky7HZk2G9KtVsQY\nDJqNR0RERPSgRNrLZUhDpBKRFjYREfVCagc2aWnA8uWofzQPXxxMRHEx4HAAPoW3DqWny4HNsmXA\niBHKp0lE/Vegn03glI0W/WwSLAlyL5ukbCxKXsR+NndwoqEBy44exdHGRs3HitDpkGY2I8NmQ6bd\njgybDfFGnnwiIiKi7ifSXi5DGiKViLSwiYiolztzprOHjYqBTd2iPHxeLgc2W7cCfr+yshkZnYHN\n0KHKp0lE/Vubrw17a/YGT9lo0c/moUEPyaFNcjb72XTxr+fO4Z+rq3tk7MkxMcjsEtokmkw9Mg8i\nIiLqX0Tay2VIQ6QSkRY2ERH1IYHApqQEKC9XXi8tDcjNRe0jz2HDATmwKSsDlPxGqNcDWVlyYPPs\ns8CgQcqnSUTkbnFj29ltcmijUT+b9BHpyE6SQ5v+3M/mmcpKbLx+vaenAQAYGRUlhzYdwc2kmBjo\neWUdERERqUykvVyGNEQqEWlhExFRH1VV1XklmoqBTU3mc/hsvxzY7N6trKTBACxcKAc2S5YAAwYo\nnyYREQDUuGuwuXozSqtK4ahy4Ir3iqr1LZEWLBi9ANnJ2chJzsHEgRP7RT8bSZIwZNcuXAuzgVmE\nTge/JEHh4cy7GhARgfmB0MZmQ6rFgki9XqPRiIiIqL8QaS+XIQ2RSkRa2ERE1A9oFNicn/8c1u9J\nxPr1wP79ykoajUBOjhzYPPMMYLMpnyYRESAHC8euHYOjyoHSqlJsPbsVDW0Nqo4R6GeTk5yDRUmL\nMMwyTNX6ojjT1ISxe/cqqvHdzJmobW1FmcuFMpcLe91uNCm9U/MuovV6zLFag6HNXKsV5ogITcYi\nIiKivkukvVyGNEQqEWlhExFRP1NV1dnDRo3AJjUVWL4cVXNWYP2eUSguBg4dUlYyMhJ4/HFg+XLg\n6acBs1n5NImIAlp9rdhXsw+lZ0rhqHZg78W9mvSzyUnOQXZyNh5OfLjP9LP56MoVvHjihLIakybh\n+SFDgv/e6vejwuMJhjY7XC7Ut7crneodGQDMsFiQ0RHaZNhsGBwZqclYRERE1HeItJfLkIZIJSIt\nbCIi6se0CGxyc3Fq5koU7x6F9euBI0eUlTSZgMWL5RM2ixcDMTHKp0lE1JW7xY2tZ7fK/WyqHDhe\nd1zV+hH6CMwdMRfZyXI/m1kJs3ptP5vXT53C7y5duuvzySYTJADVzc13r5GQgP8YP/6uz/slCccb\nG1HmdAaDmwstLUqmfU8ToqORabcHg5skk6lfXF1HRERED06kvVyGNEQqEWlhExERAegMbEpKgAMH\nlNfrCGyOpqwMnrA5eVJZydhY4Kmn5MDmscfkAIeISG017ho5sKl2aNbP5pGkR5CdJIc2vamfTeqB\nAzjo9d7xuZeGDMF748YBAH7x/ff4sLb2zjXMZpTPnBnSuOeam7HD5QoGN8caG0ObeAgSIiODp2wy\n7XZMiY2FoZf8/yEiIiJtiLSXy5CGSCUiLWwiIqLbaBDYSMtycXjq8yjeNRLFxfIQSlgscu+avDzg\n0UflK9KIiNQmSRKOXjsaPGWjRT+b4ZbhwVM2IvezkSQJk/btw8mmppsetxkM+P348XiuyxVmAPBp\nbS1+euoU3L6br5KbEB2N47NnKwqm6lpbsdPtDgY35V4v2jXarrAZDJjf5Xq0WVYrovR6TcYiIiIi\nMYm0l8uQhkglIi1sIiKie9IosCmf9ALW7xqB4mLg/HllJe12YMkSObBZuBAw9s5bhIioF2j1tWLv\nxb3BkzZa9LOZMnhK8JRN1ugsmCPFaczV4PPhX6qq8G5NDSQAGTYbPpo0CYl3Odp4tqkJLxw/jp1u\nN3QA/mHECPzvpCTEGgyqz2tvILRxubDb5UKD36/qGAFROh1mW63I7Ahu5tpssEVEaDIWERERiUGk\nvVyGNEQqEWlhExERPbDq6s4eNmoENjNmQMpdjr3jXkDxzhEoKQFqapSVjI8Hli4Fli8HFiwAVN4H\nJCK6iavZhW3ntsFR5UBpVSlO1J1QtX7XfjY5yTmYNXwWIvTaBwJ+yY/rjdfv+vwelwsHvB78dFgC\nIu5zqqTd78d/Xb6EWWYL0m22e742PiYeep3yUyptfj8Oeb0oc7mCwU1dW5viuneiBzDNbA6GNpk2\nG4ZGRWkyFhEREfUMkfZyGdIQqUSkhU1ERBQWDQIb/9Jc7Ex+EcU7R+Czz4C7tDN4YIMHA8uWySds\nMjIA3k5DRFq76L6IzVWbUVpVCkeVA7UNCr+R3cIaZcWC0QuQk5yD7ORsTIifoEk/m2sN1zD4N4NV\nr3s/V9+6ikGxg1SvK0kSTjY2oqwjsNnhcqG6uVn1cQLGmEzItNuDoc3Y6Ohe03eIiIiIbifSXi5D\nGiKViLSwiYiIFAsENiUlwP79yuvNmAHf0uXYnvgiincMx4YNQF2dspIJCUBurnzCJj2dgQ0RaS/Q\nz6b0TCkc1Q5sO7tNs342Ock5WJS8CEPNQ1Wp29dCmju52NwcPGVT5nLhSEMDtNrwGGI0IsNmCwY3\nKWYzDAxtiIiIeg2R9nIZ0hCpRKSFTUREpCoNApv2Z5djy3A5sPn8c8DpVFZy5Eg5rMnLA2bOBLhP\nRkTdodXXij0X98j9bKoc2FezT/V+NlMHT0V2stzP5uHEh8PuZ9MfQppb1be1YZfbjTKnE2UuF/Z7\nPGjTaAvEYjBgntUaDG5mWyyI5v2cREREwhJpL5chDZFKRFrYREREmlE7sJk+Ha3PPgfHsBdRXJaA\nL74A3G5lJZOTOwOblBQGNkTUfVzNLmw9u1UObaodqvezMeqNmDtyLrKT5NAmlH42/TGkuVWTz4f9\nHo980sbpxC63Gx6fuqFagFGnwyyLBZk2GzJsNsy32RBnNGoyFhEREYVOpL1chjREKhFpYRMREXWL\ns2c7e9ioFNg0L1mBbwa/iOLtw7BxI9Cg8Bah8eM7A5suP6aJiLrFBdcFbK7eHDxpo0U/m0dGPxK8\nHm18/Pi79klhSHO7dr8fhxsaOq9IczpR29amyVg6AFNiY4M9bTJsNowwmTQZi4iIiO5PpL1chjRE\nIVq3bh3WrVt32+MNDQ040KXJMkMaIiLqVwKBTUkJsG+f8nrTp6PxmRX4a/yLWF82DF99BTQ1KSs5\nebIc1uTlARMmKJ8iEVEoJEnCkatHgqdstOhnM8I6orOfTdIiDDEPCT7HkOb+JEnC6aYmlLlcweDm\ntNIfPvcw2mQKhjaZNhsmxMTcNWQjIiIidTGkIerFVq9ejXfeeee+r2NIQ0RE/ZYGgY336ZX4yv4C\nircPw9dfAy0tykqmpMhhzfLlwJgxyqdIRBSqrv1sSqtKsa9mH/ySX9UxAv1scpJzMGnQJCT9/0mq\n1n8QvSmkuZPLLS3Y0SW0+c7rhbr/lzoNNBrlnjYdXzPMZkTo9RqNRkRE1L8xpCHqxXiShoiIKAQa\nBDbup57Hl5YXULxtKP7+d0DpzTRpaZ2BTWKi8ikSEYXD2ezEtrPbUFpVCkeVAyevn1S1foQuAu1S\nu6o1H0RvD2lu5Wpvx+6OwGaHy4W9bjdaNNpWidXrkW61ItNuR6bNhnSrFTEGgyZjERER9TcMaYj6\nIJEWNhERkZDOnevsYaNGYJOSgvqnXsIXsc+jeOsQOByA0v7P6elyYJObCwwfrnyKREThuuC6ELwa\nzVHlwNWGqz09pbD0tZDmVi1+Pw54PChzOlHmcmGnywWX0h9GdxGh0yHNbJZP29jtyLDZEG80ajIW\nERFRXyfSXi5DGiKViLSwiYiIhKdBYFO3+Ef43LQSxVuHYOtWwK/wPpqMDDmwWbYMGDpU+RSJiMIl\nSRIqr1bKoU2VA9vObUNjW2NPT+uB9PWQ5lY+ScLRhgaUuVzB4OZSa6tm402OiUGmzRYMbhJNJs3G\nIiIi6ktE2stlSEOkEpEWNhERUa8SCGxKSoC9e5XXS0lB7eM/xmeRK7B+6xCUlQFKfuPV64GsLDmw\nWboUGDhQ+RSJiJRo9bVi94XdwZM2WvSzUUt/C2luJUkSqpubgz1typxOnGxq0my8kVFRwZ42GTYb\nJsfGQq/TaTYeERFRbyXSXi5DGiKViLSwiYiIei0NApuaH7yCzyKeQ/G3g7F7t7JyBgOwaJHcv2bJ\nEmDAAOVTJCJSytnsxNazW4MnbdTuZ6NEfw9p7uRqayt2dPS0KXO5cNDjgTYXpAEDIiIwvyO0ybTZ\nkGqxIFKv12g0IiKi3kOkvVyGNEQqEWlhExER9QkaBDbnc17Fev1zKN4yCAcOKCtnNAI5OfIJm2ee\nAWw25VMkIlLDedd5bK7aLEQ/G4Y09+dpb8cetxtlHcHNHrcbTUrv7LyLaL0ec6zWYGgz12qFOSJC\nk7GIiIhEJtJeLkMaIpWItLCJiIj6nPPnO3vYqBHYTJuGquwCrNctR/HmQTh0SFm5yEjg8cflwOap\npwCzWfkUiYjU4Jf8OHL1CL448QV+tfVX3T4+Q5rQtfr9qPB45Ov+z1TDAAAgAElEQVTROoKb+vZ2\nTcYyAJhuNiPTbg9ekTY4MlKTsYiIiEQi0l4uQxoilYi0sImIiPq0QGBTUgLs2aO83rRpOPXIT1As\nLUfx5oE4elRZOZMJWLxYDmwWLwZiYpRPkYhIqWsN1zD4N4O7fVyGNMr5JQnHGxtR5nQGg5sLLS2a\njTc+Olo+adMR3CSZTNCxrw0REfUxIu3lMqQhUolIC5uIiKjf0CCwOfrwz7DevwzFmwfipMK2DrGx\n8smavDzgscfkAIeIqCcwpOlbzjc3y4FNR3BzrLFRs7ESIiOREehrY7djSmwsDAxtiIiolxNpL5ch\nDZFKRFrYRERE/ZLKgY00dRoOZ76O4valKHbEo6pKWT2LRe5dk5cHPPqofEUaEVF36amQ5mDBQUwf\nNr3bx+1vrre1YWfHKZsypxPlXi/aNdrusRkMmN9xNVqmzYZZViui9HpNxiIiItKKSHu5DGmIVCLS\nwiYiIur3zp8HNmyQe9ioEdhMmYryjH9AcesSrHcMwPnzyurZ7cCSJXJgs3AhYDQqniIR0T31VEij\ngw6Lxy9Gfmo+nhj3BCL0bFLfHRp8Puxzu4PXo+12udDg92syVpROh9lWa7CnzTybDbYI/n8mIiKx\nibSXy5CGSCUiLWwiIiLq4sIF+YSNioHN3nn/iOKWZ7C+dAAuXVJWLz4eWLpUDmyysgCDQfEUiYhu\n01MhTVcJlgS8OuNVvDrjVSTaE3t0Lv1Nm9+PQ14vdgRO27hcqGtr02QsPYBpZrN8PVrH19CoKE3G\nIiIiCpdIe7kMaYhUItLCJiIiorsIBDYlJcDu3YrL+adMw87Z/4ji5mfw2eY41NYqqzd4MLBsmRzY\nZGQAvD2GiNQiQkgToIMOPxj7AxSkFuDJ8U/CaOBxwu4mSRJONjaizOUKBjfVzc2ajTfGZEKm3R4M\nbcZGR0PHvjZERNSDRNrLZUhDpBKRFjYRERE9AJUDG9+UFGyf+U8obnoKGzbHoa5OWb2EBCA3Vw5s\n0tMB7mURkRIihTRdDTUPxcvTX8Zrqa8hOS65p6fTr9W0tKDM6QwGN5UNDdBqw2iI0Sj3tOkIblLM\nZhj4g46IiLqRSHu5DGmIVCLSwiYiIqIQqRzYtE2ZgW9T30SxdzE+32KH06ms3qhRnYHNzJkMbIgo\ndKKGNF3lJOcgPzUfz0x8BpGGyJ6eTr9X39aGXW53MLjZ7/GgTaMtJIvBgHlWazC4mW2xIJr3fxIR\nkYZE2stlSEOkEpEWNhERESlw4QKwYYPcw0aFwKZ18nSUzvglij1P4ItvbfB4lNVLTgaWL5cDm5QU\ndQKbXbuAefOU1+muukQUut4Q0gQMihkUPF0zLn5cT0+HOjT5fNjv8cg9bZxO7HK74fH5NBnLqNNh\nlsWCTJsNGTYb5ttsiDPyWjwiIlKPSHu5DGmIVCLSwiYiIiKVqBzYNE9OxTcpv0Sx+zFs3GpDQ4Oy\neuPHy2HN8uVAl19DQrJ6NfDOO8BvfgO8+aay+XT1298Cb70F/OpX8hhE1LN6KqTJeygPX578Es3t\n4fU7eWT0IyhIK8CSiUsQFcHm8yLxSRIOe71yaNMR3NS2tWkylg7AlNjYYGiTabNhhMmkyVhERNQ/\niLSXy5CGSCUiLWwiIiLSQCCwKSmRj4go1Dh5Jv465Zcodv4Am8qsaGpSVm/yZDmwycsDJkx4sPcE\nApoAtYKaQEATwKCGqOf1VEhz9a2riNBH4OPKj1FYXojKq5Vh1YmPjsePUn6E/LR8TBw4UeVZkhok\nScKZpqbO0MblwmmlP9zuYbTJhMyOwCbDZsPEmBjoeB8oERE9IJH2chnSEKlEpIVNREREGlM5sPFO\nmoW/PPQ21tc/iq93WNDSoqxeSkrnCZsxY+78ml27gPnzb39caVBza0ATsHMnrz4j6kk9GdIMih0E\nQN7E31ezD4XlhfjT0T+hsa0xrJqZozJRkFaApZOWItoYreZ0SWWXW1qws0to853XC79GYw00GoOn\nbDJtNkw3m2HU6zUajYiIejuR9nIZ0hCpRKSFTURERN3o4kXgs89UC2xck9KxcdIvUXw9G3/fZYHS\nm2PS0joDm8TEm5+7W6ASblCjdj0iUo8IIU1X7hY3Pqn8BIXlhTh45WBYteNMcXhx2osoSCvAQ4P5\nd6/ewN3ejl0uF3Z0hDZ73W60aLQtFavXI91qRabdjkybDXOsVsQaDJqMRUREvY9Ie7kMaYhUItLC\nJiIioh5y8WJnDxsVApv6iXPx5wn/HcV1C7F5jxlK+zOnp8uBTW4uMHy4/JhawQoDGiKxiRbSdFV+\nqRyF5YX45Mgn8LZ6wxpn3sh5yE/Nx/KHliPGGBNWDep+LX4/Dng8KHM6UeZyYafLBZfSH3Z3EaHT\nIdVslk/a2O3IsNkQbzRqMhYREYlPpL1chjREKhFpYRMREZEAAoFNSYl815dCdRPm4/Nxb6P42kJs\n3R8Lv4L7YnQ6ICNDPl2zbBnw8ccPELBIEuDxAK2tQGQkYLHIhcCAhqg3EDmkCfC0ePCnI39CUUUR\n9l/aH9Z4tigbXpj2AvJT85EyNCWsGtRz/JKEIw0N8vVoHcHNpdZWzcabHBPTeUWa3Y5Ek0mzsYiI\nSCwi7eUypCFSiUgLm4iIiASjcmBzZfzD2DD2bRTXZmFHRSyU/Eav1wNZWcCAAfIUb/WbhX/Fm7p/\nByoqgPr6zifi4oDUVPxW+ie8teWJ29/HgIZIKH7Jj+uN17t93PiYeOh1ofcFOXj5IIoqivBx5cdw\nt7jDGnv28NkoSC1A3pQ8mCPNYdWgniVJEs42Nwd72pQ5nTjZ1KTZeCOjopBpswWDm8mxsdB3fCCB\niIj6FpH2chnSEKlEpIVNREREAlM5sKkZ/wg+S/4liq88jN2HlF3xo9PhjoHPb/Am3sS/3/b4b/FP\neAu/vf31DGiISCUNrQ1Yf3Q9CisKsefinrBqWCItWDl1JQrSCpA6LFXlGVJ3u9raip2B0MblwkGP\nB9pckAYMiIjA/I7AJsNmQ5rFgkh96KEjERGJR6S9XIY0RCoRaWETERFRL1FT09nDRoXA5tzYRShJ\n+iWKL2XiwNFoFSbY6dag5q4BzYyP8WbpY0B8vKrjExFV1laiqKIIHx7+EM5mZ1g10oalIT81Hyum\nroA1yqryDKkneNvbsdvtxo6O0GaP240mJXeC3kO0Xo85VmswtJlrtcISEaHJWEREpC2R9nIZ0hCp\nRKSFTURERL2QyoHNmbE/wPrE/4b1NfNw6IQ6gc3z+Ai/x0/xf/GTOwc0gSAnIQH429+AqVNVGZeI\nqKumtiZ8duwzFFYUYsf5HWHViDXGYsWUFShIK8DMhJnQ8UqrPqPV70eFxxMMbXa4XLjR3q7JWAYA\n081mZNrtweBmcGSkJmMREZG6RNrLZUhDpBKRFjYRERH1coHApqQE2BHeBmRXJ8c8gfUj30TxxXk4\nelppU2QJwO2bmbddiRYXB2zbxqCGiDR17NoxFJUX4Y+H/4gbTTfCqpEyJAUFaQV4furzsJlsKs+Q\neppfknC8sRFlTmcwuDnf0qLZeOOjo5FpswWDmySTiSEgEZGARNrLZUhDpBKRFjYRERH1IV0Dm507\n79w0JgRHk59C8Yg3UXw+HafORqkyxX/F23gbv779iYQE4PBhXn1GRJprbm/G58c/R2F5Ibad2xZW\njeiIaORNyUNBagHSR6RzY70PO9/cLPe06QhujjY2ajZWQmQkMjr62mTa7ZgSGwsD/2wREfU4kfZy\nGdIQqUSkhU1ERER9lIqBjQTgcPISFLsfR3HdQlRhTNi1BuEqClCIn+G/MByXbn5y5Urg44/Drk1E\nFKqTdSexpmIN1n23DnWNdWHVmDJ4CvJT8/HitBcRFx2n8gxJNNfb2rCz45RNmdOJcq8X7Rptl9kM\nBszvuBot02bDLKsVUXq9JmOF4kZbG/KOHbvpseLJkzHAaOyhGRERaUukvVyGNEQqEWlhExERUT9w\n6dLNPWwUBjblSEMx8rAey3EeiWHViUAbnsXneAPvYh52dV6K9tVXwOLFYc+PiCgcLe0t+PLklygs\nL8Tm6s1h1TBFmJA7ORf5qfnIGJXB0zX9RKPPh71utxzauFzY7XKhwe/XZKwonQ6zrdZgT5t5Nhts\nERGajHUvv6upwevff3/zY+PG4WfDh3f7XIiIuoNIe7kMaYhUItLCJiIion4mENgEetgoDGz2IB3F\nyEMJcnEJ4W3OzEAFVuE9rMCnMD08R+5PQ0TUQ07fOI21FWvx/qH3cbXhalg1Jg6ciILUAryU8hLi\nY3iNY3/S7vfjkNcbDG12uFy41tamyVh6ANPMZvl6tI7gZliUOteT3svs8nLs93hufsxiwd60NM3H\nJiLqCSLt5TKkIVKJSAubiIiI+jEVA5vf4E38N/xG0XQG4hryUYSflS7FyOwJimoRESnV6mvFX07+\nBUUVRfj7mb9DQujfIyMNkVg6aSkK0gqQlZjF0zX9kCRJONnYiB2BK9JcLlQ3N2s23hiTCZl2ezC4\nGRsdreqfu6MNDZiyf/+dn5s1C5NjY1Ubi4hIFCLt5TKkIVKJSAubiIiICICiwOa3+Ce8hd/e9ngU\nmtECU8hTMeh8WLLUgFWrgMxMgHuaRNTTquursfbgWrx/8H1c9l4Oq8a4AeOQn5qPH03/EQbHDlZ5\nhtSb1LS0oMzpDAY3lQ0NYUSAD2aI0Sj3tOkIblLMZhgU/GD95Zkz+LcLF+783MiR+D9jwu9bR0Qk\nKpH2chnSEKlEpIVNREREdJsQApu7BTS/wZt4E/+Ot/Gv+DXeDnsqKSnAqlXAypVAdHTYZYiIVNHu\nb8emU5tQWFGIr7//OqzTNUa9EUsmLUF+aj4WJi2EXtfzjeCpZ9W3tWGX2y2HNk4n9ns8aNVoC85i\nMGBuR1+bTLsdsy0WRBsMD/Tedr8fI/fswZXW1js+PywyEufT0xGh559pIupbRNrLZUhDpBKRFjYR\nERHRPdXUAOPHA42Ntz11v4Dmfq8LxYABQH4+8POfA6NGKSpFRKSK867zeP/g+1hTsQY1npqwaiTH\nJSM/NR8/nv5jDDUPVXmG1Fs1+XzY7/EEe9rsdLng8fk0Gcuo02GmxSL3tLFaMTE2FvaIiDu+9lun\nE3nHjt2z3vrJk7HAbr/r8wONRl77R0S9jkh7uQxpiFQi0sImIiIiuie3G7DZbnv4QQOa+70+VHo9\n8MMfyqdrsrJ4FRoR9bx2fzv+dvpvKCwvxKbvN8Ev+UOuEaGPwNMTnkZBagFyxuTwdA3dxCdJOOz1\nBnvalDmdqG1r6+lpheXQzJlIMZt7ehpERCERaS+XIQ2RSkRa2ERERET3VFcHDBp000OhBjT3e1+4\nvWumTpXDmuefB2JiQn47EZHqLrov4g8H/4A1B9fgvOt8WDUSbYl4LfU1vDLjFSRYElSeIfUFkiTh\nTFNTZ2jjcuF0U1NPT+uB/K/ERLyTlNTT0yAiColIe7kMaYhUItLCJiIiIrqnW07ShBvQ3O/9P8Tn\nOIaHcAoTQp5iXBzw2mvyVWijR4f8diIi1fn8PpRWlaKwvBAbT26ETwr9qiqDzoDF4xejILUAj419\nDAb9g/UNof7pSkuL3NOm4+s7rxehn+nS3pTYWFTOmtXT0yAiColIe7kMaYhUItLCJiIiIronSQLi\n44H6esUBTcDd6vwb3sJUVOJdvIG/YnHIU9Xrgaeekk/XLFzIq9CISAyXPZex7tA6FFUUodpZHVaN\nkdaReHXGq3hlxisYaRup8gypL3K3t2O3240ypxNlLhf2ut1oEWBbzwDg0rx5GBwZ2dNTISJ6YCLt\n5TKkIVKJSAubiIiI6L6ys/HbzSmqBDQB9wt8TmMM/hOv4339a3D7LSHXf+gh4Be/AF58EYiNDfnt\nRESq80t+bK7ajKKKIvz5xJ/R7m8PuYZep8fjYx9HQVoBnhj3BCL0d27wTnSrFr8fBzwe+bSN04md\nbjec7aH/GVQiyWTCJ5MmIf0Ove6IiEQm0l4uQxoilYi0sImIiIjuZ9dLv8f8D3962+PhBjQBdwtq\ndmIe5mE3AMADMz7Ei3gPb+AEJoY8ht0OvPIK8PrrQHJy2FMlIlJVrbcWH3z3AYoqinD6xumwaiRY\nEvDK9FfwauqrGG0fre4Eqc/zSxKONDTI16N1nLa51Nqq2Xhjo6PxzyNH4smBA3mKhoh6HZH2chnS\nEIVo3bp1WLdu3W2PNzQ04MCBA8F/Z0hDREREQqusxOppG/AOVgcfUhrQBNwa1PwKq7Ea79z2OgmA\nA9l4D6vwFZ6EBH1I4+h0wJNPylehZWfzKjQiEoNf8mPb2W0orCjE58c/R6sv9E1yHXR4dMyjKEgr\nwFPjn4LRYNRgptTXSZKEs83NwZ42m+rqcLmtTZOxpsbGYlFcHBbZ7ciy22GJ4IkwIhIbQxqiXmz1\n6tV4553bNxluxZCGiIiIhPfww1hdthDvYLVqAU1AIKi5W0Bzqyok4T/xOtbiVbhgD3m8SZPkq9Be\negkwm8OZMRGR+uoa6/DH7/6IwvJCnLx+MqwaQ2KH4OXpL+O11NcwZsAYlWdI/U25243njx/HyaYm\nzcYwAJhjtcqhTVwc0q1WROlD+yAGEZHWGNIQ9WI8SUNERER9xqZNwJNPYhfmBq8iU1M4db2IxUd4\nAe9hFY4h9N+lrNbOq9DGjg357UREmpAkCWXny1BUUYSSoyVo8bWEVSc7ORv5qfn44cQfItLA66Uo\nPP967hz+ubq628aL1uuRabMFQ5vpZjMMPP5KRD2MIQ1RHyTSwiYiIiJ6YCtXAp9+ql39554DVqwA\nioqAv/4V8Psf6G0SgG/xCN7FG9iIp8O6Cu2JJ+Sr0HJyAH6Al4hEcaPpBj787kMUVhTi2LVjYdUY\nFDMIP57+Y7yW+hrGx49XeYbU1z1TWYmN16/32PhxERF4xG4Phjbjo6OhY2hDRN1MpL1chjREKhFp\nYRMRERE9sOvXgWnTgEuX1K+dkAAcPgzEx8v/fvEi8Ic/AGvXAufOPXCZaozG7/BzrMFrcCIu5GmM\nHy+HNT/6EWCxhPx2IiJNSJKE3Rd3o7C8EMVHi9Hc3hxWnQWjF6AgtQBLJi2BKcKk8iypr5EkCUN2\n7cI1jXrThGNEVBQW2u3I7ghtEqKienpKRNQPiLSXy5CGSCUiLWwiIiKikFRWAllZQH29ejXj4oBt\n24CpU29/zucDHA75dM2XXwLt7Q9UsgEx+BjP4z2swhHcoe59WCzAj38s964Zzw+eE5FAnM1OfHz4\nYxRWFOJw7eGwasRHx+OllJeQn5qPSYMmqTxD6ivONDVh7N69imq8N3YsjjQ0wFFfjzPN4YWL9zIx\nJgaLOk7aLLDbEWc0qj4GEZFIe7kMaYhUItLCJiIiIgpZZSXw2GPqnKhJSAD+9rc7BzS3qq0FPvhA\nDmxOn36g8hKAbcjCu3gDX+IZ+GEIeYqPPQa88Qbwgx/wKjQiEockSdh/aT8Kywvx6ZFP0djWGFad\nzFGZyE/Nx7LJyxBtjFZ5ltSbfXTlCl48cUJZjUmT8PyQIQCAc83N2FxfH/yqVfmEjh5AqsUSDG0y\nbDZEG0L/uU9EdCuR9nIZ0hCpRKSFTURERBSW69fl5OKTT8KvsXIl8O67nVecPShJArZulcOaDRuA\n1tYHets5jMJ/4WcoQj5uIMQxAYwbB7z+unzCxmYL+e1ERJpxt7jxSeUnKCwvxMErB8OqYTfZ8dK0\nl5Cflo8pg6fc/w3U571+6hR+d48PZCSbTJAAVN/jhMzrCQn4jzscSZUkCccaG4OBzVanE26fT41p\nB0XpdJhns8n9bOx2zLRYEMFPWxBRGETay2VIQ6QSkRY2ERERkSKbNgG//jWwffuDv+fhh4G33wae\neEL5+NevAx9+KAc2xx6sqXYTTPgEK/EeVuE7TA95SLNZ7lnzi18AEyeG/HYiIk2VXypHYXkhPjny\nCbyt3rBqzB0xFwVpBVj+0HLEGGNUniH1FqkHDuCg985/hl4aMgTvjRsHAPjF99/jw9raO9cwm1E+\nc+Z9x2r3+1Hu9QZDm50uF1pU3oa0GgzI6jhls8hux0OxsdDpdKqOQUR9k0h7uQxpiFQi0sImIiIi\nUsWRI8CnnwL79gHl5Tf3rImLA9LSgNmzgRUrgCkafEJbkoDdu+WwprgYaGq6/1sAlCET72EV/owl\n8CEi5GEffRRYtUrOm/jhXCISibfViz8d+RMKywux/9L+sGpYo6x4YeoLKEgrQMrQFJVnSCKTJAmT\n9u3DyVt+ntoMBvx+/Hg813GFWcCntbX46alTt52GmRAdjeOzZ4cchjT5fNjpcmGz04nN9fUo93jg\nD+8/5a6GGI1YGBcXDG1GR/O6PyK6M5H2chnSEKlEpIVNREREpDpJArxeoKUFiIqSj5505ydVXS75\nGraiIuDgg137cwEj8F/4GQpRgOsYGPKQY8bIV6G9/DJgt4f8diIiTR26cghF5UX4qPIjuFvcYdWY\nlTALBWkFeG7KczBHmlWeIYmowefDv1RV4d2aGkgAMmw2fDRpEhJNpju+/mxTE144fhw73W7oAPzD\niBH430lJiFWhL4yzrQ1bnc5gaHO8MbweTPeSbDIhuyO0ecRux6DISNXHIKLeSaS9XIY0RCoRaWET\nERER9Wnl5XJY8/HHcnB0H00w4U94Du9hFQ4iNeThYmOBl16Sr0KbPDmcCRMRaaehtQHrj65HUUUR\ndl/cHVYNc6QZz099Hvmp+UhLSFN5hiSiHU4ndrvd+McRI+7b06Xd78e/X7yIeVYrMjT81MKllhZs\nqa8PhjYXWlpUHyMlNlY+ZRMXh4dtNpgjQj9xS0R9g0h7uQxpiFQi0sImIiIi6he8XvkatKIiYO/e\n+75cArAT8/EeVmEDloZ1FdqiRcAbbwCLFwMqfIiYiEhVlbWVKKoowoeHP4Sz2RlWjdRhqShILcCK\nqStgjbKqPEOiByNJEk43NcHR0c/mW6cTN9rbVR0jQqfDHIslGNqkW62I5D2nRP2GSHu5DGmIVCLS\nwiYiIiLqdyor5bDmww8B5/03Ji9iOH6Pn6IQBbiGwSEPl5QkX4X2yityex4iIpE0tTXhs2OfobCi\nEDvO7wirRowxBiumrEBBWgFmJcxiM3bqUX5JwiGvF5s7QpsylwuNfnU72sTo9ci02bAoLg7ZcXFI\nMZuh5597oj5LpL1chjREKhFpYRMRERH1W01NwIYNcmCzfft9X96MKKzHcryLN1COmSEPFxMDvPAC\nsGoV0OVXQSIiYRy/dhxFFUX44LsPcKPpRlg1pg2ZhoLUAjw/7XnYTWzSRT2vxe/HXrc7GNrs9XjQ\nrvIWZ3xEBB6Ji8Miux2L4uIwNjqaYSVRHyLSXi5DGiKViLSwiYiIiAjAyZPAmjXAunVAXd09XyoB\n2IN0vIdVKEEu2mEMebhHHpGvQnvqKV6FRkTiaW5vxp+P/xmFFYXYenZrWDWiI6KRNyUP+an5mDti\nLjesSRie9nZsd7mCoc3hhgbVxxgZFSVfjdYR2gyLilJ9DCLqPiLt5TKkIVKJSAubiIiIiLpobQW+\n/FI+XVNaet+XX8Iw/F/8BL/HT3EVQ0IeLjFRvgrt1VeBAQPCmTARkbZOXT+FNRVr8IdDf0Bd471D\n7Lt5aNBDKEgrwAvTXsCAaH6zI7FcbW3Ft05nMLSpam5WfYzJMTHBfjZZNhvsxtA/4EFEPUekvVyG\nNEQqEWlhExEREdFdVFcDa9cC778PXL58z5e2IBIlyMW7eAP7MTvkoaKjgeefl69CmzYt3AkTEWmn\npb0FX578EoXlhdhcvTmsGlGGKOQ+lIuC1AJkjMrg6RoS0tmmJmzuEtpcbWtTtb4ewEyLJRjazLda\nYeKxWiKhibSXy5CGSCUiLWwiIiIiuo/2dmDTJvl0zddfA/dpPrwXs/EeVmE9lqMNkSEPl5UlhzXP\nPANERIQ7aSIi7Zy5cSZ4uqa2oTasGhMHTkR+aj5eSnkJA2MGqjxDInVIkoQjDQ1yYON0YpvTCY/P\np+oYUTod5ttswdAmzWxGhF6v6hhEpIxIe7kMaYhUItLCJiIiIqIQXLwon6xZuxY4f/6eL72CIcGr\n0K5gWMhDjRwJ/PznwGuvAQO5f0lEAmrzteEvp/6CwvJC/P3M3yEh9G2jSEMknp30LApSC7Bg9AKe\nriGhtfv92O/xBEObXS4XWlXeLrUZDMiy25HdEdpMionhuiDqYSLt5TKkIVKJSAubiIiIiMLg88k9\na4qKgI0b5dM2d9EKIz7DMryHVdiDuSEPZTIBK1fKp2umT1cyaSIi7Zx1nsXairVYe3AtLnvvfUXk\n3YwbMA75qfn40fQfYXDsYJVnSKS+Rp8PO12uYGhT7vGEEVXe27DISCy024MnbUaZTCqPQET3I9Je\nLkMaIpWItLCJiIiISKErV4APPgDWrAFOn77nS/djJt7DKhQjD62ICnmozEw5rPnhDwH2HCYiEbX7\n27Hp1CYUVRThr9//NazTNUa9ET+c+EPkp+ZjUfIi6HW8+ol6h/q2Nmx1OuHo6GdzsqlJ9THGRkdj\nUUdo84jdjoGRoV+tSkShEWkvlyENkUpEWthEREREpBK/H9i2TT5ds2ED0Np615fWYjAKUYD/ws9w\nGQkhDzV8uHwVWn4+MGiQkkkTEWnnvOs83j/4PtYeXIuL7oth1UiyJyE/NR8vz3gZQ81DVZ4hkbZq\nWlrkUzYdXzX3+N0gHDoAKWazfDWa3Y5Mux2xBoOqYxCRWHu5DGmIVCLSwiYiIiIiDVy/Dnz4oRzY\nHDt215e1IQKf41m8izewC/NDHiYqClixQj5dk5qqZMJERNrx+X342+m/obCiEF+d+gp+yR9yjQh9\nBJ4a/xQK0gqQk5wDg54b0dS7SJKEU01NwcBmi9MJ5z2uSw2HUadDutUqX41mt2OO1QqjnifRiJQS\naS+XIQ2RSkRa2ERERESkIUkCdu8GCguB9euBe1x7Uo5UvO+zkc8AACAASURBVIdV+BQrwroKbd48\n4I03gGef5VVoRCSuGncN/nDoD1hTsQbnXOfCqpFoS8SrM17FKzNewXDrcJVnSNQ9fJKEgx4PNjud\n2Fxfjx0uF5r8oQeY9xKr1+PhQD8bux3TzGbodTpVxyDqD0Tay2VIQ6QSkRY2EREREXUTpxP45BP5\ndM2hQ3d92TUMRBHy8Tv8HDUYEfIwCQnAT38KFBQAQ4YomTARkXZ8fh9Kq0pRVFGEL098CZ/kC7mG\nXqfHk+OfRH5qPh4f+zhP11Cv1uL3Y7fLFQxt9rndCH1V3NtAoxELA6FNXBySTSboGNoQ3ZdIe7kM\naYhUItLCJiIiIqJuJklAebkc1nzyCeD13vFlbYjAF/gh3sUb2IHMkIeJjATy8uSr0GbNUjppIiLt\nXPZcxrpD67Dm4BpU1VeFVWOEdUTwdM0o2yiVZ0jU/dzt7djudAZDm8qGBtXHSIyKCgY2C+12DI0K\n/SQvUX8g0l4uQxoilYi0sImIiIioB3m9QHGxHNjs3XvXlx3EdPwHfoGP8TxaYAp5mPR0OaxZtkwO\nb4iIROSX/NhSvQWF5YX44sQXaPO3hVxDr9PjsbGPoSC1AIvHL0aEPkKDmRJ1v9rWVmzp6Gez2enE\n2eZm1cd4KCYmGNpk2e2wRXD9EAFi7eUypCFSiUgLm4iIiIgEcfgwsGYN8OGH8tVod1CHeKzBa/gd\nfo4LCP2T4kOHyleh/eQn8j8TEYnqasNVfHDoAxRWFOL0jdNh1RhmHoZXZryC11Jfw2j7aHUnSNTD\nqpqa5MCmvh5bnE5caws91LwXA4CZFguyO0KbuVYrTAZeKUj9k0h7uQxpiFQi0sImIiIiIsE0NQEb\nNgCFhUBZ2R1f0g4DvsQzeA+rsA0LQh7CaASWL5dP18yZo3C+REQakiQJ285tQ2F5ITYc34BWX2vI\nNXTQ4dExjyI/NR9PT3gaRoNRg5kS9Ry/JOFIQ0MwtNnmcsHrU7ejjUmvR4bNhkUdPW1SLRYY2M+G\n+gmR9nIZ0hCpRKSFTUREREQCO3FCPl3zwQdAXd0dX3IYU/EeVuEjvIBmRIc8xOzZcliTmwvwKnoi\nElldYx3++N0fUVRRhBN1J8KqMSR2CF6e/jJeS30NYwaMUXmGRGJo8/ux3+PB5vp6OOrrsdvtRpvK\n27r2iAgssNuDoc3EmBjoGNpQHyXSXi5DGiKViLSwiYiIiKgXaGkBvvxS7l3jcNzxJdcxAGvxKv4T\nr+M8EkMeYsgQ+Rq0n/wESEhQOmEiIu1IkoQd53egsKIQJUdL0OJrCavOoqRFKEgrwDMTnkFUBFNq\n6rsafD7scLmCJ20Oer1Qe5M3ITIy2M9mkd2OEabQe+gRiUqkvVyGNEQqEWlhExEREVEvU1UFrF0L\n/OEPwOXLtz3dDgP+gqfwHlbhWywMuXxEBLBsGfDGG0B6OsAPxRKRyG403cBHhz9CYXkhjl47GlaN\ngTED8eOUHyM/LR/j48erPEMi8Vxva8NWpzMY2pxqalJ9jPHR0cHQ5hG7HQOMvGaQei+R9nIZ0hCp\nRKSFTURERES9VHs7sGmTfLrm668Bv/+2l1RiCv4Dv8CHeBFNiAl5iLQ0OazJy+NVaEQkNkmSsPvi\nbhRVFKH4SDGa2sPbdM5KzEJBWgGenfQsTBE8CUD9w4XmZjmw6QhuLreG3vvpXnQAZpjNwdAm02ZD\njMGg6hhEWhJpL5chDZFKRFrYRERERNQHXLggn6xZuxY4f/62p28gDu/jFfwnXsdZJIVcftAgoKAA\n+NnPgOHD1ZgwEZF2nM1OfHz4YxRWFOJw7eGwagyIHoCXpr2E/LR8TB40WeUZEolLkiScaGwMhjbf\n1tfD5fOpOoZRp8NcqxXZHaHNLIsFRr1e1TGI1CTSXi5DGiKViLSwiYiIiKgP8fmA0lL5dM3GjfJp\nm65PQ49NWIx38QY2Izvk8hERwLPPyqdr5s3jVWhEJDZJkrD/0n4UlhfiT0f+hIa2hrDqZIzKQH5q\nPnIn5yLaGK3yLInE5pMkVHg8wdBmh8uF5juc3lXCbDAgy2YLnrSZEhsLPX/JIIGItJfLkIZIJSIt\nbCIiIiLqo65cAdatA9asAc6cue3pY5iE/8Av8AF+hEbEhlx+xgxg1SpgxQqAvYGJSHTuFjc+rfwU\nhRWFqLhcEVYNu8mOF6e9iPzUfEwdMlXlGRL1Ds0+H3a73XB09LPZ7/FA3cgGGGQ0YqHdHgxtkqMZ\njlLPEmkvlyENkUpEWthE/4+9+w6Pqs77Pv6eNAhJSGgJvSM1oYlKU7pYEVREmChKedaC+6y6t673\n7r2wzXVXfPYWdXepgUyICEtRQAQCUQQUKZLQRAi9BTAdSJt5/jiaSM+cnCQn4fO6Li+dyZzv+eJe\nh5XfZ76/n4iIiFRxbjckJhrTNYsXwxX7zKcTyhye4T1eJIVWXpevWxcmTDC2QmvSxKKeRUTK0LaT\n25ixfQZxyXFk52WbqnFX47uY2G0iIzuOJCjA+6BbpKrIKCjg8x/PsklIS2P3hQuW36N59eoMDAtj\nUK1aDKhVi/CAAMvvIXIjdlrLVUgjYhE7PdgiIiIicgs5dw5iY43AZu/ey35UiA+fch/TmMRq7vW6\ntK8vDB9uTNf07aut0ETE/rLzslmwawHTt09ny4ktpmrUrFaTMZFjmNh9Il3qd7G4Q5HK53RuLut+\nFtocyc21/B6RQUHGlE1YGPeEhRHi52f5PUR+zk5ruQppRCxipwdbRERERG5BHg9s2mSENR99BBcv\nXvbjfbTlPV4khrHkEOx1+c6djbBm9GjQDiUiUhl8e/pbZmybgSvZRWZupqkaPRr2YEK3CYzqNIqQ\naiEWdyhS+Xg8HlIuXSoKbBLS0jh/xXl5peUL3FGzZlFo0zM0lGo+PpbeQ8ROa7kKaUQsYqcHW0RE\nRERucenpMH++Edh8++1lP8qgJjGM5T1e5ABtvC5du7axFdrzz0PTplY1LCJSdnLycli4ZyHTt01n\n8/HNpmoEBwQzutNoJnafSPeG3S3uUKTycns8JGVnk/DjpM0X6enkuK090SbQx4e+oaFF59l0CQ7G\nV+O9Ukp2WstVSCNiETs92CIiIiIigDFds22bEdbMnw/Zxec0uHGwiqFMYxKruM/r0j4+8MgjxnTN\nPfdoKzQRqRx2pe5ixrYZzEuaR/qldFM1utbvysTuExkdOZqa1Wpa3KFI5ZbndrMlM7MotPkqM5N8\ni5efa/n50T8srCi0uS0wEIf+Q0S8ZKe1XIU0Ihax04MtIiIiInKV7GxYsACmT4ctl5/T8B238T4v\nEMNYsvB+wTEy0ghrxoyBGjWsalhEpOxczL/Ioj2LmLF9BhuObjBVo4Z/DUZ1HMXE7hO5o9EdWiQW\nuYbsggI2ZGQYW6Olp/Ptz74wYpVGAQFFgc3AWrVoVK2a5feQqsdOa7kKaUQsYqcHW0RERETkhpKS\njOkal8vYGu1HmYQwj6eYxiT209brsrVqwfjxxlZozZtb2K+ISBnae3YvM7bPYO7Oufxw8QdTNaIi\nopjQbQLOKCdh1cMs7lCk6jiXl8f6H6dsEtLTOXDFGXpWaBsYyKAfA5t+YWHU8ve3/B5S+dlpLVch\njYhF7PRgi4iIiIiUyMWLsGiREdhsKP4muRsHaxjMu7zESh7wuqyPDzz0kDFdM2CAtkITkcrhUsEl\nluxdwvTt00k8nGiqRqBfICM7jmRCtwn0atJL0zUiN3H00iUjsPkxtDmdl2dpfR+gW0gIA3/cHq13\naCg1fH0tvYdUTnZay1VII2IROz3YIiIiIiJe27cPZs6EuXPh3Lmitw/Qivd5gdk8SyahXpft2BFe\nfBGioyEoyMqGRUTKzv7z+5m5fSZzvp3DuQvnbn7BNXSo14GJ3SYS3Tma2oG1Le5QpOrxeDzsvXCB\nhLQ01qalkZieTmZhoaX3CHA46BUaWhTa9AgJwc/Hx9J7SOVgp7VchTQiFrHTgy0iIiIiYlpuLixb\nZkzXrF1b9HYWwcQSzTQmsY/2XpcNC4Nnn4UXXoCWLa1sWESk7OQV5rFs3zKmb5/O2pS1N7/gGqr5\nVuOxDo8xsftE+jbtq+kakRIqcLvZlp1dNGmzMSODXIuXskN8fen3Y2AzMCyMjkFBekZvEXZay1VI\nI2IROz3YIiIiIiKWSEmBWbNg9mw4fRoAD7CWQUxjEst5EA/effvU4YAHHzS2Qhs0SFuhiUjlcfCH\ng8zaMYvZO2ZzJueMqRpt67RlQrcJPN3laerWqGtxhyJV28XCQjZlZhaFNluzsnBbfI8If38G/Hie\nzcCwMJoHBlp8B7ELO63lKqQRsYidHmwREREREUvl58OKFcZ0zapV4DaWRA7Skg94nlmMIwPvD8pu\n397YCu2ppyA42OqmRUTKRn5hPp/s/4QZ22fw2YHP8OD90lqAbwAj2o9gQrcJ9GveDx+HtlsS8VZ6\nfj6fZ2QUbY+298IFy+/Rsnp1I7CpVYsBYWHUCwiw/B5SMey0lquQRsQidnqwRURERETKzLFjxmTN\nrFnGPwPZBOHCyTQmsQfv/xu4Zs3irdBat7a6YRGRsnM4/TCzts9i1o5ZnMo+ZapG69qtmdBtAmO7\njCU8KNziDkVuHSdzc1mXlkZCejoJaWkcy821/B6dg4KKQpu7Q0MJ9vOz/B5SPuy0lquQRsQidnqw\nRURERETKXGEhrF5tTNd88gkUFOAB1tOfd3mJj3nY1FZo999vbIU2eDDoHF8RqSwK3AWs/H4l07dN\n59MDn+L2eL8Jk5+PH4+0e4SJ3SYysOVATdeIlILH4+HAxYvG1mjp6axLS+OHggJL7+HncHBnSEhR\naHNXzZoE6D9eKg07reUqpBGxiJ0ebBERERGRcnX6NMTEwMyZcPAgAIdozgc8z0zGk04tr0vedpsR\n1jz9NISEWNyviEgZOpZxjNk7ZjNzx0yOZx43VaNFWAvGdxvPM12eoUFIA4s7FLn1uD0edmZns/bH\n82w2ZGRwwW3tiTY1fHzoGxpaFNp0CQ7GR4fv2Zad1nIV0ohYxE4PtoiIiIhIhXC7ITHRmK5ZvBjy\n8sihBnGMYRqT2EWk1yVDQmDsWOPsmttus7xjEZEyU+guZNWBVczYPoPl+5dT6Cn0uoavw5eH2j7E\nxG4TGdJqCL4+viW6zu1xc/7Cea/vV1p1atTRBJBUCnluN19lZhqTNmlpfJ2VRYHFy+S1/fzoHxbG\noB9Dm9aBgTgU2tiGndZyFdKIWMROD7aIiIiISIU7dw7mzTMCm3378ACfcw/v8hLLGIabki00/tzQ\nofDSS3DvvdoKTUQqlxOZJ5jz7Rxmbp/JkYwjpmo0DW3K+K7jebbrszSq2eiGnz2bc5bwt8v/fJvU\nV1OpF1Sv3O8rUlpZBQVsyMgoCm125uRYfo8m1aoZUzZhYQysVYsG1apZfg9v/JCfzxN79lz23oIO\nHajt719BHZUvO63lKqSRSuHgwYOsWrWKL774gqSkJI4fP05ubi5hYWF06NCBIUOGMG7cOCIiIiqs\nRzs92CIiIiIituHxwMaNRljz0Udw6RJHaFq0FdoP1PG6ZJs28MILxoRNaKj1LYuIlJVCdyFrU9Yy\nfft0Pv7uYwrc3p+R4ePw4YE2DzCh2wTua3Mffj5XH1yukEakdM7m5bE+Pb1oe7SUS5csv0f7GjWK\nQpt+YWGElXM48sGJE7zw/feXv9emDc81unEIXFXYaS1XIY3Y3tixY5k7d+5NP1ezZk3ef/99nE5n\nOXR1NTs92CIiIiIitpSeDnFxRmCzcycXCCSeJ3mXl0iis9flgoONM2tefBHatSuDfkVEytDp7NPE\nfBvDjO0zSElLMVWjUUgjxnUdx7hu42ga2rTofYU0ItY6fPEiCenpJKSlsS4tjTP5+ZbW9wFuDwkp\nOs+mV82aBPp6P3XsjTu2beObrKzL3wsJ4evu3cv0vnZhp7VchTRie4MGDSIhIYGgoCAeeughBgwY\nQNu2bQkJCeHYsWMsXLiQuLg4PB4PDoeD+Ph4nnjiiXLv004PtoiIiIiIrXk8sHWrEdbEx+PJzmYD\nfZnGJJYwnEKu/lb4zQwZApMmwf33ays0Ealc3B436w6tY8b2GSzZu4R8t/eLvw4cDG09lIndJ/JA\nmwdIv5SukEakjHg8Hnbn5BSFNonp6WQVen/m1I1UczjoHRpaFNp0Dw7Gz8L/wNmdk0Onb7659s96\n9KBDUJBl97IrO63lKqQR23vqqafo3r0748aNIzg4+Jqf+fDDD3nyyScBqFu3LkeOHKFGjRrl2aat\nHmwRERERkUojKwsWLDACmy1bOEZj/slzTGci56nrdblWrTy88IKDZ56BsLAy6FdEpAyl5qQy99u5\nzNg+g+9/+P7mF1xDg+AGjOw4kv/9+n8t7u7mFNLIrajA7WZrVlZRaLMxI4M8i5fca/r60u/Hs2wG\n1qpFhxo1cDgcpuv918GD/P3YsWv/rEkT3mrVynTtysJOa7kKaaTKGD58OEuXLgVg2bJlPPzww+V6\nfzs92CIiIiIilVJSkhHWxMZyMSOXDxnFNCaxg25elwoK8vDUUw5efBE6dCiDXkVEypDH4+HzI58z\nfdt0/rP3P+QV5lV0SyWikEYELhQWsjEjg4S0NBLS09mWlYXVC/D1AwIY+LPQpmn16iW+tsDtpslX\nX3E679q/rzQICODoXXdZOrljR3Zay/V+hlyqhIMHD7JlyxaOHz9OXl4etWrVol27dvTq1YvqXjzU\ndjJw4MCikGb//v0V3I2IiIiIiHgtKgqmTYO//Y3ARYt4ZsYMxm7ozkZ6M41J/IdHS7wVWk6Og3/+\nE/75Txg40MNLLzl44AEo4+3dRUQs4XA46Ne8H/2a9+PchXPE7oxl+vbp7Du3r6JbE5GbqOHry+Da\ntRlcuzYAafn5JP44ZZOQns6+CxdKfY/TeXnEpaYSl5oKQOvAwKLQpl9oKNxgymZ9evp1AxqAU3l5\nLDl3jn43GEmu6+9fqkkeuZxCGhs4ceIEW7Zs4euvv2bLli1s3bqVrJ8d2tSsWTMOHz5syb2WLl3K\nH//4R7Zv337NnwcHBzN27Fh+//vfU7eu91sLVKS8n/3m4qs/eYmIiIiIVF6BgRAdDdHROPbupc/M\nmfSZ+wLHz7/Cv/gF05nIWUp+1kJCgoOEBGjRtIAXXvLj2WehVq0y7F9ExEJ1a9TlVz1/xf+96/+y\n8dhGpm+bzke7PyK3MLeiWxOREqjl78/wevUYXs+YMjuRm2sENj/+deIGgUlJHbh4kQMXL/LvU6dK\nXQtg5J49N/z5t7ffTufrHEsh3qvaM0s2tnHjRkaMGEGjRo1o3LgxI0aM4K233mL9+vWXBTRWyc3N\nxel0Mnz48OsGNADZ2dm89957dOjQgS+++MLyPsrS+vXri/5Z24yJiIiIiFQR7dvD1Klw4gSNP5zK\nnwYmcpSmxPA03dnqValDR/149VVo3KCA/zPRw65dZdSziEgZcDgc9Gnah3nD53HylZP879D/pVN4\np5tfKCK20qhaNZ6qX5+57dtzrGdP9t1xB++3acOIunWp5Vc5ZioWnz1b0S1UKQppKsg333zDkiVL\nOHnyZJnfy+1288QTTxAXF3fZ+76+vrRo0YIuXboQGhp62c/Onj3Lfffdx+bNm8u8Pyts3bqVTz/9\nFIBGjRrRv3//Cu5IREREREQsVa0aPPEErF1L9QO7efo3jfgm4iE20ZNRxONHfolLXcj1Y/oMB5GR\nMKD3JZYuhcLCMuxdRMRitQNr89KdL5H0iyQ2PbuJsV3GEugXWNFtiYiXHA4HbWvU4PlGjfhPp06c\n7d2brd2781bLlgypVYtAm54Ls/jcuYpuoUqx5//Kt7hgi0fF/v73v7Ns2bLL3vvFL37B0aNHSUlJ\nYceOHfzwww8sXryYpk2bFn3mwoULjBw5koyMDEv7sVp2djZjx46l8Mc/Vb355pv4+/tXcFciIiIi\nIlJmWrWCv/wFx7Gj9FzyGvH3uzhCc37HHwjnjFel1m+qzvDh0KrhBf7+ViE//FBGPYuIlAGHw0HP\nJj2ZM2wOJ185yfv3v0/niM4V3ZaImOTrcNA9JIT/atqUzzp3Jq1PHxK7dOF3zZrRs2ZN7HLAw96c\nHFIt2KZNDA6Px+Op6CZuRf/4xz/41a9+RUhICN27d6dHjx7ccccd9OjRg0OHDl02CVKaM2nOnz9P\nixYtLttC7c033+T111+/5udPnDhBnz59Lrvf//zP/zBlypQb3mfdunVcsODQq65du9KoUaMSf97t\ndjN8+HA+/vhjAEaNGkV8fHyp+zBj9+7ddOpUPGa8a9cubbsmIiIiIlJejh2D2bPJnRnLwuN38S4v\n8Q13eF0m0C+PMY/mMumNEKKiyqBPEZEy5vF4WHNwDffG3Vvu9059NZV6QfXK/b4it4rMggK+SE8n\nIT2dhLQ0knNyyr2HFtWrM799e+66YmemysZOa7kKaSrIwYMHyc3NpV27dvhcMbaWmJhoWUjz2muv\n8be//a3o9d13301iYiIOh+O61yQkJDBo0KCi1yEhIRw6dIg6depc95rmzZtz5MgRUz3+XGxsLE6n\ns0Sf9Xg8jB8/ntmzZwNw5513kpCQQFBQUKn7MMNOD7aIiIiIyC2rsBBWr4bp0/n64zNMcz/PR4wk\nnwCvS93TIZVJ/1OLYY/6U0m2iBcRAeBszlnC3w4v9/sqpBEpX6l5eaxLSysKbQ5dulSm94uOiOC9\nNm2oWQX+w8hOa7na7qyCtGrVig4dOlwV0FjJ7XYzZ86cy96bPHnyDQMagIEDB9K3b9+i11lZWXz0\n0Udl0qNZHo+H559/viig6dq1K6tWraqwgEZERERERGzC1xfuuw+WLOHO4//B9ZdjHG3al8n8nvqc\n8qrU53vCeWyUPy1rp/HXV8+i7ddFRETETsIDAhgVEcGMtm1JuesuUu68kxm33cao8HDqWXgcRKiv\nL/Pbt2de+/ZVIqCxG/0brcI2bdrE2bNni163bNmSfv36lejacePGsWHDhqLXS5cu5bnnnrvu57/6\n6isKCgpM9/qT2rVrl+hzkyZN4l//+hcAUVFRrFmzhrCwsFLfX0REREREqpAGDeA3v6H+a6/x+/Xr\n+c2/XmXREl+mFT7HV/QscZljWbX4zVSY8v9yGd33GJPeakKXO6uVYeMiIiIi3msRGMj4wEDGN2yI\n2+NhV04OC1NTee/kSdJNrt32rFmT+A4daFa9usXdyk8U0lRhK1asuOz14MGDbzpF8/PP/lxiYiI5\nOTnXnVSpX7++uSZNmDRpEu+//z4AkZGRJCQk3HArNhERERERucX5+MDAgQQMHMjoc+cYPW8e37z7\nDtOOPMSHjCrxVmiX3NWY/XlrZt8FfRseYNLLATzyUlMs/KKqiEildizjmLY7E7EJH4eDqOBgooKD\nCfL15TeHDpmqM6xuXQU0ZUzbnVVh33777WWve/XqVeJrGzZsSPPmzYte5+XlsWfPHqtaM+2ll17i\nvffeA6Bjx44kJCRQt27dCu5KREREREQqjbp14eWX6XHoI+ZtaMmxx1/hD35TaMBJr8psONmaka82\npUVwKn95dCtnD5f/wb0iInbTfUZ37om5hxnbZpB2Ma2i2xGRH23OzDR/bUaGhZ3ItSikqcL27t17\n2esOHTp4df2Vn7+yXnn75S9/ybRp0wAjoFm3bh316unbGSIiIiIiYoLDAX36EPHRNH539pcc/scy\n4pu+Ri82elXmRF44/734dpq08OWZtpvYHlfxX24TEalIXxz5gonLJ1J/an0e/ehRlu5bSm5BbkW3\nJXLL8ng8pQtpMjPxeDwWdiRXUkhTRV28eJGjR49e9l6TJk28qnHl57/77rtS92XWr371K959913A\nCI/WrVtHeHh4hfUjIiIiIiJVSFgYAb98jlGH/8rGr/3Z+sgfedrPRQAlX1TMpTox+3vR3dmB3sHf\nsmDcavLP6ZunInLryivMY/HexQxfMJwGUxvwi+W/YOPRjVrsFSlnKZcucTY/3/T1qfn5HLp0ycKO\n5Eo6k6aKOnfu3GX/p+fv7+91qNGoUaPLXqemplrSm7dee+01/vGPfwBQr149pk2bRmpq6g37qVWr\n1lX9eyM1NZWzZ896dc2BAwdM309ERERERGzA4YA77qD7kjuIycri7zM+YsY7WXxw4mFO0LjEZTbl\ndGHTbGg45yS/6JLAxD80IeKB2436IiK3oLRLafx727/597Z/0yKsBWMix+CMctK2btuKbk2kyrNi\nu7LNmZm0DAy0oBu5FoU0VVR2dvZlr2vUqIHDyz8QBAUF3bBmeVmwYEHRP589e5aBAwfe9Jqnn36a\nmJgY0/f84IMPmDJliunrRURERESkkgsJod7L0bzxMvx6606W/vYz3l3bni8LS37W50lPQ/5nxwj+\n9FAuT4R+wqRnc+jx30OgTp0ybFxExN4OpR/iTxv+xJ82/InbG95OdFQ0ozqNIjxIO6aIlIWbbXXW\nsnp1PHDDaZnNGRmMiYiwuDP5ibY7q6KuDFSqV6/udY3AK9LRigppREREREREKpL/7Z15fNU4NmR2\nYfsflvNsxHKqUfJtP/KoRmzGw9zx/56kZ73vmd/7ffLWfA7a8kdEbnFbT27ll6t+ScOpDbk/7n7i\nk+O5kH+hotsSqVJuFNI8FRHBjttv59vbbyf6BiFMac60kZtTSFNFXboi+QwICPC6RrVq1S57ffHi\nxVL1ZNbhw4fxeDxe/VWaKRoREREREZFrqlGDrr97kFmnH+T4xqO82WcFjX1OeFXiK89djNn0As2G\n3MaUutM4/bv34cyZMmpYRKR8TbpjEo1rlnx7yJ8Uegr59MCnjF48moi3I3h66dOsObiGQndhGXQp\ncuvweDxcKLz6OQr19SW+fXvmtm9PTT8/avr5Ma99e+a3b09NX9+rPp9TWKjzpMqQtjuroq6cnMnL\ny/O6Rm7u5YdkmpnGqayef/55Hn/8ca+uOXDgAI88h6mXVQAAIABJREFU8kgZdSQiIiIiInZSt9dt\nvL7hNl7NyWXZ7zby7pxgvkjvXOLrT9OAyT+8xJ//lMfIPy9iUr9k7nytHwweDD76PqWIVE6/u/t3\n/GPoP/jiyBe4klws3LOQzFzvvoGfnZfNvJ3zmLdzHg2CGzA6cjTOKCedIzp7vZW/yK3O4XCw7fbb\n+e+UFN49cQIP0Cc0FFf79jS7xlrvkxER9KxZE+fevWzMzMQB/LJxY/7UooWevzKkkKaKCg4Ovuz1\nlZM1JXHl5MyVNauy8PBwwsO1F6qIiIiIiNyYX1A1Hn2nN4++AzuXH+O9357GtbMTlyjZ4br5BBDn\nGU3cerhj/ddMqvMyj78QTrWJT0OjRmXcvYiI9XwcPvRr3o9+zfsx7b5pLN+/HFeyi5Xfr6TAXeBV\nrVPZp5i6eSpTN0+lY72OREdFMzpyNE1Cm5RR9yJVT5CvL/9o04bH6tVjc2Ymv2rcGL8bfCGkeWAg\niV268M7x4/SqWZM+YWHl2O2tSV/PqaKuDFQuXLjg9UhaTk7ODWuKiIiIiIhIsc4PNmHGtz04fsqP\nt6J30bR6qlfXb+FOos//g2Z/eJbfN57FycFPw8cfQ4F3i5oiInYR6B/I4x0fZ9moZZx65RTv3/8+\nPRv3NFVr99ndvJ7wOs3+0Yz+c/sza/ssMi5lWNyxSNXVJyyMXzdtesOA5id+Pj78V9OmCmjKiUKa\nKqpu3bqXjaDl5+eTmurdHxBOnLh8b2VNloiIiIiIiNxcnfr+/Ne8ThzMCmfxv8/Sv/khr64/Q33+\nwP/QbO1MnhyWw+YGI/D892/hkHd1RETspG6Nujzf43k2jdvEgUkHmHzPZFrXbu11HQ8eEg8nMv6T\n8US8HcHIhSP5+LuPySv0fqt/ERE7UEhTRQUGBtK0adPL3jt69KhXNa78fLt27Urdl4iIiIiIyK3C\nzw+GT6zHukMtSNpRyMShRwn0zb35hT8qwJ8PeZJe5z6mx18eYV7LyeQOfhAWLQIT5456zeOBzEw4\nd874uw4MFhGLtKrdit/3+z37X9zPV+O+4sUeL1K3Rl2v6+QW5rJwz0KGfTiMhlMb8sKKF9h8bLMO\nOBeRSkUhTRV2ZaiyZ88er67fu3fvDeuJiIiIiIhIyUR28eXfnzbleGo1/v67TJrXSvfq+m3cztPM\npcna2fz28X2caHA7/Nd/wf791jaanAxvvAGDBkGdOhAaCvXqGX+vU8d4/403YNcua+8rIrckh8PB\nnY3vZNr90zj58kk+efITnuj4BNX9rj7Q/GbOXzzPB1s/oNfsXrSZ1obJiZP5/vz3ZdC1iIi1HB5F\ny7aTmJhI//79i143a9aMw4cPe13n9ddf56233ip6PXHiRP7973+X6NpTp07RsGHDotf+/v788MMP\nOpfmBnbv3k2nTp2KXu/atYuOHTtWYEciIiIiImJXhYWw4hM37/4hnYQdtb2+3o98RrCYl3iXXnf7\n45g4AR59FKp7v7AJwIoV8NZbsGFDya/p2xdefx3uv9/cPUWkzLg9bs5fOF/u961Tow4+jtJ/Jzwz\nN5P/7PkPrmQX6w+tx4P55cs7G92JM8rJEx2foF5QvVL3JiJVg53WchXS2JBVIc2XX35J3759i163\nbNmSAwcOXHZWzfXMnTuXsWPHFr0eMmQIn332mdc93Ers9GCLiIiIiEjlsXs3vPf3i8yb78eFfH+v\nr+/KdiYxjSfDVlH9qZEwYQL87M8m17JpE/TqBZw/D5MmQXy8ye6B0aPh3XehTp3iuiIiFjmeeZz4\n5Hhik2JJTk02XcfPx4+hrYfijHTycNuHCfQPtLBLEals7LSWq+3OqrBevXpRt27xfp4pKSkkJiaW\n6NpZs2Zd9nrYsGFWtlapxcTE0K9fv6v++nmoJSIiIiIiUlIdO8I/YwI5kerPO1M9tGx40avrd9CN\nZ5lDk/Qk3ng3gmOR90HPnjB7NuTkXPX5yZOhd2+Y+spJiIoqXUADMH8+REUx9dVT9O5t1BcRsUrj\nmo35de9fk/RcEjt/sZNf9/o1DUMa3vzCKxS4C1i+fzmj/jOKiLcjeGbZM6w7tI5Cd2EZdC0iUnKa\npLEhqyZpAH7961/z9ttvF72+5557WL9+/Q2naRISEhg0aFDR65CQEFJSUi4LfG5lkydPZsqUKTf9\nnCZpRERERETEjMJC+PRTmPZOPqvXez9Z40sBw1nCJKbRN/hbHGNGG9M13bszeTL8/I8zb/MKr/BO\nqXueysu8ytSi17//vcIaESk7he5CEg8n4kp2sWjPIrLzsk3XahTSiNGRo4mOiiYyItLCLkXEzuw0\nSaOQxoasDGnOnTtHixYtyM4u/j+rN998k9dff/2anz9x4gR9+vS57H6//e1v+eMf/2jq/lVRTEwM\nMTExV72fk5PD1q1bi14rpBERERERkdLatw/em+YhZo6bnIu+Xl/fmW+ZxDRGM58dbZ6g9/cxV32m\ntEHNlQHNTzZu1NZnIlL2LuRf4JPvPiE2KZZVB1ZR6DE/GRMVEYUz0smTkU/SuGZjC7sUEbtRSCMA\nbNy4kYsXrx5j37lzJ6+++mrR64iICFwu1zVrNGzYkA4dOtzwPm+++SZvvPHGZe8999xz/Pa3v6Vh\nQ2M81O128/HHH/PLX/6So0ePXlZ/9+7dhIWFlfjXdauy04MtIiIiIiJVS0YGxMTAe++6OZDi/c7l\ntTnPBGbgRz5/5ndX/dxsUHO9gObtt+GVV7wuJyJSKmdzzrJg9wJcSS6+PvG16ToOHPRv0Z/oqGhG\ntB9BzWo1LexSROzATmu5CmkqUPPmzTly5Eipajz99NPXnOr4ObfbzbBhw1i+fPll7/v6+tKsWTNC\nQ0M5dOgQ6enpl/08MDCQNWvW0Lt371L1eKuw04MtIiIiIiJVk9sNq1bBtGnG373lQyEd2U0yUVf9\nzNug5roBDa/wyvIB8MAD3jcoImKR/ef3E5cUhyvZRUpaiuk61f2qM6ztMKKjohnSagj+vt5vQyki\n9mOntVzvv34jlY6Pjw8LFy5k1KhRl71fWFhISkoKO3bsuCqgqVOnDitXrlRAIyIiIiIiYiM+PnD/\n/caZNfv2waRJEBJS8u9euvG9ZkAD8CpTmcrLJapzw4CGd+BvfytxTyIiZeG2Orcxpf8UDkw6wKZn\nN/Hc7c9RO7C213UuFVxiwe4FPBj/IA3faciklZP4+vjX6HvvImIVhTS3iOrVqxMfH8+iRYvo0qXL\ndT8XFBTE888/z549e+jXr1/5NSgiIiIiIiJeadsW3n0Xjh938O67cNttpa9ZkqDmpgENwBdfwK5d\npW9IRKSUHA4HPZv05IMHPuDUK6dYNmoZj3V4jGq+1byude7COd775j3umnUXbd9ryx8+/wMHfzhY\nBl2LyK1E253dog4cOMDXX3/NiRMnyMvLIywsjPbt29O7d2+qV69e0e1VSnYakRMRERERkVuP2w2r\nVxtboa1cWbpaf+cVXr3G1mclCmh+8sYb8Oc/l64REZEykn4pnf/s+Q+uZBeJhxNLVatn455ER0Uz\nsuNI6tSoY02DIlKm7LSWq5BGxCJ2erBFREREROTW9v338P77MGcOZGaaq/Eoi5jL0wRxAfAyoAEY\nNAjWrDF3cxGRcnQ04yjzk+cTmxTLnrN7TNfx9/Hnvjb3ER0VzYO3PUh1P30RWsSu7LSWq5BGxCJ2\nerBFREREREQAsrIgNhamTfOwb5/D6+urc4Hn+Sf+5PEWv7nq59cNaABq1YLz58Hh/X1FRCqCx+Nh\n55mdxO6MZf6u+ZzOPm26Vs1qNXm8w+M4o5zc3exufBw6dULETuy0lquQRsQidnqwRUREREREfs6T\nkcnasEeZxiSW8yAeC46ovWFA85PMTAgJKfW9RETKW6G7kHWH1uFKdvGfPf8hJz/HdK0mNZswJnIM\nzignHcO1ViRiB3Zay1WEKyIiIiIiIlLFOfLzGMxaPmYY39OGl5lKKOmm6/XhC+7ls5t/8MQJ0/cQ\nEalIvj6+DG41mLmPzOXMq2eIGxHHfa3vw9fh63WtY5nH+OvGv9Lpn53o+u+uvLP5HU5lnSqDrkWk\nMtIkjYhF7JS+ioiIiIiIXCYzE0JDL3srmyBcOJnGJPZg7s8ud7GZ8czkCRYQzHW+Zd69O9x7r/FX\nz57g72/qXiIidnAm+wwLdi8gNimWrSe3mq7j4/BhYIuBOKOcjGg/guCAYAu7FJGbsdNarkIaES/F\nxMQQExNz1fs5OTls3Vr8f84KaURERERExDY8HqhTB9LSrv4RsI4BTGMSH/Owqa3QgsliNPMZz0xu\nZyvXPYUmJAQGDiwObVq08PpeIiJ2se/cPuKS4nAluzicfth0nRr+NXik3SM4I50MbjUYPx8/65oU\nkWtSSCNSiU2ePJkpU6bc9HMKaURERERExFYGDYKEhBt+5BDNeYbZfE5/07fpzLdMYAZjiCOMjBt/\nuE2b4sCmXz8I1jfJRaTycXvcbDq2CVeSi492f0TapasD8ZIKDwpnVMdRRHeOpnuD7jgc1429RaQU\nFNKIVGKapBERERERkUrpjTfgzTdv+JGpvMyrTLXkdtW5yOMsZAIz6MOX15+u+Ym/P/TpUxzadO4M\nWpwUkUomtyCXld+vxJXsYvn+5eQV5pmu1bZOW5xRTsZEjqFFLU0eilhJIY1IFWSnB1tEREREROQq\nyckQFXXdH18voKlHKmcJL9Wt27GX8czkKeZRj3MluygiojiwGTwY6tUrVQ8iIuUt7WIai/YsIjYp\nlg1HN5SqVp+mfXBGOnm84+PUDqxtUYcity47reUqpBGxiJ0ebBERERERkWu6+27YcPVC4fUCmrd5\nhVd4x7IJG3/yeISlTGAGA0nAhxIuSTgc0K1bcWjTs6cxeSMiUkkcTj/M/OT5xCbFsu/cPtN1AnwD\neKDNAzijnDzQ5gGq+VWzsEuRW4ed1nIV0ohYxE4PtoiIiIiIyDWtWAEPPnjZWzcLaG72ObOac4hx\nzOIZ5tCIk95dHBICAwYUhzYtW1rWl4hIWfJ4PGw/tR1Xkov4XfGcyTljulZY9TAe7/A40VHR9G7a\nGx+Hj4WdilRtdlrLVUgjYhE7PdgiIiIiIiLXNXo0xMcDJQ9ofnK9z7dhP99zm6l2fCjkAVYwnpnc\nz0r8KPS+SJs2xYFNv34QHGyqFxGR8lTgLiAhJYHYpFiW7FvChfwLpms1C23GmMgxOKOctK/X3sIu\nRaomO63lKqQRsYidHmwREREREZHrOn8eoqKYenKUVwHNT64X1PyGP+MTHMzsoEmcOmPu29wNOcEz\nzGEcs2jBYVM18PeHPn2KQ5vOnY3t0kREbCw7L5ul+5YSmxTL2pS1uD1u07W6N+iOM8rJqE6jqB9c\n38IuRaoOO63lKqQRsYidHmwREREREZEbmfrqKV6d2uCq928W0BRdf70JnFdO8cu/NmDlSpgxA1au\nBLfJdcbBrGY8MxnGMqqRZ64IQEQEDBkCQ4fC4MFQr575WiIi5eBU1ik+3PUhrmQX209tN13Hx+HD\nkFZDcEY6eaTdIwQFBFnYpUjlZqe1XIU0Ihax04MtIiIiIiJyPVOnwquvXv1+SQOaojrXC2rehlde\nMf75xAmYMwdmzYLDh831W5ezPM1cxjOTdnxnrshPHA7o1q14yqZnT2PyRkTEpvac3YMryUVcchxH\nM46arhPkH8Tw9sOJjopmQIsB+Pn4WdilSOVjp7VchTQiFrHTgy0iIiIiInItVgU0RfVKENSAMU2T\nkGBM1yxdCvn5Xt8KgD4+m5jg/hePsYgaXDRX5OdCQmDAgOLQpmXL0tcUESkDbo+bL49+iSvJxUe7\nPyIjN8N0rfrB9Xmy05M4o5x0rd8Vh7aElFuQndZyFdKIWMROD7aIiIiIiMiVNm2C3r2vfv/tt+GV\ndivgb3+DL74oecG774bXXmPq3vuvGfxs3Ai9el39fmoqzJsHM2fCdyYHY0KrXWRMyCdMOPcXurDT\nXJFrad3aCGuGDoV+/SA42LraIiIWuVRwiRX7V+BKdrFi/wry3SaTb6BDvQ44I52MjhxNs7BmFnYp\nYm92WstVSCNiETs92CIiIiIiItcyeTJMmVL8+sqJF3btgvh42LIFtm2DtLTin9WqBd27wx13wJNP\nws/+/HPlhM7vf2/c60Y8HvjyS2O6ZuFCuHTJ3K/p9hbnmFBvGaMO/pma5w+ZK3It/v7Qp0/xlE3n\nzsZ2aSIiNnL+wnkW7lmIK8nFxmMbS1Xrnmb34Ixy8liHxwirHmZRhyL2ZKe1XIU0Ihax04MtIiIi\nIiJyPT8FNVcFNFfyeCA7G3JzoVo1Y6rkBiHFT0FNSQKaK6Wlwfz5RmCz0+RgTFCQhycGnWdCgxXc\nuWcOjk0boaDAXLFriYiAIUOMwGbIEKhXz7raIiIWSElLIS4pDleyi/3n95uuE+AbwEO3PYQzysn9\nbe4nwDfAwi5F7MFOa7kKaUS8FBMTQ0xMzFXv5+TksHXr1qLXCmlERERERMSuNm269lZkFV3X44Gt\nW42wJj7eyIjM6NQJxjsvEd14PbU3LYfPPoODB803di3duxdP2fTsaUzeiIjYgMfjYevJrbiSXMTv\niufshbOma9UOrM3IDiNxRjnp1aSXzq+RKkMhjUglNnnyZKb8fH+A61BIIyIiIiIiYl52NixYYAQ2\nX39trka1avDoozB+PPRrfADH6s+MwGbdOsjJsa7ZkBAYMKA4tGnZ0rraIiKlkF+Yz5qUNbiSXCzd\nt5SLBRdN12oR1gJnlJMxkWNoW7ethV2KlD+FNCKVmCZpREREREREyldyMsycCbGxlx+T443WrY2w\nZuxYiKiVZ4z9fPZjaLNjh6X90rp1cWDTv7+xVZyISAXLys1i8d7FuJJdJKQk4MH8snCPhj1wRjkZ\n1WkU4UHhFnYpUj4U0ohUQXZ6sEVERERERKqiixdh8WIjsElMNFfDzw8eftgIbIYMAV9f4MwZWLMG\nVq2C1avhrPmtga7i7w99+hSHNp073/BsHxGR8nAi8wQf7vqQ2KRYdp4xeRgY4Ovw5d7W9+KMdDKs\n3TBq+NewsEuRsmOntVyFNCIWsdODLSIiIiIiUtV9/70R1sTEQGqquRpNm8Kzz8Izzxj/DIDbDd9+\nWzxls3EjFBRY1TZERBjp0L33wuDBEK5voItIxUo+k0xcchxxyXEczzxuuk5wQDCPtn8UZ5ST/s37\n4+vja2GXItay01quQhoRi9jpwRYREREREblV5OXB8uXG2TWffQZmVjkcDhg6FCZMgAcfNIZfimRl\nwfr1xaHNwYOW9Q5At27FUza9el1xcxGR8uP2uPn88Oe4klws2ruIzNxM07UahjRkdKfROKOcREVE\n4dAEodiMndZyFdKIWMROD7aIiIiIiMit6MgRmD3b+Ou4yS+DR0QY59aMH28cLXOVgweNsGbVKli3\nDnJyStPy5YKDYeDA4tCmZUvraouIeOFi/kWW719ObFIsnx74lAK3+YnCTuGdcEY6GR05miahTSzs\nUsQ8O63lKqQRsYidHmwREREREZFbWWGhkaPMmAGffGK8NqN/fyOsGTECqle/xgfy8mDTpuIpmx07\nStX3VVq3Lg5s+vc3QhwRkXJ27sI5Ptr9Ea4kF5uPbzZdx4GDfs374Yxy8mj7RwmtHmphlyLesdNa\nrkIaEYvY6cEWERERERERw+nTxrk1M2ea36msdm2Ijja2Q7vhH/POnIE1a4zAZvVq84flXIu/P/Tu\nbQQ2Q4dCVBT4+FhXX0SkBA78cIC4pDhcyS4O/HDAdJ3qftV5uO3DOCOd3Nv6XgJ8AyzsUuTm7LSW\nq5BGxCJ2erBFRERERETkcm43JCYa0zWLFxtDMGbcdZcR1jzxBAQF3eSGO3cWb422cSMUmN8u6CoR\nETBkiBHaDB4M4eHW1RYRuQmPx8PXJ77GleTiw10fcv7iedO16gTW4YmOTxDdOZo7G92p82ukXNhp\nLVchjYhF7PRgi4iIiIiIyPWdPw+xsUZgs2ePuRohITB6tLEdWvfucNM1xawsWL++eGs0s2M919Ot\nW/HWaD17QoC+lS4i5SO/MJ/PDn6GK8nFsu+WcangkularWq1whnlZEzkGNrUaWNhlyKXs9NarkIa\nEYvY6cEWERERERGRm/N44KuvjLBmwQK4cMFcnS5djOmaMWMgtKRHLBw8WBzYrFsH2dnmbn4twcEw\nYICxLdq990LLltbVFhG5gYxLGSzeuxhXsov1h9bjwfzS812N78IZ6eSJTk9Qt0ZdC7sUsddarkIa\nEYvY6cEWERERERER72RkQHy8cXbNtm3magQGwsiRxnRN794lmK75SV4ebNpUHNrs2GGugetp3bp4\nyqZ/fyPEEREpY8cyjhG/K57YpFh2pe4yXcfPx4/7Wt+HM8rJQ7c9RKB/oIVdyq3KTmu5CmlELGKn\nB1tERERERETM27HDmK6Ji4PMTHM12rc3wpqnnoK63n4B/MwZWLPGCGxWr4bUVHNNXIu/v5Eg/RTa\ndO4MPj7W1RcRuYakM0nE7oxl/q75nMw6abpOSEAIj3V4DGeUk37N++Hj0O9fYo6d1nIV0ohYxE4P\ntoiIiIiIiJReTg4sWmQENhs3mqvh7w/DhxvboQ0YYCIPcbth587iKZsvv4SCAnPNXEtEBAwebGyN\nNngwhIdbV1tE5AqF7kISDyfiSnaxaM8isvPMb/XYuGZjRncajTPKSWREpIVdyq3ATmu5CmlELGKn\nB1tERERERESstWcPzJoFc+fC+fPmarRoAePGwTPPQMOGJhvJyoL164tDm4MHTRa6jm7diqdsevaE\ngABr64uI/OhC/gU+/u5jXEkuVh1YRaGn0HStqIgooqOiebLTkzSq2cjCLqWqstNarkIaES/FxMQQ\nExNz1fs5OTls3bq16LVCGhERERERkaonNxeWLjWmaxISzNXw9YUHHjC2Q7vvPvDzK0VDBw8WBzbr\n1kG2+W+lXyU42Bj/+Sm0adXKutoiIj+TmpPKgl0LcCW72HJii+k6DhwMaDGA6KhoRrQfQUi1EAu7\nlKpEIY1IJTZ58mSmTJly088ppBEREREREanaUlKM6Zo5c+DUKXM1GjUyJmvGjYPmzUvZUF4ebN5c\nHNps317Kgldo3bo4sOnf3whxREQstv/8fuKS4nAlu0hJSzFdJ9AvkGHthuGMdDKk1RD8ff0t7FIq\nO4U0IpWYJmlERERERETk5woKYMUKY7rm00+NY2S85XDAoEHG2TXDhlm0y9iZM7BmjRHYrF4NqakW\nFP2Rvz/07l0c2nTubOLAHRGR6/N4PGw+vhlXkosFuxfww8UfTNeqV6MeozqNwhnlpEfDHjgcDgs7\nlcpIIY1IFWSnB1tEREREREQqxvHjxmTNrFlw5Ii5GvXqwdNPG9uhtW1rUWNuN+zcWTxls3Ej5Odb\nVBwID4chQ4zAZsgQ47WIiEXyCvP49PtPcSW7+OS7T8gtzDVd67Y6t+GMdDImagwta7W0sEupTOy0\nlquQRsQidnqwRUREREREpGK53bB2rTFds2yZ+Tykb19juuaxxyAw0MIGs7IgMRFWrTJCm4MHLSwO\ndOtWPGXTs6dFo0EiIpB+KZ1FexbhSnLx+ZHPS1WrV5NeOCOdjOw4kjo16ljUoVQGdlrLVUgjYhE7\nPdgiIiIiIiJiH6mpMG+eEdjs32+uRmgoOJ1GYNO5s7X9AUZI89OUzbp1kJ1tXe3gYBgwoDi0adXK\nutoicks7mnGU+cnziU2KZc/ZPabr+Pv4c3+b+3FGOXnwtgep7lfdwi7Fjuy0lquQRsQidnqwRURE\nRERExH48HtiwwQhrFi2CS5fM1enRw9gK7cknISTE2h4ByMuDzZuLQ5vt262t36pVcWDTv38Z/SJE\n5Fbi8Xj49vS3uJJczN81n9PZp03XCq0WyuMdHscZ5aRvs774OHTeVlVkp7VchTQiFrHTgy0iIiIi\nIiL2lpYGcXFGYJOUZK5GUBCMGmVM19xxB5TZOdipqbBmjbE12urVxmur+PtD797FoU3nzuCjBVER\nMa/QXUjCoQRcSS4W711MTn6O6VpNajZhTOQYojtH06FeBwu7lIpmp7VchTQiFrHTgy0iIiIiIiKV\ng8cD33wDM2dCfLz5XcYiI43pGqcTate2tsfLuN2wc2fxlM3GjeYP3LmW8HAYMsQIbIYMMV6LiJiU\nk5fDsu+W4Upysfrgago9haZrda3fFWeUkyc7PUmDkAYWdikVwU5ruQppRCxipwdbREREREREKp+s\nLFiwwJiu2bLFXI1q1eCxx4zA5p57ynC65idZWZCYWBzaHDhgbf2uXY3AZuhQ6NkTAgKsrS8it4wz\n2Wf4cNeHuJJdbD251XQdH4cPg1oOwhnpZHj74QQHBFvYpZQXO63lKqQRsYidHmwRERERERGp3JKS\njOma2FhITzdXo00bI6x5+mmIiLC2v+tKSTHCmlWrYN0686NB1xIcDAMGFG+N1qqVdbVF5Jay9+xe\n4pLjcCW5OJJxxHSdGv41GN5uOM4oJ4NaDsLPx8/CLqUs2WktVyGNiEXs9GCLiIiIiIhI1XDxIixe\nbEzXfP65uRp+fvDww8bZNYMHg6+vtT1eV14ebN5cPGWzfbu19Vu1Kg5s+veHkBBr64tIlef2uNl0\nbBOxO2P5aM9HpF8ymYoD4UHhPNnpSaKjounWoBuOMh9llNKw01quQhoRi9jpwRYREREREZGqZ/9+\nY7omJgbOnjVXo2lTGDcOnnkGmjSxtL2bS02FNWuMwGb1ajhzxrra/v7Qu3dxaNO5M/j4WFdfRKq8\n3IJcVn6/Eleyi+X7l5NXmGe6Vru67XBGOhkTNYbmYc2ta1IsY6e1XIU0Ihax04MtIiIiIiIiVVde\nHnzyiTFds3o1mFnZ8fExjnmZMAEeeMDIOMqV2w07dxZP2WzcCPn51tUPD4chQ4zAZsgQ47WISAn9\ncPEHFu1ZhCvJxYajG0pVq0/TPkRHRfN4h8fmn89bAAAgAElEQVSpFVjLog6ltOy0lquQRsQidnqw\nRURERERE5NZw+DDMmQOzZ8Px4+Zq1K8PY8ca59dU2DEv2dmwfn1xaHPggLX1u3YtnrLp1QsCAqyt\nLyJV1uH0w8QlxRGbFMt3578zXSfAN4AH2jxAdFQ097e5n2p+1SzsUrxlp7VchTQiFrHTgy0iIiIi\nIiK3lsJCWLXKmK5Zvtx4bcaAAUZYM3w4VK9ubY9eSUkpDmwSEowQxyrBwcYv9KfQpsKSKRGpTDwe\nD9tPbSc2KZb4XfGk5qSarhVWPYyRHUbijHLSu2lvfBzanrG82WktVyGNiEXs9GCLiIiIiIjIrevU\nKePcmpkzjazDjNq14amnjO3QOnSwtD3v5eXB5s3Foc327dbWb9WqOLDp3x9CQqytLyJVToG7gLUp\na3EluViybwkX8i+YrtU8rDljIsfgjHLSrm4703XcHjfnL5w3fb1ZdWrUqZQhk53WchXSiFjETg+2\niIiIiIiIiNsNiYnGdM3ixUbWYUavXsZ0zciREBRkaYvmpKbCmjVGYLN6NZw5Y11tf3/jF/xTaNOl\ni3GAj4jIdWTnZbNk7xJcyS7WpqzF7XGbrtW9QXeio6IZ1WkUEcERXl17Nucs4W+X//lbqa+mUi+o\nXrnft7TstJarkEbEInZ6sEVERERERER+7tw5iI01Apu9e83VqFkTRo82Apvu3a3tzzS3G5KSiqds\nvvwS8vOtqx8eDkOGGIHNkCHGaxGR6ziVdYr4XfG4klzsOL3DdB1fhy+DWw3GGenkkXaPEBRw84Rc\nIY137LSWq5BGxEsxMTHExMRc9X5OTg5bt24teq2QRkREREREROzG4zF2DpsxAxYsgIsXzdXp2tXY\nCm30aAgNtbbHUsnOhvXri0ObAwesrd+1a/GUTa9eEBBgbX0RqTJ2p+4mLjmOuOQ4jmYcNV0nyD+I\nEe1H4IxyMrDFQHx9fK/5OYU03lFII1KJTZ48mSlTptz0cwppRERERERExM4yMiA+3ghszB7zEhho\nbIM2YYKRWTgc1vZYaikpxYFNQoIR4lglONg4w2boUCO0adXKutoiUmW4PW42HNmAK8nFwj0LycjN\nMF2rfnB9RncajTPKSZf6XXD87DddhTTeUUgjUolpkkZERERERESqmu3bjbAmLg6ysszV6NDB2Aot\nOhrq1rW2P0vk5xtjRKtWGaGN2WTqelq1Kp6y6d8fQkKsrS8ild6lgkus2L+C2KRYVn6/kny3+e0Z\nO9TrQHRUNKMjR9M0tKlCGi8ppBGpguz0YIuIiIiIiIiYkZMDCxcagc2mTeZqBATA8OHGdE3//uDj\nY22PlklNhTVrjMBm9Wo4c8a62v7+xmjRT6FNly42/hchIhXh/IXzLNyzkNikWDYdM/kb7o/uaXYP\nw9oO4+XVL1vUXckppCk9hTQiFrHTgy0iIiIiIiJSWrt3w6xZMG8enD9vrkbLljBuHDzzDDRoYG1/\nlnK7ISmpeGu0L780Jm+sEh4OgwcbW6MNGWK8thuPxxijysszkraQEBvuXydSNaWkpRCXFEdsUizf\n//B9RbfjFYU0paeQRsQidnqwRURERERERKySmwtLlhjTNevWmavh6wsPPmhshzZ0KPj5Wduj5bKz\nITGxeGu0Awesrd+1a/GUTa9eRihSEZKTjYOJtmwxtn9LSyv+Wa1a0K0b3HEHjB4NP1vzEJGy4fF4\n+ObkN7iSXHy460POXjhb0S3dlEKa0lNII2IROz3YIiIiIiIiImXh4EFjumbOHDh92lyNRo3g2WeN\nCZtmzaztr8ykpBRP2axbZ/7gnmsJDjb2hfsptGnd2rra17NiBbz1FmzYUPJr+vaF11+H++8vu75E\npEh+YT5rUtYQmxTL0n1LuVRwqaJbuiaFNKWnkEbEInZ6sEVERERERETKUn4+rFxpTNd8+qmxW5i3\nHA5j56/x4+HhhytumMRr+fmweXNxaLNtm7X1W7Y0wpqhQ43wJiTEutrnz8OkScb0jFmjR8O770Kd\nOtb1JSI3lJmbyZK9S4hNimXdoXV4sM+SvkKa0lNII2IROz3YIiIiIiIiIuXl2DFjsmbWLDh61FyN\nevVg7FgjsLntNkvbK3tnz8KaNcbWaKtXw5kz1tX284PevYunbLp0AR8fc7WSkuC+++DkydL31bCh\n8euNjCx9LRHxyonME8TviseV5GLnmZ0V3Y5CGgsopBGxiJ0ebBEREREREZHyVlgIa9ca0zXLlkFB\ngbk6d98NEybAo49CYKC1PZY5t9sIQ36asvnyS2Pyxirh4TB4sBHYDBkCEREluy4pCfr1u/zMmdKq\nVQs+/1xBjUgFSj6TjCvJRVxyHCeyTlRIDwppSk8hjYhF7PRgi4iIiIiIiFSk1FSYO9cIbL7/3lyN\nsDBwOo3AJirK2v7KTXY2JCYWhzZm/2VcT9euxVM2vXpde8+48+eNf4FWTNBcqWFDIwDS1mciFarQ\nXcjH333MiI9GlPu9FdKUnsn5SBERERERERERkWsLD4df/xq++87IKJxOqFbNuxrp6fDee9C5M9x5\nJ8ycCVlZZdJu2QkOhgcfhGnTYP9+OHgQPvgAhg2z5qyZHTvgr381zq6pU8c43Of99+HAgeLPTJpU\nNgENGHVfeqlsaotIifn6+NKnaZ+KbkNMUkgjIiIiIiIiIiJlwuGAe+6B2Fg4dco4b97M7lhbthgT\nNQ0bGn/fsgUq5d4wLVvCc8/B0qXGhMvnn8Mbb0D37qWvnZ0Nn3wCL74IbdpAq1bwwAMQH1/62jcy\nfz6sWFG29xARqcIU0oiIiIiIiIiISJmrVcsY6ti5E77+GsaPh6Ag72pkZxsTNXfeaUzYTJtm7TEr\n5crf3ziA589/hq1bjT3i4uLgqadKftbMjaSkwMqVpa9TEn/7W/ncR0SkClJIIyIiIiIiIiIi5cbh\ngDvuMM6rOXUKpk+HHj28r5Oc/P/Zu/Mwm8v/j+PPsa8hS7KUrRBatH1RKCmVJS1C0qJN+0JayJJS\nSeu35dsq0r4gtKDSooiSDCFLluxJdjLn98fnZ3KsZ2bOzFnm+biuc337fObc9+c9ruvtO85r7vsO\ndtqqUAEuvTRYlJKQq2t2KlsWOnYMDvNZtgymTft3K7P8+WNd3f599RXMmBHrKiQpIRnSSJIkSZIk\nKSaKF/93+7Jp04KdukqWzNgcW7bA669D06ZQqxYMHBgsSkloKSnBUqEePeDzz+HPP8O3MotH2b2t\nmiQlKUMaSZIkSZIkxdzO7cv++CM4w6Zx44zPMWcO3HknVKwIF14In34KaWnRrzXHFSsGLVsGf0Bz\n5gRbmT33HJx3XpB0xYPJk2NdgSQlJEMaSZIkSZIkxY3ChaFTp2D7sl9/hW7dgp3AMuKff+D996FF\nC6hWDe6/H5YsyZ56Y6JqVbjuOvjwQ1izJvjDuuceOP742NU0dWqC7zcnSbFhSCNJkiRJkqS4VLNm\nsH3ZkiXw7rtw5pnBTmAZ8fvvcN99cPjhwWKUESOCECdp5M8fLDt64AGYMiXY6+3FF3O+jrVrYcOG\nnH+uJCU4QxpJkiRJkiTFtQIF/t2+bP586NUr2NIsI9LSYPToYIewww4LFp7Mn5899cZU2bLBNxkL\nW7fG5rmSlMAMaSRJkiRJkpQwqlSBfv1g4UL46CNo0wby5s3YHMuWwYABUL06nHEGvP12kuULBQrE\n5rkFC8bmuZKUwAxpJEmSJEmSlHDy5Qu2Lxs+HBYtCnb7qlo14/OMHw/t2wcrc26/HWbOjH6tOa54\ncShVKmefWaoUFCuWs8+UpCRgSCNJkiRJkqSEVqFCsH3Zb7/BuHFw8cUZX0yyZg08/jjUqQONGsHg\nwbBpU7aUm/1SUqB+/Zx9Zq1aGT8wSJJkSCNJkiRJkqTkkCcPNGsGb70FS5fCY49B7doZn2fiRLji\nCjj0ULj+evjxx+jXmu1OOilnn/fdd9ChA8yalbPPlaQEZ0gjZdDgwYNp2rTpHq/LL7881qVJkiRJ\nkqT/V6YM3HYbpKbCN9/AZZdB4cIZm+Pvv+G55+D444PX888H9xJChw45/8y33gqWInXqBHPm5Pzz\nJSkBGdJIGbRw4UImTJiwx2vKlCmxLk2SJEmSJO0mJeXf7cv++AOefRaOOy7j8/z4I3TtGqyuueKK\nYLVNKBT1cqOnXj049dScf24oBMOGBUuYOneGuXNzvgZJSiCGNFIGValShSZNmuzxOuGEE2JdmiRJ\nkiRJ2o+SJYOg5ccfYcoUuPZaKF48Y3Ns2hQEPo0aQd268MQTwXk2calHj9g9Oy0Nhg4NwprLL4d5\n82JXiyTFsZRQKK4zfylhpKamUrdu3fTrGTNmUKdOnRhWJEmSJEmSDmTjRnjnHXjxxeBYlcwoUADO\nPx+uvhqaNg3OxokbHTvCm2/GugrImzdYWdOzJ1SrFutqpKSTFkpjzaacT4xLFylNnpR4+ksvMvH0\nWa4hjRQl8dTYkiRJkiQp41JT4aWXYMgQ+PPPzM1RvTp06RIsHjn00KiWlzlr1sDRRwd7vUVbqVJQ\ntmzGzp/Jly84IKhnT6hSJfo1SVIE4umz3MSLuCRJkiRJkqRsUKcOPP44LF0Kb7wBp5+e8TnmzYN7\n7oHKlaFtWxg9GnbsiH6tEStdGj75JAhUoqlUKZgwAWbODFbq1KoV2bh//oGXX4Yjjgj2m1u0KLp1\nSVKCMaSRJEmSJEmSdlGoEHToAOPHB+fe33UXHHJIxubYsQOGD4eWLYMFI717w++/Z0u5B1avXhCo\nVKgQnfkqVAjmq1cv2MasfXuYMQOGDYOaNSOb459/4IUXoEaN4KCgxYujU5skJRhDGkmSJEmSJGkf\natSAAQOCDOHDD+GcczJ+5sySJdCvH1StCi1awPvvw/bt2VPvPtWrB9OnB2fUZEXHjsE89eqF38+b\nN/haaioMHRqslInE9u3w/PPBH/QNNwR/WJKUixjSSJIkSZIkSQeQPz+cd16wfdnChdC3Lxx2WMbm\nCIXg00/hwguhUiXo0SNjx7lkWenSwWqXUaOgceOMjW3cOPjmhw0L5tmXvHmhU6dgG7TXXgsO6YnE\ntm3w7LPB+2+6KXvO0JGkOGRII0mSJEmSJGVA5cpw330wfz58/DFccAHky5exOVauhEceCXYHa9o0\nyD62bMmWcvd07rnBdmW//BIcoHPGGXueWVOqVHD/nnuC902YECwjilS+fNC5M/z6K7zySrCMKBLb\ntsF//wvVqsEtt8CyZZE/U5ISUEooFArFuggpGaSmplK3bt306xkzZlCnTp0YViRJkiRJknLKihXB\nwpGXXgrOscmMUqWCRShXX73nbmLZLhSCDRtg61YoWBCKFYOUlOjNv307DBkC/fsHS5EiVagQXHdd\nsOyofPno1SMpV4unz3JdSSNJkiRJkiRl0SGHwJ13wuzZ8MUXcMklQdaREWvXwtNPw9FHw3/+Ay+/\nHOQmOSIlBYoXhzJlgv+NZkADwX5xXboEf0AvvBD5XnFbtsATTwQra7p1C5YgSVISMaSRJEmSJEmS\noiQlJdi+7PXXg2NVnnwSdvll7YhNmgRXXQWHHgrXXAM//BAsdsmMiRMzNy5b5i1QIFgqNHcuPP98\nsHdcJDZvhkGDgm3T7rwTVq3KxMMlKf4Y0kiSJEmSJEnZ4OCD4eabYfp0+P77YCFJ0aIZm2PDBnjx\nRTjpJDjuuOC4lrVrIx/fpw80ahTkG9E0aFAwb58+mZygQAG49togrHn2WahUKbJxmzbBwIFBWHPX\nXbB6dSYLkKT4YEgjSZIkSZIkZaOUFDj55OC8mmXL4H//gxNPzPg8P/8MN90EFSpA587w1Vf7X13T\npw/07Rv8d7du0QtqBg0K5oNg/kwHNRDsCde1K/z2W5BAVagQ2biNG+Hhh4Ow5p57YM2aLBQhSbFj\nSCNJkiRJkiTlkOLFg+3LJk+GadPghhugRImMzbFlCwwdCk2aQO3a8Oije+7+NXHivwHNTtEIanYN\naHbq2zcKW6oVLBj8YcybF+wRV758ZOM2bIABA4KwpmdP+PPPLBYiSTnLkEaSJEmSJEmKgWOOCRaP\nLFsGQ4bAqadmfI7Zs6F7d6hYES66CD77DNLSoGHDILzZXVaCmr0FNBA8p2HDzM25h0KFgj3i5s+H\nxx+HQw6JbNz69fDAA0FY07s3/PVXlAqSpOxlSCNJkiRJkiTFUOHCcOmlwfZls2YFQUiZMhmbY/t2\neO89OOssqF4d+veH9u2jF9TsL6C5446MzRWRwoXh1luDsGbQIChXLrJxf/8N/fpBlSrBEp9167Kh\nOEmKHkMaSZIkSZIkKU7UqgUDB8LSpfDOO3DmmcGZNhmxcCH06gWHHQZffglXXLHnezIS1OR4QLOr\nIkXg9tuDsGbgQChbNrJx69YFh+VUqQL33x+EN5IUhwxpJEmSJEmSpDhToECwfdmnnwbHtPTsCRUq\nZGyOtDQYNQpefTU4C2d3kQQ1MQ1odlW0aFDI/Pnw0ENQunRk4/76C+67LwhrHngg2BZNkuKIIY0k\nSZIkSZIUx6pWDRaD/P47jBwJrVtD3rwZm2Nf2cT+gpq4CWh2VawY9OgBCxbAgw/CwQdHNm7t2iDp\nqlo1CHk2bMjeOiUpQoY0kiRJkiRJUgLIlw9atYIRI2DRouDcmapVsz7v3oKauAxodlW8ONx9dxDW\n9O8PpUpFNm7NmmBc1arwyCOwcWP21ilJB2BII0mSJEmSJCWYChXg3nvht99g7Fho1w7y58/8fN26\nQfv2sGlTAgQ0uzrooOAPYsEC6NcPSpaMbNzq1cGKnKpVg29s06bsrVOS9sGQRpIkSZIkSUpQefLA\nGWfA22/D0qVBwFKrVubmevvtYDexhAlodlWiBPTqFYQ1ffoE4U0kVq2C7t2DsOaxxwxrJOU4QxpJ\nkiRJkiQpCZQtC7ffDjNnwtdfQ+fOULhwxuYIhfa816EDXH55VErMfiVLQu/esHBhENoULx7ZuJUr\ngxSqenV44gnYvDlby5SknQxpJEmSJEmSpCSSkgKnnAKvvQZ//AHPPAPHHpv5+d58E8qVg8aNgxU1\nc+ZEr9ZsU6pUsP3ZwoXBdmjFikU2bvlyuO22IKx5+mnYsiVby5QkQxpJkiRJkiQpSZUsCddfDz/+\nCD/8ANdeG/nikl2lpQWrc7p3h5o1gy3V7rwTvvkGduyIft1Rc/DB0L9/ENbcfTcULRrZuGXL4Oab\noUaNIOXaujVby5SUexnSSJIkSZIkSUkuJQVOOAGefz5YXfPyy9CgQebnmz0bBg6EU0+F8uWD7dA+\n+AA2bIhaydFVujQ8+GAQ1vToEXlYs3Qp3HhjENY895xhjaSoM6SRJEmSJEmScpFixeDKK+GCC6Iz\n3+rVwdZqF1wAZcrAOecEYdDSpdGZP6rKlIGHHoIFC4JlQUWKRDZuyZJgSdIRR8D//gfbtmVvnZJy\nDUMaSZIkSZIkKZcZNAi6ddvzfuHCWZt361b4+GPo2hUqVQpW7/TrB9OmQSiUtbmjqmxZeOQRmD8f\nbr898m988WK47jo48kh48UXYvj1765SU9FJCobj661GKe4MHD2bw4MF73N+4cSNTpkxJv54xYwZ1\n6tTJwcokSZIkSZIObF8BzaOPwh13BNlFjx7Rf27lytC6dfBq2hQKFIj+MzJt+XJ4+OFgCdCWLZGP\nq1IFevWCSy+F/PmzrTxJ0ZWamkrdunXTr2P5Wa4hjZRBffr0oW/fvgd8nyGNJEmSJEmKNwcKaA70\nvmgpXhxatAgCm3POgYMPzr5nZciyZcF2aP/7X8bOn6lWLQhrOnWCfPmyrz5JUWFIIyUwV9JIkiRJ\nkqREFGlAc6D3X3RRkF+MHQubN2e9rrx54ZRT/l1lU6NG1ufMsqVLg7DmhRcydv5MjRpBWNOxo2GN\nFMcMaaQkFE+NLUmSJEmStKuMBjSRjOvaFcaPh5Ej4aOPYMWK6NRau/a/gc3JJwchTswsWQIDBmT8\n/JkjjoD77oMOHWL8DUjam3j6LDdPTJ4qSZIkSZIkKUdkNqCB4OuPPrrn/W7d4LnnoFWrIL/44w/4\n/nu45x7Y5XPPTJk1KzgeplEjOPRQuPJKGD4cNm7M2ryZUqkSPPMM/PYbXHtt5OfOzJ0bnFNTpw68\n8Qbs2JG9dUpKWIY0kiRJkiRJUpLKSkCz0/6CmkGDgv/OkydY9fLAA/DLLzBvHjzxBJx+etYWkqxa\nBa++Cm3bQunS0LJlsAPZH39kfs5MOewweP75IHy5+urItzKbPRsuuQTq1YO33oK0tOytU1LCMaSR\nJEmSJEmSklA0ApqdIglqdlWtGtxyS7Ad2qpVwWKS9u3hoIMy9txdbd0Ko0cHC1oqVoSTToL+/WH6\ndMixAx0OPzxIiebMgS5dIk+gZs0Ktj47+mh4913DGknpDGkkSZIkSZKkJDNxYvQCmp32F9RMnLjv\ncaVKBfnEm28Ggc24cXDzzVClSubq2OmHH6BXLzjmGKhaNZhz3DjYti1r80akalV46aUgrLniisjD\nmtRUaNcOjj0W3n/fsEaSIY0kSZIkSZKUbBo2hN69w+9lJaDZaW9BTe/ewfMiUaAANGsGTz4J8+cH\nq2D69w9WxWTF77/D009D8+ZQtmywaueNN2Dt2qzNe0DVqsErr8Cvv8JllwX7vkXil1/gwgvhuOPg\nww9zcCmQpHhjSCNJkiRJkiQloT59/g1qohHQ7LRrUNO7d/CczEhJCY5qufdemDQpOGfmhReCc2cK\nFcp8fX//DW+/HRwFU7ZscC7OE08EoVC2qVEDBg8OwppLL408rJk+Hc4/H+rXhxEjDGukXCglFLLz\npWhITU2lbt266dczZsygTp06MaxIkiRJkiQp2Ios0pUu8TAvwMaNwdZlI0fCqFGwcmV05q1TB1q3\nDl4nnRR5lpJhs2dDv37BHm8Z+fi1fv0g9WrZMkixJGWLePos15U0kiRJkiRJUhLLriAlu+YFKFoU\n2rSBl1+GZcuCQOiuu+Coo7I2b2oqDBgADRpAhQpw1VVBELRpU3TqTlezJgwbFjywffvIA5cff/w3\nQRozxpU1Ui5gSCNJkiRJkiQpbuXJE4QqAwYEmcfcufDYY9C0KeTNm/l5V6wIQqA2baB06SAbeekl\nWL48aqVD7drBappffoF27SIfN2UKnHtu8I1/8olhjZTEDGkkSZIkSZIkJYwaNeC22+CLL4Jt0F5/\nHS6+GA46KPNzbtkCH30EV18Nhx4K//kPPPggzJgRpXykTp3goJxffoELL4x83KRJcPbZwbKlzz4z\nrJGSkCGNJEmSJEmSpIR08MFwySXw1luwahWMHQs33QSHHZa1eSdNgnvvhXr1oHp1uPVW+Pxz2L49\niwXXrQvvvgs//wxt20Y+7vvv4ayz4JRTgsN6DGukpGFII0mSJEmSJCnhFSgAZ5wBTz0FCxcGOcj9\n98OJJ2Zt3gUL4MknoVkzKFsWOnYMQqG//srCpEcfDR98AD/9FOy3FqmJE6F5c2jSJFhKJCnhGdJI\nkiRJkiRJSiopKUEO0rMnTJ4MS5bA88/DOedAwYKZn3fduuCImQ4dgsBmZyi0YEEmJzz2WBg+HKZO\nhVatIh/39ddw+unBwTwTJmTy4ZLigSGNJEmSJEmSpKRWsSJcey2MHg2rVweLWK64IghaMuuff2D8\neLjlFqhWLTwUSkvL4GT168PIkfDDD3DuuZGPmzAhCGpOPz0IbiQlHEMaSZIkSZIkSblGsWLBcTCv\nvALLlsG330KPHlC7dtbm/eUXeOABOPnkIBS65hoYNQo2b87AJCecEAyaNAnOPjvycV98AY0bB0t7\nvv02w7VLih1DGkmSJEmSJEm5Ut680LAhPPQQzJwJc+bAoEHBkS95svDJ6fLl8OKLwQ5mpUvDeecF\nodCKFRFOcNJJMGYMfPcdnHVW5A8ePx5OOQXOPDMYKynuGdJIkiRJkiRJEnDEEXD77fDll7ByJQwd\nChddFKy+yazNm2HECOjSBQ49NDwUCoUOMPg//4FPPglWx5xxRuQPHTs2eFCLFsGqHElxy5BGkiRJ\nkiRJknZTujR06gTvvBOcY/Ppp3DDDVC5cubnDIWCBS533w116oSHQtu372dgw4ZB8PL118H5M5H6\n9NMg6Dn33OC8G0lxx5BGkiRJkiRJkvajYMFgB7H//hd+/x1++gn69oXjj8/avPPmweOPw2mnwSGH\n/BsKrVu3jwGnnBJsaTZhAjRtGvmDxowJtlBr1QqmTs1a0ZKiypBGkiRJkiRJkiKUkgLHHgv33QdT\npsDixfDcc3D22VCgQObnXbsWhg2Diy+GsmXDQ6E9NG4MX3wRvBo3jvwho0bBCSdAmzZB0iQp5gxp\nJEmSJEmSJCmTKlWC664LFqusXg3vvw+XXRZsl5ZZ27cHu5vddBNUqRKEQr16BTuWpaXt8samTYO9\n0saNg0aNIn/AyJFQvz60bQs//5z5QiVlmSGNJEmSJEmSJEVB8eJw/vkweDCsWBEcIdO9O9SsmbV5\nf/4Z+vcPdiyrVAmuvRZGj4bNmwmW9jRrFjzss8+gQYPIJx4+PEiALrgAfvkla0VKyhRDGkmSJEmS\nJEmKsrx5gyNkHnkEfv01eA0cCKeeCnmy8KnssmXwwgvQsiWUKRMshnn1VVi1OgWaN4dvv4VPPoGT\nT4580g8+gKOPhnbtIDU188VJyjBDGkmSJEmSJEnKZjVrQrdu8NVXwSqb114LFrAULZr5OTdtChbD\nXHklHHLI/4dCA1P49fCzCE38LtiD7cQTI5/w3XehXj1o3x5mzsx8YZIiZkgjSZIkSZIkSTmoTBno\n3Bneey84x+bjj6FrV6hYMfNzhkLBIpoePaB2bahZK4U7xp3NhEcm8c+I0XD88ZFP9PbbULcudOwY\nLAGSlG0MaSRJkiRJkiQpRgoVghYt4NlnYfFimDoVeveG447L2rxz58Jjj0HT01Iod/k5XFr7B969\nczJ/H31KZBOEQvDmm1CnDnTqBHPmZPf2+PgAACAASURBVK0gSXtlSCNJkiRJkiRJcSAlBerXhz59\n4McfYdEieOYZOOssyJ8/8/OuXQuvv55Cu0dOpMysrzjr2OU8U/FBFlH5wIPT0mDYsGB5TufOQfoj\nKWoMaSRJkiRJkiQpDlWuDNdfD598EmyL9u67cOmlcPDBmZ9z+/YUPpt2CDcuvZvDWcRxhWbSmz5M\npT6h/Q1MS4OhQ4Ow5oorYN68zBchKZ0hjSRJkiRJkiTFuYMOggsvhCFDYMUKmDAB7rgDatTI2rzT\nttSmH705galUZjFdeZaPacEWCu59wI4dMHgw1KwJXbrAggVZK0DK5QxpJEmSJEmSJCmB5MsHjRvD\no48GR8XMmgUPPwyNGgVbpmXWUirxPF05h48pw2ou4D1eozOrKb3nm3fsgFdegSOPhKuvhoULM/9g\nKRczpJEkSZIkSZKkBJWSArVqwZ13wjffBKtsXn0V2raFIkUyP+9GivEBF3A5r3EIKziVrxhIN2Zz\nZPgb//kHXnoJjjgCrr02OEhHUsQMaSRJkiRJkiQpSZQtC5dfDh98AGvWwOjRQXZSoULm50wjL99w\nKncykFrMpia/0p1H+JpT+Ie8wZv++QdeeCHYf61rV1i8OCrfj5TsDGkkSZIkSZIkKQkVKgTnnAPP\nPx9kJj/8AL16wTHHZG3eOdTkUbrTmK8pz3IuYzDvcz7rKQbbtwcPrFEDbrwRli6NzjcjJSlDGkmS\nJEmSJElKcnnywAknQL9+MG1acITM009D8+aQP3/m511DGYZwGRfyPmVYzdmM4TmuY8m2svDMM1C9\nOtx8M/zxR9S+FymZGNJIkiRJkiRJUi5z+OHBQpfPPoNVq+Dtt+GSS6BUqczPuY2CfMLZXM9zVGYJ\nxzOFvlt78NPTXxOqVh1uvRWWLYveNyElAUMaSZIkSZIkScrFSpSAdu3g9ddh5Ur44gu47bZgEUxW\n/Mjx9KEv9fmJw7bO4YYnj+DTw69h683dYcWK6BQvJThDGkmSJEmSJEkSAPnyQdOm8NhjMHcupKbC\ngAHQoAGkpGR+3iVU5lluoMX2jyjz9H1cVOFbhp7zBmt+XRW12qVEZEgjSZIkSZIkSdpDSgocdRTc\ndRdMnBjsVPbyy3DeeVCkSObn3UBx3ks7n84fd6Rc7YNpUnk+g/puYO7c6NUuJQpDGkmSJEmSJEnS\nAR1yCFx5JXz4IaxeDaNGwTXXQPnymZ8zjbx8taQa3foU48gjofaR/9CjB3z7LezYEb3apXiVEgqF\nQrEuQkokgwcPZvDgwXvc37hxI1OmTEm/njFjBnXq1MnByiRJkiRJkqScl5YGU6fCyJHBa/r06Mxb\npgy0bAmtW0Pz5lCsWHTmlVJTU6lbt276dSw/y80Xk6dKCWzhwoVMmDAh1mVIkiRJkiRJcSFPHjjx\nxOB1//2wcCF89FEQ2Hz5ZYh//sncYTarV8PgwcGrYEFo1iwIbFq2hIoVo/kdSLFjSCNlUJUqVWjS\npMke93dfSSNJkiRJkiTlRlWqwE03Ba9161L45BMY+eE/jBn5D39tLpSpObduhTFjghfACScEgU3r\n1nD00cH5OVIicrszKUriaYmcJEmSJEmSFG+2b4dvxm1h5IBURnxbhgVph0dl3sMO+zewadIEChSI\nyrRKYvH0WW6emDxVkiRJkiRJkpSr5M8Pp51diMe/Op5568ow4/ZXeLBIf/7Dd6SQlul5Fy2C//4X\nzjwzOMfm4oth2DD4888oFi9lE0MaSZIkSZIkSVKOSilWlDqDruTuFbfy3UNf8UepurxEF1ozgsJs\nyvS869fDO+9Ap05Qrhycdho8/jjMmxfF4qUoMqSRJEmSJEmSJMVGsWLQowflf59ElwdrMOLgK1lN\nGUbSiqt4kUNYnumpd+yAL7+E22+HGjWgTh24+2747rvga1I8MKSRJEmSJEmSJMVW8eJBgrJgAUX6\n30urUt/yItfwBxX4npO5hweoyy9ZesTMmfDQQ9CwIVSoAF26wIgRsHFjlL4HKRMMaSRJkiRJkiRJ\n8eGgg+Dee2HBAujblzwlDuJkJvMAPfmFo5lHNZ7gFk5nPHn5J9OPWbkSXnkFzjsvOMemVSt48UVY\ntiyK34sUAUMaSZIkSZIkSVJ8KVEC7rsPFi6E3r2D8AaoxgJu4SnGcwarKMsbdKA9b3IQ6zL9qC1b\nYNQouOaaYIXNySfDAw/AL79AKBSl70faB0MaSZIkSZIkSVJ8KlkS+vQJwppevYJt0f5fKf6iA2/x\nJh1ZRVnG0YybeZIqLMjSIydPhp494eijoVo1uOUWGD8etm/P2rci7Y0hjSRJkiRJkiQpvpUqBf36\nBWHNPfdAsWJhXy7AdprxOU9yK/OpxnTq0Z97OYlJWXrswoXw1FNwxhlQtix06ABvvglr12ZpWimd\nIY0kSZIkSZIkKTEcfHCwF9mCBXDXXVC06B5vSQHqMYN7eZBJ/Ic/OJQXuJqWfEQhtmT60evWwVtv\nQceOUK4cNGsGTz4J8+dn4ftRrmdII0mSJEmSJElKLGXKwIABQVhz551QpMg+33ooy7mal/iI1qym\nNMNpw5VF3qJssc2Zfvw//8Dnn8Ott0L16lCvHtx7L0yaBGlpmZ5WuZAhjSRJkiRJkiQpMZUtCw8/\nHIQ13bpB4cL7fXtRNtGGkby8qQPLNhRj4iFtuavFTxxVO2vJyowZ8OCD8J//QIUKcPXV8NFHsGlT\nlqZVLmBII0mSJEmSJElKbOXKwcCBQVhz++1QqNABh+QljQYrhjPgk/qkbqrG3Afe4bGBO2jaFPLm\nzXwpK1bASy9B69bBgp82beDll2H58szPqeRlSCNJkiRJkiRJSg6HHAKDBgVhza23QsGCkY37/Xdq\n3Hsxtz17BF9c+gorl27n9dehXTsoXjzz5WzeDCNHwlVXwaGHBittBgyA1FQIhTI/r5KHIY0kSZIk\nSZIkKbmULw+PPw7z58NNN0Ue1ixYAF26cHCj2lyyfTBvD/uH1avhs8/gxhvhsMOyVtakSXDPPVC3\nLtSoAbfdBl98Adu3Z23e3U2cGN35snve3MyQRpIkSZIkSZKUnCpUgKeegnnz4IYboECByMbNmwdX\nXAG1a1Pg7aE0P+0fnn4aFi6EadOgXz844YSslTZ/PjzxBJx+erBbW8eO8NZb8NdfWZu3Tx9o1ChY\nUBRNgwYF8/bpE915cztDGkmSJEmSJElScqtYEf77X/jtN+jaFfLnj2zcb79B585Qpw4MG0ZK2g6O\nOQZ69YIffoAlS+D55+GccyJfrLM3f/0Fb74JHTpA2bJwxhlBtrRwYcbm6dMH+vYN/rtbt+gFNYMG\nBfNBML9BTfSkhELufCdFQ2pqKnXr1k2/njFjBnXq1IlhRZIkSZIkSZL2atEiePBBeOWVjO01VqsW\n3HdfcFhN3rxhX9qwAcaODc6gGTUKVq+OTqn16kHr1sHrhBMgzz6WXkycGKx02d2jj8Idd2T++bsG\nNLv69lto2DDz88ZSPH2W60oaSZIkSZIkSVLucthhwRKYuXPh6qshX77Ixv36a7AvWb168PbbkJaW\n/qVixaBtW3j1VVi+HL75Bu68M8h1suKXX+CBB+Dkk4MFQddcE4RAmzeHv69hwyCQ2V1WVtTsK6B5\n9NHEDWjijSGNJEmSJEmSJCl3OvxweOEFmDMHunTZY3XMPs2aBe3bw9FHw7vvhoU1EEzTqBE8/HDw\n1tmzg2CjceN9r4SJxPLl8OKL0KoVlC4N550XLAZasSL4+h13RC+o2V9Ak5WVOQpnSCNJkiRJkiRJ\nyt2qVoWXXgrSlMsvjzysSU0Ntj479lh4//09wpqdjjwyCDYmTICVK2HIELjwwmD1TWZt3gwjRgTZ\n0qGHBitbHnoIzj4bBg7c8/0ZCWoMaHKOIY0kSZIkSZIkSQDVqwf7lf36K3TuHPmyl19+CVKX+vVh\n+HDYz1HwpUvDpZcGC3BWr4ZPPoHrr4dKlTJfdigE330Hd98NdeoEO7k1brzn+yIJagxocpYhjSRJ\nkiRJkiRJu6pRA157LdirrFOnyMOan38ODqY5/ngYOXK/YQ1AwYJw1lnwzDOwaBH8+CP06RNkPVkx\nbx589dXev7a/oMaAJucZ0kiSJEmSJEmStDdHHglDhwbbmnXsCCkpkY376Sdo0wZOPBFGjTpgWAPB\n1McdB717w9SpsHgxPPtssH1ZgQJZ/D52060b9OwZfs+AJjYMaSRJkiRJkiRJ2p9atWDYMJgxAy6+\nOPKwZupUaNUKTj4ZxoyJKKzZqVIl6No1GLZ6dXDkzWWXBdulRcMDD0CFCnDffXDrrQY0sWJII0mS\nJEmSJElSJI46Ct56KziD5qKLIh/3ww9w7rnQoEFwCE0GwhqA4sXh/PNh8GBYsQK+/hq6dw8W+mTF\nsmVw//3w5JN7fs2AJmcY0kiSJEmSJEmSlBF16sA778D06XDBBZGPmzQp2L+sUSMYOzbDYQ1A3rxw\nyinwyCMwezb8+isMHAinnhr50TkHYkCTcwxpJEmSJEmSJEnKjHr14L33YNo0aNs28nHffQdnnhkk\nK+PHZyqs2almzWCrsq++ClbZvPZakBsVLZq5+QxocpYhjSRJkiRJkiRJWXHMMfDBB/Djj9CmTeTj\nvv0WzjgDmjSBL77IchllykDnzkFutHo1fPxxcK5NxYqRjS9f3oAmpxnSSJIkSZIkSZIUDccdB8OH\nw9Sp0KpV5OO+/hpOPx2aNoUJE6JSSqFC0KIFPPssLF4clNS7N1SosO8xy5fDoEFRebwiZEgjSZIk\nSZIkSVI01a8PI0fC5MlwzjmRj5swIQhqmjWDb76JWjkpKUFJxYvDH3/s/73duhnU5CRDGkmSJEmS\nJEmSssOJJ8Lo0fD998Gylkh9/nlwXk3z5jBxYlRKGTQoCGB2d+ihe94zqMk5hjSSJEmSJEmSJGWn\nk08ODoiZOBHOPDPycePGQaNGcNZZQdCTSfsKaB7tv4U/pq/m0f5b9viaQU3OMKSRJEmSJEmSJCkn\nNGgAn34K334LZ5wR+bjPPgvGnn12sIVaBuwzoCncizt6FoayZbmjZ2EeLdxrj/cY1GQ/QxpJkiRJ\nkiRJknJSw4Ywdix89RWcfnrk4z75JFiVc+65MGXKAd++z4CGO7hjc/+we3ds7s+j3LHHew1qspch\njSRJkiRJkiRJsXDqqTB+PHz5JTRpEvm4MWOC825atYIff9zrW/Yb0PDYXsfcwWMGNTnMkEaSJEmS\nJEmSpFhq0iQIaj7/PAhuIjVqFBx/PJx3Hkybln47MwHNTgY1OcuQRpIkSZIkSZKkeHDaaTBhAowb\nB40aRT5uxAg47jg4/3wG3fFHpgOanQxqco4hjSRJkiRJkiRJ8SIlBZo1g6+/hs8+gwYNIh466MOq\ndHuswh73MxLQ7GRQkzMMaSRJkiRJkiRJijcpKdC8OXz7LXz8MZx00n7fPpEGdGPP9CQzAc1O+wtq\nJk7M1JTajSGNJEmSJEmSJEnxKiUFWrSA77+H0aPhhBP2+raGfEdv+oTdy0pAs9PegpreHebQsGGW\nptX/M6SRJEmSJEmSJCnepaTAOefA5Mnw0UdQv/4eb+lD3/SgJhoBzU67BjW96UOfpVdHZV4Z0kiS\nJEmSJEmSlDhSUqBlS5gyBUaMgOOOC/tyH/ryLQ2jFtDsdAeP8S0N6UNf+OormDEjqvPnVoY0kiRJ\nkiRJkiQlmpQUaN0apk6FDz+EcuXSv9SQ77LlkWHzvvlmtjwjtzGkkSRJkiRJkiQpUaWkwHnnQb16\nOfvcyZNz9nlJKl+sC5CSxdatW8Ouf/vttxhVIkmSJEmSJClXCYXghx9y9pmTJwdbnqWk5Oxzo2D3\nz253/2w3JxnSSFGyePHisOvzzjsvRpVIkiRJkiRJUjb7+++cX72TTRYvXkz9+vVj8my3O5MkSZIk\nSZIkSYoBQxpJkiRJkiRJkqQYSAmFQqFYFyElg7/++osJEyakX1euXJmCBQvGsKKc9dtvv4Vt8TZ8\n+HBq1KgRw4okZTf7Xspd7Hkp97HvpdzFnpdyn9zc91u3bg07vqJJkyaULFkyJrV4Jo0UJSVLlqRN\nmzaxLiNu1KhRgzp16sS6DEk5yL6Xchd7Xsp97Hspd7Hnpdwnt/V9rM6g2Z3bnUmSJEmSJEmSJMWA\nIY0kSZIkSZIkSVIMGNJIkiRJkiRJkiTFgCGNJEmSJEmSJElSDBjSSJIkSZIkSZIkxYAhjSRJkiRJ\nkiRJUgwY0kiSJEmSJEmSJMWAIY0kSZIkSZIkSVIMGNJIkiRJkiRJkiTFgCGNJEmSJEmSJElSDBjS\nSJIkSZIkSZIkxUC+WBcgKTmULVuW3r17h11LSm72vZS72PNS7mPfS7mLPS/lPvZ9fEgJhUKhWBch\nSZIkSZIkSZKU27jdmSRJkiRJkiRJUgwY0kiSJEmSJEmSJMWAIY0kSZIkSZIkSVIMGNJIkiRJkiRJ\nkiTFgCGNJEmSJEmSJElSDBjSSJIkSZIkSZIkxYAhjSRJkiRJkiRJUgwY0kiSJEmSJEmSJMWAIY0k\nSZIkSZIkSVIMGNJIkiRJkiRJkiTFgCGNJEmSJEmSJElSDBjSSJIkSZIkSZIkxYAhjSRJkiRJkiRJ\nUgzki3UBkmJj3rx5TJ48mSVLlrBt2zZKlSpFrVq1aNiwIYUKFYp1eZKiLN56fvv27cyePZvU1FRW\nrFjB+vXrKVasGKVLl+boo4+mbt265Mnj75JIWRFvff/333/z66+/8vvvv7Ns2TI2btwIQMmSJSlf\nvjz169fn8MMPz/G6pGQRbz0vKfvZ91LuE+99v2PHDqZOncrMmTNZuXIl27dvp1ixYlSqVInatWtT\nq1Yt/62/NyFJucqHH34Yql+/fgjY66tYsWKhG2+8MbRq1aocqyktLS00c+bM0ODBg0PXX3996Pjj\njw/lz58/rK7LLrssx+qRkkk89fz8+fNDjzzySKh58+ahwoUL77MmIFSiRInQDTfcEJozZ0621yUl\nm3jp+40bN4aeeeaZ0MUXXxyqUqXKfnt+56tKlSqhvn37htasWZOttUnJJF56PlIbN24MVa9efY86\n/Xlfilw89X2TJk0i+v/4fb1effXVbK9RSgbx1Pd7M3/+/FDXrl1DJUuW3G/PH3TQQaE2bdqERo8e\nHZM645UhjZRLbNmyJXTJJZdE/INS2bJlQxMmTMjWml555ZVQs2bNQiVKlDhgPf6jTcqYeOr5LVu2\nhE4++eRM/aOtQIECoYEDB4bS0tKypTYpmcRT34dCodDcuXMz/YFNuXLlQu+//3621SYlg3jr+Ujd\ndttt/rwvZVI89r0hjZS94rHvd7Vjx47Qgw8+GCpYsGCGev/iiy/OsRoTgWuLpFwgLS2Niy++mGHD\nhoXdz5s3L1WrVuXYY4+lRIkSYV9btWoVZ599Nt9991221TVixAjGjx/PunXrsu0ZUm4Ubz2/fft2\nJk2atNevFSpUiKpVq3LiiSdy1FFHUaBAgbCvb9u2je7du3PjjTdGvS4pmcRb3+9PyZIlqV27Nief\nfDLHHHMM5cqV2+M9K1eu5KKLLmLw4ME5WpuUKBKp53c1efJknnzyyZg9X0pkidr3kjIv3vt++/bt\ntG/fnnvuuYetW7eGfa1EiRLUqlWLk046idq1a1OkSJFsryeRGdJIucDAgQMZMWJE2L3rrruORYsW\nMX/+fH766Sf+/PNPPvjgAw477LD092zatIl27drFJEQpWrRojj9TShbx3vNVq1alT58+fPvtt/z9\n99/Mnz+fyZMnk5qayl9//cXQoUP3OJfi2Wef5b///W+21iUlsnju+7p169K9e3dGjhzJ8uXLWbt2\nLTNnzuT7779n2rRprFixgvnz59OrVy8KFy6cPi4tLY1rr72WX3/9NdtqkxJVPPf8vmzbto0uXbqQ\nlpYG+PO+lFGJ0vdjx47N0Ouss87KkbqkRBTvfd+lSxfefffd9Ot8+fJxww03MHnyZNauXcusWbOY\nNGkSM2fOZP369cyaNYsnnniChg0bkpKSkq21JZxYL+WRlL1Wr14dKl68eNiSwgEDBuzz/UuWLNlj\n3/j77rsvW2pr06ZNCAiVL18+1KpVq9D9998f+uSTT0Jr1qwJ9e7d2+0PpEyIx55fv359CAg1atQo\n9Omnn0a0ddmff/4ZOvHEE8PqKlmypOdUSHsRj30fCoVCGzZsCM2dOzdDY3766adQqVKlwmpr165d\n1GuTElm89vyB7PrzfcWKFUO33367P+9LEYrnvt99uzNJ0RHPfR8KhUJDhw4Ne1aFChVCP//8c8Tj\n//zzz2yrLRH5t6eU5O68886wvzQbN258wA9Ix40bFzamePHiodWrV0e9tqlTp4YWLVq0168Z0kiZ\nE489v3Xr1tCoUaMyPG7p0qWhokWLhtX2wgsvRK0uKVnEY99nxfPPPx9WW9GiRUObN2+OdVlS3EjE\nnp8xY0aoQIEC6c//8MMP/XlfyoB47ntDGil7xHPfr1q1KlSmTJn055QoUSLDv5ylcG53JiWxtLQ0\nXn311bB7ffr0OeCSwmbNmnHqqaemX69fv5533nkn6vXVr1+fypUrR31eKbeK154vUKAA5557bobH\nVahQgcsuuyzs3qeffhqtsqSkEK99nxUdOnQgT55//5myceNGFi1aFMOKpPiRiD2flpZGly5d2LZt\nGwBt27blvPPOy5FnS8kgEfteUtbEe98/8MADrF69Ov36wQcfpEaNGlF/Tm5iSCMlsYkTJ7Jq1ar0\n62rVqtG0adOIxnbp0iXsevjw4dEsTVI2SMae3/UHTMAPaqXdJGPfH3TQQZQtWzbs3q7/CJRys0Ts\n+SeeeIJJkyYBQX97xpyUMYnY95KyJp77fuvWrQwZMiT9unz58lx77bVRfUZuZEgjJbHRo0eHXTdv\n3jzig7maN28edv3ll1+ycePGqNUmKfqSsedLlSoVdh2Lg46leJaMfQ+wZcuWsOuSJUvGqBIpviRa\nz8+fP59evXqlXw8YMIAKFSpk6zOlZJNofS8p6+K57z/88EP+/PPP9Ov27duTN2/eqM2fWxnSSEls\n2rRpYdcNGzaMeGyFChWoUqVK+vW2bduYOXNmtEqTlA2SseeXLl0adl26dOkYVSLFp2Ts+9mzZ4cF\nssWKFePII4+MYUVS/Ei0nr/66qvZtGkTAA0aNKBr167Z+jwpGSVa30vKunju+90DpNNOOy1qc+dm\nhjRSEps1a1bY9VFHHZWh8bu/f/f5JMWXZOz5r7/+OuzaD2qlcMnY9/379w+7vuSSS8iXL1+MqpHi\nSyL1/EsvvcTnn38OQP78+XnxxRcj/i1gSf9KpL7fad26dUyfPp2vvvqKH3/8kd9//50dO3Zk+3Ol\nZBHPff/DDz+EXR9zzDEA7Nixg48//pj27dtTs2ZNihYtSsmSJTniiCNo164dr776avovbmhP/mtH\nSlKbN2/e4+yGypUrZ2iO3d8/e/bsLNclKXskY8///fffvPfee2H3zjnnnBhVI8WfZOv7LVu2cNdd\nd/H666+n3ytbtiz9+vWLWU1SPEmknl+2bBndu3dPv77zzjupU6dOtjxLSmaJ1Pc7HXfccUyfPp20\ntLSw+8WKFaNRo0ZccMEFdO7cmYIFC2ZrHVKiiue+X7duHXPmzEm/zps3L4cffjjz58+nU6dOfPfd\nd3sd89tvv/Huu+/Ss2dPHnroIS699NKo1JNMDGmkJLV69WpCoVD6df78+SlXrlyG5qhYsWLY9cqV\nK6NSm6ToS8ae79+/Pxs2bEi/LlOmDC1btoxhRVJ8ScS+nzRpEuvXr0+/3rJlCytXrmTKlCm8//77\nYc8vX748Y8aMyfD3JCWrROr566+/nr/++guAI444gp49e2bLc6Rkl0h9v9Pu2zTttGHDBj799FM+\n/fRT7rvvPp566ikuuuiibK1FSkTx3Pfz588Pq6148eLMnDmThg0bRnR+7B9//EHnzp1JTU3loYce\nikpNycKQRkpSu36wCVCkSJEMby9QtGjR/c4pKX4kW89PnDiRxx57LOxez549KVKkSIwqkuJPIvb9\ntddey88//7zf9xQqVIjLL7+cfv36UbZs2WytR0okidLz77zzDsOHD0+//t///kehQoWi/hwpN0iU\nvs+o5cuX065dO7p168bAgQNjXY4UV+K573f+AsZOKSkptGzZMj2gKVKkCB07dqRx48aULl2aNWvW\nMGHCBN544w02b96cPu7hhx+mYsWK3HTTTVGpKxkY0khJave/gDPzD6PChQvvd05J8SOZen7lypW0\nb98+bN/qE088kRtvvDEm9UjxKpn6fqcCBQpw8803c8011xjQSLtJhJ5fs2ZN2AcuV1xxhQcKS1mQ\nCH0PQV3Nmzfn7LPP5thjj6VGjRqULFmSrVu3snLlSr777jvefPNNxowZE/Zb+I8++iilS5fmrrvu\ninpNUqKK577fPaRZu3Yta9euBeD444/ngw8+4LDDDgt7z6WXXkrPnj1p06YN06dPT7/fvXt3zjrr\nLM+d/X95Yl2ApOyxZcuWsOsCBQpkeI7d94jdNfWWFF+Spee3bt1K27ZtWbx4cfq94sWL88Ybb5A3\nb94cr0eKZ8nS97vatm0bjzzyCDVr1uSqq64K2xpNyu0SoedvvfXW9C1VypUrx6OPPhrV+aXcJhH6\n/vbbb2fJkiWMHDmSrl270qBBA8qWLUv+/PkpVqwY1apV45JLLmHUqFF89dVXe2zDdM899xxwla2U\nm8Rz3+8r7KlUqRJjx47dI6DZqUqVKowfP57y5cun39u6das/J+zCkEZKUrsn7du2bcvwHFu3bt3v\nnJLiRzL0fFpaGp06dWLixInp9/LmzcuwYcOoUaNGjtYiJYJE7Ptp06YRCoXSX3///Tdz5szh9ddf\n5+yzz05/344dO3j55Zc55ZRTWLNmTbbWJCWKeO/5jz/+mNdffz39+vHHH+fggw+O2vxSbhTvfQ/Q\nunVrSpcuHdF7TznlFL788kvK7om4SAAAFtxJREFUlCmTfi8UCnlulbSLeO77fc0zcOBASpUqtd+x\nZcqU2eMcmqFDh8b8l8TihSGNlKSKFSsWdr17Eh+J3f+i3H1OSfEjGXr++uuv57333ku/TklJ4cUX\nX6RVq1Y5WoeUKJKh74sXL84RRxzBJZdcwpgxY/jss8/C/oE3ffp0LrvsshytSYpX8dzz69ev57rr\nrku/btGiBR07dozK3FJuFs99n1k1atTY4xyaMWPG8Oeff8aoIim+xHPf722egw8+mAsuuCCi8Rdf\nfDElSpRIv96yZQuTJ0+OSm2JzpBGSlK7/8W5adOmsL1fI7Fx48b9zikpfiR6z999993873//C7s3\naNAgrrjiihyrQUo0id73e9O8eXNGjx5Nnjz//jNl9OjRjB07NoZVSfEhnnv+rrvuYtGiRUBwaPBz\nzz0XlXml3C6e+z4rOnfuHHb2XFpaGuPGjYthRVL8iOe+39s8DRo0IH/+/BGNL1SoECeddFLYvSlT\npkSltkRnSCMlqTJlypCSkpJ+vX379vT9oSO1dOnSsOty5cpFpTZJ0ZfIPf/QQw/tsez5vvvu47bb\nbsuR50uJKpH7fn8aNGhAp06dwu4NHjw4NsVIcSRee37BggVhoUzfvn2pUqVKlueVFL99n1V58uSh\nadOmYfdmz54dm2KkOBPPfX/IIYfsce/II4/M0Bw1a9YMu87o95asDGmkJFW4cOE9Duza+dttkdr9\n/bVq1cpyXZKyR6L2/DPPPMPdd98ddu+WW26hb9++2f5sKdElat9H4vzzzw+73vWsKim3iteeX7du\nXdhv+Hbv3p2UlJQDvnb///rXXnst7OslS5bMcm1SoovXvo+GypUrh12vWrUqRpVI8SWe+7569eoU\nKFAg7N5BBx2UoTl2f//atWuzXFcyMKSRktjufwnPnDkzQ+NnzZq13/kkxZdE6/khQ4Zw0003hd27\n8sorefzxx7P1uVIySbS+j1T16tXDrpcvXx6jSqT4kqw9L2nfkrXvd98eafv27TGqRIo/8dr3efPm\n3WPlzNatWzM0x+5n7BQpUiTLdSUDQxopiR177LFh1xn5LdRly5axcOHC9Ov8+fNz1FFHRas0Sdkg\nkXr+/fff58orrwz7zdt27drx4osvhi3tlrR/idT3WRHpPtdSssstPS/pX8na97v/AsauZ9RIuV08\n9339+vXDrlesWJGh8btvb1a6dOks15QM8sW6AEnZp2XLljz88MPp1+PGjSMUCkX0Aehnn30Wdn3a\naafFxQGDkvYtUXr+448/pmPHjuzYsSP93rnnnsvrr78edli4pANLlL7PqN9//z3sem/7X0u5UTz2\nfI0aNRg7dmyGxw0ZMoShQ4emX5955pl07949/dpwVgrEY99HwzfffBN2vfv2Z1JuFs9937p1a4YM\nGZJ+PXXq1AyN3/39u59Rk1sZ0khJrGHDhpQpU4bVq1cDMH/+fL788ktOO+20A459+eWXw67btGmT\nLTVKip5E6PkJEyZwwQUXsG3btvR7p512Gu+9954fxkiZkAh9nxkfffRR2PXRRx8do0qk+BKPPV+s\nWDHOOOOMDI/b/QPaQw89NFPzSMkuHvs+qyZMmMC8efPC7jVr1ixG1UjxJ577vkWLFhQqVCh927Lp\n06czd+5cjjjiiAOOTU1N3WMrtqZNm0a1vkTlr6tKSSxPnjxcfvnlYff69u0btr3Q3owfP56vv/46\n/bp48eK0a9cuO0qUFEXx3vNTpkyhVatWbN68Of3ef/7zH0aOHEmhQoWi/jwpN4j3vs+MWbNm8eqr\nr4bdi5cPlaRYS8ael7R/ydb3Gzdu5Oabbw67V69ePapVqxajiqT4E899X7RoUTp16hR2r3///hGN\n7devX9h1kyZNKFeuXNRqS2SGNFKS69GjR9iyxgkTJoQtmdzd0qVLueqqq8Lu3XLLLZQpU2a/z0lJ\nSQl7ffnll1mqW1LmxGvPp6am0qJFC9avX59+79hjj+Xjjz+Omy0XpEQVj32/fv16rr/+epYsWRLZ\nN/H/ZsyYwVlnnRW22u7www/noosuytA8UjKLx56XlL3ite9vueUW/vjjjwN/A/9v9erVtG7dmunT\np4fd79u3b8RzSLlFvPY9QO/evcN+0XLIkCG88sor+x3z7LPP8s4774Tdu/vuuw/4rNzCkEZKcmXK\nlOGee+4Ju3f33Xdz/fXXh/0wlZaWxvDhw2nYsGHYAWMVKlTgjjvuyJbatmzZwrhx4/b6mj9/fth7\nly1bts/3Llu2LFvqkxJRPPb8smXLOPPMM1mzZk36vaJFi3LnnXcyZcqUffb2vl6SwsVj3+/YsYPn\nnnuOatWq0apVK4YMGcK8efP2+tt/27ZtY+LEiXTt2pX69euzePHi9K+lpKTw9NNPU7hw4ajWJyWy\neOx5SdkrXvv+qaeeolq1arRt25Zhw4aFPXNXixcvZuDAgdSrV4/PP/887GvnnXcebdu2jXptUqKL\n174HqFSpEj169Ai7d9VVV3HjjTeG/SwPsGjRIrp27cqNN94Ydr9Dhw6cddb/tXfnsVWWaR+A70OB\nIpWBArIZkWqMUMdExC2pNbjELwqKcUv1D9GZRAQTcYIBNDGiwQw4Q0zUKBGXqkQ0YhSBGhdEgbgM\nOowxFupCIYoMe2tFbbGc74+JZ+bYAt3oeyrXlTThfs7zPu99SJ4G8nuX/zss/XVFqfSh7pMCurz9\n+/fHhAkTYtmyZVnjeXl5cfzxx0ffvn2juro6ampqsj4/6qij4q233oqSkpJDnuO3Ly9buXLlIZ8r\nuWnTpigqKmrZlziIp59+usltoHAky7U939Jn57aUf7pAU7m272tqaqKwsLDJeJ8+fWLIkCHRr1+/\nSKfTUVtbG5s2bYp9+/Y1e74FCxbEn//850P2BkeaXNvzbTFr1qysq+cnTpwY5eXlHbY+/N7k4r5v\n7iXmf/jDH2Lo0KHRt2/f2LdvX2zbtu2Ad9uUlpbGG2+84WIMOIBc3Pe/amxsjCuuuKJJb6lUKoqK\nimLAgAGxa9euJhdhR0Scfvrp8d5773mqxv9wJw0cAbp16xYvvfRSlJWVZY03NjbGxo0bY926dU1+\noQ8YMCAqKipa9AsdyC32PBx5usq+r6uriy+//DLWrl0bH3/8cXz55ZfNBjQnnXRSrFixQkADB9BV\n9jzQcbrKvv/++++jqqoq/vGPf8S6deuaDWi6desW06dPjxUrVgho4CByed/n5eXF4sWLY+LEiVnj\n6XQ6Nm7cGGvXrm02oLn88ssFNM0Q0sARolevXrFo0aJYvHhxnHbaaQecV1BQEFOmTInKysoOvVIO\n6Fz2PBx5cmnf9+3bN957772YMWNGnHXWWdGzZ89DHtOjR4+48MILY+HChfHZZ5916B148HuUS3se\n6By5tu8ff/zxKCsri+OOO65F84cMGRJTp06NqqqqmDt3bvTo0eOw9Qa/F7m27/9Xfn5+lJeXx+uv\nv37QUCiVSsXZZ58dS5cujSVLlghomuFxZ3CE+uqrr+Kjjz6KLVu2RENDQ/Tr1y9GjRoVJSUlWS//\nAn4f7Hk48uTSvq+vr4/Kysr4+uuvY+vWrVFXVxcR/wlz+vXrFyNHjoxTTz21RWEO0Lxc2vNA58il\nfb9r165Yv359bN68OXbs2BF79+6NvLy8KCwsjIEDB8bo0aPjhBNO6NSe4Pcol/b9b23ZsiU++OCD\n2Lx5c/z8889RWFgYQ4cOjZKSkhg0aFCiveU6IQ0AAAAAAEACPO4MAAAAAAAgAUIaAAAAAACABAhp\nAAAAAAAAEiCkAQAAAAAASICQBgAAAAAAIAFCGgAAAAAAgAQIaQAAAAAAABIgpAEAAAAAAEiAkAYA\nAAAAACABQhoAAAAAAIAECGkAAAAAAAASIKQBAAAAAABIgJAGAAAAAAAgAUIaAAAAAACABAhpAAAA\nAAAAEiCkAQAAAAAASICQBgAAAAAAIAFCGgAAAAAAgAQIaQAAAAAAABIgpAEAAAAAAEiAkAYAAAAA\nACABQhoAAAAAAIAECGkAAAAAAAASIKQBAAAAAABIgJAGAAAAAAAgAUIaAACAI0B5eXmkUqnMT3l5\nedItAQDAEU9IAwAAAAAAkAAhDQAAAAAAQAKENAAAAAAAAAkQ0gAAAAAAACQglU6n00k3AQAAAAAA\ncKRxJw0AAAAAAEAChDQAAAAAAAAJENIAAAAAAAAkoHvSDQAAAHBwdXV1sW7duqiqqoqampqor6+P\n3r17R2FhYYwYMSKKi4tj8ODBSbfZLlVVVfHpp5/Gjh07ora2Nvr37x/Dhg2Lc889N/r37590ewAA\ncFgIaQAAAHLUP//5z5g9e3YsX748GhoaDjq3qKgoxo0bF5MnT47i4uImn5eXl8dNN92UqZ9++um4\n8cYbm8ybNWtW3Hvvve3ufeXKlTF27NiDzvnhhx9i3rx58cwzz0R1dXWzc/Ly8qK0tDTuu+++KC0t\nbXdfAACQSzzuDAAAIAfNmTMnzjzzzHjllVcOGdBERFRXV8cjjzwSzz//fCd0137Lli2LE088MWbN\nmnXAgCYiorGxMd59990477zzYtKkSfHLL790YpcAAHB4uZMGAAAgxzz55JNx5513Nhnv06dPjBgx\nIgoKCuKnn36K3bt3x7fffhvpdDqBLtvu8ccfjylTpkRjY2PWeO/eveP444+PPn36xO7du2Pjxo2x\nf//+rOO2bdsWr7zySqRSqc5uGwAAOpyQBgAAIIfU19fH9OnTs8auuuqquPPOO+P0009vEk7U1dXF\n2rVro6KiIhYuXNju899www1x7rnntuqYTz75JGbOnJk1VlBQ0OzcFStWxOTJk7PCl8suuyymTZsW\nJSUl0b37f/+bunv37njiiSdi9uzZUVdXFxERS5YsiQceeCBmzJjRqh4BACAXpdJd7ZIrAACA37GK\niooYN25cpr7hhhvimWeeadGxDQ0N8e2338YJJ5zQ5LOWvpOmtTZt2hTnnHNObNu2LTM2ffr0mDt3\nbpO5NTU1MWrUqPj3v/8dERHdunWLBQsWxJ/+9KeDnqOysjLGjh0bO3bsiIiInj17xubNm2PIkCHt\n7h8AAJLknTQAAAA55Isvvsiqp0yZ0uJje/bs2WxAc7js2bMnLrnkkqyApqysLObMmdPs/Pnz52cC\nmoiI+++//5ABTUREcXFxlJeXZ+qGhoZ45JFH2t44AADkCCENAABADvnpp5+y6h49eiTUycHV19fH\nFVdcERs2bMiMlZaWRnl5ebPvi2lsbIyHH344Uw8fPjymTZvW4vNdeumlMXr06Ez98ssvt7FzAADI\nHUIaAACAHDJs2LCsuiPeM9PR0ul03HjjjbFq1arM2MiRI2PJkiWRn5/f7DGffvppfPfdd5m6rKys\n1QHUxRdfnPnzhg0bYufOna3sHAAAcouQBgAAIIdccMEFkZeXl6kffPDBmDJlSmzcuDHBrrLNnDkz\nXnjhhUw9ePDgeP3116OwsPCAx6xevTqrPuOMM1p93uHDh2fV69evb/UaAACQS4Q0AAAAOeS4445r\n8p6Wxx57LE488cQ444wzYubMmVFRURG7d+9OpL9HH300HnjggUxdUFAQy5YtixEjRhz0uN8GKtde\ne22kUqlW/dx6661ZayT1dwAAAB1FSAMAAJBjHnroobjsssuajH/yyScxd+7cGDduXAwcODBGjx4d\nd911V3z++eed0tfSpUvjtttuy9R5eXnxwgsvtOiumF27dnV4P7W1tR2+JgAAdCYhDQAAQI7p1atX\nLFmyJJ5//vk47bTTmp2TTqfjX//6V/z1r3+NP/7xjzF+/Pj46quvDltPH3/8cZSVlUVjY2Nm7OGH\nH47x48e36PiampoO72n//v0dviYAAHSm7kk3AAAAQFOpVCquu+66uO6666KysjLeeuutePfdd2PN\nmjWxc+fOJvOXL18eq1atiuXLl0dpaWmH9lJdXR3jx4+PH3/8MTM2ffr0mDx5covX6N27d1Y9Z86c\nGDNmTLv6OuWUU9p1PAAAJE1IAwAAkOOKi4ujuLg4pk6dGul0OjZs2BBvvvlmLF68ONasWZOZV1dX\nF1dffXV8/fXXcfTRR3fIuffs2ROXXnppbNu2LTNWVlYWc+bMadU6AwcOzKqLiorioosu6pAeAQCg\nq/K4MwAAgC4klUrFqFGjYurUqbF69epYtWpVVgCyffv2eO655zrkXPX19TFhwoTYsGFDZuy8886L\n8vLySKVSrVqrqKgoqz6cj2YDAICuQkgDAADQhZWWlja5q+V/765pq3Q6HRMnTozVq1dnxkaNGhWv\nvvpq5Ofnt3q9888/P6t+55132t0jAAB0dUIaAACALq6kpCSrbu6dNa01Y8aMePHFFzP14MGDo6Ki\nIgoLC9u03llnnZV17DvvvBOVlZXt7hMAALoyIQ0AAEAX99tQpq1Byq8effTR+Nvf/papCwoKYvny\n5TFixIg2r9mjR4+4/fbbM3U6nY5JkybFvn372tMqAAB0aUIaAACAHHL33XfHwoUL45dffmnR/HQ6\nHfPmzcsaGzNmTJvPv3Tp0rjtttsydV5eXrz44ovtWvNXU6dOjcGDB2fqNWvWxNVXXx21tbUtXmPv\n3r3x0EMPxZNPPtnufgAAIGndk24AAACA//rss89i9uzZMW3atLjyyitjwoQJceaZZ8aAAQOy5u3f\nvz/ef//9uPfee+Ptt9/OjPfu3Tuuv/76Np+/rKwsGhsbM/W1114b+fn5WedoiTFjxjS5o6dv377x\n0ksvxYUXXpi5g+a1116LU045Jf7yl7/ENddcE8OHD2+y1jfffBMfffRRvPrqq7F06dL4/vvv4557\n7mnDtwMAgNwipAEAAMhB27dvj/nz58f8+fMjImLo0KExcODAKCgoiL1790Z1dXX88MMPTY6bN29e\nHHvssW0+748//phVL1q0KBYtWtTqdVauXBljx45tMl5aWhrPPvts3HTTTfHzzz9HRMSWLVvijjvu\niDvuuCOGDh0agwYNivz8/KitrY3t27fHnj172vRdAAAg1wlpAAAAuoCtW7fG1q1bD/j5UUcdFQ8+\n+GBMmjSpE7tqm7KysjjppJPi+uuvjy+++CLrs0N9z4j/PIJt2LBhh7NFAADoFN5JAwAAkEMWLFgQ\nTz31VFx11VVZ7285kP79+8ctt9wS69ev7xIBza/GjBkTlZWV8eyzz8Y555wTeXl5B52fn58fF1xw\nQfz973+Pb775Jm6++eZO6hQAAA6fVDqdTifdBAAAAM2rrq6Oqqqq2Lx5c9TW1kZDQ0McffTRccwx\nx8Spp54axcXF0b17139IQm1tbXz44Yfx3Xffxc6dO2Pfvn3Rp0+fGDRoUIwcOTJOPvnk6NWrV9Jt\nAgBAhxLSAAAAAAAAJMDjzgAAAAAAABIgpAEAAAAAAEiAkAYAAAAAACABQhoAAAAAAIAECGkAAAAA\nAAASIKQBAAAAAABIgJAGAAAAAAAgAUIaAAAAAACABAhpAAAAAAAAEiCkAQAAAAAASICQBgAAAAAA\nIAFCGgAAAAAAgAQIaQAAAAAAABIgpAEAAAAAAEiAkAYAAAAAACABQhoAAAAAAIAECGkAAAAAAAAS\nIKQBAAAAAABIgJAGAAAAAAAgAUIaAAAAAACABAhpAAAAAAAAEiCkAQAAAAAASICQBgAAAAAAIAFC\nGgAAAAAAgAQIaQAAAAAAABIgpAEAAAAAAEiAkAYAAAAAACABQhoAAAAAAIAECGkAAAAAAAASIKQB\nAAAAAABIgJAGAAAAAAAgAUIaAAAAAACABAhpAAAAAAAAEiCkAQAAAAAASICQBgAAAAAAIAFCGgAA\nAAAAgAT8P6aqqwb4o60XAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exp.plot_compression_experiments(res_smt, comp_ratios,\n", + " \"../figs/compression_small_traffic.png\")\n", + "Image(filename=\"../figs/compression_small_traffic.png\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Reconstruction Error: SWT vs GWT" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " GWT error| SWT error| Reduction\n", + "-----------------------------------------------\n", + " 0.2258367| 0.1280286| -0.4330920\n", + " 0.1142181| 0.0512101| -0.5516460\n", + " 0.0530751| 0.0226301| -0.5736211\n", + " 0.0279236| 0.0080920| -0.7102105\n", + " 0.0107338| 0.0031385| -0.7076054\n", + " 0.0045087| 0.0015076| -0.6656293\n", + "\n" + ] + } + ], + "source": [ + "reduction = np.divide(res_smt['SWT'], res_smt['GWT']) - 1\n", + "text = \"{:>15s}|{:>15s}|{:>15s}\\n\".format('GWT error', 'SWT error', 'Reduction')\n", + "text += \"-\"*47 + \"\\n\"\n", + "for i in range(len(comp_ratios)):\n", + " text += \"{:>15.7f}|{:>15.7f}|{:>15.7f}\\n\".format(res_smt['GWT'][i], res_smt['SWT'][i], reduction[i])\n", + "print(text)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Reconstruction Error: FSWT vs GWT" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " GWT error| SWT error| Reduction\n", + "-----------------------------------------------\n", + " 0.2258367| 0.1269770| -0.4377488\n", + " 0.1142181| 0.0474275| -0.5847640\n", + " 0.0530751| 0.0212761| -0.5991323\n", + " 0.0279236| 0.0082267| -0.7053843\n", + " 0.0107338| 0.0042162| -0.6072049\n", + " 0.0045087| 0.0012525| -0.7222055\n", + "\n" + ] + } + ], + "source": [ + "reduction = np.divide(res_smt['FSWT'], res_smt['GWT']) - 1\n", + "text = \"{:>15s}|{:>15s}|{:>15s}\\n\".format('GWT error', 'FSWT error', 'Reduction')\n", + "text += \"-\"*47 + \"\\n\"\n", + "for i in range(len(comp_ratios)):\n", + " text += \"{:>15.7f}|{:>15.7f}|{:>15.7f}\\n\".format(res_smt['GWT'][i], res_smt['FSWT'][i], reduction[i])\n", + "print(text)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Traffic" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "G = io.read_graph(\"../\" + data.traffic[\"path\"] + \"traffic.graph\",\n", + " \"../\" + data.traffic[\"path\"] + \"traffic.data\")\n", + "F = io.read_values(\"../\" + data.traffic[\"path\"] + \"traffic.data\", G)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#vertices = 1923\n", + "#edges = 2659\n" + ] + } + ], + "source": [ + "print(\"#vertices = \", G.number_of_nodes())\n", + "print(\"#edges = \", len(G.edges()))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "algs = [static.OptWavelets(n=20), static.GRCWavelets(), static.Fourier(), static.HWavelets()]\n", + "\n", + "comp_ratios = [0.1, 0.20, 0.30, 0.40, 0.50, 0.60]\n", + "\n", + "res_t, time_t = exp.compression_experiment(G, F, algs, comp_ratios, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmkAAARLCAYAAABvHEdXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAuIwAALiMBeKU/dgAAIABJREFUeJzs3Xt0VtWdMP5vEpIQSAKUIMg1UK2C9wGRe+h4mdrWaqet\nvWhtrGNrXatY33qZ19/r1L5tf71ZO62tdrW2TX9TO1q1VWecdqZaAa8g3gVfFCFBUAG5JgGSQJ7f\nH7w8kycJJE9IchL4fNZ6ltn7nLP3Ny7YnGd/z94nJ5VKpQIAAAAAAIBelZt0AAAAAAAAAEciSRoA\nAAAAAIAESNIAAAAAAAAkQJIGAAAAAAAgAZI0AAAAAAAACZCkAQAAAAAASIAkDQAAAAAAQAIkaQAA\nAAAAABIgSQMAAAAAAJAASRoAAAAAAIAESNIAAAAAAAAkQJIGAAAAAAAgAZI0AAAAAAAACZCkAQAA\nAAAASIAkDQAAAAAAQAIkaQAAAAAAABIgSQMAAAAAAJAASRoAAAAAAIAESNIAAAAAAAAkQJIGAAAA\nAAAgAZI0AAAAAAAACZCkAQAAAAAASIAkDQAAAAAAQAIkaQAAAAAAABIgSQMAAAAAAJAASRoAAAAA\nAIAESNIAAAAAAAAkYEDSAUBnvPHGG/HnP/85Fi9eHC+99FKsW7cuGhoaYujQoTFlypQ455xz4rLL\nLouRI0cmHSoAAAAAAHRKTiqVSiUdBBxMZWVl/OY3v+nwvNLS0vjpT38aF198cS9EBQAAAAAAh8ZK\nGvq8devWRUTE4MGD47zzzou//du/jeOOOy5KSkrizTffjHvuuSfuvPPO2LFjR1xyySWRn58fn/zk\nJxOOGgAAAAAADs5KGvq8Sy65JKZOnRqXXXZZFBcXt3vOXXfdFZ/+9KcjIqKsrCxqampi0KBBvRlm\nbNu2LRYtWpQujxs3LgoLC3s1BgAAAAAADq6hoSHefPPNdLmioiKGDh2aSCySNBw2PvrRj8b9998f\nEREPPPBAfOQjH+nV/h944IG44IILerVPAAAAAAAOzf333x/nn39+In3b7owe8cYbb8TSpUtj3bp1\n0djYGMOGDYvjjz8+Zs2aFQMHDuyRPs8888x0kua1117rkT4AAAAAAKC7SNIcAdavXx9Lly6NJUuW\nxNKlS2PZsmVRW1ubPj5hwoSorq7ulr7uv//++MY3vhHPPfdcu8eLi4ujsrIyvva1r0VZWVm39Llf\nY2Nj+ue8vLxubRsAAAAAALqbJM1h6oknnogf/OAHsWTJknjrrbd6vL+Ghoa47LLL4s477zzoeXV1\ndfGTn/wk7r777rj33ntj3rx53RbDo48+mv75hBNO6LZ2O2vcuHEZ5fvvvz+OOeaYXo8DAAAAAIAD\nW7VqVcarK1rP7fYmSZrD1DPPPBN//OMfe6Wv5ubm+OQnPxkPPPBARn1eXl6MHz8+hgwZEmvWrInt\n27enj23atCnOPffcePjhh2PmzJmHHMOyZcviT3/6U0REjBkzJt7//vcfcpvZKiwszCgfc8wxiSSL\nAAAAAADovNZzu70pN7GeSUxxcXG3tvf973+/TYLmiiuuiLVr18bq1avj+eefjy1btsQf/vCHGD9+\nfPqcnTt3xoUXXpiRvOmKurq6qKysjL1790ZExLe//e3Iz88/pDYBAAAAAKCnSdIc5kpKSmL+/Plx\n7bXXxj333BPV1dXxb//2b93W/ubNm+Nb3/pWRt23v/3tuP3222P06NHputzc3PjoRz8aTz75ZJSX\nl6fr161bF7fcckuX+29ubo6LLrooli9fHhERn/rUp+Kzn/1sl9sDAAAAAIDeYruzw9R5550X55xz\nThx//PGRm5uZi1uzZk239fO9730vamtr0+V58+bF9ddff8Dzx4wZE3fccUecddZZ6bof/vCHsWDB\nghg+fHhWfadSqbj88svjwQcfjIiIM844I+64444sfwMAAAAAAEiGlTSHqfe+970xZcqUNgma7tTc\n3By//vWvM+puuummyMnJOeh1Z555ZsydOzddrq2tjd///vdZ9Z1KpeLKK6+MX/3qVxERcdppp8Wf\n//znGDx4cFbtAAAAAABAUiRp6LInn3wyNm3alC5PmjQp5s+f36lrL7vssozy/fffn1XfX/7yl+Nn\nP/tZREScfPLJ8Ze//CWGDh2aVRsAAAAAAJAkSRq67KGHHsoon3322R2uoml5bksLFy6M+vr6Tl37\n5S9/OX76059GRMRJJ50UjzzySNZbpQEAAAAAQNIkaeiyF154IaM8a9asTl87evToKC8vT5cbGxtj\nxYoVHV63YMGC+MlPfhIRESeccEI88sgjUVZW1ul+AQAAAACgr5CkocteffXVjPKUKVOyur71+a3b\na+2qq66KW2+9NSL2JWj++te/xogRI7LqEwAAAAAA+gpJGrpk165dsXbt2oy6cePGZdVG6/NXrlx5\nwHOvvvrq+PGPfxwR+5I7f/3rX+Ooo47Kqj8AAAAAAOhLBiQdAP3Tu+++G6lUKl3Oz8/POmkyZsyY\njPLGjRvbPe/666+Pf/7nf46IiBEjRsStt94aGzduPOD5ERHDhg1r0342Nm7cGJs2bcrqmlWrVnW5\nPwAAAAAAjjySNHRJXV1dRnnQoEGRk5OTVRuDBw8+aJv73X333emfN23aFGeeeWaHbX/uc5+Lqqqq\nrOJp6bbbbouvf/3rXb4eAAAAAAA6YrszuqR1QmXgwIFZt1FUVHTQNgEAAAAA4HBmJQ1dsnv37oxy\nQUFB1m0UFhZmlHft2tXuedXV1Vm3DQAAAAAAfZ0kDV3SeuVMY2Nj1m00NDQctM0kXXnllfGJT3wi\nq2tWrVoVF1xwQQ9FBAAAAADA4UaShi4pLi7OKLdeWdMZrVfOtG4zSUcddVQcddRRSYcBHIFSqVQ0\nNzdHKpVKOhQAAIA+LScnJ3Jzc7N+TzJAXyJJQ5e0Tqjs3LkzUqlUVv8o1tfXH7RNgCPB3r17o76+\nPmpra6O+vj727t2bdEgAAAD9Sl5eXgwePDhKSkpi8ODBkZeXl3RIAJ0mSUOXlJWVRU5OTvpJ76am\npti4cWOMHDmy022sX78+o2zlCnAk2bt3b7z99ttRW1ubdCgAAAD92t69e2PHjh2xY8eOiIgoKSmJ\no48+WrIG6Bdykw6A/qmoqCjGjx+fUbd27dqs2mh9/vHHH3/IcQH0B01NTVFTUyNBAwAA0ANqa2uj\npqYmmpqakg4FoEOSNHRZ66TKihUrsrr+1VdfPWh7AIejhoaGqK6ujoaGhqRDAQAAOGz57gX0F7Y7\no8tOPfXU+M///M90+cknn4zPfe5znbr27bffjurq6nQ5Pz8/pkyZ0t0hAvQ5GzZsiD179mTU5eTk\nxKBBg6KkpCSKiooiLy/Piy8BAAA6kEqlYu/evbFr166ora1NvzN5vz179sSGDRva7AYD0JdI0tBl\nH/7wh+O73/1uuvzwww9HKpXq1MTif/3Xf2WU3//+90dxcXG3x9gTqqqqoqqqqk19fX197wcD9CtN\nTU1txoqCgoIYN25cFBQUJBQVAABA/5Wfnx8DBw6MYcOGRWNjY7z55pvR2NiYPl5fXx9NTU2Rn5+f\nYJQAByZJQ5fNmjUrysrK4t13342IiNWrV8fChQvj/e9/f4fX/vKXv8won3/++T0SY0+orq6ORYsW\nJR0G0A9t3749o5ybmxsTJkyIAQP8cwwAAHCoCgoKYsKECfHGG29Ec3Nzun779u1RVlaWYGQAB2ZW\niC7Lzc2NysrKuPnmm9N1X//612P+/PkHXU3zyCOPxGOPPZYul5SUxIUXXtijsXan8vLyqKioaFNf\nX18fy5YtSyAioL9onaQpLS2VoAEAAOhGAwYMiNLS0ti2bVu6TpIG6Mtykw6A/u3666/P2KZs0aJF\nGVugtbZ+/fr4h3/4h4y6q666ql/9Q1lZWRkLFy5s82lvCzSA/VKpVMaS+4h9SRoAAAC6V+vvWk1N\nTRnvqgHoSzy+exh74oknYteuXW3qX3zxxYzy7t274+GHH263jdGjR8eUKVMO2EdZWVnccMMNccMN\nN6Tr/uf//J+xdu3a+F//63/F6NGjIyKiubk5Hnzwwbjqqqti7dq1Ge1/9atfzer3AuiPWi6138+e\nyAAAAN2v9XetVCrV6fcoA/Q2SZrD2EUXXRQ1NTUdnrdhw4Y4++yz2z32uc99rsMVItdff308+eST\n8e///u/puttvvz1+/vOfx4QJE2LIkCGxZs2ajGWmERFFRUXx+9//PoYOHdrxLwPQz7X31FZurgWt\nAAAA3a2971rNzc2+gwF9kpGJQ5abmxv33HNPfOpTn8qo37t3b6xevTqef/75Ngma4cOHx3/8x3/E\n7NmzezNUAAAAAADoMyRp6BYDBw6Mf/3Xf4177703Tj311AOeN3jw4LjyyitjxYoVMX/+/N4LEAAA\nAAAA+hjbnR3Gqqure73Pj33sY/Gxj30sVq1aFUuWLIn169dHY2NjDB06NCZPnhyzZ8+OgQMH9npc\nAAAAAADQ10jS0COOOeaYOOaYY5IOAwAAAAAA+izbnQEAAAAAACTAShrIUlVVVVRVVbWpr6+v7/1g\nAAAAAADotyRpIEvV1dWxaNGipMMAAAAAAKCfk6SBLJWXl0dFRUWb+vr6+li2bFkCEQEAAAAA0B9J\n0kCWKisro7Kysk398uXL48QTT+z9gAAAAAAA6JckaQAAiF27dsVzzz0Xr7/+emzdujXq6+ujqKgo\nSktLY/z48fHe9743Jk2aFLm5uUmHChyhNmzYEC+++GLU1NTEtm3boqGhIYqLi2Po0KExYsSIOOWU\nU2Ls2LFJhwkAAFnxLRsAoA8qLy+PnJycQ/p85StfOWgfqVQqHnjggTj33HOjtLQ05syZE5deemn8\nj//xP+LGG2+Ma665Jr7whS/EBz7wgTj22GNj6NCh8f73vz9uuummWLJkSTQ3N7dps7GxMQYNGpQR\nx8qVK7P63e+88842v8uNN96YVRsNDQ1RVFSU0cYrr7wSN9100yH/f+3Mp7q6Oqt4gfa9/vrrcd11\n18Wxxx4bo0aNir/7u7+LL3zhC3HdddfFjTfeGFdffXVceuml8eEPfzjGjRsXRx11VHz84x+Pe+65\nJ3bt2nXAdh977LGMv7OjR4/OOrbLL7+8zd/9Rx55JKs2Fi1alHH9iBEjIpVKxfz583t8nCovL8/6\ndyZ5e/Zsj9raF2Lnztdi9+510dS0NZqbGyKVSiUd2mGv9b3ZwoULe6ytN998M+N4fn5+1NfXZ9XH\nt771rTZ/73/5y19m1UZNTU3G9Xl5ebF9+/aorKzslfspgCOFlTQAQPdLpSJqayMaGyMKCiJKSiJ8\n0epTampq4vOf/3z89a9/7fQ1tbW1sXDhwli4cGF8/etfj/vvvz/OP//8jHMKCgpixowZ8eijj6br\nFi9eHMcdd1yn+1m0aFGbusWLF3f6+oiIJUuWxO7du9Pl4cOHxwknnBD33ntvVu1w5GlONcfmnZt7\nvd/hg4ZHbo5n6PZbv359XHfddXHXXXe1mxA+kE2bNsV9990X9913X5SUlMRVV10VX/3qV2Po0KEZ\n502fPj0GDhyYHifefvvteP311+PYY4/tdF8HGqvOPPPMLrcxb948E5N0ICdeeGF+7N27vVV9buTl\nDYrc3MH/97+DIi9vUOTlDU7/vO+/bcstz8+8PvNYTk6BP5+9ZNy4cTFx4sRYs2ZNRETs2bMnnnzy\nyTj77LM73caBxqjLLrusy22ceuqpMWTIkE5fD0DnSNIAAN3j5Zcj/vVfI5YujXjuuYitW//72LBh\nEX/zNxHTp0d85jMR3uGVqNWrV8e8efNi/fr1bY4VFBTExIkTY8iQIdHQ0BBbtmyJ9evXtztJeqCn\ndisqKtokaS6//PJOx9deQmbp0qXR0NAQhYWFXWrDxCedtXnn5jjq5qN6vd+N12yMEYNH9Hq/fdFD\nDz0Ul1xySWzZsqXd44MHD46ysrIoKyuLhoaG2LBhQ2zevLnNOFVbWxvf/OY34yc/+UnU1NREaWlp\n+lhhYWHMmDEj4+n1xYsXdzpJ884778Trr7/epj7bhHLr8ysqKrK6niPPgAGlMWbMl2Lt2u+0OtIc\ne/fWxd69ddHU1DN95+QUxvTpr0ZR0cSe6YAMFRUV6SRNxL7xorNJmj179sRTTz3Vpt4YBdA3SdIA\nAIfmoYcivvvdiMceO/A5W7dGPPLIvs+3vx0xd27EP/5jxAc/2Htx9nM333xznHLKKVldM378+DZ1\nTU1Ncd5552UkaHJycuKiiy6KL37xizFjxowYMCDzFrGuri6effbZ+NOf/hT33ntvvPHGGwftd968\neRnlbCYENm7c2O72aLt3746lS5fG3LlzO9XOgSYVLrnkkpgzZ06n2vjqV78aL730Urp87bXXxjnn\nnNOpa0eNGtWp84BM//Iv/xKXXnpp7N27N6P+hBNOiH/4h3+IM888M0466aQ21zU2NsbixYvjT3/6\nU9x3331RU1OTPrZt27ZobGxsc828efPaJGk6+4T5gca1JUuWRGNjYxQUFHTYRlNTUzz99NMZdfvH\nqh/84AexteXDDgfRetL2t7/9bYwcObLD64qKijrVPn3PmDFXxZtv3hKpVNs/1z1p5MiLJWh60bx5\n86KqqipdzuZ+6rnnnou6uro29dXV1fHmm2/GuHHjOtXOge6nrrvuurj44os71cbFF18cGzZsSJe7\nck8LcLiTpAEAumbz5ogvf3nf6plsPfbYvs9nPhPx4x9HDB/e/fEdZqZOnRrz588/5HZ+9rOfxYoV\nK9LlgQMHxn333RcfPEjCrLi4OCoqKqKioiK+853vxKJFi+KHP/xh5OXltXv+jBkzoqCgID0punbt\n2qiuru7U+w9aTgYUFBTEscceG8uXL4+IfVtudCZJ097To/snFSZNmhSTJk3qsI2IiGHDhmWUp0yZ\nEmeddVanrgWyt3Tp0rjssssyEjRDhw6NH//4x3HRRRdFbu6Bt4MrKCiIs846K84666z4zne+E1VV\nVfGtb30rI1nTWusnwtvbGuhAWo5Vp5xySrz88svR3Nwcu3btiqVLl3YqGfzss89mvGNi2LBh6QTU\n1KlTOx1La7Nnz/a+mcNcYeGoGDXqc/H227/otT5zcgqivPyfeq0/2o5RS5Ys6fSq4pZj1NixY6Oh\noSE2bdoUEfvGus4kWFqvGMzJyUnfh02ZMiWmTJnSqd9j4MCBGeXuuqcFOJzY9BgAyN5LL0WcfHLX\nEjQt/e53+9p5+eXuiYsO/eY3v8kof+1rXztogqY9FRUVcf/998d5553X7vGioqKYPn16Rl1nn/5s\ned60adMyVq50to3WT48OHTo0Tj755E5dCyRjy5YtceGFF0ZTi32axo4dG48//nh89rOfPWiCprX8\n/Py4/PLLY+XKlfGlL33pgOfNnDkzY8VLTU1NvPnmm53qo+V49KEPfSjjqfCujHcREXPnzs3q9+TI\nNm7cVyOi97bxHD36izFwYNsVuvScSZMmxdixY9PlhoaGWLJkSaeubTm+zJs3LyNx3NUx6qSTTor3\nvOc9nboWgOy4AwQAsvPSSxHz50e89Vb3tPfWWxEVFRI1vWDLli3x7LPPpsu5ublZvSsmG13d8qz1\npELLlTNPPfVU7NmzJ6s2Ikx8Qn9w0003Zax6yc/PjwcffDBOOOGELrdZWFgYt912W9x7773tbj9W\nVFQU06ZNy6jrzGqarVu3xiuvvJIutx6rujoB6l0PZGPQoOOirOyCXukrN7coxo+/oVf6IlNX7qdS\nqVQ8/vjjGW0YowD6Nt9WAYDO27w54txz971jpjtt3RrxgQ/sa58e0/I9NBERZWVlMbyHtppr/UW+\nMxMC27Zti5dbJOvmzp2b8eRnXV1dPPfccx22Y1IB+pfNmzfHL3/5y4y6G264IU477bRuaf9jH/tY\nlJaWtnusK2PVY489FqlUKiIi8vLyYtasWRkToE8++WSbd+q01tzcHE888cRBY4GOjBt3Xa/0M3bs\nVVFY6F1rSejKGPXyyy9nvNNq7ty5GWPUypUrM94RcyDupwB6jyQNZKmqqirmz5/f5lNZWZl0aAA9\n78tf7r4VNK299VbEggU90zYREVFbW5tR7mgS8VDMmjUrBgz479cfvv766/H2228f9JrHHnssmpub\nI2LfKp/Zs2fHiBEj4vjjj0+f09FT7s3NzRlPj0aYVIC+7vbbb4+dO3emy4MGDYqrr766V/ruyntp\nWp5z6qmnRklJScYEaG1tbYcJ5RdffDG2bduWLpeWlsapp57a2bAhIiKGDJkRQ4Z0/K62Q5GXVxrj\nxl3bo31wYK3HqCeffLLDVcUtx6iysrKYPHlynHbaaVFcXJyu7yjZs2XLlowVgxFtV/UA0H0kaSBL\n1dXVsWjRojafZcuWJR0aQM966KFDfwdNR373u3390COGDh2aUd68eXOsWrWqR/oqLi5u8+LrjiYE\nWh4/+eSTY8iQIRERWW3R0frp0ZKSkm57Gh/oGQ888EBG+ROf+ET6739Pmz17dkZC+bXXXuvwCfOW\n49D+8WnkyJFx7LHHtntOR21ERMyZMyfy8vI6HTfs19OracaNuyby872HJCnHHXdcjBw5Ml2ur6/P\n2Lq2PS3Hlzlz5kROTk7k5eXFzJkz2z2nPS1XDEZETJkyJUaMGJFt+AB0kiQNZKm8vDwqKirafFrv\nZw1w2Pnud3unn+99r3f6OQJNmjQpBg4cmFF3/fXXZ3wJ707Z7qPe+n00+7Xc8uzxxx9Pr7bpqI39\n15r4hL6rrq4unn/++Yy6D33oQ73Wf3FxcZtE7sHGqtbxHmisyjZJY8UfXTV8+Adj0KApPdJ2fn5Z\njB37lR5pm87L9n7qsccea/daYxRA3yVJA1mqrKyMhQsXtvlUVVUlHRpAz3n55YgWX/h61OLFEa22\nV6B7DBw4MM4888yMuj/84Q9x5plntnk3QnfIZhuh+vr6jO2BWk4qtFxJs23btnjppZcO2I5JBehf\nnnrqqTZbL/b2w0/ZjFVPPPFERrwtx6eWP7d+Cr21x1r9m2qsoqtycnJj/PieWU0zfvw/xoABJT3S\nNp2XzRjV+n0zB7qfar3yuDX3UwC9a0DHpwAAiduzJ2LduuT6/9nPere/22+PuDaB/c/Hjo0Y0Ddv\nj5599tkO9yBvaerUqTFs2LA29f/4j/8YD7XaUu7RRx+NOXPmxIQJE+Kcc86JmTNnxvTp02Py5MmR\nm9v1Z3rmzJkTubm56ZUvK1asiM2bN8fw4cPbnNt6j/WWEwkTJ06MMWPGxPr16yNi38TBgd7dYOLz\n8LCneU+s25HMmLd55+ZE+l27fW3UN9X3ap9jS8fGgNxkx7zXXnsto1xaWhoTJ07s1RgqKiri5ptv\nTpcP9oR5y2OTJ0+OsrKydLnluLV169Z4+eWX4+STT27TxquvvhqbNm1Kl9vbHpL+obl5TzQ0JHh/\n9n+VlMyM/PxR0dT0Tre1mZ8/Mt7zng/Frl3V3dZmVxUWjo3chMeq9mR7b9bS7t27O31u63uZJ554\nIpqbm9u9R2s5RpWUlGTcL51xxhmRn58fTU1NkUql4rHHHouPfOQjbdpob4Wj+ymAntX3/pUDANpa\nty6ilyetEnXbbfs+vW3Nmojy8t7vtxOuueaarM5/9NFHY/78+W3q58yZEzfeeGN84xvfaHOspqYm\nfvGLX8QvfvGLiNg3cTh9+vSYP39+nHvuuVk/3T5kyJA45ZRT0l/0908IXHDBBW3ObTmpcNxxx8VR\nRx2VcXzu3Llx1113pc9dsGBBmzZaPz06ePBg25H2U+t2rIuJPzqCxryImPaL3v+zuuaqNVE+tLzX\n+21py5YtGeWWSY/e0jqh/Morr8TWrVvbTXQfaFvGiIhjjjkmRo0aFe+880763PaSNK2TQLNmzcp4\nLw79R0PDuliy5PAcq5qaNsQzz0xOOoyIiDjjjDVRVFSedBhtZHtv1lUnnHBCDB8+PDZv3vcQwf5V\nxe09sNJyfJk1a1bGlq+DBg2KqVOnxtNPP50+t70kTesVg+973/ti1KhR3fb7ANCW7c4AAI4w//t/\n/+/40Y9+1Ob9NK3V1dXFX//61/inf/qnOP300+PEE0+MX/3qVwd9J0xrrZ+8PNAT6u29iLul1tsI\nddRGhIlP6A9aJ2mGDBmS1fWLFy+Ohx9+uMPPwbZ0HDp0aEYyZX9CubXdu3fHM888ky53NFZ1ZryL\n8IQ6cHA5OTltxpvuuJ8yRgH0HZI0AABHoAULFsTrr78eV155ZacnRZcvXx6XXXZZTJ8+PWpqajp1\nTWf2UW9oaIilS5emy62fTo/InFTYuHFjvPrqq23OMakA/U9tbW1GefDgwVld//d///dx9tlnd/i5\n6KKLDtpOZ8aqJUuWRENDQ7rc0VhlAhToLp0Zo2pqamLt2rXpckdj1HPPPRd1dXVtzjFGAfQ+SRoA\ngH7g0UcfjVQq1elPe1udtTZ27Nj46U9/Ghs2bIgHH3wwrr766pg2bVoUFBQc9Lpnn302pk+fHm+8\n8UaHfcydOzdycnLS5RdffDF27NiRcc6SJUsy9mZv78nPE088MWProfYmP00qQP9TUpL5UvL6+t59\nL89+nVn113JSdMKECTFu3Lg257QcvzZs2BArV67MOL569epY1+Idc0VFRXH66ad3OW4gOdnem7X8\nTJgwIau+Wo9R7a32azlGFRYWxvTp09ucM3v27PR92d69e9usMty9e3fGgzPt9Q1A95OkAQA4whUW\nFsZ5550Xt9xySzzzzDNRW1sby5Ytix/96Edx3nnntZu02bhxY3zsYx/L2LO8PcOHD48TTjghXW5v\nQqDlZOi4ceOivJ33AuXk5MTs2bPbvSYiorq6OuPp0aKionYnJ4C+5T3veU9Gefv27YnE0Tqh/Pzz\nz7dZ5XOw99Hsd/LJJ2esTmw9VrUuz5w5s8PEOMApp5ySMbZs2rSpzariluPL9OnTo7CwsE0773nP\nezLuy1qPSU8//XQ0Njamy5MmTYqxY8cecvwAHJwkDQAAGQoKCmLq1KmxYMGCePDBB+Ott96Ka6+9\nNuPlsxEux8bmAAAgAElEQVT7VsXcddddHbbX0RYdHe2f3t6xjiY+Z8yYYeIT+oHWSZr9L8burHff\nfbfdp9QfffTRrNopKyuLKVOmpMutE8pNTU3pl21HHHisys3NjVmzZqXLBxvvIjyhDnRObm5uzJkz\nJ6OuO+6njFEAfYM3qQJAfzB2bMSaNcn1f/HFEQd56XK3mz074re/7b3+9vOkYLuGDx8e3/ve92Le\nvHlxwQUXZKye+e1vf9updz389Kc/TZdbTgDs2bMnnnrqqXT5QE+nR2ROKqxbty5Wr14dkyZNatPm\n/j7pv8aWjo01VyUz5m3euTmm/WJar/e77PJlMXzQ8F7tc2xp8mPe+973vozy9u3bo7q6ut0VdT2t\noqIili9fni4vXrw4PvCBD0TEvm0eW27F1tFY9ac//Ski2m5JZKw6vBQWjo0zzkjw/uwAXnvtiti6\n9T+zvu64434VQ4e+vwciOjSFhcmPVX1BRUVFPPTQQ+ny4sWL44orroiIiHfeeSdef/319LGOxqjb\nb789IiKeeeaZ2L17dwwcODDdZus+Aeh5kjQA0B8MGBCRwIRV2rx5vZukqahI9velXR/+8Ifjc5/7\nXPzqV79K1z3++OMdXtd6omDZsmWxa9euKCoqavPS2oM9+Tl16tQoKiqKXbt2RcS+iQRJmsPTgNwB\nUT60PJG+B+dn9+L67jJ+yPgYMXhEIn0naebMmZGXl5eR/F22bFkiSZp58+bFbbfdli63HFda/nzU\nUUfFcccdd8B2Wo5ja9euTSed3nrrrYx3eRUWFsYZZ5zRXeGTgNzcAVFUVJ50GG2Ul9+UdZKmtHRW\njBpVmbHtH31L6/uplknglmNUXl5exoq+1lqOUY2NjfH000/H/Pnz26wYjHA/BdBbbHcGAHTs058+\nvPuj0y688MKMcl1dXYfvkBg5cmTGhGZTU1N69UzLSYXW2w21VlBQkDGhuf/a1k+PFhYWxowZMzrx\n2wBJKy4ujtNOOy2j7j/+4z8SiaX1ZOQzzzyTkRTe72DJ5IiI008/PeNdEPuvbZ1MPuOMM9JPr0N3\nGjJkRgwZcvA/p61NmvT/StD0cVOnTo3i4uJ0ef+q4ojM8eXUU0+NkpKSA7YzduzYjET4/mtbrxgc\nP358IglzgCORJA0A0LGTToroYFKq28ybF3Hiib3TF1lr78v6zp07O7zuQO+lyWbis/U57bURse9l\nuSY+of84//zzM8q///3vY8eOHb0ex6hRozK2X9v/hHlzc3PG+2kOto1QxL5E8fTp09PlA41VnlCn\nJ40bd12nzx027OwYOtSfx75uwIABbVbItDe+dDRGRXTufsoYBdB7JGkgS1VVVTF//vw2n8rKyqRD\nA+hZ119/ePVDl7R8wnK/4cM7fo9G6y/6ixcvjubm5ozt0rJN0qxevTrWr19vUgH6uS996UsxaNCg\ndLm+vj5+9KMfJRJLe2PVSy+9FNu2bUvXZTtWHWgljbGKnjR8+Adj0KADr05taeLEb/ZwNHSX9sao\nLVu2xCuvvJKuy3aMevrpp6OpqckYBZAgSRrIUnV1dSxatKjNZ9myZUmHBtCzPvShnt+G7DOfifjg\nB3u2Dw7JM888k1EeNWpUFBQUdHhd66c6lyxZEs8++2xs3br1gOe0Z//7K/ZbvHhx+gnQ/UwqQP8y\nfPjw+PznP59R981vfjNeeumlXo+l9TjUeowZMmRInHLKKR2203ICdNWqVfHyyy/HihUr0nX5+fkx\nc+bMbogY2peTkxvjxl3b4XnDh58fpaXTOzyPvqG9Meqxxx6LVCqVrss2SbNz585YsmRJm/cMup8C\n6D2SNJCl8vLyqKioaPOZNm1a0qEB9Lxbb40YPbpn2h49OuLHP+6ZtomIiHfffTd+97vfRXNzc5eu\nb2xsjFtvvTWj7u/+7u86de3YsWNj0qRJ6fKuXbvi5ptvTpdLSkri1FNP7bCd1u+v+OMf/xjLly9P\nl/Pz8w/6slygb7rpppti3Lhx6XJjY2N85CMfif/zf/5Pr8bRelLyqaeeikceeSRdnjVrVuTmdvw1\nuvV53/zmNzMmUU8//fSM1UPQE0aO/EwUFBzsvi0nJk78Rq/Fw6GbPn16FBUVpcurV6+O3/3ud+ny\n5MmTo6ysrMN2jj/++BgxYkS6fOutt2a8Y3D06NFxzDHHdFPUAHREkgayVFlZGQsXLmzzqaqqSjo0\ngJ43fHjEn/8cMWxY97Y7bNi+djuxbRZdV1dXFxdddFGcdNJJ8dvf/jb9QuzO2L17d1x88cUZCZGI\niEsuuaTTbbSe/Lz33nvTP8+aNStjhczBtHz687777suY+Jw2bZqJT+iHhg8fHnfffXfk5+en62pq\namL27Nlx1113Zfw974zXXnutS3GMGzcuJk6cmC7v2rUrHnrooXS5Myv+IiJKS0szVty0HO8iPKFO\n78jNLYixY68+4PGjjvpUFBef1IsRcagKCgpixowZGXUtx5fOjlEREXPmzGm3jQhjFEBvk6QBALJz\n0kkRixZ134qa0aP3tXeSSYLesmLFivjsZz8bo0aNissvvzzuueeeePvtt9s996233orbbrstJk+e\nHPfcc0/Gsb//+7+Pv/3bv+10v60nDlqu6OnM1hztndt6VZBJBei/Zs6cGT//+c8zVqBs2bIlPv3p\nT8dpp50Wt956a7z66qvtXptKpWLNmjXxs5/9LObMmRNf/OIXuxyHsYrDyejRX4i8vCHtHMmL8vKv\n93o8HDpjFMDhZ0DSAQAA/dBJJ0W89FLEggURLbZYyNpnPrNvizMraBKxY8eOuOOOO+KOO+6IiH1P\nspeVlcXQoUNj9+7d8fbbb8fGjRvbvfaMM86IX//611n1d7Av/F198jObPoC+r7KyMoYNGxaVlZWx\nbdu2dP2LL74YCxYsiIh92x6OGDEiysrKIpVKRW1tbaxbty7q6+vbbbOsrCz+6Z/+qdMxVFRUxG9+\n85s29QMHDozTTz+90+3MnTs3ftzONp4DBgyI2bNnd7odOBQDBpTGmDFfirVrv5NRf/TRl8agQccm\nFBWHorvupw6W0HE/BdC7rKQBALpm+PCIO++M+Pd/j8jiC2FE7Dv/oYf2XS9B02uKi4sP+sLrzZs3\nx8qVK2PJkiXx4osvtpugyc3NjSuuuCL+8pe/RGlpaVb9T5w4MeOdE/sVFhbG9Omdf2nxiBEj4vjj\nj29Tn5eXZ+ITDgPnn39+vPTSS/HJT34ycnJy2hyvq6uLNWvWxDPPPBPLli2LlStXtpugGTZsWFxz\nzTXx+uuvx+c///lO93+gyckzzjgjCgoKOt3OgSZA/+Zv/iaKi4s73Q4cqjFjFkROzn//2c3JKYgJ\nE25MMCIOxYwZM9odiyZMmNDufdaBnHbaae2ORSNHjmz3PguAniNJAwAcmg99aN92ZS+/HHHDDRFn\nndX2nTXDhu2rv+GGfectWhTxwQ8mE+8RrKysLF544YV444034pZbbonzzjsvhnXy/UJHH310XHXV\nVfHCCy/E7bffHiUlJV2Kob3Jz+nTp0dhYWFW7bQ3+Xnaaad1OS6gbxk3blzcdddd8eqrr8ZXv/rV\nmDRpUqeuGzlyZFxwwQVx1113xdtvvx3f//73Y+jQoVn1PWnSpBg7dmyb+myeUN8fy7HHtl2pkG07\ncKgKC4+OUaP++x1yo0dfEQMHjk8wIg5FUVFRuw+3ZDu25OXlxcyZM9vUZ7NlGgDdIyeV7RsYgXYt\nX748TjzxxHT5lVdeiRNOOCHBiIC+ZM+ePfH6669n1B177LExYMBhuvNoKhVRVxfR0BBRWBhRXBzR\nztPQJC+VSkVNTU289tprsXbt2ti+fXvs2rUrBg0aFCUlJTF69Og45ZRT2p2whMNRc6o5Nu/c3Ov9\nDh80PHJzPEN3MG+//Xa89NJLUVNTE1u3bo3GxsYoKSmJYcOGxfDhw+Okk06KCRMmJB0m9Ek7d66M\npUsnR25uUcyYsToKCkYmHRL0qCPu+xeQtb40l2tkAgC6X05OREnJvg99Wk5OTpSXl0d5eXnSoUCf\nkJuTGyMGj0g6DNpx9NFHx9FHH510GNAvDRp0XJSVnR+DBh0vQQMAfYwkDQAAAMBhbsKEG2PgwPKk\nwwAAWpGkAQAAADjMlZT8TdIhAADtsOkxAAAAAABAAiRpAAAAAAAAEiBJAwAAAAAAkABJGgAAAAAA\ngARI0gAAAAAAACRgQNIBQH9TVVUVVVVVberr6+t7PxgAAAAAAPotSRrIUnV1dSxatCjpMAAAAAAA\n6OckaSBL5eXlUVFR0aa+vr4+li1blkBEAAAAAAD0R5I0kKXKysqorKxsU798+fI48cQTez8gAAAA\nAAD6pdykAwAAAAAAADgSSdIAAAAAAAAkQJIGAAAAAAAgAZI0AAAAAAAACZCkAQAAAAAASIAkDQAA\nAAAAQAIkaQAAAAAAABIgSQMAAAAAAJAASRoAAAAAAIAESNIAAAAAAAAkQJIGAAAAAAAgAZI0AAAA\nAAAACZCkAQAAAAAASIAkDQAAAAAAQAIkaQAAAAAAABIgSQMAAAAAAJAASRoAAAAAAIAEDEg6AOhv\nqqqqoqqqqk19fX197wcDAAAAAEC/JUkDWaquro5FixYlHQYAAAAAAP2cJA1kqby8PCoqKtrU19fX\nx7JlyxKICIDDUXl5edTU1BxSG1dddVV85StfiYkTJ3ZTVAf2ta99LW666aYe7wcAAAAOJ5I0kKXK\nysqorKxsU798+fI48cQTez8gAAAAAAD6pdykAwAAAAAAADgSWUkDAHSrLU1N8ckVKzLq7p4yJd6T\nn59QRIeHm2++OU455ZSsrhk/fnyMGjUq/vKXv3Tq/P/6r/+K73//++nyySefHD/4wQ86de2kSZOy\nig0AAACQpAEAutldGzfGw1u3ZtTdvXFjfGnMmIQiOjxMnTo15s+f36VrzzrrrE6dt27duozysGHD\nOn0tAAAAkD3bnQEA3arqnXc6VQcAAABwpJOkAQC6zfL6+nimtrZN/dLa2lhRX59ARAAAAAB9lyQN\nANBtfnOQFTMHOwYAAABwJJKkAQC6xZ7m5viXDRsOePxfNmyIPc3NvRgRAAAAQN82IOkAAID+IZVK\nxbtNTQc8/ui2bfFOY+MBj7/d2Bh/fPfdmD906AHPKcvPj5ycnEOKEwAAAKC/kKQBADrlxbq6OO3Z\nZw+pjQtXrDjo8RemTYtTiosPqQ8AAACA/sJ2ZwBAp/zh3Xd7vo9Nm3q8DwAAAIC+wkoaAOgH9jQ3\nx7qGhkRjuHvjxl7p49JRo3q8nwMZW1gYA3L75jMszz77bOzZs6fT50+dOjWGDRvWgxEBAAAAh0qS\nBgD6gXUNDTFxyZKkw+hxK3ftSvT3XHPGGVFeVJRY/wdzzTXXZHX+o48+GvPnz++ZYAAAAIBu0Tcf\nFQUAAAAAADjMSdIAAAAAAAAkwHZnAAD9gO3LAAAA4PBjJQ0AAAAAAEACJGkAAAAAAAASYLszAOgH\nxhYWxpozzkg6jDYuX7kyHt62rUvXnj1sWPz8fe/r5ogOzdjCwqRDAAAAAI4gkjQA0A8MyM2N8qKi\npMPIkEql4sX6+i5f/2JdXUwYODBycnK6MSoAAACA/sN2ZwBAl6zevTs2NTV1+fqNTU2xZvfubowI\nAAAAoH+RpAEAuuSp7dsPvY0dO7ohEgAAAID+SZIGAOiSjhIskwYOjIkDBx68jW5I9AAAAAD0V5I0\nAECXHCxJc8nIkfH8tGnxwrRp8dmRI7vUBgAAAMDhTpIGAMhaKpWKnXv3tqkfkpcX/zp5cvxm8uQo\nHTAgSgcMiP9v8uT43eTJUZqX1+b8+r17I5VK9UbIAAAAAH3OgKQDgP6mqqoqqqqq2tTX19f3fjAA\nCcnJyYlnp02L/2f16vjx+vWRiog5Q4bEbydPjgntbHH26ZEjY2ZpaVz86qvxxI4dkRMRV40dG9+c\nODFycnJ6PX4AAACAvkCSBrJUXV0dixYtSjoMgMQNzsuLfz722Pj4iBHx1I4dcfXYsTEg98CLdMuL\nimLhqafGLevWxazS0pgzdGgvRgsAAADQ90jSQJbKy8ujoqKiTX19fX0sW7YsgYgAkjVn6NBOJ1wG\n5ObGdePH93BEAAAAAP2DJA1kqbKyMiorK9vUL1++PE488cTeDwgAAAAAgH7pwHuSAAAAAAAA0GOs\npAEA6IOqq6t7vc8DrRYFAAAAeoaVNAAAAAAAAAmQpAEAAAAAAEiAJA0AAAAAAEACJGkAAAAAAAAS\nIEkDAAAAAACQAEkaAAAAAACABEjSAAAAAAAAJECSBgAAAAAAIAGSNAAAAAAAAAmQpAEAAAAAAEiA\nJA0AAAAAAEACJGkAAAAAAAASIEkDAAAAAACQAEkaAAAAAACABEjSAAAAAAAAJECSBgAAAAAAIAGS\nNADQC3JyctrUNTc3JxAJAADA4a2971q5uaZBgb7J6AQAvaC9LwRNTU0JRAIAAHB4a/1dKycnp90H\n5wD6AkkaAOgFOTk5UVBQkFG3Y8eOhKIBAAA4fLX+rpWfny9JA/RZkjQA0EuGDBmSUd6xY0fs2bMn\noWgAAAAOP3v27GmTpGn9XQygL5GkAYBe0vqLQXNzc9TU1ERjY2NCEQEAABw+Ghsbo6amps07aSRp\ngL5sQNIBAMCRIj8/PwYPHhz19fXpusbGxli9enUMGjQoiouLY9CgQZGXl2cpPgAAQAdSqVTs3bs3\ndu7cGXV1dbFz585IpVIZ5wwePDjy8/MTihCgY5I0ANCLRo4cGWvXrs3Y5iyVSkV9fX1G8gYAAIBD\nk5+fHyNHjkw6DICDst0ZAPSiwsLCKC8vj8LCwqRDAQAAOGwVFhbGhAkTfPcC+jxJGgDoZfn5+TFh\nwoQoKSlJOhQAAIDDTklJSUyYMME2Z0C/YLszAEhAXl5ejB07Nvbu3Rv19fVRV1cXdXV1sXfv3qRD\nAwAA6Ffy8vKiuLg4iouLY/DgwZGXl5d0SACdJkkDAAnKy8uL0tLSKC0tjYh976dpbm5u87JLAAAA\nMuXk5ERubm7k5OQkHQpAl0nSAEAfkpOT46kvAAAAgCOEd9IAAAAAAAAkQJIGAAAAAAAgAZI0AAAA\nAAAACZCkAQAAAAAASMCApAOA/qaqqiqqqqra1NfX1/d+MAAAAAAA9FuSNJCl6urqWLRoUdJhAAAA\nAADQz0nSQJbKy8ujoqKiTX19fX0sW7YsgYgAAAAAAOiPJGkgS5WVlVFZWdmmfvny5XHiiSf2fkAA\nAAAAAPRLuUkHAAAAAAAAcCSSpAEAAAAAAEiAJA0AAAAAAEACJGkAAAAAAAASIEkDAAAAAACQAEka\nAAAAAACABEjSAAAAAAAAJECSBgAAAAAAIAGSNAAAAAAAAAmQpAEAAAAAAEiAJA0AAAAAAEACJGkA\nAAAAAAASIEkDAAAAAACQAEkaAAAAAACABEjSAAAAAAAAJECSBgAAAAAAIAGSNAAAAAAAAAmQpAEA\nAAAAAEiAJA0AAAAAAEACJGkAAAAAAAASIEkDAAAAAACQAEkaAAAAAACABEjSAAAAAAAAJECSBgAA\nAAAAIAGSNAAAAAAAAAmQpAEAAAAAAEiAJA0AAAAAAEACJGkAAAAAAAASIEkDAAAAAACQAEkaAAAA\nAACABEjSAAAAAAAAJECSBgAAAAAAIAGSNAAAAAAAAAmQpAEAAAAAAEiAJA0AAAAAAEACJGkAAAAA\nAAASIEkDAAAAAACQAEkaAAAAAACABEjSAAAAAAAAJECSBgAAAAAAIAGSNAAAAAAAAAmQpAEAAAAA\nAEjAgKQDgM7YsWNHPP/887Fs2bJYtmxZPPvss7Fq1apIpVIREbFmzZooLy9PNkgAAAAAAMiCJA39\nQkVFRbzwwgtJhwEAAAAAAN3Gdmf0C/tXzEREDBkyJObPnx+jRo1KMCIAAAAAADg0VtLQL3z+85+P\nESNGxLRp0+KYY46JnJycmD9/frzzzjtJhwYAAAAAAF0iSUO/sGDBgqRDAAAAAACAbiVJQ4944403\nYunSpbFu3bpobGyMYcOGxfHHHx+zZs2KgQMHJh0eAAAAAAAkTpLmCLB+/fpYunRpLFmyJJYuXRrL\nli2L2tra9PEJEyZEdXV1t/R1//33xze+8Y147rnn2j1eXFwclZWV8bWvfS3Kysq6pU8AAAAAAOiP\nJGkOU0888UT84Ac/iCVLlsRbb73V4/01NDTEZZddFnfeeedBz6urq4uf/OQncffdd8e9994b8+bN\n6/HYAAAAAACgL8pNOgB6xjPPPBN//OMfeyVB09zcHJ/85CfbJGjy8vJi4sSJceqpp8aQIUMyjm3a\ntCnOPffceOqpp3o8PgAAAAAA6IskaY5AxcXF3dre97///XjggQcy6q644opYu3ZtrF69Op5//vnY\nsmVL/OEPf4jx48enz9m5c2dceOGFsX379m6NBwAAAAAA+gNJmsNcSUlJzJ8/P6699tq45557orq6\nOv7t3/6t29rfvHlzfOtb38qo+/a3vx233357jB49Ol2Xm5sbH/3oR+PJJ5+M8vLydP26devilltu\n6bZ4AAAAAACgv/BOmsPUeeedF+ecc04cf/zxkZubmYtbs2ZNt/Xzve99L2pra9PlefPmxfXXX3/A\n88eMGRN33HFHnHXWWem6H/7wh7FgwYIYPnx4t8UFAAAAAAB9nZU0h6n3vve9MWXKlDYJmu7U3Nwc\nv/71rzPqbrrppsjJyTnodWeeeWbMnTs3Xa6trY3f//73PRIjAAAAAAD0VZI0dNmTTz4ZmzZtSpcn\nTZoU8+fP79S1l112WUb5/vvv787QAAAAAACgz5OkocseeuihjPLZZ5/d4Sqalue2tHDhwqivr++2\n2AAAAAAAoK+TpKHLXnjhhYzyrFmzOn3t6NGjo7y8PF1ubGyMFStWdFdoAAAAAADQ50nS0GWvvvpq\nRnnKlClZXd/6/NbtAQAAAADA4UyShi7ZtWtXrF27NqNu3LhxWbXR+vyVK1ceclwAAAAAANBfDEg6\nAPqnd999N1KpVLqcn58fRx11VFZtjBkzJqO8cePGA567atWqePzxxzPq3nnnnfTP9957b5SVlaXL\nxcXF8fGPfzyreAAAAAAAoDdJ0tAldXV1GeVBgwZFTk5OVm0MHjz4oG229Pjjj8ell156wOPXXntt\nRnnChAmHlKTZuHFjbNq0KatrVq1a1eX+AAAAAAA48kjS0CWtEyoDBw7Muo2ioqKDtpmk2267Lb7+\n9a8nHQYAAAAAAIcx76ShS3bv3p1RLigoyLqNwsLCjPKuXbsOeG5lZWWkUqlOf6qrq7OOBwAAAAAA\nepMkDV3SeuVMY2Nj1m00NDQctE0AAAAAADic2e6MLikuLs4ot15Z0xmtV860bjNJV155ZXziE5/I\n6ppVq1bFBRdc0EMRAQAA8P+zd+fBcZz3nf8/3T0XBsAAICASBIiDFCmKJERSEi8dPCTHW2utbDnr\nyJFVLhtOIif2/mzFsazI8lW+1nZWcTlO1a9SsewfvJVEjqPESdbyuixfJEiJEimRsghJNGUeoEjw\nAA8cg2Nmuvv3x4CDG5gBpmcGwPtVhdJMdz/9PG1zyEF/+vs8AAAA8w0hDWZkbKDS19cn13VlGEba\n54hGo1OeM58WL16sxYsX53sYAAAAAAAAAIB5jOnOMCNVVVWjApl4PK4LFy5kdI4zZ86Mek8oAgAA\nAAAAAABYSAhpMCNFRUWqr68fta29vT2jc4w9/sYbb5z1uAAAAAAAAAAAmCsIaTBjY0OV1157LaP2\nr7/++pTnAwAAAAAAAABgPiOkwYxt3Lhx1Pvnnnsu7bYdHR06efJk6r3f79fatWuzNTQAAAAAAAAA\nAAoeIQ1m7N577x31/uc//7lc102r7c9+9rNR7++66y6VlJRkbWwAAAAAAAAAABQ6X74HgLnr9ttv\nV1VVlTo7OyVJx48f169//Wvddddd07b97ne/O+r9fffd58kYvdDS0qKWlpZx26PRaO4HAwAAAAAA\nAACYswhpMGOmaaq5uVlPPPFEatsXv/hF7dq1S4ZhTNruF7/4hVpbW1PvS0tL9d73vtfTsWbTyZMn\ntXv37nwPAwAAAAAAAAAwxxHSYFb+8i//Un/3d3+n3t5eSdLu3bv1jW98Q4899tiEx585c0Z/8id/\nMmrbww8/rKqqKs/Hmi2NjY3auXPnuO3RaFQHDx7Mw4gAAAAAAAAAAHMRIc08tm/fPvX394/b/sor\nr4x6PzAwoJ///OcTnqOmpkZr166dtI+qqio9/vjjevzxx1PbPv3pT6u9vV2f/exnVVNTI0lyHEf/\n+Z//qYcffljt7e2jzv/JT34yo+vKt+bmZjU3N4/b3tbWpqamptwPCAAAAAAAAAAwJxluuiu9Y85p\nbGzUqVOnZnWOD37wgxOuvzKS4zi677779OMf/3jUdsuy1NDQoLKyMp04cUJXr14dtb+oqEjPPvus\n7rjjjlmNsVCMDWmOHDmidevW5XFEAAAAAAAAAICxCulerpmXXjGvmKapf/mXf9EDDzwwartt2zp+\n/LgOHTo0LqCprKzUT37yk3kT0AAAAAAAAAAAkClCGmRFKBTSU089paefflobN26c9Lji4mJ99KMf\n1WuvvaZdu3blboAAAAAAAAAAABQY1qSZx06ePJnzPt/znvfoPe95j95880298MILOnPmjGKxmMrL\ny7VmzRrdcccdCoVCOR8XAAAAAAAAAACFhpAGnli5cqVWrlyZ72EAAAAAAAAAAFCwmO4MAAAAAAAA\nAAAgDwhpAAAAAAAAAAAA8oDpzoAMtbS0qKWlZdz2aDSa+8EAAAAAAAAAAOYsQhogQydPntTu3bvz\nPQwAAAAAAAAAwBxHSANkqLGxUTt37hy3PRqN6uDBg3kYEQAAAAAAAABgLiKkATLU3Nys5ubmcdvb\n2trU1NSU+wEBAAAAAAAAAOYkM98DAAAAAAAAAAAAWIgIaQAAAAAAAAAAAPKAkAYAAAAAAAAAACAP\nCCrR39kAACAASURBVGkAAAAAAAAAAADygJAGAAAAAAAAAAAgDwhpAAAAAAAAAAAA8oCQBgAAAAAA\nAAAAIA8IaQAAAAAAAAAAAPKAkAYAAAAAAAAAACAPfPkeADDXtLS0qKWlZdz2aDSa+8EAAAAAAAAA\nAOYsQhogQydPntTu3bvzPQwAAAAAAAAAwBxHSANkqLGxUTt37hy3PRqN6uDBg3kYEQAAAAAAAABg\nLiKkATLU3Nys5ubmcdvb2trU1NSU+wEBAAAAAAAAAOYkM98DAAAAAAAAAAAAWIgIaQAAAAAAAAAA\nAPKAkAYAAAAAAAAAACAPCGkAAAAAAAAAAADygJAGAAAAAAAAAAAgDwhpAAAAAAAAAAAA8oCQBgAA\nAAAAAAAAIA8IaQAAAAAAAAAAAPKAkAYAAAAAAAAAACAPCGkAAAAAAAAAAADywJfvAQBzTUtLi1pa\nWsZtj0ajuR8MAAAAAAAAAGDOIqQBMnTy5Ent3r0738MAAAAAAAAAAMxxhDRAhhobG7Vz585x26PR\nqA4ePJiHEQEAAAAAAAAA5iJCGiBDzc3Nam5uHre9ra1NTU1NuR8QAAAAAAAAAGBOMvM9AAAAAAAA\nAAAAgIWIkAYAAAAAAAAAACAPCGkAAAAAAAAAAADygJAGAAAAAAAAAAAgDwhpAAAAAAAAAAAA8oCQ\nBgAAAAAAAAAAIA8IaQAAAAAAAAAAAPKAkAYAAAAAAAAAACAPCGkAAAAAAAAAAADygJAGAAAAAAAA\nAAAgDwhpAAAAAAAAAAAA8oCQBgAAAAAAAAAAIA8IaQAAAAAAAAAAAPKAkAYAAAAAAAAAACAPfPke\nADDXtLS0qKWlZdz2aDSa+8EAAAAAAAAAAOYsQhogQydPntTu3bvzPQwAAAAAAAAAwBxHSANkqLGx\nUTt37hy3PRqN6uDBg3kYEQAAAAAAAABgLiKkATLU3Nys5ubmcdvb2trU1NSU+wEBAAAAAAAAAOYk\nM98DAAAAAAAAAAAAWIgIaQAAAAAAAAAAAPKAkAYAAAAAAAAAACAPCGkAAAAAAAAAAADygJAGAAAA\nAAAAAAAgDwhpAAAAAAAAAAAA8oCQBgAAAAAAAAAAIA8IaQAAAAAAAAAAAPKAkAYAAAAAAAAAACAP\nCGkAAAAAAAAAAADygJAGAAAAAAAAAAAgDwhpAAAAAAAAAAAA8oCQBgAAAAAAAAAAIA8IaQAAAAAA\nAAAAAPKAkAYAAAAAAAAAACAPCGkAAAAAAAAAAADygJAGAAAAAAAAAAAgD3z5HgAw17S0tKilpWXc\n9mg0mvvBAAAAAAAAAADmLEIaIEMnT57U7t278z0MAAAAAAAAAMAcR0gDZKixsVE7d+4ctz0ajerg\nwYN5GBEAAAAAAAAAYC4ipAEy1NzcrObm5nHb29ra1NTUlPsBAQAAAAAAAADmJEIaAKMkEl3q7z8h\nywrLNMOyrGJZVliGEZBhGPkeHgAAAAAAAADMG4Q0AMYwdPjwLtl215jt5lBwUzwiwEmGONdeXwt1\nxr4fefzo9qP3EQQBAAAAAAAAWEgIaQCM4vNFVFv7EbW3f33MHke23Svb7lU87k3fhhHUli2vq6ho\nuTcdAAAAAAAAAEABMfM9AACFp7b2YRlGIOf9LlnyfgIaAAAAAAAAAAsGIQ2AcYLBalVXfzCnfRpG\nQI2Nn89pnwAAAAAAAACQT4Q0ACZUV/dJSblbH6am5k8VCtXnrD8AAAAAAAAAyDdCGgATCodXq6rq\n3TnpyzSLVF//eE76AgAAAAAAAIBCQUgDYFJ1dY/mpJ9lyx5WMFidk74AAAAAAAAAoFAQ0gCYVFnZ\nNpWVbfe0D8uKqK7uU572AQAAAAAAAACFiJAGwJS8rqapq3tEfv8iT/sAAAAAAAAAgEJESANgSpWV\n9ygcXuvJuf3+Ki1b9ueenBsAAAAAAAAACh0hDYApGYap+npvqmnq6x+Tz1fqybkBAAAAAAAAoNAR\n0gCY1uLF71MgUJvVcwYCNaqp+WhWzwkAAAAAAAAAcwkhDYBpmWZAdXWfyOo5y8t36vLln+jq1d2K\nRts0OHhOjhPPah8AAAAAAAAAUMh8+R4AgLlh6dKHdPLkl2XbXVk534ULT+nChafGbbesMvn9VUM/\nlSNeT7zN51sk0+SvMgAAAAAAAABzD3c2AaTF54uotvYjam//uqf92HaXbLtLAwO/S7uNz1c+Lszx\n+aYKeBbJMCwPrwIAAAAAAAAApkdIAyBttbUf1+nT35TrxvI9lFESiatKJK6qv//NNFsY8vkq0q7W\nSYY+5QQ7AAAAAAAAALKKkAZA2oLBpaqu/oA6Op7M91BmyVUicVmJxGX196fbxpDPt2jaMGfktmSw\nw9JfAAAAAAAAACZGSAMgI3V1j6ij47uS3HwPJcdcJRKXlEhcUn//0TTbmEOhzUSVORMHPD5fGcEO\nAAAAAAAAsEAQ0gDISDi8WlVV71Zn548ybltWtkuWFVI83pn6se1eD0ZZKBzF4xcVj1/MoI01JtSZ\nfjo2y4rIMAzPrgIAAAAAAACANwhpAGSsru7RjEOaSOR2bdz4y3FhguMMKh6/NCq4Sf5Mvs1xotm8\nnAJjKx6/oHj8QtotDMM3aWXOZNssq5RgBymJRJf6+0/IssIyzbAsq1iWFZZhBPhzAgAAAAAA4CFC\nGgAZKyvbprKy7erqak27zYoV/3PCm72mGVQwWKNgsCbtc9l2fyqwSSTSCXguyXH60j7/XOO6CcXj\n5xWPn0+7jWH4pwxzJgp9LKuYG/bzlqHDh3fJtrvGbDeHgpviEQFOMsS59vpaqDP2/cjjR7cfvY8g\nCAAAAAAALGSENABmpK7u0bRDmoqKt6u8fGfW+rasIlnWMoVCy9JuY9t9Y8Kb8eHOyMAnFrso1x3M\n2pgLjevGFYt1KBbrSLuNYQTTmn5t5DbTDHMDfg7w+SKqrf2I2tu/PmaPI9vulW33Kh73pm/DCGrL\nltdVVLTcmw4AAAAAAAAKGCENkKGWlha1tLSM2x6NzucpuMarrLxH4fBa9fW9Nu2xy5d/JQcjmlry\n6f+wQqG6tI53XVeOMzbYmW4qtoty3ZjHV5I/rjuoWOysYrGzabcxzdCU1TnjA55KWVbYw6vAZGpr\nH9bp09/M+Z/hJUveT0ADAAAAAAAWLEIaIEMnT57U7t278z2MvDMMU3V1n9LRox+a8rjKyvsUiWzJ\n0aiyxzCMoWmZihUK1afVxnVd2XZ0wsqcqQIe1/WoRKEAOM6ABgff0uDgW2m3Mc2iacOcsYGPZYU8\nvIqFIRisVnX1B9XR8Z2c9WkYATU2fj5n/QEAAAAAABQaQhogQ42Njdq5c/zUXdFoVAcPHszDiPJn\nyZIHdeLEZ6aorDC0fPmXczqmfDIMQz5fiXy+EhUVNabVJhns9KYV5owMfVw34e3F5JHj9Gtw8LQG\nB0+n3cY0i6edem3sNtMMengVc1Nd3SfV0fGkJDcn/dXU/GnaISgAAAAAAMB8REgDZKi5uVnNzc3j\ntre1tampqSn3A8oj0wxo2bJP6PjxT024f/HiB1RSclOORzW3JIOdUvl8pWlP+ZQMdrqnmXpt/DbJ\n9vZi8shxohocjGpw8FTabSyrZMrqnPEBT6VMM+DhVeRfOLxaVVXvVmfnjzzvyzSLVF//uOf9AAAA\nAAAAFDJCGgCzUlPzYZ069RXZdteYPZYaG7+YlzHNd8lgp0w+X5mKiq5Pq43rOkokuietzJk44Lkk\nyfH2YvLItntl270aGDiZdhvLiqRdrZMMfSplmn7vLsIDdXWP5iSkWbbsYQWD1Z73AwAAAAAAUMgI\naQDMis8XUW3tR9Te/vVR25cu/ZDC4VV5GhXGMgxTfn+5/P5ySSvTapMMdq6mVa0zHPhcUq6mysoH\n2+6WbXdrYOBE2m0sq2zaqddGhzuLZJr5++e5rGybysq2q6ur1bM+LCuiurqJK/AAAAAAAAAWEkIa\nALNWW/txnT79TbluTFJyMfCGhs/leVSYrWSws0h+/yJJ6QVurmsPBTvpT8WWSFzR/A52umTbXRoY\n+F3abXy+8kkqcyYLeBbJMKysjbmu7lFPQ5q6ukeG/lwBAAAAAAAsbIQ0AGYtGFyq6uoPDC04LtXU\n/BmLgS9QhmENBQeVabdxXVvx+JWMpmJLBjvzVyJxVYnEVfX3v5lmC0M+X0Xa1TrJ0Kd80mCnsvIe\nhcNr1df3WvYuaojfX6Vly/486+cFAAAAAACYiwhpAGRFXd0j6uj4rkyzSA0NLAaO9BmGpUCgSoFA\nVdptHCehROJyBtU6l5RIXPXwKvLNVSJxWYnEZfX3p9vGkM+3aNIwJxK5zZOQpr7+Mfl8pVk/LwAA\nAAAAwFxESAMgK8Lh1aqquk/h8I0KBJbkeziY50zTp0BgsQKBxWm3cZz4ULAzeZgzdpttd3t4Ffnm\nDoVXl9TffzQnPQYCNaqp+WhO+gIAAAAAAJgLCGkAZE1Dw+cUCjXmexjAhEzTr0BgSUYhouPEFI9f\nnrAyZ7KAx7Z7PLyKuc3vX6Rjx/6H/P7r5Pdfp0DguqHXi1OvLSuc72ECAAAAAADkDCENgKwpLb0l\n30MAsso0AwoGqxUMVqfdxnEGR1TkpDcdm+NEPbyKwhGNHlE0emTKY0wzPGmAM1G4Y1nFMgwjR1cA\nAAAAAACQXYQ0AABkkWkGFQzWKBisSbuNbQ9MUJ0zdcDjOH0eXkX+OE6fBgdPaXDwVFrHm2Zo0gBn\nonDHsiKEOgAAAAAAoGAQ0gCYtcvxuP7wtdELjP/z2rVa5PfnaUTA3GJZIVlWrYLB2rTb2HbfUGgz\nOsyZfCq2i3KcAQ+vIj8cZ0CDg6c1OHg6reMNIzAmzBkZ7iwet8/nKyfUAQAAAAAAniGkATBrP7hw\nQT+/cmXUtn++cEEfqU3/hjOAzFhWWJYVVihUl3abZLCTXqXOtR/XHfTwKnLPdWOKxc4oFjuT1vGG\n4ZPfXzVhgDNRuOPzVcgwTI+vAgAAAAAAzBeENADGcVxHl/oupX38d069LsV6x237g/JARv1Whitl\ncnMT8Ewy2KlXKFSf1vGu68px+tTd/YJeeeX3JLneDrAAuW5Csdg5xWLn0mxhye+vnLI6Z/S+RTIM\ny9NrAAAAAAAAhYuQBsA4l/ouafETi2d1jkOSFj+bWZsLj1zQdcXXzapfANljGIYsq1gVFXerqurd\n6uz8UcbnqKv7tEKhOsXjFxWPX1QsdnHE6wuKxzsl2dkffN7YiscvKB6/oL60lg0yUqHOdFOvJX+q\nZJp8fQMAAAAAYL7gt3wAADCturpHMw5pIpHbtWLFV6dc08V1HSUSV8cEOBdGhTljwx3Xjc/2cgqI\nm5paTno9rRY+36JJqnMWjwl6roU6mVU1Yv5LJLrU339ClhWWaYZlWcWyrLAMI8AaTAAAAACQY4Q0\nAABgWmVl21RWtl1dXa1pt1mx4n9Oe8PXMEz5/Yvk9y9SOLx62nO6rqtEomuSAGficGe+rauTSFxW\nInFZ/f1H0zressomCXAmDndMM+jxFSD/DB0+vEu23TVmuzkU3BSPCHCSIc6119dCnbHvRx4/uv3o\nfQRBAAAAADAaIQ0AAEhLXd2jaYc0FRVvV3n5zqyPwTAM+f3l8vvLJa2a9njXdWXbvVNU51wYV6nj\nOP1ZH3c+2XaX+vu71N9/LK3jLat0muqc0dstq8jjK0C2+XwR1dZ+RO3tXx+zx5Ft9w59Zrzp2zCC\n2rLldRUVLfemAwAAAACYYwhpAABAWior71E4vFZ9fa9Ne+zy5V/JwYimZxiGfL5S+XylKiq6Pq02\nth2dNMCZKNxxnKjHV5Fbtt0j2+7RwMDxtI43zeJJA5yJwh3LKvb4CpCO2tqHdfr0N+W6sZz2u2TJ\n+wloAAAAAGAEQhoAAJAWwzBVV/cpHT36oSmPq6y8T5HIlhyNKvssq1hFRcUqKmpM63jb7p+2Omfk\nPtvu8fYCcsxxohoYiGpg4GRax5tm0bTVOSP3WVYp02N5IBisVnX1B9XR8Z2c9WkYATU2fj5n/QEA\nAADAXEBIAwAA0rZkyYM6ceIzisXOTnKEoeXLv5zTMeWbZRXJsuoVCtWndbzjDKY99Vo8flGJxFWP\nryC3HKdfg4PtGhxsT+t4wwhOsI7O5OGOz1dGqJOmurpPqqPjSUluTvqrqfnTtD8nAAAAALBQENIA\nAIC0mWZAy5Z9QsePf2rC/YsXP6CSkptyPKq5xTSDCoWWKRRaltbxjhNTPN45SXXOhTFBz0UlEpc9\nvoLcct1BDQ6+pcHBt9I63jD88vurppl6bXHqtc9XLsMwPb6KwhQOr1ZV1bvV2fkjz/syzSLV1z/u\neT8AAAAAMNcQ0gAAgIzU1HxYp059RbbdNWaPpcbGL+ZlTPOZaQYUDNYoGKxJ63jHSSiRuDRhgDNR\nuBOPX1KuKilywXXjisU6FIt1KJrWckGW/P6qCQOcicIdv3/RvAp16uoezUlIs2zZwwoGqz3vBwAA\nAADmGkIaAACQEZ8votraj6i9/eujti9d+iGFw6vyNCpcY5o+BQJLFAgsSet417UVj1+esjpn9L5O\nSY63F5FTtuLx84rHz6d5vCm/v3LK6pyR+3y+Splm4X7lLivbprKy7erqavWsD8uKqK5u4uo7AAAA\nAFjoCvc3RgALzsaDB7Stsl6bS0u1aein3O/P97AATKC29uM6ffqbct2YpOSC4A0Nn8vzqDAThmEp\nEEgGCulwXUeJxJVRAc7oypzx4Y7rJjy+ilxyUteVHkM+36Ipq3NG76uSaeb23766ukc9DWnq6h6R\n37/Is/MDAAAAwFxGSAOgYJwdjOnfOjv1b52dqW2rioq0qbRUm4d+bi4tVbFl5XGUACQpGFyq6uoP\nDC06LtXU/BkLgi8QhnGtkqRS0o3THu+6rhKJqxMGOJOFO9fCv/nBVSJxSYnEJUlvpNXC5yufZuq1\nxaOCHtMMzGqElZX3KBxeq76+12Z1non4/VVatuzPs35eAAAAAJgvCjaksW1b0RETiRcVFcnPE/XA\ngnOsv1/H+vv11IULkiRT0tri4lS1zebSUq0vKVHQnD/rAwBzRV3dI+ro+K5Ms0gNDSwIjokZhiG/\nv0J+f4WkG6Y93nVd2XbPlNU5Y/c5zoD3F5JDicRVJRJX1d9/LK3jLSsyaYAzUbhjWaFR7Q3DVH39\no3rjjeasX0t9/WPy+Uqzfl4AAAAAmC8KNqT5/ve/r4ceeij1/tlnn9Xdd9+dxxEBKASOpCPRqI5E\no/r/zp2TJPkNQ+uLi7U5EklV3KwJh+UjuAE8FQ6vVlXVfQqHb0x7/RNgOoZhyOeLyOeLSFo57fHJ\nUCc6FNhcmGAdnYvj9jlOn/cXkkO23S3b7tbAwO/SOt6ySiZcO8eyymTbXVkbVyBQo5qaj2btfAAA\nAAAwHxVsSHP+/Hm5ritJKi8vJ6ABFoJXPy1V3CKV3SSVNUm+krSaxV1XL/X26qXeXv3d0Lawaerm\nkhJtjkRSFTcri4pkGoZ34wcWoIaGzykUasz3MLCAJUOdEvl8JSoqWp5WG9vumzTAmSjcse1ej68i\nt2y7V7bdq4GBE57209DwGVlWkad9AAAAAMBcV7AhTUlJ8uasYRhqaGjI82gA5ETvG8mf05JkSMUr\npLL1Q6HNeilYmfap+hxH+7q7ta+7O7WtzLJ067X1bYbCm/pgUAbBDTBjpaW35HsIQMYsKyzLalAo\nlN53TNsemLY6Z+S+bFajzGXHjv0/OnHic/L5KuTzlQ+ttTP8enj7RNvKx03LBgAAAADzUcGGNEuX\nLs33EADklStFf5f8Ofuj5KZQTTKsKV+f/G+oRsogYOmybf3y6lX98urV1Lbr/P5R69tsjkS0JDC7\nBZgBAPOLZYVkWXUKherSOt5xBhWPd6Y19Vo8flGJxBWPryBfXCUSl5VIXJ5Ra9MMTRHiTBf8lMkw\nrCxfDwAAAABkX8GGNGvWrJGUnGf89OnTeR4NgIIwcDb5c/6nyfeBRcNVNmXrpeLlUoY3ZC7G4/rJ\n5cv6yeXhG0jLgsHU2jabhn4q/P5sXgkAYB4zzaCCwVoFg7VpHe84ccXjlxSPXxgT5owMd4b3JUMP\n19uLKACOM6BY7JxisXMzam9ZkSkCnYmrd669tqxiKm0BAAAA5ETBhjTr1q3TunXr1NbWpitXruiF\nF17Q1q1b8z0sAIUkdlm6uDv5I0lWcXItm2vBTelqycy8KuatwUG9NTioH3V2pratLCoaVXFzS2mp\nii2e0AUAzJ5p+hUMVisYrE7reMdJKJG4PGGAM3G4c0mS4+1FFCDb7pZtd2twsD3jtobhS3tatomC\nH3MG3z8ALyUSXervPyHLCss0w7KsYllWWIYRIJAEAADIs4INaSTpwx/+sB5++GFJ0he+8AX99Kc/\nzfOIABQ0OypdfiH5I0mGX4qsGV7XJrJO8hXP6NRv9vfrzf5+PXXhgiTJlLQmHNbmSCQV3mwoKVHQ\nNLN0MQAATMw0fQoEFisQWKziNP5Zc11b8fiVMQHOhQmmYRvetxBDnZFcN6F4vFPxeOf0B0/ANMPj\nAp2Jp2WbKASKyDD4PoFsM3T48K4J1swyh4Kb4hEBTjLEufb6Wqgz9v3I40e3H72PIAgAAGBqBR3S\nfPSjH9UPf/hD7du3T88++6weeeQRPfHEE/keFgCPvGv1u3TgzAF19HZk54RuXOr6TfJHkmRKJdcP\nhzZl66VAxYxO7Uhq6+tTW1+fWs4lp2HxG4bWFxcnq22Gwpu14bB8BDcAgDwyDEuBQJUCgSpJa6Y9\n3nUdvfrqu3T58jPeD26ecpw+xWJ9isXOzqC1IZ+vLK1p2SYKfkyziBviGMfni6i29iNqb//6mD2O\nbLtXtt2reNybvg0jqC1bXldR0XJvOgAAAJjjDNd1C3pC66tXr+pd73qX9u7dK8MwdMcdd+hLX/qS\ndu3ale+hAaO0tbWpqakp9f7IkSNat25dHkc0cxejF7X4icU57/fCIxdUFa7S8SvH1dreqtZTrdrT\nvkdvXn7Tu06L6kavaxOqlrJ4Y6PINHVzScnwVGmRiFYVFcnk5gkAoIB1de3XoUO3ZdQmErlN69b9\nu2z7qhKJq0okrgz996ri8eHXw9tHb3PdhEdXs7AYRiDtadnGvy6TabIO33w1OHhO+/c3yHVjOe23\nuvqPdeONT+a0TwAAgOkU0r3cgq6k+dKXviRJ2rlzp44dO6bz589r3759etvb3qYlS5Zo06ZNWr58\nuSKRiPwZLur9+c9/3oshA5glwzB0/aLrdf2i69W8sVmSdK73nFpPtSaDm/ZWvXLuFbnZWjC5/3Ty\n59xPku8DVaMrbYobpVlMOdLvOHquu1vPdXentkUsS7cOrW1zLbxpCIV46hUAUDDKyraprGy7urpa\n026zYsXXFAwulpT5gx6u68px+iYJcyYOdkYeO34Kp4XLdWNDaxFdmFF7yypJc1q28ZU8llXK95kC\nFgxWq7r6g+ro+E7O+jSMgBob+d0bAABgKgVdSWOa5rgv+SOHO5tfAGzbnnFbLGwtLS1qaWkZtz0a\njergwYOp91TSZO7CIxd0XfF10x7XNdCl504/lwptXjzzomK2R08E+kqlSNNwaFN6g+TBE6bX+f3J\nSptrFTelpaoOBrPeDwAA6ers/LGOHHlnWsdWVLxdGzb8zOMRTc51bSUS3RMGO+kEP44zkLexzy/m\niNAm8/V4LCuU7wuY9/r6jurFF9dI2XrgaRq1tR/TqlXfzklfAAAAmaCSZhZm+2SW67o83YVZOXny\npHbv3p3vYSxoZaEyvWPVO/SOVe+QJA0kBvTimRdT1TbPnX5OPbGe7HSW6JEuP5/8kSQzKEXWDoc2\nkbWSVTTrbi7G4/q/ly/r/16+nNq2LBhMBTabS0t1a2mpFmVYNQgAwExVVt6jcHit+vpem/bY5cu/\nkoMRTc4wLPn9FfL7Z7bWnG0PyLa70pqWbaJKHokHwJIcJRKXlUhcnv7QCRhGcJJAJ531eMpkGFaW\nr2f+CYdXq6rq3ers/JHnfZlmkerrH/e8HwAAgLmu4EOaAi70wQLV2NionTt3jts+tpIGuRPyhbSj\nYYd2NOyQJCWchH5z/jejpki7EJ3ZlB/jOIPS1UPJH0kyLJklq+Sk1rW5SfKXZaWrtwYH9dbgoP69\nszO17fpQSJsjkVR4c0tJiUp8Bf9XOQBgDjIMU3V1n9LRox+a8rjKyvsUiWzJ0ai8YVkhWVZIgcCS\njNu6rivb7k1rWraJ9tt2lh4smQdcd1Cx2DnFYudm1N6ySqeZlm3yih7LKl4wD/PV1T2ak5Bm2bKH\nFQxWe94PAADAXFfQ0515Wa0w0U12YDYKqURutgp9urNMua6rY5ePqfVUq/a071HrqVaduHoi6/1c\nEypZrlhp01Bwc5MU8u6XU0PSmnA4WW0zFN5sKC5WyOJJUgDA7DlOTPv3L1csdnaSIwxt2vSKSkpu\nyum45hPHSci2u8YEOlNP0TbyuFwvAj9fGYZvwqna0l2PxzQD+b6EjBw6tCOjNacyZVkRbdt2Qn7/\nIs/6AAAAmI1Cupdb0I9fE6QAyAbDMHRD5Q26ofIG/fEtfyxJOtN9JlllM1Rtc+TCEblZmpt7oPeE\n1HtC6vg/kqTi8FL5yzeoq3iN3LL1UrhBytKTmq6k1/r69Fpfn75//rwkyW8Yuqm4eHiqtEhE68Jh\n+UwzK30CABYO0wxo2bJP6PjxT024f/HiBwhoZsk0fTLNSvn9lSqawQyqtt2f5rRsE+/P1dokhc51\nE4rHOxWPd05/8ARMsyjNadkmCn4iMozcfk+rq3vU05Cmru4RAhoAAIA0FXRIAwBeqY3U6oGmB/RA\n0wOSpCv9V7Tv9L5UaHPg7AElnERW+or2dUh9HZJ+KkkqDlaoovJmDZSuU2d4jVSySjKz99dx3HX1\ncm+vXu7t1d93dEiSQqapm0tKUuvbbCot1Q3hsMwFMq0HAGDmamo+rFOnviLb7hqzx1Jj4xfzsvAu\ngQAAIABJREFUMiYMs6wiWVaRgsGlGbd1XUe23TPFtGxTT+HmOFEPrmhucpx+xWL9U1SdTcWQZUVm\nvB6PaRZlPFVbJmtOZcrvr9KyZX+e9fMCAADMV4Q0AMapDFfqwiNZWsMlw37zpaKoQvfecK/uveFe\nSVJfvE8vvPVCak2b508/r2g8OzciooNXFD37S0m/lCSF/MVaVrVRgYoN6gyv0YXQSskKZaWvawYc\nR893d+v57u7Utohl6dahwOZaeNMQCi2Y+dgBAOnx+SKqrf2I2tu/Pmr70qUfUji8Kk+jQjYYhimf\nr0w+X5lCoYaM2ztOPM1p2Sbaf0Wum50HYuY+V7bdNUEQmh7D8Kc9LdvI/9bU/JnefPPjWb4Wqb7+\nMfl8pVk/LwAAwHxV0GvSAHNJIc1jiOyL23EdPnc4Fdrsbd+rzr6ZTYcxHb/p1/XXbdCiqlsUjzTp\nZGClLmoG85/MQJXfnwptrv13aTCYk74BAIVrcLBD+/c3ptY/MYyAtm49plCoPs8jw1zluq4cp2+C\nadkmrt4ZG/zMNNCAtwKBGm3d+qYsKzffXQEAAGaqkO7lzotKmt7eXvX09Ki0tFQlJSX5Hg6wMLmu\n1NMjxWJSICCVlmZt3ZVC4Lf82ly7WZtrN+svbvsLua6rNzrfUGt7q/ac2qPW9la1d7Vnpa+4E9cb\n5w9K5w+mtq2uWqfGJZsVrNigy8VrdSQR1tVE9p8+7YzH9dPLl/XTy5dT22oDgWRgE4mkwptFfn/W\n+wYAFK5gcKmqqz+gjo4nJUk1NX9GQINZMQxDllUsyypWMFibcXvXtZVIdKc1LdtE+x2n34OrgmH4\n9Oqr96YqtCyrLPV68veRGU3ZBgAAMF/MuUqanp4e/dM//ZP27Nmj/fv36/Tp07JtO7XfsizV19dr\n27Zt2rlzp973vvcR3CAnCil9zZlXX5Weekp68UXp5ZelK1eG91VUSLfcIm3ZIj34oDTif5v5qr2r\nPbWmTWt7q167mP05vq9ZXr5cG2tvU1XVrYpHmvSmqnSot1dRx/Gsz5FWhELJKdIiEW0qLdUtJSUq\n9c2L3B8AMIm+vqN68cU1Ms0ibdt2XIHAknwPCZgxxxkcEeCMDHTSW49HsqftA+kzDL8sK5JGoDP5\ne9MME/QAAIC0FdK93DkT0vT19emzn/2snnzySUWjyXUhphr6tS9nJSUleuihh/TlL39ZRUWUXMM7\nhfTB9twzz0jf+IbU2pp+m+3bpccek+65x7txFZjOvk7ta9+XCm1eOvuSbNebX+gXFy/WHXV36oal\nWxUq36DzgTq9FO3XK729iuXgr3lD0ppweHh9m0hEG4qLFbIsz/sGAOTOkSO/r3D4Rq1Y8bV8DwXI\nG9d1ZdvRKadlmyr4se2efF/CPGVNWKWTSeBjWSUEPZgXEoku9fefkGWFZZrhocrFsAwjwJ9xABhS\nSPdy50RI88orr+j+++/X7373u1Qwk84/KiOPXblypX74wx9qw4YNno4VC1chfbA9c+mS9LGPJatn\nZurBB6Vvf1uqrMzeuOaI3liv9r+1P1Vts/+t/epPeDPVRmmgVLfV3aY76rZr6eJNGgiv0iv9cR3o\n6VFbNJqTZz99hqGbiotHrW+zrrhYftPMQe8AAC/09LysUKhRfv+ifA8FmLMcJyHb7sp4PZ5rx7ru\nYL4vYR4z5fNF0p6mbeJ9pTIMvu8ivxKJbj3/fP0E63eZQ8FN8YgAJxniXHt9LdQZ+37k8aPbj95H\nEARgriike7kFH9IcPXpUd955py5duiQpGbiMHHJpaakqKytVXFysaDSqS5cuqadn+MmkkcdXVVVp\n3759WrVqVW4vAgtCIX2wPfGb30jveId09uzsz1VTI/30p9JNN83+XHNYzI7p5Y6XU6HN3va9ujJw\nZfqGMxCwAtpcs1nb67drc93tKqnYoNdjpg50d+tgT4+O9udmXvaQaWpjSUmy2mYovFkdDsvkSzwA\nAEBabHtg0hDn2uvJg58uSbmZHnfhMmRZpTOatm14yreIDIOKdMzO8eOfVnv713Per2EEtWXL6yoq\nWp7zvgEgE4V0L7egQ5p4PK6mpiYdO3YslcK7rqtt27bpj/7oj/S2t71Ny5eP/0v/xIkT+uUvf6nv\nfe97ev7550e1Xb16tV599VX5WDsBWVZIH+ys+81vpF27Rq85M1sVFdLu3Qs+qBnJcR29dvE1tZ5q\n1Z72PWo91aozPWc86cuQofVL1mt7/XZtb9iuDTW36YxKdLCnRwd6enSgu1unBnPzlGapZenWEaHN\n5tJSNYZCPH0FAACQZa7ryLZ7x1Xn9PW9rhMnPiOpYG8PLDiWVZLxujxjAx/T5L7HQjY4eE779zfI\ndWM57be6+o91441P5rRPAJiJQrqXW9Ahzbe+9S39xV/8RaoaJhKJ6O///u/13ve+N+1zPP3003ro\noYfU3d0t13VlGIa++c1v6uGHH/Zw5FiICumDnVWXLknr12engmasmppkALQApz5Lh+u6Onn1ZHJN\nm6Fqm6OXjnrW3/UV12tHw45UcBMprtNLvb060NOTCm/OxXLzBb/S50sGNpFIKrypCQZz0jcAAMBC\ndOTIf1dn548ybtfQ8AWFwzcokehSItE1NJVb15j33aNeU82TG6ZZnKrMmWngY5r+fF8GZuHo0Q+r\no+M7OevPMALauvWYQqH6nPUJADNVSPdyCzqkueGGG1Lr0ITDYe3Zs0e33HJLxuc5fPiw7rzzTvX3\n98t1Xa1cuVK//e1vPRgxFrJC+mBn1YMPzm4NmnTO/4//6N3555kL0Qva2743FdocOndIjuvNL7nV\nJdXJwGYotGm6rknn4olRoc3Bnh5dSSQ86X+smkAgOU1aJKJNQ8FNpZ9fGgEAALKhq2u/Dh26LaM2\nkcjtuvnmvRlVQLuuO1TNM1mgk877biknqyzCNIumCXWmD4BMk4et8qWv76hefHGNclUlV1v7Ma1a\n9e2c9AUAs1VI93ILNqQ5duyYVq9enfqy91d/9Vf65Cc/OePzPfHEE3r00UclJdepeeONN1ibBllV\nSB/srHnmGenee73v58c/lv7bf/O+n3moe7Bbz59+Pllt096qF956QYO2N9OUlQXLdHvd7alqm001\nmxSwAjo+MKAD3d2p0Oalnh5Fndw8HbkiFEpNkbY5EtEtJSUqZTpLAACAGTl0aIe6ulrTPn7jxl+r\nvHynhyOamOu6cpy+GQY8w+9dNzcPGy10hhGc4bRtkREVPUyHPFMzrZLLlGkWaevW4woGqz3vCwCy\noZDu5RZsSPPDH/5QDzzwgCQpEAjo3LlzKi8vn/H5rl69qiVLligej8swDP3gBz/Q/fffn63hAgX1\nwc6aHTuk1vR/SZtVP7t3e9/PAjCYGNTBswdToc2+9n3qGuzypK+gFdTWZVtT1Ta3192u0mCpbNfV\nG319yWqbofDmcG+vYjn458aQdGM4PGp9m40lJQpZLLwKAAAwnc7OH+vIkXemdWxFxdu1YcPPPB6R\nd5JBT/+EVTqZBD65Xu9joTIMf8br8ox9b5pFCzLomUmV3EzU1z+mFSu+5nk/AJAthXQvt2AfN75w\n4YKkZNXL8uXLZxXQSFJ5eblWrFiho0eT6zmcP39+1mME5rVXX81NQCNJe/ZIR45II/5ixMwEfUHd\nUX+H7qi/Q4/pMdmOrSMXjmjPqT2p4OZc77ms9DVoD2rPqT3ac2qPJMk0TG2s3pgKbd7RsF0frL5B\nkhRzHB2JRoenSuvu1pFoNOuTVLiSXu/r0+t9ffrfQ3/P+wxDTcXFyWqbofCmqbhYftPMcu8AAABz\nW2XlPQqH16qv77Vpj12+/Cs5GJF3DMOQZYVlWWEFg0tnfB7bHkgj1OmeMvBxnIEsXtn85LpxxeOd\nisc7Z3wOw/ANhTaRGQc+llU854KesrJtKivbnlGVXKYsK6K6uk95dn4AmO8KNqTp7e1NvY5EIlk5\nZ2lpaep1NBrNyjmBecvLdWgm6++rX81tnwuAZVraUL1BG6o36GNbPybXdfW7K79LrWnT2t6qNy+/\nmZW+HNfRyx0v6+WOl/U3L/yNJGl15erUmjbb67frw0sb9ac1NZKkPtvWK729OjC0vs2B7m4d7e/P\nylhGSriuDvf26nBvr77T0SFJCpmmNpaUDE+VVlqq1eGwzDn2CxcAAEA2GYapurpP6ejRD015XGXl\nfYpEtuRoVIXNskKyrJACgSUzPofjxGY0bdvI8Mdx+rJ4VfOT6yaUSFxSInFpFmexJgx5LCuSduBj\nWSUyjNw+MFZX96inIU1d3SPy+xd5dn4AmO8KNqSpqqqSlCxBPnPmTFbOefbs2dTrysrKrJwTmLde\nfHF+97dAGYahlYtWauWilfrQzclfvjt6OrS3fa9a21u159Qe/eb8b+RmaWHJo5eO6uilo3ry0JOS\npNrS2lRgs71+u7YuXqfbyspSx3cnEnppKLQ5OPTfkwPZf7JwwHG0v7tb+7u7U9tKLEu3lpRocySS\nqrhZHmLuawAAsLAsWfKgTpz4jGKxs5McYWj58i/ndEzznWkGFAhcp0Dguhmfw3Hio0KbmazT4zg8\nzDo9W4nEFSUSV2ZxDiPDUGeiYyMZBT2ZVMllyu+v0rJlf5718wLAQlKwIU3N0JPWktTR0aEjR46M\nmiMuU21tbaNCmpHnBzCG60ovv5zbPl96KdkvN8RzbmnpUt2/7n7dvy65TtfVgat67vRzqWqbA2cP\nKGZnZ67tMz1n9IMjP9APjvxAklQRqtAd9XekQptba27VXRUVuquiItXmYiyWCm6u/ZyLZX/u717b\n1u6uLu3uGl7Dp9Ln06Zr69sMhTc1wWDW+wYAACgUphnQsmWf0PHjE09dtHjxAyopuSnHo8J0TNMv\n06yU3z/zB1IdJzEU9GS2Ls/I97bdk8Wrmq9c2Xbyf7PBwZmfxbJKM5q2rarqPrW3Zz+kqa9/TD5f\n6fQHAgAmZbhuDlZynoGuri5dd911su3kigW///u/r6effnrG57v//vv1r//6r5Ikv9+vixcvZm0a\nNUAqrMWmZq27WxpR3ZDTfkv5cldoBhIDevHMi6nQ5rnTz6kn5s0vX0W+Im1bti01Rdq2ZdtUEigZ\nd9yZwUEd6O5OVdsc6OnRlUTCkzGNtTQQGLW+zeZIRJV+f076BgAAyIVEolvPP18v2+4as8fSli2v\nKxxelZdxofC5rq1EomeSEKc7zcCnW8pSZT+8FQgs1ZYtb8rnC+d7KACQsUK6l1uwIY0kve1tb9Ov\nfvUrSckper7whS/o85//fMbn+epXv6rPfe5zqSlr7r77bj377LNZHStQSB/sWevslK6bean9jO3Y\nIf2X/yLddZe0aZMUCOR+DJhWwknolXOvpNa0aT3Vqot9Fz3pyzIs3bL0llRoc2f9naoKV407znVd\nnRgYSK1tc7CnRy/19qp3KOj32vJQaNT6NreUliriK9hiVQAAgGkdP/5ptbd/fdS2pUv/RKtXfydP\nI8JC4bqObLs343V5xu6TnHxfyoJgGL7UFGzDU7NFUtuGp2ybaNvwPtPk938AuVVI93ILOqTZs2eP\ndu3aJcMw5LquDMPQO9/5Tv31X/+1rr/++mnbHz9+XI888oj+4z/+Q5JS5/j1r3+t7du3ez18LDCF\n9MGetXxV0owUDkt33int2pUMbW69VaJaoSC5rqvfXvrtqNDmxNUTnvW3pmqNdjTsSAU39WX1Ex5n\nu66O9vUNr2/T3a3Dvb0azME/e4ak1eHwqIqbjSUlKrIsz/sGAADIhsHBDu3f3yjXTU4zaxgBbd16\nTKHQxN+9gELiuq5sOzrjaduuTfnmurmp1odkmqExwc3o4GeiAGj8tlIZBr9zYWFKJLrU339ClhWW\naYZlWcWyrLAMI8Bau5MopHu5BR3SSNIHPvAB/cM//MOooMYwDN155526++67tX79elVVVam4uFjR\naFSXLl3SK6+8ol/+8pfau3evXNdNtZOk97///fr+97+f56vCfFRIH+xZc12pslK6MpvFELOspCQZ\n2tx1VzK4ueUWiUqFgnWm+0wqsNnTvkdHLhzxrK/6svrUmjbbG7ZrTdWaSb+AxBxHbdFoaoq0gz09\nerW3V7mot/EZhpqKi0dV3DQVF8tvpr/gJwAAQC4dPfqQOjqelCTV1n5cq1b9TZ5HBOSO67pynP4Z\nBDyj37tuPN+XsqBYVklalTtTbbOsEm5qY86ZfKpScyi4KR4R4CRDnGuvr4U6Y9+PPH50+9H75moQ\nVEj3cgs+pInH47rnnnv0i1/8IvV/9sjQZSojj3NdV29/+9v1zDPPyMeNXXigkD7YWfF7vyf94hf5\nHsXkIhFp+/bhSpuNGyWqFArW5f7L2te+L1Vtc/DsQSUcb55Kqyyq1J31d2p7/XbtaNihm5feLJ85\n+d/7/batw729o9a3OdrXl5NZsIOGoY0lJdociaTCm9XhsKw58OXmcjyuP3xt9MKj/7x2rRZR8QYA\nwLzR13dUL764RqZZpG3bjisQWJLvIQFzSjLoGRg3NVumgY/rDub7UhYYU5ZVOsNqnuFjTTM0J29c\nY+6aaKrSXDCMoLZseV1FRctz3vdsFNK93IIPaSQpFovp05/+tL71rW+NC14mM/IY0zT1iU98Ql/9\n6lcVYI0LeKSQPthZ8fjj0te+lu9RpK+sLLmmzbVKmw0bJCoUClZfvE8vvPVCKrR5/vTzisajnvRV\n7C/WbXW3paptti7bqrB/6oUtuxMJvTyi2uZAT49ODAx4Mr6xSixLt5SUJKtthsKbFaHC+3L//545\no/9x7NjobatW6SO1tXkaEQAA8MKRI7+vcPhGrVgxh343AOYZxxmc0bo8I987Tn++L2PBMQx/WpU7\n003xZpo8CIf0DA6e0/79DampSnOluvqPdeONT+a0z2wopHu5cyKkuebgwYP65je/qX/7t39TLDb9\nH7ZAIKA/+IM/0Cc+8QndeuutORghFrJC+mBnxauvSuvX53sUM1dRMRza3HWX1NREaFPA4nZch88d\n1p5Te9Ta3qq97Xt1qf+SJ335Tb9urbk1FdrcUX+HFhUtmrZdZyyml3p7daC7O1Vx05HGv0XZsMjn\n06ahtW2uhTe1wWBO+p7Mlpde0oGentHbSkv1Av/eAgAwr/T0vKxQqFF+//TflwAULseJpdba6e19\nRW1tfyDlZP4AzFZyvZ7pK3emnuKN9XoWiqNHP6yOju/krL+5vGZdId3LnVMhzTVdXV16/vnn9cIL\nL+jUqVO6cuWKent7VVJSooqKCjU0NGjbtm3atm2byvK9+DkWjEL6YGfNjh1Sa6v3/dx8s/SHfyj9\n6lfS3r1S1IOKispKaefO4enR1q2TCqwyAcMc19EbnW+o9VRrqtqmvavds/6aFjdpR/0ObW9IBje1\nkfSqQc4ODiYDm+7uVMXN5URuFhddGgiMWt9mU2mpqnJULdoWjarpwIGJ923erLXFxTkZBwAAAICZ\nOXLkv6uz80cZt1u79l8UiWwdquDpHlXNM/m2rqGAqHuoqqfPgyvCdIbX65m6cmeqKd4sq7jgZnnA\naNemKs1VCFtb+zGtWvXtnPSVbYV0L3dOhjRAISqkD3bWPPOMdO+9uennnnuSr+Nx6eDBZGDz618n\nQ5t+D8qyr7suGdpcmx5tzRpCmwLX3tU+KrR57eJr0zeaoeXly1OBzfb67bqh8oa010I7MTAwvL5N\nd7de6u1Vr217NtaRGkOhVGCzubRUt5aWKuLBOmyP/u53+l+nT0+8r65O37j++qz3CQAAACB7urr2\n69Ch2zJqE4ncrptv3jvrm/SOk0gFOsnp2LrHhDldY8KeibZ15XxKJ0jj1+vJpJqH9XpyZaYhbKZM\ns0hbtx5XMFjteV9eKKR7uQUb0ti2reiIp+mLiorkZzFiFLBC+mBn1YMPSk895e35//EfJ98fi0kH\nDgyHNvv2SV6sDbJkSTKsuVZpc8MNhDYFrrOvU3vb96aCm5c7XpbtehOGLC5erDvr70yFNhuqN8hn\nphd+OK6ro319o9a3OdTTo8Ec/fO7uqhImyORVHhzc0mJiqyZl7knHEd1+/fr3CRTvS0NBNS+bZt8\nTC8IAAAAFLRDh3aoqyv92TM2bvy1yst3ejiizCTX6pm+cmeiAGjkNik3D9Vh2PB6PVNX7kw3xRvr\n9UxsJiHsTNTXPzan16wrpHu5BRvSfO9739NDDz2Uev/ss8/q7rvvzuOIgKkV0gc7qy5dSq5Nc/Zs\n9s9dUyP95jfJqcjSNTgovfBCMrD51a+k559Pbsu2pUuHA5tdu6SVKwltClxvrFf739qfCm32v7Vf\n/QlvFscsDZTq9rrbk6FNw3Ztqd2ikC+Udvu446gtGk2tbXOwp0evRqNK5OCfZEtSU3FxstpmKLxp\nKi5WYChUcV1XnfH4pO1/dfWq/vC1qauYfrh2rXaVl0+6v8rv56kpAAAAIM86O3+sI0femdaxFRVv\n14YNP/N4RLnnuq4cpy+typ2ppnOz7Z7pO0PWjVyvZ6rKnamnc5uf6/VkGsJmyrIi2rbtxJxes66Q\n7uUWbEjzta99TZ/5zGckSeXl5bp8+XKeRwRMrZA+2Fn36qvJqcGuXMneOSsqpN27pZtumt15Bgak\n/fuHK232709W32Rbbe3o0GbFCkKbAhezY3rp7Eup6dH2tu/V1YGrnvQVsALaXLM5FdrcUXeHykKZ\nrYnWb9t6pbd3eKq0nh690deXk1lkg4ahDSUl2lxaqsV+v75w6pSn/R3etEkbSko87QMAAADA1FzX\n0YEDN6mvb/qppG+55QVFIltyMKq5yXUd2XbvjKt5rm1jvZ78SK7XM3nlzlTVPIW6Xk8mIexMNDZ+\nSY2Nn/Ps/LlQSPdyCzak+du//Vs9/PDDMgxD69ev16FDh/I9JGBKhfTB9sSrr0r/9b9mp6Kmpkb6\n6U9nH9BMpK9vOLT51a+kF19MrnOTbXV1w4HNXXdJjY3Z7wNZ5biO2i60pUKb1lOtOtNzxpO+DBla\nv2S9djTsSAU31SWZz9HanUjoUG+vDnR3pypujnsx3V+Ofb6hQV9cvjzfwwAAAAAWvI6OFh09+qEp\nj6msvE833fTvORrRwuY4cdl2z4yqeUYGP6zXkw/mBFU66VbzDAdAphnMStiTSQibKb+/Slu3HpfP\nV5r1c+dSId3LLdiQ5umnn9Z73/teQhrMGYX0wfbMpUvSxz8u/dM/zfwcDz4offvbmU1xNhvRqPTc\nc8PTox04ICUS2e+nsXF0pU19ffb7QFa5rquTV0+qtb1Ve07tUWt7q3576bee9bdy0crUmjbbG7br\n+orrZ/TF61I8roPX1rcZCm/OelE95qGm4mK9unlzvocBAAAALHiOE9P+/csVi032QKahTZteUUmJ\nBw9ZwjPJ9Xqmr9yZboo3ycn3pSw449frmbhyZ7op3kzTr3Pnvq833mjO+hivv/4J1dV9MuvnzbVC\nupdbsCFNW1ubbhp6yn7RokXq7OzM84iAqRXSB9tzzzwj/dVfSXv2pN9mxw7pL/9Suuce78aVjt5e\nad++4enRDh6UbA8WCVyxYji0ueuu5HRpKHjne89rb/veVLXN4XOH5bjefCmtLqlOhTY7GnaoaXGT\nLHNm8+CeHRxMTZN2Lby5lGkY6TpSvHtG/WfKlPTqls26zh9QZbhSpmHmpF8AAAAA47W3P6Hjxz81\n4b7Fi9+ntWtn8aAm5qyJ1+tJv5qH9XryyzSLZJqlSiQuS8rew8qBQI22bn1TllWUtXPmSyHdyy3Y\nkEaSbrrpJrW1tckwDD333HPaunVrvocETKqQPtg5c+SI9NRTySnFXnpp9Jo1FRXSrbdKW7ZI73uf\nNOJ/m4LS3S3t3TtcafPyy/8/e/ceF1d954//NTPc5gokBBLuMXdIQsIdQiCk1WpbrX6tdbXbmq6u\nq/USu+t3bbVq4nartrb91rWut1bs/qJdtWtTtbpGJdwDIVcCuV+4hgAhwFy4zpzfHwfmQkgC4ZyZ\nM/B6Ph7nYWaYOe9P0p4EzmvenzfgkOGm/OLFntujLVggfQ2SXN9gH6qaq5yhTXVLNQbtg7LUCg0O\nxbr4dc7gJj06HcEBwVd1LkEQcGZgwGO+zR6zGebLBZJDPUDVLVe5+qvX8WgH5unneb0uERERERGJ\nRkb6UFUVD7u9d9xXNMjMPAydbolP1kUzgzivx3zV3TxjX+O8HmVYsuRlxMTc7+tlSEJJ93IVHdK4\nz6W59tpr8emnn/p6SUSXpKQL2ycEQexSGRwEgoMBgwFQ0MC0SevtBcrKXJ02+/aJvzepLVvmuT1a\nVJT0NUhygyOD2N22G2WNYmhT0VyBvkF5uk9CAkKQGZPpDG1y43JhDL76/V4dgoBjNpsztKk1m7HP\nYsHAWCjJkIaIiIiIaNY6deonaGp6zuO5BQvuwbJlr/toRUSeXPN6Lt+5c/kt3nohCDLMLZ4lQkIW\nIjPzCNTqIF8vRRJKuper6JDGbrdjw4YNqKiogEqlwo9+9CO88MILvl4W0YSUdGGThC5ccIU2xcXA\ngQPy1FmxwhXYbNgAzONNa39gd9hR11HnDG3KmsrQbmmXpZZapcaa+WuQH5+P9QnrkRefh0h95LTO\nOexwoN5qRa3ZjNLORvzXX3IlWu3kbfx6MXIjEpBmMCDNaERssDRDEomIiIiIaPIGB89i165E58B5\nlSoIWVnHERLCeas0s0w0r2ey3TyzfV7P8uVvYf787/t6GZJR0r1cRYc0ANDT04ObbroJ5eXlUKlU\nWLduHZ555hls2LDB10sj8qCkC5tkdP68OItnbHu0ujp56iQnu+bZ5OcDERHy1CFJCYKAkxdOoqyx\nDKVNpShrLMPJCydlq7ds7jKx0yZB7LZJDEu86oCj09qJyBemF/pclZwPgKAw58N5gYFIMxqdoU2a\n0Yg4BjdERERERLI7evQfcfbsGwCAmJiHsWTJb328IiJlcs3ruZpuHtdr/Wlej063AhnnTDnDAAAg\nAElEQVQZdVCprm6WrhIp6V6uokOaZ555BgAwPDyMN954A+fOnXPepImKikJ6ejoWLlwIk8mEwMDA\nKZ37qaeekny9NLsp6cImL+rqAkpKXNuj1dfLU2f1atf2aPn5wJw58tQhyZ01nxW7bEa7bQ6eOwgB\n8vzTG2OMcQY26+PXIzkyGWqVelLvVUpIM5GIwECP0CbNaEQ8gxsiIiIiIknZbEdRU7MCarUW2dmn\nEBTEbbmJ5OQ+r+dKnTuXfq4XDke/7GtNSnoPkZHflr2ONynpXq6iQxq1Wn3RDRj35U7n5oz9csOT\nia6Cki5s8qGODjGsGeu0OXJE+hoqFZCS4toeLT8fCLv8TW5Sjp6BHlQ2VzpDm91tuzFkH5KlVnhI\nOPLi85zdNqkLUhGkmXjvWCWHNBOJCAxEqntwYzAgISSEwQ0RERER0TQcOnQLdLrluOaaZ329FCKa\npEvP63F18/T3n8LZs69d1fkNhrVIS6uFapIfAvUXSrqX63chzXQJggCVSsWQhiSnpAubFKS93TO0\nOXZM+hpqNbB2ravTJi8PCA2Vvg7Jon+4HzWtNc6ZNpXNlbAMWWSppQ3QIjs22xna5MTmQB+kB+B/\nIc1E5gYEINUttEkzGpHI4IaIiIiIaNLM5r0ICUlEYCB3byCaaQ4d+j/o6vpgyu9btepjzJ37dRlW\n5FtKuper+JBGDgxpSA5KurBJwVpbPbdHO3FC+hpqNZCW5uq0ycsDjEbp65AsRhwjONB+wBnalDWW\nodPWKUstjUqD1AWpWB+/HilRKbhr+12y1LksCUOaicwZC27cum4WMrghIiIiIiKiWaa3dxf27cuZ\n0ntMplysXVs+I3+GVtK9XEWHNCUlJbKdu6CgQLZz0+ykpAub/Ehzs2enzenT0tfQaID0dDG0KSwE\n1q0D9Hrp65AsBEHAsfPHnKFNaWMpzvSc8fWyJHPTjaU4NBSIUwMDXqsZHhDguVWa0YhrGNwQERER\nERHRDLdvXz56e8sm/fo1a3YiLGxm3kdX0r1cRYc0RO56enrw8ssv44MPPsCpU6fQ39+P6OhoFBYW\n4r777kNaWppP16ekC5v8WGOjK7ApLgaamqSvERAAZGa6tkfLzQV0OunrkGxa+lqcM23KmspwqOOQ\nr5d01Toe7cA8/TxcGB7GXosFe8xm53HSi8FN2LjgJp3BDREREREREc0wXV0f4dChGyf12vDwa5GS\n8pnMK/IdJd3LZUhDfqGmpga33norWlpaJvy6RqPB008/jSeffNLLK3NR0oVNM8jp056hzSWugWkJ\nDASyslzbo+XkAFqt9HVINt393ahoqnCGNrVttRhxjPh6WZMyFtJMpGd8cGOx4ER/v9fWNj64STMY\nsEirZXBDREREREREfkkQHNi9exVstoYrvjY1tRomU6YXVuUbSrqXq9iQxm63w2q1Oh9rtVoEBgb6\ncEXkK6dOnUJWVha6urqgUqlw77334rbbboPBYEB1dTWee+45nD17FgDw4osv4qGHHvLJOpV0YdMM\nJQjAqVOueTbFxUBbm/R1goLEoGas0yYrCwgJkb4OycY6ZEV1a7Wz26aqpQq2YZuvlzWhy4U0E+kZ\nHsa+seBm9L/HvRjchGo04owbtzk3i7RaqBncEBERERERkR84e7YIR4/+4LKvmTv3W1i16i9eWpFv\nKOlermJDmj/84Q/4x3/8R+fjHTt2YOPGjT5cEfnKzTffjO3btwMAXn31Vdx7770eX29ubkZaWho6\nOzuh0+lw/PhxREdHe32dSrqwaZYQBOD4cVdgs3Mn0N4ufZ2QEM/QJjMTCA6Wvg7JZtg+jH3t+5yh\nTXlTOc73n/f1sgBMPaSZSO/ICPa5hTZ7zGYc82JwYxoLbty6bhYzuCEiIiIiIiIFcjiGsGvXQgwN\nXeqDvyqkpx+AwbDKq+vyNiXdy1VsSPPss8/iiSeeAACEhYWhu7vbxysiX2hoaHBeHHl5eSgrm3iw\n1RtvvOEM9f71X/8Vzz//vNfWOEZJFzbNUoIAHD3qGdp0dEhfR6sV59iMbY+WkSF235DfcAgOHOk6\ngtLGUnGLtMYyNPc1+2QtUoQ0E+kbGXF13JjNqPVBcLPWfas0oxFLGNwQERERERGRAjQ1vYBTp/7v\nhF+LjLwDSUlve3lF3qeke7kBPqk6CQaDAQCgUqmQkJDg49XQVJw8eRI1NTVoaWnB0NAQwsPDsXz5\ncuTm5iJkilsmvf/++85fu3dWjffd734Xmzdvhs1mw/vvv++TkIbI51QqYPly8bjvPjG0OXzYFdjs\n3Al0dU2/Tn8/8MUX4gEAOh2Ql+fqtElLE+fckGKpVWokzUtC0rwk3Jd+HwBgb9tepL2e5vW1/OXI\nX3D94usRFxon6XlNAQEoCAtDQViY87nxwc1Yx40cn1bps9tR0tuLkt5e53PG8cGNwYClOh2DGyIi\nIiIiIvKq6Oh70dj4M9jtveO+okFi4lafrGk2U2xIs2DBAl8vYUZobW1FTU0NqqurUVNTg9raWpjN\nZufXExIScObMGUlq/eUvf8G//du/Ye/evRN+3WAwYNOmTXj66acRERExqXOWlJQ4f3257e60Wi2y\ns7Px5Zdf4tSpU2hubkZcnLQ3/Ij8jkoFJCWJxwMPAA4HUF/v6rQpKQGk6FK02YDPPhMPADAYxNBm\nrNMmNRUIUOw/NzRK6pBksu79SNzCMtYUi9y4XOTE5iA3Lhdr5q9BkEbaDq2Jghvz+ODGYsFRm02W\n4MZst6O0txelbsGNwT24Gf3vUp0OGgY3REREREREJJOAABNiYu5HU9NzHs8vWPAD6HRLfLSq2Uux\n253V19dj1Spx37s5c+agS4pPf88SFRUV+NWvfoXq6mq0XWGouBQhzeDgIO6++25s27ZtUq+fN28e\n3n//feTn51/xtfPnz8e5c+dgMpnQ2zs+2fX00EMP4aWXXgIAfPrpp/ja1742qfVIRUktckST4nAA\ndXWuTpuSEqCnR/o6RiOwfr0Y2hQWAmvWABqN9HVoWjqtnYh8IdLXy3AKCQhBRnQGcuNyneGNHNui\nTcQ8MoL9Y8HN6H+PyBTcTESvVmPtuBk3yxjcEBERERERkYQGB89i165ECMIQAEClCkJW1nGEhMT7\neGXeoaR7uYr9aHNycjKSk5NRX1+PCxcuoLq6GllZWb5ell/YvXs3PvjgA6/UcjgcuP3227F9+3aP\n5zUaDeLj4xEaGorTp097BCydnZ244YYb8PnnnyMnJ+eS5x4cHMS5c+cAYFJdMe6vaWxsnOpvhWj2\nUauBlBTxeOQRwG4HDh4UQ5viYqC0FOjrm34dsxn429/EAwBCQ4H8fNf2aCkp4lqI3AyMDIjzcppc\ns8iWzFni0W2TNC8JGrX0gZ8xIADrw8Kw3q3jxjIW3Lh13Ryx2eCQvDpgdThQ3tuLcrd/O/VqNdaM\nm3GznMENERERERERXaXg4AWYP//7OHv2DQBAdPR9syagURrFhjQAcO+992Lz5s0AgKeffhqffvqp\nj1fk/wwGAywWi2Tn++Uvf3lRQHPffffhySefRHR0NAAxyNm+fTseeeQRNDU1AQBsNhu+853v4NCh\nQwgNDZ3w3O7bso3NKLoco9E44XuJaJI0GmDtWvH4538WQ5t9+1zbo5WViYHLdPX2Ah9+KB4AEB4u\nhjZj26OtWsXQhiZ0vPs4jncfx1sH3gIAmIJNyI7NRm6s2G2TFZsFU7BJltqGgADkhYUhzy24sdrt\nro6b0eOwjMFNRV8fKtyCU9344MZgwHKdDgG8foiIiIiIiGgS4uIexdmzv4darUVCwuO+Xs6speiQ\n5oc//CHeffddVFRUYMeOHXj00Ufxwgsv+HpZfsNoNCItLQ0ZGRnIzMxERkYGTp8+jcLCQknOf/78\nefz7v/+7x3PPPvssfvzjH3s8p1arccsttyAzMxN5eXnO7dVaWlrw61//Glu3TjyMqr+/3/nroKAr\nzyUIDg6e8L1EdJU0GiA9XTwefRQYGQH27nVtj1ZWBlit069z4QKwfbt4AMCcOUBBgWt7tKQkhjY0\nob7BPnx28jN8dlKch6SCCquiVjlDm5y4HCwKXwSVTN0meo0G60JDsc7twwZWux0Hxs24abBaZQlu\nbA4HKvv6UOkW3Gjdg5vR/65gcENEREREREQT0OmWISLiW9DpliMoKMrXy5m1FB3SaDQafPjhh7jp\npptQXl6O3/zmN6ipqcEzzzyDDRs2+Hp5inXjjTfiuuuuw/Lly6Eed1Pm9OnTktX5xS9+4dGxkp+f\nj8cee+ySr4+JicEbb7yBr371q87nfvOb3+Dhhx/G3LlzL3q9Vqt1/npoaOiK6xkcHJzwvUQkkYAA\nIDNTPB57DBgeBmprXZ02FRWAzTb9Ot3dwAcfiAcARES4tkbbsAFYsQLgFk80AQECDp47iIPnDuKV\nPa8AAObp5jnn2uTG5SJtQRq0gfL9G6HXaJAbGopct+DG5h7cjP63wWqFXYb6/Q4Hqvr6UDUuuEkx\nGDxm3CQxuCEiIiIiIiIACQlPIiQk0dfLmNUUHdI888wzAICCggIcP34c586dQ0VFBb7yla8gKioK\n6enpWLhwIUwmEwIDA6d07qeeekqOJSvCokWLZK/hcDjw5ptvejy3ZcuWK35a+Stf+QrWr1+PsjJx\nxoDZbMa7776L+++//6LXum9fNpkt2txf4/5eIpJJYCCQkyMeP/kJMDQE7N7t6rSpqAAGBqZfp6sL\neP998QCAyEhXaFNYCCxdytDGjx1+4DBOdJ9AZXMlKpsrUdNag/4R6bohO22d2H50O7YfFTu1AtWB\nSF2Q6hHcRBujJas3EZ1Gg5zQUOS4BTf9Y8GNW9dNvYzBza6+PuxyC25C1Gqk6PVIMxqRzuCGiIiI\niIho1jIaU329hFlPJQiC4OtFXIparb7opr/7cqezfYndLsdtEOXbuXOnx3ZnCQkJzu3HpqK8vBzr\n1693Pr7mmmtw4sSJSf1v8tZbb2HTpk3Ox9dddx3+93//d8LXRkVFoaOjAyaTCb1uA5Qn8tBDD+Gl\nl14CAHzyySe4/vrrJ/E7kU59fT1WrlzpfHzo0CEkJyd7dQ1EijI4CNTUuEKbykrxOaktWCCGNmPB\nzeLFDG2uQqe1E5EvRHq9bsejHZinn+d8PGwfxsFzB8XQpkUMbpp6m2RdQ0JoAnLicpzbpK2OWo1A\nzdQ+/CGFfrsdB61Wjxk39TYbRrz0rZp7cOPecRPI4IaIiIiIiIhmGCXdy1V0J81EpruvvCAIsu1N\nP5t8/PHHHo+vvfbaSf+5XnvttR6Pd+7cCavVCr1ef9Frk5OT0dHRgb6+PrS0tCA2NvaS521oaPB4\nHxH5WHAwsH69eDz1lNhVs2uXa3u0XbvE7pvpOnsWeOcd8QCAmBjP7dGuuYahjR8J1AQiLToNadFp\neCjrIQBAS18LqpqrnMHNvrP7MOwYlqxmY28jGnsb8adDfwIA6AJ1yIzJdIY22bHZmKu7eFtOqWk1\nGmSZTMgymZzPDYwPbiwWHLJaZQluBhwOVJvNqHbbyjRYpRK3ShsLbgwGJOv1DG6IiIiIiIiIJKL4\nkEbBjT6z2v79+z0e5+bmTvq90dHRSExMdHbwDA0NoaGhARkZGRe9tqCgAMXFxQCA4uJifO9735vw\nnP39/di1axcAYOHChYiLi5v0eojIS0JCXB0vW7YA/f1AVZWr06a6WpxzM12trcC2beIBAHFxrsCm\nsBBITJx+DfKqWFMsbku+Dbcl3wYA6B/ux56ze5xbpFU2V6LT1ilZPduwDTvP7MTOMzudzy2PWI7c\n2Fyx4yYuF8sjlkOtkj+oCNFokGkyIXNccFM3FtyMbpdWJ1NwMygIqDGbUTMuuFk9FtyM/jdZr0cQ\ngxsiIiIiIiKiKVN0SDN2c56U5/Dhwx6Pk5KSpvT+pKQkj23WDh8+PGFI8+1vfxtbtmwBALz++uuX\nDGnefvtt2EYHln/729+e0lqIyEe0WmDjRvEAAKvVFdoUF4vzbUZGpl+nuRn44x/FAwASElzzbDZs\nAOLjp1+DvEobqEVefB7y4vMAiB/oOHnhpEdoc6jjEARIF1oc6TqCI11H8If9fwAAhIWEISc2xznX\nJjMmE4Ygg2T1LidEo0GGyYQMt+Bm0OFA3bgZN3VWK4ZlCm52m83Y7RbcBI0FN25dNysZ3BARERER\nERFdkaJDmoKCAl8vgSbQ39+PpibP+QBT7VwZ//qjR49O+Lrk5GTceOON+PDDD1FWVobXXnsN9957\nr8drmpub8fjjjwMAtFotNm/ePKW1EJFC6PXAV78qHgBgsQAVFa7t0WprASnmiTU2AkVF4gGI26G5\nb492mW0VSZlUKhUWz1mMxXMW4/sp3wcA9A70oqa1xrlF2q6WXegb7JOsZs9ADz458Qk+OfEJAECt\nUiMlKgW5cbnO8CYxLNFrW6wGq9VIN5mQPi64OTTacVMrc3AzJAioHa2Ds2cBiMHNqnEzblbq9Qhm\ncENERERERETkpOiQhpSpq6vLYxu6wMBAREZObdh0TEyMx+OOjo5LvvbXv/41Kioq0N3djfvuuw/7\n9u3DbbfdBoPBgJqaGvz85z93vv/nP//5Ree+Gh0dHejsnNrWOSdOnJh2XSJyYzAAX/uaeABAX58Y\n2ox12uzdCzgc069z6pR4/EHskMDixa7AZsMGIDp6+jXI60JDQnHtomtx7SJxDprdYUdDZ4MztKls\nrsSJbun+3nYIDuxr34d97fvwu92/AwDMN8wXO21GZ9ukLkhFcECwZDWvJFitdoYjYx9vcA9u3Dtu\nhmQKbvaMdveMBTeB44MbgwGrDAYGN0RERERERDRrMaShKbNYLB6PdTrdlD8prNfrL3tOd4sXL8bH\nH3+MW2+9FW1tbXjllVfwyiuveLxGrVbjySefxCOPPDKldVzKyy+/jK1bt0pyLiKSiMkE3HCDeABA\nby9QVubqtNm3D5DiRvOJE+Lx+uvi46VLXdujFRQA8+dPvwZ5nUatwaqoVVgVtQr/lP5PAIAOawd2\ntexybpG2u203BkYGJKvZbmnH/xz+H/zP4f8BAARpgpAene4x22a+wbv/f3IPbsYMjQ9uLBYctFhk\nCW6GBQF7LRbstVjwultws3IsuBndLm2VXo8QjUby+kRERERERERKw5CGpmx8oBISEjLlc2i12sue\nc7zs7GzU19fjd7/7HT744AOcPHkSAwMDWLBgAQoLC3H//fcjPT19yusgIj8WGgp885viAQA9PUBp\nqRjY7NwJHDggTWhz7Jh4vPqq+HjFCs/t0ebNm34NBZirm4uORy/d1ShnXV+J1EfipmU34aZlNwEA\nhuxD2N++32O2Tau5VbJ6Q/Yh53lRJT63MGyhc65NblwuVkauRIDau9+eBanVSDUakWo04h/H1upw\noH4suBmdc3PQYsGgTMHNPosF+ywWvDH6XMBYcOM242Y1gxsiIiIiIiKagRjS0JQNDHh+yjgoKGjK\n5wgO9tzupb+//4rvCQsLwxNPPIEnnnhiyvWIaBYICwNuukk8AKC72xXaFBcDdXXS1Dl8WDz+8z/F\nx8nJrsCmoACIiJCmjpepVWrM08+MwOlqBWmCkBmTicyYTDySLXZmNvc2u0KblkrsO7sPdkGC2Uij\nTvecxume09hWtw0AYAgyICsmyxnaZMdmIywkTLJ6kxWkVmOt0Yi1RiPuGX1ueCy4GQ1t9pjNOCBT\ncDMiCNhvsWC/xYLft7cDEIObZJ3OY8bNar0eWgY3RERERERE5Mf8NqTp7u7G4cOH0d3djd7eXjgc\nDnzta19DVFSUr5c2443vnBkaGpryOQYHBy97Tl/74Q9/iNtuu21K7zlx4gRuvvlmmVZERFM2Zw5w\n883iAQBdXUBJiWt7tPp6aerU14vHSy+Jj1evdnXa5OeL6yC/FRcah9tDb8ftK28HAFiHrKhtq/WY\nbdPd3y1ZPcuQBV+c/gJfnP7C+VzSvCTnXJvcuFwsnbt0ytuMSiFQrcYaoxFrjEbcvWABADG4abDZ\nPGbcHLBaMSDFvKhxRgQBB6xWHLBa8YfR4EYDIHncjJsUg4HBDREREREREfkNvwppOjo68NJLL+HP\nf/4zjhw5ctHXd+zYMWFI8+abb6K5uRkAEB0djXvuueei19DkGQwGj8fjO2smY3znzPhz+lpkZCQi\nIyN9vQwiklJEBHDrreIBAB0dYmgztj3a4cPS1Dl4UDxefBFQqYCUFFenTX6+2PFDfksfpEdBYgEK\nEgsAAIIg4Hj3cY8t0uo7JQoARzV0NqChswFv7BM3A5urnSvOtBkNbjJiMqAL1Elac7IC1WqkjAYj\n/+AW3Bx2D25GO2LkCG7sAA5arThoteJNt+AmadyMmxSDAToGN0RERERERKRAfhPS/PKXv8RTTz2F\noaEhCBNsq3G5T5RaLBZs2bIFKpUKGo0GN954IztupmF8oGKz2SAIwpQ+1Wu1Wi97TiIi2UVGArfd\nJh4A0N4uhjVjnTbHjk2/hiAA+/eLx29+I4Y2a9eKoU1hIZCXJ87WIb+lUqmwdO5SLJ27FJvWbAIA\nXOi/gOrWamdoU91aDcvQ5WevTcX5/vP46NhH+OjYRwAAjUqDNfPXeMy2iTPF+aTbBhCDm9UGA1Yb\nDPjBaHAz4h7cjG6Xtt9iQb9MwU2d1Yo6qxVFo89pAKwYN+NmDYMbIiIiIiIiUgDFhzR2ux233XYb\ntm/fPmEQoFKpJgxt3N1999148skn0dfXB7vdjrfffhs/+tGP5Fz2jBYREeHx5z48PIyOjo4pBV+t\nrZ6DmNm1QkQ+N38+8Hd/Jx4A0NbmCmx27gROnJh+DUEA9u4Vj1/9ClCrgbQ01/ZoeXmA0Tj9OuRT\n4dpwXL/4ely/+HoAgN1hx6GOQx5bpJ26cEqyenbBjj1n92DP2T34j5r/AADEGGM8Qps189cgSDP1\nGXJSCVCrscpgwCqDAZtGnxtxOHDEZvOYcbPfYoFNpuDmkNWKQ1Yr3jp3DgCgBrBCp0O624wbBjdE\nRERERETkbYoPaR544AH85S9/AeAKZNauXYvrrrsO8fHxeOCBB654Dp1OhxtvvBHbtolDef/2t78x\npJkGrVaL+Ph4NDY2Op9ramqaUkjT1NTk8Xj58uWSrY+ISBLR0cCdd4oHADQ3e26PdkqCm+wOB7B7\nt3j88peARgOkp7u2R1u3DlByp6EgAGYzMDQEBAWJAZOPujeUTKPWIGV+ClLmp+D+jPsBAO2WdlQ1\nVzmDm9q2WgzZpz7j7VJaza14r+E9vNfwHgAgJCAE6dHpzi3ScuJyEKn37QckAtRqrDQYsNJgwF3z\n5wMA7IIgBjduM272yRTcOADU22yot9kuCm7SxgU3egY3REREREREJBNFhzTl5eV47bXXnN0zERER\nKCoqwg033OB8zQMPPDCp7TxuvvlmbNu2DYIgoKKiAkNDQwgK8t0nSv3d8uXLPUKahoYGZGRkTPr9\nh8fNfmBIQ0SKFxcH/P3fiwcANDZ6bo/m9nfiVbPbgepq8XjuOSAgAMjIcG2PlpsL6Hwze8Sprg54\n5x2gpkbsCLpwwfW18HAgNRXIzBTDrZUrfbdOhZtvmI9bVtyCW1bcAgAYHBnE3rN7UdUiBjcVzRVo\nt7RLVm9gZADlTeUobyp3Prd4zmKx02Y0uEmalwSN2rdhhEalQrJej2S9Ht93C26Ojptxs89shlXm\n4OaPbsHNcvfgxmDAGoMBhgBFfxtNREREREREfkIlXGmvMB/auHEjdu7cCQAwmUzYtWvXRTfz1Wq1\nM6TZsWMHNm7cOOG5WlpaEB8fD0DsyNm/fz9WrVol3+IVaufOnSgsLHQ+TkhIwJkzZ6Z8nh//+Md4\n/vnnnY/vvfdevPrqq5N679mzZxEdHe18HBgYiO7ubr+fS1NfX4+VbjckDx06hOTkZB+uiIi86swZ\nMawZO1papK8RGAhkZbm2R8vJAbRa6etM5OOPgeefB8rKJv+e9euBH/8Y+PrX5VvXDCUIAhp7G51z\nbSqbK3Hg3AE4BOmDiTGmYBOyYrKcW6RlxWQhNESZM5PsgoBj42bc7LNYYLHbvVJfBbfgZnTOzVoG\nN0RERERERH5DSfdyFfuT5IULF1BWVuYMYH76059Oq9siNjYW4eHhuDD6id8jR47MypBGKt/85jc9\nQprPP/98wplBE/nss888HhcWFvpVQFNUVISioqKLnrdard5fDBEpR2Ii8IMfiIcgiNuhjXXZFBeL\nM26ma3gYKC8Xj5/9TNxiLDvbtT1adjYQEjL9Ou7OnwceekjsnpmqsjLxuPNO4MUXgblzpV3bDKZS\nqZAYlojEsETcuUrccs8yZEFNa424TdrobJuegR7JavYN9mHHqR3YcWqHuAaosDJypcdsm0Xhiyb1\nb73cNCoVVuj1WKHXY7S3DXZBwPFxM272yhTcCAAO22w4bLPh/xvtuFEBWKbTOUObseDGyOCGiIiI\niIiILkOxPzWWl5fDPvpDtUajwT333DPtc0ZGRjpDmo6OjmmfbzbLzc1FREQEurq6AACnTp26qEvn\nUn7/+997PP7Wt74lyxrlcubMGZSUlPh6GUSkZCoVsGiReNx9txjanDjhmmdTXAy0S7CV1dAQUFoq\nHlu3AsHB4pZoY502mZnic1fr4EHghhumHzC9/bb4+/70U4AfkLhqhiADNi7ciI0Lxa5hh+DA0a6j\nrm6blkoc6ToiWT0BAuo66lDXUYdX94jdsvN088SZNrE5yI3LRXp0OrSBXurmugKNSoXlej2W6/X4\n7uicPIcg4Hh/P/aYzah1m3Fjlim4OWKz4YjNhm2j32eqACzVaj1m3Kw1GGBicENERERERESjFPsT\nYtvoDSGVSoVrrrkGYWFh0z5naKhryw6z2Tzt881marUamzZtwgsvvOB8buvWrdiwYcNlP2H7xRdf\noMxtqxyj0YjvfOc7sq5VaomJiSgoKLjoeavVitraWh+siIgUT6UCliwRj3vvFdiJsoAAACAASURB\nVEObo0ddgc3OnYAUHx4YHHR17jz9tLgVWm6uq9MmI0PsvpmMgwfF97jPnJmOtjagoAAoKWFQIxG1\nSo0V81ZgxbwVuDv1bgDAedt57GrZhcrmSlS1VKG6tRq2YZtkNTttndh+dDu2H90OAAhQByB1Qapz\nrk1uXC5iTDGS1ZsutUqFZTodlul0uHOC4Ma940au4OZofz+O9vfjbbdr3CO4MRiQajQqPrjpHh7G\n7Q0NHs/9d1IS5gQG+mhFREREREREM4Nifxrs7u52/nrOnDmSnHNwcND560D+QDltjz32GF555RVY\nLBYAQElJCZ5//nn8+Mc/nvD1ra2tF3VEbd68GREREbKvVUqbNm3Cpk2bLnp+/D6GRESXpFIBy5eL\nx333iaHN4cOuwGbnTmC0U3Fa+vuBL74QDwDQ6YB168TQprAQSEsT59yMd/682EEjVUAz5sIF4Prr\nxQCIW5/JYq5uLr6x9Bv4xtJvAABGHCM4eO6gx2ybxt5GyeqNOEZQ01qDmtYa/L/q/wcAiA+N9+i2\nSYlKQaBGOd93XSq4OeEe3Fgs2Gs2o0+mGTfH+vtxrL8f77gFN0vGgpvR7dJSjUaEKii4+VNHBz4f\n93fCf3d04P4Y5YRyRERERERE/kg5P/mNI0fXi/sWZ/4WDExVRUUF+vv7L3r+wIEDHo8HBgbw+eef\nT3iO6OhoJCUlXbJGREQEHn/8cTz++OPO537yk5+gqakJP/3pTxEdHQ0AcDgc+Otf/4rNmzejqanJ\n4/z/8i//MqXfFxHRjKRSAUlJ4vHAA4DDATQ0uLpiSkoAtw8vXDWbDdixQzwAwGAA8vJc26OlpgIB\nAeIMGilm6EykrQ14+GFg2zZ5zk8exjpdUhek4sHMBwEArX2tqGqpcnbb7Gnbg2HHsGQ1m3qb0NTb\nhD8d+hMAQBugRWZMprPTJic2B3N1ygrp1CoVlup0WKrT4Q634ObkWHAzOudmr9mMXpmCm+P9/Tje\n348/uX2/ulir9Zhxk2owIMxHHzQqmmCLxqL2doY0RERERERE06QSBEHw9SIm8t577+H2228HAOj1\nevT29kKtVl/0OrVa7dxea8eOHdi4ceOE52tubkZCQgIAcQu1Tz/9FNdee61Mq/e9xMRENDZO75Oy\nd911F4qKii77GofDgW9961v46KOPPJ7XaDRISEhAaGgoTp8+jZ4ez8HGWq0WO3bswLp166a1RiUZ\n30lz6NAhJCcn+3BFRDRjOBxAXZ1re7SSEqBHuoHxTkYjsGwZ4I2tGz/6CPjGN+SvQ1c0MDKAPW17\nnHNtKpsr0WGVd3bfsrnLPLptVsxbAbXq4u/zlMYhCDjV3+8Mbca2SusZGfHaGhaFhHjMuEk1GBAu\nc3BTb7Vi5e7dE38tIwNJer2s9YmIiIiIiKSmpHu5iu2kSUlJcf7aZrOhoqIC69evv+rzvffee85f\nazQaZGdnT2t9JFKr1Xjvvffwgx/8AH/605+cz9vtdpw6dWrC98ydOxfvv//+jApoiIhkpVYDKSni\nsXkzYLeLW4aNbY9WWgr09k6/jtnsnYAGAH7xC4Y0ChESEIJ18euwLl78d1kQBJy6cMq1RVpLJerO\n1UGAdJ/rOXr+KI6eP4o3978JAAgLCUN2bLZztk1mTCaMwUbJ6klFrVJhsU6HxTodbo+MBDD65zUw\n4DHjZo+Mwc3JgQGcHBjAu52dzueucQ9uRjtvpAxu3pqgi8b9a88vWiRZLSIiIiIiotlGsZ00ALBo\n0SKcOXMGAHDTTTfhgw8+uOg1k+mk6evrQ3JyMtpGt27Jzs5GRUWFfAtXAG910rj785//jJ/97GfY\nv3//hF/X6/W466678PTTTyNy9MbGTKKk9JWIZhm7Hdi/37U9WlmZGLgoXV0dwFlefqFvsA81rTXO\n4KaqpQp9g32y1VOr1FgdtdoZ2uTE5WBh2ELn93xKJwgCTrsHN6OdNxe82HGzcCy4cdsubc5VBDcj\nDgfidu1C+9DQhF9fEBSEpuxsBEzQ8U5ERERERKRUSrqXq+iQZuvWrdi6dSsAcYuyP/zhD7jrrrs8\nXnOlkMZut+PWW2/FX//6V+d5/vjHP+K73/2uF34Hs9OJEydQXV2N1tZWDA0NISwsDCtWrMC6desQ\nEhLi6+XJRkkXNhHNciMjwN69ru3RysoAq9XXq7rY448D//7vvl4FXQWH4EBDZ4Or26a5Ese7j8ta\nM0of5ZxrkxuXi9QFqQgJ8J/vKwRBwJmx4MZtu7RuLwY3iSEhHqFNmtGIOQEB6Bq+9Eyi4p4e3N7Q\ncNnzvpuUhA1hYZf8ekRgoN8EbERERERENDso6V6uokMaq9WKRYsWobOzE4IgQKPR4Oc//zn++Z//\nGRqNBsDlQ5ojR47gn/7pn1BeXu58bunSpWhoaOAPiiQ5JV3YREQehoeBPXtc26OVlwM2m69XBXz1\nq8COHb5eBUmk09qJXS27nFuk1bTWYGBkQLZ6QZogpC1Ic4Y2ObE5WGBcIFs9OQiCgMaBAY/QZo/Z\njPNeDG4WBAXh7CW6ZKSyPz0dKQaDrDWIiIiIiIimQkn3chUd0gDARx99hFtuuQUOhwOCIEClUiE+\nPh533HEH0tLScNtttwEQO2See+45LFy4ECdOnMCXX36JL7/8EoIgYOy3qNVqUV5ejrVr1/ryt0Qz\nlJIubCKiyxoaAnbvdnXaVFQAA/LdTL+k8HDg/HmAH5yYkYbsQzjQfsAZ2lQ2V6Klr0XWmolhiWJo\nM7pN2qqoVQhQK3YE44QEQUDT4OBFM24u1+2idE8lJGDrwoW+XgYREREREZGTku7lKj6kAYDXXnsN\nP/zhDz0Cl7FOGPflj++OGQt1BEFAYGAg/uu//gvf+c53vLdwmlWUdGETEU3J4KAY1txwg/dr9/UB\nRuUNiCd5NPc2o6qlyrlF2r72fRhxyNc1og/UIys2yxnaZMdmI1wbLls9uQiCgGb34Ga086bTT4Kb\nlXo96jIyfL0MIiIiIiIiJyXdy/WLkAYAvvjiC3zve99De3u7R0DjHsxMFNgIgoCoqCi89957yMvL\n8+6iaUYqKipCUVHRRc9brVbU1tY6HzOkISK/0tUFzJvn/brf/z7wjW8AGzYAkZHer08+ZRu2obat\n1hnaVLVUocvWJWvNFRErPGbbLJu7zC+3wRUEAS1jwY3bdmkdCgxuNADacnMRGRTk66UQEREREREB\nYEhz1Xp7e/Gf//mfeOmll9DW1nbF14eHh+ORRx7B5s2bYTKZvLBCmg22bNmCrVu3XvF1DGmIyK/0\n9QGhob5dw8qVQGGheBQUAHPm+HY95HWCIOBE9wlnaFPZUon6jnoIkO/b1TnaOciJzXGGNhnRGdAH\n6WWrJydBENA6OHjRjJtzPgxuFoaE4O0VK5Dt679fiIiIiIiI3DCkmSaHw4EDBw6grKwMhw8fxvnz\n59HT0wOdToeIiAgsXLgQhYWFyMzMRECAf+1DTsrHThoimpEEAZg7F7hwwdcrEalUwJo1wMaNYmiz\nfj3AD1zMSj0DPahuqXaGNtUt1TAPmWWrp1FpkDI/xblFWm5cLuJD4/2y2wYQg5u2oSHUus+48WJw\no1OpkGEyIdNkQqbRiEyTCXHBwX7750lERERERDMDQxqiGUhJFzYR0VX56leBL77w9SomptEA6eli\nYLNxI7BuHaDT+XpV5AN2hx31nfWubpvmSpy8cFLWmtHGaDGwGQ1u1i5YiyCN/27dNRbcuIc2eywW\ntA8NeaV+VGCgR2iTYTQiPDDQK7WJiIiIiIgAZd3LZUhDJBElXdhERFfl8ceBZ5/19SomJzAQyM52\nhTbZ2UBwsK9XRT5yznIOVS1VztCmtq0Wg/ZB2eoFa4KREZPh3CYtJzYHUYYo2ep5S9vgIP52/jy2\nNjaiZVC+P7+JLNFqnaFNptGINQYDQjQar66BiIiIiIhmDyXdy2VIQyQRJV3YRERXpa4OWL3a16u4\nOiEhQG6ua3u0jAwxyKFZaXBkEPvb9zu3SKtoqsBZy1lZay4KX+TcHi03LhfJ85KhUftnyPBcYyN+\ncvq0T9cQqFJhtV6PTJMJWaPBzTKdDmpuk0ZERERERBJQ0r1chjREElHShU1EdNXy84GyMvnrLF8O\n5OUBX34JnDol/fn1enGOzVinzdq14pZpNCsJgoCm3ibXFmktlTjQfgB2wS5bTWOQEdmx2c5um+zY\nbISGhMpWT0rfqqvDX8+f9/UyLmLUaJDh1m2TaTIhhh10RERERER0FZR0L5chDZFElHRhExFdtY8/\nBr75Te/U+frXxV83NQHFxWJg8+WXQEuL9PVCQ4GCAjG0KSwEVq0C1Grp65DfsA5Zsbttt8dsmwsD\nF2Srp4IKyZHJzrk2uXG5WDxnMVQ+6gxxCA6ct10cxAiCgKTdNTg/PHJV5w1Rq7FUq0WDzYaRiX7M\nCDQBKumuveigII/QJt1oRGhAgGTnJyIiIiKimUlJ93IZ0hBJREkXNhHRtNx5J/DOO/Kef9u2ib8m\nCMDJk67QprgYOHdO+jXMnQts2ODaHm35coDbKM1qDsGBY+ePeYQ2h7sOy1ozQhfhnGmTG5eL9Oh0\n6AJ1stYc02ntROQLkV6p5SHnAyAoTNYSy3U6j/k2qw0GBDOUJSIiIiIiN0q6l8uQhkgiSrqwiYim\n5fx5cTZNW5v0546OBg4eFEOSyRAE4MgRV2BTXAx0d0u/rvnzXVujFRYC11zD0IbQ3d+NXS27UNVc\nhcqWSlS3VMM6bJWtXoA6AGvnr/WYbRNripWllq9CmnfvOYpjI8Go6etDdV8fzg0Py14zSKXCGoPB\no+NmiVbL+TZERERERLOYku7lMqQhkoiSLmwiommrqxO3B7sg4fZP4eFASYm41djVcjjEtY112pSU\nAH190q1xTFycK7ApLATi46WvQX5nxDGCunN1zrk2lc2VONNzRtaacaY4Z2CTE5uDNfPXIFATOO3z\n+iqk6Xi0A/P08wCIW6u1DA6ixmxGTV8fasxm1JrNsNjlmxU0JlSjQYZbaJNpNGIB59sQEREREc0a\nSrqXy5CGSCJKurCJiCRRVwdcf700HTXR0cCnn04voJnIyAiwb5+ry6asDLDK0OmwaJFnp838+dLX\nIL/UZm5DVXMVqlqqUNlciT1n92DIPiRbPW2AFhkxGc7ZNjlxOYjQRUz5PEoIaSZiFwQcsdmcoU1N\nXx8OWq0Tz7eRWGxwMLLcQps0oxFGzrchIiIiIpqRlHQvlyEN0RQVFRWhqKjoouetVitqa2udjxnS\nENGMcP488PDDwNtvX/057rwTePHFyW9xNh3Dw8Du3a7t0SoqgMFB6eusWOHqstmwAYiY+k1ympkG\nRgaw9+xej9k256wyzFVys3TuUrHbJlYMbZLmJUGtuvwMFqWGNBPpt9uxz2LxCG5ODgzItEIXFYAk\nnc5jm7RVej0COd+GiIiIiMjvMaQh8mNbtmzB1q1br/g6hjRENKN8/DHwi18ApaWTf09+PvDYY8DX\nvy7fuq5kYADYtcsV2lRXi0GO1FavdnXZ5OcDYfIORif/IQgCTvecRmVzpXO2zcFzB+EQHLLVDA0O\nRXZstnObtKyYLBiDjR6v8aeQZiLnh4ex2y20qTGb0emF+TYhajXWGgwe26Qt0mqh4nwbIiIiIiK/\nwpCGyI+xk4aIZrVDh4B33gFqaoA9ezxn1oSHA2lpQGYmcMcdgNs3O4phtYrdNWMzbWprxTk3UlKr\ngdRUV2iTlwcYDNLWIL9mHjSjprXGOdumqrkKvYO9stVTq9RYFbnKGdrkxuXCEGhA1K+iZKt5KVKF\nNOMJgoDGgQGP0GaP2Qyb1Nf3BMIDAjxCm0yTCZFBQbLXJSIiIiKiq8eQhmgGUtKFTUTkFYIAWCzi\ndmLBwWIQ4W+fJu/rE+fYjHXa7N8v/r6kFBAgBldjM21ycgCtVtoa5NccggOHOw97hDZHzx+VtWaE\nLgJdti5Za0xErpBmIiMOBxrGzbeps1ohf2wDJAQHe4Q2qQYDDJxvQ0RERESkGEq6l8uQhkgiSrqw\niYjoKnV3AyUlrk6b+nrpawQFiUHNWKdNVpb4HJGbLlsXdrXscs61qWmtQf9Iv6+XNW3eDGkmYrXb\nsc9sRo3ZjOrR8OaMF+bbqAGs1Os9gptknQ4BnG9DREREROQTSrqXy5CGSCJKurCJiEgi584BO3eK\noU1xMXDsmPQ1dDpg3TpXaJOWJnbfELkZtg/jwLkDztCmqqUKTb1Nvl7WlPk6pJlIx9AQdrttk1bT\n14fukRHZ62rVaqQZjR5bpSWGhHC+DRERERGRFyjpXi5DGiKJKOnCJiIimbS2urpsvvwSaGyUvobR\nCOTnu7ZHS0kR59wQjdPS14Kq5irnNml7z+7FiEP+cGE6lBjSjCcIAk4NDHiENnstFgx4Yb5NRGCg\nR2iTYTQigp12RERERESSU9K9XIY0RBJR0oVNRERecvq0K7QpLgba2qSvER4OFBS4Om2Sk/1v9g95\nRf9wP2rbap2hTWVzpU/mzlyOP4Q0Exl2OHDIanWGNjVmM+qtVnjjB6lrQkI8tklbazBAp9F4oTIR\nERER0cylpHu5DGmIJKKkC5uIiHxAEIDjx12BTXEx0NkpfZ3ISGDDBlenzZIlDG1oQoIg4OSFk84t\n0iqbK3Go4xAEr0QLE/PXkGYi5pER7LVYPDpumgYHZa+rAbDKYPDouEnS66Hh3wNERERERJOmpHu5\nDGmIJKKkC5uIiBRAEID6elenTUkJcOGC9HWio11dNhs3AomJ0tegGaN3oBfVrdXYcXIHXqh6wev1\nZ1JIM5H2wUFxvo1bx02PF+bb6Mfm24yGNlkmE+KCgznfhoiIiIjoEpR0L3fGhDQDAwP4/PPPcezY\nMWg0GiQnJ6OwsBCaSWwF0NbWhp/+9KdQqVT4/e9/74XV0kykpAubiIgUyG4HDhxwddmUlgJms/R1\nEhNdgU1hIRATI30N8nud1k5EvhDp9boLwxZi48KNyE/IR0FCARLCEry+Bm9yCAJO9Pd7dNvss1gw\n5IUfwaICAz22ScswGhEeGCh7XSIiIiIif6Cke7kzIqR577338OCDD6Kry3PP7ZiYGDz33HO48847\nL/v++vp6rFq1CiqVCna7Xc6l0gympAubiIj8wMgIsGePa3u08nKgv1/6OkuXukKbDRvE7dJo1vNV\nSDNefGg8ChIKUJBQgPyEfCyes3jGd38MORw4aLF4dNscsdm8sgndEq3WY5u0NQYDQjjfhoiIiIhm\nISXdy/X7kGbbtm246667IAgCJvqtqFQq3HHHHXj99deh1WonPAdDGpKCki5sIiLyQ4ODQE2NK7Sp\nqgKGhqSvk5zs6rIpKADmzJG+BimeUkKa8RYYFji7bAoSC7AiYsWMD20AoHdkBHvcQpuavj60ynH9\njxOgUiFFr/fouFmu00E9C/7MiYiIiGh2U9K9XL8OaTo6OrB06VL09fUBAG6++WZ85StfwdDQEIqL\ni/HJJ5/AbrdDpVIhOzsbn3zyCUwm00XnYUhDUlDShU1ERDNAfz9QWemaabN7t9h9IyWVClizxtVp\ns349MMH3SjTzKDWkGS9CF+EMbfIT8rE6ajXUKrWvl+UVrYOD2O0W2uw2m9HnhZ9VjBoN0o1Gj46b\n2JAQ2esSEREREXmTku7l+nVI8+yzz+KJJ56AWq3Gtm3bcPvtt3t8vba2Fps2bUJDQwNUKhVSU1Px\n2WefITw83ON1DGlICkq6sImIaAayWMQt0cY6bfbuBRwOaWtoNEB6uhjaFBYC69YBer20NUgR/CWk\nGS8sJAx58XnOLdLWLliLAHWAr5flFQ5BwDGbDTVmM6pHw5sDFguGvfDjXHRQkEe3TbrRiNCA2fHn\nTkREREQzk5Lu5fp1SFNYWIjS0lL8/d//Pd56660JX2O1WnHnnXfiww8/hEqlQkpKCj7//HPMcdva\ngyENTUVRURGKioouet5qtaK2ttb5mCENERHJqqcHKC11ddocPCh9jcBAICvLtT1adjbAT9TPCP4a\n0oxnCDJgXdw6Z7dNRkwGgjRBvl6W1wzY7ThgtXpsk3ZMjtlWE1iu03l026w2GBCsnh1dTkRERETk\n/xjSSCQqKgpdXV3Yvn07vvnNb17ydYIg4J577sGbb74JlUqF1atX4/PPP8fcuXMBMKShqdmyZQu2\nbt16xdcxpCEiIq/q6gJ27nSFNkeOSF8jJATIzXWFNhkZYpBDfsdXIc0/rPkH1LTV4FDHIVnOHxIQ\ngpzYHOf2aNmx2dAGTjyXcqa6MDyMWrPZGdpU9/Xh3PCw7HWDVCqsMRg8Om6WaLWcb0NEREREisSQ\nRiLBwcEYGRnB3r17kZKScsXX33///Xj11VehUqmwcuVKfPHFF4iIiGBIQ1PCThoiIvILZ8+Koc3Y\n9mgnT0pfQ68X59iMzbRZu1bcMo0Uz1chTcejHZinn4cuWxfKm8pRcqYEpU2l2N++Hw5B4u37AARp\ngpAZk4n8+HwUJBYgNy4XhiCD5HWUTBAEtAwOOkObGrMZtWYzLF74uSdUo0GGW2iTaTRiQXCw7HWJ\niIiIiK6EIY1ETCYTrFYrSkpKkJeXN6n3PPjgg3j55ZedQc2XX36J9vZ2hjQ0bUq6sImIiC7S1OTq\nsikuBpqbpa8RGgrk57s6bVatArj9kSL5OqQZr3egF+VN5ShtLEVJYwlq22phF6T/vlyj0iAtOs3Z\naZMXn4ewkDDJ6yidXRBwxGbz2CbtoNWKES/8aBgbHOwR2qQZjTBxvg0REREReZmS7uX6dUiTlJSE\no0eP4rXXXsPdd9896fc99NBD+N3vfgeVSoXk5GS8+OKL2LhxI0MamhYlXdhERESXJQjAqVOuwObL\nL4Fz56SvM3cusGGDK7RZvhzg1keKoLSQZjzLkAVVzVUoaSxBaWMpqlurMWQfknw9KqiwZv4a50yb\n9QnrEaGLkLyOP+i327HPYvEIbk4ODMheVwVghU7nsU3aKr0eQQx4iYiIiEhGSrqX69chzd/93d/h\n3XffxR133IFt27ZN6b0PP/wwXnrpJahUKsybNw8dHR0MaWhalHRhExERTYkgiDNsxgKbnTuB8+el\nrzN/vhjWjG2Pds01DG18ROkhzXj9w/2oaa1BSWMJShpLUNVchf6RfhlWCCTPS3Z22uQn5GOBcYEs\ndfzB+eFh7HYLbWrMZnR6Yb5NsEqFVKPRo+NmkVYLFf++ICIiIiKJKOlerl+HNC+//DIefPBBGAwG\ntLe3Q6fTTen9mzdvxn/8x39ApVJBEASGNDQtSrqwiYiIpsXhAOrqxNCmuBgoKQF6e6WvExfn6rIp\nLATi46WvQRPyt5BmvCH7EGrbap0zbcqbymEZskiwwostmbMEBQkFKEgUg5v40Nn7/1NBENA4MOAR\n2uwxm2FzSD9PaLzwgACP0CbDZEJUUJDsdYmIiIhoZlLSvVy/DmlOnTqFxYsXQ6VS4be//S0efPDB\nKZ/jRz/6EX77298CAEMamhYlXdhERESSstuBfftc26OVlQFWq/R1Fi1yddkUFoqdNyQLfw9pxhtx\njGB/+36UnBE7bcqaytAz0CN5HQBIDEt0dtoUJBTgmvBrZnWHx4jDgYZx823qrFbIH9sACcHBHtuk\npRoMMHC+DRERERFNgpLu5fp1SAMAmzZtQmtrK2JiYlBUVHRV53jsscfw7rvvAgBOnz4t4epoNlHS\nhU1ERCSr4WFg927X9miVlYAcsyuWL3cFNhs2ABGzc1aIHGZaSDOeQ3Cg7lwdShtLnXNtOm2dstSK\nMcY4A5v8hHwsj1g+q0MbALDa7dhnNnt03Jz2wnwbNYBkvd6j42alXo8AzrchIiIionGUdC/X70Ma\nIqVQ0oVNRETkVQMDwK5dru3Rdu0SgxyprV7tCm3y84GwMOlrzBIzPaQZTxAEHOk64gxsShpL0GZu\nk6XWPN08Z2hTkFiAlZEroVYxJOgcGvIIbWr6+tA9MiJ7Xa1ajVSDwRnaZJlMSAwJmfVBGhEREdFs\np6R7uQxpiCSipAubiIjIp6xWsbtmbHu02lpxyzQpqdVAaqpre7S8PMBgkLbGDOYQHDhvO+/1unN1\ncxURWAiCgJMXTjoDm5IzJWjsbZSlVnhIONYnrHd22qyZvwYBam7JJQgCTg0MeIQ2ey0WDHhhvk1E\nYKDnfBujERGcb0NEREQ0qyjpXu6sCWm++OILXHfddQDE2TMjXvjUFs0uSrqwiYiIFKWvT5xjM7Y9\n2v79gNTfggYEABkZrk6b3FxAq5W2Bs1ojT2NKG0sdQY3x7uPy1LHGGTEuvh1ztAmPTodQRoGBAAw\n7HDgkNXq0XFTb7XCGz+wXhMS4jHfZq3BAJ1G44XKREREROQLSrqXO6tCmmuvvRaAGNLYpf40J816\nSrqwiYiIFK27GygpcYU29fXS1wgKAnJyXKFNVpb4HNEknTWf9ZhpU98pw/9PAWgDtMiNy3VukZYV\nm4WQgBBZavkj88gI9losHh03TYODstfVAFhlMHh03CTp9dBwmzQiIiKiGUFJ93IZ0hBJREkXNhER\nkV/p6AB27nRtj3bsmPQ1tFpxS7Sx7dHS0sTuG6JJ6rR2oqypzBncHGg/AEGGHo8gTRCyYrKcnTa5\ncbnQB+klr+PP2gcHsdts9ui46fHCTgl6tRppbqFNpsmE+OBgzrchIiIi8kNKupfLkIZIIkq6sImI\niPxaa6sY1ox12pw5I30NoxHIzxdDm8JCICUF4NZGNAU9Az0obypHyZkSlDaVYk/bHtgF6X/GCFAH\nID06Hfnx+ShILMC6uHUIDQmVvI4/cwgCTvT3e3Tb7LNYMOSFH3UjAwM9QpsMoxFzAgNlr0tERERE\n06Oke7kMaYgkoqQLm4iIaEY5fdoztGlrk75GeDhQUODaHi05GeCn42kKzINmVLVUoeRMCUoaS1DT\nWoNhx7DkddQqNdbMX+PstFkfvx5zdXMlr+PvhhwOHLRYPLptjthsXplvFTAr1gAAIABJREFUs1ir\nRZZbx80agwEhDIGJiIiIFEVJ93IZ0hBJREkXNhER0YwlCMDx467AprgY6OyUvs68ea4um40bgSVL\nGNrQlPQP92NXyy7n9mhVLVUYGBmQpdbKyJUoSChwBjdRhihZ6vi73pER7HELbWr6+tA6NCR73QCV\nCil6vUfHzTKdTvHzbbqHh3F7Q4PHc/+dlMROISIiIpoRlHQvlyEN0RQVFRWhqKjoouetVitqa2ud\njxnSEBEReYEgAA0NrsBm507gwgXp60RHuwKbwkJg4ULpa9CMNjgyiNq2WpQ0ip02FU0VsA5bZam1\nbO4y5Cfki8FNYgFiTbGy1JkJWgcHsdsttNltNqPPCz8rGjUapBuNztAm02hEjMLm27zc2ooHjh/3\nfG7JEtwfE+OjFRERERFJhyGNDzCkIals2bIFW7duveLrGNIQERH5gN0OHDzoCm1KSwGzWfo6iYme\noQ1vWtIUjThGsPfsXmenTVljGXoHe2WptTBsIQoSXZ02C8MWKioMUBKHIOCYzeYMbarNZhywWDDs\nhR+bFwQFeYQ26UYjwnzYtZK5Zw92j/v7M9NoRHVamo9WRERERCQdhjQ+wJCGpMJOGiIiIj8yMgLs\n2ePaHq28HOjvl77O0qWu7dEKC4HISOlr0Ixmd9hR11GHkjMlKG0qRWljKbpsXbLUijXFujptEgqw\ndO5ShjaXMWC344DV6rFN2jE5/h6ZwDKt1mObtBSDAcFqtex1661WrNy9e+KvZWQgSa+XfQ1ERERE\ncmJI4wMMaUhuSrqwiYiI6BIGB4GaGjG0KS4GKisBOWZSJCe7umwKCoA5c6SvQTOaQ3DgcOdhZ6dN\nSWMJ2i3tstSK0kchPyHfGdwkRyZDrZI/CPBnF4aHUWs2uzpu+vpwbnhY9rqBKhXWGAzINBqRZTIh\n02TCEq0WaolDtn89eRK/bG6e+GtxcXh+0SJJ6xERERF5m5Lu5TKkIZKIki5sIiIimqT+fqCqyrU9\nWk2N2H0jJZUKWLPGtT3a+vWAySRtDZrxBEHAie4TKGkscQY3Tb1NstSao52D9fHrndujrZm/Bhq1\nRpZaM4UgCGgZHHSGNjVmM2rNZli88HNnqEaDDLdum0yjEQuCg6/6fCMOB+J27UL7JQLsBUFBaMrO\nRoAXOnqIiIiI5KKke7kMaYgkoqQLm4iIiK6SxSJuiTa2PdrevYDDIW0NjQZIS3N12qxbB/jD1kGC\nIM73GRoCgoIAo1EMoMhnzvScEQOb0S3STnSfkKWOKdiEvPg85MfnoyCxAGkL0hCo8d2sFH9hFwQc\nsdk8tkk7aLVixAs/gscGB3uENmlGI0wBAQDEQKnrMl0/xT09uL2h4bLnfzcpCRvCwi759YjAQG6h\nR0RERIqmpHu5DGmIJKKkC5uIiIgk0tMDlJa6tkc7cED6GoGBQFaWK7TJzgZCQqSvczXq6oB33hE7\njPbuBS5ccH0tPBxITQUyM/9/9u48Kq7rTBf+UwNQQA2UEBrQgBBoQLZkSUgIgQxC1gBO2rGDV/tG\nt9M3fXvdL7k36Y5z406cpDux0nE7iZ3EcXe6O6vXyvVabcdf8llO4mVfSkZCKiQ0IDTPYhKgCSEo\nqqgCihrO98eBUyBrKIl9qFPw/NbSHwFqvzsr2oq9H+33BbZvB0b9cxDFxjXPNdS21SovbS7cvqBK\nnZSEFBTNK1Je2hTMKYDJqJHfsxo3EArhpNc75sVN0wTMt9EByEtJQYHVitmJiXitXZ1XWCNOrlmD\nJ8xmVWsQERERjYeW7nIZ0hAJoqWDTURERCq5fRtwOiPt0S6ocAluMgFFRZH2aGvXykHORPr4Y+An\nPwH274/+M08+Cbz8MvD00+rtix7KLd8t7G/br7RIO915GhLE/+tfkiEJhXMLlZk2hXMLkZoYB6/D\nNKI7EMDRUa9t6vv60DUB823U9P2sLOzIzo71NoiIiIjuSUt3uTENaWprayesVkNDA1566SUADGlI\nHVo62ERERDRBbtwA9u2LtEdrbhZfIzVVDkDKyuRfq1fLLdPU0N0N/M3fyK9nHtX27cBbbwHp6eL2\nRUK4Blw40H4AzjYnnG1OHL9xHGFJcDs/AEa9EWsz1yovbYrnF8OaxDlM0ZIkCW2Dg2NCm2N9fegX\n3XpRRY+npuLM2rWx3gYRERHRPWnpLjemIY1er5/wPrWSJDGkIVVo6WATERFRjLS3R1qj1dQAHR3i\na9hsQElJpD3a8uWAiAHep08DFRXA9evjXyszE3A45L2RZnn8HhzsOKjMtDl67SgCYfEvOPQ6PVbP\nXq3MtNkwfwOmJU8TXmcyC4bDOH/HfJszPh+0GtsYAFwvKsKMxMRYb4WIiIjorrR0l6uJkGaitjBS\niyENqUFLB5uIiIg0QJKAlpZIYLN3L3Dzpvg66enAxo2R9mhLlwIP+xehTp+W1xg9c2a87Ha5NRyD\nmrjRH+jH4auHldDmUMch+EN+4XV00GH5zOVKaFOSVYIZqTOE15nsfKEQTvT1jXlx0zo4GOttIdtk\nwm/z8lBos8V6K0RERET3pKW7XE2ENBOJIQ2pRUsHm4iIiDRIkoBLlyKBzd69cnsx0WbNirRGKysD\ncnLuH9p0dwMrVoh5QXOnzEw5AGLrs7jkD/pRf60etW21cLY5cbDjIHwBnyq1lk5fqrRHK80qxRzr\nHFXqTHZdQ0M4Oiq0qfd40B0MTlj9IqsV/7JoEVaazRP+7/pERERED0NLd7kxDWkWLFgQs39wa21t\njUldmry0dLCJiIgoDoTDwNmzkdDG6QTcbvF15s2LvLIpKwPmzx/7/e3bxzeD5kG2bwfefVe99WnC\nBEIBHL9xHM42J2rbarG/fT88fo8qtXLsOUpgU7qgFFm2LF76PwJJktAyODgmtDnu9WJQ5fk2MxIS\nUGSzochqRbHNhnyLBUki2jISERERCaKlu9yYhjREk4mWDjYRERHFoVAIOHEi0h5t/37Ap8KrhYUL\nI4FNKAT85V+Kr3Gnjz4CPvMZ9evQhAqFQzjVeUp5aVPbVouegR5Vas2zzpNbow23SFs0bRFDm0cU\nCIdx1udTQpsDbjcuDwyoWjNRp8MaiwXFNhuKh8ObDM6rISIiohjS0l0uQxoiQbR0sImIiGgSCASA\no0cjrdHq6gANzJt4JCUl8kshmtTCUhjnu84rM22cV5zo9HWqUmuWeZby0qYkqwTLMpZBr+NLjUe1\no7UVr7S1TWjNRcnJSmBTbLNhaUoK9AzeiIiIaIJo6S6XIQ2RIFo62ERERDQJDQ4CR45E2qMdPiwH\nOfHizBlg1D8r0eQnSRIaexrhvOKEs03+ddVzVZVa6cnpKMkqUYKbFTNXwKA3qFJrMvrcmTP4UI0Z\nWQ/BbjSiyGpF0fBrm7UWC1IM/N+QiIiI1KGlu1yGNESCaOlgExER0RTQ3y+/rhlpj9bQILcv06rv\nfhd49dVY74JiSJIkXOm9orRGc7Y50eJqUaWWLcmGDfM3KC9tVs9ejQRDgiq14p0kSZh58CC6NBb6\nGnU6rDKb5RZpw+FNZlJSrLdFREREk4SW7nIZ0hAJoqWDTURERFOQxyPPsRlpj3biBKClf9TfvBmo\nro71LkhjrnquyoHNcIu0i7cvqlInNSEVxfOLlZk2azPXIsnIC38AaB4YQO6RI+Na47/OmIGzPh9O\n+3xQ80+dBSYTiofboxXZbHg8NRUGtkgjIiKiR6Clu1yGNESCaOlgExEREaGnB6itjbRHO3s2tvux\n24HuboAXqnQfnd5O7G/fr7RIO3PrjCp1TEYTCucWKi9tCucWIiUhRZVaWvfOzZv44sXxhWPv5OXh\nv86cCU8wiMMeDw663ajzeHDY44FXxRd+VoMBhSMt0qxWrLNaYTEaVatHREREk4eW7nIZ0hAJoqWD\nTURERPQpt24B+/bJgU11NdDcPPF78HgAi2Xi61Lc6hnowf62/Up7tBM3TyAshYXXSdAnYO2ctSjN\nKkVpVimK5hXBkjQ1fq9+9fJl/Ov16/f8/kKTCRKA1sHBe6+RmYl/Wbz4U18PhsM46/OhzuNBnduN\ng2432vx+Edu+Kz2AFWaz8tqm2GbDvKQk6BgOExER0R20dJfLkIZIEC0dbCIiIqL7un0byMiY+Lqd\nncCMGRNflyYN96AbBzsOwtkmv7RpuN6AYDgovI5BZ8Dq2auVlzYb5m+APdkuvI4WrG5owAmv967f\n+8uZM/HPixYBAL7W2Ij/7Oy8+xpmM46tWRNVvauDgzg4Etp4PDjR1wc1p2nNSUxUApsiqxVPmM1I\n0OtVrEhERETxQEt3uQxpiB7S22+/jbfffvtTX/f5fGhoaFD+M0MaIiIi0iyPB7DZJr6u3Q5s3Ahs\n2iT/ystj+zMaF9+QD4euHlJe2hy5egT+kPiXGjrosGLmCvmlzYJSPDn/SWSkxiDoFEySJOTV1+PS\nwMCYr9sMBvz74sX4LzNnjvn6e52d+Mrly/Dc0cJsSXIyLhQUPNKLFV8ohHqPRwluDnk86A2KD95G\npOj1WGe1omj4tc16qxVpCQmq1SMiIiJtYkhDFMdeeeUV7Nix44E/x5CGiIiINEuSgPR0wOWK7T5m\nzgTKyuRfmzYBOTkMbWhcBoODqL9WD+cVJ2rba3Gw4yD6A/2q1FqWsQwl80tQukB+bZNpyVSljtp8\noRC+19KCt65dgwRgg82Gd/LykGUy3fXnrwwM4C8uXECdxwMdgK/PnYsfZWcj1WAQsp+wJOFCfz/q\n3G7lV/N9Wq2Nlw7AY6mpSmhTbLNhocnEFmlERESTHEMaojjGlzREREQ0KWzeDOzZE+tdjDV3rhzW\njIQ28+fHekcU54ZCQzh2/Zjy0uZA+wH0DfWpUit3Wq7SHq00qxRZaVmq1FHLgd5eHPJ48I25c2F8\nQDuwYDiMn1+9iiKrFRvS0lTfW+fQEA4OBzYHPR409PUhoOJVxsyEBBSNapG22mJBElukERERTSoM\naYgmIS0dbCIiIqIH+u53gddei/Uu7m/hwkhoU1YGzJ4d6x1RnAuGgzh18xScbU7UttWitq0WrkF1\nXpRl2bKUwKZ0QSly7Dl8nSHIYCiEhr4+pUVanduNbhVbpCXpdFhrtaLYakXRcHAzPTFRtXpERESk\nPi3d5TKkIRJESwebiIiI6IHOnAFWrIj1Lh7O0qWR0GbjRmD69FjviOJcWArj7K2zykub2rZa3PLd\nUqXWbPNsuTXacIu0vOl5ExrahKUwuvu7J6zeiPSUdOh16r5CkSQJlwcGlNc2dR4PLvar0+ZuxJLk\nZOW1TbHViiUpKQzhiIiI4oiW7nIZ0hAJoqWDTURERBSVkhJg/3716+h08hwc0VasiIQ2JSXABLRd\noslNkiRc6r6khDbOK05c67umSq3pKdOVlzYlWSVYMXOFqmFGl68LM96Yodr693LrpVvISM2Y8Lrd\ngQAODQc2B91u1Pf1YTAcVq3eNKNRDm2GZ9ussViQLGhODxEREYmnpbtchjREgmjpYBMRERFF5eOP\ngc9+Vv06O3cCNhtQUwPs3QvU1wOhkNgaej2Qnx+ZZ7NhA5CaKrYGTTmSJKG1txXOK07UttfCecWJ\n1t5WVWqlmdKwYf4GuT1aVilWzV4Fo94obP2pFtLcaSgcxgmvV55rMxze3BwaUq1egk6H1WazPNdm\nOLyZlZSkWj0iIiJ6OFq6y2VIQySIlg42ERERUdS2bwfee0/d9d99d+zX+vqAAwfk0KamBjhxQvxL\nG6MRWLcuEtqsXw+YTGJr0JTU4e4Y0x7tUvclVeqYE80onlesvLRZO2ctEg2PPgdlqoc0d5IkCa2D\ng0pgU+d246zPBzUvSBaaTGNe2zyWmgo9W6QRERHFhJbuchnSEAmipYNNREREFLXubrlt2PXr4tfO\nzAROnwbS0+//cy4X4HTKr2xqaoCzZ8XvJSkJKCqKhDZr1wIc/E0C3PTeRG1brRLcnL2lwu9fAMnG\nZBTOLZRf2iwoxbo565CckBz15xnSPJg7GMTh4cDmoNuNwx4PfCq2SLMZDCgcDmyKbTYUWCwwG8W9\nniIiIqJ709JdLkMaIkG0dLCJiIiIHsqZM0BpqRyWiGK3y8HL8uUP/9lbt4B9+yKhzeXL4vY1IiUF\nePLJSGizapX8+oZonG7338aB9gNKi7STN08iLIm/6E80JKJgTgFK5pegdEEpiuYVwZxovufPM6R5\neMFwGKd9Pjm0GQ5vOvx+1eoZADwx0iJtOLyZxxeAREREqtDSXS5DGiJBtHSwiYiIiB7amTNAebmY\nFzWZmYDD8WgBzd1cuyYHNiOhzZUrYtYdzWqVg6qR0Gb5cnnODdE4uQfdONB+QHlp03C9ASFJ8Ewm\nAAadAfmZ+cpMm+L5xUgzpSnfZ0gjRsfgoBLY1LndOOX1Qvz/mhHzkpLGhDYrUlNh5J9NRERE46al\nu1yGNESCaOlgExERET2S7m7gb/8W+O1vH32N7duBt956cIuz8WhtHRvaqNGqLT0d2LhRDmzKyoCl\nSwHOjiABvENeHOo4pMy0OXLtCIZC4gfY66DDylkrUZJVgtKsUuRl5CHvV3nC6zzIZAtp7uQNBlHf\n16eENoc8HnhC6sU2qXo91o1qkVZotcLGV4BEREQPTUt3uQxpiATR0sEmIiIiGpePPwZ++lOgtjb6\nz5SUAN/+NvD00+rt624kCWhslMOakeCmq0t8nVmzIq9sysqAhQsZ2pAQA4EB1F+rh7PNCWebE4c6\nDmEgOBDrbQkz2UOaO4UkCefvaJHWMjioWj0dgMdTU8e8tsk2maDjn09ERET3paW7XIY0RIJo6WAT\nERERCXH2LPDee0B9PXDs2NiZNXY7kJ8PFBQAX/gCMOqfg2IqHAbOnYu8snE6gd5e8XXmzx8b2syb\nJ74GTUlDoSE0XG9QZtocaD8A75A31tt6ZFMtpLmbG34/Do1qkXbc60VAxauYWYmJKLZaUTT82maV\n2YxEtkgjIiIaQ0t3uQxpiATR0sEmIiIiEk6SAK8X8PuBpCTAbI6PlyShEHDyZCS02b9f/u8hWm7u\n2NBm5kzxNWhKCoaDOHnzJJxX5Jc2+9v3o3dQheBRJQxpPm0gFELDSIs0jwcH3W70BIOq1TPp9Vhr\nscgt0qxWrLfZkJ6QoFo9IiKieKClu1yGNESCaOlgExEREdE9BAJAQ0MktKmrA9RoRbRsWSS0KS1V\nd0YPTSlhKYwznWdQ21arzLXp6lehxZ8gDGkeTJIkXOrvVwKbOrcblwbUbXm3NCUFxcPt0YpsNixO\nTmaLNCIimlK0dJfLkIZIEC0dbCIiIiKKkt8PHD4cCW0OH5aDHJF0OuCJJyKhTUkJYLWKrUFTliRJ\nuHj7ohLYONucuN53PdbbUjCkeTS3h4ZwcCS08Xhw1OOBX8Xrm+kJCSgaaZFmtWKNxQKTwaBaPSIi\noljT0l0uQxoiQbR0sImIiIjoEfX3y69rRkKbhga5ZZpIBoM8z2ekNVpxMZCaKrYGTVmSJKHZ1awE\nNs4rTrS522K2H4Y0YvjDYZzo60PdqNk2t0QHyqMk6HTIt1jGvLaZmZioWj0iIqKJpqW7XIY0RIJo\n6WATERERkSAejzzHpqZGDm5OnpTn84iUkACsWxcJbQoLAZNJbA2a0tp62/DR5Y/wtaqvTXhthjTq\nkCQJLYODqHO7ldc253w+qHnBk2MyyXNtbDYUWa1YlpoKPVukERFRnNLSXS5DGiJBtHSwiYiIiEgl\nPT2A0xkJbc6dE1/DZAKKiiKhzdq1cpBDNA5dvi7MeGPGhNfd99/2oSSrhPNOJkBvIIBDHg8ODr+2\nOeLxoD8cVq1emtGI9VYrioZf2xRYrUhlizQiIooTWrrLZUhDJIiWDjYRERERTZDOTmDfvkho09go\nvkZqKvDkk5HQZtUquWUa0UOIVUgDAJmWTJTnlKM8txxbcrYgzZQWk31MNYFwGKd9PqU9Wp3bjWtD\nQ6rVMwBYZbEooU2xzYY5SUmq1SMiIhoPLd3lMqQhEkRLB5uIiIiIYuTq1cg8m5oaoL1dfA2bDSgt\njYQ2jz8O6PXi69CkEsuQZjSDzoDCuYUoz5VDm9WzV0Ov4+/fidI+3CKtzu3GQY8Hp7xeqPfWBpif\nlDSmRdoKsxkGvqoiIiIN0NJdLkMaIkG0dLCJiIiISAMkCWhtjYQ2e/cCN26IrzN9OrBxYyS0WbIE\n4CUo3UErIc2dMlIysC13G8pzyrE1Zyvn10ywvmAQR0a1SDvk8aAvFFKtntlgQKHVimKrFUU2Gwqt\nVliNRtXqERER3YuW7nIZ0hAJoqWDTUREREQaJEnApUtjQ5vubvF1Zs+Ww5pNm+Rf2dnia1Dc0WpI\nM5oOOuRn5qM8pxwViypQMKcARj0v8CdSSJJwbnSLNI8HVwYHVaunB7A8NRVFw69tiq1WZJlMnGFE\nRESq09JdLkMaIkG0dLCJiIiIKA6Ew8DZs5HAxukE3G7xdbKyIq9sysqAuXPF1yDNi4eQ5k5ppjRs\nWbhFaY2WacmM9ZampOt+Pw4OBzYH3W4c93oRVPEqKTMxUQ5thmfbrDSbkcCWjkREJJiW7nIZ0hAJ\noqWDTURERERxKBQCTpyIhDb79wM+n/g6ixaNDW1mxNfFPT2aeAxp7rRi5gqU58iBTfH8YiQaEmO9\npSmpPxTC0b4+ObgZnm3jCgZVq5es16PAYpHn2thsWG+1YlpCgmr1iIhoatDSXS5DGiJBtHSwiYiI\niGgSCASAo0cjoU1dHeD3i6/z2GOR0Ka0FJg2TXwNirlYhTT/55n/g0NXD6GqqQodng5h65oTzdiU\nvQkVuRUozy3HgrQFwtamhxOWJFzs71de29S53WgcGFC15rKUlDGvbXKTk9kijYiIHoqW7nIZ0hAJ\noqWDTUREREST0OAgcPhwJLQ5fBgQ/bfXdTpg5cpIaPPkk4DVKrYGxUSsQppbL91CRmoGJEnChdsX\n4GhywNHkgLPNiaHQkLA6S9KXKG3RSrNKkZyQLGxtenhdQ0M4OBzYHHS7cbSvD0MqXj9lJCSgaDiw\nKbbZkG+xIIkt0oiI6D60dJfLkIboIb399tt4++23P/V1n8+HhoYG5T8zpCEiIiIiVfl88uuakdCm\noUGecyOSwQCsWRMJbYqLgZQUsTVoQsQ6pLmTb8gHZ5sTjiYHqpqq0NTTJKymyWjCxgUbldZoi9MX\n85VFjPnDYRwbaZE2HN50BQKq1UvU6bBmpEXacHiTkcj2eEREFMGQhiiOvfLKK9ixY8cDf44hDRER\nERFNKLcbqK2VA5uaGuDUKfE1EhKA9evlwGbTJmDdOiApSXwdEk5rIc2dmnqasKtpFxzNDtS01qA/\n0C9sD9lp2corm7IFZbAkWYStTY9GkiQ0DQwor23q3G6c7xf3v/ndLEpOHhPaLE1JgZ7hHRHRlMWQ\nhiiO8SUNEREREcWF27cBpzMS2ly4IL5GcrL8umYktFmzBjAaxdehcdN6SDOaP+jH/vb9Smu0c13n\nhO0nQZ+ADfM3oDy3HBW5FXh8xuN8ZaMRrkAAh0ZapHk8OOLxYED068BR7EYj1o9qkbbWYkGKwaBa\nPSIi0haGNESTkJYONhERERHRp9y8KQc2I6FNc7P4GmYzUFISCW2eeEJumUYxF08hzZ063B1yYNPs\nwO6W3fD4PYJ2B2RaMpW2aFtytiDNlCZsbRqfQDiMk16vEtrUud24PiRujtGdjDodVpnNcmhjtaLI\nZkMmXwoSEU1aWrrLZUhDJIiWDjYRERER0QO1t48NbTo6xNdISwM2boyENo89BvDVQkzEc0gzWiAU\nwOGrh5XQ5viN48LWNugMKJxbqLRGWz17NfQ6Dp/XCkmS0DY4OKZF2hmfD+q9tQEWmExKYFNss+Hx\n1FQY+GcYEdGkoKW7XIY0RIJo6WATERERET0USQJaWuSwZiS06ewUXycjQw5sRkKbRYsY2kyQyRLS\n3Omm9yY+af4EjiYHPmn+BN0D3cLWzkjJwNacrajIrcDWnK2q/vegR+MJBnFkJLTxeHDY44E3FFKt\nnsVgQOFIizSrFeusVljY4pGIKC5p6S6XIQ2RIFo62ERERERE4yJJwMWLclhTUwPs2wf09Iivk5kp\nhzWbNsnBzYIF4msQACAshdHdLy7AiFZ6SvqEvUYJhUM4duMYqhqr4Gh24MjVI5Ag5spDBx3yM/OV\n1mjr5q6DUc/Lea0JSRLOeL2o83hwcPi1TZvfr1o9PYAVZjOKh4ObIpsN85OSOOeIiCgOaOkulyEN\nkSBaOthEREREREKFw8Dp05FXNrW1gEfcXBBFdnbklU1ZmRziED2i7v5u7G7ZDUezA44mB256bwpb\nO82Uhi0Lt6A8txzbcrZhjnWOsLVJrGt+vxLY1Hk8ONHXB/Xe2gBzEhOVwKbYasUTZjMS9GybR0Sk\nNVq6y2VIQySIlg42EREREZGqgkHgxInIS5sDB4D+fvF1liyJhDYbN8rt0ogeQVgK43TnaXmWTZMD\ndR11CIaDwtZfPmM5KnIrUJ5bjuL5xUg0JApbm8TyhUI46vGgbrhN2iGPB71Bcb8X7pSi16PAalVe\n26y3WpGWkKBaPSIiio6W7nIZ0hAJoqWDTUREREQ0oYaGgPr6yEubQ4cANVoMLV8eCW1KSgC7XXwN\nmhI8fg/2tOyBo8mBqqYqdHg6hK1tTjRjU/YmpTVatj1b2NokXliScKG/H3Vut/zixuNB08CAavV0\nAJalpMhzbWw2FFmtyElOjnmLtJ5AAC+cPz/ma79btgzTGCgR0SSlpbtchjREgmjpYBMRERERxdTA\ngBzUjIQ29fXy6xuRdDpg9epIaLNhA2CxiK1BU4IkSbh4+6IS2DjbnBgKDQlbf0n6EpTnyoFNaVYp\nkhOSha1N6ugcGsJBtxsHh1/bHOvrw5CK12czExJQNBzYFNtsWG2xIGmCW6T967Vr+Gpj49ivLVqE\n/zmHrfyIaHLS0l0uQxoiQbR0sImIiIiINMXrlVuijYQ2x4/Lc24/b/lNAAAgAElEQVREMhiAgoJI\naFNUBCTzMpwenm/IB2ebU2mN1tjT+OAPRclkNKE0q1RpjbY4fXHMX1DQgw2GQjjm9cpzbYbDm9uB\ngGr1knQ6rLValdCmyGrF9ER1W+gVHDuGo319Y79mseBIfr6qdYmIYkVLd7kMaYgE0dLBJiIiIiLS\ntN5eoLY2EtqcPi2+RmIisH69HNiUlQHr1slfI3pIzT3NcmDT7EBNaw36A+LmLy1IW4DynHJULKpA\n2YIyWJL4GiweSJKExoEBJbCpc7txQY25XKMsTk4e0yJtaUqKsIDvnM+Hx48evfv31q7FstRUIXWI\niLRES3e5DGmIBNHSwSYiIiIiiitdXYDTGQltLl4UXyMlBSgujoQ2+fmA0Si+Dk1q/qAfB9oPoKqp\nCo4mB851nRO2doI+ARvmb1Baoy2fsZyvbOJIdyCAQ6NCm/q+PgyKfjE4yjSjEUU2G4qtVhTZbFhr\nsSDZYHiktb7V3IzXO+4+l+lb8+bhJzk549kqEZEmaekulyENkSBaOthERERERHHt+nVg3z45sNm7\nF2hpEV/DYgFKSiKhzRNPABM8A4LiX4e7A7uad8HR5EB1SzU8fo+wtTMtmSjPkQObzQs3w55sF7Y2\nqW8oHMbJUS3S6jwe3BwSN+voTgk6HVabzXJwMxzezEpKeuDnguEw5h0+fM+9zU5MRHthIYz885GI\nJhkt3eUypCESREsHm4iIiIhoUmlri7yyqakBrl0TX2PaNKC0NBLaLFsG8BUDPYRAKIDDVw8rrdGO\n3zgubG29To/CuYXKLJvVs1dDr+OleTyRJAlXBgeVwOag240zPh/UvJTLNplQZLXiidRUrB1ukWa4\n48+1vb29eOH8+fuu8/tly7AxLe2e35+ekMBXX0QUd7R0l8uQhkgQLR1sIiIiIqJJS5KApqZIaLN3\nL3Drlvg6M2cCGzdGQpvcXIY29FA6vZ3KK5tPmj9B90C3sLWnp0zHtpxtKM8tx7acbchIzRC2Nk0c\ndzCIw8OBTZ3bjcMeD3wqtkhTy8k1a/CE2RzrbRARPRQt3eUypCESREsHm4iIiIhoypAk4Pz5SGCz\nbx/gcomvM3duJLApKwOyssTXoEkrFA7h2I1jcDQ5UNVUhfpr9QhLYi7jddAhPzNfaY22bu46GPWc\ntxSPguEwzvh8ymubOrcbHX5/rLf1QN/PysKO7OxYb4OI6KFo6S6XIQ2RIFo62EREREREU1YoBJw+\nHQltamuBvj7xdRYuHBvazJ4tvgZNWt393djdshuOZgccTQ7c9N4UtrYtyYYtOVtQkVuBbTnbMMc6\nR9jaNPE6BgdxcDiwOeh246TXi1CsN3WHx1NTcWbt2lhvg4jooWjpLpchDZEgWjrYREREREQ0LBgE\njh2LhDYHDgADA+LrLF0aCW02bgSmTxdfgyYlSZJwqvOUPMumyYG6jjoEw0Fh6y+fsRzlueWoyK1A\n8fxiJBoSha1NE88bDKK+r09ukebx4JDbDXcotrGNAcD1oiLMSOTvLSKKH1q6y2VIQySIlg42ERER\nERHdg98P1NdHQptDh4ChIfF1VqyIhDYlJcB9hm4Tjebxe1DTWoOqxio4mh1od7cLWzs1IRVPLXxK\naY2WbWeLqngXliSc8/mU1zZ1bjdaBgcnrH62yYTf5uWh0GabsJpERCJo6S6XIQ2RIFo62ERERERE\nFKX+fjmoGQlt6uvllmki6fXA6tWR0GbDBiAehmxLktwqbmgISEwELBZAp4v1rqYUSZJw8fZF+ZVN\nswPOK074Q+JmlCxOX4yK3AqU55ajNKsUyQnJwtam2Lnp90dapHk8aPB4IO5tVoQewAabDRXTpmGz\n3Y5VFgsM/DOCiOKElu5yGdIQCaKlg01ERERERI+or09uiVZTI/86cUIOK0QyGoGCgkhos349kKyR\ny/EzZ4D33pPDquPHAZcr8j27XQ6bCgqA7duBUf/+QxPDN+SDs82ptEZr7GkUtrbJaEJpVqnSGm1x\n+mLoeOE+KQyEQmjo68O/Xr+O97u6EFTpKnCa0YhNdju22O3YbLdjoVb+XCMiugst3eUypCESREsH\nm4iIiIiIBHG5AKdTfmWzd68cYoiWlCQHNSOhTUGB/HJlIn38MfCTnwD790f/mSefBF5+GXj6afX2\nRffV3NOsvLKpaa1Bf6Bf2NoL0hYobdE2ZW+CJckibG2KnSsDA9h+4QIOeTyq11poMmHzcGizyW7H\ntIQE1WsSEUVLS3e5DGmIBNHSwSYiIiIiIpXcuiWHNiMvbS5fFl8jJUVuibZpk/xr1Sr59Y0auruB\nv/kb+fXMo9q+HXjrLSA9Xdy+6KH5g34caD8AR5MDVU1VONd1TtjaCfoEbJi/AeW5cmizfMZyvrKJ\nYz9ua8N3WlsntKYOQL7FooQ2RVYrTAbDhO6BiGg0Ld3lMqQhEkRLB5uIiIiIiCbItWuRVzY1NcCV\nK+JrWK1Aaan8ymbTJmD5cnnOzXidPg1UVADXr49/rcxMwOGQ90aa0OHuwK7mXXA0OVDdUg2PX9zL\niUxLJrblbENFbgU2L9wMe7Jd2Nqkvs+dOYMPu7tjuodkvR5P2mxKaLPCbIaewR8RTSAt3eUypCES\nREsHm4iIiIiIYqS1dWxoIyIAuVN6OrBxYyS0WboUeNjLzdOn5TVGz5wZL7tdfmXEoEZzAqEAjlw7\ngqrGKjiaHTh+47iwtfU6PQrnFqI8pxwViyqwevZq6HUCQkRShSRJmHnwILoCgUf6fJJOhxS9Hq5Q\nSOi+MhIS8NTwLJstdjvmm0xC1yciupOW7nIZ0hAJoqWDTUREREREGiBJQGOjHNaMBDddXeLrzJol\nBzYjoc3ChfcPbbq7gRUr1AmQMjPlAIitzzSt09uJT5o/QVVTFT5p/gTdA+JeVUxPmY5tOdtQnluO\nrTlbMSN1hrC1afyaBwaQe+TIuNZoLCiAOxTCbpcL1T09OOB2wy/4enFxcrIS2GxMS0Ma59kQkWBa\nustlSEMkiJYONhERERERaVA4DJw7Fwls9u0DenvF15k3Tw5rRkKbefPGfn/79vHNoHmQ7duBd99V\nb30SKhQO4diNY3A0OeBocuDItSMIS2Fh6+fPzkdFbgXKc8uxbu46GPUqzVeiqLxz8ya+ePHi+NbI\ny8N/nTlT+c8DoRAOuN2odrmw2+XCCa93vNscQw+gwGpVQptCqxWJIlo+EtGUpqW7XIY0RIJo6WAT\nEREREVEcCIWAU6ciL21qawHBl5sAgJycSGgTCgFf/KL4Gnf66CPgM59Rvw4J193fjd0tu+FolkOb\nm96bwta2JdmwJWcLynPKUZ5bjjnWOcLWpuh89fJl/Ot9XtEtNJkgAWgdHLz3GpmZ+JfFi+/5/a6h\nIdT09qK6pwfVLhfa/f7xbPlTUvV6lKalKaHNY6mp0HGeDRE9JC3d5TKkIRJESwebiIiIiIjiUCAA\nNDRE5tnU1QH3uSjVtJISeT4NxTVJknC68zQcTQ5UNVWhrqMOwXBQ2PrLZyxHea4c2BTPK0aSMUnY\n2nR3qxsa7vnS5S9nzsQ/L1oEAPhaYyP+s7Pz7muYzTi2Zk1U9SRJQtPAgNwazeVCjcsFt+B5NrMS\nE7F5eJ7NZrsdc5L4+4iIHkxLd7kMaYgE0dLBJiIiIiKiScDvBw4fjoQ2hw/LQU68OHMGGPXvSBT/\nPH4PalprlNCm3d0ubO3UhFQ8tfAp5ZVNtj1b2NokkyQJefX1uDQwMObrNoMB/754Mf7LqBZmAPBe\nZye+cvkyPHeEKkuSk3GhoOCRXq8Ew2Ec83qVeTYHPR4EBF9N5qWkYMtwYLMxLQ0WI1vsEdGnaeku\nlyENkSBaOthERERERDQJ9ffLr2tGQpuGBrl9mVZ997vAq6/GehekEkmScPH2RXmWTbMDzitO+EPi\n2lotTl+M8pxyVCyqQGlWKZITkoWtPZX5QiF8r6UFb127BgnABpsN7+TlIctkuuvPXxkYwF9cuIA6\njwc6AF+fOxc/ys5GqsEgbD+1vb3KS5szPp+QdUcYdTqss1iwZdo0bLbbUWCxIIHzbIgI2rrLZUhD\nJIiWDjYREREREU0BHg+wf38ktDl5EtDSv+Jv3gxUV8d6FzRB+gP9cF5xoqqpCo4mBxp7GoWtbTKa\nUJpVivLcclTkVmBx+mLOIBmnA729OOTx4Btz58L4gNAiGA7j51evoshqxYa0NFX3ddPvx56R0Kan\nB9eGhoSubzEYsDEtTXlpszQlhb+XiKYoLd3lMqQhEkRLB5uIiIiIiKagnh55DsxIaHPuXGz3Y7cD\n3d0AL0CnpOaeZuxq3oWqpirUtNagP9AvbO0FaQuUtmibsjfBkmQRtjZphyRJuNTfj2qXC7tdLuzt\n7UWf4NeDc4bn2Yy8tJmZmCh0fSLSLi3d5TKkIRJESwebiIiIiIgInZ3Avn1yYLN7N9DSMvF78HgA\nCy/Qpzp/0I8D7QeU1mhnb50VtnaCPgHF84tRkVuB8txyLJ+xnC8jJqlAOIyjfX1KaHPY40FQ8LXm\n8tRU5ZVNSVqasLZuRKQ9WrrLZUhDJIiWDjYREREREdEYt28DGRkTX7erC5g+feLrkqZ1uDuwq3kX\nHE0OVLdUw+P3CFt7tnk2ynPlVzZbFm6BPdkubG3Slr5gEM7eXiW0Od8v7rUWACTodCiyWpVXNmss\nFhgYABJNGlq6y2VIQySIlg42ERERERHRGB4PYLPFpi5f0tB9BEIBHLl2BI4mB6qaqnD8xnFha+t1\nehTOLVRao+Vn5kOv49D4yeqa3489LpcS2twUPM8mzWhE2ah5NrnJyXy1RRTHtHSXy5CG6CG9/fbb\nePvttz/1dZ/Ph4aGBuU/M6QhIiIiIiLNkCQgPR1wuSauJmfS0CPo9Hbik+ZP4Gh2YFfTLnQPdAtb\ne3rKdGzL2Yby3HJszdmKGakzhK1N2iJJEs75fEpg4+zthS8cFlojKylJmWezKS0NGZxnQxRXGNIQ\nxbFXXnkFO3bseODPMaQhIiIiIiJN2bwZ2LNnYutVV09cPZp0QuEQjt04Js+yaXLgyLUjCEviLtrz\nZ+crrdEK5xbCqDcKW5u0ZSgcxmGPRwlt6j0eiI1sgFVmsxza2O3YYLMhmfNsiDSNIQ1RHONLGiIi\nIiIiikvf/S7w2msTV+/b3wZ+/OOJq0eTXs9AD3a37EZVUxUcTQ7c9N4UtrYtyYYtOVtQnlOObbnb\nMNc6V9japD29gQD2jZpnc3lgQOj6STodNthsykubVWYz9HxVSKQpDGmIJiEtHWwiIiIiIqJPOXMG\nWLFi4uplZQG/+hXw9NNseUbCSZKE052nlVk2dR11CIaDwtZfPmO58sqmeF4xkoxJwtYm7WkfHMTu\n4Xk2e1wudAUCQtefZjTiqeFZNlvsdmQnJwtdn4genpbuchnSEAmipYNNRERERER0VyUlwP79E1tz\n2zbgF78A8vImti5NKR6/BzWtNUpo0+5uF7Z2akIqNmVvQkVuBcpzy5Ftzxa2NmlPWJJw2utVQpta\ntxuDgufZLDSZsGU4tNlkt2NaQoLQ9YnowbR0l8uQhkgQLR1sIiIiIiKiu/r4Y+Czn534ugYD8L/+\nF/DKK8C0aRNfn6YUSZJwqfsSqhqr4Gh2wHnFCX/IL2z9xemLUZ4jv7LZuGAjkhP4KmIyGwyFcNDj\nUUKbY319EHmZqgOwxmJRXtkU2WxI0usFViCiu9HSXS5DGiJBtHSwiYiIiIiI7mn7duC992JTe9o0\n4Ic/BL78ZcDIIe00MfoD/XBecSqvbBp7GoWtbTKaUJpVqrRGW5K+BDq295vUegIB1AzPsql2udAy\nOCh0/WS9HiWj5tksT03lPBsiFWjpLpchDZEgWjrYRERERERE99TdLc+muX49dnt47DG5BdqWLbHb\nA01ZzT3N2NW8C44mB/a07kF/oF/Y2gvSFiivbDZlb4IlySJsbdKmloEB7B4Obfa4XOgJipuNBAAZ\nCQnYPGqezTyTSej6RFOVlu5yGdIQCaKlg01ERERERHRfZ84ApaWAyyVuzbQ0ec0PPwSivWp45hng\njTeARYvE7YPoIfiDfhxoPwBHkwOOZgfO3jorbG2j3ogN8zcooc2KmSv4ymaSC0kSTnq9qO7pQbXL\nhQNuN4YEX70uTk5W5tmU2e2w8VUi0SPR0l0uQxoiQbR0sImIiIiIiB7ozBmgvFzMi5rMTMDhAJYv\nB44dA77+daCuLrrPJiTIP//3fw/YbOPfC9E4XPVcxa6mXahqqkJ1SzU8fo+wtWebZytt0bYs3AJ7\nsl3Y2ncKS2F093ertv69pKekQ6/jPJUR/aEQDrjdSmu0k16v0PX1AAqsViW0KbRakch5NkRR0dJd\nLkMaIkG0dLCJiIiIiIii0t0N/O3fAr/97aOvsX078NZbQHp65GuSBPz+98Df/R3Q0RHdOjNmAD/6\nEfDf/ztgMDz6fogECYQCOHLtiPzKpsmBYzeOCVtbr9OjcG6h8somPzNfaLjR5evCjDdmCFsvWrde\nuoWM1IwJrxsvuoaGsGfUPJt2v1/o+ql6PUrT0pTQ5rHUVL7eIroHLd3lMqQhEkRLB5uIiIiIiOih\nfPwx8NOfArW10X+mpAT49reBp5++98/098vtzH78Y2BgILp1V64E3nxTbp1GpCGd3k580vwJHM0O\n7Grahe4BcS9VpqdMx9acrajIrcDWnK2YkTq+gIUhjfZJkoSmgQFUD4c2NS4X3KGQ0BqzEhOVWTab\n7XZkJiUJXZ8onmnpLpchDZEgWjrYREREREREj+TsWeC994D6erlt2eiZNXY7kJ8PFBQAX/gCMOrf\nfx7o6lXg5ZeBd9+N/jPPPw+8/jqwYEH0nyGaIKFwCMdvHEdVUxUcTQ4cuXYEYSksbP382flKa7TC\nuYUw6h9u7ghDmvgTDIdxbHiezW6XCwc9HgQEX9suS0lRQpvStDRYOM+GpjAt3eUypCESREsHm4iI\niIiIaNwkCfB6Ab8fSEoCzGZgvG1zDh2S588cPRrdzyclAd/8JvCd78j1iTSqZ6AHu1t2K63Rbnhv\nCFvblmTDlpwtKM8px7bcbZhrnfvAzzCkiX/eYBD73W7lpc0Zn0/o+kadDoWj5tmstViQwHk2NIVo\n6S6XIQ2RIFo62ERERERERJoVDgPvvCO/rLkR5UX27NnAa68BX/wiwEtE0jhJknC687Qc2DQ7cKD9\nAILhoLD1H5/xOCpyK1CeW47iecVIMn66hRVDmsnnpt+PPb29qO7pQbXLhetDQ0LXtxgMKBs1z2ZJ\nSgrn2dCkpqW7XIY0RIJo6WATERERERFpntcrz6p54w35tU401q4FfvlLYP16dfdGJJDH70FNaw0c\nTQ5UNVWh3d0ubO3UhFRsyt6ktEZbaF8IgCHNZCdJEi7292O3y4Vqlwv7envRJ3iezdykJKU12lN2\nO2YmJgpdnyjWtHSXy5CGSBAtHWwiIiIiIqK40doKfOtbwPvvR/+Z7duBn/wEmPvgtk9EWiJJEi51\nX1ICG+cVJ/yhKEPKKCxOX4zynHKsn7seX/jgC8LWjRZDmtgIhMOo7+tT5tkc9nggNrIBVqSmKqHN\nk2lpSDUYBFcgmlhaustlSEMkiJYONhERERERUdxxOoEXXwROnozu55OT5ZZpL70EpKSouzcilfQH\n+uG84lRao13uvhzrLY0LQxpt8ASDcPb2KvNsLvT3C10/UadDkc2mhDb5FgsMbI1GcUZLd7kMaYgE\n0dLBJiIiIiIiikuhEPCb3wDf+x7Q1RXdZ+bNA376U+CFFwBeElKca3G1yIFNkwM1rTXwBcQOi1cb\nQxptuub3Y/dwYLPb5cJNwfNs0oxGbEpLU0KbnORkzrMhzdPSXS5DGiJBtHSwiYiIiIiI4prbDfzo\nR/L8mUAgus8UFwNvvgmsWaPu3ogmiD/oR11HHaoaq+BoduDsrbOx3tIDMaTRPkmScM7nQ/XwPBtn\nby/6w2GhNbKSkrBl2jRsttvxVFoapnOeDWmQlu5yGdIQCaKlg01ERERERDQpNDbK7cw+/DC6n9fp\ngC99CfinfwJmzVJ1a0QT7arnKnY17YKj2YHq5mq4/e5Yb+lTGNLEn6FwGIc8Hux2uVDd04OjfX0Q\nG9kAq8xmbLHbsdluxwabDcmcZ0MaoKW7XIY0RIJo6WATERERERFNKtXVwDe+AZw7F93Pm81yy7QX\nXwRMJnX3RhQDwXAQh68eVlqjHbtxLNZbAsCQZjLoDQSwt7dXDm1cLjQODAhdP0mnw5OjWqOtNJuh\nZ2s0igEt3eUypCESREsHm4iIiIiIaNIJBoFf/xr4/veBnp7oPpOdDfzsZ8Czz3JeDU1qnd5OfNL8\nCRzNDuxq2oXuge6Y7IMhzeTTNjg4Zp7N7WhbUEYp3WjEU8OvbLbY7ViQnCx0faJ70dJdLkMaIkG0\ndLCJiIiIiIgmrZ4eYMcO4Fe/AkKh6D5TVibPq1mxQt29EWlAKBzCnpY92PbutgmvzZBmcgtLEk57\nvageDmxq3W4MCp5nk2MyKfNsNqWlwZ6QIHR9ohFausvVx6QqEREREREREdGjmDYN+OUvgTNngG1R\nXkLv3QusWgV85StAV5e6+yOKMYPegFWzV8V6GzQJ6XU6rLRY8Hfz52PXE0/AVVyMPU88gZfnz8ca\niwUi3is2Dw7i369fx/PnzmF6XR0Kjh3D91pasNflgl9wIESkFQxpiIiIiIiIiCj+5OUBVVXARx8B\nixc/+OfDYbld2qJFwM9/DgwNqb9Hoinm6LWjCEu8SJ8qTAYDNtnteG3hQhzNz0dXcTH+v2XL8P/M\nno1sAfPAwgCO9vXhn9rbsenUKdgPHED5qVP4WUcHTnm9CLNBFE0SbHdGJIiWnsgRERERERFNKUND\ncvuzHTsAtzu6zyxeLIc1Tz/NeTU06XT5ujDjjRkxqT3HMgfPLX0Olcsq8eT8J2HQG2KyD4q9loEB\n7Ha5UO1yYY/LBVcwKHT9GQkJeGp4ls1mux3zBARDNHVo6S6XIQ2RIFo62ERERERERFNSVxfwD/8A\n/Md/yC9norFtG/CLX8gvc4gmiViGNKNlpGTg2aXP4vllz6NsQRkSDJwvMlWFJAkn+vqUeTYH3G4M\nCb6WXpKcjM12O7ZMm4aNaWmwGY1C16fJRUt3uQxpiATR0sEmIiIiIiKa0k6fBl58UZ5FEw2DAfjq\nV4Ef/ECeeUMU57QS0oxmN9nxzJJnUJlXiS05W2Ay8tXDVNYfCuGA262ENie9XqHrGwAUWK1yaGO3\no9BqRYKekz8oQkt3uQxpiATR0sEmIiIiIiKa8iQJ+OMfgZdeAlpaovvMtGnAD38IfPnLAP8GNsUx\nLYY0o5kTzfjs4s+iMq8SFbkVSE1MjfWWKMZuDQ2hZrg1WrXLhQ6/X+j6ZoMBpTYbtkybhs12O5al\npEDHVpdTmpbuchnSEAmipYNNREREREREwwYHgTffBF59FYj2b2o/9pjcAm3LFnX3RqQSrYc0oyUb\nk1GeW47KvEp8dvFnYTPZYr0lijFJktA4ap7NXpcL7lBIaI3ZiYnKK5un7HZkJiUJXZ+0T0t3uQxp\niATR0sEmIiIiIiKiO9y4AXzve8Dbb8uvbKLxzDPAG28AixapujUi0eIppBkt0ZCILQu3oDKvEs8s\neQbpKemx3hJpQDAcRkNfnxLaHPJ4EBB8pf1YSooyz6bEZoOFryknPS3d5TKkIRJESwebiIiIiIiI\n7qGhQZ5XU1cX3c8nJABf/zrw938P2Pg3/Ck+xCqk+bfP/BuqW6pR1ViFgeDAuNYy6Awoyy5DZV4l\nnl36LGaZZwnaJcU7bzCIWrdbCW3O+nxC1zfqdFg/ap7NWosFRs6zmXS0dJfLkIZIEC0dbCIiIiIi\nIroPSQJ+9zvgW98COjqi+8yMGXLLtL/6K8BgUHd/ROMUq5Dm1ku3kJGaAd+QD44mB3Ze2ImPLn+E\nvqG+ca2rgw4b5m9AZV4lPp/3ecyzzRO0Y5oMbvj92ONyKaHN9aEhoetbDQaUpaUpL20WJydzns0k\noKW7XIY0RIJo6WATERERERFRFPr75XZmP/4xMBDl3/pfuRL45S+BkhJ190Y0DrEOaUYbDA5id8tu\n7LywE3+6+Ce4Bl3jrlMwpwDP5z2PymWVWGhfOO71aPKQJAkX+/tRPRza7O3thVfwPJt5SUnYbLcr\nv2YkJgpdnyaGlu5yGdIQCaKlg01EREREREQP4epV4OWXgXffjf4zzz8PvP46sGCBatsielRaCmlG\nC4QC2HdlH3Ze2Ik/XPwDbvlujbvmylkrUZlXicq8SuRl5I17PZpcAuEw6vv6UN3Tg2qXC0c8HoiN\nbIAVqanYMhzYlKSlIYWvLeOClu5yGdIQCaKlg01ERERERESP4NAhef7M0aPR/XxSEvDNbwLf+Q5g\nNqu7N6KHoNWQZrRQOIQD7Qew88JOfHDhA1zruzbu+nnT8+TAZlklnpj5BFtS0ad4gkHs6+1VWqNd\n7O8Xun6iTocim00JbfItFhj4+1CTtHSXy5CGSBAtHWwiIiIiIiJ6ROEw8M478suaGzei+8zs2XLL\ntL/4C4DDpUkD4iGkGS0shVF/rR47z+/Ezgs70drbOu69LLQvVF7YFMwpYGBDd3V1cBC7h1uj7Xa5\n0BkICF3fbjRi0/A8m812O3I4z0YztHSXy5CGSBAtHWwiIiIiIiIaJ69XDl7eeAPw+6P7TEEB8Oab\nwPr16u6N6AHiLaQZTZIknLx5EjsvyIHNxdsXx72vedZ5+Hze51GZV4mieUUw6NmOij5NkiSc9fmU\neTbO3l70h8NCaywwmZRXNk/Z7UhPSBC6/sPoCQTwwvnzY772u2XLMC2Ge5pIWrrLZUhDJIiWDjYR\nEREREREJ0toKfOtbwPvvR/+Z7duBn/wEmDtXvX0R3UdYCqO7v3vC66anpEOvE/ua7HzXebx//n3s\nvLATpztPj3u9makz8dzS51C5rBKlWaVIMEyNC2l6eP5wGMAGR8cAACAASURBVIc9HlT39GC3y4Wj\nfX0QGdnoAKwym5XQZoPNBtMEzrP512vX8NXGxrFfW7QI/3POnAnbQyxp6S6XIQ2RIFo62ERERERE\nRCSY0wm8+CJw8mR0P5+cLLdMe+klICVF3b0RTRFNPU1KS7Sj16OcHXUf05Kn4XNLPofKvEpsXrgZ\nScYkAbukycoVCGBfb6/y0qZxYEDo+ia9HhtGzbNZaTZDr2JrtIJjx3C0r2/s1ywWHMnPV62mlmjp\nLpchDZEgWjrYREREREREpIJQCPjNb4DvfQ/o6oruM/PmAT/9KfDCCwDnEBAJ0+5uxwcXPsDOCztR\n114HCeO74rQmWfFni/8MlXmV2Ja7DSkJDFfp/tqG59lU9/RgT28vbgueZ5NuNOIpu10JbRYkJwtb\n+5zPh8eP3j3oPLd2LZalpgqrpVVaustlSEMkiJYONhEREREREanI7QZ+9CPgl78Eor2UKy6Wf36K\n/A1lool0o+8G/nDxD9h5YSecV5wISaFxrZeSkIKnFz2NyrxKfGbRZ2BJsgjaKU1WYUnCKa9XDm1c\nLux3uzEoeJ5NbnIyNg+HNmVpabCPY3bMt5qb8XpHx92/N28efpKT88hrxwst3eUypCESREsHm4iI\niIiIiCZAY6PczuzDD6P7eZ0O+NKXgH/6J2DWLFW3RjRV3e6/jT9d/BN2XtiJ3S27EQiP73VDkiEJ\nW3O2ojKvEs8seQb2ZLugndJkNhgKoc7jUV7aHPd6x/nWayw9gDUWixLarLfZkKSPbh5UMBzGvMOH\ncXNo6K7fn52YiPbCQhijXC9eaekulyENkSBaOthEREREREQ0gaqrgW98Azh3LrqfN5vllmkvvgiY\nTOrujWgK6x3sxUeXP8LOCzvhaHJgMDg4rvWMeiM2ZW9CZV4lnl36LGakzhC0U5rsugMB1AzPsql2\nudA6OL7fi3dK0etRkpaGzXY7NqelYXZiInT3aLG5t7cXL5w/f9/1fr9sGTampd3z+9MTEu65frzQ\n0l0uQxoiQbR0sImIiIiIiGiCBYPAr38NfP/7QE9PdJ/JzgZ+9jPg2Wc5r4ZIZd4hL6oaq/D+hffx\n8eWP4Qv4xrWeXqdHSVYJKvMq8dzS5zDHOkfQTmkqaB4YwO7h0GaPywVXMBjrLT2Uk2vW4AmzOdbb\nGBct3eUypKG44PF4cOLECTQ0NKChoQHHjh1DU1MTRn77tra2YsGCBTHdo5YONhEREREREcVITw+w\nYwfwq18BoSjnYpSVAW++CaxYoe7eiAgAMBAYwCfNn2DnhZ348NKHcPvd415z/dz1qMyrROWySixI\nWzD+TdKUEZIkHO/rU17Z1LndGNL4lf33s7KwIzs71tsYFy3d5TKkobiwatUqnDx58p7fZ0hDRERE\nREREmnL+PPC//zewa1d0P6/XA//jfwD/+I9ARoa6eyMixVBoCDWtNdh5fif+eOmPuN1/e9xrrp69\nWg5s8iqxZPoSAbukqaQ/FMJ+t1uZZ3PKN75XX2p4PDUVZ9aujfU2xkVLd7kMaSgurFy5EqdOnQIA\n2Gw2rFq1ChcvXsTNmzcBMKQhIiIiIiIiDZIk4P/+XzmsuXw5us/YbMAPfgB89atAYqK6+yOiMYLh\nIPa37cfOCzvxwYUPcMN7Y9xrPpbxGJ5f9jwq8yrx+IzH436OB028W0ND2DNqnk2H3x/rLcEA4HpR\nEWbE8f9PaekulyENxYW33noLGRkZWLNmDXJzc6HT6bBx40Y4nU4ADGmIiIiIiIhIw4aG5PZnO3YA\n7ijbKi1eDPz858DTT3NeDVEMhKUwDnUcws4LO7Hzwk60u9vHveaiaYuUlmj5s/MZ2NBDkyQJjQMD\nqB4ObWpcLniiba0pSLbJhN/m5aHQZpvQuqJp6S6XIQ3FLYY0REREREREFFe6uoB/+AfgP/4DCIej\n+8y2bcAvfgHk5am7NyK6J0mScOzGMew8Lwc2jT2N414zy5aFz+d9HpV5lVg/bz30Or2AndJUEwyH\n0dDXp4Q2Bz0eBFW87v/izJn4l0WLYDUaVasxUbR0l8uQZopqbm5GfX09rl69iqGhIdjtdixduhRF\nRUUwmUyx3l5UGNIQERERERFRXDp9GnjxRWDv3uh+3mCQ25/94AfAtGnq7o2I7kuSJJy9dVZ5YXP2\n1tlxrznbPBvPLX0OlcsqUZJVAqM+/i/AKTa8wSBq3W4ltDkraJ6NzWDAvy1ejC/MnClkPS3Q0l0u\nQxoNuHbtGurr63HkyBHU19ejoaEBfX19yvezsrJw5coVIbX++Mc/4h//8R9x/Pjxu37fbDbjS1/6\nEn7wgx9g+vTpQmqqhSENERERERERxS1JAv74R+Cll4CWlug+M20a8MMfAl/+MjAJ/hYz0WRw6fYl\nJbA5fuPu920PY3rKdDy75FlULqvEpuxNSDTE78wPir0bfj/+385OvNbRga5A4JHWWG+14r1ly5AV\nJ3+xP1paustlSBMjdXV1+NnPfoYjR47g+vXr9/1ZESGN3+/HX//1X+Pdd9+N6uczMjLw/vvvo6Sk\nZFx11cSQhoiIiIiIiOLe4CDw5pvAq68CXm90n3nsMbkF2pYt6u6NiB5Kq6sVH1z4ADsv7MShq4fG\nvV6aKQ1/tvjPUJlXia05W5GckCxglzQV/bitDd9pbX20zy5ciG/Pny94R7GnpbtcNjuMkaNHj+IP\nf/jDAwMaEcLhMF544YVPBTQGgwHZ2dlYuXIlbHcMeurq6kJFRQUOHRr//6EQERERERER0T2YTMDL\nLwOXLwN/9VdANIPEz50Dtm4FPvc5oHH8szGISIxseza+WfRNHPzrg7j6jav454p/xsYFGx953kzv\nYC/+8/R/4tnfPYuM1zPwwvsv4Pfnfg/vUJSBLtGwQx7Po3/W7Ra4E7obhjQaZDabha73+uuv409/\n+tOYr33lK19Be3s7WlpacOLECfT09OCDDz7A/FGpaH9/P/78z/8cbh5EIiIiIiIiInXNng385jdA\nfT1QXBzdZz78UH5V83d/B/Df3Yk0ZY51Dr5W8DXs/W97ceObN/Drz/4aW3O2PvK8GV/Ah9+f+z1e\neP8FZLyeged+9xzeOf0O3IM8+3R/kiSNL6TxeMBmXOpiA9MYs1gsyM/Px9q1a1FQUIC1a9eitbUV\nZWVlQtbv7u7Gq6++OuZrr732Gl5++eUxX9Pr9XjuuedQUFCADRs2KO3Vrl69ip///OfYsWPHfevU\n1NSgv79/3PtdtWoV5syZM+51iIiIiIiIiOLSmjXA/v3A734HfOv/Z+++o6sq87aPf5PQizQBKSqi\nMEmICAIWFJARHAsjYiwoqDiKXbGAqDA6jIMo9oLt8cGoWEYJIooFRQkKIkZBIQQRBBEQAWGQhE7O\n+8d+h8eI5qSdnOTk+1mLJfvwu/e+ssbgrH1l7/tm+OGHgud37YL77oPnnw9emXbxxZCQUDZZJRVK\nk9pNuKzTZVzW6TI2bdvElG+mkJ6dzrRl09ixZ0eRz7d993YmL57M5MWTqRpflV6te5GalErfxL7s\nX6t87zGtsvfd9u3F3o8GYN2uXSzfvp3WNX3dXqS4J02ULFu2jB07dpCYmEh8fP4HmmbMmJGvpCnJ\nnjTDhw9n7Nixe4+7d+/OjBkziCvg8enp06fTq1evvcd169Zl+fLlNGrU6A/XtGrViu+//75YGX/t\nhRdeYODAgYWadU8aSZIkSVJM27o1KGDuvhu2bSvcmg4d4OGHoRzvMSspsGXHFqZ+O5X07HTe/vZt\ntu4q2Q9AJ8Ql0KNVD1KTUumX2I9mdZuVUlJVZBPWruWCxYtLdo6kJAY0bVpKicqH8nQv19edRcmh\nhx5KcnLyPgVNacrLy+PZZ5/N99k//vGPAgsagBNPPJFu3brtPd6yZQuvvvpqRDJKkiRJkqQ/UKsW\n3H57sF/NgAGFWzN/PvToAWefDcX8gU9JZaNu9br0T+nPa2e/xvph65l0ziQGHD6A/arvV6zz7Qnt\n4cPlH3L121fT4oEWHD/+eB789EFWbl5ZyslVkYR71VnrGjU4pEaNgs/hKzUjytedxbDZs2ezfv36\nvcetW7fmhBNOKNTaSy65hI8//njv8eTJk7nyyiv/cH7OnDns3r272Fn/q2HDhiU+hyRJkiRJMaVl\nS5gwAa6+GoYMgc8/D79m4kR480246Sa49VYo5f1vJZWuWlVr0S+pH/2S+rFj9w4++O4D0rPTeeOb\nN9i4bWORzxcixKwfZjHrh1ncOO1GujTvQmpSKqnJqRzW8LAIfAUqrwoqaS5s2pRH27QB4Jpvv+WF\nn34q8jlUcpY0MWzq1Kn5jnv37h32KZpfz/7ajBkzyM3NpXbt2r87f8ABBxQvpCRJkiRJKpxjj4U5\nc4LC5pZb4McfC57fsQPuuguefTZ4ZdrAgRDBN3pIKh3Vq1TntLancVrb09i1ZxcZ32eQviid1xe/\nzk+5v38TPZzP13zO52s+55bpt9C+afugsElKJblxcqHvF6riCYVCbN2zZ5/P6yUk8GTbtvT/1SvM\nnk9K4pSGDbliyRJ++c2a3D17CIVC/rsSIf6XOYbNnz8/33HXrl0LvbZ58+b59njZuXMnixYtKq1o\nkiRJkiSpOOLj4cILg1eg3XYbVK8efs2PP8JFFwUlz6efRj6jpFJTNaEqvVr34ok+T7D6xtXMHDST\nIUcPoeV+LYt9zq9/+po7ZtxByhMpJI1LYsT0EXz545e4dXnsiYuL44vOnRnSogX/rVeOr1ePr7p0\nyVfQ/Nd5TZvyVefOHLdf8Mq9OOD6li35onNnC5oIsqSJYdnZ2fmOk5OTi7T+t/O/PZ8kSZIkSYqS\nOnVg9GjIzoazzircmrlzoWvXYH+bVasim09SqUuIT6Dbwd146OSHWHn9Sj679DOGdR1G6wati33O\nb37+hrs+uYtOT3fi0EcOZdi0YcxZNYe8UF4pJlc01U5I4KE2bZjZoQNjW7fmoyOO4OAC9qBpVbMm\nMzp04J7WrZnZoQMPHnYYtRMSyjBx5WNJE6O2bdvGypX5NwU78MADi3SO385/8803Jc4lSZIkSZJK\n0SGHwGuvwYwZ0KFD4da89BK0bQv//Cds3RrReJIiIy4ujqNaHMXY3mNZeu1S5l0+j5HdRpK0f1Kx\nz7n8P8u579P7OPZ/j+WgBw/iuneuI2NFBnvy9n1dliqe4+vXZ9hBB1GlEK+9rBIfz80HHcTx9euX\nQTK5J02M2rBhQ75HFKtWrUqTJk2KdI4WLVrkO163bl2pZCuOpUuX8sknn+T7bO3atXt/P3HiRPbf\nf/+9x3Xq1OGswv4kkSRJkiRJFV2PHpCZCePHw4gRsH59wfPbtsEdd8Azz8DYsXDuueCrbKQKKS4u\njg4HdKDDAR248893kr0+m/TsdNKz05m/dn74E/yO1VtW8+jcR3l07qM0qd2EM/50BqnJqfRs1ZOq\nCVVL+SuQKjdLmhiVk5OT77hWrVpFfm9g7dq1CzxnWfrkk0+4+OKL//DPhw0blu/44IMPLlFJs27d\nOtaH+z+0v7F06dJiX0+SJEmSpBJLSIDBg+Gcc+Bf/4KHH4Zduwpe88MPcN558NhjwXynTmWTVVLE\nJDVOYmTjkYzsPpJlG5cxKXsS6dnpfLb6s2Kdb13uOp7+8mme/vJpGtRoQN/EvqQmpdK7dW+qVynE\nvliSCmRJE6N+W6jUKOA9g3+kZs2aBZ4zlj3++OOMGjUq2jEkSZIkSSq6evXg3nvhsstg6FCYMiX8\nmlmzoEsXGDQI7roLDjgg4jElRd6hDQ9l2HHDGHbcMH7Y/MPewuaTlZ8QIhT+BL+xafsm0uankTY/\njbrV6tKnbR9Sk1I5+bCTqV2tdvgTSNqHe9LEqO3bt+c7rlatWpHPUb16/iZ827ZtJcpUEoMGDSIU\nChX614oVK6KWVZIkSZKkcqFNG3jjDZg2Ddq1Cz8fCsGzzwbr7r4bfnNvQVLFdmC9AxlyzBBmXjyT\nNTet4YnTnqBX614kxBVvU/gtO7fw8sKXOeu1s2h8b2NSX03lpQUv8cuOX0o5uRTbLGli1G+fnNm5\nc2eRz7Fjx44CzylJkiRJkiqA3r1h/vzglWYNG4afz8mBW2+F5GR4/fWgvJEUUw6ocwBXdL6C9y94\nn5+G/sT408dzaptTqRpfvP1mtu3exqTsSQyYNIDG9zamz0t9SJufxsZtG0s5uRR7fN1ZjKpTp06+\n498+WVMYv31y5rfnjGVXXXUVZ599dpHWLF26lDPOOCNCiSRJkiRJKoEqVeDqq4P9Z0aNgnHjYM+e\ngtcsXw5nngk9e8JDD0H79mWTVVKZalSrERd3vJiLO17M5u2beWvJW6Rnp/Pu0nfZtrvob9bZuWcn\nU7+dytRvp1Ilvgo9W/UkNSmVMxLPoGmdphH4CqSKzZImRv22UNm6dSuhUIi4uLhCnyM3N7fAc8ay\nJk2a0KRJk2jHkCRJkiSpdDVsCA8/DJdfDjfeCO+9F37NRx9Bx44weDDceSc0bhz5nJKiol6Negxo\nP4AB7QeQuzOXd5a+Q3p2Om8teYucnUXfr3p33m7e/+593v/ufa6ceiXdDu5GalIqZyadScv9Wkbg\nK5AqHl93FqP233//fIXMrl27WLduXZHOsXr16nzHlhaSJEmSJMWI5GR45x146y1o2zb8fF4ePPVU\nsF/Ngw9CMV6rLqliqV2tNmcln8XLqS+zfth6pvSfwkVHXET9GvWLdb4QIWZ+P5Mh7w7hwAcP5Jhn\njuHeWffy3abvSjm5VLFY0sSomjVrctBBB+X7bOXKlUU6x2/nExMTS5xLkiRJkiSVE3FxcNppsGAB\nPPAA1KsXfs3mzcETOIcfDlOnul+NVEnUqFKDv/7pr6SdkcZPQ3/i3QHvMvjIwTSuVfwn6z5b/Rk3\nf3Azhz5yKEc+dSSjZ45m8YbFpZhaqhgsaWLYb0uVRYsWFWl9dnZ2geeTJEmSJEkxoFo1uOEG+Pbb\n4DVo8YW4XbRkCfTpA6ecAr+5fyAptlVLqMZfDvsLT//1aX686Uc+uugjrulyDc3rNi/2OeetncfI\nj0aSNC6Jdo+34/aPbuertV8RsghWJWBJE8M6dOiQ73j27NmFXvvjjz+yYsWKvcdVq1YlOTm5tKJJ\nkiRJkqTypnFjePJJmDcPevYs3Jr33gueqhkyBDZujGw+SeVOQnwCJ7Q6gUdPfZQfbviB2X+bzU3H\n3kSr+q2Kfc5F6xdx58w76fBUB9o82obh7w9n7uq5FjaKWZY0MaxPnz75jj/44INC/2U2bdq0fMc9\ne/akTp06pZZNkiRJkiSVU+3bw/TpMGkStG4dfn7PHnjkkWC/mnHjYPfuyGeUVO7Ex8Vz7IHHct9J\n9/Hddd+ROTiTW4+/lbaNCrHv1R9YtmkZY2eP5ehnjqbVw6244d0b+GTlJ+SF8koxuRRdcSEryHJn\nxowZ9PzVT6wcfPDB+Z5qKay8vDyaNm3Khg0b9n724Ycf5jv3H+nevTsff/zx3uNx48Zx1VVXFTlD\nLEpLSyMtLW2fz3Nzc8nMzNx7vHDhQtq1a1eGySRJkiRJKmXbt8NDD8Ho0ZCTU7g17doFa3r1imw2\nSRVCKBQia30W6YvSSc9OZ8G6BSU+5wF1DqBfYj9Sk1Lp0aoHVeKrlEJSVSZZWVmkpKTsPY7mvVyf\npIlh8fHxDBo0KN9no0aNCvs0zfTp0/MVNHXr1uWcc86JRMQKacWKFWRkZOzz69cFjSRJkiRJMaFG\nDbjllmAPmosvhri48GuysqB3b+jbN9jnRlKlFhcXR0qTFO444Q6+vvJrllyzhDEnjqFz887FPufa\nnLU8kfkEvV7oxQH3HcAlb1zC29++zc49O0sxuVQ2LGli3PDhw/O9piwjI4N77rnnD+dXr17NpZde\nmu+zIUOGsP/++0csY0XTqlUrevTosc+vzp2L/x8WSZIkSZLKtWbNYPx4mDsXjjuucGumTAmeqhk2\nDDZvjmw+SRVGm0ZtuOX4W/h88OcsH7Kc+0+6n64Hdi32+X7e9jPj54/ntJdOo/G9jRk4aSCTF09m\n265tpZhaihxfdxZFs2bNYtu2ff+y+Oqrrxg6dOje46ZNmzJhwoTfPUfz5s1JTk4u8Dpjxozhtttu\ny/fZlVdeyciRI2nevDkQvBptypQpDBkyhJUrV+Y7f1ZWFvXr1y/011VZladH5CRJkiRJiphQCP79\nb7j5Zvjhh8KtadIkeGXaxRdDQkJk80mqkNZsWcPr2a+Tnp1OxvcZJd53pnbV2pza5lRSk1I5tc2p\n1K1et5SSKhaUp3u5ljRR1KpVK77//vsSneOiiy763f1Rfi0vL4++ffvy1ltv5fs8ISGBgw8+mHr1\n6rF8+XL+85//5PvzmjVr8v7773NcYX9CppIrT9/YkiRJkiRF3NatcN99cPfd8Ds/hPq7OnSAhx+G\n7t0jm01ShbY+dz1vfPMG6dnpTP9uOrvydpXofNUTqvOXw/5CalIqf237VxrUbFBKSVVRlad7ub7u\nrBKIj4/ntddeo3///vk+37NnD9999x3z5s3bp6Bp1KgRb7/9tgWNJEmSJEn6fbVqwe23B/vVDBhQ\nuDXz50OPHnD22bBiRUTjSaq4GtduzKVHXso7A95h3bB1PH/G8/T9U1+qJ1Qv1vl27NnBlG+mcNHk\ni2hyXxNOnnAy//PF/7A+d30pJ5eKzpKmkqhRowYvv/wyEydOpEOHDn84V7t2ba666ioWLVrECSec\nUHYBJUmSJElSxdSyJUyYALNnQ5cuhVszcSIkJsLIkZCTE9l8kiq0+jXqc8ERFzC5/2TWD1vPK6mv\ncHby2dSuWrtY59udt5v3lr3HZW9dxgH3H8Cfn/sz4+aOY82WNaWcXCocX3dWSS1dupTPPvuM1atX\ns3PnTurXr09SUhLHHXccNWrUiHa8Cqk8PSInSZIkSVJU5OUFhc0tt8CPPxZuTbNmwSvTBg6EeH+e\nWFLhbNu1jfeWvUd6djpvfvMmm3dsLvE5ux7YldSkVM5MOpNW9VuVPKTKrfJ0L9eSRiol5ekbW5Ik\nSZKkqMrJgTFj4P77YceOwq056ih46CE49tjIZpMUc3bu2cn076aTnp3O5MWT+XnbzyU+Z6dmnUhN\nSiU1OZW2jdqWQkqVJ+XpXq4ljVRKytM3tiRJkiRJ5cLy5XDzzcHrzQprwIDgyZqWLSOXS1LM2p23\nm5nfz2Tioom8vvh11uasLfE5U5qkkJqUylnJZ9GucTvi4uJKIamiqTzdy7WkkUpJefrGliRJkiSp\nXMnIgOuvh/nzCzdfqxYMHw5Dhwa/l6RiyAvlMfuH2aQvSic9O50ffvmhxOds26ht8IRNUipHNjvS\nwqaCKk/3ci1ppCJKS0sjLS1tn89zc3PJzMzce2xJI0mSJEnSr+zZA+PHw4gRsH594dYceCCMHQvn\nngveCJVUAqFQiMw1maRnB4XN0o1LS3zOVvVbcWbimaQmp3JMy2OIj3NfrYrCkkaqwP7xj38watSo\nsHOWNJIkSZIk/Y7Nm+Ff/4KHH4Zduwq35rjjgvlOnSKbTVKlEAqFWLBuwd4nbLLWZ5X4nM3rNqdf\nYj9Sk1LpdnA3qsRXKYWkihRLGqkC80kaSZIkSZJKwbffBq8zmzKlcPNxcTBoENx1FxxwQESjSapc\nFm9YvLewmbd2XonP17hWY85IPIPUpFR6HtKTagnVSiGlSpMljRSDytM3tiRJkiRJFcb778MNN0BW\nIX+SvU4dGDky2OOmevXIZpNU6Xy36TsmZU8iPTudOavmlPh89WvU5/Q/nU5qUionHXoSNarUKIWU\nKqnydC/XkkYqJeXpG1uSJEmSpApl92546im4/XbYuLFwa1q3hvvugzPOcL8aSRGx6pdVvJ79OunZ\n6Xy88mPyQnklOl+danU4rc1ppCalcmqbU6ldrXYpJVVRlad7uZY0UikpT9/YkiRJkiRVSBs3wqhR\nMG4c7NlTuDU9e8JDD0H79pHNJqlS+ynnJyYvnkx6djofLv+QPaFC/h31B2pUqcHJh53MWUln0adt\nH+rVqFei8+WF8vh5688lOkdxNKrViPi4+DK/bkmVp3u5ljRSKSlP39iSJEmSJFVoixbBjTfCe+8V\nbj4+HgYPhjvvhMaNI5tNUqW3cdtGpnwzhfTsdKYtm8bOPTtLdL6q8VXpfWhvUpNS6funvjSq1ajI\n51ifu54m9zUpUY7iWDd0HY1rV7y/d8vTvdyKV3FJkiRJkiQptiUnwzvvwFtvQdu24efz8oLXpbVp\nAw8+CDtLdsNUkgrSsGZDBnUYxJvnvcn6Yet56cyXSE1KpWaVmsU63668Xbz97dtcMuUSmt7XlF7P\n9+KJz59gbc7aUk6u8siSRpIkSZIkSeVPXBycdhosWAAPPAD1CvEqoM2bgydwDj8c3n478hklVXr7\nVd+P8w4/j4nnTGT9sPVMPHsi56WcR91qdYt1vj2hPUxfPp2r3r6K5vc3p9uz3XhozkOs3LyylJOr\nvLCkkSRJkiRJUvlVrRrccAN8+y1cfnnwarNwliwJCp5TToHs7MhnlCSgdrXapCan8lLqS6wbto43\nz3uTQR0G0aBGg2KdL0SIT1Z+wg3v3cDBDx3M0c8czdhZY1m2cVkpJ1c0WdJIkiRJkiSp/GvcGJ58\nEubNg549C7fm3XeDp2qGDIGNGyObT5J+pUaVGvRp24dn+z7LT0N/YtrAaVze6XKa1C7+vjFzV89l\n+AfDOezRw+jwZAfuzLiTResXlWJqRYMljSRJkiRJkiqO9u1h+nSYNAlatw4/v2cPPPJIsF/NuHGw\ne3fkM0rSr1RNqErvQ3vzZJ8nWXPjGmZcNINrj7qWFnVbFPucX/30FbfPuJ12j7cjaVwSd318Vykm\nVlmypJEkSZIkSVLFEhcH/fpBVhaMGQN16oRfs3EjXHMNdOgAH3wQ+YyS9DsS4hPo0aoHj5zyCCtv\nWMmnl3zK0GOHckj9Q4p9zsUbFvPQZw+VYkqVpbhQVbImPAAAIABJREFUKBSKdgipIklLSyMtLW2f\nz3Nzc8nMzNx7vHDhQtq1a1eGySRJkiRJqqR+/BFGjIC0NCjsra7TT4f774fDDotoNEkqjFAoxPy1\n80nPTic9O53FGxZHO1KhrBu6jsa1G0c7RpFlZWWRkpKy9zia93KrROWqUgW2YsUKMjIyoh1DkiRJ\nkiT9V7NmMH48XHUVXH89zJoVfs2UKfDOO8F+NSNHQr16kc8pSX8gLi6Ojs060rFZR/7153+xaP0i\nJi6aSHp2Ol//9HW04ymCfJJGKiKfpJEkSZIkqRwLheDf/4abb4YffijcmiZNYPRouPhiSEiIbD5J\nKqKlG5eSvih4wubzNZ9HO04+PklTcpY0UikpT9/YkiRJkiRVelu3wn33wd13w7ZthVvToQM8/DB0\n7x7ZbJJUTCs3r2RS9iTSs9OZtXIWIaJ7e9+SpuTio3JVSZIkSZIkKZJq1YLbb4clS2DAgMKtmT8f\nevSAs8+GFSsiGk+SiuOgegdx/THX8/HFH7P6xtU8furjnHjIicR7q7/C8n85SZIkSZIkxa6WLWHC\nBJg9G7p0KdyaiRMhMTHYqyYnJ7L5JKmYmtVtxpVdruSDCz8g6+qsaMdRMVnSSJIkSZIkKfYdeyzM\nmQPPPQfNmoWf37Ej2KfmT3+C55+HvLzIZ5SkYmpUs1G0I6iYLGkkSZIkSZJUOcTHw4UXBq9Au+02\nqF49/Jo1a+Cii4KS59NPI59RklSpWNJIkiRJkiSpcqlTJ3hKJjsbzjqrcGvmzoWuXWHgQFi1KrL5\nJEmVhiWNJEmSJEmSKqdDDoHXXoMZM6BDh8KtefHF4BVo//wnbN0a0XiSpNhnSSNJkiRJkqTKrUcP\nyMyEp5+Gxo3Dz2/dCnfcAYmJ8MorEApFPqMkKSZZ0kiSJEmSJEkJCTB4MHz7LQwdClWrhl/zww9w\n3nnQrRt88UXkM0qSYo4ljSRJkiRJkvRf9erBvfdCVhacfnrh1syaBV26wN/+BmvXRjafJCmmWNJI\nkiRJkiRJv9WmDbzxBkybBu3ahZ8PheDZZ4N199wDO3ZEPqMkqcKzpJEkSZIkSZL+SO/eMH8+PPYY\nNGwYfj4nB265BZKT4fXX3a9GklSgKtEOIFU0aWlppKWl7fN5bm5u2YeRJEmSJEmRV6UKXH11sP/M\nqFEwbhzs2VPwmu++gzPPhJ494aGHoH37sskqSapQLGmkIlqxYgUZGRnRjiFJkiRJkspaw4bw8MNw\n+eVw443w3nvh13z0EXTsCIMHw513QuPGkc8pSaowLGmkImrVqhU9evTY5/Pc3FwyMzOjkEiSJEmS\nJJWp5GR45x14++2grFmypOD5vDx46il45RW4447gqZxq1comqySpXIsLhXwxplQasrKySElJ2Xu8\ncOFC2hVmY0FJkiRJklRx7dwZvP5s1CjYvLlwa9q2hQcfhFNPjWw2SZXG+tz1NLmvSZlfd93QdTSu\nXfGeECxP93Ljo3JVSZIkSZIkKRZUqwY33ADffhu8Bi2+ELfbliyB006DU06B7OzIZ5QklVuWNJIk\nSZIkSVJJNW4MTz4J8+ZBz56FW/Puu3D44TBkCGzcGNl8kqRyyZJGkiRJkiRJKi3t28P06TBpErRu\nHX5+zx545BFo0yZ4bdru3ZHPKEkqN6pEO4AkSZIkSZIUU+LioF+/4HVmDz0Eo0dDTk7BazZuhGuu\ngSeeCNb06lU2WSXFhEa1GrFu6LqoXFclY0kjSZIkSZIkRUKNGnDLLXDRRTBiBKSlQShU8JqsLOjd\nG04/He6/Hw47rEyiSqrY4uPiaVy7cbRjqBh83ZkkSZIkSZIUSc2awfjxMHcuHHdc4dZMmQLJyXDz\nzfDLL5HNJ0mKGksaSZIkSZIkqSx07gwffwwvvwwHHhh+ftcuuPfeYL+aZ54J9q+RJMUUSxpJkiRJ\nkiSprMTFQf/+sHgxjBoFNWuGX7NuHQweHJQ8M2dGPqMkqcxY0kiSJEmSJEllrVYtuP12WLIEBgwo\n3Jr586FHDzj7bFixIqLxJEllw5JGkiRJkiRJipaWLWHCBJg9G7p0KdyaiRMhMRFGjoScnMjmkyRF\nlCWNJEmSJEmSFG3HHgtz5sBzz0GzZuHnd+yA0aPhT3+CF16AvLySXT8Ugl9+gQ0bgn+GQiU7nySp\nUCxpJEmSJEmSpPIgPh4uvDB4Bdptt0H16uHXrFkTrPlvyVMUCxYE1+nVCxo1gnr1oHHj4J+NGgWf\n33YbLFxYvK9HkhSWJY0kSZIkSZJUntSpEzwlk50NZ51VuDVz5wZFzcCBsGpVwbNTp0L37tC+PYwZ\nA9Onw6ZN+Wc2bQo+HzMGDj88mH/77eJ9PZKkP1Ql2gGkiiYtLY20tLR9Ps/NzS37MJIkSZIkKXYd\ncgi89hpkZMD118P8+eHXvPgivP46DB8OQ4dCrVr/92c//wzXXgsvv1z0LB9/HPw6/3x45JHgSRtJ\nUolZ0khFtGLFCjIyMqIdQ5IkSZIkVRY9ekBmJowfDyNGwPr1Bc9v3Qp33AH/+78wdiycc07warNT\nTglej1YSL70EM2bAu+8GT9hIkkrEkkYqolatWtGjR499Ps/NzSUzMzMKiSRJkiRJUsxLSIDBg4PC\n5V//gocfhl27Cl6zciX07w/33APLlsEvv5ROljVrguIoI8OiRpJKKC4UCoWiHUKKBVlZWaSkpOw9\nXrhwIe3atYtiIkmSJEmSFLO+/TZ4ndmUKdHL0Lw5fP21rz6TVOGUp3u58VG5qiRJkiRJkqTia9MG\n3ngDpk2DaP2Q6Jo1cN110bm2JMUISxpJkiRJkiSpourdG+bPh8ceg4YNy/76L70EU6eW/XUlKUZY\n0kiSJEmSJEkVWZUqcPXVwSvQrrsu2L+mLI0dW7bXk6QYYkkjSZIkSZIkxYKGDeHhh4N9Yrp2Lbvr\nzpwJCxeW3fUkKYZY0kiSJEmSJEmxJDkZuncv22u+/HLZXk+SYoQljSRJkiRJkhRrPv+8bK83d27Z\nXk+SYoQljSRJkiRJkhRLQiH48suyveYXXwTXlSQViSWNJEmSJEmSFEu2bIFNm8r2mps2QU5O2V5T\nkmKAJY0kSZIkSZIUS3bujM51d+yIznUlqQKzpJEkSZIkSZJiSbVq0blu9erRua4kVWCWNJIkSZIk\nSVIsqVsXGjQo22s2aAB16pTtNSUpBljSSJIkSZIkSbEkLg6OPLJsr9mpU3BdSVKRWNJIkiRJkiRJ\nseaoo8r2ep07l+31JClGWNJIkiRJkiRJsea888r2em+9BfPnl+01JSkGWNJIkiRJkiRJsebww6Fb\nt7K73sKFwdM0Q4dCTk7ZXVeSKjhLGkmSJEmSJCkWDR9ettfbswfuvx/atYM33yzba0tSBWVJI0mS\nJEmSJMWi004r+9eeAaxcCaefDqmpsGpV2V9fkiqQKtEOIFU0aWlppKWl7fN5bm5u2YeRJEmSJEkq\nyKOPQkYGrFlT9teeNAmmTYPRo+HqqyEhoewzSFI5Z0kjFdGKFSvIyMiIdgxJkiRJkqTwGjWCd9+F\nHj1g06bSO2+9etC+PXz8ccFzOTkwZAg8/zw89RR06lR6GSQpBljSSEXUqlUrevTosc/nubm5ZGZm\nRiGRJEmSJElSAQ4/PHia5uSTS+eJmubNg+InJSV4Wua668Kf94sv4Kij4Npr4c47oW7dkueQpBgQ\nFwqFQtEOIcWCrKwsUlJS9h4vXLiQdu3aRTGRJEmSJEnSr/z8c1CovPRS8c9x/vnwyCPBEzr/9csv\nMHIkPPYYFOZWY8uWwWvYzjij+DkkqQTK073c+KhcVZIkSZIkSVLZatQIXnwR3noLuncv2tru3WHq\n1GD9rwsagP32C4qbzz6Djh3Dn2vVKujXD/r2hZUri5ZDkmKMJY0kSZIkSZJUmZx2WvD6swUL4Lbb\noFcvaNAg/0yDBsHnt90WzGVkwKmnFnzeLl1g7lx44AGoXTt8jilTIDk5mN+9u/hfjyRVYO5JI0mS\nJEmSJFVGKSkwenTw+1AIcnJgxw6oXh3q1IG4uKKfs0oVuOEGOOus4NVqkycXPJ+bCzfdBC+8AE89\nFexbI0mViE/SSJIkSZIkSZVdXBzUrQv77x/8szgFza8deCC8/npQ0rRsGX5+/nw45hi45hrYvLlk\n15akCsSSRpIkSZIkSVJk9O0LixYFT9fEh7kVGQrBuHGQlASvvRYcS1KMs6SRJEmSJEmSFDl16wb7\nznz+OXTuHH7+xx/hnHOgTx9YsSLi8SQpmixpJEmSJEmSJEXekUfCnDnwyCNBcRPO229DcjKMHQu7\ndkU+nyRFgSWNJEmSJEmSpLKRkADXXgvZ2ZCaGn5+2zYYPhw6dYJPP418PkkqY5Y0kiRJkiRJkspW\nixYwcSK8+SYcdFD4+QUL4Ljj4IorYNOmyOeTpDJiSSNJkiRJkiQpOvr0gUWLYNiw4CmbgoRC8NRT\nkJQEL78cHEtSBWdJI0mSJEmSJCl6atcO9p354gs4+ujw8z/9BOefDyefDMuWRT6fJEWQJY0kSZIk\nSZKk6DviCJg9G554AurVCz8/bRqkpMBdd8HOnZHPJ0kRYEkjSZIkSZIkqXyIjw/2ncnOhnPPDT+/\nfTuMGAEdO8LHH0c+nySVMksaSZIkSZIkSeVLs2bwyivwzjtwyCHh5xctgu7dYfBg2Lgx8vkkqZRY\n0kiSJEmSJEkqn04+GRYuhFtvhSpVws8/8wwkJsKECRAKRT6fJJWQJY0kSZIkSZKk8qtWrWDfmXnz\n4Ljjws+vXw8XXAC9e8OSJZHPJ0klYEkjSZIkSZIkqfxLSYGZM+Hpp6F+/fDz06dD+/bwz3/Cjh2R\nzydJxWBJI0mSJEmSJKliiI8P9p1ZvBgGDAg/v2MH3HEHHHEEzJgR8XiSVFSWNJIkSZIkSZIqlqZN\ng31n3n8fDjss/Pw330DPnjBoEGzYEPF4klRYljSSJEmSJEmSKqZevWDBAvj736Fq1fDzzz0HiYnw\n7LMQCkU+nySFYUkjSZIkSZIkqeKqUSPYd+arr6B79/DzP/8Mf/tb8GTN4sWRzydJBbCkkSRJkiRJ\nklTxJSUF+86MHw8NG4afz8iA9u3h9tth+/aIx5Ok32NJI0mSJEmSJCk2xMXBxRcHT8hcdFH4+V27\n4M47g7Jm+vTI55Ok36gS7QBSRZOWlkZaWto+n+fm5pZ9GEmSJEmSJO2rcWNISwuKmiuugCVLCp7/\n9ttgf5uBA+H++6FJkzKJKUmWNFIRrVixgoyMjGjHkCRJkiRJUjg9e8LXX8M998Do0bBzZ8HzEybA\n1Kkwdmywb028LyKSFFmWNFIRtWrVih49euzzeW5uLpmZmVFIJEmSJEmSpD9UvXqw70z//nDllfDh\nhwXPb9oEgwcHT+I89RS0a1cmMSVVTnGhUCgU7RBSLMjKyiIlJWXv8cKFC2nnf8QlSZIkSZLKj1Ao\neFrmxhthw4bw81WqwLBhMHIk1KoV+XySykR5upfr83qSJEmSJEmSKoe4OLjgAli8GC65JPz87t0w\nZgykpMC770Y+n6RKx5JGkiRJkiRJUuXSqBE88wzMnAlJSeHnly+HU06B886DtWsjn09SpWFJI0mS\nJEmSJKly6tYN5s+H0aOhRo3w86+8AomJ8OSTkJcX+XySYp4ljSRJkiRJkqTKq1o1uO02WLgQTjop\n/PzmzXDllXDccfD115HPJymmWdJIkiRJkiRJ0qGHBvvOvPQSNG0afn7OHDjySLj5ZsjNjXw+STHJ\nkkaSJEmSJEmSAOLign1nsrPh8svDz+/ZA/feC+3awdSpkc8nKeZY0kiSJEmSJEnSrzVoEOw7M2sW\npKSEn//+e+jTB84+G9asiXw+STHDkkaSJEmSJEmSfk/XrvDll3DPPVCzZvj5iRMhMREefTR4ykaS\nwrCkkSRJkiRJkqQ/UrVqsO9MVhacckr4+S1b4Lrr4JhjYN68yOeTVKFZ0kiSJEmSJElSOIccEuw7\n8+qrcMAB4eczM6FzZ7jxRsjJiXw+SRWSJY0kSZIkSZIkFUZcXLDvzOLFcPXVwXFB8vLgwQchORne\neKNsMkqqUCxpJEmSJEmSJKko6tWDxx6DOXPgiCPCz//wA5xxBvTrF/xekv4/SxpJkiRJkiRJKo6j\njgpea3b//VCrVvj5yZODp2oeegh27458PknlniWNJEmSJEmSJBVXlSrBvjPZ2fDXv4afz8mBG274\nv4JHUqVmSSNJkiRJkiRJJXXQQcG+M5MmQYsW4efnzYOjj4brroNffol8PknlkiWNJEmSJEmSJJWG\nuLhg35nsbBgyBOLD3H7Ny4NHH4WkJEhPh1CobHJKKjcsaSRJkiRJkiSpNNWtG+w7M3cuHHlk+Pk1\na+Css4LXpa1YEfF4ksoPSxpJkiRJkiRJioROneCzz4LCpk6d8PNTp0K7dnDffbBrV+TzSYo6SxpJ\nkiRJkiRJipQqVYJXn2VnB69CC2frVhg2DDp3hjlzIp9PUlRZ0kiSJEmSJElSpLVsCZMmwZQpcNBB\n4ee//hq6doWrroL//Cfy+SRFhSWNJEmSJEmSJJWVv/4VsrLgppsgIaHg2VAInngCkpLg3/8OjiXF\nFEsaSZIkSZIkSSpLdeoE+85kZsJRR4WfX7sW+veHU0+F776LfD5JZcaSRpIkSZIkSZKioUMHmD0b\nxo2D/fYLP//uu9CuHdx9N+zaFfl8kiLOkkaSJEmSJEmSoiUhIdh3Jjsbzj47/Pz27XDrrdCxI8ya\nFfl8kiLKkkaSJEmSJEmSoq15c3j1VZg6FVq1Cj+flQXHHw+XXQabNkU8nqTIsKSRJEmSJEmSpPLi\n1FODAmb4cKhSJfz8//wPJCbCSy9BKBT5fJJKlSWNJEmSJEmSJJUntWoF+858+SUce2z4+XXrYMAA\nOOkkWLo08vkklRpLGkmSJEmSJEkqjw4/HD75BJ58EurXDz//wQeQkgL/+hfs2BH5fJJKzJJGkiRJ\nkiRJksqr+Hi4/HJYvBjOPz/8/I4d8Pe/Q4cOMHNm5PNJKhFLGkmSJEmSJEkq75o2hRdfhPfeg9at\nw88vXgw9esDf/gY//xz5fJKKxZJGkiRJkiRJkiqKk06ChQthxAioWjX8/LPPQmIiPPcchEKRzyep\nSCxpJEmSJEmSJKkiqVkz2Hdm/nw4/vjw8xs2wKBB8Oc/wzffRDyepMKzpJEkSZIkSZKkiig5GTIy\n4JlnoEGD8PMzZkD79vCPf8D27ZFOJ6kQLGkkSZIkSZIkqaKKj4dLLgn2oLnggvDzO3fCqFFwxBHw\n0UeRzyepQJY0kiRJkiRJklTRNWkCzz8P06dDmzbh55csCV5/dtFFsH595PNJ+l1Voh1AqmjS0tJI\nS0vb5/Pc3NyyDyNJkiRJkiT92p//DF9/DXffDWPGBE/OFOT55+Gtt2DsWLj44uDJHEllxpJGKqIV\nK1aQkZER7RiSJEmSJEnS76tRI9h35rzz4Iorgr1oCrJxI1x6KTz3HDz5ZLDXjaQyYUkjFVGrVq3o\n0aPHPp/n5uaSmZkZhUSSJEmSJEnS7/jTn+DDD4OnZW66CX7+ueD5jz+GDh3g5pthxAioWbNsckqV\nWFwoFApFO4QUC7KyskhJSdl7vHDhQtq1axfFRJIkSZIkSdL/t2FDUL48+2zh5g89FB5/HE46KbK5\npCgoT/dyfcGgJEmSJEmSJMW6/feH8eODV58lJoafX7YM/vIXOP98WLs24vGkysqSRpIkSZIkSZIq\nix49YP58uPNOqF49/PzLL0NSEjz9NOTlRT6fVMlY0kiSJEmSJElSZVK9OowcCQsWQK9e4ef/8x+4\n/HLo1i1YI6nUWNJIkiRJkiRJUmXUpg1MmwYTJkCTJuHnZ8+GI4+EW26BrVsjn0+qBCxpJEmSJEmS\nJKmyiouDAQMgOxsGDw4/v3s33HMPtGsH77wT+XxSjLOkkSRJkiRJkqTKrmHDYN+ZTz4JCphwVqyA\nU0+Fc86BNWsiHk+KVZY0kiRJkiRJkqTAccfBl1/CXXdBjRrh5197DZKSYNw42LMn8vmkGGNJI0mS\nJEmSJEn6P9Wqwa23QlYW/OUv4ed/+QWuuQa6doX58yOfT4ohljSSJEmSJEmSpH21bh3sO/PKK3DA\nAeHn586Fzp1h6FDIyYl8PikGWNJIkiRJkiRJkn5fXBycey5kZ8OVVwbHBdmzB+6/P9jX5s03yyaj\nVIFZ0kiSJEmSJEmSCla/Pjz+OMyeDe3bh59fuRJOPx1SU2HVqsjnkyooSxpJkiRJkiRJUuEccwxk\nZsK990KtWuHnJ02CpCR45JHgKRtJ+VjSSJIkSZIkSZIKr2rVYN+ZRYvgtNPCz+fkwJAhcPTR8MUX\nkc8nVSCWNJIkSZIkSZKkojv44GDfmYkToXnz8PNffAFHHQXXXw9btkQ+n1QBWNJIkiRJkiRJkoon\nLi7YdyY7G669NjguSF4ePPxw8Aq011+HUKhsckrllCWNJEmSJEmSJKlk9tsv2Hfms8+gY8fw86tX\nw5lnQt++sHJl5PNJ5ZQljSRJkiRJkiSpdHTpAnPnwgMPQO3a4efffBOSk4P53bsjn08qZyxpJEmS\nJEmSJEmlp0oVuOGG4BVoZ5wRfj43F2666f8KHqkSsaSRJEmSJEmSJJW+Aw8M9p2ZPBlatgw/P38+\nHHMMXHMNbN4c+XxSOWBJI0mSJEmSJEmKnL59YdGi4Oma+DC3pEMhGDcOkpLgtdeCYymGWdJIkiRJ\nkiRJkiKrbt1g35nPP4fOncPP//gjnHMO9OkDK1ZEPJ4ULZY0kiRJkiRJkqSyceSRMGcOPPJIUNyE\n8/bbkJwMY8fCrl2RzyeVMUsaSZIkSZIkSVLZSUiAa6+F7GxITQ0/v20bDB8OnTrBp59GPp9Uhixp\nJEmSJEmSJEllr0ULmDgR3nwTDjoo/PyCBdC1K1xxBWzaFPl8UhmwpJEkSZIkSZIkRU+fPrBoEQwb\nFjxlE85TT0FSErz8MoRCkc8nRZAljSRJkiRJkiQpumrXDvad+eILOPro8PM//QTnnw8nnwzLlkU+\nnxQhljSSJEmSJEmSpPLhiCNg9mx44gmoVy/8/LRpkJICd90FO3dGPp9UyixpJEmSJEmSJEnlR3x8\nsO9Mdjace274+e3bYcQI6NgRPv448vmkUmRJI0mSJEmSJEkqf5o1g1degXfegUMOCT+/aBF07w6X\nXgobN0Y+n1QKLGkkSZIkSZIkSeXXySfDwoVw661QpUr4+f/9X0hMhBdegFAo8vmkErCkkSRJkiRJ\nkiSVb7VqBfvOzJsHxx0Xfn79erjwQujVC5YsiXw+qZgsaSRJkiRJkiRJFUNKCsycCU8/DfXrh5//\n8EM4/HD45z9hx47I55OKyJJGkiRJkiRJklRxxMfD4MGweDEMGBB+fudOuOMOOOIImDEj4vGkorCk\nkSRJkiRJkiRVPE2bwoQJ8P77cNhh4ee/+QZ69oRBg2DDhojHkwrDkkaSJEmSJEmSVHH16gULFsDf\n/w5Vq4aff+45SEyEZ5+FUCjy+aQCWNJIkiRJkiRJkiq2GjWCfWe++gq6dw8///PP8Le/BU/WLF4c\n+XzSH7CkkSRJkiRJkiTFhqSkYN+Z8eOhYcPw8xkZ0L493H47bN8e8XjSb1nSSJIkSZIkSZJiR1wc\nXHxx8ITMRReFn9+1C+68Ew4/HD74IPL5pF+xpJEkSZIkSZIkxZ7GjSEtDT78ENq2DT+/dCn07g0D\nB8K6dRGPJ4EljSRJkiRJkiQplvXsCV9/DaNGQbVq4edffBESE+GZZyAvL/L5VKlZ0kiSJEmSJEmS\nYlv16sG+MwsWwJ//HH5+0yYYPBi6d4esrMjnU6VlSSNJkiRJkiRJqhzatg32nXn+edh///Dzs2ZB\nhw5w222wdWvk86nSsaRRhbBs2TLGjRvHueeeS1JSEnXr1qVatWo0adKEE044gbvuuouffvop2jEl\nSZIkSZIklXdxcXDBBbB4MVxySfj53bthzBhISYF33418PlUqljQq9wYNGsRhhx3GNddcw6uvvsri\nxYvJyclh165drF+/noyMDEaMGEHbtm2ZMGFCtONKkiRJkiRJqggaNQr2nZk5E5KSws8vXw6nnAL9\n+8OPP0Y+nyoFSxqVe6tWrQKgdu3a9O/fn6effpqMjAy+/PJL3njjDQYOHEhcXBy//PILF154If/+\n97+jnFiSJEmSJElShdGtG8yfD6NHQ40a4ef//e+g1HniCcjLi3w+xbS4UCgUinYIqSAXXnghnTp1\n4pJLLqFOnTq/O/PKK69w3nnnAbD//vvz/fffU6tWrbKMSVZWFikpKXuPFy5cSLt27co0gyRJkiRJ\nkqQSWLYMrroKpk0r3Pwxx8BTT0H79pHNpVJVnu7l+iSNyr3nn3+eIUOG/GFBA9C/f3/OOOMMADZs\n2MAHH3xQVvEkSZIkSZIkxYpDDw32nXnpJWjaNPz8nDlw5JFw882Qmxv5fIo5VaIdQNGxbNky5s6d\ny6pVq9i5cycNGjQgMTGRrl27UqMwj/SVQyeeeCKTJ08GYMmSJVFOI0mSJEmSJKlCiouD886Dk0+G\nW28NnpQpyJ49cO+98OqrMG4cnHZa2eRUTLCkKQdWr17N3Llz+eyzz5g7dy6ZmZls2bJl758ffPDB\nrFixolSuNXnyZO68806+/PLL3/3zOnXqMGjQIO644w7233//UrlmWdm5c+fe3yckJEQxiSRJkiRJ\nkqQKr0EDePJJuPBCuPxyWLiw4Pnvv4c+feCss+Dhh6F587LJqQrN151FyaxZszjzzDNp0aIFLVu2\n5Mwzz+See+7ho48+ylfQlJYdO3YwcOBA+vXr94cFDUBOTg6PPfYYycnJzJw5s9RzRNJHH3209/fu\nBSNJkiRJkiSpVHTtCl9+CffcAzVrhp+fOBESE+HRR4OnbKQCWNJEyeeff87rr7/OmjVrIn6tvLw8\nzj33XF588cV8nyckJHDIIYfQoUMH6tWrl+/hE45ZAAAgAElEQVTP1q9fzymnnMKnn34a8XylITMz\nk3feeQeAFi1a0LNnzygnkiRJkiRJkhQzqlYN9p3JyoJTTgk/v2ULXHcdHHMMzJsX+XyqsCxpyqE6\ndeqU6vnuvfde3njjjXyfXXHFFaxcuZLvvvuOefPmsXHjRiZNmsRBBx20d2br1q2cc845bN68uVTz\nlLacnBwGDRrEnv/fSo8ZM4aqVatGOZUkSZIkSZKkmHPIITB1arD/zAEHhJ/PzITOneHGGyEnJ/L5\nVOG4J02U1a1bl06dOtGlSxeOOuoounTpwvLly0vtSZCff/6Z0aNH5/tszJgx3HLLLfk+i4+Pp1+/\nfhx11FEcf/zxe/fAWbVqFQ888ACjRo0q8DoffvghW7duLXHejh070qJFi0LP5+XlMWDAALKysgDo\n378/F1xwQYlzSJIkSZIkSdLviouDs8+Gk06CESPg8cchFPrj+bw8ePBBeO01eOwx6Nu37LKq3IsL\nhQr6t0eRsmzZMnbs2EFiYiLx8fkfaJoxY0a+kubggw/eW5oU1fDhwxk7duze4+7duzNjxgzi4uL+\ncM306dPp1avX3uO6deuyfPlyGjVq9IdrWrVqxffff1+sjL/2wgsvMHDgwELNhkIhLr30UsaPHw/A\n0UcfzfTp06ldu3aJcxRHVlYWKSkpe48XLlzo3jiSJEmSJElSrJs7Fy67DL76qnDzffsG+9UceGBk\nc+kPlad7ub7uLEoOPfRQkpOT9yloSlNeXh7PPvtsvs/+8Y9/FFjQAJx44ol069Zt7/GWLVt49dVX\nI5KxuEKhEFddddXegqZjx468++7/a+/eo6oq8z+OfwBBrgGKaJSKppNiNqZl5aV0HLupaWMZaZOW\nzZhkUlNeVxftZ+WlfvXrajklmWmlpeZtzEuijaVZmiVoGl7RBLwgolyC/fuD6YwbkOs57H3Oeb/W\nOqu+z3n283xprS8B37Of/S/LGjQAAAAAAAAAvFTnziXHmr30khQcXPn8JUuktm2lV16RfvvN9fnB\n1jjuzINt2rRJmZmZjrhly5bq0aNHla4dPny4Nm7c6IgXL16skSNHXnD+N998o9+c8A2lQYMGVZr3\nyCOPaObMmZKkK6+8UqtXr1ZERESt9wcAAAAAAACAaqtXr+S5M3feKY0aJS1dWvH83FzpscekOXOk\nd94peW4NvBJNGg+2fPlyU9y7d+9K76I5f+751q9fr9zc3AveqdKkKg/JcpJHHnlEb7zxhiSpffv2\nWrt2bYVHsQEAAAAAAABAnWjWrOROmcWLpUcekdLTK56/bZt07bXSww9LU6ZIF11UN3nCNjjuzINt\n377dFHfp0qXK18bExCg2NtYRFxQUKCUlxVmp1djo0aP1+uuvS5LatWuntWvXKioqyuKsAAAAAAAA\nAOA/fHykO+6QUlOlxESpskdeFBeXPKOmbVvp008lHiPvVWjSeLDU1FRTHBcXV63rS88vvV5dS0xM\n1GuvvSappEGzbt06NWrUyNKcAAAAAAAAAKBcYWElz53ZskXq2LHy+UeOlByX1q+ftH+/y9ODPdCk\n8VDnzp3TwYMHTWNNmzat1hql5+/evbvWedXUY489pldffVVSSfNo3bp1io6OtiwfAAAAAAAAAKiS\nTp2kzZtLGjahoZXPX75catdOmjFDKix0fX6wFM+k8VBZWVkyzrstzt/fv9pNjUsuucQUZ2RkOCW3\n6ho3bpxeeeUVSVKjRo302muvKSMjo8J8IiMjy+QPAAAAAAAAAJaoV6/k6LOBA6XRo6VFiyqef/as\nNHasNHeu9Pbb0nXX1U2eqHM0aTzUmTNnTHFwcLB8fHyqtUZISEiFa9aVjz/+2PHvmZmZ6tWrV6XX\nDB06VElJSTXeMyMjQ5mZmdW6Zu/evTXeDwAAAAAAAIAXuPRS6bPPpKVLpVGjpFKnIZWxY4fUpYv0\n0EPS889LERF1kyfqDE0aD1W6oRIYGFjtNYKCgipc05O9+eabmjx5stVpAAAAAAAAAPBE/fpJPXtK\nkyaVHINWVHThuYYhvfVWyd03r7wiDRokVfMD+bAvnknjofLy8kxxQEBAtdeoX7++KT537lytcqqp\n/fv3yzCMar1qcxcNAAAAAAAAALhcaKj04ovS1q1S586Vz//1Vyk+XrrtNiktzfX5oU7QpPFQpe+c\nKSgoqPYa+fn5Fa4JAAAAAAAAAKilDh2kTZukN96QLrqo8vn/+pfUrp00dapUWFjzfQ1DOn1aysoq\n+ed5zzhH3eG4Mw8VGhpqikvfWVMVpe+cKb2mJ0tISNBdd91VrWv27t2rAQMGuCgjAAAAAAAAAB7L\nz09KSJAGDJAefVRasKDi+Xl50oQJ0ty50ttvS127Vm2fH3+U5s+XtmyRvv9eOnnyv+9FRkodO5bc\n1TN4sHTFFTX/elBlNGk8VOmGytmzZ2UYhnyqcVZhbm5uhWt6sujoaEVHR1udBgAAAAAAAABvEhMj\nffKJtGKF9PDD0v79Fc/fuVPq1k36299K7qxp0KD8ecuXS9OmSRs3XnitkyeltWtLXi+8IHXvLo0f\nX3K8GlyG4848VFRUlKkhU1hYqIyMjGqtkZ6eboppWgAAAAAAAABAHbjttpIGzLhxUr0q3Gsxa5bU\npo304YfmY8uOHy+5K6Zv34obNOXZuFHq00caMqRkHbgETRoPFRQUpGbNmpnGDh48WK01Ss9v06ZN\nrfMCAAAAAAAAAFRBcHDJ3THffy9df33l8zMzpXvvlW66SdqzR9qxQ7ryypLjzWpj3rySdX78sXbr\noFw0aTxY6aZKSkpKta5PTU2tcD0AAAAAAAAAgIu1by999ZU0c6YUEVH5/DVrpHbtpOuuk44ccU4O\nR45IN95Io8YFaNJ4sA4dOpjiTZs2Vfnao0ePav955x36+/srLi7OWakBAAAAAAAAAKrK11caMULa\ntavk+LLKFBZK5845N4eTJ6VbbuHoMyejSePB+vbta4rXrFkj4/zzCCvwxRdfmOKePXsqNDTUabkB\nAAAAAAAAAKqpceOS586sWiW1bFn3+x85Io0eXff7erAqPHEI7qpLly6KiopSVlaWJCktLU3r169X\nz549K7323XffNcX9+/d3SY7uKCkpSUlJSWXGc3Nz6z4ZAAAAAAAAAN7nppukn36SnntOmj695M6Z\nujJvXsndPH361N2eHow7aTyYr6+vhg0bZhqbPHlypXfTrF27Vhs3bnTEYWFhGjRokCtSdEv79+9X\ncnJymdfWrVutTg0AAAAAAACAtwgKkqZMkbZvl7p1q9u9p0+v2/08GE0aDzdu3DjTMWXJycmaNm3a\nBeenp6frwQcfNI0lJiYqKirKZTm6m9jYWN14441lXldffbXVqQEAAAAAAADwNnFxUnKyNGlS3e25\nYUPJnTyoNY47s9C///1vnSvn4U0//PCDKc7Ly9OaNWvKXSMmJkZxcXEX3CMqKkoTJ07UxIkTHWMT\nJkzQwYMH9eSTTyomJkaSVFxcrM8//1yJiYk6ePCgaf3HH3+8Wl+Xpxs2bFiZO5QkaefOnbriiivq\nPiEAAAAAAAAA3s3XV8rPr9s9588vOW4NtUKTxkJDhgzRgQMHKp137Ngx9e7du9z3hg4dWu7zUc43\nbtw4bdq0ScuWLXOMvfXWW3rnnXfUvHlzhYeHa9++fTp16pTpuqCgIH3yySeKiIio/IsBAAAAAAAA\nAFhnyxbP3s9D0aTxAr6+vlqwYIHuv/9+ffTRR47xoqIipaWllXtNw4YNtXDhQnXt2rWu0nR7+aU6\n1Xv37rUoEwAAAAAAAABexTCkb7+t2z23bCk58szHp273dYLSf7st/bfdukSTxksEBgZq/vz5uvPO\nOzVlyhRt37693HkhISEaOnSonnnmGUVHR9dxlu7t0KFDpnjAgAEWZQIAAAAAAAAALnb6tNS+vdVZ\nOMWhQ4fUsWNHS/amSWOh/fv31/meAwcO1MCBA7V3715t3rxZ6enpKigoUEREhNq2bauuXbsqMDCw\nzvMCAAAAAAAAAMDb0KTxUq1atVKrVq2sTgMAAAAAAAAAAK/lYxiGYXUSgCc4deqUkpOTHXHTpk1V\nv359CzOqW3v37jUd8bZ48WIagYCHo+4B70LNA96Huge8CzUPeB9vrvv8/HzT4ytuvPFGRUREWJIL\nd9IAThIREaH+/ftbnYZttGrVSu3atbM6DQB1iLoHvAs1D3gf6h7wLtQ84H28re6tegZNab5WJwAA\nAAAAAAAAAOCNaNIAAAAAAAAAAABYgCYNAAAAAAAAAACABWjSAAAAAAAAAAAAWIAmDQAAAAAAAAAA\ngAVo0gAAAAAAAAAAAFiAJg0AAAAAAAAAAIAFaNIAAAAAAAAAAABYgCYNAAAAAAAAAACABWjSAAAA\nAAAAAAAAWIAmDQAAAAAAAAAAgAXqWZ0AAM/QqFEjPfPMM6YYgGej7gHvQs0D3oe6B7wLNQ94H+re\nHnwMwzCsTgIAAAAAAAAAAMDbcNwZAAAAAAAAAACABWjSAAAAAAAAAAAAWIAmDQAAAAAAAAAAgAVo\n0gAAAAAAAAAAAFiAJg0AAAAAAAAAAIAFaNIAAAAAAAAAAABYgCYNAAAAAAAAAACABWjSAAAAAAAA\nAAAAWIAmDQAAAAAAAAAAgAVo0gAAAAAAAAAAAFiAJg0AAAAAAAAAAIAFaNIAAAAAAAAAAABYgCYN\nAAAAAAAAAACABepZnQAAa/zyyy/asmWLDh8+rIKCAkVGRqpNmzbq0qWLAgMDrU4PgJPZreYLCwu1\ne/du7dy5U8eOHVNOTo5CQ0PVsGFDXXnllbriiivk68tnSYDasFvdnz59Wrt27dKBAwd09OhR5ebm\nSpIiIiLUpEkTdezYUc2bN6/zvABPYbeaB+B61D3gfexe90VFRfruu++UkpKijIwMFRYWKjQ0VJde\neqnatm2rNm3a8Lt+eQwAXmXRokVGx44dDUnlvkJDQ41Ro0YZmZmZdZZTcXGxkZKSYiQlJRkJCQlG\np06dDH9/f1NeQ4cOrbN8AE9ip5pPS0szpk+fbvTu3dsICgq6YE6SjPDwcOPhhx82fv75Z5fnBXga\nu9R9bm6u8cYbbxh33323ERsbW2HN//6KjY01Jk+ebBw/ftyluQGexC41X1W5ubnGZZddViZPft4H\nqs5OdX/jjTdW6f/xF3rNnj3b5TkCnsBOdV+etLQ0Y+TIkUZERESFNX/RRRcZ/fv3N5YvX25JnnZF\nkwbwEnl5ecaQIUOq/INSo0aNjOTkZJfm9N577xm9evUywsPDK82HX9qA6rFTzefl5RnXXnttjX5p\nCwgIMGbMmGEUFxe7JDfAk9ip7g3DMPbs2VPjP9hER0cbn376qctyAzyB3Wq+qh577DF+3gdqyI51\nT5MGcC071v35ioqKjOeff96oX79+tWr/7rvvrrMc3QH3FgFeoLi4WHfffbc+/PBD07ifn59atGih\nDh06KDw83PReZmambr31Vn399dcuy2vJkiVau3atsrOzXbYH4I3sVvOFhYXavHlzue8FBgaqRYsW\nuuaaaxQXF6eAgADT+wUFBRozZoxGjRrl9LwAT2K3uq9IRESE2rZtq2uvvVZ//OMfFR0dXWZORkaG\n7rrrLiUlJdVpboC7cKeaP9+WLVv0f//3f5btD7gzd617ADVn97ovLCxUfHy8Jk6cqPz8fNN74eHh\natOmjTp37qy2bdsqODjY5fm4M5o0gBeYMWOGlixZYhp76KGHdPDgQaWlpWnbtm06ceKEPvvsMzVr\n1swx5+zZsxo0aJAlTZSQkJA63xPwFHav+RYtWmjSpEn697//rdOnTystLU1btmzRzp07derUKX3w\nwQdlnkvx5ptv6vXXX3dpXoA7s3PdX3HFFRozZow+//xz/frrrzp58qRSUlL0zTffaPv27Tp27JjS\n0tL01FNPKSgoyHFdcXGxRowYoV27drksN8Bd2bnmL6SgoEDDhw9XcXGxJH7eB6rLXep+9erV1Xrd\nfPPNdZIX4I7sXvfDhw/XggULHHG9evX08MMPa8uWLTp58qRSU1O1efNmpaSkKCcnR6mpqXrllVfU\npUsX+fj4uDQ3t2P1rTwAXCsrK8sICwsz3VL4wgsvXHD+4cOHy5wb//TTT7skt/79+xuSjCZNmhj9\n+vUz/ud//sf417/+ZRw/ftx45plnOP4AqAE71nxOTo4hyejatauxatWqKh1dduLECeOaa64x5RUR\nEcFzKoBy2LHuDcMwzpw5Y+zZs6da12zbts2IjIw05TZo0CCn5wa4M7vWfGXO//n+kksuMf7xj3/w\n8z5QRXau+9LHnQFwDjvXvWEYxgcffGDaKyYmxvjhhx+qfP2JEydclps74rsn4OHGjh1r+qZ5ww03\nVPoH0jVr1piuCQsLM7Kyspye23fffWccPHiw3Pdo0gA1Y8eaz8/PN5YtW1bt69LT042QkBBTbu+8\n847T8gI8hR3rvjZmzpxpyi0kJMQ4d+6c1WkBtuGONf/TTz8ZAQEBjv0XLVrEz/tANdi57mnSAK5h\n57rPzMw0oqKiHPuEh4dX+8NZMOO4M8CDFRcXa/bs2aaxSZMmVXpLYa9evdS9e3dHnJOTo08++cTp\n+XXs2FFNmzZ1+rqAt7JrzQcEBKhPnz7Vvi4mJkZDhw41ja1atcpZaQEewa51Xxv33HOPfH3/+2tK\nbm6uDh48aGFGgH24Y80XFxdr+PDhKigokCTdcccdGjBgQJ3sDXgCd6x7ALVj97p/7rnnlJWV5Yif\nf/55tWrVyun7eBOaNIAH27RpkzIzMx1xy5Yt1aNHjypdO3z4cFO8ePFiZ6YGwAU8sebP/wFTEn+o\nBUrxxLq/6KKL1KhRI9PY+b8EAt7MHWv+lVde0ebNmyWV1DfPmAOqxx3rHkDt2Lnu8/PzNWfOHEfc\npEkTjRgxwql7eCOaNIAHW758uSnu3bt3lR/M1bt3b1O8fv165ebmOi03AM7niTUfGRlpiq140DFg\nZ55Y95KUl5dniiMiIizKBLAXd6v5tLQ0PfXUU474hRdeUExMjEv3BDyNu9U9gNqzc90vWrRIJ06c\ncMTx8fHy8/Nz2vreiiYN4MG2b99uirt06VLla2NiYhQbG+uICwoKlJKS4qzUALiAJ9Z8enq6KW7Y\nsKFFmQD25Il1v3v3blNDNjQ0VH/4wx8szAiwD3er+b/97W86e/asJOn666/XyJEjXbof4Incre4B\n1J6d6750A6lnz55OW9ub0aQBPFhqaqopjouLq9b1peeXXg+AvXhizW/cuNEU84dawMwT637KlCmm\neMiQIapXr55F2QD24k41/89//lPr1q2TJPn7+2vWrFlV/hQwgP9yp7r/XXZ2tnbs2KENGzbo+++/\n14EDB1RUVOTyfQFPYee6//bbb03xH//4R0lSUVGRVq5cqfj4eF1++eUKCQlRRESEWrdurUGDBmn2\n7NmOD26gLH7bATzUuXPnyjy7oWnTptVao/T83bt31zovAK7hiTV/+vRpLVy40DR22223WZQNYD+e\nVvd5eXkaP3685s6d6xhr1KiRnn32WctyAuzEnWr+6NGjGjNmjCMeO3as2rVr55K9AE/mTnX/u6uu\nuko7duxQcXGxaTw0NFRdu3bVwIEDdd9996l+/fouzQNwV3au++zsbP3888+O2M/PT82bN1daWpru\nvfdeff311+Ves3fvXi1YsEBPPvmkpk6dqr/+9a9OyceT0KQBPFRWVpYMw3DE/v7+io6OrtYal1xy\niSnOyMhwSm4AnM8Ta37KlCk6c+aMI46KilLfvn0tzAiwF3es+82bNysnJ8cR5+XlKSMjQ1u3btWn\nn35q2r9JkyZasWJFtb8mwFO5U80nJCTo1KlTkqTWrVvrySefdMk+gKdzp7r/Xeljmn535swZrVq1\nSqtWrdLTTz+tV199VXfddZdLcwHckZ3rPi0tzZRbWFiYUlJS1KVLlyo9P/bIkSO67777tHPnTk2d\nOtUpOXkKmjSAhzr/D5uSFBwcXO3jBUJCQipcE4B9eFrNb9q0Sf/7v/9rGnvyyScVHBxsUUaA/bhj\n3Y8YMUI//PBDhXMCAwM1bNgwPfvss2rUqJFL8wHcibvU/CeffKLFixc74rfffluBgYFO3wfwBu5S\n99X166+/atCgQXriiSc0Y8YMq9MBbMXOdf/7BzB+5+Pjo759+zoaNMHBwRo8eLBuuOEGNWzYUMeP\nH1dycrLmzZunc+fOOa6bNm2aLrnkEj3yyCNOycsT0KQBPFTpb8A1+cUoKCiowjUB2Icn1XxGRobi\n4+NN51Zfc801GjVqlCX5AHblSXX/u4CAAI0ePVp///vfadAApbhDzR8/ftz0B5f777+fBwoDteAO\ndS+V5NW7d2/deuut6tChg1q1aqWIiAjl5+crIyNDX3/9tebPn68VK1aYPoX/4osvqmHDhho/frzT\ncwLclZ3rvnST5uTJkzp58qQkqVOnTvrss8/UrFkz05y//vWvevLJJ9W/f3/t2LHDMT5mzBjdfPPN\nPHf2P3ytTgCAa+Tl5ZnigICAaq9R+ozY87veAOzFU2o+Pz9fd9xxhw4dOuQYCwsL07x58+Tn51fn\n+QB25il1f76CggJNnz5dl19+uR588EHT0WiAt3OHmn/00UcdR6pER0frxRdfdOr6gLdxh7r/xz/+\nocOHD+vzzz/XyJEjdf3116tRo0by9/dXaGioWrZsqSFDhmjZsmXasGFDmWOYJk6cWOldtoA3sXPd\nX6jZc+mll2r16tVlGjS/i42N1dq1a9WkSRPHWH5+Pj8nnIcmDeChSnfaCwoKqr1Gfn5+hWsCsA9P\nqPni4mLde++92rRpk2PMz89PH374oVq1alWnuQDuwB3rfvv27TIMw/E6ffq0fv75Z82dO1e33nqr\nY15RUZHeffdddevWTcePH3dpToC7sHvNr1y5UnPnznXEL7/8sho0aOC09QFvZPe6l6Tbb79dDRs2\nrNLcbt26af369YqKinKMGYbBc6uA89i57i+0zowZMxQZGVnhtVFRUWWeQ/PBBx9Y/iExu6BJA3io\n0NBQU1y6E18Vpb9Rll4TgH14Qs0nJCRo4cKFjtjHx0ezZs1Sv3796jQPwF14Qt2HhYWpdevWGjJk\niFasWKEvvvjC9Avejh07NHTo0DrNCbArO9d8Tk6OHnroIUd8yy23aPDgwU5ZG/Bmdq77mmrVqlWZ\n59CsWLFCJ06csCgjwF7sXPflrdOgQQMNHDiwStfffffdCg8Pd8R5eXnasmWLU3JzdzRpAA9V+hvn\n2bNnTWe/VkVubm6FawKwD3ev+QkTJujtt982jb300ku6//776ywHwN24e92Xp3fv3lq+fLl8ff/7\na8ry5cu1evVqC7MC7MHONT9+/HgdPHhQUslDg9966y2nrAt4OzvXfW3cd999pmfPFRcXa82aNRZm\nBNiHneu+vHWuv/56+fv7V+n6wMBAde7c2TS2detWp+Tm7mjSAB4qKipKPj4+jriwsNBxPnRVpaen\nm+Lo6Gin5AbA+dy55qdOnVrmtuenn35ajz32WJ3sD7grd677ilx//fW69957TWNJSUnWJAPYiF1r\nft++faamzOTJkxUbG1vrdQHYt+5ry9fXVz169DCN7d6925pkAJuxc903bty4zNgf/vCHaq1x+eWX\nm+Lqfm2eiiYN4KGCgoLKPLDr90+3VVXp+W3atKl1XgBcw11r/o033tCECRNMY4mJiZo8ebLL9wbc\nnbvWfVX85S9/McXnP6sK8FZ2rfns7GzTJ3zHjBkjHx+fSl+l/1///vvvm96PiIiodW6Au7Nr3TtD\n06ZNTXFmZqZFmQD2Yue6v+yyyxQQEGAau+iii6q1Run5J0+erHVenoAmDeDBSn8TTklJqdb1qamp\nFa4HwF7crebnzJmjRx55xDT2wAMP6OWXX3bpvoAncbe6r6rLLrvMFP/6668WZQLYi6fWPIAL89S6\nL308UmFhoUWZAPZj17r38/Mrc+dMfn5+tdYo/Yyd4ODgWuflCWjSAB6sQ4cOprg6n0I9evSo9u/f\n74j9/f0VFxfnrNQAuIA71fynn36qBx54wPTJ20GDBmnWrFmmW7sBVMyd6r42qnrONeDpvKXmAfyX\np9Z96Q9gnP+MGsDb2bnuO3bsaIqPHTtWretLH2/WsGHDWufkCepZnQAA1+nbt6+mTZvmiNesWSPD\nMKr0B9AvvvjCFPfs2dMWDxgEcGHuUvMrV67U4MGDVVRU5Bjr06eP5s6da3pYOIDKuUvdV9eBAwdM\ncXnnXwPeyI4136pVK61evbra182ZM0cffPCBI77ppps0ZswYR0xzFihhx7p3hq+++soUlz7+DPBm\ndq7722+/XXPmzHHE3333XbWuLz2/9DNqvBVNGsCDdenSRVFRUcrKypIkpaWlaf369erZs2el1777\n7rumuH///i7JEYDzuEPNJycna+DAgSooKHCM9ezZUwsXLuSPMUANuEPd18TSpUtN8ZVXXmlRJoC9\n2LHmQ0ND9ec//7na15X+A+3FF19co3UAT2fHuq+t5ORk/fLLL6axXr16WZQNYD92rvtbbrlFgYGB\njmPLduzYoT179qh169aVXrtz584yR7H16NHDqfm5Kz6uCngwX19fDRs2zDQ2efJk0/FC5Vm7dq02\nbtzoiMPCwjRo0CBXpAjAiexe81u3blW/fv107tw5x9h1112nzz//XIGBgU7fD/AGdq/7mkhNTdXs\n2bNNY3b5oxJgNU+seQAV87S6z83N1ejRo01j7du3V8uWLS3KCLAfO9d9SEiI7r33XtPYlClTqnTt\ns88+a4pvvPFGRUdHOy03d0aTBvBw48aNM93WmJycbLplsrT09HQ9+OCDprHExERFRUVVuI+Pj4/p\ntX79+lrlDaBm7FrzO3fu1C233KKcnBzHWIcOHbRy5UrbHLkAuCs71n1OTo4SEhJ0+PDhqn0R//HT\nTz/p5ptvNt1t17x5c911113VWgfwZOzfAD4AABEgSURBVHaseQCuZde6T0xM1JEjRyr/Av4jKytL\nt99+u3bs2GEanzx5cpXXALyFXetekp555hnTBy3nzJmj9957r8Jr3nzzTX3yySemsQkTJlS6l7eg\nSQN4uKioKE2cONE0NmHCBCUkJJh+mCouLtbixYvVpUsX0wPGYmJi9Pjjj7skt7y8PK1Zs6bcV1pa\nmmnu0aNHLzj36NGjLskPcEd2rPmjR4/qpptu0vHjxx1jISEhGjt2rLZu3XrB2r7QC4CZHeu+qKhI\nb731llq2bKl+/fppzpw5+uWXX8r99F9BQYE2bdqkkSNHqmPHjjp06JDjPR8fH7322msKCgpyan6A\nO7NjzQNwLbvW/auvvqqWLVvqjjvu0Icffmja83yHDh3SjBkz1L59e61bt8703oABA3THHXc4PTfA\n3dm17iXp0ksv1bhx40xjDz74oEaNGmX6WV6SDh48qJEjR2rUqFGm8XvuuUc333yzS/JzRz5GZfdJ\nAXB7xcXF6t+/v5YtW2Ya9/PzU/PmzRUeHq59+/bp1KlTpveDgoK0evVqde3atdI9Sj+87Msvv6z0\nXMn9+/erRYsWVfsiKjB79uwyt4EC3sxuNV/Vs3Orih9dgLLsVvenTp1SZGRkmfGwsDA1adJEERER\nMgxD2dnZ2r9/vwoLC8vdb9asWRo+fHiluQHexm41XxOTJk0yfXp+6NChSkpKctr6gKexY92X9xDz\niy66SBdffLHCw8NVWFioY8eOXfBum+7du2vVqlV8GAO4ADvW/e+Kioo0YMCAMrn5+PioRYsWatiw\noY4fP17mQ9iS1LFjRyUnJ3Oqxnm4kwbwAr6+vlqwYIHi4+NN40VFRUpLS9O2bdvKfENv2LChVqxY\nUaVv6ADshZoHvI+71H1OTo727Nmjb7/9Vlu3btWePXvKbdC0bt1aa9eupUEDXIC71DwA53GXuj99\n+rR2796tLVu2aNu2beU2aHx9fTV27FitXbuWBg1QATvXvZ+fnxYuXKihQ4eaxg3DUFpamr799tty\nGzS33347DZpy0KQBvERgYKDmz5+vhQsXqkOHDhecFxISooSEBKWkpDj1k3IA6hY1D3gfO9V9eHi4\nkpOTNW7cOHXu3FkBAQGVXuPv769evXpp7ty5+vHHH516Bx7giexU8wDqht3q/p133lF8fLyaNm1a\npflNmjRRYmKidu/erWnTpsnf399luQGewm51f7769esrKSlJK1eurLAp5OPjo2uvvVZLly7VkiVL\naNCUg+POAC+1d+9ebd68Wenp6SooKFBERITatm2rrl27mh7+BcAzUPOA97FT3efn5yslJUW//PKL\njh49qpycHEklzZyIiAi1adNG7du3r1IzB0D57FTzAOqGner++PHjSk1N1YEDB5SZmanc3Fz5+fkp\nMjJSUVFRuuqqq9SyZcs6zQnwRHaq+9LS09P19ddf68CBA8rLy1NkZKQuvvhide3aVdHR0ZbmZnc0\naQAAAAAAAAAAACzAcWcAAAAAAAAAAAAWoEkDAAAAAAAAAABgAZo0AAAAAAAAAAAAFqBJAwAAAAAA\nAAAAYAGaNAAAAAAAAAAAABagSQMAAAAAAAAAAGABmjQAAAAAAAAAAAAWoEkDAAAAAAAAAABgAZo0\nAAAAAAAAAAAAFqBJAwAAAAAAAAAAYAGaNAAAAAAAAAAAABagSQMAAAAAAAAAAGABmjQAAAAAAAAA\nAAAWoEkDAAAAAAAAAABgAZo0AAAAAAAAAAAAFqBJAwAAAAAAAAAAYAGaNAAAAAAAAAAAABagSQMA\nAAAAAAAAAGABmjQAAAAAAAAAAAAWoEkDAAAAAAAAAABgAZo0AAAAAAAAAAAAFqBJAwAAAAAAAAAA\nYAGaNAAAAAAAAAAAABagSQMAAAAAAAAAAGABmjQAAAAAAAAAAAAWoEkDAAAAAF4gKSlJPj4+jldS\nUpLVKQEAAABejyYNAAAAAAAAAACABWjSAAAAAAAAAAAAWIAmDQAAAAAAAAAAgAVo0gAAAAAAAAAA\nAFjAxzAMw+okAAAAAAAAAAAAvA130gAAAAAAAAAAAFiAJg0AAAAAAAAAAIAFaNIAAAAAAAAAAABY\noJ7VCQAAAAAAKpaTk6Nt27Zp9+7dOnXqlPLz8xUcHKzIyEjFxsYqLi5OjRs3tjrNWtm9e7d++OEH\nZWZmKjs7Ww0aNFBMTIy6deumBg0aWJ0eAAAA4BI0aQAAAADApr7//ntNmTJFy5cvV0FBQYVzW7Ro\noT59+mjkyJGKi4sr835SUpLuv/9+Rzx79mwNGzaszLxJkyZp8uTJtc79yy+/VI8ePSqcc+bMGb30\n0kt6//33tW/fvnLn+Pn5qXv37nr22WfVvXv3WucFAAAA2AnHnQEAAACADU2dOlXXXHONFi1aVGmD\nRpL27dun119/XfPmzauD7Gpv2bJluuyyyzRp0qQLNmgkqaioSOvXr9cNN9ygESNG6LfffqvDLAEA\nAADX4k4aAAAAALCZd999VxMmTCgzHhYWptjYWIWEhOjcuXM6ceKEDh8+LMMwLMiy5t555x0lJCSo\nqKjINB4cHKzmzZsrLCxMJ06cUFpamoqLi03XHTt2TIsWLZKPj09dpw0AAAA4HU0aAAAAALCR/Px8\njR071jQ2cOBATZgwQR07dizTnMjJydG3336rFStWaO7cubXe/7777lO3bt2qdc13332n8ePHm8ZC\nQkLKnbt27VqNHDnS1Hzp16+fHn/8cXXt2lX16v3319QTJ07on//8p6ZMmaKcnBxJ0pIlSzR9+nSN\nGzeuWjkCAAAAduRjuNtHrgAAAADAg61YsUJ9+vRxxPfdd5/ef//9Kl1bUFCgw4cPq2XLlmXeq+oz\naapr//79uu6663Ts2DHH2NixYzVt2rQyc0+dOqW2bdvq119/lST5+vpq1qxZeuCBByrcIyUlRT16\n9FBmZqYkKSAgQAcOHFCTJk1qnT8AAABgJZ5JAwAAAAA28vPPP5vihISEKl8bEBBQboPGVU6ePKlb\nb73V1KCJj4/X1KlTy50/c+ZMR4NGkp577rlKGzSSFBcXp6SkJEdcUFCg119/veaJAwAAADZBkwYA\nAAAAbOTcuXOm2N/f36JMKpafn68BAwZo165djrHu3bsrKSmp3OfFFBUV6bXXXnPEzZo10+OPP17l\n/W677TZdddVVjvjTTz+tYeYAAACAfdCkAQAAAAAbiYmJMcXOeM6MsxmGoWHDhmnDhg2OsTZt2mjJ\nkiWqX79+udf88MMPOnLkiCOOj4+vdgPqpptucvz7rl27lJWVVc3MAQAAAHuhSQMAAAAANvKnP/1J\nfn5+jvjll19WQkKC0tLSLMzKbPz48froo48ccePGjbVy5UpFRkZe8JqNGzea4quvvrra+zZr1swU\np6amVnsNAAAAwE5o0gAAAACAjTRt2rTMc1reeustXXbZZbr66qs1fvx4rVixQidOnLAkvzfffFPT\np093xCEhIVq2bJliY2MrvK50Q2XQoEHy8fGp1uvhhx82rWHVfwMAAADAWWjSAAAAAIDNvPrqq+rX\nr1+Z8e+++07Tpk1Tnz59FBUVpauuukoTJ07Uzp076ySvpUuXavTo0Y7Yz89PH330UZXuijl+/LjT\n88nOznb6mgAAAEBdokkDAAAAADYTGBioJUuWaN68eerQoUO5cwzD0Pbt2/XCCy/oiiuuUN++fbV3\n716X5bR161bFx8erqKjIMfbaa6+pb9++Vbr+1KlTTs+puLjY6WsCAAAAdame1QkAAAAAAMry8fHR\nPffco3vuuUcpKSlavXq11q9fr6+++kpZWVll5i9fvlwbNmzQ8uXL1b17d6fmsm/fPvXt21dnz551\njI0dO1YjR46s8hrBwcGmeOrUqerUqVOt8mrXrl2trgcAAACsRpMGAAAAAGwuLi5OcXFxSkxMlGEY\n2rVrl7744gstXLhQX331lWNeTk6O7rzzTv3yyy8KDQ11yt4nT57UbbfdpmPHjjnG4uPjNXXq1Gqt\nExUVZYpbtGihP//5z07JEQAAAHBXHHcGAAAAAG7Ex8dHbdu2VWJiojZu3KgNGzaYGiAZGRn64IMP\nnLJXfn6++vfvr127djnGbrjhBiUlJcnHx6daa7Vo0cIUu/JoNgAAAMBd0KQBAAAAADfWvXv3Mne1\nnH93TU0ZhqGhQ4dq48aNjrG2bdtq8eLFql+/frXX69mzpylet25drXMEAAAA3B1NGgAAAABwc127\ndjXF5T2zprrGjRunjz/+2BE3btxYK1asUGRkZI3W69y5s+nadevWKSUlpdZ5AgAAAO6MJg0AAAAA\nuLnSTZmaNlJ+9+abb2rGjBmOOCQkRMuXL1dsbGyN1/T399ejjz7qiA3D0IgRI1RYWFibVAEAAAC3\nRpMGAAAAAGzkqaee0ty5c/Xbb79Vab5hGHrppZdMY506darx/kuXLtXo0aMdsZ+fnz7++ONarfm7\nxMRENW7c2BF/9dVXuvPOO5WdnV3lNXJzc/Xqq6/q3XffrXU+AAAAgNXqWZ0AAAAAAOC/fvzxR02Z\nMkWPP/64/vKXv6h///665ppr1LBhQ9O84uJibdq0SZMnT9aaNWsc48HBwRo8eHCN94+Pj1dRUZEj\nHjRokOrXr2/aoyo6depU5o6e8PBwLViwQL169XLcQfP555+rXbt2euyxx3TXXXepWbNmZdY6dOiQ\nNm/erMWLF2vp0qU6ffq0nnnmmRp8dQAAAIC90KQBAAAAABvKyMjQzJkzNXPmTEnSxRdfrKioKIWE\nhCg3N1f79u3TmTNnylz30ksv6ZJLLqnxvmfPnjXF8+fP1/z586u9zpdffqkePXqUGe/evbvmzJmj\n+++/X3l5eZKk9PR0PfHEE3riiSd08cUXKzo6WvXr11d2drYyMjJ08uTJGn0tAAAAgN3RpAEAAAAA\nN3D06FEdPXr0gu8HBQXp5Zdf1ogRI+owq5qJj49X69atNXjwYP3888+m9yr7OqWSI9hiYmJcmSIA\nAABQJ3gmDQAAAADYyKxZs/Tee+9p4MCBpue3XEiDBg300EMPKTU11S0aNL/r1KmTUlJSNGfOHF13\n3XXy8/OrcH79+vX1pz/9SS+++KIOHTqkv//973WUKQAAAOA6PoZhGFYnAQAAAAAo3759+7R7924d\nOHBA2dnZKigoUGhoqBo1aqT27dsrLi5O9eq5/yEJ2dnZ+uabb3TkyBFlZWWpsLBQYWFhio6OVps2\nbXT55ZcrMDDQ6jQBAAAAp6JJAwAAAAAAAAAAYAGOOwMAAAAAAAAAALAATRoAAAAAAAAAAAAL0KQB\nAAAAAAAAAACwAE0aAAAAAAAAAAAAC9CkAQAAAAAAAAAAsABNGgAAAAAAAAAAAAvQpAEAAAAAAAAA\nALAATRoAAAAAAAAAAAAL0KQBAAAAAAAAAACwAE0aAAAAAAAAAAAAC9CkAQAAAAAAAAAAsABNGgAA\nAAAAAAAAAAvQpAEAAAAAAAAAALAATRoAAAAAAAAAAAAL0KQBAAAAAAAAAACwAE0aAAAAAAAAAAAA\nC9CkAQAAAAAAAAAAsABNGgAAAAAAAAAAAAvQpAEAAAAAAAAAALAATRoAAAAAAAAAAAAL0KQBAAAA\nAAAAAACwAE0aAAAAAAAAAAAAC9CkAQAAAAAAAAAAsABNGgAAAAAAAAAAAAvQpAEAAAAAAAAAALAA\nTRoAAAAAAAAAAAAL0KQBAAAAAAAAAACwAE0aAAAAAAAAAAAAC9CkAQAAAAAAAAAAsABNGgAAAAAA\nAAAAAAvQpAEAAAAAAAAAALAATRoAAAAAAAAAAAAL0KQBAAAAAAAAAACwAE0aAAAAAAAAAAAAC9Ck\nAQAAAAAAAAAAsABNGgAAAAAAAAAAAAv8P43B650i4CS6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exp.plot_compression_experiments(res_t, comp_ratios,\n", + " \"../figs/compression_traffic.png\")\n", + "Image(filename=\"../figs/compression_traffic.png\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Reconstruction Error: FSWT vs GWT" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " GWT error| SWT error| Reduction\n", + "-----------------------------------------------\n", + " 2.2200923| 1.5877000| -0.2848496\n", + " 1.1735329| 0.8091524| -0.3104988\n", + " 0.6413987| 0.4088434| -0.3625753\n", + " 0.3337205| 0.2063473| -0.3816763\n", + " 0.1571017| 0.0444101| -0.7173164\n", + " 0.0660063| 0.0084063| -0.8726447\n", + "\n" + ] + } + ], + "source": [ + "reduction = np.divide(res_t['FSWT'], res_t['GWT']) - 1\n", + "text = \"{:>15s}|{:>15s}|{:>15s}\\n\".format('GWT error', 'FSWT error', 'Reduction')\n", + "text += \"-\"*47 + \"\\n\"\n", + "for i in range(len(comp_ratios)):\n", + " text += \"{:>15.7f}|{:>15.7f}|{:>15.7f}\\n\".format(res_t['GWT'][i], res_t['FSWT'][i], reduction[i])\n", + "print(text)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Human" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "G = io.read_graph(\"../\" + data.human[\"path\"] + \"human.graph\",\n", + " \"../\" + data.human[\"path\"] + \"human.data\")\n", + "F = io.read_values(\"../\" + data.human[\"path\"] + \"human.data\", G)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#vertices = 845\n", + "#edges = 1272\n" + ] + } + ], + "source": [ + "print(\"#vertices = \", G.number_of_nodes())\n", + "print(\"#edges = \", len(G.edges()))" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "algs = [static.OptWavelets(n=20), static.GRCWavelets(), static.Fourier(), static.HWavelets()]\n", + "\n", + "comp_ratios = [0.1, 0.20, 0.30, 0.40, 0.50, 0.60]\n", + "\n", + "res_h, time_h = exp.compression_experiment(G, F, algs, comp_ratios, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmQAAARQCAYAAADz8z6/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAuIwAALiMBeKU/dgAAIABJREFUeJzs3Xl8lNXd///3TPY9MSFAyEYEhSCLBQKEQKCoVZRipYIW\nW3Etet83aLVuj1rhrv6qFe3X2rqhVW8FqSLFhXp/K8omS9gXgbJmMQGTEAJkT8jM9w9+THPNTJKZ\nJDMThtfz8ZiHOddyzicKx2vO5zrnmKxWq1UAAAAAAAAAAADwGLOvAwAAAAAAAAAAAPB3JGQAAAAA\nAAAAAAA8jIQMAAAAAAAAAACAh5GQAQAAAAAAAAAA8DASMgAAAAAAAAAAAB5GQgYAAAAAAAAAAMDD\nSMgAAAAAAAAAAAB4GAkZAAAAAAAAAAAADyMhAwAAAAAAAAAA4GEkZAAAAAAAAAAAADyMhAwAAAAA\nAAAAAICHkZABAAAAAAAAAADwMBIyAAAAAAAAAAAAHkZCBgAAAAAAAAAAwMNIyAAAAAAAAAAAAHgY\nCRkAAAAAAAAAAAAPIyEDAAAAAAAAAADgYSRkAAAAAAAAAAAAPIyEDAAAAAAAAAAAgIeRkAEAAAAA\nAAAAAPAwEjIAAAAAAAAAAAAeRkIGAAAAAAAAAADAw0jIAAAAAAAAAAAAeBgJGQAAAAAAAAAAAA8j\nIQMAAAAAAAAAAOBhgb4OABe+pqYmffHFF9q2bZu2bdumo0ePqqKiQpWVlQoJCVFSUpJGjBihGTNm\naMqUKTKZTO3W+fXXX+t//ud/tGnTJpWUlKi+vl7R0dEaMGCAJk2apHvuuUcpKSle+O0AAAAAAAAA\nAOg8k9Vqtfo6CFzYiouLXU6OZGdna+nSperdu7fT83V1dbrtttu0bNmyNusJDw/Xn//8Z91xxx1u\nxwsAAAAAAAAAgLeRkEGnFRcXa+jQocrNzdWIESPUt29f9erVS3FxcTp9+rR27dqlN998U3v27JEk\nDRw4UNu3b1doaKhDXTfffLOWLl0qSYqLi9MDDzygrKwsxcfHq7CwUB988IEtWWMymfTpp5/qhhtu\n8N4vCwAAAAAAAABAB5CQQadZLBZJktnc+pZEZ8+e1U033aTPPvtMkvSXv/xF999/v+GaXbt2adiw\nYZKkHj16aPv27UpOTnao69VXX7XdO2zYMO3YsaNLfg8AAAAAAAAAADyl9RF0wEVms7nNZIwkBQYG\n6vHHH7eVV61a5XDNunXrbD/fc889TpMxkjR79mwlJSVJknbu3Knq6uqOhA0AAAAAAAAAgNcE+joA\n+MaRI0e0efNmFRcXq7GxUXFxcRowYICys7OdLiXWFaKjo20/nzlzxuF8y2Pp6emt1mMymZSWlqZj\nx45JkqqqqhQZGdl1gQIAAAAAAAAA0MVIyHQDJSUl2rx5s/Ly8rR582Zt3bpVVVVVtvNpaWkqKCjo\nkraWL1+u3/3ud9q+fbvT85GRkZo1a5aeeuopJSQkdEmb573//vu2nwcMGOBw/rLLLrP93Nbva7Va\nVVhYKEmKiYlRYmJi1wUJAAAAAAAAAIAHsIeMj6xfv14vvPCC8vLybDM9WtMVCZmGhgbdddddWrRo\nkUvX9+jRQ0uXLtX48eM73KbFYlFZWZn+9a9/aeHChVq8eLEkKTg4WDt37tTAgQMN19fX16t///4q\nLi5WYmKitm/frj59+jjU+9prr+m+++6TJD366KN69tlnOxwjAAAAAAAAAADewAwZH9myZYv+/ve/\ne6Uti8WiGTNm6JNPPjEcDwgIUGpqqmJiYpSfn6/Tp0/bzpWXl+u6667TypUrNWbMGJfbOnHihHr0\n6NHq+ZiYGC1evNghGSNJoaGh+uyzzzRlyhQVFxdr8ODBeuCBBzRq1ChdcsklKiws1JIlS/Txxx9L\nkmbMmKH58+e7HBsAAAAAAAAAAL7S9k7s8Imu3g/l+eefd0jGzJ49W0VFRTp69Kh27NihkydPatmy\nZUpNTbVdU1tbq+nTpxsSNR1lMpn0q1/9SgcOHNDkyZNbvW7YsGHasWOHnn76aVksFj311FO69tpr\nlZWVpZtvvlkff/yxRo0apaVLl2rJkiUKCQnpdGwAAAAAAAAAAHgaM2R8LCoqSsOHD9fIkSOVlZWl\nkSNHKj8/XxMnTuyS+isqKvTMM88Yjv3+97/XY489ZjhmNpv1k5/8RFlZWcrJybEtkVZcXKwXX3zR\n5ZkocXFx2rNnjySpublZFRUV2rhxo9544w299NJLOnDggF5//XWnS5Gdt3TpUi1atKjVRND27dv1\n7rvvqn///hoyZIhLcXW1U6dOac2aNbZySkoKySEAAAAAAAAA6GYaGhr03Xff2cq5ubmKjY31TTBW\n+MThw4ete/futTY3NzucW7VqlVWS7ZOWltbhdh555BFDXePHj7daLJY271m5cqXhnqioKOuJEyc6\nHIPVarVWVVVZr7nmGqska8+ePa379u1zuKa5udk6c+ZMW7sTJ060/u///q+1srLS2tjYaC0sLLS+\n8sor1sTERKska0REhPXTTz/tVFwdtXz5csO/Iz58+PDhw4cPHz58+PDhw4cPHz58+PDh0/0/y5cv\n98mYstVqtbJkmY9ceumlyszMlNnsuf8EFotFb7/9tuHYvHnzZDKZ2rxv0qRJGjdunK1cVVWlDz/8\nsFOxREZG6r333lNYWJhKS0s1e/Zsh2tef/11LVq0SJJ0880366uvvtKPfvQjxcbGKigoSKmpqbrv\nvvuUl5en+Ph41dTUaObMmTpx4kSnYgMAAAAAAAAAwNNIyPixDRs2qLy83FbOyMjQhAkTXLr3rrvu\nMpSXL1/e6XgSExOVk5MjSVq7dq2OHz9uOL9w4ULbzwsWLGg1cZSenq45c+ZIOpcs+uCDDzodGwAA\nAAAAAAAAnsQeMn5sxYoVhvLVV1/d7uyYlte2tHr1atXU1CgiIqJTMSUkJNh+LigoUO/evW3lffv2\nSTqXuElNTW2znpEjRzrc500pKSmG8vLly9WvXz+vxwEAAAAAAAAAaN3hw4d144032sr2Y7veRELG\nj+3cudNQzs7OdvnepKQkpaenq6CgQJLU2Nioffv2GRIhHVFcXGz7OSoqynAuMDBQDQ0Nampqaree\nltcEBQV1KqaOCAkJMZT79eunQYMGeT0OAAAAAAAAAIDr7Md2vYkly/zY/v37DeXMzEy37re/3r4+\ndxUUFGjTpk2SpIiICF166aWG8+fLlZWV2rVrV5t1ff311w73AQAAAAAAAADQXZGQ8VN1dXUqKioy\nHHN3Kpb99QcOHHB63aJFi3TixIk26yovL9f06dNtM1tuvfVWhYWFGa75yU9+Yvv5vvvuU3V1tdO6\n1q9fr9dff12SFBAQoBtuuKHtXwQAAAAAAAAAAB9jyTI/deLECVmtVls5KChIiYmJbtXRp08fQ7ms\nrMzpdQsXLtTdd9+tyZMna+LEicrMzFRcXJzOnj2rkpISrVmzRu+++64qKyslnVve69lnn3Wo58EH\nH9Tbb7+toqIibdy4UUOGDNF//ud/atSoUYqIiNDx48f1+eefa+HChbbEzpw5czo9Q6asrEzl5eVu\n3XP48OFOtQkAAAAAAAAAuLiQkPFT9rNLwsPDZTKZ3KojIiKizTpbqq+v17Jly7Rs2bI265w8ebLe\neustxcfHO5yLiYnRV199pWnTpmn37t3Kz8/XQw895LQek8mk//iP/9CCBQtc+E3a9sorr2j+/Pmd\nrgcAAAAAAAAAgNaQkPFT9smT0NBQt+uwX1KstYTMe++9py+++EIbNmzQvn37VFpaqvLycjU3Nysm\nJkb9+vXTqFGjdMstt2jUqFFtttmvXz9t3bpVy5Yt09KlS7V9+3aVlpaqoaFBUVFRysjI0NixY3Xn\nnXdq6NChbv9OAAAAAAAAAAD4AgkZP1VfX28oBwcHu11HSEiIoVxXV+f0upSUFN17772699573W7D\nmaCgIM2YMUMzZszokvoAAAAAAAAAAPA1EjJ+yn5GTGNjo9t1NDQ0tFmnv7j//vt18803u3XP4cOH\ndeONN3ooIgAAAAAAAACAvyEh46ciIyMNZfsZM66wnxFjX6e/SExMVGJioq/DAAAAAAAAAAD4MbOv\nA4Bn2CdPamtrZbVa3aqjpqamzToBAAAAAAAAAIBrSMj4qYSEBJlMJlu5qalJZWVlbtVRUlJiKDOL\nBAAAAAAAAACAjiEh46fCwsKUmppqOFZUVORWHfbXDxgwoNNxAQAAAAAAAABwMSIh48fsEyj79u1z\n6/79+/e3WR8AAAAAAAAAAHANCRk/NmzYMEN5w4YNLt97/PhxFRQU2MpBQUHKzMzsqtAAAAAAAAAA\nALiokJDxYzfccIOhvHLlSlmtVpfu/ec//2koT5w4UZGRkV0WGwAAAAAAAAAAF5NAXwcAz8nOzlZC\nQoJOnDghSTp69KhWr16tiRMntnvvW2+9ZShPnTrVIzECwMXKarXKYrG4nCgHAAAAgIuZyWSS2WyW\nyWTydSgA0GEkZPyY2WzWrFmztGDBAtux+fPna8KECW3+z+urr77SunXrbOWoqChNnz7do7ECgL+z\nWq2qr69XVVWVqqqq1NjY6OuQAAAAAOCCExAQoIiICEVFRSkiIkIBAQG+DgkAXMaSZX7u0UcfNSw1\ntmbNGj333HOtXl9SUqK7777bcGzu3LlKSEjwWIwA4O9qa2t15MgRFRQUqKKigmQMAAAAAHRQc3Oz\nzpw5o5KSEh08eFDFxcVqbm72dVgA4BJmyPjQ+vXrVVdX53B8165dhnJ9fb1WrlzptI6kpCRlZma2\n2kZCQoKeeOIJPfHEE7Zjjz/+uIqKivSb3/xGSUlJkiSLxaJPP/1Uc+fOVVFRkaH+hx56yK3fCwDw\nb7W1tSoqKmJpMgAAAADwgPMrEKSkpCgoKMjX4QBAm0xWRoh8Jj09XYWFhZ2q4/bbb9c777zT5jUW\ni0VTp07V559/bjgeEBCgtLQ0xcTEKD8/X6dOnTKcDwsL05dffqmxY8d2KkZ/tHfvXl1xxRW28rff\nfqtBgwb5MCIA3RHJGAAAAADwjsDAQKWmpiokJMTXoQDoZrrTWC4zZC4CZrNZH330ke644w4tWbLE\ndry5uVlHjx51ek98fLyWLl1KMgYAOshqterYsWMOyZigoCBFR0crMjJSQUFBbEgJAAAAAC6wWq1q\nbm5WXV2dqqqqVFtba/i+dfbsWZWWlio1NdWHUQJA20jIXCRCQ0P1wQcf6Kc//amefvpp7dy50+l1\nERERuv322/XUU08pMTHRy1ECgP+or69XU1OT4VhUVJT69OlDEgYAAAAAOiAoKEihoaGKi4tTY2Oj\nvvvuO8MenTU1NWpqamLpMgDdFgkZHyooKPB6m9OmTdO0adN0+PBh5eXlqaSkRI2NjYqNjdXAgQM1\nduxYhYaGej0uAPA3VVVVhnJQUBDJGAAAAADoIsHBwUpLS9ORI0dksVhsx0+fPq2EhAQfRgYArSMh\nc5Hq16+f+vXr5+swAMBv2SdkoqOjScYAAAAAQBcKDAxUdHS0YV9kEjIAujOzrwMAAMDfWK1Ww7R5\nSYqMjPRRNAAAAADgv6Kjow3lpqYmh708AaC7ICEDAEAXazld/jzWMAYAAACArmf/XctqtZKQAdBt\nkZABAKCLOXv4Z7kyAAAAAOh6ZrPj8Kazl+QAoDsgIQMAAAAAAAAAAOBhJGQAAAAAAAAAAAA8jIQM\nAAAAAAAAAACAh5GQAQAAAAAAAAAA8DASMgAAAAAAAAAAAB5GQgYAAAAAAAAAAMDDSMgAAAAAAAAA\nAAB4GAkZAAAAAAAAAAAADyMhAwAAAAAAAAAA4GGBvg4AAAAA3lVXV6ft27fr0KFDqqysVE1NjcLC\nwhQdHa3U1FRdeumlysjIkNnMuzsAfKO0tFS7du1SYWGhTp06pYaGBkVGRio2NlY9evTQ0KFDlZyc\n7OswAQAAALfwLRsAAMDH0tPTZTKZOvV54IEH2mzDarXqk08+0XXXXafo6Gjl5OTojjvu0K9+9Ss9\n+eSTevjhh3Xvvffq2muvVf/+/RUbG6uJEydq3rx5ysvLk8VicaizsbFR4eHhhjgOHDjg1u++aNEi\nh9/lySefdKuOhoYGhYWFGer49ttvNW/evE7/e3XlU1BQ4Fa8AJw7dOiQHnnkEfXv31+9evXSj370\nI91777165JFH9OSTT+rBBx/UHXfcoRtuuEEpKSlKTEzUT3/6U3300Ueqq6trtd5169YZ/s4mJSW5\nHds999zj8Hf/q6++cquONWvWGO7v0aOHrFarJkyY4PF+Kj093e3fGb539uxpVVXtVG3tQdXXF6up\nqVIWS4OsVquvQ/N79s9mq1ev9lhd3333neF8UFCQampq3GrjmWeecfh7/9Zbb7lVR2FhoeH+gIAA\nnT59WrNmzfLK8xQAXCyYIQMAADrOapWqqqTGRik4WIqKkvhC1e0UFhbqzjvv1Ndff+3yPVVVVVq9\nerVWr16t+fPna/ny5Zo6darhmuDgYI0ePVqrVq2yHVu7dq0uv/xyl9tZs2aNw7G1a9e6fL8k5eXl\nqb6+3laOj4/XoEGDtHTpUrfqwcXFYrWoorbC6+3Gh8fLbOK9uJZKSkr0yCOPaMmSJU6Tv60pLy/X\nxx9/rI8//lhRUVGaO3euHnroIcXGxhquy8rKUmhoqK2fOH78uA4dOqT+/fu73FZrfdWkSZM6XMf4\n8eMZhEQ7TNq5c4Kam0/bHTcrICBcZnPE///PcAUEhCsgIML287l/OpZbXm+833jOZArmz6eXpKSk\nqG/fvsrPz5cknT17Vhs2bNDVV1/tch2t9VF33XVXh+sYNmyYYmJiXL4fAOAaEjIAAMA9e/ZIH3wg\nbd4sbd8uVVb++1xcnPSDH0hZWdLPfiZdcYXv4oQk6ejRoxo/frxKSkoczgUHB6tv376KiYlRQ0OD\nTp48qZKSEqcDoq29jZubm+uQkLnnnntcjs9Z8mXz5s1qaGhQSEhIh+pgkBOuqKitUOKCRK+3W/Zw\nmXpE9PB6u93VihUr9Itf/EInT550ej4iIkIJCQlKSEhQQ0ODSktLVVFR4dBPVVVV6emnn9af//xn\nFRYWKjo62nYuJCREo0ePNryVvnbtWpcTMt9//70OHTrkcNzd5LH99bm5uW7dj4tPYGC0+vS5T0VF\nz9qdsai5uVrNzdVqavJM2yZTiLKy9issrK9nGoBBbm6uLSEjnesvXE3InD17Vhs3bnQ4Th8FAN0T\nCRkAAOCaFSuk556T1q1r/ZrKSumrr859fv97adw46bHHpMmTvRenH1iwYIGGDh3q1j2pqakOx5qa\nmjRlyhRDMsZkMmnmzJn65S9/qdGjRysw0Pg4WF1drW3btumLL77Q0qVLdeTIkTbbHT9+vKHszpf/\nsrIyp0uc1dfXa/PmzRo3bpxL9bQ2gPCLX/xCOTk5LtXx0EMPaffu3bbyr3/9a11zzTUu3durVy+X\nrgNg9N577+mOO+5Qc3Oz4figQYN09913a9KkSRo8eLDDfY2NjVq7dq2++OILffzxxyosLLSdO3Xq\nlBobGx3uGT9+vENCxtU3x1vr1/Ly8tTY2Kjg4OB262hqatKmTZsMx873VS+88IIqW77c0Ab7Adr3\n339fPXv2bPe+sLAwl+pH99Onz1x9992Lslod/1x7Us+et5GM8aLx48frnXfesZXdeZ7avn27qqur\nHY4XFBTou+++U0pKikv1tPY89cgjj+i2225zqY7bbrtNpaWltnJHnmkBwN+RkAEAAG2rqJD+67/O\nzYpx17p15z4/+5n0pz9J8fFdH58fGj58uCZMmNDpel577TXt27fPVg4NDdXHH3+syW0kyCIjI5Wb\nm6vc3Fw9++yzWrNmjf74xz8qICDA6fWjR49WcHCwbQC0qKhIBQUFLu1X0PKLf3BwsPr376+9e/dK\nOrdshisJGWdvhZ4fQMjIyFBGRka7dUhSXFycoZyZmamrrrrKpXsBuG/z5s266667DMmY2NhY/elP\nf9LMmTNlNre+rFtwcLCuuuoqXXXVVXr22Wf1zjvv6JlnnjEkZuzZv+ntbHmf1rTsq4YOHao9e/bI\nYrGorq5Omzdvdinxu23bNsOeEHFxcbZk0/Dhw12Oxd7YsWPZH8bPhYT0Uq9et+v48YVea9NkClZ6\n+m+91h4c+6i8vDyXZwu37KOSk5PV0NCg8vJySef6OleSKfYzAU0mk+05LDMzU5mZmS79HqGhoYZy\nVz3TAoA/YfFiAADQut27pSFDOpaMaWnx4nP17NnTNXHBJe+++66h/NRTT7WZjHEmNzdXy5cv15Qp\nU5yeDwsLU1ZWluGYq291trxuxIgRhhkprtZh/1ZobGyshgwZ4tK9AHzj5MmTmj59upparLWUnJys\nb775Rj//+c/bTMbYCwoK0j333KMDBw7ovvvua/W6MWPGGGayFBYW6rvvvnOpjZb90fXXX29427sj\n/Z0kjRs3zq3fExe3lJSHJHlvKc6kpF8qNNRx5i08JyMjQ8nJybZyQ0OD8vLyXLq3Zf8yfvx4Q5K4\no33U4MGDdckll7h0LwDAPTwBAgAA53bvliZMkI4d65r6jh2TcnNJynjJyZMntW3bNlvZbDa7tbeL\nOzq6bJn9AELLGTEbN27U2bNn3apDYpATuBDMmzfPMJslKChIn376qQYNGtThOkNCQvTKK69o6dKl\nTpcQCwsL04gRIwzHXJklU1lZqW+//dZWtu+rOjrYyd4McEd4+OVKSLjRK22ZzWFKTX3CK23BqCPP\nU1arVd98842hDvooAOje+LYKAAAcVVRI1113bk+YrlRZKV177bn64VEt942RpISEBMV7aMk4+y/t\nrnz5P3XqlPa0SM6NGzfO8EZndXW1tm/f3m49DCAAF5aKigq99dZbhmNPPPGErrzyyi6pf9q0aYqO\njnZ6riN91bp162S1WiVJAQEBys7ONgx2btiwwWEPHHsWi0Xr169vMxagPSkpj3ilneTkuQoJYW80\nX+hIH7Vnzx7DHlTjxo0z9FEHDhww7OnSGp6nAMB7SMgAAABH//VfXTczxt6xY9KcOZ6pGzZVVVWG\ncnsDhp2RnZ2twMB/b0146NAhHT9+vM171q1bJ4vFIunc7J2xY8eqR48eGjBggO2a9t5et1gshrdC\nJQYQgO7u1VdfVW1tra0cHh6uBx980Cttd2QfmZbXDBs2TFFRUYbBzqqqqnaTx7t27dKpU6ds5ejo\naA0bNszVsAFJUkzMaMXEtL+3WmcEBEQrJeXXHm0DrbPvozZs2NDubOGWfVRCQoIGDhyoK6+8UpGR\nkbbj7SV2Tp48aZgJKDnO1gEAdB0SMgAAwGjFis7vGdOexYvPtQOPiY2NNZQrKip0+PBhj7QVGRnp\nsCl1e1/+W54fMmSIYmJiJMmtZTbs3wqNiorqsrfsAXjGJ598YijffPPNtr//njZ27FhD8vjgwYPt\nvjnesh863z/17NlT/fv3d3pNe3VIUk5OjgICAlyOGzjP07NkUlIeVlAQ+4b4yuWXX66ePXvayjU1\nNYblZ51p2b/k5OTIZDIpICBAY8aMcXqNMy1nAkpSZmamevTo4W74AAAXkZABAABGzz3nnXb+8Afv\ntHORysjIUGhoqOHYo48+avjC3ZXcXffcfv+Y81ouW/bNN9/YZtG0V8f5exnkBLqv6upq7dixw3Ds\n+uuv91r7kZGRDknbtvoq+3hb66vcTcgwkw8dFR8/WeHhmR6pOygoQcnJD3ikbrjO3eepdevWOb2X\nPgoAui8SMgAA4N/27JFafLHzqLVrJbvlEdB1QkNDNWnSJMOxZcuWadKkSQ57GXQFd5YCqqmpMSzx\n03IAoeUMmVOnTmn37t2t1sMAAnBh2bhxo8PyiSNGjPBqDO70VevXrzfE27J/avmz/dvl9tbZ/X+V\nvgodZTKZlZrqmVkyqamPKTAwyiN1w3Xu9FH2+8O09jxlP6PYHs9TAOBdge1fAgAAvOrsWam42Ddt\nv/aad9t79VXp1z5aqzw5WQrsno9C27Zta3fN8JaGDx+uuLg4h+OPPfaYVtgtDbdq1Srl5OQoLS1N\n11xzjcaMGaOsrCwNHDhQZnPH39XJycmR2Wy2zWjZt2+fKioqFB8f73Ct/ZroLQcN+vbtqz59+qik\npETSuUGC1vZaYJDTP5y1nFXxGe/3eRW1FV5vU5KKTheppqnG6+0mRycr0OzbPu/gwYOGcnR0tPr2\n7evVGHJzc7VgwQJbua03x1ueGzhwoBISEmzllv1WZWWl9uzZoyFDhjjUsX//fpWXl9vKzpZ4RPdn\nsZxVQ4OPns3sREWNUVBQLzU1fd9ldQYF9dQll1yvurqCLquzo0JCkmX2cV/ljLvPZi3V19e7fK39\ns8z69etlsVicPqO17KOioqIMz0ujRo1SUFCQmpqaZLVatW7dOv34xz92qMPZzEWepwDAs7rf/+UA\nALjYFRdLXh6g8plXXjn38YX8fCk93Tdtt+Phhx926/pVq1ZpwoQJDsdzcnL05JNP6ne/+53DucLC\nQi1cuFALFy6UdG6QMCsrSxMmTNB1113n9lvrMTExGjp0qO1L/fkv/zfeeKPDtS0HEC6//HIlJiYa\nzo8bN05LliyxXTtnzhyHOuzfCo2IiPD6m/boGsVnitX3pYukz5M0YqFv/pzmz81Xemy6T9o+7+TJ\nk4ZyywSHt9gnj7/99ltVVlY6TWq3trSiJPXr10+9evXS999/b7vWWULGPuGTnZ1t2McGF4aGhmLl\n5flvP9XUVKotWwb6OgxJ0qhR+QoLS/d1GA7cfTbrqEGDBik+Pl4VFedeGjg/W9jZyykt+5fs7GzD\nsq3h4eEaPny4Nm3aZLvWWULGfibgZZddpl69enXZ7wMAcMSSZQAAAH7sv//7v/XSSy857Cdjr7q6\nWl9//bV++9vfauTIkbriiiv017/+tc09XOzZv1HZ2pvnzjbJbsl+KaD26pAY5AQuBPYJmZiYGLfu\nX7t2rVauXNnup61lGWNjYw2Jk/PJY3v19fXasmWLrdxeX+VKfyfx5jmAtplMJof+piuep+ijAKD7\nICEDAAB6HfucAAAgAElEQVTg5+bMmaNDhw7p/vvvd3kAdO/evbrrrruUlZWlwsJCl+5xZd3zhoYG\nbd682Va2f+tcMg4glJWVaf/+/Q7XMIAAXHiqqqoM5YiICLfuv+mmm3T11Ve3+5k5c2ab9bjSV+Xl\n5amhocFWbq+vYrATQFdxpY8qLCxUUVGRrdxeH7V9+3ZVV1c7XEMfBQDeR0IGAACgm1m1apWsVqvL\nH2fLldlLTk7WX/7yF5WWlurTTz/Vgw8+qBEjRig4OLjN+7Zt26asrCwdOXKk3TbGjRsnk8lkK+/a\ntUtnzpwxXJOXl2dYS93ZG51XXHGFYfkgZwOdDCAAF56oKOOG4TU13t9LR3JtNl/LAdC0tDSlpKQ4\nXNOy/yotLdWBAwcM548ePariFnvChYWFaeTIkR2OG4DvuPts1vKTlpbmVlv2fZSzWXwt+6iQkBBl\nZWU5XDN27Fjbc1lzc7PD7MH6+nrDSzLO2gYAdD0SMgAAABeRkJAQTZkyRS+++KK2bNmiqqoqbd26\nVS+99JKmTJniNEFTVlamadOmGdYYdyY+Pl6DBg2ylZ19+W858JmSkqJ0J/v4mEwmjR071uk9klRQ\nUGB4KzQsLMzpQASA7uWSSy4xlE+fPu2TOOyTxzt27HCYvdPW/jHnDRkyxDDr0L6vsi+PGTOm3SQ4\nAAwdOtTQt5SXlzvMFm7Zv2RlZSkkJMShnksuucTwXGbfJ23atEmNjY22ckZGhpKTkzsdPwCgbSRk\nAAAALmLBwcEaPny45syZo08//VTHjh3Tr3/9a8PGsNK52S5Llixpt772ltlob71zZ+faG+QcPXo0\ng5zABcA+IXN+02pXnThxwunb56tWrXKrnoSEBGVmZtrK9snjpqYm20bYUut9ldlsVnZ2tq3cVn8n\n8eY5ANeYzWbl5OQYjnXF8xR9FAB0D+x8CgBAd5OcLOXn+6bt226T2tgMucuNHSu9/7732muJNwCd\nio+P1x/+8AeNHz9eN954o2FWzPvvv+/S3gx/+ctfbOWWX/bPnj2rjRs32sqtvXUuGQcQiouLdfTo\nUWVkZDjUeb5NXLiSo5OVP9f7fV5FbYVGLBzh9Xa33rNV8eHxXm83Odr3fd5ll11mKJ8+fVoFBQVO\nZ8p5Wm5urvbu3Wsrr127Vtdee62kc0s1tlxOrb2+6osvvpDkuKwQfZX/CAlJ1qhRPno2a8fBg7NV\nWfl/3b7v8sv/qtjYiR6IqHNCQnzfV3UHubm5WrFiha28du1azZ49W5L0/fff69ChQ7Zz7fVRr776\nqiRpy5Ytqq+vV2hoqK1O+zYBAJ5HQgYAgO4mMFDyweCUJGn8eO8mZHJzffe7ok033HCDbr/9dv31\nr3+1Hfvmm2/avc9+UGDr1q2qq6tTWFiYw4aybb3ROXz4cIWFhamurk7SuUEDEjL+KdAcqPTYdK+3\nGxHk3obyXSU1JlU9Inr4pG1fGzNmjAICAgyJ3q1bt/okITN+/Hi98sortnLLfqXlz4mJibr88stb\nradlP1ZUVGRLMB07dsyw91ZISIhGjRrVVeHDy8zmQIWFpfs6DKfS0+e5nZCJjs5Wr16zDEv3oXux\nf55qmfBt2UcFBAQYZurZa9lHNTY2atOmTZowYYLDTECJ5ykA8BaWLAMAAP92663+3R7cMn36dEO5\nurq63T0fevbsaRi8bGpqss2KaTmAYL9kkL3g4GDD4OX5e+3fCg0JCdHo0aNd+G0A+FpkZKSuvPJK\nw7F//OMfPonFfuBxy5YthgTweW0ljiVp5MiRhr0bzt9rnzgeNWqU7a10oCvFxIxWTEzbf07tZWT8\nfyRjurnhw4crMjLSVj4/W1gy9i/Dhg1TVFRUq/UkJycbkt7n77WfCZiamuqT5DgAXIxIyAAAgH8b\nPFhqZ/Cpy4wfL11xhXfaQoc4+2JeW1vb7n2t7SPjziCn/TXO6pDObWTLICdw4Zg6daqh/OGHH+rM\nmTNej6NXr16GJdTOvzlusVgM+8m0tRSQdC4pnJWVZSu31lfx5jk8KSXlEZevjYu7WrGx/Hns7gID\nAx1mvjjrX9rroyTXnqfoowDAe0jIAAAAo0cf9a920GEt35w8Lz6+/b0v7L/Ur127VhaLxbDkmbsJ\nmaNHj6qkpIQBBOACd9999yk8PNxWrqmp0UsvveSTWJz1Vbt379apU6dsx9ztq1qbIUNfBU+Kj5+s\n8PDWZ5221Lfv0x6OBl3FWR918uRJffvtt7Zj7vZRmzZtUlNTE30UAPgQCRkAAGB0/fWeX0rsZz+T\nJk/2bBvotC1bthjKvXr1UnBwcLv32b+tmZeXp23btqmysrLVa5w5v9/EeWvXrrW92XkeAwjAhSU+\nPl533nmn4djTTz+t3bt3ez0W+37Ivo+JiYnR0KFD262n5WDn4cOHtWfPHu3bt892LCgoSGPGjOmC\niAHnTCazUlJ+3e518fFTFR2d1e516B6c9VHr1q2T1Wq1HXM3IVNbW6u8vDyHfQF5ngIA7yEhAwAA\nHL38spSU5Jm6k5KkP/3JM3XD5sSJE1q8eLEsFkuH7m9sbNTLL79sOPajH/3IpXuTk5OVkZFhK9fV\n1WnBggW2clRUlIYNG9ZuPfb7Tfz973/X3r17beWgoKA2N7IF0D3NmzdPKSkptnJjY6N+/OMf61//\n+pdX47AfgNy4caO++uorWzk7O1tmc/tfme2ve/rppw0DpiNHjjTMCgI8oWfPnyk4uK1nN5P69v2d\n1+JB52VlZSksLMxWPnr0qBYvXmwrDxw4UAkJCe3WM2DAAPXo0cNWfvnllw17AiYlJalfv35dFDUA\noD0kZAAAgKP4eOl//1eKi+vaeuPiztXrwrJX6Jzq6mrNnDlTgwcP1vvvv2/brNoV9fX1uu222wzJ\nD0n6xS9+4XId9gOdS5cutf2cnZ1tmPnSlpZvdX788ceGQc4RI0YwyAlcgOLj4/W3v/1NQUFBtmOF\nhYUaO3aslixZYvh77oqDBw92KI6UlBT17dvXVq6rq9OKFStsZVdm8klSdHS0YSZNy/5O4s1zeIfZ\nHKzk5AdbPZ+YeIsiIwd7MSJ0VnBwsEaPHm041rJ/cbWPkqScnByndUj0UQDgbSRkAACAc4MHS2vW\ndN1MmaSkc/UNZjDAm/bt26ef//zn6tWrl+655x599NFHOn78uNNrjx07pldeeUUDBw7URx99ZDh3\n00036Yc//KHL7doPErScqePK8hrOrrWf7cMAAnDhGjNmjN544w3DzJKTJ0/q1ltv1ZVXXqmXX35Z\n+/fvd3qv1WpVfn6+XnvtNeXk5OiXv/xlh+Ogr4I/SUq6VwEBMU7OBCg9fb7X40Hn0UcBgP8J9HUA\nAACgGxs8WNq9W5ozR2qxRILbfvazc8uUMTPGZ86cOaM333xTb775pqRzb6gnJCQoNjZW9fX1On78\nuMrKypzeO2rUKL399ttutdfWl/uOvtHpThsAur9Zs2YpLi5Os2bN0qlTp2zHd+3apTlz5kg6t3Rh\njx49lJCQIKvVqqqqKhUXF6umpsZpnQkJCfrtb3/rcgy5ubl69913HY6HhoZq5MiRLtczbtw4/cnJ\ncpyBgYEaO3asy/UAnREYGK0+fe5TUdGzhuO9e9+h8PD+PooKndFVz1NtJW94ngIA72KGDAAAaFt8\nvLRokfT555IbX/wknbt+xYpz95OM8arIyMg2N6OuqKjQgQMHlJeXp127djlNxpjNZs2ePVtffvml\noqOj3Wq/b9++hj0izgsJCVFWlusbCvfo0UMDBgxwOB4QEMAgJ+AHpk6dqt27d2vGjBkymUwO56ur\nq5Wfn68tW7Zo69atOnDggNNkTFxcnB5++GEdOnRId955p8vttzYQOWrUKAUHB7tcT2uDnT/4wQ8U\nGRnpcj1AZ/XpM0cm07//7JpMwUpLe9KHEaEzRo8e7bQvSktLc/qc1Zorr7zSaV/Us2dPp89ZAADP\nISEDAABcc/3155Yc27NHeuIJ6aqrHPeYiYs7d/yJJ85dt2aNNHmyb+K9yCUkJGjnzp06cuSIXnzx\nRU2ZMkVxLu4J1Lt3b82dO1c7d+7Uq6++qqioqA7F4GygMysrSyEhIW7V42yg88orr+xwXAC6l5SU\nFC1ZskT79+/XQw89pIyMDJfu69mzp2688UYtWbJEx48f1/PPP6/Y2Fi32s7IyFBycrLDcXfePD8f\nS//+jjMQ3K0H6KyQkN7q1evfe74lJc1WaGiqDyNCZ4SFhTl9kcXdviUgIEBjxoxxOO7OsmcAgK5h\nsrq7YyIA7d27V1dccYWt/O2332rQoEE+jAhAd3L27FkdOnTIcKx///4KDPTDlUKtVqm6WmpokEJC\npMhIyckbzugerFarCgsLdfDgQRUVFen06dOqq6tTeHi4oqKilJSUpKFDhzodnAT8jcVqUUVthdfb\njQ+Pl9nEe3HtOX78uHbv3q3CwkJVVlaqsbFRUVFRiouLU3x8vAYPHqy0tDRfhwl0S7W1B7R580CZ\nzWEaPfqogoN7+jokwKMuqu9fADqkO43l0jMBAICOM5mkqKhzH3R7JpNJ6enpSk9P93UogM+ZTWb1\niOjh6zDQit69e6t3796+DgO4IIWHX66EhKkKDx9AMgYAgG6GhAwAAAAAAIAfSUt7UqGh6b4OAwAA\n2CEhAwAAAAAA4Eeion7g6xAAAIATLF4MAAAAAAAAAADgYSRkAAAAAAAAAAAAPIyEDAAAAAAAAAAA\ngIeRkAEAAAAAAAAAAPAwEjIAAAAAAAAAAAAeRkIGAAAAAAAAAADAw0jIAAAAAAAAAAAAeBgJGQAA\nAAAAAAAAAA8jIQMAAAAAAAAAAOBhJGQAAAAAAAAAAAA8jIQMAAAAAAAAAACAh5GQAQAAAAAAAAAA\n8DASMgAAAAAAAAAAAB5GQgYAAAAAAAAAAMDDSMgAAAAAAAAAAAB4GAkZAAAAAAAAAAAADyMhAwAA\nAAAAAAAA4GEkZAAAAAAAAAAAADyMhAwAAAAAAAAAAICHkZABAAAAAAAAAADwMBIyAAAAAAAAAAAA\nHkZCBgAAAAAAAAAAwMNIyAAAAAAAAAAAAHgYCRkAAAAAAAAAAAAPIyEDAAAAAAAAAADgYSRkAAAA\nAAAAAAAAPIyEDAAAAAAAAAAAgIcF+joAXPiampr0xRdfaNu2bdq2bZuOHj2qiooKVVZWKiQkRElJ\nSRoxYoRmzJihKVOmyGQyebQeAAAAAAAAAAC6GxIy6LTS0lJNnTrV6bmmpiYdPHhQBw8e1OLFi5Wd\nna2lS5eqd+/eHqsHAIALTXp6ugoLCztVx9y5c/XAAw+ob9++XRRV65566inNmzfP4+0AAAAAAOBP\nSMigS1xyySXKzc3ViBEj1LdvX/Xq1UtxcXE6ffq0du3apTfffFN79uzRhg0bNGnSJG3fvl2hoaEe\nqwcAAAAAAAAAgO6EhAw6LSkpSeXl5TKbnW9JlJubq/vvv1833XSTPvvsM+3fv19//etfdf/993uk\nHgAAAAAAAAAAuhsSMui01hIoLQUGBurxxx/XZ599JklatWqVQyKlq+oBAHjHyaYmzdi3z3Dsb5mZ\nuiQoyEcR+Y8FCxZo6NChbt2TmpqqXr166csvv3Tp+n/+8596/vnnbeUhQ4bohRdecOnejIwMt2ID\nAAAAAAAkZC5aR44c0ebNm1VcXKzGxkbFxcVpwIABys7O9tgSYNHR0bafz5w54/N6AACds6SsTCsr\nKw3H/lZWpvv69PFRRP5j+PDhmjBhQofuveqqq1y6rri42FCOi4tz+V4AAAAAAOA+EjLdQElJiTZv\n3qy8vDxt3rxZW7duVVVVle18WlqaCgoKuqSt5cuX63e/+522b9/u9HxkZKRmzZqlp556SgkJCV3S\n5nnvv/++7ecBAwb4vB4AQOe88/33To+RkAEAAAAAAHBEQsZH1q9frxdeeEF5eXk6duyYx9traGjQ\nXXfdpUWLFrV5XXV1tf785z/rb3/7m5YuXarx48d3uE2LxaKysjL961//0sKFC7V48WJJUnBwsGbP\nnu31egAAXWdvTY22tHh54LzNVVXaV1OjzIgIH0QFAAAAAADQfZGQ8ZEtW7bo73//u1faslgsmjFj\nhj755BPD8YCAAKWmpiomJkb5+fk6ffq07Vx5ebmuu+46rVy5UmPGjHG5rRMnTqhHjx6tno+JidHi\nxYs1cOBAr9QDAPCMd53Mjml57rlLL/ViNAAAAAAAAN1f+7uow+siIyO7tL7nn3/eIRkze/ZsFRUV\n6ejRo9qxY4dOnjypZcuWKTU11XZNbW2tpk+fbkjUdJTJZNKvfvUrHThwQJMnT/Z5PQCAjjtrsei9\n0tJWz79XWqqzFosXIwIAAAAAAOj+mCHjY1FRURo+fLhGjhyprKwsjRw5Uvn5+Zo4cWKX1F9RUaFn\nnnnGcOz3v/+9HnvsMcMxs9msn/zkJ8rKylJOTo5tz5ri4mK9+OKLmj9/vkvtxcXFac+ePZKk5uZm\nVVRUaOPGjXrjjTf00ksv6cCBA3r99dfVp539BbqqHgCA+6xWq040NbV6ftWpU/q+sbHV88cbG/X3\nEyc0ITa21WsSgoJkMpk6FScAAAAAAMCFhISMj0yZMkXXXHONBgwYILPZOFEpPz+/y9r5wx/+oKoW\na/yPHz9ejz76aKvX9+nTR2+++aauuuoq27E//vGPmjNnjuLj49ttLyAgQFdccYXh2A9/+EPNnTtX\n06ZN04oVKzR8+HCtWrWqzeXGuqoeAID7dlVX68pt2zpVx/R9+9o8v3PECA3t4hmhAAAAAAAA3RlL\nlvnIpZdeqszMTIdkTFeyWCx6++23DcfmzZvX7hvJkyZN0rhx42zlqqoqffjhh52KJTIyUu+9957C\nwsJUWlqq2bNn+7QeAEDrlp044fk2yss93gYAAAAAAEB3wgwZP7ZhwwaVtxjwysjI0IQJE1y69667\n7tK6dets5eXLl+u+++7rVDyJiYnKycnRl19+qbVr1+r48ePq3bu3z+oBgO7qrMWi4oYGn7X/t7Iy\nr7RxR69eHm+nLckhIQr04IsRnbFt2zadPXvW5euHDx+uuLg4D0YEAAAAAAA6i4SMH1uxYoWhfPXV\nV7u8Xv/VV19tKK9evVo1NTWKiIjoVEwJCQm2nwsKCjqcSOmqegCgOypuaFDfvDxfh+FRB+rqfP47\n5o8apfSwMJ/G0JqHH37YretXrVrl8ksXAAAAAADAN7rna6HoEjt37jSUs7OzXb43KSlJ6enptnJj\nY6P2tbMfgCuKi4ttP0dFRfm8HgAAAAAAAAAAvIGEjB/bv3+/oZyZmenW/fbX29fnroKCAm3atEmS\nFBERoUsvvdSn9QAAAAAAAAAA4C0kZPxUXV2dioqKDMdSUlLcqsP++gMHDji9btGiRTrRzgbQ5eXl\nmj59upqamiRJt956q8LslonpqnoAALjQrVq1Slar1eUPy5UBAAAAAND9sYeMnzpx4oSsVqutHBQU\npMTERLfq6NOnj6Fc1somzwsXLtTdd9+tyZMna+LEicrMzFRcXJzOnj2rkpISrVmzRu+++64qKysl\nSf369dOzzz7rsXoAAAAAAAAAAOhuSMj4qerqakM5PDxcJpPJrToiIiLarLOl+vp6LVu2TMuWLWuz\nzsmTJ+utt95SfHy8R+txR1lZmcrLy9265/Dhw51uFwAAAAAAAABw8SAh46fskyehoaFu12G/FFhr\nCZn33ntPX3zxhTZs2KB9+/aptLRU5eXlam5uVkxMjPr166dRo0bplltu0ahRo1ptr6vqcdcrr7yi\n+fPnd1l9ANBZySEhyu/Cfq4r3HPggFaeOtWhe6+Oi9Mbl13WxRF1XnJIiK9DAAAAAAAAFxESMn6q\nvr7eUA4ODna7jhC7gaq6ujqn16WkpOjee+/Vvffe63YbnqgHAC50gWaz0rvR/lhWq1W7amo6fP+u\n6mqlhYa6PVMTAAAAAADAn5h9HQA8w35GTGNjo9t1NDQ0tFknAODicLS+XuVNTR2+v6ypSfl2LwoA\nAAAAAABcbJgh46ciIyMNZfsZM66wnxFjX6e/uP/++3XzzTe7dc/hw4d14403eigiAOheNp4+3fk6\nzpxRRjea9QMAAAAAAOBtJGT8lH3ypLa2Vlar1a3lYmrslqfx14RMYmKiEhMTfR0GAHRbG8+cafN8\nRmiorFKbs2A2nj6tmT17dnFkAAAAAAAAFw6WLPNTCQkJhuRLU1OTysrK3KqjpKTEUCZpAQAXp7YS\nMr/o2VM7RozQzhEj9PM2Ei7tJXUAAAAAAAD8HQkZPxUWFqbU1FTDsaKiIrfqsL9+wIABnY4LAHBh\nsVqtqm1udjgeExCgDwYO1LsDByo6MFDRgYH6n4EDtXjgQEUHBDhcX9PcLKvV6o2QAQAAAAAAuiUS\nMn7MPoGyb98+t+7fv39/m/UBAPyfyWTSthEjNLdPH52fd5kTE6NdI0fqFiczYm7t2VO7RozQ2Ojo\nc/dLeiA5WdtGjHBr2UwAAAAAAAB/Q0LGjw0bNsxQ3rBhg8v3Hj9+XAUFBbZyUFCQMjMzuyo0AMAF\nJCIgQP+nf3+tHTZMf8jI0KqhQ5UWGtrq9elhYVo9bJiey8jQ2mHD9Md+/RThZNYMAAAAAADAxYSE\njB+74YYbDOWVK1e6vFzMP//5T0N54sSJioyM7LLYAAAXnpzYWP06NVWB5vYfHwLNZj2Smqqc2Fgv\nRAYAAAAAAND9kZDxY9nZ2UpISLCVjx49qtWrV7t071tvvWUoT506tStDAwAAAAAAAADgokJCxo+Z\nzWbNmjXLcGz+/PntzpL56quvtG7dOls5KipK06dP90SIAAAAAAAAAABcFEjI+LlHH33UsNTYmjVr\n9Nxzz7V6fUlJie6++27Dsblz5xpm2gAAgK5VUFAgq9Vq+0yYMMHjbc6aNcvQpquzaAEAAAAAQMcE\n+jqAi9n69etVV1fncHzXrl2Gcn19vVauXOm0jqSkJGVmZrbaRkJCgp544gk98cQTtmOPP/64ioqK\n9Jvf/EZJSUmSJIvFok8//VRz585VUVGRof6HHnrIrd8LAAAAAAAAAAAYkZDxoZkzZ6qwsLDd60pL\nS3X11Vc7PXf77bfrnXfeafP+Rx99VBs2bNDnn39uO/bqq6/qjTfeUFpammJiYpSfn69Tp04Z7gsL\nC9OHH36oWDZkBgAAAAAAAACgU1iy7CJgNpv10Ucf6ZZbbjEcb25u1tGjR7Vjxw6HZEx8fLz+8Y9/\naOzYsd4MFQAAAAAAAAAAv0RC5iIRGhqqDz74QEuXLtWwYcNavS4iIkL333+/9u3b55X16wEAAAAA\nAAAAuBiwZJkPFRQUeL3NadOmadq0aTp8+LDy8vJUUlKixsZGxcbGauDAgRo7dqxCQ0O9HhcAAAAA\nAAAAAP6MhMxFql+/furXr5+vwwAAAAAAAAAA4KLAkmUAAAAAAAAAAAAeRkIGAAAAAAAAAADAw0jI\nAAAAAAAAAAAAeBgJGQAAAAAAAAAAAA8jIQMAAAAAAAAAAOBhJGQAAAAAAAAAAAA8jIQMAAAAAAAA\nAACAh5GQAQAAAAAAAAAA8DASMgAAAAAAAAAAAB5GQgYAAAAAAAAAAMDDSMgAANDFTCaTwzGr1eqD\nSAAAAADAv1ksFodjZjNDngC6J3onAAC6mLOH/6amJh9EAgAAAAD+zf67lslkcvqSHAB0ByRkAADo\nYiaTScHBwYZj1dXVPooGAAAAAPzXmTNnDOWgoCASMgC6LRIyAAB4QFRUlKF85swZli0DAAAAgC50\n9uxZh4RMTEyMj6IBgPaRkAEAwAPsEzJNTU0qKSkhKQMAAAAAXaCxsVGFhYUOe8iQkAHQnQX6OgAA\nAPxRaGiogoKCDOsZV1VV6ciRI4qOjlZkZKQCAwPZbBIAAAAAXGC1WtXc3Kza2lpVV1ertrbW4YW3\niIgIBQUF+ShCAGgfCRkAADzAZDIpKSlJRUVFhi8JTU1NqqioUEVFhQ+jAwAAAAD/EhQUpJ49e/o6\nDABoE6/lAgDgIeHh4UpNTWVDSQAAAADwoJCQEKWlpSkkJMTXoQBAm0jIAADgQeeTMkybBwAAAICu\nFxUVpbS0NL5zAbggsGQZAAAeFh4erksvvVQNDQ06c+aMqqqq1NjY6OuwAAAAAOCCExAQoMjISEVG\nRioiIkIBAQG+DgkAXEZCBgAALzCZTAoNDVVoaKgSExNltVplsVgcNqEEAAAAADgymUwym80sCQ3g\ngkZCBgAAHzCZTLzJBQAAAAAAcBFhDxkAAAAAAAAAAAAPIyEDAAAAAAAAAADgYSRkAAAAAAAAAAAA\nPIyEDAAAAAAAAAAAgIeRkAEAAAAAAAAAAPAwEjIAAAAAAAAAAAAeRkIGAAAAAAAAAADAw0jIAAAA\nAAAAAAAAeBgJGQAAAAAAAAAAAA8jIQMAAAAAAAAAAOBhJGQAAAAAAAAAAAA8jIQMAAAAAAAAAACA\nh5GQAQAAAAAAAAAA8DASMgAAAAAAAAAAAB5GQgYAAAAAAAAAAMDDSMgAAAAAAAAAAAB4GAkZAAAA\nAAAAAAAADyMhAwAAAAAAAAAA4GEkZAAA/4+9ew+vqj7zBf7uvZMAISFEAsglXKzTImgPtioWVFDq\nM20fO95asVNG6aAe5ZyKPtraelrR2svYmzNT6U2d1s5YbbXWSm07VS4tAy3UEZmK1ip3ELmJyE0g\nyT5/AJFACNlJVvYm+Xyeh2fvtfZav/UubSXZ3/V7fwAAAABAwgQyAAAAAAAACRPIAAAAAAAAJEwg\nAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIA\nAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAA\nAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAA\nALrUs20AACAASURBVAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwgQyAAAAAAAACRPIAAAA\nAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMAAAAAAJAwgQwAAAAA\nAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMbWLp0qUxffr0mDBhQpx00klRXl4eJSUl\n0adPnxg3blx8+ctfjvXr1zd7vFmzZsWkSZNi2LBhUV5eHsXFxdGrV68YM2ZM3HbbbbF69eoE7wYA\nAAAAANpWKpvNZvNdBMe2SZMmxQMPPHDU43r06BHTp0+PiRMnHvGYXbt2xcSJE+Oxxx5rcqzS0tK4\n55574hOf+ETO9baFJUuWxMknn1y//fzzz8eIESPyUgsAAAAAAI0rpO9yi/JyVTqUNWvWRERE9+7d\n48Mf/nCcd9558a53vSvKy8tj9erV8cgjj8SDDz4Yb775ZlxxxRVRXFwcEyZMaHSsK664oj6Mqays\njBtuuCHOOOOM6NWrV6xcuTIeeuiheOyxx2Lnzp0xefLk6N27d1xwwQXtdq8AAAAAANASZsjQaldc\ncUW8973vjcmTJ0dZWVmjxzz88MPxsY99LCIiqqqqYuXKlVFaWtrgmMWLF8fIkSMjIqJ3797x7LPP\nxsCBAw8b6zvf+U5MmTIlIiJGjhwZixYtasvbaZZCSlUBAAAAAGhcIX2Xaw0ZWu1HP/pRTJ069Yhh\nTETE5ZdfHhdddFFERGzatCmefvrpw46ZO3du/furr7660TAmIuLaa6+N/v37R0TEc889F9u3b29N\n+QAAAAAAkDgtyzqppUuXxsKFC2PNmjWxZ8+eqKysjGHDhsXo0aOja9euiVxz/Pjx8fjjj0dExF//\n+tfDPn/zzTfr3w8ZMuSI46RSqRg8eHC8+uqrERGxbdu2JsMgAAAAAADIN4FMAVi7dm0sXLgwFixY\nEAsXLoxnnnkmtm3bVv/54MGDY8WKFW1yrccffzzuvPPOePbZZxv9vKysLCZNmhTTpk2LqqqqNrnm\nAXv27Kl/n8lkDvv8ne98Z/37pu43m83GypUrIyKioqIi+vTp03ZFAgAAAABAArQsy5N58+bFJZdc\nEgMGDIiBAwfGJZdcEnfddVfMnj27QRjTVnbv3h0TJ06Miy+++IhhTETE9u3b45577onhw4fH73//\n+zatYfbs2fXvG+vRd8EFF9S3Kbvvvvti7dq1jY7zve99r352zLXXXttouAMAAAAAAIXEDJk8+dOf\n/hQ///nP2+VadXV1MWHChPjFL37RYH8mk4lBgwZFRUVFLF++PLZu3Vr/2caNG+ODH/xgPP300/G+\n972v1TU888wz8etf/zoiIgYMGBDnnnvuYcd07do1ZsyYER/+8IdjzZo1ccopp8QNN9wQo0aNiuOO\nOy5WrlwZDz/8cPzsZz+LiIgJEybEHXfc0eraAAAAAAAgaWbIFKC2Xg/la1/72mFhzLXXXhurVq2K\nZcuWxaJFi+L111+Pxx57LAYNGlR/zM6dO+Oyyy5rENS0xPbt22PSpElRW1sbERFf+cpXori4uNFj\nR44cGYsWLYovfvGLUVdXF9OmTYsPfOADccYZZ8RHP/rR+NnPfhajRo2KRx99NB5++OHo0qVLq2oD\nAAAAAID2IJDJs/Ly8hg3blx86lOfikceeSRWrFgRM2bMaLPxN2/eHF/60pca7PvKV74S3/nOd6J/\n//71+9LpdFx88cUxf/78GDJkSP3+NWvWxDe/+c0WX7+uri4+/vGPx5IlSyIi4vLLL49/+Id/aPKc\nRx99NB588MEjBkHPPvtsPPDAA/E///M/La4LAAAAAADak0AmTz784Q/HkiVL4o033ojZs2fHV7/6\n1fjIRz4SgwcPbtPrfPWrX22wJs0555wTt9xyyxGPHzBgQNx3330N9t19992xefPmnK+dzWbj6quv\njieeeCIiIkaNGnXY2Aerq6uLiRMnxnXXXRcvvvhinHvuufGb3/wmtmzZEnv27ImVK1fGt7/97ais\nrIwZM2bE6NGj2zS8AgAAAACApAhk8uQd73hHDB8+PNLp5P4V1NXVxQ9+8IMG+26//fZIpVJNnjd+\n/Pg4++yz67e3bdsWP/3pT3O6djabjSlTpsS//du/RUTEqaeeGr/5zW+ie/fuRzzne9/7Xjz44IMR\nEfHRj340Zs6cGX/7t38bPXv2jOLi4hg0aFBcd911sWDBgujVq1fs2LEjPv7xj8emTZtyqg0AAAAA\nANqbQKYDmz9/fmzcuLF++4QTTohx48Y169zJkyc32H788cdzuvYnP/nJ+O53vxsREe9+97vjqaee\nip49ezZ5zr333lv//utf//oRg6MhQ4bE9ddfHxH7wqKHHnoop9oAAAAAAKC9CWQ6sCeffLLB9vnn\nn3/U2TEHH3uwOXPmxI4dO5p17ic/+cmYPn16RESccsopMXPmzOjVq9dRz3vhhRciIqJPnz4xaNCg\nJo89/fTTDzsPAAAAAAAKlUCmA3vuuecabI8ePbrZ5/bv3z+GDBlSv71nz55mBR/XX3993HPPPRER\nMWLEiJg5c2ZUVVU165pFRUUREbF3796jHnvwMcXFxc0aHwAAAAAA8kUg04G9+OKLDbaHDx+e0/mH\nHn/oeIeaOnVqfOtb34qIfWHMrFmzonfv3s2+3jve8Y6IiNiyZUssXry4yWNnzZp12HkAAAAAAFCo\nBDId1K5du2LVqlUN9lVXV+c0xqHHv/TSS0c89sYbb4x//dd/jYh9Qc6sWbOiT58+OV3v4osvrn9/\n3XXXxfbt2xs9bt68efG9730vIiIymUxccMEFOV0HAAAAAADaW1G+CyAZmzZtimw2W79dXFycc0Ay\nYMCABtsbNmxo9Lhbbrkl/vmf/zkiInr37h3f+ta3YsOGDUc8PiKisrLysPFvvPHG+MEPfhCrVq2K\nP/zhD/Hud787/u///b8xatSo6N69e6xbty5++ctfxr333lvfsuz6669v9QyZDRs2xMaNG3M655VX\nXmnVNQEAAAAA6FwEMh3UobNLSktLI5VK5TRG9+7dmxzzgJ/85Cf17zdu3Bjjx48/6thXXnll/PCH\nP2ywr6KiImbOnBmXXnpp/M///E8sX748brrppkbPT6VS8X/+z/+Jr3/960e91tF8+9vfjjvuuKPV\n4wAAAAAAwJEIZDqoQ8OTrl275jxGt27dmhwzCSeeeGI888wz8dhjj8Wjjz4azz77bKxfvz52794d\n5eXlccIJJ8SYMWPiH//xH+N//a//lXg9AAAAAADQFgQyHdRbb73VYLukpCTnMbp06dJge9euXY0e\nt2LFipzHbkpxcXFMmDAhJkyY0KbjAgAAAABAvghkOqhDZ8Ts2bMn5zF2797d5JgdxZQpU+KjH/1o\nTue88sorcdFFFyVUEQAAAAAAHY1ApoMqKytrsH3ojJnmOHRGzKFjdhR9+vSJPn365LsMAAAAAAA6\nsHS+CyAZh4YnO3fujGw2m9MYO3bsaHJMAAAAAACgeQQyHVRVVVWkUqn67b1798aGDRtyGmPt2rUN\nts0iAQAAAACAlhHIdFDdunWLQYMGNdi3atWqnMY49Phhw4a1ui4AAAAAAOiMBDId2KEBygsvvJDT\n+S+++GKT4wEAAAAAAM0jkOnARo4c2WB7/vz5zT533bp1sWLFivrt4uLiGD58eFuVBgAAAAAAnYpA\npgO74IILGmw//fTTkc1mm3Xub3/72wbb5557bpSVlbVZbQAAAAAA0JkIZDqw0aNHR1VVVf32smXL\nYs6cOc069/7772+wfeGFF7ZlaQAAAAAA0KkIZDqwdDodkyZNarDvjjvuOOosmZkzZ8bcuXPrt8vL\ny+Oyyy5LokQAAAAAAOgUBDId3C233NKg1djvfve7uOuuu454/Nq1a+Oqq65qsG/q1KkNZtoAAAAA\nAAC5Kcp3AZ3ZvHnzYteuXYftX7x4cYPtt956K55++ulGx+jfv38MHz78iNeoqqqKW2+9NW699db6\nfZ/97Gdj1apV8bnPfS769+8fERF1dXXxxBNPxNSpU2PVqlUNxr/ppptyui8AAAAAAKChVLa5q7zT\n5oYMGRIrV65s1RhXXnll/PCHP2zymLq6urjwwgvjl7/8ZYP9mUwmBg8eHBUVFbF8+fJ44403Gnze\nrVu3eOqpp2LMmDGtqrEjWrJkSZx88sn1288//3yMGDEijxUBAAAAAHCoQvouV8uyTiCdTscjjzwS\nl19+eYP9tbW1sWzZsli0aNFhYUyvXr3iV7/6lTAGAAAAAADagECmk+jatWs89NBD8eijj8bIkSOP\neFz37t1jypQp8cILL8S4cePar0AAAAAAAOjArCGTRytWrGj3a1566aVx6aWXxiuvvBILFiyItWvX\nxp49e6Jnz55x0kknxZgxY6Jr167tXhcAAAAAAHRkAplO6sQTT4wTTzwx32UAAAAAAECnoGUZAAAA\nAABAwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAA\nACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABA\nwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRM\nIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwgQy\nAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMA\nAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwgQyAAAA\nAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMAAAAA\nAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwgQyAAAAAAAA\nCRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMAAAAAAJAw\ngQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwgQyAAAAAAAACRPI\nAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMAAAAAAJCwonwX\nAAC0j5qarbFr1/LIZEojnS6NTKZ7ZDKlkUqVRCqVynd5AAAAAB2aQAYAOo1UPPfcuKit3XrI/vT+\nkKb7QWHNvsDmwPsDAc6h2wcf3/D8hp8JfQAAAIDOTiADAJ1EUVGPGDDguli16p8O+aQuamu3R23t\n9ti7N5lrp1Jd4owzXoxu3YYmcwEAAADoBHS/OLYJZACgExkwYGqsXv3NyGb3tOt1+/adKIwBAACA\nVtP94lgmkAGATqRLl+Pj+OOvjHXr7m23a6ZSJTFkyG3tdj0AAOgsPCkPnY/uF8c2gQwAdDLV1TfF\nunX3RUS2Xa7Xv///jq5dB7XLtQAAoHPxpDx0RrpfHLsEMgDQyZSWviuqqi6KTZt+nvi10uluMWjQ\nrYlfBwAAOiNPykPnpPvFsSud7wLoGJYuXRrTp0+PCRMmxEknnRTl5eVRUlISffr0iXHjxsWXv/zl\nWL9+fZNj7N27N5544omYNm1aXHDBBTF8+PDo27dvlJSURHl5ebzrXe+Kj3/84/HEE09ENts+T3UD\ndFTV1Z9ul+sMHDg1unQ5vl2uBQAAndGAAVMjlSpp9+t6Uh7yq7r6pohov1lqul+0jVTWN9u00qRJ\nk+KBBx446nE9evSI6dOnx8SJExv9fM2aNVFdXd2sa44ePToeffTR6NevX061tpUlS5bEySefXL/9\n/PPPx4gRI/JSS2voNQud26JF58TWrXMTGz+T6RFnnrk8iouPS+waAABAxEsvXdPuT8qPGvWyL2ch\nz55//pJ2634xatSyY/aBy0L6LlfLMlptzZo1ERHRvXv3+PCHPxznnXdevOtd74ry8vJYvXp1PPLI\nI/Hggw/Gm2++GVdccUUUFxfHhAkTGh3ruOOOi7Fjx8Zpp50WQ4cOjeOPPz4qKytj69atsXjx4rjv\nvvviz3/+c8yfPz/Gjx8fzz77bHTt2rU9b7eD0WsWOrPq6k8nGshUV98sjAEAgHZgnUjonKqrP90u\ngYzuF23HDBla7Yorroj3vve9MXny5CgrK2v0mIcffjg+9rGPRUREVVVVrFy5MkpLSxscU1dXFxER\n6fSRO+nV1NTEJZdcEjNmzIiIiOnTp8eUKVPa4jZyUkipamstW/bZRnrNJk+vWci/bLYu/vSnU2Ln\nzhfafOzi4qoYNWpZFBWVt/nYAADA4TwpD52T7hdHV0jf5VpDhlb70Y9+FFOnTj1iGBMRcfnll8dF\nF10UERGbNm2Kp59++rBj0ul0k2FMRERRUVF89rOfrd+ePXt2C6vmAL1mofNKpdIxaFAya8kMGvQZ\nYQwAALQj60RC55T0//d1v2hbWpZ1UkuXLo2FCxfGmjVrYs+ePVFZWRnDhg2L0aNHJ9YCbPz48fH4\n449HRMRf//rXFo/To0eP+vdvvvlmq+vq7Lp0OT6OP/7Kdu81O2TIbe12PeDI+vT5WCxb9v9iz561\nbTZmSUn/6N+//WcvAgBAZ1ZRcWZUVJyd+JPy1dWfSmx8IHe9en0oSkuHJ9b9YuDAG9p83M5MIFMA\n1q5dGwsXLowFCxbEwoUL45lnnolt27bVfz548OBYsWJFm1zr8ccfjzvvvDOeffbZRj8vKyuLSZMm\nxbRp06KqqqpNrnnAnj176t9nMpkWj/Mf//Ef9e+HDRvWqprYR69ZKDx1dTVRV/dW1NXt2v/a1Pu3\nora2eccdvH3gnNrabUcvKAdlZSNj3brvR1HRcVFcfNxBr72iqKhnpNN+/AAAgCRYJxI6nwPdL/7y\nl0ltPrbuF23PNyJ5Mm/evPjGN74RCxYsiFdffTXx6+3evTsmT54cDz74YJPHbd++Pe655574yU9+\nEo8++micc845bVbDwe3FcunRV1dXFxs2bIi//OUvce+998aPf/zjiIgoKSmJa6+9ts3q68xKS98V\nVVUXtVuv2UGDbk38OtAWstnaNgk8jnZcY+dE1Ob79lvs9dd/Fa+//qsjfp7JVBwS1DT22uuQfZWR\nTrd/e0UAADiWeFIeOifdL44dApk8+dOf/hQ//3nyX35H7As0JkyYEL/4xS8a7M9kMjFo0KCoqKiI\n5cuXx9atW+s/27hxY3zwgx+Mp59+Ot73vve1uoZnnnkmfv3rX0dExIABA+Lcc89t8vhNmzZF7969\nj/h5RUVF/PjHP46TTjqp1bWxT3X1p9slkNFrllxls3WJBB5HD1d2RTZbk+/b75Bqa7dGbe3WiFie\n03mZTNkRw5umwp1MJplWnAAAUGg8KU8SstlsRGQjm62LiLr9r7WHbNdFNtv4vobbje9rfLxcjm3N\ntVtbZ/Ouncw/o7f31dS0bfeLwYM/F5lMtzYdE4FMQSorK4vt27e32Xhf+9rXDgtjrr322vj85z8f\n/fv3j4h9oc0vfvGLuOGGG2LVqlUREbFz58647LLL4vnnn4+KiooWX3/79u0xadKkqK3d97T3V77y\nlSguLm7RWKlUKm688cb49Kc/HX379m1xTRxOr1maks1mDwkx2ibwaE7LrWx2z9ELpFOord0etbXb\nY/fuVTmdl053qw9ojhbeHPyaTpdGKpVK6G4AACAZhfCkfDabPea+zBY2HPna7dXinsLRtevQ6Ndv\ncr7L6JAEMnlWXl4e733ve+P000+PM844I04//fRYvnz5UWeQNNfmzZvjS1/6UoN9X/nKV+Izn/lM\ng33pdDouvvjiOOOMM+Kss86qX7NmzZo18c1vfjPuuOOOFl2/rq4uPv7xj8eSJUsiIuLyyy+Pf/iH\nfzjqeZWVlfHnP/85IiJqa2tj8+bN8Yc//CG+//3vx7/8y7/ESy+9FN/73vdiwIABLaqLxuk1W9j2\n/UC7p80Dj+a03Mpmd+f79qHF6up2xZ49a3P+hTSV6tKs4ObQkCeTKRPkAADQ7rLZbNTWvhk1NW9E\nnz6XxZo1d7fZ2LW12+OPfxzS7C/xgWPbkCG3axuekFR235wz2tnSpUtj9+7dMWzYsEin0w0+mzNn\nToNAZvDgwfUBSa5uueWW+OpXv1q/fc4558ScOXOa/KJo5syZ8f73v79+u7y8PJYvXx69evXK6drZ\nbDauuuqq+Ld/+7eIiBg1alTMnDkzunfvnuNdvG379u1x6aWXxm9/+9vo27dvzJ49Oy9ty5YsWRIn\nn3xy/fbzzz+f07o4hSqbrYs//emUxHrNjhq17Jif3rwvFNmb+KyQI4UkQOFLpYqaCHEOXRvn7dei\noh6RSqWPfgHIQU3N1ti1a3lkMqWRTpdGJtM9MpnSSKVKBIcAUIDq6vZGTc2WqKl5o/51794th+2r\nqdmyf//B+94IYQjQWqWlJ8Xpp/85UqlMvktpM4X0Xa4ZMnnyjne8I/Fr1NXVxQ9+8IMG+26//faj\n/vI9fvz4OPvss2Pu3H0zJbZt2xY//elP47rrrmv2tbPZbEyZMqU+jDn11FPjN7/5TavCmIh97dz+\n/d//PYYMGRLr16+Pa6+9Nn73u9+1akzediz1mq2r25tI4NGcdUlM1aUQpFJFkU53jXS62/7Xro1s\nv/0+k2necatW3RVvvjkv53p69booiot7xt69r0dNzesHvW6ObHZvAv8EClc2WxN7926IvXs35Hhm\nOoqKKhusjdOcGTpFRT071A/KtLVUPPfcuP3rNh0svT+k6X5QWLMvsDnw/kCAc+j2wcc3PL/hZ0If\nADqjfbNUdjQzQNlySOjyRtTV7cj3LQCd3JAhX/A7ZoIEMh3Y/PnzY+PGjfXbJ5xwQowbN65Z506e\nPLk+kImIePzxx3MKZD75yU/Gd7/73YiIePe73x1PPfVU9OzZs9nnN6VPnz5x1llnxVNPPRW///3v\nY926ddGvX782GZtkes0WFVVGJtMjXn31e80KPJqzLklEbZvVBy2Xrg8zGgYebRuSHD5e10ink/kr\nvLi4dyxa9L6czunRY3ScfPJjjX7x+vYvpK83EtY09ro59u49EOR0tlZ5dVFTszlqajbneF4qiop6\nNnttnAMt1oqKKhP73xGFo6ioRwwYcF2sWvVPh3xSV78u096EMtNUqkucccaL0a3b0GQuAAAJqaur\nidrarc0KUA7ed+A1m63J9y0AtEhZ2anRu/cl+S6jQ/NbeAf25JNPNtg+//zzm/2U4vnnn99ge86c\nObFjx45mzXD55Cc/GdOnT4+IiFNOOSVmzpyZc7uzo6mqqqp/v2LFCoFMG0qnS6K6+sZYuvTmNhuz\npmZL/PWv17TZeNBQqpmBR1uHJF0jnS7O9823uYqKM6Oi4uyc1pM64YQvH/Hvl1QqFUVFZVFUVBZd\nuw7KqZba2l1HCXA2N/pZ53uqMFv/RcBbby3N6cxMpsdRQpzGZulURjrdJaF7IQkDBkyN1au/Gdns\nnna9bt++E4UxkAdaFcK+h4Lq6na1sO3Xlqit3ZbvWwDqZfa3dk4f9NrYvnQOx2YOO7exfbkd23hN\nzT+2eXU299jVq78e27YtyPmf9tChX9RKO2ECmQ7sueeea7A9evToZp/bv3//GDJkSP3aNXv27IkX\nXnghTj/99CbPu/766+Oee+6JiIgRI0bEzJkzG4QnbWXNmjX178vLj+01SQpRv35Xx4oVdzbS3gSO\nrOngonUhSVPnpVLFvlxoY9XVn252IFNZeX707Dk2kToymW6RyQyILl0G5HReXd3u/b9YNz775kgh\nT23tm4ncRyGrrX1z/32vyOm8dLp7I0HN0VusZTLdErkPmtaly/Fx/PFXxrp197bbNVOpkhgy5LZ2\nux5wMK0K6Riy2bqoqdnaorZfNTVb2v1BBApFe37ZLhRIvk5/p7RUly4DW9T94rjjPphQRRwgkOnA\nXnzxxQbbw4cPz+n84cOH1wcyB8ZrKpCZOnVqfOtb34qIfWHMrFmzonfv3jldszlWrFgRf/zjHyMi\nonv37u2yHk9nc+T2JhS6VKpLE4FHc0OS5rfOOnCeX747ll69PhSlpcNj584Xjnrs0KFfbIeKcpNO\nd4kuXY6PLl2Oz+m8fQuovtHk7JvGXvctntq51paqq9sRu3fviN27V+d0XjrdtT68yaXFWjpd6r8x\nrVRdfVOsW3dftNf/Vvv3/985z4oD2oZWhRSStx+Uyb3tV03N1uhsP2MlIZMpj2y2Zv96qLkZOPDG\nKCs79RgKBfy8CAe0dfcL2o5ApoPatWtXrFq1qsG+6urqnMY49PiXXnrpiMfeeOON8a//+q8RsS/I\nmTVrVvTp0yen6z344IPxt3/7t03OqNm4cWNcdtllsXf/bxAf+9jHols3T9smYcCA6/PS3qQjSKVK\nmj27o21DkhLTSmkTqVQ6qqs/FS+99Ikmj+vV68Lo0eOMdqoqeel0cZSU9I6SktweJshma/d/oXD0\nAGfv3s0H7dsSEXXJ3EyBqqt7K/bseTX27Hk1p/NSqZJmhTeHtljLZMr9QrFfaem7oqrqoti06eeJ\nXyud7haDBt2a+HWAI9OqkLaybz3Abc0KUBprCdaSEIBDZaKoqGcUF1dGUVHl/rUD336/b3/DfW+/\n9ox0uii2bv1ji56Uf8c7vuFnKTiGFUr3CxoSyHRQmzZtimz27SdJiouLcw5IBgxo2CJmw4YNjR53\nyy23xD//8z9HRETv3r3jW9/6VmzYsOGIx0dEVFZWHjb+vffeG1dddVV86EMfinPPPTeGDx8e9LHJ\nWQAAIABJREFUlZWVUVNTE2vXro3f/e538cADD8SWLVsiIuLEE0+Mf/qn1s/g2LBhQ2zcuDGnc155\n5ZVWX7fQdenSL44//or9T9Mee1Kp4ha3wGrd+iJdhCJ0CH37/n0sX/7/mvjiPBVDh97ZrjUVqlQq\ns79dV27rpe1rw/FmEyHOkWfpdLaFYrPZPbFnz2uxZ89rOZ6ZaSLAOXKLtaKiig753/Lq6k+3SyAz\ncODUnGeoAW1Lq0IO9vYs4Nzbfu2bCdy5HiBJQjpdWh+UNAxQjh6uZDJlrQ5FPCkPndOx3v2ioxLI\ndFDbt29vsF1amnurj+7duzc55gE/+clP6t9v3Lgxxo8ff9Sxr7zyyvjhD3942P633norHnvssXjs\nsceaPP9DH/pQ3H///dGrV25ffjXm29/+dtxxxx2tHqcjqq6+Odatuz9aPk08c1CAkdz6IoeHJF33\nT2cGWiqdLomBA2+MZcs+1ejnffpcHmVlp7RzVR1LKpWO4uKeUVzcM7p1O6HZ5+17UnX7IUFNc1qs\nbe6Esx5rY+/ejbF378bYldMDuqn9X5i8Hd40p8XagadQC1VLvozJVSbTI6qrG//vBtC+tCrsOPb9\n3b+jRW2/9u7dEnV1O/J9Cx1AqpEQpbFZK41/lk6X5PsGPCkPnVBn7X5R6Ar3N0Za5dDwpGvXrjmP\ncWgrsCMFMm3l3//93+PXv/51zJ8/P1544YVYv359bNy4MWpra6OioiJOPPHEGDVqVFx++eUxatSo\nRGthn9a0Nzn55CeiqurDCVQFtJf+/a+JlSu/2MiiwJkYMkSQnS+pVCqKisqjqKg8unYd3Ozzstls\n1NXtOqRtWnNeN3fCdiPZ/esDvZ7zmfu+iGne+jhvt1irjHS6OIH7OFwuX8a0bPybo7j4uMTGB5pP\nq8LCcqDFaUvafu1boL5zzY5NQirV5YgBytFmrexrg3psz571pDx0TrpfFB6BTAf11ltvNdguKcn9\naYwuXbo02N51hEdLV6xYkfPYjamuro5rrrkmrrnmmjYZj7bRkvYmPXqMjl69LkioIqC9HGlR4H79\nPhGlpX+Tp6poqVQqFZlMaWQypRGR27pytbW79rc3OXp4c/B2bW2yD3MUogNftr311rKczstkyo8Y\n3DQ1Qyed7nL0wQ+Sy5cxuSouroqBA29o83GBltOqsG0d+PuwOQHKoW2/amvfzHf5HUIm06NFbb+K\niiojk8n9QdWOxJPy0DnpflF4BDId1KEzYvbsyb1Fye7du5scs6OYMmVKfPSjH83pnFdeeSUuuuii\nhCoqLHrNQuc2YMD1DRYFTqVKYvDgz+e5KtpbJtMtMplu0aVL/5zOq6vbc8Qgp6mZOofPyur4amu3\nRW3ttti9e2VO56XTpUeYdXPk2TkDB06Nv/71f7f5PQwa9JkoKipv83GBltOqsKG312/Lve1XTc0b\nkc3uPvpFaFIqVXRQUHL0Rekbzmip0Jq6lTwpD52T7heFRSDTQZWVlTXYPnTGTHMcOiPm0DE7ij59\n+kSfPn3yXUZB02sWOq8uXfrF8cdfsb8HfUT//tfqD0+zpdMlUVLSN0pK+uZ0Xl1dzf4vwg4ENc1Z\nI+f1qKnZEu21VkKhqKvbGbt374zdu9fktY7i4j7Rs+f42Lnz5UilMvu/MMvUv29620MckKSO1qqw\nrm53i9t+1dRsjc7290QSMpmyZgYoh7cES6dzX9+WtuNJeeicdL8oLAKZDurQ8GTnzp2RzWZz+sFn\nx46GC/911ECGo9NrFjq36uqbY926+yOd7haDB+sPT/LS6aIoKamKkpKqnM7b9+TzGzmtj3NgO6Iu\nmZvpJPbu3RD//d+ntmKE5oY3R9pOt+LcTKRS6Vace3gN+asjfchnx/Z6B7SNQmtVuG+B+m0tavtV\nU7OlE65rloTM/qAkl9kpB95XtNu6ZyTDk/LQOel+UTgEMh1UVVVVpFKpyGb3Pf2zd+/e2LBhQ/Tt\n2/wnVNeuXdtg2yySzkuvWejc9i0KfGGUlg7LeaYDtKdUKr1/zZXcntTOZuuitnZbkwHOkVqsZbN7\nE7qbzqY2stnayHpwPQGdMdxq7T00Fm4deuyxE3alUukYNOjT8Ze/TGrzsY8/fnLs3PlikwHK4S3B\n3oiI2javpbNJp7vlPDvlwL59C9SbpdJZeVIeOifdLwqHQKaD6tatWwwaNChWrny7D/mqVatyCmRW\nrVrVYHvYsGFtVh/HHr1moXMbPPjz0bXrkHyXAYlIpdJRVFQRRUUVETG02efte8p7x1Fn3zQW7liH\ngPYj7ErOsRNuRWQjk+nR5gvLr159V6xefVebjtl5pPb/3XP0AKWx9VbS6S75vgGOYZ6Uh85J94vC\nIJDpwIYNG9YgkHnhhRfi9NNPb/b5L7744mHj0XnpNQudW3n5e/JdAhScVCoVRUVlUVRUlvPTZbW1\nu446+6axkKeubmdCdwPkTtjV2aVSJc0OUA5vCdbjmJppRcfiSXnonHS/KAwCmQ5s5MiR8Z//+Z/1\n2/Pnz48rr7yyWeeuW7cuVqxYUb9dXFwcw4cPb+sSOcboNQsAbSOT6RaZzIDo0mVATufV1r61v/1P\n8wKcA+9ra7cldCcAx7ZMpryZAcrhLcHS6a5af3HM8qQ8dE66X+SfQKYDu+CCC+Kuu96ePv70009H\nNptt1g+Mv/3tbxtsn3vuuVFWVtbmNXJs0WsWAPIrk+kamUy/6NKlX07n1dXt3b++Q8PQZseOv8Tq\n1V9JqFqA5KVSRTksSt+wJVgmUxHptK9F6Jw8KQ+dk+4X+ecnjw5s9OjRUVVVFZs2bYqIiGXLlsWc\nOXPi3HPPPeq5999/f4PtCy+8MJEaOfboNQsAx550ujhKSvpESUmfwz7btesvsWnTz3Mec/jwR6Ky\n8v3xdtumfX+Ovl2Xw7FH3j54nJaPVdfqOtrinqCzS6e757Qo/cHhSybT3SwVaCFPygO0P4FMB5ZO\np2PSpEnx9a9/vX7fHXfcEePGjWvyB9aZM2fG3Llz67fLy8vjsssuS7RWjh16zQJAx1Jd/emcA5ke\nPUZH796X+hK0jewLhuqi9cFQ24RMwi5yl94flDR/Ufq391VEOl2S7xuATsmT8gDtTyDTwd1yyy3x\n3e9+N7Zv3x4REb/73e/irrvuis985jONHr927dq46qqrGuybOnVqVFVVJV4rxw69ZgGg46ioODMq\nKs6OrVvnHv3g/U444cvCmDaUSqX3L+7t17O21jHDrtpW3VNt7Y7YufOFFv3z7NJlULzjHd+M4uJe\nDWa0ZDJlFqgHAGgGP/Hn0bx582LXrl2H7V+8eHGD7bfeeiuefvrpRsfo379/DB8+/IjXqKqqiltv\nvTVuvfXtL80/+9nPxqpVq+Jzn/tc9O/fPyIi6urq4oknnoipU6fGqlWrGox/00035XRfdHx6zQJA\nx1Jd/elmBzKVledHz55jE64I2oawq3HPP39Ji1oVvvOd34levT6UQEUAAJ1DKpvNZvNdRGc1ZMiQ\nWLlyZavGuPLKK+OHP/xhk8fU1dXFhRdeGL/85S8b7M9kMjF48OCoqKiI5cuXxxtvvNHg827dusVT\nTz0VY8aMaVWNHdGSJUvi5JNPrt9+/vnnY8SIEXmsqP1t2/ZsdO06JIqLj8t3KQBAK2WzdfGnP53S\nrKfm3/OeBdGjxxntUBWQlK1b/xiLFr0vp3N69Bgdp576X2bHAQDHnEL6Ltec4k4gnU7HI488Epdf\nfnmD/bW1tbFs2bJYtGjRYWFMr1694le/+pUwhiMqL3+PMAYAOohUKh3V1Z866nG9el0ojIEO4ECr\nwlxoVQgA0HoCmU6ia9eu8dBDD8Wjjz4aI0eOPOJx3bt3jylTpsQLL7wQ48aNa78CAQDIq759/z5K\nSvo3cUQqhg69s93qAZJVXf3pZh+rVSEAQNvQSDePVqxY0e7XvPTSS+PSSy+NV155JRYsWBBr166N\nPXv2RM+ePeOkk06KMWPGRNeuXdu9LgAA8iudLomBA2+MZcsanynTp8/lUVZ2SjtXBSSlV68PRWnp\n8Ga1Khw69IvtUBEAQMcnkOmkTjzxxDjxxBPzXQYAAAWkf/9rYuXKL0Zt7dZDPsnEkCF35KUmIBkH\nWhW+9NInmjxOq0IAgLajZRkAABAREUVFPWLAgOsO29+v3yeitPRv8lARkCStCgEA2pdABgAAqDdg\nwPWRSpXUb6dSJTF48OfzWBGQlAOtCo9Eq0IAgLYlkAEAAOp16dIvjj/+ivrt/v2vja5dB+WxIiBJ\n/ftfE5lMRSOfaFUIANDWBDIAAEAD1dU3R0Qq0unSGDz41nyXAyRIq0IAgPYjkAEAABooLX1XVFVd\nGAMHXh8lJX3zXQ6QMK0KAQDaR1G+CziS2tra2LFjR/12t27dori4OI8VAQBA5zF48Oeja9ch+S4D\naAcHWhWuW3dfRGhVCACQlIKdIfPAAw9EZWVl/Z+5c+fmuyQAAOg0ysvfE8XFx+W7DKCdaFUIAJC8\ngp0hs379+shmsxER0bNnzzjvvPPyXBEAAAB0TAdaFZaWDtOqEAAgIQUbyJSVlUVERCqVisGDB+e5\nGgAAAOjYtCoEAEhWwQYy/fr1y3cJAAAA0GmUl78n3yUAAHRoBbuGzEknnRQREdlsNlavXp3nagAA\nAAAAAFquYAOZESNGxIgRIyIiYsuWLbFgwYI8VwQAAAAAANAyBRvIRERcc8019e+nTZuWx0oAAAAA\nAABarqADmSlTpsSYMWMim83GU089FTfffHO+SwIAAAAAAMhZQQcymUwmZsyYEWeddVZks9m4++67\n45xzzok5c+bkuzQAAAAAAIBmK8p3AU35whe+EBERY8eOjZdffjnWr18f8+bNi/Hjx0ffvn3jtNNO\ni6FDh0aPHj2iuLg4p7Fvu+22JEoGAAAAAAA4TEEHMrfffnukUqn67VQqFdlsNiIiXnvttXjyySdb\nPLZABgAAAAAAaC8FHcg05uCApiWy2WyrxwAAAAAAAMhFwQcyB2bEAAAAAAAAHKsKOpCZPXt2vksA\nAAAAAABotYIOZMaOHZvvEgAAAAAAAFotne8CAAAAAAAAOjqBDAAAAAAAQMIEMgAAAAAAAAnrEIHM\n9u3bY926dbF9+/Z8lwIAAAAAAHCYonwXkKtt27bFj3/84/j9738ff/zjH2P16tVRW1tb/3kmk4lB\ngwbFmWeeGWPHjo2PfexjUVZWlseKAQAAAACAzu6YCWR27twZn/vc5+K+++6LHTt2RERENps97Lia\nmppYtmxZLF++PB566KG4+eab4+qrr44777wzunXr1t5lAwAAAAAAHBstyxYvXhwjR46Mf/mXf4nt\n27fXBzGpVOqIfyL2BTbbtm2Lu+++O0aOHBmLFy/O520AAAAAAACdVMHPkHnppZfi/e9/f2zevDki\n9oUw2Wy2PpQpLy+PXr16Rffu3WPHjh2xefPm2LZtW/35B45/+eWX4/zzz4958+bF3/zN3+TlXgAA\nAAAAgM6poGfI7N27N/7u7/4uNm/eXD/zJZvNxplnnhnf//73Y+nSpbF169ZYtmxZ/PnPf45ly5bF\n1q1bY+nSpXHvvffG+973vshms/Xnbtq0Kf7u7/4uampq8n1rAAAAAABAJ1LQgcz06dPj5Zdfrg9i\nysvL4+GHH4758+fHVVddFUOHDm30vKFDh8bkyZNj3rx58dOf/jR69OhR/9lf//rXmD59envdAgAA\nAAAAQGEHMt/+9rfrw5jS0tKYNWtWXHbZZTmN8ZGPfCRmz54d3bp1qx9LIAMAAAAAALSngg1kXn75\n5XjllVciYt86MHfccUe85z3vadFYI0eOjNtvv71+3ZmlS5fGyy+/3Ga1AgAAAAAANKVgA5lFixZF\nREQ2m43i4uKYPHlyq8a76qqrori4uH77ueeea9V4AAAAAAAAzVWwgcyGDRsiYt/smKFDh0bPnj1b\nNV7Pnj3jhBNOqN9ev359q8YDAAAAAABoroINZLZv317/vkePHm0yZnl5ef37HTt2tMmYAAAAAAAA\nR1OwgUxVVVVE7GtZtnbt2jYZ89VXX61/36tXrzYZEwAAAAAA4GgKNpDp379//ft169bF888/36rx\nlixZ0iCQOXh8AAAAAACAJBVsIDNmzJgoKiqKVCoVERG33357q8Y7+PyioqI466yzWjUeAAAAAABA\ncxVsIFNRURFnn312ZLPZyGaz8fOf/zy+8IUvtGisL33pS/Gzn/0sUqlUpFKpOOecc9psXRoAAAAA\nAICjKdhAJiJi2rRpERGRSqUim83GHXfcERdddFEsXbq0WecvW7YsLrnkkrjtttvqx4iIuO222xKr\nGQAAAAAA4FBF+S6gKeecc05MnDgx/uM//qM+UJkxY0b88pe/jLPOOivOO++8ePe73x1VVVXRvXv3\n2LFjR2zevDkWL14cs2bNiv/6r/+qn2FzYHbMxIkT4+yzz873rQEAAAAAAJ1IQQcyERH3339/rFu3\nLmbOnFm/nkxdXV3MnTs35s6d2+S5Bwcx2Ww2zj///Lj//vvbo2wAAAAAAIB6Bd2yLCKiuLg4nnzy\nybjxxhsj4u2Q5cD7I/2JeLvVWSqViptuuilmzJgRRUUFn0EBAAAAAAAdTMEHMhERJSUl8Y1vfCMW\nLFgQl19+eRQXF9eHLkeSzWajuLg4/v7v/z4WLFgQX/va16KkpKSdKgYAAAAAAHjbMTVd5LTTTosf\n//jHsXXr1vjDH/4QCxYsiJUrV8aWLVti+/btUVZWFpWVlTF48OA488wz48wzz4yKiop8lw0AAAAA\nAHRyx1Qgc0BFRUV84AMfiA984AP5LgUAAAAAAOCoCjaQqa2tjR07dtRvd+vWLYqLi/NYEQAAAAAA\nQMsU7BoyDzzwQFRWVtb/mTt3br5LAgAAAAAAaJGCDWTWr18f2Ww2stlsVFRUxHnnnZfvkgAAAAAA\nAFqkYAOZsrKyiIhIpVIxePDgPFcDAAAAAADQcgUbyPTr1y/fJQAAAAAAALSJgg1kTjrppIiIyGaz\nsXr16jxXAwAAAAAA0HIFG8iMGDEiRowYERERW7ZsiQULFuS5IgAAAAAAgJYp2EAmIuKaa66pfz9t\n2rQ8VgIAAAAAANByBR3ITJkyJcaMGRPZbDaeeuqpuPnmm/NdEgAAAAAAQM4KOpDJZDIxY8aMOOus\nsyKbzcbdd98d55xzTsyZMyffpQEAAAAAADRbUb4LaMoXvvCFiIgYO3ZsvPzyy7F+/fqYN29ejB8/\nPvr27RunnXZaDB06NHr06BHFxcU5jX3bbbclUTIAAAAAAMBhCjqQuf322yOVStVvp1KpyGazERHx\n2muvxZNPPtnisQUyAAAAAABAeynoQKYxBwc0LZHNZls9BgAAAAAAQC4KPpA5MCMGAAAAAADgWFXQ\ngczs2bPzXQIAAAAAAECrFXQgM3bs2HyXAAAAAAAA0GrpfBcAAAAAAADQ0RXsDJna2trYsWNH/Xa3\nbt2iuLg4jxUBAAAAAAC0TMHOkHnggQeisrKy/s/cuXPzXRIAAAAAAECLFGwgs379+shms5HNZqOi\noiLOO++8fJcEAAAAAADQIgUbyJSVlUVERCqVisGDB+e5GgAAAAAAgJYr2ECmX79++S4BAAAAAACg\nTRRsIHPSSSdFREQ2m43Vq1fnuRoAAAAAAICWK9hAZsSIETFixIiIiNiyZUssWLAgzxUBAAAAAAC0\nTMEGMhER11xzTf37adOm5bESAAAAAACAlivoQGbKlCkxZsyYyGaz8dRTT8XNN9+c75IAAAAAAABy\nVtCBTCaTiRkzZsRZZ50V2Ww27r777jjnnHNizpw5+S4NAAAAAACg2YryXUBTvvCFL0RExNixY+Pl\nl1+O9evXx7x582L8+PHRt2/fOO2002Lo0KHRo0ePKC4uzmns2267LYmSAQAAAAAADlPQgcztt98e\nqVSqfjuVSkU2m42IiNdeey2efPLJFo8tkGlbb775ZixatCieeeaZeOaZZ+K///u/45VXXqn/97V8\n+fIYMmRIs8ebNWtW/OhHP4o//vGPsXbt2njrrbeiR48eMWzYsBg/fnxcffXVUV1dndDdAAAAAABA\n2yroQKYxBwc0LZHNZls9BocbO3ZsPPfcc60eZ9euXTFx4sR47LHHDvvs9ddfj/nz58f8+fPjG9/4\nRtxzzz3xiU98otXXBAAAAACApBV8IHNghgWF7eB/TxUVFXHqqafGX/7yl3jttddyGueKK66oD2Mq\nKyvjhhtuiDPOOCN69eoVK1eujIceeigee+yx2LlzZ0yePDl69+4dF1xwQZveCwAAAAAAtLWCDmRm\nz56d7xJopn/8x3+M3r17x2mnnRYnnnhipFKpGDduXE6BzOLFi+PRRx+NiIjevXvHs88+GwMHDqz/\n/PTTT4+PfOQj8Z3vfCemTJkS2Ww2Pv/5zwtkAAAAAAAoeAUdyIwdOzbfJdBM119/favHmDt3bv37\nq6++ukEYc7Brr702vvjFL8arr74azz33XGzfvj3KyspafX0AAAAAAEhKQQcyJGfp0qWxcOHCWLNm\nTezZsycqKytj2LBhMXr06OjatWteanrzzTfr3w8ZMuSIx6VSqRg8eHC8+uqrERGxbds2gQwAAAAA\nAAVNIFMA1q5dGwsXLowFCxbEwoUL45lnnolt27bVfz548OBYsWJFm1zr8ccfjzvvvDOeffbZRj8v\nKyuLSZMmxbRp06KqqqpNrtlc73znO+vfN3W/2Ww2Vq5cGRH71qvp06dP0qUBAAAAAECrpPNdQGc1\nb968uOSSS2LAgAExcODAuOSSS+Kuu+6K2bNnNwhj2sru3btj4sSJcfHFFx8xjImI+P/s3XtwluWZ\nP/DrTUBAggGJ2AYNqLSD0VqciqxQFUpPOjCIKGjrKha3i+iCreuijq0yrWtRq9NdqsOKVacFWomI\n4mFXQfEALYggHkAdJCElUgnggXP4kff3h8M7vBxCQvIkIXw+M8w89/3c9/Vcr/6X79zPs3nz5pg0\naVIUFxfHq6++2uB91GTQoEGZ15RNmTIlKioq9rtu8uTJmdMxo0ePjtzc3EbrEQAAAAAADoUTMk3k\njTfeiCeffLJRnlVdXR0jRoyIp556Kms+Nzc3ioqKIj8/P0pLS+Pzzz/P3KusrIwLLrgg5syZE+ec\nc06j9Nm2bduYPXt2DB48ONasWRPf+MY34oYbbog+ffrEscceG6tXr44///nP8cQTT0RExIgRI2LC\nhAmN0hsAAAAAANTHYRvIbNy4MVasWBEbN26Mzz//PKqrq+MHP/hBHH/88U3dWr3l5eXF5s2bG6ze\nPffcs08YM3r06PjFL34RhYWFEfFlaPPUU0/FDTfcEOXl5RERsXXr1hg+fHi8++67kZ+f32D91KRX\nr16xdOnSmDx5ctxzzz1x++2377OmT58+cdNNN8WwYcMapScAAAAAAKivwyqQWbduXUyaNCmeeOKJ\neP/99/e5/+KLL+43kHnkkUfi73//e0REFBYWxjXXXJN4r7XVoUOH+Na3vhW9e/eOs88+O3r37h2l\npaUxYMCABqm/YcOGuPPOO7Pm7rrrrrj55puz5nJycmLo0KFx9tlnx7e//e3MN1zWrFkT9913X6Oe\nRCkpKYmpU6dmndjZ05IlS+Kxxx6Lr33ta3HGGWc0Wl8AAAAAAHCoDptA5p577olf/vKXUVVVFel0\nep/7qVTqgHs3b94cd9xxR6RSqcjNzY3Bgwc3+UmawYMHx/e///3o2bNn5ORkf8qntLS0wZ5z9913\nZ32T5rzzzovx48cfcH3Xrl1jypQp8d3vfjczd//998fYsWOjc+fODdbX/lRXV8eVV14ZU6dOjYiI\nAQMGxPjx46NPnz7Rvn37WLt2bTz77LNxxx13xOzZs+Oll16K6dOnx+DBgxPtCwAAAAAA6ivn4Eua\n1q5du+Liiy+Om2++OXbs2LHP/ZqCmN1GjRoVxxxzTKTT6di1a1dMmzYtiVbr5JRTToni4uJ9wpiG\nVF1dHY888kjW3O5gqiYDBw6Mc889NzPetGlTPP7444n0uKfJkydnwphLL7005s6dGz/4wQ+iY8eO\n0bp16ygqKoprr702Fi5cGJ07d44tW7bEj3/841i/fn3ivQEAAAAAQH00+0Dmuuuui1mzZkU6nY5U\nKhXpdDrOPPPMGD9+fPz+97/f72mZvR199NFZpyiee+65JFtuNhYsWBCVlZWZ8cknnxz9+/ev1d5R\no0ZljWfNmtWQre3XQw89lLm+9957Dxgcde/ePcaOHRsRX4ZF06dPT7w3AAAAAACoj2YdyLz++uvx\nP//zP5FKpSKVSkVBQUE8++yz8eabb8Zdd90V1157bUTU7pTMRRddFBER6XQ65s+fH1VVVYn23hw8\n++yzWePvfe97tfpvtXvtnubNmxdbtmxpsN72Z/ny5RER0aVLlygqKqpxbe/evffZBwAAAAAAzVWz\nDmR++ctfRsSXIUqHDh3ilVdeiQsuuOCQavXp0ydzvWPHjvjggw8apMfm7K233soa9+3bt9Z7CwsL\no3v37plxVVVV4sFHq1ZfftJo586dB12755rWrVsn1hMAAAAAADSEZhvIfPrpp/Haa69lTsfcdttt\n0bNnz0Oud8IJJ0SnTp0y4/fff78h2mzWVqxYkTUuLi6u0/691+9dr6GdcsopEfHl//tly5bVuPal\nl17aZx8AAAAAADRXzTaQef3112PXrl2RTqcjJycnrrnmmnrX7NKlS+Z63bp19a7XnG3bti3Ky8uz\n5k488cQ61dh7fdKnioYOHZq5vvbaa2Pz5s37XTd//vyYPHlyRETk5ubGoEGDEu0LAAAAAADqq1VT\nN3AgH3/8cUR8+X2Yk08+OTp27Fjvmvn5+ZnrTZs21btec7Z+/fpIp9OZcevWrbMCqdro2rVr1rim\nEGvlypXx+uuvZ8394x//yFyXlJREQUFBZpyXlxeXXHJJ1vqf/exn8cgjj0R5eXn89a9oUogzAAAg\nAElEQVR/jTPOOCOuv/766NOnT7Rv3z7Wrl0bzzzzTDz00EOZV5aNHTvWCRkAAAAAAJq9ZhvIbNy4\nMXN97LHHNkjNHTt2ZK5b+ndH9j5dcvTRR0cqlapTjfbt29dYc0+vv/56XH311Qe8f9NNN2WNu3Xr\ntk8gk5+fH3Pnzo1hw4bF22+/HaWlpXHjjTfut14qlYrrrrsu7r333oP9jINat25dVFZW1mnPypUr\n6/1cAAAAAACOHM02kEniNMueJzz2PK3REu0dnrRt27bONdq1a1djzST06NEjFi9eHDNnzoySkpJY\nsmRJfPLJJ7Fjx47o0KFDnHzyydGvX7/4yU9+Et/85jcb5JkPPPBATJgwoUFqAQAAAADA/jTbQOa4\n446LiIh0Oh2rV6+O6urqyMk59E/e/P3vf4+1a9dmxoWFhfXusTnbvn171vioo46qc402bdpkjbdt\n23bAtSNHjoyRI0fW+Rn707p16xgxYkSMGDGiQeoBAAAAAEBTO/SEI2F7nn7YunVrzJ8/v171ZsyY\nkbnOzc2Nf/qnf6pXveZu7xMxVVVVda6x5yve9lcTAAAAAAConWZ7QubrX/96nHTSSVFWVhYREffd\nd1+ce+65h1Triy++iPvvvz/zDZXevXtHhw4dGqrVZikvLy9rvPeJmdrY+0TM3jVbijFjxsSll15a\npz0rV66Miy66KKGOAAAAAABoaZptIBMRceWVV2a+7fH000/HY489FldddVWdauzatSuuvPLKqKio\niIgvPwY/ZsyYBu+1udk7PNm6dWuk0+lMKFUbW7ZsqbFmS9GlS5fo0qVLU7cBAAAAAEAL1mxfWRYR\n8e///u/RpUuXSKVSkU6n45prrol77rkndu3aVav977//fnznO9+J2bNnRyqVilQqFV//+tfjRz/6\nUcKdN72CgoKs8GXnzp2xbt26OtXYHWLtJrQAAAAAAIBD06xPyLRv3z6mTJkSQ4cOjerq6ti1a1fc\nfPPN8cADD8Tll18e3/rWtyIiMic/3nzzzdi4cWOsXLkyXnrppXjppZcinU5HOp2OiIh27drFtGnT\n6nRK5HDVrl27KCoqitWrV2fmysvL4/jjj691jfLy8qxxz549G6w/AAAAAAA4kjTrQCYiYtCgQfH7\n3/8+85qxdDodq1evjokTJ2atS6fTcfPNN+8ztzt8ad26dTzyyCNx5plnNk7jzUDPnj2zApnly5dH\n7969a71/xYoV+9QDAAAAAADqrlm/smy3n/70p/F///d/mdMdu0OW3YHL7n+7T8PsPhGze+7444+P\nuXPnxvDhw5vsNzSFXr16ZY0XLFhQ671r166NsrKyzLh169ZRXFzcUK0BAAAAAMAR5bAIZCIiBg4c\nGCtWrIj//M//jK9+9auZ0GXvEGa3dDodHTt2jAkTJsQHH3wQ3/72t5ui7SY1aNCgrPGcOXP2+e90\nIC+88ELWeMCAAZGXl9dgvQEAAAAAwJGk2b+ybE/5+flx8803x3/8x3/EsmXL4rXXXosVK1bEhg0b\n4rPPPoujjz46CgoK4qSTTooBAwbE2WefHa1aHVY/sUH17ds3CgoKYv369RERsWrVqpg3b14MGDDg\noHsffvjhrPGQIUMS6REAAAAAAI4Eh2VakZOTE2eeeeYR9T2YQ5GTkxMjR46Me++9NzM3YcKE6N+/\nf+a1b/szd+7ceO211zLjDh06HHGvewMAAAAAgIZ02LyyjEMzfvz4rFeNvfLKKzFx4sQDrq+oqIhr\nrrkma27cuHFRUFCQWI8AAAAAANDSHZYnZFqK+fPnx7Zt2/aZX7ZsWdZ4+/btMWfOnP3WKCwsjOLi\n4gM+o6CgIG699da49dZbM3O33HJLlJeXx2233RaFhYUREVFdXR1PP/10jBs3LsrLy7Pq33jjjXX6\nXQAAAAAAQLZUurZfeafBde/ePVavXl2vGldddVU8+uijNa6prq6OIUOGxDPPPJM1n5ubG926dYv8\n/PwoLS2Nzz77LOt+u3bt4sUXX4x+/frVq8eW6L333ovTTz89M3733XfjtNNOa8KOAAAAAADYW3P6\nW65Xlh0BcnJyYsaMGXHZZZdlze/atStWrVoVS5cu3SeM6dy5czz33HPCGAAAAAAAaAACmSNE27Zt\nY/r06VFSUhK9evU64Lr27dvHmDFjYvny5dG/f//GaxAAAAAAAFow35BpQmVlZY3+zGHDhsWwYcNi\n5cqVsXDhwqioqIiqqqro2LFjnHrqqdGvX79o27Zto/cFAAAAAAAtmUDmCNWjR4/o0aNHU7cBAAAA\nAABHBK8sAwAAAAAASJhABgAAAAAAIGECGQAAAAAAgIQJZAAAAAAAABImkAEAAAAAAEiYQAYAAAAA\nACBhAhkAAAAAAICECWQAAAAAAAASJpABAAAAAABImEAGAAAAAAAgYQIZAAAAAACAhLVq6gYayvbt\n22POnDnx4YcfRm5ubpx22mkxYMCAyM3NPejejz/+OG677bZIpVLx8MMPN0K3AAAAAADAkaRFBDIz\nZsyI66+/PtavX58137Vr1/jNb34TP/rRj2rc/+mnn8ajjz4qkAEAAAAAABJx2L+ybOrUqXH55ZfH\n+vXrI51OZ/1bs2ZN/PM//3NcccUVsW3btqZuFQAAAAAAOEId1idk1q1bF9ddd11UV1dHRMRFF10U\nAwcOjKqqqnj55Zfj+eefj127dsX06dOjtLQ0nn/++TjmmGOauGsAAAAAAOBIc1gHMg8//HB88cUX\nkZOTE1OnTo0RI0Zk7v3sZz+LxYsXx8iRI2P58uXxt7/9LQYOHBgvvPBCdOrUqQm7BgAAAAAAjjSH\n9SvLXnjhhUilUvHjH/84K4zZ7ayzzoqFCxfG4MGDI51Ox5IlS2LgwIGxcePGJugWAAAAAAA4Uh3W\ngczy5csjIuLSSy894Jr27dvHrFmz4uqrr450Oh3Lli2LgQMHxoYNGxqrTQAAAAAA4Ah3WAcyn332\nWUREnHjiiTWuS6VS8fDDD8e//uu/Rjqdjrfffju+853vxPr16xujTQAAAAAA4Ah3WAcybdq0iYiI\nTZs21Wr9gw8+GGPGjIl0Oh3vvvuukzIAAAAAAECjOKwDmRNOOCEiIj744INa75k0aVJcd911mVBm\nwIABUVlZmVSLAAAAAAAAh3cgc8YZZ0Q6nY6XXnqpTvv++7//O66//vpIp9Px3nvvxWWXXZZQhwAA\nAAAAAId5IHPeeedFRMTs2bNj69atddr7X//1X/Fv//ZvkU6nnZABAAAAAAASdVgHMj/84Q8jImLL\nli3xhz/8oc77f/e738W4ceMinU43dGsAAAAAAAAZrZq6gfo4+eST48orr4yKiopYvHjxIdW4//77\n46ijjorHH3+8gbsDAAAAAAD40mEdyEREPProo/WuMXHixJg4cWL9mwEAAAAAANiPw/qVZQAAAAAA\nAIeDIyaQmTt3buTm5kZubm60anXYHwwCAAAAAAAOI0dUMpFOp5u6BQAAAAAA4Ah0xJyQAQAAAAAA\naCoCGQAAAAAAgIQJZAAAAAAAABImkAEAAAAAAEiYQAYAAAAAACBhAhkAAAAAAICECWQAAAAAAAAS\nJpABAAAAAABImEAGAAAAAAAgYQIZAAAAAACAhAlkAAAAAAAAEiaQAQAAAAAASFirpnz4q6++2mjP\nWrZsWaM9CwAAAAAAYE9NGsj0798/UqlUoz0vlUpFOp1utOcBAAAAAABENHEgs1tjhSSNGf4AAAAA\nAADs1iwCGUEJAAAAAADQkjVpIFNUVCSMAQAAAAAAWrwmDWTKysqa8vEAAAAAAACNIqepGwAAAAAA\nAGjpBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwgQyAAAAAAAACRPIAAAAAAAA\nJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMAAAAAAJAwgQwAAAAAAEDC\nBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwgQyAAAAAAAACRPIAAAAAAAAJEwg\nAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIA\nAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwlo1dQO0DF988UUsXbo0Fi9eHIsXL443\n33wzVq5cGel0OiIiSktLo3v37jXW2LlzZzz//PPx5ptvxptvvhmrVq2KDRs2xKeffhpt2rSJwsLC\nOOuss2LEiBExePDgSKVSjfDLAAAAAACg/gQyNIjzzz8/3nrrrXrV+OSTT2LIkCH7vbdz58748MMP\n48MPP4xp06ZF3759o6SkJL761a/W65kAAAAAANAYBDI0iN0nYSIi8vPz48wzz4z3338//vGPf9Sp\nzrHHHhvnn39+nHXWWXHSSSfFV77ylejUqVN8/vnnsWzZspgyZUq88847sWDBghg4cGAsWbIk2rZt\n29A/BwAAAAAAGpRAhgbxk5/8JI477rg466yzokePHpFKpaJ///51CmQKCwujsrIycnL2/2mj888/\nP8aMGRMXX3xxzJ49O1asWBF/+MMfYsyYMQ31MwAAAAAAIBH7/8s31NHYsWPj8ssvj6997WuH/G2X\nnJycA4Yxu7Vq1SpuueWWzPjll18+pGcBAAAAAEBjckLmCPXRRx/FokWLYs2aNVFVVRWdOnWKnj17\nRt++fZv9K8COOeaYzPUXX3zRhJ0AAAAAAEDtCGSagYqKili0aFEsXLgwFi1aFIsXL45NmzZl7nfr\n1i3Kysoa5FmzZs2KX/3qV7FkyZL93s/Ly4uRI0fG7bffHgUFBQ3yzIb2pz/9KXPds2fPJuwEAAAA\nAABqRyDTRObPnx+//e1vY+HChfHxxx8n/rwdO3bEqFGjYurUqTWu27x5c0yaNCn+8pe/RElJSZx3\n3nmJ93Yw1dXVsW7dunj//ffjoYceimnTpkVExFFHHRWjR49u4u4AAAAAAODgBDJN5I033ognn3yy\nUZ5VXV0dI0aMiKeeeiprPjc3N4qKiiI/Pz9KS0vj888/z9yrrKyMCy64IObMmRPnnHNOo/S5p/Xr\n18dxxx13wPv5+fkxbdq0OPXUUxuxKwAAAAAAODQ1f0GdJpGXl9eg9e655559wpjRo0dHeXl5rFq1\nKpYuXRobN26MmTNnRlFRUWbN1q1bY/jw4VlBTVNLpVLx85//PD744IO48MILm7odAAAAAACoFYFM\nE+vQoUP0798/brrpppgxY0aUlZXF7NmzG6z+hg0b4s4778yau+uuu+LBBx+MwsLCzFxOTk4MHTo0\nFixYEN27d8/Mr1mzJu67774G66e2OnXqFO+8806888478dZbb8XcuXPj17/+dZx44onxu9/9LkaN\nGhUVFRWN3hcAAAAAABwKryxrIoMHD47vf//70bNnz8jJyc7FSktLG+w5d999d2zatCkzPu+882L8\n+PEHXN+1a9eYMmVKfPe7383M3X///TF27Njo3Llzg/V1MLm5uXH66adnzX3nO9+JcePGxbBhw+LZ\nZ5+Nb33rW/Hyyy97bRkAAAAAAM2eEzJN5JRTToni4uJ9wpiGVF1dHY888kjW3B133BGpVKrGfQMH\nDoxzzz03M960aVM8/vjjifRYV3l5efHHP/4x2rVrF5988kmMHj26qVsCAAAAAICDEsi0YAsWLIjK\nysrM+OSTT47+/fvXau+oUaOyxrNmzWrI1uqlS5cu8e1vfzsiIl599dVYu3ZtE3cEAAAAAAA1E8i0\nYM8++2zW+Hvf+95BT8fsuXZP8+bNiy1btjRYb/VVUFCQuS4rK2u6RgAAAAAAoBYEMi3YW2+9lTXu\n27dvrfcWFhZG9+7dM+OqqqpYvnx5Q7VWb2vWrMlcd+jQoQk7AQAAAACAgxPItGArVqzIGhcXF9dp\n/97r967XVMrKyuJvf/tbRES0b98+TjnllCbuCAAAAAAAaiaQaaG2bdsW5eXlWXMnnnhinWrsvf6D\nDz6od181mTp1aqxfv77GNZWVlTF8+PDYuXNnRERcfvnl0a5du0T7AgAAAACA+mrV1A2QjPXr10c6\nnc6MW7duHV26dKlTja5du2aN161bd8C1K1eujNdffz1r7h//+EfmuqSkJOu7L3l5eXHJJZdkrX/o\noYfimmuuiQsvvDAGDBgQxcXF0alTp/h//+//RUVFRbzyyivx2GOPxaeffhoRET169Ijf/OY3dfpN\n+7Nu3bqorKys056VK1fW+7kAAAAAABw5BDIt1ObNm7PGRx99dKRSqTrVaN++fY019/T666/H1Vdf\nfcD7N910U9a4W7du+wQyERHbt2+PmTNnxsyZM2vs7cILL4yHH344OnfuXOO62njggQdiwoQJ9a4D\nAAAAAAAHIpBpofYOT9q2bVvnGnu/CqymQKYh/PGPf4znn38+FixYEMuXL49PPvkkKisrY9euXZGf\nnx89evSIPn36xGWXXRZ9+vRJtBcAAAAAAGhIApkWavv27Vnjo446qs412rRpkzXetm3bAdeOHDky\nRo4cWedn7OnEE0+Mn/70p/HTn/60XnUAAAAAAKC5Eci0UHufiKmqqqpzjR07dtRYs6UYM2ZMXHrp\npXXas3LlyrjooosS6ggAAAAAgJZGINNC5eXlZY33PjFTG3ufiNm7ZkvRpUuX6NKlS1O3AQAAAABA\nC5bT1A2QjL3Dk61bt0Y6na5TjS1bttRYEwAAAAAAqB2BTAtVUFAQqVQqM965c2esW7euTjUqKiqy\nxk6RAAAAAADAoRHItFDt2rWLoqKirLny8vI61dh7fc+ePevdFwAAAAAAHIkEMi3Y3gHK8uXL67R/\nxYoVNdYDAAAAAABqRyDTgvXq1StrvGDBglrvXbt2bZSVlWXGrVu3juLi4oZqDQAAAAAAjigCmRZs\n0KBBWeM5c+ZEOp2u1d4XXnghazxgwIDIy8trsN4AAAAAAOBIIpBpwfr27RsFBQWZ8apVq2LevHm1\n2vvwww9njYcMGdKQrQEAAAAAwBFFINOC5eTkxMiRI7PmJkyYcNBTMnPnzo3XXnstM+7QoUMMHz48\niRYBAAAAAOCIIJBp4caPH5/1qrFXXnklJk6ceMD1FRUVcc0112TNjRs3LuukDQAAAAAAUDetmrqB\nI9n8+fNj27Zt+8wvW7Ysa7x9+/aYM2fOfmsUFhZGcXHxAZ9RUFAQt956a9x6662ZuVtuuSXKy8vj\ntttui8LCwoiIqK6ujqeffjrGjRsX5eXlWfVvvPHGOv0uAAAAAAAgWypd26+80+C6d+8eq1evrleN\nq666Kh599NEa11RXV8eQIUPimWeeyZrPzc2Nbt26RX5+fpSWlsZnn32Wdb9du3bx4osvRr9+/erV\nY0v03nvvxemnn54Zv/vuu3Haaac1YUcAAAAAAOytOf0t1yvLjgA5OTkxY8aMuOyyy7Lmd+3aFatW\nrYqlS5fuE8Z07tw5nnvuOWEMAAAAAAA0AIHMEaJt27Yxffr0KCkpiV69eh1wXfv27WPMmDGxfPny\n6N+/f+M1CAAAAAAALZhvyDShsrKyRn/msGHDYtiwYbFy5cpYuHBhVFRURFVVVXTs2DFOPfXU6Nev\nX7Rt27bR+wIAAAAAgJZMIHOE6tGjR/To0aOp2wAAAAAAgCOCV5YBAAAAAAAkTCADAAAAAACQMIEM\nAAAAAABAwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAA\nAAAAACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAA\nAABAwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAA\nACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABA\nwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRM\nIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwgQy\nAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMA\nAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwgQyAAAA\nAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMAAAAA\nAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwgQyAAAAAAAA\nCRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMAAAAAAJAw\ngQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwgQyNEsvvfRSjBw5\nMnr27BkdOnSI1q1bR+fOnaNfv37xy1/+Mv7+9783dYsAAAAAAFBrrZq6AdjTtm3b4oorroiZM2fu\nc2/jxo2xYMGCWLBgQfz2t7+NSZMmxdVXX90EXQIAAAAAQN0IZGhWrrzyykwY06lTp7jhhhvi7LPP\njs6dO8fq1atj+vTpMXPmzNi6dWuMGjUqjjvuuBg0aFATdw0AAAAAADUTyNBsLFu2LEpKSiIi4rjj\njoslS5bECSeckLnfu3fvuOSSS+LBBx+MMWPGRDqdjl/84hcCGQAAAAAAmj3fkKHZeO211zLX//Iv\n/5IVxuxp9OjRUVhYGBERb731VmzevLlR+gMAAAAAgEPlhAz18tFHH8WiRYtizZo1UVVVFZ06dYqe\nPXtG3759o23btnWq9cUXX2Suu3fvfsB1qVQqunXrFh9//HFERGzatCny8vIOqX8AAAAAAGgMApkW\npKKiIhYtWhQLFy6MRYsWxeLFi2PTpk2Z+926dYuysrIGedasWbPiV7/6VSxZsmS/9/Py8mLkyJFx\n++23R0FBQa1qfv3rX89c19RnOp2O1atXR0REfn5+dOnSpfaNAwAAAABAE/DKssPc/Pnz4+KLL46u\nXbvGCSecEBdffHFMnDgxXn755awwpqHs2LEjrrjiihg6dOgBw5iIiM2bN8ekSZOiuLg4Xn311VrV\nHjRoUOY1ZVOmTImKior9rps8eXLmdMzo0aMjNze3jr8CAAAAAAAalxMyh7k33ngjnnzyyUZ5VnV1\ndYwYMSKeeuqprPnc3NwoKiqK/Pz8KC0tjc8//zxzr7KyMi644IKYM2dOnHPOOTXWb9u2bcyePTsG\nDx4ca9asiW984xtxww03RJ8+feLYY4+N1atXx5///Od44oknIiJixIgRMWHChIb/oQAAAAAA0MCc\nkGnBGvq7Kvfcc88+Yczo0aOjvLw8Vq1aFUuXLo2NGzfGzJkzo6ioKLNm69atMXz48Kyg5kB69eoV\nS5cujV//+tdRXV0dt99+e/zwhz+Ms88+Oy699NJ44oknok+fPlFSUhJ//vOfo02bNg36GwEAAAAA\nIAkCmRaiQ4cO0b9//7jppptixowZUVZWFrNnz26w+hs2bIg777wza+6uu+6KBx98MAoLCzNzOTk5\nMXTo0FiwYEF07949M79mzZq47777avWskpKSmDp16gEDnCVLlsRjjz0Wb7/9dt1/CAAAAAAANAGB\nzGFu8ODB8d5778Vnn30WL7/8ctx9991xySWXRLdu3Rr0OXfffXfWN2nOO++8GD9+/AHXd+3aNaZM\nmZI1d//998eGDRsOuKe6ujquuOKKuPbaa2PFihUxYMCA+N///d/49NNPo6qqKlavXh0PPPBAdOrU\nKWbPnh19+/Zt0NAJAAAAAACSIpA5zJ1yyilRXFwcOTnJ/a+srq6ORx55JGvujjvuiFQqVeO+gQMH\nxrnnnpsZb9q0KR5//PEDrp88eXJMnTo1IiIuvfTSmDt3bvzgBz+Ijh07RuvWraOoqCiuvfbaWLhw\nYXTu3Dm2bNkSP/7xj2P9+vX1+HUAAAAAAJA8gQwHtWDBgqisrMyMTz755Ojfv3+t9o4aNSprPGvW\nrAOufeihhzLX99577wEDn+7du8fYsWMj4suQZ/r06bXqBQAAAAAAmopAhoN69tlns8bf+973Dno6\nZs+1e5o3b15s2bJlv2uXL18eERFdunSJoqKiGuv27t17n30AAAAAANBcCWQ4qLfeeitr3Ldv31rv\nLSwsjO7du2fGVVVVBwxQWrVqFRERO3fuPGjdPde0bt261v0AAAAAAEBTEMhwUCtWrMgaFxcX12n/\n3uv3rrfbKaecEhERn376aSxbtqzGmi+99NI++wAAAAAAoLkSyFCjbdu2RXl5edbciSeeWKcae6//\n4IMP9rtu6NChmetrr702Nm/evN918+fPj8mTJ0dERG5ubgwaNKhO/QAAAAAAQGNr1dQN0LytX78+\n0ul0Zty6devo0qVLnWp07do1a7xu3br9rvvZz34WjzzySJSXl8df//rXOOOMM+L666+PPn36RPv2\n7WPt2rXxzDPPxEMPPZR5ZdnYsWPrfUJm3bp1UVlZWac9K1eurNczAQAAAAA4sghkqNHep1SOPvro\nSKVSdarRvn37Gmvulp+fH3Pnzo1hw4bF22+/HaWlpXHjjTfud20qlYrrrrsu7r333jr1sj8PPPBA\nTJgwod51AAAAAADgQAQy1Gjv8KRt27Z1rtGuXbsaa+6pR48esXjx4pg5c2aUlJTEkiVL4pNPPokd\nO3ZEhw4d4uSTT45+/frFT37yk/jmN79Z514AAAAAAKApCGSo0fbt27PGRx11VLDOKaQAACAASURB\nVJ1rtGnTJmu8bdu2Gte3bt06RowYESNGjKjzswAAAAAAoDkSyFCjvU/EVFVV1bnGjh07aqzZ1MaM\nGROXXnppnfasXLkyLrroooQ6AgAAAACgpRHIUKO8vLys8d4nZmpj7xMxe9dsal26dIkuXbo0dRsA\nAAAAALRgOU3dAM3b3uHJ1q1bI51O16nGli1baqwJAAAAAAAtnUCGGhUUFEQqlcqMd+7cGevWratT\njYqKiqyx0ygAAAAAABxpBDLUqF27dlFUVJQ1V15eXqcae6/v2bNnvfsCAAAAAIDDiUCGg9o7QFm+\nfHmd9q9YsaLGegAAAAAA0NIJZDioXr16ZY0XLFhQ671r166NsrKyzLh169ZRXFzcUK0BAAAAAMBh\nQSDDQQ0aNChrPGfOnEin07Xa+8ILL2SNBwwYEHl5eQ3WGwAAAAAAHA4EMhxU3759o6CgIDNetWpV\nzJs3r1Z7H3744azxkCFDGrI1AAAAAAA4LAhkOKicnJwYOXJk1tyECRMOekpm7ty58dprr2XGHTp0\niOHDhyfRIgAAAAAANGsCGWpl/PjxWa8ae+WVV2LixIkHXF9RURHXXHNN1ty4ceOyTtoAAAAAAMCR\nolVTN0D9zZ8/P7Zt27bP/LJly7LG27dvjzlz5uy3RmFhYRQXFx/wGQUFBXHrrbfGrbfempm75ZZb\nory8PG677bYoLCyMiIjq6up4+umnY9y4cVFeXp5V/8Ybb6zT7wIAAAAAgJYila7t19lptrp37x6r\nV6+uV42rrroqHn300RrXVFdXx5AhQ+KZZ57Jms/NzY1u3bpFfn5+lJaWxmeffZZ1v127dvHiiy9G\nv3796tVjc/Lee+/F6aefnhm/++67cdpppzVhRwAAAAAA7K05/S3XK8uotZycnJgxY0ZcdtllWfO7\ndu2KVatWxdKlS/cJYzp37hzPPfdciwpjAAAAAACgrgQy1Enbtm1j+vTpUVJSEr169Trguvbt28eY\nMWNi+fLl0b9//8ZrEAAAAAAAmiHfkGkBysrKGv2Zw4YNi2HDhsXKlStj4cKFUVFREVVVVdGxY8c4\n9dRTo1+/ftG2bdtG7wsAAAAAAJojgQz10qNHj+jRo0dTtwEAAAAAAM2aV5YBAAAAAAAkTCADAAAA\nAACQMIEMAAAAAABAwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAA\nAAkTyAAAAAAAACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQ\nMIEMAAAAAABAwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkT\nyAAAAAAAACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEM\nAAAAAABAwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAA\nAAAAACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAA\nAABAwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAA\nACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABA\nwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRM\nIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwgQy\nAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMA\nAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwgQyAAAA\nAAAACWvV1A3Annbu3BnPP/98vPnmm/Hmm2/GqlWrYsOGDfHpp59GmzZtorCwMM4666wYMWJEDB48\nOFKpVFO3DAAAAAAAByWQoVn55JNPYsiQIfu9t3Pnzvjwww/jww8/jGnTpkXfvn2jpKQkvvrVrzZy\nlwAAAAAAUDcCGZqdY489Ns4///w466yz4qSTToqvfOUr0alTp/j8889j2bJlMWXKlHjnnXdiwYIF\nMXDgwFiyZEm0bdu2qdsGAAAAAIADEsjQrBQWFkZlZWXk5Oz/80bnn39+jBkzJi6++OKYPXt2rFix\nIv7whz/EmDFjGrlTAAAAAACovf3/1RuaSE5OzgHDmN1atWoVt9xyS2b88ssvJ90WAAAAAADUixMy\n1NtHH30UixYtijVr1kRVVVV06tQpevbsGX379k3sVWLHHHNM5vqLL75I5BkAAAAAANBQBDItTEVF\nRSxatCgWLlwYixYtisWLF8emTZsy97t16xZlZWUN8qxZs2bFr371q1iyZMl+7+fl5cXIkSPj9ttv\nj4KCggZ55m5/+tOfMtc9e/Zs0NoAAAAAANDQBDItwPz58+O3v/1tLFy4MD7++OPEn7djx44YNWpU\nTJ06tcZ1mzdvjkmTJsVf/vKXKCkpifPOO++Qn1ldXR3r1q2L999/Px566KGYNm1aREQcddRRMXr0\n6EOuCwAAAAAAjUEg0wK88cYb8eSTTzbKs6qrq2PEiBHx1FNPZc3n5uZGUVFR5OfnR2lpaXz++eeZ\ne5WVlXHBBRfEnDlz4pxzzqn1s9avXx/HHXfcAe/n5+fHtGnT4tRTT637DwEAAAAAgEZU89fTOezl\n5eU1aL177rlnnzBm9OjRUV5eHqtWrYqlS5fGxo0bY+bMmVFUVJRZs3Xr1hg+fHhWUHOoUqlU/Pzn\nP48PPvggLrzwwnrXAwAAAACApAlkWpAOHTpE//7946abbooZM2ZEWVlZzJ49u8Hqb9iwIe68886s\nubvuuisefPDBKCwszMzl5OTE0KFDY8GCBdG9e/fM/Jo1a+K+++6r9fM6deoU77zzTrzzzjvx1ltv\nxdy5c+PXv/51nHjiifG73/0uRo0aFRUVFfX+XQAAAAAAkLRUOp1ON3UT1M9HH30UO3bsiJ49e0ZO\nTnbGNm/evBgwYEBm3K1btygrKzuk54wfPz7uvvvuzPi8886LefPmRSqVOuCeuXPnxne/+93MuEOH\nDlFaWhqdO3c+pB4ivvw2zbBhw+KFF16I448/Pl5++eVGf23Ze++9F6ef/v/Zu/P4qKr7/+Pvmclk\nD0lICBRFVq1EbBFcKojC11oVULRWBLVqq99a0EqtCupPq/hVi0u/7VetbbUWFNS6gwpWEQtosaDU\npRJEMSyCSELYQpaZycz9/TFmyM06k5k7c2fm9Xw87gPOnXvP+QQ9kMx7zrnDQu1PPvlERx11VFxr\nAAAAAAAAAAB0zk7v5bJCJgUMHjxY5eXlbcKYWAoEApo7d67p3O23395pGCNJp556qsaMGRNq19bW\n6tlnn42qlvz8fM2fP185OTnauXOnfv7zn0fVHwAAAAAAAAAAViOQQVhWrVql6urqUHvQoEEaO3Zs\nWPdefvnlpvbChQujrqesrEwnnXSSJGnlypXasWNH1H0CAAAAAAAAAGAVAhmEZfHixab2aaed1uXq\nmJbXtrR8+XLV1dVFXVNpaWno993dhg0AAAAAAAAAgHggkEFYPvzwQ1N71KhRYd/bt29fDRgwINT2\ner2qqKiIuqZt27aFfl9QUBB1fwAAAAAAAAAAWIVABmFZv369qV1eXh7R/a2vb91fpDZv3qx//etf\nkqS8vDwNHjw4qv4AAAAAAAAAALASgQy61NDQoK1bt5rO9evXL6I+Wl+/YcOGdq978skntWvXrk77\nqq6u1uTJk+Xz+SRJU6dOVU5OTkT1AAAAAAAAAAAQTxmJLgD2t2vXLhmGEWq73W6VlZVF1Mchhxxi\naldVVbV73aOPPqorrrhC48eP17hx41ReXq7i4mI1NTVp+/btWrFihR5//HHt2bNHkjRkyBDNmTMn\nwq/IrKqqStXV1RHds3HjxqjGBAAAAAAAAACkFwIZdOnAgQOmdm5urhwOR0R95OXlddpnS42NjXrx\nxRf14osvdtrn+PHj9dhjj6mkpCSiWlp7+OGHNXv27Kj6AAAAAAAAAACgMwQy6FLr8CQ7OzviPlpv\nKdZRIDN//ny99tprWrVqlSoqKrRz505VV1fL7/ersLBQQ4YM0QknnKApU6bohBNOiLgOAAAAAAAA\nAAASgUAGXWpsbDS1MzMzI+4jKyvL1G5oaGj3un79+ulnP/uZfvazn0U8BgAAAAAAAAAAdkUggy61\nXhHj9Xoj7sPj8XTaZyJNnz5d559/fkT3bNy4Ueecc45FFQEAAAAAAAAAUg2BDLqUn59vardeMROO\n1itiWveZSGVlZSorK0t0GQAAAAAAAACAFOZMdAGwv9bhSX19vQzDiKiPurq6TvsEAAAAAAAAACCV\nEcigS6WlpXI4HKG2z+dTVVVVRH1s377d1GZFCgAAAAAAAAAgnRDIoEs5OTk67LDDTOe2bt0aUR+t\nrz/yyCOjrgsAAAAAAAAAgGRBIIOwtA5QKioqIrp//fr1nfYHAAAAAAAAAEAqI5BBWIYPH25qr1q1\nKux7d+zYoc2bN4fabrdb5eXlsSoNAAAAAAAAAADbI5BBWCZOnGhqv/nmmzIMI6x733jjDVN73Lhx\nys/Pj1ltAAAAAAAAAADYHYEMwjJq1CiVlpaG2pWVlVq+fHlY9z722GOm9qRJk2JZGgAAAAAAAAAA\ntkcgg7A4nU5ddtllpnOzZ8/ucpXMsmXL9Pbbb4faBQUFmjx5shUlAgAAAAAAAABgWwQyCNusWbNM\nW42tWLFC99xzT4fXb9++XVdccYXp3IwZM0wrbQAAAAAAAAAASAcZiS4AsfHPf/5TDQ0Nbc5/9NFH\npnZjY6PefPPNdvvo27evysvLOxyjtLRUN998s26++ebQuZtuuklbt27VLbfcor59+0qSAoGAXn75\nZc2YMUNbt2419X/ddddF9HUBAAAAAAAAAJAKHEa4T2aHrQ0YMEBbtmyJqo9LL71U8+bN6/SaQCCg\nSZMm6dVXXzWdd7lc6t+/vwoLC7Vp0ybt3bvX9HpOTo6WLl2q0aNHR1WjXaxbt07Dhg0LtT/55BMd\nddRRCawIAAAAAAAAANCand7LZcsyRMTpdOq5557TlClTTOf9fr8qKyv1wQcftAljSkpKtGTJkpQJ\nYwAAAAAAAAAAiBSBDCKWnZ2tp59+Ws8//7yGDx/e4XV5eXmaPn26KioqNHbs2PgVCAAAAAAAAACA\nzfAMmRSxefPmuI953nnn6bzzztPGjRu1evVqbd++XV6vV0VFRRo6dKhGjx6t7OzsuNcFAAAAAAAA\nAIDdEMggakOGDNGQIUMSXQYAAAAAAAAAALbFlmUAAAAAAAAAAAAWI5ABAAAAAAAAAACwGIEMAAAA\nAAAAAACAxQhkAAAAAAAAAAAALEYgAwAAAAAAAAAAYDECGQAAAAAAAAAAAIsRyAAAAAAAAAAAAFiM\nQAYAAAAAAAAAAMBiBDIAAAAAAAAAAAAWI5ABAAAAAAAAAACwGIEMAAAAAAAAAACAxQhkAAAAAAAA\nAAAALEYgAwAAAAAAAAAAYDECGQAAAAAAAAAAAIsRyAAAAAAAAAAAAFgsI9EFAEisgBFQTX1N3Mct\nyS2R00EmDAAAAAAAACA9EMgAaa6mvkZl95fFfdyq66vUK69X3McFAAAAAAAAgEQgkAEAAB3a7fPp\ngooK07lnysvV0+1OUEUAACDW+PceSC/MeSD9MO/tg0AGAAB06G9VVXpzzx7TuWeqqjTtkEMSVBEA\nq/HDGpB++PceSC/MeSD9MO/tgwc4AACADs37+uuwzgFIHc0/rLU8nqmqSnRZACzEv/dAemHOA+mH\neW8fBDIAAKBd6+rq9F5tbZvza2prVVFXl4CKAMQDP6wB6YV/74H0wpwH0g/z3l7YsgwAgDQSMAKq\nqa8J69o/bt4kefd28No6/XrAwLDHLcktkdPB50AAu+vqh7XyvLwEVAXASo93Erg+/vXXumfw4DhW\nA8BqzHkg/TDv7YVABgCANFJTX6Oy+8ui7uehb45wVV1fpV55vaIeF4C1+GENSC9NgYDm79zZ4evz\nd+7UXQMHKsPJhyqAVMCcB9IP895+CGQAAAAA8MMakIIMw9Aun6/D1/+xd6++9no7fH2H16uXdu3S\n2KKiDq8pdbvlcDiiqhNAbDDngfTDvE8+BDIAAABAGuCHNSD9fHTggI5ZuzaqPiZXVHT6+ofHHqvv\n5udHNQaA2GDOA+mHeZ98CGQAAACANMAPa0D6eXHXLuvHqK5m3gM2wZwH0g/zPvkQyABIiBeqq1R4\nICBJckhyOBxq/jyto8U5U7v59W+uNV0f4bWtx4rk2q7GiuZrsGtd3f4a+JQ0ANgGP6wBqckwDBmS\njFZtSXqhutry8Z+rrtbVhxwSHLtlXS3q6fC1Vte0+1rL+1r1xXjWjGfHmhgvvPEe+eorWe3PX32l\nzCi3L03ET4nxHjMhX2Ocf/5Oh/+OiRgz0v+O8Zj3L+7apdkDB1o+TrogkAGQENNWPii5e0hOt+TI\n+OZXl+RwS86Mdn7NaP9ah0viTf+kEItQKZYhXOv7o6krmq8h3iGc17NbiXDlZxuUnVVt+mbW9PsW\n87jDa8K4vjv3hHN9tHUlcoxo60r1MaKtKxnGMIyADjTu1qNbtkjejrcsi4VHttSp2KiTYRjKzS6W\nwxF8w8aQ+Q2mjt48Njq4tmUfra9t2UfraxmP8ZKx5nDHs4v19fUqW7Uq0WUAiJOdPp9u2bQp0WUA\niKP1dXWq8npVlpmZ6FJSAoEMgMTY9OfY9dUytGkvuGlutxvutDrfXhAUcZ/uFve16jONA6SWbyIE\nT7TzVkJ75xBb3r0JGfal6l1SZlNCxgbSnnev9O65cRnqa0nXNjdOfEnK7Ph5MwAAAADsbWB2tp4a\nOpQwJoYIZAAkP8Mn+a39xG9MtRvyZLQNdiIJebrqK9I+W4ZRaRogAQAAAAAApKsf9+6thw4/XD0y\niBBiiT9NAIg3oyl4BBoTXUl4wgltwtp6rnmbue4ER+312cF9BEgAAAAAAADdUuhy6Y9HHKGpvXsn\nupSURCADpDu2iEJXQgFSogsJU0fhTdghT+sVSO1tbdfeCqcIg6NQX9E9EBMAAAAAACAWTuzRQ0+X\nl6t/dnaiS0lZBDJAujtwINEVALFl+INHsgVInW09163gqIM+A55Ef8UAAABIAEerX03nvlllHsk1\n7V3vaLFavc1rLe9jvLiNt8Pj0Zder7rjsKwsHZqV1a17O5KIj4TGe0wjAR98jfvXGOfxEjZmnP9b\nxmq0r71efdXNeT+ptJQwxmIEMkC683XvL+hoDaqRAk7J6zIfPpfkZ8EA0klzgCRJ/sSWYqX+Wx+S\n250vp9Mtl9MtpyNDTpdbTmfzkSmX0y1H8+utD0dG23PtXO8I/T5DLX8UbfmNbYe/b/HNdutvhCO9\nxy5jRFtXqo8RbV3JMobfkamvFH8DsrOUkZVjenOo5RtMprbMbya1d63ptVbXtuyD8VJ3vGSsOVHj\nGUZA+xv3tDve7C1btHr/fnXH6MIeunPgQPMbwS1qKMopkavF6l9HO9d0+FrLPm30ZnbSjsc2vvjG\npP/8R1/W1HTr3mPy87Xw6KNjXBEAq036z3/0cjfn/bv79sW4GrRGIAOkO3dmQob912NSr/r2X/M7\ngsFMKKTpILhpcy7M62LdJwES0LUt25fFfcwMZ4YyXZndOrJcmcp0du/e1ofb5e78daebN01gqeq6\napUtj/+4a0Yeq155veI/MIDgvH9gSMz7/aekcZ28XnV9FfMesBHDMPRuNwNYSXp3/34ZhsH3qkAS\nYd7bH4EMkO7y8xNdQRsuQ3I1SdlNia4kPAFH4sKg7gRRTa5E/4kB8dEUaFJToEn1vg7SXxtxOzsP\nbWJ9dHe8DGcG35gDAAAkicrGRlX7fN2+v8rn06bGRg3KyYlhVQCsxLy3PwIZIN0l6o21b/WR9vsl\nrzd4eDxSIFke+mHmNKQsf/BIBq0DpFiHQbHukwAJ6cAX8MkX8KnOV5foUroUdSDUwcqjrlYSRXq4\nHC7CIwAAkNZisfXQu/v388YskESY9/ZHIAMgMT76WGq9nYG/VUDT/Ptw2t25pztj+JMkdelEMgZI\nTe2FOXEIg7qz0slHgIQU5/V75fUn5vljkXDIkdDVRBGFR07+4gAAALHX1bZFg7KzZUja1NjYcR/7\n9umi3r1jXBkAqzDv7Y9ABoB9uFxSTk7wsKuWoVGsQp5YB0cpEBq15DSkTH/wSAaG7P0MJI9Lqrbf\nToVAzBky5PF75PF7El1Kl5wOp6UhUTIEaAAAIPY6e2P2kt699eDhh0uSrv78c83fuTPiPgDYD/Pe\n/ghkACASyRgaWbVaKJo+Uiw0askhewdI1blS2cz4j/vjD4PPh2ovYAr74LsWpKiAEVBjU6Mamzr+\nlFoymvz8ZOVn5oe1ZV1WRla3Vxhludrey6ojAEC6MwxD9e383FXoculPRxyhKS0+/f7E0KE6s2dP\n/fyzz7S/1T11fj8P+AaSBPM+OfDWBgCkmmQNjeK17Vy496RwaJQIv31D6lUfXR+G2m5f19EqokQe\nPifhESBJyzcvT9jY4a46ai/MsfK+1uETzzoCAMRCwAiopr6mzfm/D+2vu7ds0aM7dkiSTujRQw8f\nMVj9spyqrqs2Xfv9fKfeKu+v6Z99rjW1tZKkn/X9lm46rL921e9qd9yS3BI5Hc4YfzUAusvhcGjt\nscfq/1VW6oHt22VIOqmwUAuGDlX/7Ow210/t3Vsn9uihi9ev1z/375dD0oxDD9WdAwfyPaqFeLsA\nABB/yRIa+Xz2eX5Re9ekWWjkkOQOBI88X6Kr6Vx74VGijw63wGMhAVJQsqw6ivRZR21WEnWw4ijW\nq5DcTjc/lAOAjdXU16js/rIur1staeTr4ff7yDdHR6qur1Kv1s+GBZBQeS6Xfn/44fpRr156d/9+\nXXvoocpwdhycDsjJ0fLhw/W/27ZpVI8eOqmoKI7VpicCGQAA2uNyBY92PkViG82hUSQhT12VtOGK\n+NeanS35vqk3DSRbeJSolUbtPeeos6OJ8AgpJpmedRT3lUTduNftcvNJbQAAAEknFRWFHa5kOJ2a\nedhhFleEZgQyAAAkq+6ERnXV0gbrSurQ1q1SXi/JMKRAIBjMNDWZf431uUT00dSUgD/c6Nj9uUct\nBRyRhzixWkkU6eHnPWGkGK/fK6/fm+gyupThzIh7ENSdVUgERwAAAOmJQAYAAMSPw3EwSEpFhnFw\n5ZLdwqJY9JvgbfKchpTlDx5253fEduVRNEFUfYb0ade7mAApoSnQpKZAk+p8dYkupVMuhyu67eSc\nnd/rabL/qisAAIB0RCADpLmS3BJVXV/V9oU9u6Wbb5ZeeLH7nZ/3Q+nuu6Xinu2OCwApx+GQMjKC\nRyoKBFI7cAoEYvZH5TIkV5OUbYNFU9W5UtnM+I/7i39JGUZ4oZGHLeuQZvyGXw1NDWpoapBSKDu5\naslVKswqVHZGtrIyspTlylJWRlaw/c3vs1xZEb+e5cqSy8lfAgAAIPml6LsFAMLldDjbfwhfXi/p\niRekCxZL994rrVwZfqcnnyzNmiWNHx+7QgEAied0Bg+3O9GVWCMQsG9YFE0fbq+k+CdDt66UetXH\nrr+OtqzzZHR/9VA4QVC793Uypo/3jJHGnqt4zrK+m7ejiyjgiVEg1Pr1DGeGHA6HZV8rAABIXQQy\nADo3YULw+OQT6emnpTVrpLVrpT17Dl5TXCyNHCkdf7w0dao0bFji6gUAoLucTikzM3ikkrpq6f4E\n7Fl29DBpr09qaJDq6w/+ahjd6i5Ztqwz1Pl2dd0NgWIePvGTIJKMnbajczqc3Q94YhAItXw905VJ\nOAQAQBLh23AA4Rk2TLrrruDvDUM6cEDyeKSsLCk/P7hNDwAAQLNlbwVX3LZkGJLXezCgaR3WtPdr\nd1+rr4/pNnThckjK9AcPOzMkNYXxbKJErEBqPa7Bt5mwmYAROLjlnA20DGsSvYLI6XAm+o8DANJC\nwAiopr4m7uOW5Jbwd32UCGQARM7hkAoKggcAAEC4HI7ghzmysoIrbK1kGMEt26INfcK9xm/zBKYV\nhyR3IHjk+RJdTccMSf4wgiOrt6ILZ8wA700gQTx+jzx+ezyMKMOZ0WmAE89wKMPJW14AUldNfY3K\nErAKvur6qvYffYCw8a8TAAAAgNTjcBzcgq6w0Prxugp/YrkayGfjBCXGHJIyAsEj1+Zftt8R3yCo\ns+CpPkPaWJroPxGko6ZAkw54D+iADiS6FDkdzu4FPBFcH25I5Ha62VoOACCJQAYAgLRSkluiquur\nzCfXV0gXXCB9vTP6Afr0lp55Rhpa3mZcAEhpbnfw6NHD+rGamqwPfZp/9Xqt/3pShMuQcpqCR6JV\n50plM+M/7gX/kRzuDDVmueTJdMnjdsrjdqjRLXlcDnlchjxOQ43OgDwOf/CQX4a692wpoDMBI6B6\nX73qffWJLkWSolsF1MW9jb7GRH95AIAwEcgAAJBGnA5n2+XFx54irVknXXON9NRT3e/8wgulBx6Q\nSghfAMBSGRnx2z7W77c+9Gn+1WOPLZfQfQ++JvWqb5IUfiplSPJ9s+LHkxH8tTHj4O89GS3auVny\n5GWrMS9TnpxMeXLc8mS7gwFQVoY8mU55Mp1qdDvkyfjmcBnyuJpDoEAoBGo0fPIYPnkCPnkCXjU2\nNcrT5JHfSK7tB5E8mreW2+/Zn+hSYmbuB3PVK6+XsjOyTUeOO6fNueyMkz82WgAAIABJREFUbOVk\n5CjTlclqIQBpjUAGAAAEQ5QnnwyGKvfeK61cGf69J58szZoljR9vXX0AgMRwuaT8/OBhNb9famy0\nNvRp/rWRT5PbhUNSpj94FHS5IMvzzWGB3Fwpr6f8+bnyFOSqsSBHnvxsefKy5cnLUmNupjy5mfJk\nB4OgUAiU5WobAmUYanQGgyCPIyCP36tGfzDw8fg98jR5ggHQN7/3+D2hQKjl676AzffpQ9qbtWxW\nt+5rL6hpN8Bx5yjb1cH5DgKfDvv5ZnWRy+mK8Z8CAESGQAYAABw0YULw+OQT6emnpTVrpLVrpT17\nDl5TXCyNHCkdf7w0dao0bFji6gUApA6XS8rLCx5WCwS6Dn9i+Uwg2F99vVRfL1e1lKvgETPZ2Qf/\n3zYdPTs4nycV5ymQmyNvbpY8OZlqzM6Qp/nIylBjZnA7OI/8YQc8bV6P4HpPk4et5RAzjU2NamxK\nTDDudrq7H+x0Efh0dW2GM4PVQQAIZAAAQDuGDZPuuiv4e8OQDhwIbiWTlRX8lDQ/SAAAkpnTGVwR\nkZtr/VabhtFx+BPL0Kf5V4M3zW2nsTF41NREdJtTUvY3R2FHF2VmdhzqhBMA9Wjx+/x882uZmaFh\nDMOQL+CLeJVPWK93oz+2lkN3+QI++bw+1Xpr4z620+GMKNTJdnV/NVDrI8uVRRgE2ASBDAAA6JzD\nEb9nFQAAkGocDiknJ3j07GntWIYR/ABFzZfSX46wdizYg9cbPFquZo6VjIxQOOPIy1PmN0dBJAFQ\nc8hT0Oq1rKyoPuDTFGgyhTVRBULdXDXU/DpbyyFcASOgOl+d6nx1CRnfqtVAXV3PVnGAGYEMAAAA\nkMJKcktUdX1VxxcsXSo99KD07r/C7/TE70m/uEb6/vc7HRdAnDkcwe2xiooSM/6zz0het1RX1/lx\n4EDHr/F8H/toapL27QseseZ0RrCyp+2RkZ+vjLw85ZnOlwRX/OTkxHU1d8AIyOv3tglw4hkSNfga\nErLiA8nFLlvFWb1dXOvr2SoOdkMgAwAAAKQwp8OpXnm9Or7gnAuDB8+OAhCtseOkzv6+CYffH9x+\nratQpzthT319bL5ORC8QkGprg0esORzB7Qi7E/a03rat9ZGbGwyTWnA6nKE3fhOluq5aZfeXxX3c\nIT2HyOf3hd7obw6IgNYSvVVcRMGOK7oVQWwVh64QyAAAAADg2VEA7MHlsm6r1EAg+JydWAc9zQfP\n77EHwzj438QKOTmxD3qaD1dybeu06qer2nzoo3nFUIOvwRTUNB8NTR2cj/T6ds43+BpkiHkIs4AR\nUL2vXvW+xITyWa4sS1YEJWq1E6JHIAMAAADAjGdHAUhFLbfJijXDCG63ZlXY4+ch9rbR0BA8du2K\nfd9ZWd0LebLt8/9HIlcMGYYhX8AXm8DH16BGf2T9NAWa4v41w/48fg8rx2BCIAMAAAAAABANhyO4\nciInRyotjW3fhiF5vdYEPXV1ko+H0tuGxxM8du+O7L5cSTMtqSipOBwOZboylenKVI+sHnEfvynQ\nFHq2TzxWBLXshzf8geRBIAMAAAAAAGBXDkdw5URWltSzZ+z79/msCXrq6oLhAlLXUUdJWcVSjx7m\no6Cg7bmOrsnOTpltUTOcGcrIzFBepgWr8LrQvFVcVCuCWp7zh98PW8UBkSGQAQAAAAAghZTklqjq\n+qqDJ9ZXSJMmSXv3xW6QokJp0SJpaLlpXCQht1sqKgoesdbUJNXXWxP2NDTEvl5Eprpaqq+Oro+M\njK5Dm3CCnfz8pHsGTywlequ4pkBTXFcEtTx8AVb5IbkQyAAAAAAAkEKcDqf5QdvHniL9/W3pjDOk\nr76KfoC+faW//106+ujo+0Jqa/lme6wFAtaFPfX1wa3iYL2mpuAWbZFu09ae/Pzog50ePYKr0RA2\nh8Mht8stt8utgqz4P3/QH/C3G97EIyBqbGqM+9eL5EcgAwAAAABAqjv6aOnjj6VrrpGeeqr7/Vx4\nofTAA1IJq2GQYE5n8A34/PzY920YwRU4sQ56mo9AIPY1I/jf4sCB6IPnzMzYBDt5ecH/T2Epl9Ol\nvMw8W2wVF/WWcf7w+6j31cf960VsEMgAAAAAAJAOSkqkJ58Mhir33iutXBn+vSefLM2aJY0fb119\ngF04HFJubvDo1avr6yNhGMFn68Qy6GnaJ6mqy6ERJq9X2rUreETD4Wg/xOkq2Gnvdbc7Nl8bYiqR\nW8VVHahS79/2jvu4iB6BDAAAAAAA6WTChODxySfS009La9ZIa9dKe/YcvKa4WBo5Ujr+eGnqVGnY\nsMTVC6QShyP4IPvs7NitNKurlu4vi01fiB3DkPbvDx7Rys6ObrVO85GbG/x/EEnPwX/HpEUgAwAA\nAABAOho2TLrrruDvDSP4iXyPJ/j8hPx83rQD0LmH/yDVOw6GDh0dtbXBX+vqEl1x8mpsDB5VUa6E\ncjpjE+wUFASfEQUgYswcAAAAAADSXfPWOgXxfyAzgCT1o/OlvAi2dGtqCga/nYU24QQ7+/dLfr91\nX1cqCwSkvXuDR7Ryc6MPdnr0CK7+4QMASCMEMgAAAAAAAECSKsktUdX1VdLZZ0n/Wm39gCd+T1r0\nskpyI9xyLSNDKioKHtEwDKmhITbBTkNDdLWks/r64PH119H1k5ERm2AnP19yuWLztQEWIpABAAAA\nAAAAkpTT4VSvvF7Sr26VJk60fsBf3RrZyphYcziCqzNyc6U+faLry+drP8SJNNjZvz8YFCFyTU3S\n7t3BI1r5+dEHOz16BLfuBCxCIAMAAAAAAAAkuwkTpKlTpaeftm6MCy+Uxo+3rv94c7ulnj2DRzQM\nI/iMnFgEOx5PbL62dHTgQPCIVmZm9KFOjx5SXl7wuT1ACwQyAAAAAAAAQCp48EFpxQrpq69i33ff\nvtIDD8S+31TgcARXZ+TnB/+couHxtA1puhPs1NbG5mtLR16vVFMTPKLR/P9FtMFOQUEwJEJKIJAB\nAAAAAAAAUkFJifT3v0unnCLt2RO7fouLg/2WRPjcGEQuKyt4lJZG108gEFwtEmmw0/q6ffuC24oh\ncoYR/LOsrZW2b4+ur6wsc0hTki2dFJsyEV8EMgAAAAAAAECqOPro4CqZM86IzUqZvn2DYczRR0ff\nF+LH6Tz45n00DCO4aicW27HV1cXma0tHHo9UXR08JClXBDJJikAG6AZPq/08N27cmKBKAAAAAAAA\nWnE6pWefle6+W1qypPv9jB8v3XxzsL9162JXH5JXVpbUq1fwiFRTk1RfHwxmmp/3Uld3sN36fPPv\n6+vbng8EYv+1JZHdAUlV8R/304r1qspNwMBRav3ebev3duPJYRiGkbDRgSS1aNEinXPOOYkuAwAA\nAAAAAAAQgYULF2rSpEkJGduZkFEBAAAAAAAAAADSCIEMAAAAAAAAAACAxdiyDOiGvXv3asWKFaF2\nv379lJWVlcCK4mvjxo2mLdsWLlyoIUOGJLAiAFZizgPph3kPpB/mPZBemPNA+knnee/xePTll1+G\n2qeccoqKiooSUktGQkYFklxRUVHC9hm0oyFDhuioo45KdBkA4oQ5D6Qf5j2Qfpj3QHphzgPpJ93m\n/YgRIxJdgiS2LAMAAAAAAAAAALAcgQwAAAAAAAAAAIDFCGQAAAAAAAAAAAAsRiADAAAAAAAAAABg\nMQIZAAAAAAAAAAAAixHIAAAAAAAAAAAAWIxABgAAAAAAAAAAwGIEMgAAAAAAAAAAABYjkAEAAAAA\nAAAAALAYgQwAAAAAAAAAAIDFCGQAAAAAAAAAAAAslpHoAgAkn169eum2224ztQGkLuY8kH6Y90D6\nYd4D6YU5D6Qf5r09OAzDMBJdBAAAAAAAAAAAQCpjyzIAAAAAAAAAAACLEcgAAAAAAAAAAABYjEAG\nAAAAAAAAAADAYgQyAAAAAAAAAAAAFiOQAQAAAAAAAAAAsBiBDAAAAAAAAAAAgMUIZAAAAAAAAAAA\nACxGIAMAAAAAAAAAAGAxAhkAAAAAAAAAAACLEcgAAAAAAAAAAABYjEAGAAAAAAAAAADAYgQyAAAA\nAAAAAAAAFiOQAQAAAAAAAAAAsFhGogsAYK0vvvhCa9as0bZt2+T1elVcXKwjjzxSo0aNUnZ2dqLL\nA2ABu817n8+nDRs2aN26ddq5c6dqa2uVn5+vkpISfec739GwYcPkdPIZESAadpv3+/fv16effqot\nW7Zox44dqqurkyQVFRWpT58+GjFihPr37x/3uoBUYbc5D8B6zHsg/dh93vv9fq1du1YVFRWqqqqS\nz+dTfn6+Dj30UA0dOlRHHnkkP+u3xwCQkl566SVjxIgRhqR2j/z8fOPqq682qqur41ZTIBAwKioq\njHnz5hnTp083Ro4cabjdblNdl156adzqAVKNneZ9ZWWlce+99xqnnXaakZOT02FNkozCwkLjqquu\nMj777DPL6wJSjV3mfV1dnfGHP/zBuOCCC4wBAwZ0OuebjwEDBhizZ882ampqLK0NSCV2mfPhqqur\nMwYPHtymTr7nB8Jnp3l/yimnhPVvfEfH3LlzLa8RSAV2mvftqaysNKZNm2YUFRV1Oud79OhhTJo0\nyVi8eHFC6rQrAhkgxTQ2NhoXXXRR2N8Q9erVy1ixYoWlNf31r381Tj31VKOwsLDLevjhDIicneZ9\nY2OjccIJJ3TrB7TMzEzjvvvuMwKBgCW1AanETvPeMAzj888/7/abM2VlZcYLL7xgWW1AKrDbnA/X\ntddey/f8QDfZcd4TyADWsuO8b8nv9xt33323kZWVFdHcv+CCC+JWYzJgzRCQQgKBgC644AI9+eST\npvMul0sDBw7U8OHDVVhYaHqturpaZ555pt59913L6lq0aJGWLVumffv2WTYGkK7sNu99Pp9Wr17d\n7mvZ2dkaOHCgjjvuOJWXlyszM9P0utfr1Q033KCrr7465nUBqcRu874zRUVFGjp0qE444QR997vf\nVVlZWZtrqqqqdP7552vevHlxrQ1IFsk051tas2aN/u///i9h4wPJLFnnPYDus/u89/l8mjJlim6+\n+WZ5PB7Ta4WFhTryyCN1/PHHa+jQocrNzbW8nmRGIAOkkPvuu0+LFi0ynfv5z3+urVu3qrKyUh98\n8IF2796tF198UYcddljomvr6ek2ePDkhgUleXl7cxwRSid3n/cCBA3X77bfrn//8p/bv36/Kykqt\nWbNG69at0969ezV//vw2z5F4+OGH9dBDD1laF5DM7Dzvhw0bphtuuEEvv/yyvv76a+3Zs0cVFRX6\n17/+pQ8//FA7d+5UZWWlbr31VuXk5ITuCwQCuvLKK/Xpp59aVhuQrOw85zvi9Xp1+eWXKxAISOJ7\nfiBSyTLvly5dGtFx+umnx6UuIBnZfd5ffvnleu6550LtjIwMXXXVVVqzZo327Nmj9evXa/Xq1aqo\nqFBtba3Wr1+v3//+9xo1apQcDoeltSWdRC/RARAbu3btMgoKCkxLAn/zm990eP22bdva7PH+61//\n2pLaJk2aZEgy+vTpY5x11lnG//zP/xh///vfjZqaGuO2225j+wKgm+w472traw1JxujRo43XX389\nrO3Hdu/ebRx33HGmuoqKiniuBNAOO857wzCMAwcOGJ9//nlE93zwwQdGcXGxqbbJkyfHvDYgmdl1\nznel5ff4hxxyiPGrX/2K7/mBMNl53rfesgxAbNh53huGYcyfP980Vt++fY2PPvoo7Pt3795tWW3J\niL89gRQxc+ZM01+OJ598cpdvhL755pumewoKCoxdu3bFvLa1a9caW7dubfc1Ahmg++w47z0ej/Hq\nq69GfN/27duNvLw8U22PPPJIzOoCUoUd5300/vSnP5lqy8vLMxoaGhJdFmAbyTjnP/nkEyMzMzM0\n/ksvvcT3/EAE7DzvCWQAa9h53ldXVxulpaWhcQoLCyP+IBbM2LIMSAGBQEBz5841nbv99tu7XBJ4\n6qmnasyYMaF2bW2tnn322ZjXN2LECPXr1y/m/QLpzK7zPjMzUxMmTIj4vr59++rSSy81nXv99ddj\nVRaQEuw676MxdepUOZ0HfySpq6vT1q1bE1gRYB/JOOcDgYAuv/xyeb1eSdK5556rc845Jy5jA6kg\nGec9gOjYfd7fdddd2rVrV6h99913a8iQITEfJ50QyAApYNWqVaqurg61Bw0apLFjx4Z17+WXX25q\nL1y4MJalAbBIKs77lt9MSuJNWaCVVJz3PXr0UK9evUznWv7AB6SzZJzzv//977V69WpJwfnNM+GA\nyCTjvAcQHTvPe4/HoyeeeCLU7tOnj6688sqYjpGOCGSAFLB48WJT+7TTTgv7gVmnnXaaqb18+XLV\n1dXFrDYA1kjFeV9cXGxqJ+IhxICdpeK8l6TGxkZTu6ioKEGVAPaSbHO+srJSt956a6j9m9/8Rn37\n9rV0TCDVJNu8BxA9O8/7l156Sbt37w61p0yZIpfLFbP+0xWBDJACPvzwQ1N71KhRYd/bt29fDRgw\nINT2er2qqKiIVWkALJKK83779u2mdklJSYIqAewpFef9hg0bTOFrfn6+jjjiiARWBNhHss35//7v\n/1Z9fb0k6cQTT9S0adMsHQ9IRck27wFEz87zvnVYNG7cuJj1nc4IZIAUsH79elO7vLw8ovtbX9+6\nPwD2k4rz/u233za1eVMWMEvFeX/nnXea2hdddJEyMjISVA1gL8k05//yl7/orbfekiS53W49+uij\nYX+6F8BByTTvm+3bt08ff/yxVq5cqX//+9/asmWL/H6/5eMCqcLO8/69994ztb/73e9Kkvx+v157\n7TVNmTJF3/72t5WXl6eioiIdfvjhmjx5subOnRv6kAba4qcdIMk1NDS0ec5Cv379Iuqj9fUbNmyI\nui4A1knFeb9//349//zzpnPjx49PUDWA/aTavG9sbNSNN96oBQsWhM716tVLd9xxR8JqAuwkmeb8\njh07dMMNN4TaM2fO1FFHHWXJWEAqS6Z53+yYY47Rxx9/rEAgYDqfn5+v0aNH67zzztMll1yirKws\nS+sAkpWd5/2+ffv02Wefhdoul0v9+/dXZWWlLr74Yr377rvt3rNx40Y999xzuuWWWzRnzhz9+Mc/\njkk9qYRABkhyu3btkmEYobbb7VZZWVlEfRxyyCGmdlVVVUxqA2CNVJz3d955pw4cOBBql5aWauLE\niQmsCLCXZJz3q1evVm1tbajd2Nioqqoqvf/++3rhhRdM4/fp00dLliyJ+GsCUlUyzfnp06dr7969\nkqTDDz9ct9xyiyXjAKkumeZ9s9ZbLTU7cOCAXn/9db3++uv69a9/rQceeEDnn3++pbUAycjO876y\nstJUW0FBgSoqKjRq1Kiwnvf61Vdf6ZJLLtG6des0Z86cmNSUKghkgCTX8g1MScrNzY14e4C8vLxO\n+wRgL6k271etWqX//d//NZ275ZZblJubm6CKAPtJxnl/5ZVX6qOPPur0muzsbF122WW644471KtX\nL0vrAZJJssz5Z599VgsXLgy1//znPys7Ozvm4wDpIFnmfaS+/vprTZ48Wddff73uu+++RJcD2Iqd\n533zhy2aORwOTZw4MRTG5Obm6sILL9TJJ5+skpIS1dTUaMWKFXrqqafU0NAQuu+ee+7RIYccol/8\n4hcxqSsVEMgASa71X7Td+QEoJyen0z4B2EsqzfuqqipNmTLFtM/0cccdp6uvvjoh9QB2lUrzvllm\nZqauueYa/exnPyOMAVpJhjlfU1NjenPlJz/5CQ/7BaKQDPNeCtZ12mmn6cwzz9Tw4cM1ZMgQFRUV\nyePxqKqqSu+++66efvppLVmyxPTp+vvvv18lJSW68cYbY14TkKzsPO9bBzJ79uzRnj17JEkjR47U\niy++qMMOO8x0zY9//GPdcsstmjRpkj7++OPQ+RtuuEGnn346z4n9hjPRBQCITmNjo6mdmZkZcR+t\n93NtmWQDsJ9Umfcej0fnnnuuvvzyy9C5goICPfXUU3K5XHGvB7CzVJn3LXm9Xt1777369re/rSuu\nuMK0vRmQ7pJhzv/yl78MbYtSVlam+++/P6b9A+kmGeb9r371K23btk0vv/yypk2bphNPPFG9evWS\n2+1Wfn6+Bg0apIsuukivvvqqVq5c2WYrpZtvvrnL1bNAOrHzvO8o2Dn00EO1dOnSNmFMswEDBmjZ\nsmXq06dP6JzH4+H7hBYIZIAk1zo993q9Effh8Xg67ROAvaTCvA8EArr44ou1atWq0DmXy6Unn3xS\nQ4YMiWstQDJIxnn/4YcfyjCM0LF//3599tlnWrBggc4888zQdX6/X4899phOOukk1dTUWFoTkCzs\nPudfe+01LViwINT+3e9+p549e8asfyAd2X3eS9LZZ5+tkpKSsK496aSTtHz5cpWWlobOGYbBc6aA\nFuw87zvq57777lNxcXGn95aWlrZ5bsz8+fMT/oEwuyCQAZJcfn6+qd06XQ9H678QW/cJwF5SYd5P\nnz5dzz//fKjtcDj06KOP6qyzzoprHUCySIV5X1BQoMMPP1wXXXSRlixZojfeeMP0w9zHH3+sSy+9\nNK41AXZl5zlfW1urn//856H2GWecoQsvvDAmfQPpzM7zvruGDBnS5rkxS5Ys0e7duxNUEWAvdp73\n7fXTs2dPnXfeeWHdf8EFF6iwsDDUbmxs1Jo1a2JSW7IjkAGSXOu/IOvr6037tIajrq6u0z4B2Euy\nz/ubbrpJf/7zn03nfvvb3+onP/lJ3GoAkk2yz/v2nHbaaVq8eLGczoM/kixevFhLly5NYFWAPdh5\nzt94443aunWrpOADff/4xz/GpF8g3dl53kfjkksuMT0rLhAI6M0330xgRYB92Hnet9fPiSeeKLfb\nHdb92dnZOv74403n3n///ZjUluwIZIAkV1paKofDEWr7fL7QXs7h2r59u6ldVlYWk9oAWCOZ5/2c\nOXPaLF3+9a9/rWuvvTYu4wPJKpnnfWdOPPFEXXzxxaZz8+bNS0wxgI3Ydc5v2rTJFMDMnj1bAwYM\niLpfAPad99FyOp0aO3as6dyGDRsSUwxgM3ae9717925z7ogjjoioj29/+9umdqRfW6oikAGSXE5O\nTpsHaTV/Yi1cra8/8sgjo64LgHWSdd7/4Q9/0E033WQ6N2PGDM2ePdvysYFkl6zzPhw//OEPTe2W\nz5YC0pVd5/y+fftMn9y94YYb5HA4ujxa/1v/+OOPm14vKiqKujYg2dl13sdCv379TO3q6uoEVQLY\ni53n/eDBg5WZmWk616NHj4j6aH39nj17oq4rFRDIACmg9V+2FRUVEd2/fv36TvsDYD/JNu+feOIJ\n/eIXvzCd++lPf6rf/e53lo4LpJJkm/fhGjx4sKn99ddfJ6gSwF5Sdc4D6FiqzvvWWxz5fL4EVQLY\nj13nvcvlarMixuPxRNRH62fi5ObmRl1XKiCQAVLA8OHDTe1IPlm6Y8cObd68OdR2u90qLy+PVWkA\nLJJM8/6FF17QT3/6U9MnaidPnqxHH33UtDwbQOeSad5HI9x9qYFUly5zHsBBqTrvW3/YouUzZYB0\nZ+d5P2LECFN7586dEd3feouykpKSqGtKBRmJLgBA9CZOnKh77rkn1H7zzTdlGEZYb3S+8cYbpva4\nceNs8eA/AJ1Llnn/2muv6cILL5Tf7w+dmzBhghYsWGB6kDeAriXLvI/Uli1bTO329qsG0pEd5/yQ\nIUO0dOnSiO974oknNH/+/FD7Bz/4gW644YZQmyAWCLLjvI+Fd955x9RuvYUZkM7sPO/PPvtsPfHE\nE6H22rVrI7q/9fWtnymTrghkgBQwatQolZaWateuXZKkyspKLV++XOPGjevy3scee8zUnjRpkiU1\nAoitZJj3K1as0HnnnSev1xs6N27cOD3//PO88QJ0QzLM++545ZVXTO3vfOc7CaoEsBc7zvn8/Hx9\n//vfj/i+1m/Gfutb3+pWP0Cqs+O8j9aKFSv0xRdfmM6deuqpCaoGsB87z/szzjhD2dnZoa3HPv74\nY33++ec6/PDDu7x33bp1bbZTGzt2bEzrS1Z8NBVIAU6nU5dddpnp3OzZs03bA7Vn2bJlevvtt0Pt\ngoICTZ482YoSAcSY3ef9+++/r7POOksNDQ2hc9/73vf08ssvKzs7O+bjAenA7vO+O9avX6+5c+ea\nztnlDSQg0VJxzgPoXKrN+7q6Ol1zzTWmc0cffbQGDRqUoIoA+7HzvM/Ly9PFF19sOnfnnXeGde8d\nd9xhap9yyikqKyuLWW3JjEAGSBGzZs0yLUtcsWKFaclja9u3b9cVV1xhOjdjxgyVlpZ2Oo7D4TAd\ny5cvj6puAN1n13m/bt06nXHGGaqtrQ2dGz58uF577TXbbJsAJCs7zvva2lpNnz5d27ZtC++L+MYn\nn3yi008/3bSKrn///jr//PMj6gdIZXac8wCsZdd5P2PGDH311VddfwHf2LVrl84++2x9/PHHpvOz\nZ88Ouw8gXdh13kvSbbfdZvpQ5RNPPKG//vWvnd7z8MMP69lnnzWdu+mmm7ocK10QyAAporS0VDff\nfLPp3E033aTp06ebvmkKBAJauHChRo0aZXrwV9++fXXddddZUltjY6PefPPNdo/KykrTtTt27Ojw\n2h07dlhSH5Cs7Djvd+zYoR/84AeqqakJncvLy9PMmTP1/vvvdzi/OzoAmNlx3vv9fv3xj3/UoEGD\ndNZZZ+mJJ57QF1980e6n+rxer1atWqVp06ZpxIgR+vLLL0OvORwOPfjgg8rJyYlpfUAys+OcB2At\nu877Bx54QIMGDdK5556rJ5980jRmS19++aXuu+8+HX300XrrrbdMr51zzjk699xzY14bkOzsOu8l\n6dBDD9WsWbNM56644gpdffXVpu/lJWnr1q2aNm2arr76atP5qVOn6vTTT7ekvmTkMLpa/wQgaQQC\nAU2aNEmvvvqq6bzL5VL//v1VWFioTZs2ae/evabXc3JytHTpUo3awuQoAAAPPUlEQVQePbrLMVo/\nVOwf//hHl3tAbt68WQMHDgzvi+jE3Llz2yzjBNKd3eZ9uHvdhotvU4C27Dbv9+7dq+Li4jbnCwoK\n1KdPHxUVFckwDO3bt0+bN2+Wz+drd7xHH31Ul19+eZe1AenGbnO+O26//XbTp+IvvfRSzZs3L2b9\nA6nGjvO+vQeM9+jRQ9/61rdUWFgon8+nnTt3driKZsyYMXr99df54AXQATvO+2Z+v1/nnHNOm9oc\nDocGDhyokpIS1dTUtPnQtSSNGDFCK1asYLeMFlghA6QQp9Op5557TlOmTDGd9/v9qqys1AcffNDm\nL+6SkhItWbIkrL+4AdgP8x5IP8ky72tra/X555/rvffe0/vvv6/PP/+83TDm8MMP17JlywhjgA4k\ny5wHEDvJMu/379+vDRs2aM2aNfrggw/aDWOcTqdmzpypZcuWEcYAnbDzvHe5XHr++ed16aWXms4b\nhqHKykq999577YYxZ599NmFMOwhkgBSTnZ2tp59+Ws8//7yGDx/e4XV5eXmaPn26KioqYvrpNwDx\nx7wH0o+d5n1hYaFWrFihWbNm6fjjj1dmZmaX97jdbp166qlasGCB/vOf/8R0ZR2Qiuw05wHEh93m\n/SOPPKIpU6aoX79+YV3fp08fzZgxQxs2bNA999wjt9ttWW1AqrDbvG8pKytL8+bN02uvvdZpAORw\nOHTCCSfolVde0aJFiwhj2sGWZUCK27hxo1avXq3t27fL6/WqqKhIQ4cO1ejRo00P5QKQOpj3QPqx\n07z3eDyqqKjQF198oR07dqi2tlZSMLgpKirSkUceqaOPPjqs4AZA++w05wHEh53mfU1NjdavX68t\nW7aourpadXV1crlcKi4uVmlpqY455hgNGjQorjUBqchO87617du3691339WWLVvU2Nio4uJifetb\n39Lo0aNVVlaW0NrsjkAGAAAAAAAAAADAYmxZBgAAAAAAAAAAYDECGQAAAAAAAAAAAIsRyAAAAAAA\nAAAAAFiMQAYAAAAAAAAAAMBiBDIAAAAAAAAAAAAWI5ABAAAAAAAAAACwGIEMAAAAAAAAAACAxQhk\nAAAAAAAAAAAALEYgAwAAAAAAAAAAYDECGQAAAAAAAAAAAIsRyAAAAAAAAAAAAFiMQAYAAAAAAAAA\nAMBiBDIAAAAAAAAAAAAWI5ABAAAAAAAAAACwGIEMAAAAAAAAAACAxQhkAAAAAAAAAAAALEYgAwAA\nAAAAAAAAYDECGQAAAAAAAAAAAIsRyAAAAAAAAAAAAFiMQAYAAAAAAAAAAMBiBDIAAAAAAAAAAAAW\nI5ABAAAAAAAAAACwGIEMAAAAAAAAAACAxQhkAAAAAAAAAAAALEYgAwAAAAAAAAAAYDECGQAAAABI\nMfPmzZPD4Qgd8+bNS3RJAAAAQNojkAEAAAAAAAAAALAYgQwAAAAAAAAAAIDFCGQAAAAAAAAAAAAs\nRiADAAAAAAAAAABgMYdhGEaiiwAAAAAAAAAAAEhlrJABAAAAAAAAAACwGIEMAAAAAAAAAACAxQhk\nAAAAAAAAAAAALJaR6AIAAAAAAAfV1tbqgw8+0IYNG7R37155PB7l5uaquLhYAwYMUHl5uXr37p3o\nMqOyYcMGffTRR6qurta+ffvUs2dP9e3bVyeddJJ69uyZ6PIAAAAASxDIAAAAAIAN/Pvf/9add96p\nxYsXy+v1dnrtwIEDNWHCBE2bNk3l5eVtXp83b55+8pOfhNpz587VZZdd1ua622+/XbNnz4669n/8\n4x8aO3Zsp9ccOHBAv/3tb/X4449r06ZN7V7jcrk0ZswY3XHHHRozZkzUdQEAAAB2wpZlAAAAAJBg\nc+bM0XHHHaeXXnqpyzBGkjZt2qSHHnpITz31VByqi96rr76qwYMH6/bbb+8wjJEkv9+v5cuX6+ST\nT9aVV16ppqamOFYJAAAAWIsVMgAAAACQQI899phuuummNucLCgo0YMAA5eXlqaGhQbt379a2bdtk\nGEYCquy+Rx55RNOnT5ff7zedz83NVf/+/VVQUKDdu3ersrJSgUDAdN/OnTv10ksvyeFwxLtsAAAA\nIOYIZAAAAAAgQTwej2bOnGk6d9555+mmm27SiBEj2gQRtbW1eu+997RkyRItWLAg6vEvueQSnXTS\nSRHds3btWt14442mc3l5ee1eu2zZMk2bNs0UtJx11lm67rrrNHr0aGVkHPyRdPfu3frLX/6iO++8\nU7W1tZKkRYsW6d5779WsWbMiqhEAAACwI4eRbB+vAgAAAIAUsWTJEk2YMCHUvuSSS/T444+Hda/X\n69W2bds0aNCgNq+F+wyZSG3evFnf+973tHPnztC5mTNn6p577mlz7d69ezV06FB9/fXXkiSn06lH\nH31UP/3pTzsdo6KiQmPHjlV1dbUkKTMzU1u2bFGfPn2irh8AAABIJJ4hAwAAAAAJ8tlnn5na06dP\nD/vezMzMdsMYq+zZs0dnnnmmKYyZMmWK5syZ0+71f/rTn0JhjCTdddddXYYxklReXq558+aF2l6v\nVw899FD3CwcAAABsgkAGAAAAABKkoaHB1Ha73QmqpHMej0fnnHOOPv3009C5MWPGaN68ee0+38Xv\n9+vBBx8MtQ877DBdd911YY83fvx4HXPMMaH2Cy+80M3KAQAAAPsgkAEAAACABOnbt6+pHYvnwsSa\nYRi67LLLtHLlytC5I488UosWLVJWVla793z00Uf66quvQu0pU6ZEHDb94Ac/CP3+008/1a5duyKs\nHAAAALAXAhkAAAAASJD/+q//ksvlCrV/97vfafr06aqsrExgVWY33nij/va3v4XavXv31muvvabi\n4uIO73n77bdN7WOPPTbicQ877DBTe/369RH3AQAAANgJgQwAAAAAJEi/fv3aPFflj3/8owYPHqxj\njz1WN954o5YsWaLdu3cnpL6HH35Y9957b6idl5enV199VQMGDOj0vtbhyeTJk+VwOCI6rrrqKlMf\nifozAAAAAGKFQAYAAAAAEuiBBx7QWWed1eb82rVrdc8992jChAkqLS3VMccco5tvvlnr1q2LS12v\nvPKKrrnmmlDb5XLpb3/7W1irXWpqamJez759+2LeJwAAABBPBDIAAAAAkEDZ2dlatGiRnnrqKQ0f\nPrzdawzD0Icffqjf/OY3GjZsmCZOnKiNGzdaVtP777+vKVOmyO/3h849+OCDmjhxYlj37927N+Y1\nBQKBmPcJAAAAxFNGogsAAAAAgHTncDg0depUTZ06VRUVFVq6dKmWL1+ud955p92H2S9evFgrV67U\n4sWLNWbMmJjWsmnTJk2cOFH19fWhczNnztS0adPC7iM3N9fUnjNnjkaOHBlVXUcddVRU9wMAAACJ\nRiADAAAAADZSXl6u8vJyzZgxQ4Zh6NNPP9Ubb7yh559/Xu+8807outraWv3oRz/SF198ofz8/JiM\nvWfPHo0fP147d+4MnZsyZYrmzJkTUT+lpaWm9sCBA/X9738/JjUCAAAAyYotywAAAADAphwOh4YO\nHaoZM2bo7bff1sqVK01hR1VVlebPnx+TsTwejyZNmqRPP/00dO7kk0/WvHnz5HA4Iupr4MCBpraV\n26sBAAAAyYJABgAAAACSxJgxY9qsVmm5aqa7DMPQpZdeqrfffjt0bujQoVq4cKGysrIi7m/cuHGm\n9ltvvRV1jQAAAECyI5ABAAAAgCQyevRoU7u9Z8xEatasWXrmmWdC7d69e2vJkiUqLi7uVn/HH3+8\n6d633npLFRUVUdcJAAAAJDMCGQAAAABIIq0DmO6GJs0efvhh3XfffaF2Xl6eFi9erAEDBnS7T7fb\nrV/+8pehtmEYuvLKK+Xz+aIpFQAAAEhqBDIAAAAAkCC33nqrFixYoKamprCuNwxDv/3tb03nRo4c\n2e3xX3nlFV1zzTWhtsvl0jPPPBNVn81mzJih3r17h9rvvPOOfvSjH2nfvn1h91FXV6cHHnhAjz32\nWNT1AAAAAImWkegCAAAAACBd/ec//9Gdd96p6667Tj/84Q81adIkHXfccSopKTFdFwgEtGrVKs2e\nPVtvvvlm6Hxubq4uvPDCbo8/ZcoU+f3+UHvy5MnKysoyjRGOkSNHtlmpU1hYqOeee06nnnpqaGXM\nyy+/rKOOOkrXXnutzj//fB122GFt+vryyy+1evVqLVy4UK+88or279+v2267rRtfHQAAAGAvBDIA\nAAAAkGBVVVX605/+9P/bu3uUyNIwDMPP0A2lqIloQWksimBkYiKIWzARMxN1AbUMxVQQDCqpZZi6\nAkWTQkQLRJACFdHACYYJpOkZRubVbriu7Jzv/LwnvuE7OTg4SJK0Wq1MTExkZGQkj4+P6fV6eXh4\n+OG+vb29TE9Pf/i9T09P74673W663e5/fs7x8XFWVlZ+OL+8vJxOp5PNzc08Pz8nSa6vr9Nut9Nu\nt9NqtdJsNtNoNDIYDHJ7e5v7+/sPfQsAAPzqBBkAAIBfTL/fT7/f/+n68PBw9vf3s729/YlTfcz6\n+npmZmaysbGRi4uLd2v/9p3JX9uoTU1NVY4IAACfwj9kAAAAvsjh4WGOjo6ytrb27n8rPzM+Pp6d\nnZ2cnZ39FjHmb4uLizk9PU2n08nS0lK+ffv2j9c3Go2srq5md3c3V1dX2dra+qRJAQCgzh9vb29v\nXz0EAAAASa/Xy/n5eS4vLzMYDPLy8pLR0dFMTk5mYWEh8/Pz+f7999/oYDAY5OTkJDc3N7m7u8vr\n62vGxsbSbDYzNzeX2dnZDA0NffWYAADwvxJkAAAAAAAAitmyDAAAAAAAoJggAwAAAAAAUEyQAQAA\nAAAAKCbIAAAAAAAAFBNkAAAAAAAAigkyAAAAAAAAxQQZAAAAAACAYoIMAAAAAABAMUEGAAAAAACg\nmCADAAAAAABQTJABAAAAAAAoJsgAAAAAAAAUE2QAAAAAAACKCTIAAAAAAADFBBkAAAAAAIBiggwA\nAAAAAEAxQQYAAAAAAKCYIAMAAAAAAFBMkAEAAAAAACgmyAAAAAAAABQTZAAAAAAAAIoJMgAAAAAA\nAMUEGQAAAAAAgGKCDAAAAAAAQDFBBgAAAAAAoJggAwAAAAAAUEyQAQAAAAAAKCbIAAAAAAAAFBNk\nAAAAAAAAigkyAAAAAAAAxQQZAAAAAACAYoIMAAAAAABAMUEGAAAAAACgmCADAAAAAABQTJABAAAA\nAAAoJsgAAAAAAAAU+xM3woJzwZgmtwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exp.plot_compression_experiments(res_h, comp_ratios,\n", + " \"../figs/compression_human.png\")\n", + "Image(filename=\"../figs/compression_human.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmkAAARLCAYAAABvHEdXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAuIwAALiMBeKU/dgAAIABJREFUeJzs3Xl4l+WdL/7PN3sICSCbC0hAqYKoWBGVvUe72NbqVMee\n1i60jjPT+Z3R6dXaznGW6tRendptuoztTJ2Wnm5a0TqeYztXa6vgQkFQEYEqyCbIviZhyfb9/QFk\n8s2ekOT5Jnm9risXebb7+YSW+Hzv93PfdyqdTqcDAAAAAACAXpWTdAEAAAAAAAADkZAGAAAAAAAg\nAUIaAAAAAACABAhpAAAAAAAAEiCkAQAAAAAASICQBgAAAAAAIAFCGgAAAAAAgAQIaQAAAAAAABIg\npAEAAAAAAEiAkAYAAAAAACABQhoAAAAAAIAECGkAAAAAAAASIKQBAAAAAABIgJAGAAAAAAAgAUIa\nAAAAAACABAhpAAAAAAAAEiCkAQAAAAAASICQBgAAAAAAIAFCGgAAAAAAgAQIaQAAAAAAABIgpAEA\nAAAAAEiAkAYAAAAAACABQhoAAAAAAIAECGkAAAAAAAASIKQBAAAAAABIgJAGAAAAAAAgAUIaAAAA\nAACABAhpAAAAAAAAEiCkAQAAAAAASICQBgAAAAAAIAF5SRcA/cWBAwdi0aJFDdtjx46NwsLCBCsC\nAAAAAKCpY8eOxRtvvNGwPXfu3Bg6dGgitQhpoJssWrQorr/++qTLAAAAAACgEx599NG47rrrErm3\n6c4AAAAAAAASIKQBAAAAAABIgOnOoJuMHTs2Y/vRRx+Nc889N6FqAAAAAABoyfr16zOWrmjat9ub\nhDTQTQoLCzO2zz333LjgggsSqgYAAAAAgI5o2rfbm0x3BgAAAAAAkAAhDQAAAAAAQAKENAAAAAAA\nAAkQ0gAAAAAAACQgL+kCoK9ZsGBBLFiwoNn+qqqq3i8GAAAAAIA+S0gDnbRp06ZYtGhR0mUAAAAA\nANDHCWmgk8rLy2Pu3LnN9ldVVcXy5csTqAgAAAAAgL5ISAOdNH/+/Jg/f36z/atXr44pU6b0fkEA\nAAAAAPRJOUkXAAAAAAAAMBAJaQAAAAAAABIgpAEAAAAAAEiAkAYAAAAAACABQhoAAAAAAIAECGkA\nAAAAAAASkJd0AQBA70mn01FfXx/pdDrpUgAAgH4ulUpFTk5OpFKppEsByFpCGgDox+rq6qKqqioq\nKiqiqqoq6urqki4JAAAYYHJzc6OkpCRKS0ujpKQkcnNzky4JIGsIaQCgH6qrq4vt27dHRUVF0qUA\nAAADXF1dXRw6dCgOHToUERGlpaVxxhlnCGsAQkgDAP1OTU1NvPHGG3Hs2LGkSwEAAGimoqIiqqur\nY+zYsZGfn590OQCJykm6AACg+xw7diw2bdokoAEAALKazy4AxxlJAwD9yM6dO6O2tjZjXyqVikGD\nBkVpaWkUFxdHbm6uhTsBAIAel06no66uLo4cORIVFRVx+PDhSKfTDcdra2tj586dcfbZZydYJUCy\nhDQA0E/U1NREVVVVxr6CgoIYO3ZsFBQUJFQVAAAwkOXn50dRUVEMGzYsqqur44033ojq6uqG41VV\nVVFTU2PaM2DAMt0ZAPQTBw8ezNjOycmJcePGCWgAAICsUFBQEOPGjYucnMwuyaafZQAGEiENAPQT\nTT/YlJWVRV6eQbMAAED2yMvLi7Kysox9QhpgIBPSAEA/kE6nM6YMiIhmH3wAAACyQdPPKjU1NRlr\n1QAMJEIaAOgH6uvrm+0zpzMAAJCNmn5WSafTQhpgwBLSAEA/0NIHmqbzPAMAAGSDlj6rtPTiGcBA\noPcGAAAAAAAgAUIaAAAAAACABAhpAAAAAAAAEiCkAQAAAAAASICQBgAAAAAAIAFCGgAAAAAAgAQI\naQAAAAAAABIgpAEAAAAAAEiAkAYAAAAAACABeUkXAABA/3fkyJF44YUXYt26dbF///6oqqqK4uLi\nKCsri7PPPjvOOeecmDBhQuTkeIcIAOgZO3fujJUrV8bmzZvjwIEDcezYsRg8eHAMHTo0Ro4cGRdf\nfHGMGTMm6TIBGGCENAAAA1B5eXls3rz5lNq4/fbb41/+5V9aPZ5Op+Oxxx6L733ve/HEE09EbW1t\nm+2VlpbGpZdeGnPnzo1rrrkmLrvssmahTXV1dQwdOjSOHDnSsO+Pf/xjnHfeeR2u+6c//Wl8+MMf\nztj393//9/GFL3yhw20cO3Yshg4dGkePHm3Yt2rVqli4cGHcfffdHW6nqzZu3Bjl5eU9fh/oL7rr\nd97f/M3fxPjx47upqtZ9/vOfj7vuuqvH7wMDwbp16+L73/9+/PKXv4z169e3e/7IkSNjzpw58YEP\nfCDe+973RnFxcYvnPf300zFnzpyG7TPOOCPefPPNTtV26623xv3335+x74knnoirrrqqw20sWrQo\n5s2b17A9YsSI2LVrV7ztbW+LRYsWdaqezho3blxs2rSpR+8BMBAIaQCAviedjqioiKiujigoiCgt\njUilkq6KRjZv3hyf+MQn4ve//32Hr6moqIinnnoqnnrqqbj77rvj0Ucfjeuuuy7jnIKCgrjiiivi\nySefbNi3ePHiToU0LXVYLF68uMPXR0QsXbo0I6AZPnx4XHDBBbFw4cJOtQNA/1Kfro+9h/f2+n2H\nDxoeOSmjURvbtm1bfPazn40HHngg6uvrO3zd7t274+GHH46HH344SktL4/bbb49Pf/rTMXTo0Izz\npk+fHkVFRQ3PA9u3b49169bFxIkTO3yv1p5JOhvSNDZnzpxIeS4G6FOENABA37BqVcTPfx6xbFnE\nCy9E7N//38eGDYt461sjpk+P+NCHIqZMSa5OYsOGDTFnzpzYtm1bs2MFBQUxfvz4GDJkSBw7diz2\n7dsX27Zta7HzJJ1Ot9j+3Llzm4U0t956a4fraymQWbZsWRw7diwKCwu71IYOEQAiIvYe3hujvjqq\n1++76zO7YmTJyF6/b7Z6/PHH46Mf/Wjs27evxeMlJSUxYsSIGDFiRBw7dix27twZe/fubfY8UlFR\nEffcc0985zvfic2bN0dZWVnDscLCwrjiiiviqaeeati3ePHiDoc0O3bsiHXr1jXb39kXR5qeP3fu\n3E5dD0DyhDQAQHZ7/PGIL3854umnWz9n//6I3/3u+NeXvhQxe3bE3/5txLvf3Xt19nFf/epX4+KL\nL+7UNWeffXazfTU1NXHttddmBDSpVCpuvvnm+Iu/+Iu44oorIi8v8xG0srIyVqxYEb/+9a9j4cKF\n8frrr7d538ZTi0R0rjNj165d8eqrrzbbf/To0Vi2bFnMnj27Q+201iHy0Y9+NGbNmtWhNj796U/H\nyy+/3LB9xx13xDve8Y4OXXv66ad36Dz6vn01NfGBNWsy9j04eXKclp+fUEX9Q1d/551++unx29/+\ntkPn/+Y3v4mvfOUrDdsXXXRRfO1rX+vQtRMmTOhUbcB/+/GPfxwf//jHo66uLmP/BRdcEH/2Z38W\nV111VVx44YXNrquuro7FixfHr3/963j44Yczpkg8cOBAVFdXN7tmzpw5zUKaW265pUN1tvb8snTp\n0qiuro6CgoJ226ipqYk//OEPGftOPpN87Wtfi/2NX2pqw9vf/vaM7Z/85CcxevTodq9rbSo4ADpH\nSAMAZKe9eyP++q+Pj57prKefPv71oQ9FfOtbEcOHd399/cyll16aMZ95V33ve9+LNY06lIuKiuLh\nhx+Od7cRmA0ePDjmzp0bc+fOjX/+53+ORYsWxTe+8Y3Izc1t8fwrrrgiCgoKGjpLtmzZEps2berQ\nGi2NO0QKCgpi4sSJsXr16og4Pl1IR0Ka2traWLJkSca+kx0iEyZM6HDn6rBhwzK2J0+eHFdffXWH\nrmXgeGDXrniiSSfbg7t2xSfPOiuhivqHU/md19F/p1u3bs3YHjZsmH/j0MOWLVsWt9xyS0ZAM3To\n0PjWt74VN998c7O17horKCiIq6++Oq6++ur453/+51iwYEF88YtfbHM9q6ajVjqzBkzjZ5KLL744\nVq1aFfX19XHkyJFYtmxZh176WLFiRVRVVTVsDxs2rCGAuvTSSztcS1MzZ8609h1ALzJhKQCQfV5+\nOeKii7oW0DT2s58db2fVqu6pi3b96Ec/ytj+/Oc/32ZA05K5c+fGo48+Gtdee22Lx4uLi2P69OkZ\n+zo6mqbxedOmTcsYudLRNl544YWorKxs2B46dGhcdNFFHboWOmvBjh0d2gcw0O3bty9uuummqKmp\nadg3ZsyYeOaZZ+IjH/lImwFNU/n5+XHrrbfGq6++Gp/85CdbPe/KK6/MGPGyefPmeOONNzp0j8bP\nHe95z3syRvd15bkmImL27Nmd+jkByA5+cwMA2eXllyPmzYt4883uae/NNyPmzhXU9IJ9+/bFihUr\nGrZzcnI6tVZMZ3R1yrPG582ZMydj5MySJUuitra2U21E6BCh56yuqornKyqa7V9WURFrGr05DUDE\nXXfdlTHqJT8/Px577LG44IILutxmYWFh3HfffbFw4cIWpx8rLi6OadOmZezryGia/fv3xyuvvNKw\n3fSZpKshjfVoAPomnyYBgOyxd2/ENdccX2OmO+3fH/Gudx1vnx7TeB2aiIgRI0bE8B6aaq5pJ0RH\nOjMOHDgQqxqFdbNnz86YSqSysjJeeOGFdtvRIUJv+VEbI2baOgYw0Ozduzf+4z/+I2PfnXfeGZdc\nckm3tH/DDTdEWVlZi8e68kzy9NNPRzqdjoiI3NzcmDFjRkZI89xzzzVbU6ep+vr6ePbZZ9usBYC+\nQUgDAGSPv/7r7htB09Sbb0bcdlvPtE1ERFQ0eeO/vc6FUzFjxozIy/vv5RXXrVsX27dvb/Oap59+\nOurr6yPi+CifmTNnxsiRI+P8889vOKe9t1/r6+vjmWeeydinQ4SeUFtfHz/eubPV4z/euTNqT/z/\nGWCg++53vxuHDx9u2B40aFB86lOf6pV7d2VdmsbnTJ06NUpLSzNCmoqKinZfHFm5cmUcOHCgYbus\nrCymTp3a0bIByCJCGgAgOzz++KmvQdOen/3s+H3oEUOHDs3Y3rt3b6xfv75H7jV48OBmC+K29+Zq\n4+MXXXRRDBkyJCKiU9OLrFq1KvY3GulVWlrabW/pMrCk0+nYXV3d6tcje/bEjurqVq/fXl0dv9yz\np802Tr6lDdDf/ed//mfG9p/+6Z82/He+p82cOTPjxZHXXnstdrYRskdkPm+cfA4ZPXp0TJw4scVz\n2msjImLWrFmRm5vb4boByB5CGgAgO3z5y71zn3vv7Z37DEATJkyIoqKijH2f+9zneqyjuLPr0jRd\nj+akxlOePfPMMw2jbdpr4+S1OkToipWVlTHqueda/frAmjXttnHTmjVttvGydWuAAaCysjJefPHF\njH3vec97eu3+gwcPbvbCRlvPJE3rbe2ZpLMhjZG9AH2XkAYASN6qVRFPP90791q8OKLRQq10n6Ki\norjqqqsy9j3yyCNx1VVXNZszvTt0ZnqRqqqqjGlDGneINB5Jc+DAgXj55ZdbbUeHCN3lkT17ev4e\nu3f3+D0AkrZkyZJmU6xOmzatV2vozDPJs88+m1Fv4+eQxt83XremJU83eXb2TALQd+W1fwoA0O/V\n1kZs3Zrc/b/3vd6933e/G3HHHb17z4iIMWMi8rLz8WvFihVRW1vb4fMvvfTSGDZsWLP9f/u3fxuP\nN5lS7sknn4xZs2bFuHHj4h3veEdceeWVMX369Jg0aVLk5HT9naFZs2ZFTk5Ow8iXNWvWxN69e2P4\n8OHNzn3uuecyfr7GnSDjx4+Ps846K7Zt2xYRx4OY1uZ01yHSP9TW18fWY8cSreHBXbt65R4fP/30\nHr9Pa8YUFkbeKfwb70nd9TuP7FRbXxtbDyXzXLP38N5E7rvl4Jaoqun90XNjysZEXk6yzzavvfZa\nxnZZWVmMHz++V2uYO3dufPWrX23YbmsUTONjkyZNihEjRjRsN34+2b9/f6xatSouuuiiZm2sXbs2\ndjcK4luaBhaAviM7ewkAgN61dWtEL3+YTdR99x3/6m0bN0aUl/f+fTvgM5/5TKfOf/LJJ2PevHnN\n9s+aNSv+4R/+Ib7whS80O7Z58+b4/ve/H9///vcj4niHwvTp02PevHlxzTXXdPqt1yFDhsTFF1/c\nMGVIOp2Op59+Oq6//vpm5zbuEDnvvPNi1KhRGcdnz54dDzzwQMO5t912W7M2Xn311Yw55ktKSnr9\nTV26x9Zjx2L80qVJl9HjXj1yJNGfc+Pll0d5cXFi929Ld/3OIzttPbQ1xn9zAD3XRMS07yfz36ON\nt2+M8qHlidz7pH379mVsNw49ekvTF0deeeWV2L9/f4vhbmvTr0ZEnHvuuXH66afHjh07Gs5tKaRp\nGgLNmDEjY10cAPqW7HytCQCAPuuf/umf4pvf/Gaz9WmaqqysjN///vfxj//4j3HZZZfFlClT4gc/\n+EGba8I01XQkS2tvrra0QG9jTacXaa+NCB0iAJANmoY0Q4YM6dT1ixcvjieeeKLdr7ambh06dGhG\nmHLyxZGmjh49Gs8//3zDdnvPJB15rokwshegrxPSAADQ7W677bZYt25d/NVf/VWHO0tWr14dt9xy\nS0yfPj02b97coWs6Mgf8sWPHYtmyZQ3bTd9ajcjsENm1a1esXbu22Tk6RAAg+1RUVGRsl5SUdOr6\n97///fH2t7+93a+bb765zXY68kyydOnSONZous32nkmENAADg5AGAIB48sknI51Od/irI9P+jBkz\nJv71X/81du7cGY899lh86lOfimnTpkVBQUGb161YsSKmT58er7/+erv3mD17dqRSqYbtlStXxqFD\nhzLOWbp0aRw9ejTjmqamTJmSMSVJS50iOkSg/+iJ33lAMkpLSzO2q6p6f22eiI6N7m0c3IwbNy7G\njh3b7JzGzyk7d+6MV199NeP4hg0bYmujtSSLi4vjsssu63LdACRPSAMAQI8qLCyMa6+9Nr7+9a/H\n888/HxUVFbF8+fL45je/Gddee22Loc2uXbvihhtuiLq6ujbbHj58eFxwwQUN23V1dc2mI2ncSTJ2\n7Ngob2FdoFQqFTNnzmzxmoiITZs2xZYtWxq2i4uLY/r06W3WBgD0vNNOOy1j++DBg4nU0fTFkRdf\nfLHZKJ+21qM56aKLLsoYhdz0maTp9pVXXtnuCzAAZDchDQAAvaqgoCAuvfTSuO222+Kxxx6LN998\nM+64447Izc3NOG/lypXxwAMPtNtee9OLtLceTUvH2usQueKKK3SIAEAWaBrS7N27t1PX79mzp8UR\ndE8++WSn2hkxYkRMnjy5YbvpiyM1NTXxhz/8oWG7tWeSnJycmDFjRsN2W881EUb2AvQHVjoFACLG\njInYuDG5+3/4wxFtLMba7WbOjPjJT3rvfieNGdP79+wDhg8fHvfee2/MmTMnrr/++ozRMz/5yU86\nNAf8v/7rvzZsN+68qK2tjSVLljRst/bWakRmZ8nWrVtjw4YNMWHChGZtnrwnfdeYwsLYePnlSZfR\nzK2vvhpPHDjQpWvfPmxY/Ptb3tLNFZ2aMYWFSZfAADWmbExsvD2Z55q9h/fGtO9P6/X7Lr91eQwf\nNLzX7zumLPlnm7c0+d138ODB2LRpU4sjZ3va3LlzY/Xq1Q3bixcvjne9610RcXw618ZTsbX3TPLr\nX/86IiKefvrpjGOeSQD6HyENABCRlxeRwAfZBnPm9G5IM3dusj8vLXrve98bH/vYx+IHP/hBw75n\nnnmm3euadnIsX748jhw5EsXFxfHCCy9EZWVlw7G2RtJceumlUVxcHEeOHImI450gQpr+KS8nJ8qL\ni5MuI0M6nY6Vp7COwsrKyhhXVJQx1Q4MVHk5eVE+tDyRe5fkd27R+u5y9pCzY2TJyETunbQrr7wy\ncnNzM17yWL58eSIhzZw5c+K+++5r2G78/ND4+1GjRsV5553XajuNn1e2bNnSEDq9+eabGWv2FRYW\nxuVZ+NIBAJ1jujMAIHkf/GD/vh8ddtNNN2VsV1ZWtju3/OjRozM6OmpqahpGzzTuEGk6DUlTBQUF\nGR0dJ6/dsWNHrFu3rmF/YWFhXHHFFR34aaDjNhw9Grtrarp8/a6amth49Gg3VgTQNwwePDguueSS\njH2/+tWvEqml6Usczz//fMbLHye19dJIRMRll10WhY1GI568tulLI5dffnkUFRWdUs0AJE9IAwAk\n78ILI9r5sNpt5syJmDKld+5Fp7X01uvhw4fbva61dWk60yHS9JyW2oiImD59ug4Rut2Sbljoesmh\nQ91QCUDfc91112Vs/+IXv4hDCfxOPP300zOmX6uuro4//OEPUV9fn7E+TVtTnUUcfyFk+vTpDdut\nPZMY2QvQPwhpAIDs8LnP9a/70CVVLUz3NHx4+3PsN+2kWLx4cdTX12dMl9bZkGbDhg2xbds2HSL0\nivYClglFRTG+nXCwO4IegL7ok5/8ZAwaNKhhu6qqKr75zW8mUktLzyQvv/xyHGi05lhnn0laG0nj\nmQSgfxDSAADZ4T3v6flpyD70oYh3v7tn78Epef755zO2Tz/99CgoKGj3uqZvpC5dujRWrFgR+/fv\nb/Wclpyc1/6kxYsXN7y9epIOEXpCWyHNR0ePjhenTYuXpk2Lj4we3aU2APqz4cOHxyc+8YmMfffc\nc0+8/PLLvV5L0+eNps8SQ4YMiYsvvrjddhqHNOvXr49Vq1bFmjVrGvbl5+fHlVde2Q0VA5A0IQ0A\nkD2+/e2IM8/smbbPPDPiW9/qmbaJiIg9e/bEz372s6ivr+/S9dXV1fHtb387Y9873/nODl07ZsyY\nmDBhQsP2kSNH4qtf/WrDdmlpaUydOrXddprOa//LX/4yVq9e3bCdn58fM2bM6FBN0FHpdDoON1rw\n+qQhubnx80mT4keTJkVZXl6U5eXF/5k0KX42aVKUNQoTT6qqq4t0Ot0bJQNknbvuuivGjh3bsF1d\nXR3ve9/74o9//GOv1tH0ZY4lS5bE7373u4btGTNmRE5O+91xTc+75557Mn7HX3bZZRmjhwDou4Q0\n0EkLFiyIefPmNfuaP39+0qUB9H3Dh0f8139FDBvWve0OG3a83Q5Mm0XXVVZWxs033xwXXnhh/OQn\nP2lYKLcjjh49Gh/+8IczApGIiI9+9KMdbqNpp8jChQsbvp8xY0bGCJm2NH5z9eGHH87oEJk2bZoO\nEbpdKpWKFdOmxe1nnRWpE/tmDRkSKy+7LP5nCyNnPjh6dKycNi1mlpUdvz4i/mbMmFgxbVqkUqlm\n5wMMBMOHD48HH3ww8vPzG/Zt3rw5Zs6cGQ888ECnQ+zXXnutS3WMHTs2xo8f37B95MiRePzxxxu2\nOzKyNyKirKwsY8RN4+eaCCN7AfoTIQ100qZNm2LRokXNvpYvX550aQD9w4UXRixa1H0jas4883h7\nF17YPe3RrjVr1sRHPvKROP300+PWW2+Nhx56KLZv397iuW+++Wbcd999MWnSpHjooYcyjr3//e+P\n//E//keH79u006PxiJ6OzP3e0rlNRwXpEKGnlOTmxr9MnBiLp06NeydMiCcvvjjGtbEGTXlxcTw1\ndWp8ecKEWDx1anzj3HOjpINBJEB/deWVV8a///u/Z4xA2bdvX3zwgx+MSy65JL797W/H2rVrW7w2\nnU7Hxo0b43vf+17MmjUr/uIv/qLLdXgmAaAz8pIuAPqa8vLyFh+GqqqqBDUA3eXCCyNefjnittsi\nfvazrrfzoQ8dn+LMCJpEHDp0KO6///64//77I+L4G64jRoyIoUOHxtGjR2P79u2xa9euFq+9/PLL\n44c//GGn7tdWZ0VH31qNiJg1a1aX7gHdYdbQoTFr6NAOnZuXkxOfPfvsHq4IoG+ZP39+DBs2LObP\nnx8HDhxo2L9y5cq47bbbIuL49KYjR46MESNGRDqdjoqKiti6dWtUVVW12OaIESPiH//xHztcw9y5\nc+NHP/pRs/1FRUVx2WWXdbid2bNnx7damK43Ly8vZs6c2eF2AMhuQhropPnz57c4tdnq1atjypQp\nvV8QQH81fHjET396PGi5996IxYs7fu2cORGf+1zEu9/dc/XRzODBg+Piiy+OlStXtnh87969sXfv\n3jbbyMnJiT//8z+Pe++9N0pLSzt1//Hjx8fYsWPjjTfeyNhfWFgY06dP73A7I0eOjPPPP7/ZHPa5\nubk6RACgD7juuuvi5ZdfjjvuuCN+8YtfNJvqrLKyMiorK2Pjxo1ttjNs2LC45ZZb4u/+7u9iaAcD\n9IjWX+q4/PLLo6CgoMPttDbq5q1vfWsMHjy4w+0AkN1MdwYAZLf3vOf4dGWrVkXceWfE1Vc3X7Nm\n2LDj+++88/h5ixYJaBIwYsSIeOmll+L111+Pr3/963HttdfGsA6uL3TGGWfE7bffHi+99FJ897vf\n7XRAc1JLnSLTp0+PwsLCTrXTUqfIJZdc0uW6AIDeNXbs2HjggQdi7dq18elPfzomTJjQoetGjx4d\n119/fTzwwAOxffv2+MpXvtKpgCYiYsKECTFmzJhm+zszsvdkLRMnTjzldgDIbql0Z1dOA1rUdCTN\nK6+8EhdccEGCFQEDSW1tbaxbty5j38SJEyMvr58Omk2nIyorI44diygsjBg8OMJi2VkpnU7H5s2b\n47XXXostW7bEwYMH48iRIzFo0KAoLS2NM888My6++OIWOzIAoK+pT9fH3sNtjxrtCcMHDY+clPdw\n27N9+/Z4+eWXY/PmzbF///6orq6O0tLSGDZsWAwfPjwuvPDCGDduXNJlDggD7vMLkHWyqS/Xbz4A\noO9JpSJKS49/kdVSqVSUl5dHeXl50qUAQI/LSeXEyJKRSZdBK84444w444wzki4DADJ4zQIAAAAA\nACABQhoAAAAAAIAECGkAAAAAAAASIKQBAAAAAABIgJAGAAAAAAAgAUIaAAAAAACABAhpAAAAAAAA\nEiCkAQAAAAAASICQBgAAAAAAIAFCGgAAAAAAgAQIaQAAAAAAABIgpAEAAAAAAEiAkAYAAAAAACAB\nQhoAAACuHCHFAAAgAElEQVQAAIAECGkAAAAAAAASIKQBgH4glUo121dfX59AJQAAAG1r6bNKTo5u\nSmBg8tsPAPqBlj7Q1NTUJFAJAABA25p+VkmlUi2+eAYwEAhpAKAfSKVSUVBQkLHv0KFDCVUDAADQ\nuqafVfLz84U0wIAlpAGAfmLIkCEZ24cOHYra2tqEqgEAAGiutra2WUjT9LMMwEAipAGAfqLpB5v6\n+vrYvHlzVFdXJ1QRAADAf6uuro7Nmzc3W5NGSAMMZHlJFwAAdI/8/PwoKSmJqqqqhn3V1dWxYcOG\nGDRoUAwePDgGDRoUubm5phIAAAB6XDqdjrq6ujh8+HBUVlbG4cOHI51OZ5xTUlIS+fn5CVUIkDwh\nDQD0I6NHj44tW7ZkTHOWTqejqqoqI7wBAABIWn5+fowePTrpMgASZbozAOhHCgsLo7y8PAoLC5Mu\nBQAAoFWFhYUxbtw4n12AAU9IAwD9TH5+fowbNy5KS0uTLgUAAKCZ0tLSGDdunGnOAMJ0ZwDQL+Xm\n5saYMWOirq4uqqqqorKyMiorK6Ouri7p0gAAgAEmNzc3Bg8eHIMHD46SkpLIzc1NuiSArCGkAYB+\nLDc3N8rKyqKsrCwijq9PU19f32yxTgAAgO6WSqUiJycnUqlU0qUAZC0hDQAMIKlUyltrAAAAAFnC\nmjQAAAAAAAAJENIAAAAAAAAkQEgDAAAAAACQACENAAAAAABAAoQ0AAAAAAAACRDSAAAAAAAAJEBI\nAwAAAAAAkAAhDQAAAAAAQAKENAAAAAAAAAkQ0gAAAAAAACRASAMAAAAAAJAAIQ0AAAAAAEAChDQA\nAAAAAAAJENIAAAAAAAAkQEgDAAAAAACQACENAAAAAABAAoQ0AAAAAAAACRDSAAAAAAAAJEBIAwAA\nAAAAkAAhDQAAAAAAQAKENAAAAAAAAAkQ0gAAAAAAACRASAMAAAAAAJAAIQ0AAAAAAEAChDQAAAAA\nAAAJENIAAAAAAAAkQEgDAAAAAACQACENAAAAAABAAoQ0AAAAAAAACRDSAAAAAAAAJEBIAwAAAAAA\nkAAhDQAAAAAAQAKENAAAAAAAAAkQ0gAAAAAAACRASAMAAAAAAJAAIQ0AAAAAAEAChDQAAAAAAAAJ\nENIAAAAAAAAkQEgDAAAAAACQACENAAAAAABAAoQ0AAAAAAAACRDSAAAAAAAAJEBIAwAAAAAAkAAh\nDQAAAAAAQAKENAAAAAAAAAnIS7oA6IhDhw7Fiy++GMuXL4/ly5fHihUrYv369ZFOpyMiYuPGjVFe\nXp5skQAAAAAA0AlCGvqEuXPnxksvvZR0GQAAAAAA0G1Md0afcHLETETEkCFDYt68eXH66acnWBEA\nAAAAAJwaI2noEz7xiU/EyJEjY9q0aXHuuedGKpWKefPmxY4dO5IuDQAAAAAAukRIQ59w2223JV0C\nAAAAAAB0KyENPeL111+PZcuWxdatW6O6ujqGDRsW559/fsyYMSOKioqSLg8AAAAAABInpBkAtm3b\nFsuWLYulS5fGsmXLYvny5VFRUdFwfNy4cbFp06Zuudejjz4aX/jCF+KFF15o8fjgwYNj/vz58fnP\nfz5GjBjRLfcEAAAAAIC+SEjTTz377LPxta99LZYuXRpvvvlmj9/v2LFjccstt8RPf/rTNs+rrKyM\n73znO/Hggw/GwoULY86cOT1eGwAAAAAAZKOcpAugZzz//PPxy1/+slcCmvr6+vjABz7QLKDJzc2N\n8ePHx9SpU2PIkCEZx3bv3h3XXHNNLFmypMfrAwAAAACAbCSkGYAGDx7cre195Stfif/8z//M2PeX\nf/mXsWXLltiwYUO8+OKLsW/fvnjkkUfi7LPPbjjn8OHDcdNNN8XBgwe7tR4AAAAAAOgLhDT9XGlp\nacybNy/uuOOOeOihh2LTpk3xf//v/+229vfu3Rtf/OIXM/Z96Utfiu9+97tx5plnNuzLycmJP/mT\nP4nnnnsuysvLG/Zv3bo1vv71r3dbPQAAAAAA0FdYk6afuvbaa+Md73hHnH/++ZGTk5nFbdy4sdvu\nc++990ZFRUXD9pw5c+Jzn/tcq+efddZZcf/998fVV1/dsO8b3/hG3HbbbTF8+PBuqwsAAAAAALKd\nkTT91DnnnBOTJ09uFtB0p/r6+vjhD3+Yse+uu+6KVCrV5nVXXXVVzJ49u2G7oqIifvGLX/RIjQAA\nAAAAkK2ENHTZc889F7t3727YnjBhQsybN69D195yyy0Z248++mh3lgYAAAAAAFlPSEOXPf744xnb\nb3/729sdRdP43MaeeuqpqKqq6rbaAAAAAAAg2wlp6LKXXnopY3vGjBkdvvbMM8+M8vLyhu3q6upY\ns2ZNd5UGAAAAAABZT0hDl61duzZje/LkyZ26vun5TdsDAAAAAID+TEhDlxw5ciS2bNmSsW/s2LGd\naqPp+a+++uop1wUAAAAAAH1FXtIF0Dft2bMn0ul0w3Z+fn6MGjWqU22cddZZGdu7du1q9dz169fH\nM888k7Fvx44dDd8vXLgwRowY0bA9ePDguPHGGztVT9Nadu/e3alr1q9f3+X7AQAAAAAw8Ahp6JLK\nysqM7UGDBkUqlepUGyUlJW222dgzzzwTH//4x1s9fscdd2Rsjxs37pRCmvvuuy/uvvvuLl8PAAAA\nAADtMd0ZXdI0UCkqKup0G8XFxW22CQAAAAAA/ZmQhi45evRoxnZBQUGn2ygsLMzYPnLkSKvnzp8/\nP9LpdIe/Nm3a1Ol6AAAAAACgN5nujC5pOnKmurq6020cO3aszTaT9Fd/9Vfxp3/6p526Zv369XH9\n9df3UEUAAAAAAPQ3Qhq6ZPDgwRnbTUfWdETTkTNN20zSqFGjYtSoUUmXAQAAAABAP2a6M7qkaaBy\n+PDhSKfTnWqjqqqqzTYBAAAAAKA/E9LQJSNGjIhUKtWwXVNTE7t27epUG9u2bcvYNnIFAAAAAICB\nREhDlxQXF8fZZ5+dsW/Lli2daqPp+eeff/4p1wUAAAAAAH2FkIYuaxqqrFmzplPXr127ts32AAAA\nAACgPxPS0GVTp07N2H7uuec6fO327dtj06ZNDdv5+fkxefLk7ioNAAAAAACynpCGLnvve9+bsf3E\nE09EOp3u0LW/+c1vMrbf9ra3xeDBg7utNgAAAAAAyHZCGrpsxowZMWLEiIbtDRs2xFNPPdWha//j\nP/4jY/u6667rztIAAAAAACDrCWnospycnJg/f37Gvrvvvrvd0TS/+93v4umnn27YLi0tjZtuuqkn\nSgQAAAAAgKwlpOGUfO5zn8uYpmzRokXx5S9/udXzt23bFn/2Z3+Wse/222/PGJEDAAAAAAADQV7S\nBdBznn322Thy5Eiz/StXrszYPnr0aDzxxBMttnHmmWfG5MmTW73HiBEj4s4774w777yzYd///t//\nO7Zs2RJ///d/H2eeeWZERNTX18djjz0Wt99+e2zZsiWj/U9/+tOd+rkAAAAAAKA/SKU7utI7fU55\neXls3rz5lNr42Mc+FgsWLGjznPr6+rjuuuvi//2//5exPzc3N8aNGxdDhgyJjRs3xoEDBzKOFxcX\nx29/+9uYOXPmKdXY2xYsWNDi30lVVVUsX768YfuVV16JCy64oBcrAwAAAACgPatXr44pU6Y0bCfZ\nl2skDacsJycnHnroofj4xz8eDzzwQMP+urq62LBhQ4vXDB8+PBYuXNjnApqIiE2bNsWiRYuSLgMA\nAAAAgD5OSEO3KCoqip///Odx4403xj333BMvvfRSi+eVlJTExz72sfj85z8fo0aN6uUqu0d5eXnM\nnTu32f6mI2kAAAAAAKAtpjujR6xfvz6WLl0a27Zti+rq6hg6dGhMmjQpZs6cGUVFRUmX1yOyaYgc\nAAAAAAAty6a+XCNp6BHnnntunHvuuUmXAQAAAAAAWSsn6QIAAAAAAAAGIiENAAAAAABAAoQ0AAAA\nAAAACRDSAAAAAAAAJEBIAwAAAAAAkAAhDQAAAAAAQAKENAAAAAAAAAkQ0gAAAAAAACRASAMAAAAA\nAJAAIQ0AAAAAAEAChDQAAAAAAAAJENIAAAAAAAAkIC/pAqCvWbBgQSxYsKDZ/qqqqt4vBgAAAOAU\n7aupiQ+sWZOx78HJk+O0/PyEKgIYOIQ00EmbNm2KRYsWJV1GVvEwBwAAAH3XA7t2xRP792fse3DX\nrvjkWWclVBHQ0/TnZQ8hDXRSeXl5zJ07t9n+qqqqWL58eQIVJc/DHAAAAPRdC3bsaHGfz/XQf+nP\nyx5CGuik+fPnx/z585vtX716dUyZMqX3C8oCHuYAAACgb1pdVRXPV1Q027+soiLWVFXF5JKSBKoC\nepr+vOyRk3QBQN/W3sMcAAAAkL1+1EJHbUeOAX2X/rzsIqQBTomHOQAAAOibauvr48c7d7Z6/Mc7\nd0ZtfX0vVgT0Bv152cV0Z0CXdeRh7ovjx0dejjwYAAD6EosJQ/+QTqdjT01Nq8efPHAgdlRXt3p8\ne3V1/HLPnpg3dGir54zIz49UKnVKdQK9R39e9hHSAK3yMAcAAAOTxYShf1hZWRmXrFhxSm3c1CSw\nbeqladPi4sGDT+keQPfRn9f3CGmAVnmYAwCAgcliwtA/PLJnT8/fY/dun+shi+jP63uENEAz9en6\n2Ht4b/x46+aI6gM9eq8fv/HHOPPscRERMXzQ8MhJGUoJAABJam8x4cklJQlUBXTFI7t39/w99uyJ\nu8eP7/H7AB0jnO17hDRAM3sP741RXx3VK/f62pKIr534ftdndsXIkpG9cl8AAKBl7S0m/OVzzunF\naqB/S6fTUZdOR3U6HdX19XHsxJ/Vjf48Vl/f8r4m5zbdd6CmJtYcPtzjP8MrVVVRvmRJ5J9Yv+Lk\nBEiN/zw5LVJLx6KV420da+3ajrTb9HhnajqVn+dUrvV30eiaTvw8za7pxLXZ/PO0d+0Ptm+Pniac\n7V5CGiBrpNPppEsAAIABzWLC9CfpdDpqmgYZ3RiCdFd7/eGT8OZjx5IuAehFa6uqYld1dYwqKEi6\nlH5BSANkjdHPPReDik6LktzcGJSTEyW5uRnfD8rNjZIm3w86cU7j71u6tiQ3N4pzciLHombQLfbV\n1MQHmsxR++DkyXFafn5CFQEAHWExYbpLfQvhRLaFINVeBAToduOLiuJnkyYJaLqRkAbIKofr6+Nw\nfX2PtV+ck3NKAVBbYdCg3NzI9WGUAeKBXbviif37M/Y9uGuXxYQBIMtZTLhvqOvhkRvd0V6tAARg\nwPnI6NHxnYkToyxPrNCd/G0CA8qR+vo4Ul8fe2tre6T9wlSqQwFQV0YDDcrJMa0EWWNBC3PVL9ix\nQ0gDAFluoC8mnD4RLvT09FWn2l7PvbYGAJ03JDc3vvuWt8QHR49OupR+SUgD0I2OpdNxrLY29vVQ\nCFRwIgTqiengBuXkNCz0CG1ZXVUVz1dUNNu/rKIi1lRVxeSSkgSqAgA64pHdu3v8Hgt3747bxozJ\n2hAEAOi4K8vK4ueTJ8e4oqKkS+m3hDQAfUh1Oh3VtbWxv/1TuyQ/leqx6eBKcnMjP5UyP3k/8KMW\nRtE0Pvblc87pxWoAgJbUnhhBXlVXd3xK4bq62HrsWKw9fLjH773m8OEY8eyzPX4fGIgKUqkozMmJ\nglQqChr92eK+Jtsnr/2vfftiw9GjXbr/1MGD46/POitOxp3pE8Fnw3bTP9PpNo+1dm1H2m12TSdq\n6o5rO/PznDyezX8XXfl5TuXa/vZ30Vs/T1evPVhbGwfr6qIrrhsxQkDTw4Q0ADSoSafjYF1dl//D\n3Z7ciB6dDq4wJ0cI1MNq6+vjxzt3tnr8xzt3xhfHjzc1H/Qz+2pq4gNN1qB4cPLkOC0/P6GKoG+r\nPbEO4+FGAUpV0+1G33f0nMbbRoxA56QiGoKOUw1BWtzXDe3ldcNLb+l0OkY/91yXr3/z2LH4+Omn\n+9wFfcx1q1bFY3v3dunaJQcPdnM1NCWkAbLGwgsuiILCYVHV6ANoVaMPnFVNPnw23Xfy+6P1ZnDO\nVnURcaiuLg71UAiUE9EjAdDJ74sGQAiUTqdjT01Nq8efPHAgdlRXt3p8e3V1/HLPnpg3dGir54zI\nz+/3f4/Q3zywa1c8sT9zHOeDu3ZZh4p+qWmA0mJY0kY40rAtQIEGealU4gFHe+3lDpDn0w1Hj8bu\nNp7327OrpiY2Hj0aE4qLu7EqoCel0+lYcuhQl69fcuhQpNNpn+N7kJAGOmnBggWxYMGCZvurqqp6\nv5h+Zs7QoTGyZMQpt1OXTseRE0HPyQ/IjUOfrgRAhxu1d0QIlLXqI6Kiri4q6uoiTuGDR2tSET22\nHlBJbm4UZ0EItLKyMi5ZseKU2ripydv2Tb00bVrWLiYMtGxBC9McLtixQ0hDr2svQGkajjQdedKR\ncwQo9DX5JwKQng44uhqC5A+gAKQv6I434pccOiSkgT5EOJv9hDTQSZs2bYpFixYlXQZtyE2lYnBe\nXvRUF3B9Ov3f83t3cwB0soNA10B2Skcc/9+qvr5HQqCIyJi+rTvXAxp04nhOOx+QH9mzp0d+rox7\n7N4tpIE+ZHVVVTxfUdFs/7KKilhTVRWTS0oSqIps1DhA6e6pu05u1whQ6GVNg4mmAUTS02JZ85HO\nau9t+glFRZGOiI1trFmz5ODBuHn06G6uDOgpwtnsJ6SBTiovL4+5c+c2219VVRXLly9PoCJ6W04q\n1dAB3hPSJ0KgngiATn6veyN7HT7RwdVTinNy2gyAftdkOqOe8MiePXH3+PE9fh+ge/yohVE0jY99\n+ZxzerEauupkgNITU3cJUOiKnIjEA4722uuO9T8g27QV0nx09Oj49sSJERHxv9ata3UtylOZNgno\nfcLZ7CekgU6aP39+zJ8/v9n+1atXx5QpU3q/IPqdVCoVg050mp/65G/NpdPpOHZiNEh3B0An2+iZ\nFWfoDkfq6+NIfX3sra1NrIZXqqpizHPPReGJtz/zTkyDkZdKRf6Jr7zGf3bDsWbndNOx9kYmQV9X\nW1/fagdNRMSPd+6ML44fH3k5Ob1YVf/TWoDSHVN3nWxTgEJjRSde2hh0YrTtzurqONjFNQMvKy2N\nfxg3rt3ApGkIYvor6H3pdDoOt/BvfUhubnzvLW+J/9moA/b/TJoU15x2Wvzla681W1O0qq7O+hTQ\nhwhns5+QBmCASaVSUZSbG0W5uTE8P7/b20+n01F94uG/tYDnVAKgqvr6qNXR1Odtq65OuoRukRPR\n5eCn4ZwsPiaE6v/S6XTsaWP6xicPHIgdbfx73V5dHb/csyfmDR3a6jkj8vP7dCdObaMXG7p76q7D\nAhRa0DhAKWkUpDSe1jRjXzvnNN0uzs3NCEjS6XSMfu65iC6GNJuPHo33Dh/ep/+dw0CRSqVixbRp\n8XcbNsS3tm2LdETMGjIkfjJpUowrKmp2/gdHj44ry8riw2vXxrOHDkUqIm4fMybuGT/ev3noI4Sz\nfYOQBoBulUqlovDE25LDeiAEioioaSvgaS8UaicAsmAwnVEfEcfS6TiWTkf04DR1ScmJaDY6qaVw\nJxuPdWSElRAqYmVlZVyyYsUptXHTmjVtHn9p2rQeW4eqpski8l2Zuqu90SkCFBo7GaC0GIS0EZx0\n5JyS3Nwozsnp9d9NFhOGgaUkNzf+ZeLEuHHkyFhy6FB8asyYNkfElhcXx1NTp8bXt26NGWVlMauN\nFzOA7COc7RuENEDWuPN3d8aHL/pwzDp7VuTm9Mx6L/QP+Tk5MTQnJ3rq40HjaWe6OwCqqqs73qEP\nfUB9RFSfGB0XEV1+yzpbtRRC9cVp91o71pGO3kf27Onxv+cf7dgR/99ZZ3Xr1F0CFFpyct21zowq\naRqctHVOEgFKb7CYMAxMs4YO7XDgkpeTE589++wergjoKcLZ7CekAbLG/S/eH/e/eH+MKhkVf3L+\nn8QNk26IeeXzIj+3Z0ZjQGvycnKiLCcnyvJ65j+TdS1MB9fR0Ke9AOjwiTVngPb19xAqFdFuuLO5\njcVBu8s3tm6Nb2zd2uP3Ibs1DlC6Y8qupuf01wClN1hMGAAGBuFs9hLSAFlnV9Wu+LcV/xb/tuLf\n4rTi0+K6866LGyffGFeNvyoK8wqTLg9OWW4qFaV5eVHaQyFQ/YkQqLsCoC1Hj8auU5gGBUhGOvp3\nCEX3ORmgdMeUXS2dI0DJbhYTBgBIlpAGyGr7juyLH770w/jhSz+MssKyuPYt18aNk2+Md57zzijO\nN6UCtCQnlYrBeXnRXStAXLdqVTy2d2+Xrp1RVhb/MG5c1KTTUZtOZ/xZU1/fbF9HjtWeON6dxwCy\nVXFr029107ReRQKUAc1iwgAAyRPSAH3GoWOH4qerfho/XfXTKMkviXdPfHfcOPnGePfEd8fggp5Z\nkBgGunQ6fUpvx64/ciTeedppWd1pk06noz7ilIKfhnApi441PgfoGZ2dsquz5whQ6GkWEwYASJ6Q\nBuiTqmqq4qE1D8VDax6KoryieNe574obJt0Q177l2hhSNCTp8qDf2HD0aOw+hanOdtXUxMajR7N6\nMeFUKhW5EZGbmxvNu6P6vsYhVEsBTlvhTleOnepIqc4eE0LRms6MKunKtF4CFPoLiwkDACRLSANk\njaLcojha1/kFjI/WHo1H//hoPPrHRyM/Jz/efs7b44ZJN8R1510XwwcN74FKYeBYcvDgqbdx6FBW\nhzT9XeMQqr+qS2CKvN4aYdVfQ6iuTtnV0Wm9inJyvNUPnWQxYQCAZAhpgKyx9n+tjeVvLo+FaxbG\n4+sej8rqyk63UVNfE79a96v41bpfxZ+n/jzeNv5tceOkG+P686+P0YNHt98AkKG9qc4mFBVFOiI2\nHm09YF1y8GDcPNq/P3pObirV70OonpgGr7VjTx04EE8eONClWj8wcmR8YNSoNqf1EqAAAAD8NyEN\nkDVK8kvixsk3xo2Tb4yjtUfjN6//JhauWRiPvfpYHDzW+bf569J18cSGJ+KJDU/EJx//ZMweNztu\nnHRjvH/S++OssrN64CeA/qetkOajo0fHtydOjIiI/7VuXfx4585OtwG0LzeVitxUKgrbmH6oO61Y\ntarL1x6tr48/GTmyG6sBAADo34Q0QFYqyiuK9533vnjfee+L6rrq+N2G38XDax+OR//4aOw9srfT\n7aUjHYs3L47FmxfHbf91W1w55sq4YdINccPkG6J8aHn3/wDQD6TT6ThcV9ds/5Dc3PjeW94S/7PR\n6Jj/M2lSXHPaafGXr70Wh5pcU1VXF+l02pvz0Aek0+lTClaXHDrk3zsAAEAn9M7reACnoCC3IK6Z\neE3c/777Y8dndsQTH3kiPjntkzG6pOvTJy3ZuiQ+89vPxPhvjo9p/z4tvvT0l+K1va91Y9XQ96VS\nqVgxbVrcftZZcbK7ddaQIbHysssyApqTPjh6dKycNi1mlpUdvz4i/mbMmFgxbZoOW+gjNhw9Grtr\narp8/a6amjanPwQAACCTkTRAn5KXkxdXTbgqrppwVXz7mm/Hc288Fw+vfTgeXvtwbD20tUttrti+\nIlZsXxF3/v7OuHDUhXHDpBvixsk3xuSRk3UsM+CV5ObGv0ycGDeOHBlLDh2KT40ZE3ltTLlUXlwc\nT02dGl/fujVmlJV1eAFiIDssOdj56UWbtXHoUEwoLu6GagAAAPo/IQ3QZ+Xm5MbscbNj9rjZ8fV3\nfj2e3/Z8LFyzMB5e+3BsPLCxS22u2rUqVu1aFXctuivOG35e3Dj5xrhh0g0x9fSpAhsGtFlDh3Y4\ncMnLyYnPnn12D1cE9IT2pjqbUFQU6Yg2R8ssOXgwbm5htB0AAADNme4M6BdyUjlx+ZjL4yvv+Eq8\nftvrseLPV8Sds+6Mtwx/S5fbfHXvq/HFp78Yb/33t8a53z43Pvvbz8bSrUsjnU53Y+UAkD3aCmk+\nOnp0vDhtWrw0bVp8pI0Q5lTWtAEAABhoUmm9jdAtVq9eHVOmTGnYfuWVV+KCCy5IsKKuq0/Xx97D\ne3v9vsMHDY+cVPdmx+l0OlbvXh0Pr3k4/n/27jy+6+rO9/j7lz0BEgIkQRAwhi0JiyuK7AGRVZZf\nFqS2cx927J0+bmtnWjvT3pnpOtNprZ2ZetvembltpRuQX/JjR0CQVRFBFIlJ2GSXJRACIfv2u398\nhwRbrSTfk/xOktfz8chjTCCf86HjUfi8PefkF+fr/ZL3XdccFDtIi1MXKzMtU48Nesx4zwAABEMg\nEFDq/v06Wl39ka/HhYbqP4YP/5O3qFZcvqy/OnZM5Y2NH/n6iOhoFY8bxwlUAAAAANayaZZLSAMY\nYtPGxic7VnqsObB55+I7ruv179lfi0culjfNq8lDJisshFskAQCdV2Vjo/7+5Em99OGHCkiaGBen\n36emakhU1Mf+/NPV1Xq6uFhvlJfLI+krd9+tf0pOVo/Q0A7tGwAAAABaw6ZZLiEN0ErLli3TsmXL\n/uTrlZWVevvtt5s/J6Sx36myU/IX++Uv9mvf+X2u6/WL6aeFIxbKm+ZVRnKGIkIjDHQJAEDHe/36\ndb1ZXq6/uftuhYX8+ROjDU1N+tfz5/VYbOwdv10FAAAAAMFESAN0Yt/5znf03e9+91N/HiFN53K+\n/LxWFa+Sv9ivPWf2KCB3/2jsHdVbT454Ut5Ur2amzFRU2Mf/F8gAAAAAAAAAOhYhDdCJcZKm67tU\ncUlrjqxRflG+dp7eqcZA46d/05/RM6Kn5g2fp8zUTM0aOks9InoY6hQAAAAAAABAaxHSAF2QTRsb\n5lytuqp1R9cpvyhf205uU31Tvat60WHRmjNsjrypXs0dPlexkbGGOgUAAAAAAABwJ2ya5fLCNQD8\nGf1i+umZ+5/RM/c/o+s117X+6Hr5i/3afGKzahtrW12vuqG6+R2ciNAIPZHyhLypXj054knFR8e3\nw68AAAAAAAAAgK0IaQDgDvWO6q3Pjv2sPjv2s7pZe1OvHH9F/mK/Nh7fqKr6qlbXq2us0/pj67X+\n2PFQDWMAACAASURBVHqFhYRpevJ0eVO9WjhyoRJ6JLTDrwAAAAAAAACATbjuDDDEpiNy6FhV9VXa\ncmKL8ovztf7oet2su+mqXognRFOGTFFmWqYWjVyku3rdZahTAAAAAAAAADbNcglpAENs2tgIntqG\nWm07uU35xflae2StymrKXNXzyKPHBj2mzLRMLU5drMFxgw11CgAAAAAAAHRPNs1yCWkAQ2za2LBD\nfWO9dpzeIX+RX6uPrNaVqiuua44bOE7eVK+8qV6l9Ekx0CUAAAAAAADQvdg0yyWkAQyxaWPDPo1N\njdpzdo/8RX75i/26WHHRdc37+t8nb6pXmWmZGtlvpIEuAQAAAAAAgK7PplkuIQ1giE0bG3ZrCjRp\n3/l98hf5lV+cr7M3zrqumZaQpszUTHnTvBqdOFoej8dApwAAAAAAAEDXY9Msl5AGMMSmjR0UgYB0\n86ZUVydFREi9ekkEBZ8qEAjo4MWDyi/Kl7/YrxPXTriuObTP0ObA5sG7HiSwAQAAAAAAAG5j0yyX\nkAYwxKaN3WEKCqQVK6T9+6V33pHKylp+LD5eeuABadw4aelS6bb/bfDxAoGACkoKmgOboitFrmsO\niRvivGGT5tWjdz+qEE+IgU4BAAAAAACAzsumWS4hDWCITRu73W3cKP3oR9KePXf+PZMmSd/4hjRn\nTvv11cUUXymWv9iv/KJ8vXf5Pdf1BvQaoMUjFyszLVMTB09UaEiogS4BAAAAAACAzsWmWS4hDWCI\nTRu73ZSWSl/+snN6pq2WLpVeeknq29dcX93AiWsntKp4lfKL8nXgwgHX9RJ7JGrhiIXKTMvU1Hum\nKjw03ECXAAAAAAAAgP1smuUS0gCG2LSx28Xhw9Ls2dKFC+5rDRggbd4sjR7tvlY3dOb6Ga0qXiV/\nsV9vnHvDdb0+0X20YMQCeVO9mnHvDEWGRRroEgAAAAAAALCTTbNcQhrAEJs2tnGHD0tTp370zRm3\n4uOlXbsIaly6cPOCVhevlr/Yr11ndqkp0OSqXmxkrOYPny9vqlezhs5SdHi0oU4BAAAAAAAAO9g0\nyyWkAQyxaWMbVVoqjRlj5gTNHxswwAmAuPrMiJLKEq09slb+Yr9eO/WaGpoaXNXrEd5Dc4bNUWZa\npuYMm6OeET0NdQoAAAAAAAAEj02z3JCgrAqg8/jyl9snoJGcus891z61u6HEHol69sFntfnpzbr8\n/GUtW7BM84bPU0RoRJvqVdZXKq8oTzn5OUr4cYIWrlyo3x/+vW7U3DDcOQAAAAAAANA9cZIGMMSm\n9NWYjRulefPaf50NG6S5c9t/nW6qvLZcG45tkL/Yr03HN6m6odpVvfCQcD2e8ri8qV4tGLFAfWM4\nCQUAAAAAAIDOw6ZZLiENYIhNG9uYyZOlPXs6Zp1du9p/HaiyrlKbTmySv9ivDcc2qKKuwlW9UE+o\npiVPkzfVq0UjFympZ5KhTgEAAAAAAID2YdMsl5AGMMSmjW1EQYHzFk1Hrnfb/35ofzUNNXr1g1eV\nX5SvdUfX6Uatu2vMPPJo0pBJykzN1OLUxRoYO9BQpwAAAAAAAIA5Ns1yeZMGwMdbsaJrrwdFhUXp\nyRFP6reLfquSr5do02c26fP3f159o9t2fVlAAe0+s1vPbX5Od//b3Rr/q/H6yd6f6PT102YbBwAA\nAAAAALoIQhoAH2///q69Hj4iIjRCs4bO0i+f/KUuPX9J2z67TV986Ivq37N/m2vuO79Pz299Xsk/\nTdZD//WQ/mXPv+hY6TGDXQMAAAAAAACdG9edAYbYdETOtUBA6ttXKivruDXj46XSUsnj6bg18aka\nmxq199xe+Yv98hf7db78vOuaoxNHy5vqVWZaptIS0uTh/+cAAAAAAADoQDbNcglpAENs2tiulZdL\ncXHBWbdXr45fF3ekKdCkAx8ekL/Yr/yifJ26fsp1zRF9RzQHNvf1v4/ABgAAAAAAAO3OplkuIQ3Q\nSsuWLdOyZcv+5OuVlZV6++23mz/v1CHN1atSQkLHr3vlitSvX8evi1YLBAI6dOmQ8ovy5S/262jp\nUdc1742/V95Ur7ypXo0bOI7ABgAAAAAAAO3CppAmLCirAp3Y6dOntWvXrmC30b4iIoKzbhj/SOos\nPB6P7r/rft1/1/36p4x/UtGVoubApqCkoE01T5ad1I/3/lg/3vtjDYodpMWpi+VN9eqxQY8pNCTU\n8K8AAAAAAAAACD5O0gCt1C1O0gTjTRpJ6t9fWrJEeuop6eGHeZ+mkzpWekz+Ir/yi/P1zsV3XNfr\n37O/Fo1cpMy0TE0eMllhIYR5AAAAAAAAaDubTtIQ0gCG2LSxjZgxQ3rtteCtn5IiLV3qBDapqcHr\nA66cKjulVcWrlF+cr33n97mu1y+mnxaMWKDMtExlJGcoIjRIp74AAAAAAADQadk0yw0JyqoA7Ddu\nXHDX/+AD6fvfl9LSpPvvl154QTp7Nrg9odWS45P1tce+pjc//6bO/c05/XTWTzV5yGR51LZTUler\nrupX7/5Ks/8wW0kvJukv1vyF1h1dp5qGGsOdAwAAAAAAAO2PkzSAITalr0YUFEhjxgS7iz81aZJz\nuiYrS+rXL9jdoI0uVVzSmiNr5C/2a8epHWoMNLqq1zOip+YNnydvqlezh85Wj4gehjoFAAAAAABA\nV2PTLJeQBjDEpo1tzOTJ0p49we7i44WFSY8/7lyJtmCB1KtXsDtCG12tuqp1R9cpvyhf205uU31T\nvat60WHRmj1stjJTMzV3+FzFRsYa6hQAAAAAAABdgU2zXEIawBCbNrYxGzdK8+a1/zphYVJDQ9u/\nPzpamj/fCWxmzZIiI831hg51vea6NhzboPyifG0+sVm1jbWu6kWERmhmykxlpmbqyRFPKj463lCn\nAAAAAAAA6KxsmuXyJg2ATzZ3rnO1WHtaulQqLZWWLZOeeEIKDW19jepqyeeTFi6U+veX/vIvpdde\nkxrdXaGFjtc7qreeHvO01ixZoytfv6KV3pXKSstSTHhMm+rVNdZpw7EN+h9r/4cSX0zUrN/P0v87\n+P90pfKK4c4BAAAAAACA1uMkDWCITemrUaWlzts0Fy6Yrz1ggHT4sNS3b8vXSkqkvDxp+XJp7153\n9e+6S8rJcYKmhx+WPG17rB7BV1VfpS0ntshf7Ne6o+t0s+6mq3ohnhBNGTJF3lSvFqUu0oBeAwx1\nCgAAAAAAANvZNMslpAEMsWljG1dQIE2ZIpWVmasZHy/t2iWNHv3JP+f0aWnlSmnFCifMcSMlxQlr\nli6VUlPd1UJQ1TbUatvJbfIX+7XmyBqV1bj7+9Ijjx4b9Ji8qV5507waHDfYUKcAAAAAAACwkU2z\nXEIawBCbNna7KChw3nsxcaJmwABp8+Y/H9D8sfffd8KaFSukU6fcrX/ffU5gs2SJNJiBfGdW31iv\nnad3Kr8oX6uPrNaVKvfXmD084GFlpmXKm+pVSp8UA10CAAAAAADAJjbNcglpAENs2tjtprRUeu45\n5yqytlq6VHrppY9ecdYagYD01ltOWJObK12+3PZeJGniRKenzEwpIcFdLQRVY1OjXj/7uvKL8rXq\nyCpduOk+UBybNLY5sElN4AQWAAAAAABAV2DTLJeQBjDEpo3d7jZulF54Qdq9+86/Z/Jk6e/+Tpoz\nx1wfDQ3Szp1OaOT3S+Xlba8VGirNnOkENgsWSL16GWsTHa8p0KR95/fJX+RXfnG+zt4467pmWkKa\nvKleZaZlanTiaHl44wgAAAAAAKBTsmmWS0gDGGLTxu4wt64g279fOnjwo2/WxMdLDz4ojRvnXC12\n2/827aKmRtq0yQlsNmxwPm+r6Ghp/nyn79mzpchIc32iwwUCAR28eLA5sDlx7YTrmkP7DG0ObB68\n60ECGwAAAAAAgE7EplkuIQ1giE0bOygCAamiQqqtdUKNnj2lYA2uy8ulNWucwGbbNqmxse214uIk\nr9c5YTN1qnPiBp1WIBBQQUmB8ovy5S/2q+hKkeuaQ+KGyJvqlTfNq0fvflQhnhADnQIAAAAAAKC9\n2DTLJaQBDLFpY+M2JSVSXp5z4ueNN9zV6t9fyslxApuHHw5eCAVjiq8Uy1/sl7/Yr0OXDrmuN6DX\nAC0euVjeNK8mDZ6k0BBCPQAAAAAAANvYNMslpAEMsWlj4xOcOSOtXOmcsDl82F2tlBTnOrSnnpLS\n0sz0h6D64NoHzYHN/g/3u66X2CNRC0cslDfNq2n3TFN4aLiBLgEAAAAAAOCWTbNcQhrAEJs2Nu5A\nYaFzumb5cunUKXe1xo51TtcsWSINHmymPwTV2Rtntap4lfKL8rX33F4F5O5flfFR8VowcoEyUzM1\n494ZigzjnSMAAAAAAIBgsWmWS0gDGGLTxkYrBALS/v1OWJObK12+7K7exInO6ZqsLCkhwUyPCKoL\nNy9odfFq+Yv92nVml5oCTa7qxUbGav7w+fKmejVr6CxFh0cb6hQAAAAAAAB3wqZZLiENYIhNGxtt\n1NAg7dzpnLDx+6UbN9peKzRUevxx54TNwoVSr17G2kTwXKm8ojVH1shf7Ndrp15TQ1ODq3ox4TGa\nO2yuvKlezR0+Vz0jehrqFAAAAAAAAJ/EplkuIQ1giE0bGwbU1EibNjmBzfr1zudtFRUlzZ/vBDaz\nZ0uRXHXVFZRVl2nd0XXyF/u15YMtqmusc1UvKixKT6Q8ocy0TM0fPl9xUXGGOgUAAAAAAMDtbJrl\nEtIAhti0sWFYebm0dq1zJdrWrVJjY9trxcVJXq9zJdq0ac6JG3R65bXl2nhso/KL87Xp+CZVN1S7\nqhceEq4Z985QZlqmFoxYoL4xfQ11CgAAAAAAAJtmuYQ0gCE2bWy0oytXpLw8J7B54w13tfr3l3Jy\nnMBm3DjJ4zHTI4Kqsq5Sm05skr/Yrw3HNqiirsJVvVBPqKYlT5M31atFIxcpqWeSoU4BAAAAAAC6\nJ5tmuYQ0gCE2bWx0kDNnpJUrnSvR3nvPXa1773XCmqVLpbQ0M/0h6GoaavTqB6/KX+zX2iNrdaPW\nxTtHkjzyaNKQSfKmerU4dbHujr3bUKdSU6BJpVWlxurdqb4xfRXiCenwdQEAAAAAQPdl0yyXkAYw\nxKaNjSAoLHTCmhUrpJMn3dUaO9YJbJYskYYMMdMfgq6usU7bT22Xv8iv1UdWq7TafSDy6N2PKjM1\nU940r+7pfY+rWlcqryjxxUTXPbVWyfMlSuiR0OHrAgAAAACA7sumWS4hDWCITRsbQRQISPv3O2HN\nypXS5cvu6k2Y4JyuycqSEhhkdxUNTQ3afWa38ovytfrIal2quOS65gN3PdAc2AzvO7zV309IAwAA\nAAAAugubZrmENIAhNm1sWKKxUdqxwwls/H7phourrkJDpccfdwKbhQulXr3M9Ymgamxq1Jvn31R+\nUb78xX6dLz/vuuaoxFHNgU16Qro8d/DeESENAAAAAADoLmya5RLSAIbYtLFhodpaadMmaflyaf16\nqaam7bWioqT5850r0WbPdj5Hl9AUaNKBDw/IX+xXflG+Tl0/5brmiL4j5E31KjMtU/f1v+8TAxtC\nGgAAAAAA0F3YNMslpAEMsWljw3I3b0pr1jgnbF591Tlx01ZxcdLixc4Jm2nTnBM36BICgYAOXTrU\nHNgcLT3qumZy7+TmwGbcwHEfCWwIaQAAAAAAQHdh0yyXkAYwxKaNjU7kyhUpL88JbF5/3V2t/v2l\n7GwnsBk3TrqDK67QOQQCARVdKWq+Eq2gpMB1zbtj75Y31StvqlePDXpM16qvEdIAAAAAAIBuwaZZ\nLiENYIhNGxud1JkzUm6ucyXae++5q3Xvvc51aEuXSmlpZvqDNY6VHpO/yC9/sV8HLx50XS+pR5Jm\nD52tZe8tc99cKxHSAAAAAACAjmbTLJeQBmilZcuWadmyZX/y9crKSr399tvNnxPSwJWiIud0zfLl\n0smT7mqNGeOENUuWSEOGmOkP1jhVdkqrilfJX+zXm+ffDHY7rUZIAwAAAAAAOhohDdCJfec739F3\nv/vdT/15hDQwIhCQDhxwwprcXOnSJXf1JkxwTthkZUmJHX+1FdrX+fLzWl28WvnF+dpzZo8Csv9f\n8YQ0AAAAAACgoxHSAJ0YJ2kQNI2N0s6dTmDj90s3brS9Vmio9PjjTmCzcKEUG2usTdjhcsVlrTmy\nRvnF+dpxaocaA43BbuljEdIAAAAAAICORkgDdEE2bWx0A7W10qZNzpVo69ZJNTVtrxUVJc2b51yJ\nNnu28zm6lNKqUq09ulb+Yr+2frBV9U31wW6pGSENAAAAAADoaDbNckOCsioAwJ3ISOcETG6uVFIi\n/e53TsASGtr6WjU1Un6+tHixlJQkPfOMtG2bc3IHXULfmL565v5ntHHpRpV8vUS/W/Q7LRy5UFFh\nBHIAAAAAAADBREgDAJ1dr17S009Lr7wiXbwo/eIX0sSJbatVXi69/LJzFdrAgdJXviLt2+e8jYMu\noXdUbz095mmtzlmtK1+/otzMXGWlZSk6LDrYrQEAAAAAAHQ7hDQA0JUkJEhf/KK0Z4905oz0ox9J\n993XtlqXL0svvSSNHy8NHSr9/d9LhYVm+0VQ9Yzoqez0bPmyfCr+X8XBbgcAAAAAAKDbIaQBgK5q\n8GDpb/9WevddJ1z5h3+QUlLaVuvkSekHP5BGjZLGjpV++EPp9Gmj7SK4YsJjgt0CAAAAAABAt0NI\nAwDdQVqa9P3vS8ePS2+9Jf31X0v9+7et1uHD0je/KSUnSxMmSD//ufMuDgAAAAAAAIBWIaQBgO7E\n45HGjZP+7d+k8+elbdukz39eiotrW729e6UvfUkaMECaNUv67W+dd22AO/TM2mfkK/Spsq4y2K0A\nAAAAAAB0OEIaAOiuQkOl6dOlX/7SeX9mzRopO1uKbsMD8o2N0pYt0l/8hZSUJGVlSatWSTU15vtG\nl7Lh+Abl5Oco4ccJys7LVl5hHoENAAAAAADoNghpAABSZKS0YIGUm+sENr/7nTR7thPktFZNjZSf\nL3m9TmDzzDPS1q1SQ4P5vtFlVDdUK68oT9n52Up8MVE5+TnyF/lVVV8V7NYAAAAAAADaDSENAOCj\nevWSnn5aeuUV6eJF6Re/kCZNalut8nLp5ZelmTOlu++WnntO2rdPCgTM9owupaq+Sr5CnzLzMpX4\n40QtyV+iVcWrVF1fHezWAAAAAAAAjCKkAQB8soQE6YtflHbvls6ckV54QbrvvrbVunxZ+j//Rxo/\nXkpJkf7+76XCQrP9osuprK9UbmGuvD6vEn6coKX+pVpdvJrABgAAAAAAdAmENACAOzN4sPT1r0vv\nvisVFUn/+I9O2NIWp05JP/iBNGqUNGaM9MMfSqdPG20XXU9lfaVWvL9Ci32Llfhioj6z6jNae2St\nahp4+wgAAAAAAHROhDQAgNZLTZW+9z3p+HFp/37pr/9auuuuttUqKJC++U0pOVmaMEH6+c+lkhKz\n/cJa/WL6ten7KuoqtLxguRbmLlTijxP12dWf1bqj61TbUGu4QwAAAAAAgPZDSAMAaDuPR3r4Yenf\n/k06d0567TXp85+XevduW729e6UvfUkaMECaNUv6zW+cd23QZRX8VYG2f267/urBv1JCTEKbatys\nu6nfH/69FqxcoMQXE/W51Z/ThmMbCGwAAAAAAID1PIEArzcDJhQWFmrUqFHNn7///vtKT08PYkdA\nENXWSps3SytWSOvWSdUu3g+JjJTmzZOWLpXmzJGiosz1iWZXKq8o8cXEDl+35PkSJfRwwpmGpgbt\nOr1LvkKfVh1ZpatVV13VjouM04KRC5Sdlq3HUx5XRGiEiZYBAAAAAEAnZ9Msl5AGMMSmjQ1Y5eZN\nJ6hZvlzaskVqbGx7rdhYafFiJ7CZNk0KCzPXZzdnQ0hzu4amBu08vdMJbIpXqbS61NU6vaN6a+HI\nhcpKy9KMe2cQ2AAAAAAA0I3ZNMslpAEMsWljA9a6elXKz3cCmz173NVKTJRycqSnnpIefdS5eg1t\nZltIc7v6xnrtOL1DeYV5WnVkla5VX3O1Zu+o3lo0cpGy07M1PXm6wkPDXdUDAAAAAACdi02zXEIa\nwBCbNjbQKZw9K+XmOleivfuuu1rJyU5Y89RT0m37EHfO5pDmdvWN9dp+art8hT6tPrJaZTVlrtaP\nj4pvDmwykjMIbAAAAAAA6AZsmuUS0gCG2LSxgU6nuNgJa1askE6ccFdr9OiWwOaee4y01x10lpDm\ndnWNdR8JbK7XXHfVS5/oPlo8crGy0rM07Z5pBDYAAAAAAHRRNs1yCWkAQ2za2ECnFQhIb7/thDUr\nV0oXL7qrN368835NVpaUlGSmxy6qKdCk0ip37760Rd+YvgrxhLiuU9dYp20ntymvKE+ri1frRu0N\nd31F99Xi1MXKTs/W1HumKiyE948AAAAAAOgqbJrlEtIAhti0sYEuobFR2r3beb8mP1+67uKUREiI\nNGOGE9gsWiTFxprrE9apbajVtpPb5Cvyac2RNSqvLXdVr19MPy0e6QQ2U+6ZQmADAAAAAEAnZ9Ms\nl5AGMMSmjQ10ObW10pYtTmCzbp1UXd32WpGR0rx5znVoc+dKUVHm+oR1ahtqtfXkVvkKfVp7dK3r\nwCYhJkHeVK+y07M1echkhYaEGuoUAAAAAAB0FJtmuYQ0gCE2bWygS6uokNaudQKbV1+VGhraXis2\nVlq82AlsMjKkME5IdGU1DTV69YNXmwObiroKV/USeyQ2BzaTBk8isAEAAAAAoJOwaZZLSAMYYtPG\nBrqNq1edq9BWrHCuRnMjMVHKznauRHv0UcnjMdMjrFTTUKMtJ7bIV+TTuqPrXAc2ST2SlJmWqay0\nLE0cPJHABgAAAAAAi9k0yyWkAQyxaWMD3dK5c1JurnPC5t133dW65x7ndM3SpdJt+xpdU3V9tTaf\n2Ky8ojytO7pOlfWVrur179lfmamZyk7P1oTBExTiCTHUKQAAAAAAMMGmWS4hDWCITRsb6PaOHHFO\n1yxfLp044a7WqFFOWLNkiZScbKY/WKu6vlqbTmySr9Cn9cfWq6q+ylW9u3repcw0J7B5bNBjBDYA\nAAAAAFjAplkuIQ1giE0bG8B/CwSkgwedsGblSuniRXf1xo93ApusLCkpyUyPsFZVfZU2Hd8kX5FP\nG45tcB3YDOg1QFlpWcpKy9L4QeMJbAAAAAAACBKbZrmENIAhNm1sAB+jsdF5t2b5cucdm+vX214r\nJESaMcO5Em3RIikuzlyfsFJlXaVeOf6KfEU+bTy2UdUN1a7qDew1UFlpWcpOz9Yjdz9CYAMAAAAA\nQAeyaZZLSAMYYtPGBvApamulLVucK9HWrpWqXQzcIyOluXOdEzZz50pRUeb6hJUq6yq18fhG+Qp9\n2nh8o2oaalzVGxQ7yDlhk56lRwY+Io/HY6hTAAAAAADwcWya5RLSAIbYtLEBtEJFhbRunXPCZssW\nqaGh7bViY52TNUuXShkZUliYuT5hpYq6Cm08tlG+Ip9eOf6K68BmcNzg5hM2Dw94mMAGAAAAAIB2\nYNMsl5AGMMSmjQ2gja5elfx+J7DZvdtdrcREKTvbCWwefVRi2N7l3ay9qQ3HNshX5NOm45tU21jr\nqt6QuCHNgc1DAx4isAEAAAAAwBCbZrmENIAhNm1sAAacOyfl5jpXor3zjrta99zjvF/z1FPS6NFG\n2oPdymvLncCm0KdNJzaprrHOVb17et+j7LRsZaVn6cG7HiSwAQAAAADABZtmuYQ0gCE2bWwAhh05\n4oQ1K1ZIx4+7qzVqVEtgk5xspj9Y7UbNDa0/tl6+Qp+2fLDFdWCT3DtZ2enZyk7P1v397yewAQAA\nAACglWya5RLSAIbYtLEBtJNAQDp40AlrVq6ULlxwV+/RR53r0LKzpaQkMz3Cajdqbmjd0XXyFfm0\n5cQW1TfVu6qXEp/SfCXaff3vI7ABAAAAAOAO2DTLJaQBDLFpYwPoAI2N0p49zvs1+flSWVnba4WE\nSNOnO4HNokVSXJy5PmGt6zXXncCm0KdXP3jVdWAztM/Q5ivRxiaNJbABAAAAAOAT2DTLJaQBDLFp\nYwPoYHV10pYtTmCzbp1UVdX2WpGR0ty5TmAzZ44UHW2uT1irrLpMa4+ula/Qp60nt6qhqcFVvWF9\nhjVfiTY6cTSBDQAAAAAAt7FplktIAxhi08YGEEQVFU5Qs2KFtHmz1OBi2N6rl7R4sfN+zfTpUliY\nuT5hrWvV17T2yFr5inzadnKb68BmRN8RzVeijUocRWADAAAAAOj2bJrlEtIAhti0sQFYorTUuQpt\nxQpp1y53tRITpaws54TN+PESg/ZuobSqVGuOrFFeUZ62ndymxkCjq3oj+41UdppzwiY9kX9HAQAA\nAAC6J5tmuYQ0QCstW7ZMy5Yt+5OvV1ZW6u23327+nJAGwEecPy/l5jpXor3zjrta99wjLVniBDaj\nRxtpD/a7WnVVa46ska/Qp+2ntrsObNIS0ppP2KQlpBnqEgAAAAAA+xHSAJ3Yd77zHX33u9/91J9H\nSAPgEx096pyuWb5cOn7cXa30dCeseeopKTnZTH93KhCQbt503uSJiHCuZ+OET4e4WnVVq4tXy1fk\nBDZNgSZX9dIT0pWdnq2stCylJqQa6hIAAAAAADsR0gCdGCdpABgTCDinapYvl1aulC5ccFfv0Ued\nwCY7W0pKMtPjHysocAKm/fud3svKWn4sPl564AFp3Dinj9t+s4P2U1JZ0hzY7Dy903VgMypxVPOV\naCP6jTDUJQAAAAAA9iCkAbogmzY2gE6osVHas8cJbPLzPxp+tFZIiDR9unO6ZvFiKS7OfX8bN0o/\n+pHT452aNEn6xjekOXPcr487UlJZolXFq+Qr9GnXmV2uA5sxSWOar0Qb3ne4oS4BAAAAAAgum2a5\nhDSAITZtbACdXF2dtGWLc2Jl7VqpqqrttSIjpblzncBm7lwpOrp1319aKn35y04vbbV0qfTSjj5f\n0QAAIABJREFUS1Lfvm2vgVa7XHHZCWyKfNp1epcCcvdbvrFJY5uvRBvWd5ihLgEAAAAA6Hg2zXIJ\naQBDbNrYALqQigpp3TonJNm8WWpoaHutXr2kRYuc0GT6dCks7M///MOHpdmz3V/DJkkDBjj9jx7t\nvhZa7VLFJfmL/PIV+bTnzB7Xgc19/e9Tdlq2stKzNLTPUENdAgAAAADQMWya5RLSAIbYtLEBdFGl\npZLf71yJtnu386ZNWyUkOG/XLF0qjR8veTwf/fHDh6WpU91du/bH4uOlXbsIaoLs4s2L8hf75Sv0\n6fWzr7sObB646wFlpWUpKy1LKX1SDHUJAAAAAED7sWmWS0gDGGLTxgbQDZw/L+XmOoHNO++4qzVk\niHMd2lNPOQHKtWvSmDFmTtD8sQEDnACIq8+s8GH5h/IX+5VXlKfXz77uut6Ddz3YfCVacnyygQ4B\nAAAAADDPplkuIQ1giE0bG0A3c/Socx3aihXSsWPuaqWnS6GhTpDSXpYulf7wh/arjzY5X36++Uq0\nvef2uq738ICHnRM26Vm6p/c97hsEAAAAAMAQm2a5hDSAITZtbADdVCDgnKpZsUJauVL68MNgd/TJ\nNmyQ5s4Ndhf4BOdunFN+Ub7yivL05vk3XdcbN3CcstOylZmWqSG9hxjoEAAAAACAtrNplktIAxhi\n08YGADU1SXv2ONeh5eWZfVvGhMmTnfdpYL2zN84qvyhfvkKf3vrwLdf1Hhn4iLLTncBmcNxgAx0C\nAAAAANA6Ns1yCWkAQ2za2ADwEXV10quvOoHN2rVSVVWwO3IUFEi3/XMT9jtz/YwT2BT5tP/D/a7r\njb97vLLSspSZlqlBcYMMdAgAAAAAwKezaZYbEpRVAQBAx4mIkObNc0KakhLn/86fL4WFBbevFSuC\nuz5abUjvIfraY1/TW3/5lk595ZRemPGCHh7wcJvrvXn+TX311a9q8L8P1oRfT9BP9/1UH5ZbfE0f\nAAAAAACGcZIGMMSm9BUA7khpqeT3O2HJrl3OmzYdacYMaevWjl0T7eJU2SnlFeXJV+jTwYsHXdeb\nMGhC85VoA3oNMNAhAAAAAAAtbJrlEtIAhti0sQGg1c6fl4YPl6qrO27N+HgnKPJ4Om5NtLuTZSeV\nV5gnX5FP71x8x1UtjzyaOHiistKy5E3zEtgAAAAAAIywaZZLSAMYYtPGBoBWKy+X4uKCs26vXh2/\nLjrEiWsnmgObQ5cOuarlkUeThkxSdlq2vGle9e/Z31CXAAAAAIDuxqZZLm/SAAAAqa4uOOv+/OdS\nUVHHX7WGDjG0z1B9c9I39e7/fFfHvnRM/5zxzxqbNLZNtQIKaPeZ3frSpi9pwE8GaNpvpukXB36h\nyxWXDXcNAAAAAEDH4SQNYIhN6SsAtFqwTtLckpQkZWS0fCQncw1aF3b06lHlFeUpryhPhy8fdlUr\nxBOiKUOmKDs9W4tTFyuxR6KhLgEAAAAAXZVNs1xCGsAQmzY2ALRaICD17SuVlQW7E8eQIS2BzbRp\n0sCBwe4I7eTI1SPNV6K9X/K+q1ohnhBNvWeqstOcwCahR4KhLgEAAAAAXYlNs1xCGsAQmzY2ALTJ\njBnSa68Fu4uPN2JES2gzdarUr1+wO0I7KL5SrLyiPPkKfSq8UuiqVqgnVNOSpyk7LVuLUhepXwx/\nzwAAAAAAHDbNcglpAENs2tgA0Cb/+39L//Ivwe7izowZ0xLaTJ4c3Kva0C4KSwqbA5viq8WuaoV6\nQpWRnKHs9GwtGrlIfWP6GuoSAAAAANAZ2TTLJaQBDLFpYwNAmxQUOOFHZxMSIj30UEtoM2GCFBMT\n7K5gUGFJoXyFPvmKfDpy9YirWqGeUE2/d7qy07K1cORCAhsAAAAA6IZsmuUS0gCG2LSxAaDNJk+W\n9uxp/3UGDXLemTlwQGpsNFs7PFwaP74ltHnkESkiwuwaCIpAIKD3S95XXlGecgtzdaz0mKt6YSFh\nmnHvjObAJj463lCnAAAAAACb2TTLJaQBDLFpYwNAm23cKM2b1zHrzJkjlZc7odD27c7HoUPm14qJ\nkSZObAlt7r9fCgszvw46VCAQUEFJgXPCptCn49eOu6oXFhKmx+99XNnp2VowYgGBDQAAAAB0YTbN\ncglpAENs2tgA4MrSpdKKFe1b/w9/+Pgfu3pV2rWrJbQ54u5qq48VFydNmSJNm+aENqNGOVemodMK\nBAJ67/J7yivMk6/IpxPXTriqFx4SrpkpM5Wdnq0nRzyp3lG9DXUKAAAAALCBTbNcQhrAEJs2NgC4\nUlrqvE1z4YL52gMGSIcPS33v8B2QCxeknTtbQptTp8z31K9fS2CTkSENGyZ5PObXQYcIBAI6dOlQ\n8xs2J8tOuqoXHhKuJ4Y+oew0J7CJi4oz1CkAAAAAIFhsmuUS0gCG2LSxAcC1ggLntElZmbma8fHO\nKZnRo9te49QpaceOltDm4kVz/d0ycGBLYJORIQ0ebH4NdIhAIKB3L73bfCXaqevuQr6I0Ag9kfJE\n8wmb2MhYQ50CAAAAADqSTbNcQhrAEJs2NgAYUVAgzZpl5kTNgAHS5s3uApo/FghIR4+2BDY7dkjX\nrpmrf0tKSktgM22alJRkfg20u0AgoIMXDzZfiXb6+mlX9SJDIzVr6Cxlp2dr/vD56hXZy0yjAAAA\nAIB2Z9Msl5AGMMSmjQ0AxpSWSs89Jy1f3vYaS5dKL71051ectVVTk3OV2q3QZtcuqaLC/Drp6S3X\no02ZIvXpY34NtKtAIKC3L7wtX6FPeUV5OnPjjKt6kaGRmj1strLTsjVv+DwCGwAAAACwnE2zXEIa\nwBCbNjYAGLdxo/TCC9Lu3Xf+PZMnS3/3d9KcOe3X159TXy8dPNgS2rzxhlRTY3YNj0e6//6WkzaT\nJkk9e5pdA+0qEAjowIUDzVeinSs/56peVFiUZg+drex0J7DpGcHfDwAAAABgG5tmuYQ0gCE2bWwA\naDfvvy+tWCHt3+8EILe/WRMfLz34oDRunPTUU9Jt/0y0Qk2N9NZbLaHNvn1SQ4PZNcLCnF//rdBm\n/HgpKsrsGmg3gUBAb334VvOVaOfLz7uqFxUWpbnD5io7PVtzh81Vj4gehjoFAAAAALhh0yyXkAYw\nxKaNDQAdIhBwrhOrrZUiI50TJB5PsLu6cxUVzumaW6HNwYPOr8mkyEhpwoSW0Oahh6TwcLNroF00\nBZr01vm3mq9E+/Dmh67qRYdFa+7wucpOy9acYXMIbAAAAAAgiGya5RLSAIbYtLEBAG1QVuZc53Yr\ntHn/ffNr9OzpXAN3K7QZO1YKCTG/DoxqCjTpzXNvKq8oT3lFebpw84KrejHhMZo3fJ6y0rI0Z9gc\nxYTHGOoUAAAAAHAnbJrlEtIAhti0sQEABly+LO3c6QQ2O3ZIx4+bXyM+Xpo6tSW0SU3tXKeRuqGm\nQJP2ntsrX6FP+UX5ulhx0VW9mPAYzR8+X9np2Zo9dLaiw6MNdQoAAAAA+CQ2zXIJaQBDbNrYAIB2\ncO6cE9Zs3y699pp03t17JR8rKaklsMnIkJKTCW0s1hRo0htn33ACm+J8Xaq45Kpej/AeenLEk8pK\ny9KsobMIbAAAAACgndg0yyWkAQyxaWMDANpZICB98EHL1Wjbt0tXrphfZ8iQlsBm2jRp4EDza8CI\nxqZGvX72deUV5Sm/KF+XKy+7qtczoqeeHPGkstOy9cTQJxQVFmWoUwAAAACATbNcQhrAEJs2NgCg\ngwUCUmFhS2Czc6d044b5dUaMaAltpk6V+vUzvwZca2xq1J6ze+Qr9Mlf7FdJZYmrer0iejmBTXq2\nZqbMNBLYNAWaVFpV6rpOa/WN6asQD+8wAQAAAAgum2a5hDSAITZtbABAkDU2Su++2xLa7NkjVVWZ\nX2fMmJbQZvJkKS7O/BpwpbGpUbvP7G4ObK5UuTtxFRsZqwUjFigrLUszU2YqMiyyTXWuVF5R4ouJ\nrnppi5LnS5TQI6HD1wUAAACA29k0yyWkAQyxaWMDACxTVyft39/yps3evc7XTAoJkR56qCW0mTBB\niokxuwZcaWhq0K7Tu+Qr9GnVkVW6WnXVVb3YyFgtHLlQ2WnZejzlcUWERtzx9xLSAAAAAOjObJrl\nWhvSNDY2qrKysvnz6OhohYeHB7Ej4M+zaWMDACxXXe0ENbdO2hw44Jy+MSk8XBo/viW0eeQRKeLO\nh/hoXw1NDdp5eqcT2BSvUmm1u6vH4iLjnMAmPVsz7p3xqYENIQ0AAACA7symWa61Ic2vf/1rPfvs\ns82fb926VRkZGUHsCPjzbNrYAIBOprzcuRLtVmhz6JD5NaKjpUmTpGnTnNDmgQeksDDz66DV6hvr\nteP0DuUV5mnVkVW6Vn3NVb3eUb21aOQiZaVlafq90z82sCGkAQAAANCd2TTLtfZP5pcvX9at/Kh3\n794ENAAAoOuKjZXmznU+JOnqVWnXrpbQ5sgR92tUV0uvvup83FpzypSWkzajRjlXpqHDhYeGa2bK\nTM1MmalfzP2Ftp/aLl+hT6uPrFZZTVmr612vua6XD72slw+9rPioeC0auUjZ6dnKSM5QeCgn0wEA\nAADAJtaGND179pQkeTweDRkyJMjdAAAAdKB+/SSv1/mQpAsXpJ07W0KbU6fcr1FeLq1f73zcWvPW\nKZuMDGnYMMnjcb8OWiU8NFxPDH1CTwx9Qv933v/9SGBzveZ6q+uV1ZTp14d+rV8f+rX6RPdpDmxG\nJYz69G8GAAAAALQ7a0Oau+66K9gtAAAA2GHAAGnpUudDckKaHTtaQpuLF92vcfWqlJfnfEjSwIEt\ngU1GhjR4sPs10CoRoRGaNXSWZg2dpf+Y9x/adnKb8orytLp4tW7U3mh1vWvV1/Srd3+lX737K8VH\nxbdDxwAAAACA1rL2TZrCwkKNHj1aktSnTx9dvXo1yB0Bf55N9xgCALqRQEA6erQlsNmxQ7rm7k2T\nj5WS0hLYTJsmJSWZXwN3pLahVttObpOvyKc1R9aovLY82C3dMd6kAQAAAGADm2a51oY0kjR69GgV\nFhbK4/Fo7969euSRR4LdEvCJbNrYAIBurKlJOny4JbTZvVu6edP8OunpLdejTZki9eljfg18qtqG\nWm09uVW+Qp/WHl1rfWBDSAMAAADABjbNcq1+HfYLX/hC819/+9vfDmInAAAAnURIiHTffdJXvypt\n2OCcqtm3T/rBD6QZM6SoKDPrFBZKP/uZtHix857Ngw9KX/+6tGmTVFFhZg18qsiwSM0bPk+/XfRb\nXX7+stYuWavPjP6Mekb0DHZrAAAAAIA7YPVJmsbGRk2dOlVvvPGGPB6P/uZv/kYvvvhisNsCPpZN\n6SsAAJ+ottYJbW6dtNm3T2poMLtGWJg0blzL9Wjjx5sLh3BHahpqtOXEFvmKfFp3dJ0q6uwIzjhJ\nAwAAAMAGNs1yrQ5pJOn69et68skn9frrr8vj8WjChAn63ve+p6lTpwa7NeAjbNrYAADcsYoK6Y03\nWkKbgwedd25MioyUJkxoCW0eekgKDze7Bj5RdX21Np/YrLyiPK07uk6V9ZVB64WQBgAAAIANbJrl\nWh3SfO9735Mk1dfX65e//KUuX74sj8cjSUpKStJDDz2k5ORkxcbGKryVf9D/1re+ZbxfdG82bWwA\nANqsrMx5x+ZWaPP+++bX6NlTmjSpJbQZO1YKDTW/Dv5EdX21Np3YpN++91utPbq2w9cnpAEAAABg\nA5tmuVaHNCEhIc2hzC23t/vHP9YajY2Nbf5e4OPYtLEBADDm8mVp504nsNmxQzp+3Pwa8fHS1Kkt\noU1qquTi93n4dFcqryjxxcQOX5eQBgAAAIANbJrlhgVlVRfcBDOSE/K4rQEAANBtJCVJOTnOhySd\nO+eENdu3S6+9Jp0/736NsjJp9Wrn49aatwKbjAwpOZnQBgAAAADQJVkf0lh80AcAAKD7GTRI+tzn\nnI9AQPrgg5ar0bZvl65ccb/G5cvSihXOhyQNGdIS2EybJg0c6H4NAAAAAAAsYHVIs2PHjmC3AAAA\ngE/i8UhDhzofX/iCE9oUFrYENjt3SjduuF/nzBnp5ZedD0kaMaIltJk6VerXz/0a6BAZv83QZ0Z/\nRjnpOUqOTw52OwAAAAAQdFa/SQN0JjbdYwgAgBUaG6V33225Hm33bqmqyvw6Y8a0hDaTJ0txcebX\n6GKC9SbN7cYNHKec9BxlpWVpUNygoPYCAAAAoHuxaZZLSAMYYtPGBgDASnV10oEDLSdt9u51vmZS\nSIj00EMtoc2ECVJMjNk1ugAbQprbTRg0wQls0rPUv2f/YLcDAAAAoIuzaZZLSAMYYtPGBgCgU6iu\ndoKaW6HNgQPO6RuTwsOl8eNbQptHHpEiIsyu0QnZFtLc4pFHU+6ZoiXpS+RN86pfDFfZAQAAADDP\nplkuIQ1giE0bGwCATqm8XNqzpyW0OXTI/BrR0dKkSdK0aU5o88ADUpjVzzS2C1tDmtuFekI1/d7p\nyknP0aKRixQfHR/slgAAAAB0ETbNcrtESFNRUaGbN2+qV69e6tmzZ7DbQRe3bNkyLVu27E++XllZ\nqbfffrv5c0IaAABcKi2Vdu1qCW2Ki82vERsrTZnSctJm1CjnyrQurjOENLcLDwnXzJSZWjJqiZ4c\n8aRiI2OD3RIAAACATsymkKbT/WeDN2/e1PLly7V7927t27dP586dU+Nt12KEhoZq8ODBevTRRzVl\nyhQ99dRTBDcw6vTp09q1a1ew2wAAoOvr21davNj5kKSLF6UdO1pCm1On3K9RXi6tX+98SFK/fi2n\nbDIypGHDJI/H/TqQJI1JHKPDJYdb/X31TfXaeHyjNh7fqMjQSM0ZNkc56TmaN3yeekT0aIdOAQAA\nAKBjdJqTNFVVVfqHf/gH/fKXv1RlZaUk6c+17vnvP0z37NlTzz77rL7//e8rOjq6Q3pF18ZJGgAA\nLHHq1EdDm4sXza8xcGBLYJORIQ0ebH6NIAjWSZqS50t0o/aGfIU+rXx/pQpKClzViwmP0bzh85ST\nnqPZQ2crOpzf7wMAAAD4dDadpOkUIc17772nrKwsffDBB83BjOcO/ovG23/u0KFD5fP5NHbs2Hbt\nFd2XTRsbAIBuJxCQjh5tCWx27JCuXTO/TkpKS2AzbZqUlGR+jQ4QzJAmoUdC8+fFV4qVW5ir3MJc\nHbl6xFXtXhG9tGDkAuWk52hmykxFhEa4bRcAAABAF2XTLNf6kObo0aOaOHGiSktLJTmBy+0t9+rV\nS3379lWPHj1UWVmp0tJS3bx5s/nHb//5/fr10xtvvKFhw4Z17C8C3YJNGxsAgG6vqUk6fLgltNm9\nW7rt94jGpKe3XI82ZYrUp4/5NdqBLSHNLYFAQAUlBcp9P1crC1fqZNlJV+v0juqtRSMXKSc9RxnJ\nGQoPDXdVDwAAAEDXYtMs1+qQpr6+XqNGjdLx48ebT84EAgE9+uijeuaZZzR9+nQlJyf/yfedOnVK\n27dv169//Wu9+eabH/neESNGqKCgQGFhne45HljOpo0NAAD+SEODdPBgS2jz+utSTY3ZNTwe6f77\nW07aTJokWfo2om0hze0CgYAOXjyo3Pdz5Svy6eyNs67W7BvdV5lpmcpJz9HkIZMVGhLqqh4AAACA\nzs+mWa7VIc2///u/66tf/WrzaZjY2Fj913/9l7Kzs++4Rn5+vp599lmVl5crEAjI4/HoX//1X/WV\nr3ylHTtHd2TTxgYAAJ+itlbat68ltNm3zwlyTAoLk8aNawltxo+XoqLMrtFGNoc0t2sKNOmt828p\ntzBXvkKfLla4e3eof8/+ykzNVM6oHD026DGFeEJc1QMAAADQOdk0y7U6pBk+fHjzOzQxMTHavXu3\nHnjggVbXOXTokCZOnKjq6moFAgENHTpUx44da4eO0Z3ZtLEBAEArVVRIb7zREtq8845zZZpJkZHS\nhAktoc1DD0nhwbmGq7OENLdrbGrU62dfV25hrvKL8nWl6oqrXu6OvVtZaVlaMmqJHh7w8B29eQkA\nAACga7BplmttSHP8+HGNGDGi+Q9LL7zwgr72ta+1ud6LL76ov/3bv5XkvFNz5MgR3qaBUTZtbAAA\n4FJZmfOOzfbt0o4dUkGB+TV69nSuRLsV2owdK4V2zFVcTYEmlVaVtu6bAgEnzKqvk8IjnP5bGWz0\njelr5PRKQ1ODdp7eqdz3c7XqyCpdq77mql5y72Rlp2crJz1H9/W/j8AGAAAA6OJsmuVaG9L4fD4t\nWbJEkhQREaFLly6pd+/eba53/fp1JSUlqb6+Xh6PRytXrlRWVpapdgGrNjYAADCspETaubPlpM3x\n4+bXiI+Xpk5tCW1SU1sdghhXUCCtWCHt3++cLiora/mx+HjpgQecK92WLpVu+31QR6pvrNe2k9u0\nsnCl1hxZo/Laclf1hvUZppz0HC0ZtUTpifxeDgAAAOiKbJrlWhvS/OxnP9Nzzz0nj8ej4cOHq7i4\n2HXN1NRUHT16VB6PRz/96U/1pS99yUCngMOmjQ0AANrZuXPOCZvt26XXXpPOnze/RlJSS2CTkSEl\nJ3dcaLNxo/SjH0l79tz590yaJH3jG9KcOe3X16eoaajRlhNblFuYq3VH16myvtJVvfSEdOWk5yhn\nVI6G9x1uqEsAAAAAwWbTLNfalzIrKiqa/zo2NtZIzV69ejX/dWWluz+wAQAAoBsbNEj63OekZcuk\ns2edkzX/+Z9STo6U0LY3V/7E5cvOKZZnn5VSUpyQ5plnpN//XvrwQzNr/LHSUudUzLx5rQtoJOfn\nz50rfeYzTp0giAqL0oKRC7Tcu1wlXy9RXlaevKleRYVFtale4ZVCfWvntzTiZyN0/3/erx++/kOd\nKjtluGsAAAAA3VlYsBv4JP369ZMkBQIBfWjoD6EXLlxo/uu+ffsaqQkAAIBuzuORhg51Pr7wBeft\nlsLClvdsdu6Url93v86ZM9LLLzsfkjRiRMspm6lTpf/+/XObHT4szZ4t3fZ75jZZvtz5NW/eLI0e\n7a6WCzHhMcpMy1RmWqZu1t7U+mPrlVuYq80nNquusa7V9Q5dOqRDlw7pm699U+MGjlNOeo6y0rI0\nKG5QO3QPAAAAoLuw9rqzV155RfPmzZMkeTwevffeex85ftRahYWFGv3ff0j0eDxav3695gTxKgZ0\nPTYdkQMAABZpbJQOHWp5z2b3bqmqyvw6Y8a0hDaTJ0txcXf+vYcPO0HP7W/OuBUfL+3aFdSg5uNc\nr7mutUfWKrcwV1tPblVDU4OrehMGTXACm/Qs9e/Z31CXAAAAANqTTbNca0OaGzduKCEhQY2NjZKk\nRYsWKT8/v831srKy5Pf7JUnh4eG6cuWKsWvUAMmujQ0AACxWVycdONAS2uzd63zNpJAQ6aGHWkKb\nCROkmJiP/7mlpU7A4/YEzccZMMAJgCw9xV5aVapVxauUW5irHad3qCnQ1OZaHnk05Z4pWpK+RN40\nr/rFuDzZBAAAAKDd2DTLtTakkaTp06drx44dkpzTL9/+9rf1rW99q9V1/vmf/1n/+I//KM9/P7Sa\nkZGhrVu3Gu0VsGljAwCATqS62glqboU2Bw44p29MCg+Xxo9vCW0eeUSKiHB+bOlS5+2b9rJ0qfSH\nP7RffUMuV1yWv9iv3MJc7TmzRwG1/Y9JoZ5QTb93unLSc7Ro5CLFR8cb7BQAAACAWzbNcq0OaXbv\n3q2pU6fK4/EoEAjI4/Fo/vz5+slPfqKUlJRP/f6TJ0/q+eef19q1ayWpucbOnTs1adKk9m4f3YxN\nGxsAAHRi5eXSnj0toc2hQ+bXiI6WJk2S7rpL+s1vzNf/Yxs2SHPntv86hnxY/qHyivKUW5irfef3\nuaoVHhKumSkztWTUEj054knFRnKaHwAAAAg2m2a5Voc0kvS5z31Ov//97z8S1Hg8Hk2cOFEZGRka\nM2aM+vXrpx49eqiyslKlpaV67733tH37dr3++usKBALN3ydJTz/9tH7TEX8QRbdj08YGAABdSGmp\n87bLrdCmuDjYHbXe5MnOr6ETOnP9jHyFPuUW5urgxYOuakWGRmrOsDnKSc/RvOHz1COih6EuAQAA\nALSGTbNc60Oa+vp6zfn/7N13dJTl1sbh30wKSQghSAmE3kuCUhWpGgSpgrQgCqgUEUSkKAhKU0EU\n4SAgiCCgtAREqiiCdCnSSUIPJaGF3mvyfn+M5qMzk8xkJsl9rZV1Msns/d6e46yTefc8z1OvHsuX\nL08ctNw9dHmcu59nGAa1atVi8eLFuLu7OzSzpE+u9MIWERGRNOzECVix4v+HNocOOTuRdXbtgrv+\nVkqNDpw7QHhkOLMiZrErbleyevl4+NCgWANCg0KpW6Qu3h7edkopIiIiIiJP4kr3cs1OuaoNPDw8\nWLx4Md27dwceHLw86gu4Z/VNz549WbhwoQY0IiIiIpK65cplOedl4kSIjrZ8TZoEr79u+Z2rcuS5\nNymkyFNF6FutLzvf3UlU5ygG1BhAiWwlktTr2u1rhEeG0zS8KQHDA2j9a2sW7VvErfhbdk4tIiIi\nIiKuzOVX0txt8+bNjBgxgrlz53Lr1pPfvHh6etKsWTO6d+9O+fLlUyChpGeuNH0VERGRdMowYO/e\n/19ls2IFnDvn7FQWL70Ef/7p7BR2ZxgGu+J2ERYRxqzIWUSfj05WP38vf14t8SqhQaGEFAzBw83D\nTklFREREROQ/rnQvN1UNaf5z8eJF1q9fz8aNGzly5Ajnz5/nypUr+Pr6kiVLFvLnz0+lSpWoVKkS\nmTNndnZcSSdc6YUtIiIiAkBCgmWbsf+GNqtWweXLzsmSJYvlfB0rti1OrQzDYMuJLYRFhBEeFc7R\ni0eT1S+rd1aalWpGaFAo1fNXx83sZqekIiIiIiLpmyvdy02VQxoRV+RKL2wRERGRh7pzB7Zsgd9+\ng8GDU/76ly5Bpkwpf10nSDAS2Bi7kVkRs5gdNZsTV04kq19O35w0K9mM0OBQKuetjNmP9rmfAAAg\nAElEQVTk8jtXi4iIiIi4LFe6l+uyQ5r4+HiuXr2a+Njb2xsPDy31F9flSi9sERERkcc6cwayZ0/5\n654+Ddmypfx1nSw+IZ61R9cSFhnGnKg5nL52Oln98vjloXmp5rQMbknFwIqJZ3aKiIiIiIh1XOle\nrst+/Grq1KlkyZIl8WvNmjXOjiQiIiIikjZ4ejrnuhkyOOe6TuZmdqNGgRp8V/87jvc8zp+t/6Rd\n2XZk8cqSpH6xl2IZuWEkz018jsLfFqbPsj5sO7ENF/38nYiIiIiIPIbLDmlOnTqFYRgYhkHmzJkJ\nCQlxdiQRERERkbQhUybLGTEpKUsW8PVN2Wu6IHezOy8VeomJr0zkZK+TLG61mDbPtMEvg1+S+h26\ncIhh64ZRbkI5io8pzqd/fUpkXKSdU4uIiIiIiKO47JDG9983cCaTifz58zs5jYiIiIhIGmIyQbly\nKXvNsmUt15VEnm6e1Ctaj6mNp3Kq1ynmhc7jteDXyOiRMUn99p/bz+drPid4XDDB3wXz2arP2Hd2\nn51Ti4iIiIiIPbnskCZXrlzOjiAiIiIiknY9+2zKXm/TJvjhB7hzJ2Wvm0p4uXvRqEQjZjSdQdyH\ncYQ3C6dpyaZ4uXslqV/k6Uj6r+xP8THFKft9Wb5c+yWHzh+yc2oREREREUkulx3SlCxZEgDDMIiJ\niXFyGhERERGRNOa111L2eleuQMeOEBQE4eGQkJCy109FfDx8aB7UnDkt5hDXK47pTabzSvFX8HRL\n2llC209u5+PlH1Po20I8N/E5RqwfQcxFvccSEREREXEFLjukCQoKIigoCIDz58+zceNGJycSERER\nEUlDSpeGatVS/rr79kFoKFSsCH/8ATrs/rEyZchEq9KtmN9yPqd6nWJyo8nUKVIHd7N7kvptOraJ\nnkt7ku9/+aj6Y1VGbxzNySsn7ZxaRERERESs5bJDGoCOHTsmfj9gwAAnJhERERERSYN693betbdu\nhTp1ICQENmxwXo5UxN/LnzfLvMmS15dwsudJJjSYQM2CNTGbkva2bl3MOt7//X0Cvwnkxakv8v3m\n7zlz7YydU4uIiIiIyOO49JCmc+fOVKlSBcMw+PPPP+nVq5ezI4mIiIiIpB3166f8tmf3W7kSnn8e\nGjeGyEjnZklFsvpkpUP5Dixrs4zjPY4ztt5YquWrhgmTzb0MDFYeXkmnxZ3IOTwnL097mR+3/cj5\n6+cdkFxERERERO7m0kMaNzc3Fi5cSNWqVTEMg5EjR1K9enVWrlzp7GgiIiIiImnD6NEQGOiY3hkz\ngoeHdc+dP9+yBVvbtnD4sGPypFEBvgF0rtiZ1W+tJqZ7DCNfHkmlPJWS1CveiGfpwaW0W9COgOEB\nNJjRgGk7p3Hp5iU7pxYREREREQCTYbjuJtCDBw8G4Pbt20ycOJFTp05hMlk+GRYQEECFChUoWLAg\nfn5+eFj75u9f/fv3t3teSd8iIyMJDg5OfBwREZF4rpKIiIiIS9u1C2rUgPN2XDmRJQusWgV+fjBw\nIPz0EyQkWFfr4QGdOkG/fhAQYL9M6cyRC0cIjwxnVuQstp7YmqxeGdwyUK9oPUKDQmlQrAEZPTPa\nKaWIiIiISMpzpXu5Lj2kMZvNiUOZ/9wd9/7f2SI+Pj7JtSIP40ovbBERERGb7dplOSPm+PHk9woM\nhN9/t6yM+U9UFHzyCfz6q/V9MmaE7t2hVy/InDn5udKxA+cOEBYRRlhkGLvidiWrl4+HDw2KNSA0\nKJS6Reri7eFtp5QiIiIiIinDle7luvR2Zw9jMpkSv5LChWdSIiIiIiLOU7o07NwJrVolr0+rVpY+\ndw9oAEqVgrlzYcMGePFF63pdvQqffw6FCsE338D168nLlo4VeaoI/ar3Y+e7O4nqHMWAGgMoka1E\nknpdu32N8MhwmoY3JWB4AK1/bc2ifYu4FX/LzqlFRERERNI+l19J4wgmk0kracTuXGn6KiIiIpIs\nixfDV1/B6tXW11SvDr17Q716T36uYcCyZfDxx7Bli/XXyJ3bsnXam2+Cu7v1dfJQhmGw89ROwiIt\nK2yiz0cnq5+/lz+vlniV0KBQQgqG4OFm25bUIiIiIiIpxZXu5br0kGbVqlUO612jRg2H9Zb0yZVe\n2CIiIiJ2EREBM2fCpk2WYcrdZ9ZkyQLly8Ozz8Jrr8FdfwdZzTDgl18sZ8/s22d9XbFilhU2TZuC\ngz7Yld4YhsGWE1sIiwgjPCqcoxePJqtfNp9sNC3ZlNCgUKrnr46b2c1OSUVEREREks+V7uW69JBG\nJDVxpRe2iIiIiN0ZBly5AjdvQoYM4OsLyTgj8h537sDUqZZVMrGx1teVLw9DhkCtWvbLIiQYCWyM\n3cisiFnMjprNiSsnktUvp29OmpVsRsvgljyf93nMJg3WRERERMS5XOleroY0InbiSi9sERERkVTp\n+nX47jsYOhTOnrW+7sUXLTXPPee4bOlUfEI8a4+uJSwyjDlRczh97XSy+uXxy0OLUi0IDQ6lYmDF\nJJ81KiIiIiKSHK50L9dlhzTx8fFcvXo18bG3tzceHtrTWFyXK72wRURERFK1ixfhm29gxAi46z3B\nEzVubNkGTX+DOcSdhDusPLySWRGzmLt7LudvnH9y0WMU9C9Ii6AWhAaFUiZnGQ1sRERERCTFuNK9\nXJddZz516lSyZMmS+LVmzRpnRxIRERERkZSQOTMMHgzR0fD++2Dth7XmzYOnn4Y334TDhx2ZMF1y\nN7vzUqGXmPjKRE72OsniVotp80wb/DL4JanfoQuHGLZuGOUmlKPE2BL0X9GfyLhIO6cWEREREXFt\nLjukOXXqFIZhYBgGmTNnJiQkxNmRREREREQkJeXIAaNGwb590LYtmK14+5KQYDnfplgx6NYN4uIc\nnzMd8nTzpF7RekxtPJVTvU4xL3QerwW/RkaPjEnqt+/sPj5b/RnB44IJ/i6Yz1Z9xr6z++ycWkRE\nRETE9bjskMbX1xcAk8lE/vz5nZxGREREREScpkABmDIFdu60bGlmjdu34dtvoVAhGDAALl1yZMJ0\nzcvdi0YlGjGj6QziPowjvFk4TUs2xcvdK0n9Ik9H0n9lf4qPKU7Z78sybO0wDp0/ZOfUIiIiIiKu\nwWWHNLly5XJ2BBERERERcSVBQfDrr7B+PbzwgnU1V69atk4rVMhyzs2NGw6NmN75ePjQPKg5c1rM\nIa5XHNObTOeV4q/g6eaZpH7bT26nz/I+FPq2EM9NfI4R60cQeynWzqlFRERERJzHZYc0JUuWBMAw\nDGJiYpycRkREREREXEalSvDXX/DHH1CunHU1Z89Cr15QtChMmgR37jg2o5ApQyZalW7F/JbzOdXr\nFJMbTaZOkTq4m92T1G/TsU30XNqTvCPzUvXHqozZNIaTV07aObWIiIiISMpy2SFNUFAQQUFBAJw/\nf56NGzc6OZGIiIiIiLgMkwlq14Z//oHwcMsZNNaIjYX27SE4GObMAcNwbE4BwN/LnzfLvMmS15dw\nsudJJjSYQM2CNTGbkvaWdF3MOrou6UruEbkJmRrC95u/58y1M3ZOLSIiIiLieC47pAHo2LFj4vcD\nBgxwYhIREREREXFJZjM0bw6RkfDDD5A7t3V1e/da6ipWhD//1LAmBWX1yUqH8h1Y1mYZx3scZ2y9\nsVTLVw0TJpt7JRgJrDi8gk6LO5FzeE5envYyP277kfPXzzsguYiIiIiI/bn0kKZz585UqVIFwzD4\n888/6dWrl7MjiYiIiIiIK3J3t6yQ2b8fhg+Hp56yrm7LFsuKnJdegk2bHJtRHhDgG0Dnip1Z/dZq\nYrrHMPLlkVTKUylJveKNeJYeXEq7Be0IGB5Aw5kNmbZzGpduXrJzahERERER+3HpIY2bmxsLFy6k\natWqGIbByJEjqV69OitXrnR2NBERERERcUXe3tCzJ0RHw6efQsaM1tX99Rc89xw0aQJRUY7NKA+V\n2y83H1T6gPXt1nO422G+eukryuWy8syh+9xOuM2ifYto/WtrcnydgyZhTQiLCOPqrat2Ti0iIiIi\nkjwmw3Dddf2DBw8G4Pbt20ycOJFTp05hMlmWwAcEBFChQgUKFiyIn58fHh4eNvXu37+/3fNK+hYZ\nGUlwcHDi44iIiMRzlURERETESU6dgiFDYNw4uH3buhqzGdq0gYEDIX9+h8aTJ9t/dj/hkeGERYax\nK25Xsnr5ePjQsFhDQoNCqVu0Ll7uXnZKKSIiIiKpiSvdy3XpIY3ZbE4cyvzn7rj3/84W8fHxSa4V\neRhXemGLiIiIyH0OH4YBA+Dnn60/f8bTE959F/r2hRw5HBpPrBN1OoqwiDDCIsPYe3Zvsnpl8sxE\noxKNCA0KpXbh2ni6edoppYiIiIi4Ole6l5vqhjTJZRgGJpNJQxqxO1d6YYuIiIjII0REwCefwPz5\n1tf4+kKPHpZt1Pz8HJdNrGYYBjtP7SQs0jKwiT4fnax+/l7+vFriVVoGtySkYAjuZnc7JRURERER\nV+RK93JdfkjjCBrSiCO40gtbRERERJ5gwwbo0wdWrbK+JmtWy6qazp3BS9tkuQrDMNhyYguzImYR\nHhlOzKWYZPXL5pONpiWbEhoUSvX81XEzu9kpqYiIiIi4Cle6l+vSQ5pVtrxhslGNGjUc1lvSJ1d6\nYYuIiIiIFQwDli6Fjz+Gbdusr8ub17J1Wtu24K4VF64kwUhgQ+wGwiLCmB01mxNXTiSrX07fnDQr\n2YyWwS15Pu/zmE2O+SChiIiIiKQsV7qX69JDGpHUxJVe2CIiIiJig4QEmDPHsg3a/v3W1xUvDl98\nAU2agJ23aZbki0+IZ+3RtYRFhjEnag6nr51OVr88fnloUaoFocGhVAysaPetuUVEREQk5bjSvVwN\naUTsxJVe2CIiIiKSBLdvw5QpMHAgHD9ufV2FCjB0KLz0kqOSSTLdSbjDikMrCIsMY+7uuZy/cT5Z\n/Qr6F6RFUAtCg0Ipk7OMBjYiIiIiqYwr3cvVkEbETlzphS0iIiIiyXD9Oowdaxm8nDtnfV1IiKXm\n2Wcdl02S7Vb8LZZFLyMsMox5e+Zx6ealZPUrlrUYoUGhhAaFEpRDf/+LiIiIpAaudC9XQxoRO3Gl\nF7aIiIiI2MHFizB8OIwYAdeuWV/XpAl8/jmULOm4bGIXN+7c4PcDvxMWGcbCvQu5evtqsvoFZQ+y\nDGyCQymWtZidUoqIiIiIvbnSvVwNaUTsxJVe2CIiIiJiR6dOWc6eGT/esiWaNcxmaNvWsnVavnwO\njSf2ce32NRbvW0xYZBiL9y/mxp0byepXJmcZWga1pEVQCwpmKWinlCIiIiJiD650LzfVDmnOnTvH\n7t27OXfuHBcvXiQhIYGXX36ZgIAAZ0eTdMqVXtgiIiIi4gCHDsGAATBtGlj7NsrTEzp3hr59IXt2\nx+YTu7l88zIL9y1kVsQsfj/wO7cTrBzOPcKzuZ8lNCiUFkEtyOOXx04pRURERCSpXOlebqoa0sTF\nxTFmzBh++eUX9uzZ88Dv//zzT0JCQh74+eTJk4mJiQEgMDCQ9u3bOzyrpD+u9MIWEREREQeKiIB+\n/WDBAutrfH2hZ0/o0QP8/ByXTezuwo0LzNszj7DIMJZFL+NOwp1k9auStwotg1vSrFQzcvrmtFNK\nEREREbGFK93LTTVDmq+//pr+/ftz69YtHhbZZDI9ckgzevRounXrhslkws3NjZiYGK24EbtzpRe2\niIiIiKSA9euhTx9Yvdr6mmzZLKtq3n0XvLwcl00c4uy1s8zdPZdZkbNYeXglCUZCknuZTWZq5K9B\naFAoTUs1JZtPNjsmFREREZHHcaV7uWanXNUG8fHxNGnShD59+nDz5s0Hfm8ymZ7Yo127dvj5+WEY\nBvHx8cyYMcMRUUVEREREJD15/nlYuRKWLIGyZa2rOXPGspqmWDH48Ue4k7xVGZKysvpkpUP5Dixv\ns5zjPY4zpu4YquWrhoknvy+9X4KRwIrDK+i0uBM5h+fk5Wkv8+O2Hzl//bwDkouIiIiIq3L5IU2X\nLl2YN28ehmFgMpkwDIOyZcvSu3dvxo4d+9BVNffz8fGhYcOGiY9/++03R0YWEREREZH0wmSCOnVg\n82aYNQuKFrWuLiYG2rWD0qVh7lzrz7gRlxHgG0CXZ7uw+q3VxHSPYeTLI6mUp1KSesUb8Sw9uJR2\nC9oRMDyAhjMbMm3nNC7dvGTn1CIiIiLialx6u7O1a9dSvXr1xNUy2bJlY8qUKdStWzfxOWazOfH3\nj9ruDOCXX36hefPmAHh5eXHhwgU8PT0d/E8g6YkrLZETERERESe5fRsmT4ZBg+D4cevrKlaEoUOh\nZk3HZZMUcfjCYcIjwwmLDGPria3J6pXBLQP1itYjNCiUBsUakNEzY5J7JRgJnL12Nll5kiKrT1bM\nJpf/fKiIiIikM650L9elhzQhISGsXLkSAD8/PzZs2ECJEiXueY61Q5rY2Fjy5csHWLZI2759O6VL\nl3ZceEl3XOmFLSIiIiJOdv06jBljGbyct2H7qpo1LTUVKzoum6SY/Wf3Jw5sdsXtSlYvHw8fGhZr\nSGhQKHWL1sXL3bYzjU5fPU2O4TmSlSEp4nrFkT1j9hS/roiIiMjjuNK9XJf9OMv58+dZs2YNJpMJ\nk8nEJ5988sCAxhZ58uQhS5YsiY/37Nljj5giIiIiIiIP8vaGDz+E6Gjo1w98fKyrW74cnn0WmjaF\n3bsdm1EcrmjWovSr3o+d7+4ksnMk/av3p3jW4knqde32NcIiw2gS3oQcX+eg9a+tWbRvEbfib9k5\ntYiIiIikJJcd0qxdu5b4+HgMw8BsNtO+fftk98yR4/8/NRQXF5fsfiIiIiIiIo/l7w+ffw4HD8J7\n74GHh3V1c+dCcDC8/TYcPerYjJIiSmUvxaAXB7G7y262v7Odj6t+TKEshZLU6/Kty0zbOY2GMxsS\nMDyAt+e/zdKDS7mTcMfOqUVERETE0Vx2SHP83/2bTSYThQoVwt/fP9k9M2fOnPj95cuXk91PRERE\nRETEKjlzwujRsHcvtG4N/27Z/FgJCZbzbYoWhR494PRpx+cUhzOZTDyT8xmG1BzCga4H+KfDP/R8\nvid5/fImqd+FGxeYvH0yL097mVzf5KLTok6sOLSC+IR4OycXEREREUdw2SHNuXPnEr9/6qmn7NLz\n5s2bid97WPsJNhEREREREXspWBB++gl27ICGDa2ruXULRo6EQoVg0CDQB87SDJPJRIXACgyvPZzD\nHxxm3dvreP/Z98nlmytJ/c5cO8P3W74n5KcQ8ozMQ9ffurLu6DoSjAQ7JxcRERERe3HZIY0jVr3c\nvcVZtmzZ7NJTRERERETEZqVLw4IFsG4dVK9uXc2VKzBwoGVY87//wY0bDo0oKctsMlM5b2VG1R1F\nTPcYVrZdybsV3iW7T/Yk9Tt55SRj/hlD1clVyf+//PRf0d/OiUVERETEHlx2SJM9u+UPUcMwOHLk\nCAkJyfvkT0xMDCdOnEh8HBgYmKx+IiIiIiIiyVa5MqxcCUuWQJky1tWcOQPdu0Px4pbt0O7oHJK0\nxs3sRo0CNfiu/ncc73mcpW8spV3ZdmTxypKkfrGXYhm/ZbydU4qIiIiIPbjskOaZZ55J/P7atWus\nW7cuWf1mz56d+L2bmxuVKlVKVj8RERERERG7MJmgTh3YsgVmzoQiRayrO3oU3n4bnn4a5s4Fw3Bs\nTnEKd7M7tQrXYuIrEznZ6ySLWy2mzTNt8Mvg5+xoIiIiImIHLjukKVasGAULFsT074GaI0aMSHKv\nS5cuMXLkSEwmEyaTiYoVK5IpUyZ7RRUREREREUk+sxlatoSoKPj+e7B29f/u3dC0KVSqBH/95diM\n4lSebp7UK1qPqY2ncqrXKX4N/ZWWwS3J6JHR2dFEREREJIlcdkgD0KZNGwzDwDAMFixYwNSpU23u\nER8fT5s2bTh27BjGv58s69y5s72jioiIiIiI2IeHB3TsCPv3w7BhkMXKLa42bYKaNaFWLfjnH8dm\nFKfzcveicYnGzGw6k7gP4whvFk7Tkk3xcvdydjQRERERsYFLD2l69epFjhw5MJlMGIZB+/bt+frr\nr4mPj7eqfs+ePYSEhLBw4cLEVTTFihWjVatWDk4uIiIiIiKSTD4+8NFHEB0NfftaHltj2TJ49llo\n1gz27HFsRnEJPh4+NA9qzpwWc4jrFcf0JtNpWKwhHmYPZ0cTERERkSdw6SFNxowZmThxImazGZPJ\nRHx8PH369KFIkSL07duXX375BSBxhcyWLVuYM2cOX375JbVr1yY4OJi1a9cmrsbx8vJixowZiVuo\niYiIiIiIuDx/f/jiCzh4ELp0AXd36+p++QWCgqB9e4iJcWxGcRmZMmSiVelWLHhtAXEfxjG50WTq\nFKmDm8nN2dFERERE5CFMhuH6p0tOmDCBzp07Jw5bgMRBy93x7x++GIaRuArHw8ODn3/+mRYtWqRc\ncElXIiMjCQ4OTnwcERFBUFCQExOJiIiISJoUHQ0DBsD06WDt27kMGSwDno8/hmzZHJtPXNLeM3sp\nMbZEil83rlcc2TNmT/HrioiIiDyOK93LdemVNP/p2LEjf/zxBwEBAcC9A5r/tjH7bxhz/yDHMAwC\nAgJYvny5BjQiIiIiIpL6FSoEP/8MO3ZAw4bW1dy8CSNGWGoHD4bLlx2bUVzOU95POTuCiIiIiDxE\nqhjSANSsWZPdu3czZMgQcuXKlTiIuX8w8x/DMPD392fQoEHs3buXqlWrOiO22NGFCxcYMmQIFStW\nJGvWrPj4+FCkSBE6dOjAli1bnB1PRERERCRllS4NCxbA2rVQrZp1NZcvW1bhFC4Mo0ZZhjciIiIi\nIuI0qWK7s/slJCSwY8cO1qxZw+7duzl79iwXLlzAx8eHbNmyUbBgQV588UWeffZZ3K3dr1lc2qZN\nm2jatCmxsbEP/b2bmxsDBgzg008/TeFk/8+VlsiJiIiISDpjGPD775btzHbssL4uXz4YNAhatwY3\nnVmSlp2+epocw3Ok+HW13ZmIiIi4Ile6l5sqJxhms5myZctStmxZZ0eRFBAdHU39+vU5c+YMJpOJ\njh070rx5c3x9fdm4cSNffvklJ06coH///vj7+9O1a1dnRxYRERERSVkmE9StCy+/DOHh8MkncPDg\nk+uOHoW33oKvv4bPP4fGjS29ROxkVsQs2pdrj7eHt7OjiIiIiLikVLPdmaRfPXr04MyZMwCMHz+e\n8ePHU7NmTZ577jnef/99Nm7cSPbslk9m9enTh+PHjzszroiIiIiI85jN0LIl7N4N48ZBrlzW1UVF\nQZMmUKkS/PWXYzNKuvL+7++Te0Ruuv/enb1n9jo7joiIiIjL0ZBGXFpUVBTz588HoGrVqnTs2PGB\n5+TNm5chQ4YAcO3aNUaNGpWiGUVEREREXI6HB3TqBAcOwJdfgr+/dXWbNkHNmlC7Nmze7NiMkm6c\nv3Ge/238HyXGliBkagjhkeHcir/l7FgiIiIiLkFDGrG7gwcPMnPmTL7++mu++OILvvvuO/766y9u\n3Lhhc685c+Ykft+hQ4dHPu/111/Hx8fngRoRERERkXTNxwd694boaMt5Nd5Wbjn1559QsSI0bw57\n9jg2o6QrKw6vIHROKHlH5qXv8r4cOn/I2ZFEREREnEpDmjTu2LFj/Prrr/Tp04eQkBD8/PwwmUyJ\nXwUKFLDbtebNm0f58uUpUqQIrVq14qOPPuKTTz6hS5cu1KxZk+zZs9O1a9fErcussWrVqsTvQ0JC\nHvk8b29vKlWqBFjOsImJiUn6P4iIiIiISFqTJQsMGWI5p6ZzZ3C38njSOXMgKAjatwf9jS12FHc1\njqFrh1L428LUm16PBXsXcCfhjrNjiYiIiKQ4DWnSoHXr1tGkSRNy585Nnjx5aNKkCcOGDWPFihVc\nvnzZ7te7efMmb7zxBq+++ipbt2595POuXLnCmDFjKFWqFKtXr7aqd2RkJAB+fn7kyZPnsc8tVapU\n4vdRUVFW9RcRERERSVdy5YKxYy2rY15/HUymJ9ckJMCkSVC0KPTsCTZ86ErkSQwMlhxYQqNZjSg4\nqiCDVw3m+GWdMyoiIiLph4Y0adA///zDr7/+yvHjjv/DNiEhgdDQUKZPn37Pz93c3ChYsCBlypQh\nc+bM9/zu9OnT1K1bl/Xr1z+2982bNzl16hRgOXfmSe5+zpEjR6z9RxARERERSX8KF4Zp02D7dmjQ\nwLqamzdhxAgoVAgGDwYHfABM0rfYS7EMWDmAfCPz0TS8KX8e/JMEI8HZsUREREQcSkOadMbX19eu\n/b7++mvmz59/z886derE0aNHiY6OZtu2bZw7d465c+eSL1++xOdcu3aNFi1acPHixUf2vnvVjzW5\nM2XK9NBaERERERF5hKefhoULYc0aqFrVuprLl2HAAMug59tvLcMbkUf438v/49ncz9pUE2/EM3f3\nXGpPq02x0cX4et3XnL562kEJRURERJxLQ5o0LFOmTLzwwgt8+OGHzJ49m8OHD7Nw4UK79T979ixf\nfPHFPT8bOnQo48aNIzAwMPFnZrOZV199lb///vueM3BiY2MZMWLEI/tfv3498XtPT88n5smQIcND\na0VERERE5AmqVoXVq2HxYsvgxhqnT0O3blC8OEydCvHxjs0oqVKr0q3Y2H4jWzpuoWO5jmT0yGhT\n/cHzB/lo2UfkGZmH1+e+zpojazAMw0FpRURERFKehjRpUMOGDYmMjOTChQusWLGCr776imbNmpE/\nf367Xuerr766Z8VK9erV6d279yOfnzt3biZOnHjPz0aOHMnZs2cf+nxvb+/E72/duvXEPDfv+gTf\n3bUiIiIiImIFkwnq1YNt22DGDMtKGWscOQJvvmkZ7sybB7qBLg9RLlc5vm/4Pcd6HGNsvbGUzlHa\npvpb8beYsWsG1adUJ3hcMKM3jubCjQsOSisiIiKScjSkSYMKFy5MqVKlMJsd98l2/yEAACAASURB\nVD9vQkICkydPvudnAwcOxPSEg0dr1qxJtWrVEh9fvnyZ8PDwhz737u3Lrly58sRMdz/n7loRERER\nEbGB2QyvvQa7d8O4cZAzp3V1UVHw6qvw/POwYoVjM0qqldkrM50rdmZHpx2se3sdrZ9uTQa3DE8u\nvEvU6Sje//19co/ITfsF7dl8fLOD0oqIiIg4noY0kiR///03p0///57AhQoV4oUXXrCqtl27dvc8\nnjdv3kOflyFDBnLkyAFATEzME/sePXo08fu7z78REREREZEk8PCATp3g4EH48kvw97eubuNGCAmB\nl1+GLVscm1FSLZPJROW8lfnp1Z841uMY39T+hqJPFbWpx7Xb15i0bRIVf6hIhQkVmLh1IldvXXVQ\nYhERERHH0JBGkmTx4sX3PK5Vq9YTV9Hc/dy7rVy5kqtXH/6HdFBQEACXLl0iNjb2sX2joqIeqBMR\nERERkWTy8YHevSE6Gvr0AWu3Fl66FCpUgBYtYO9ex2aUVC2rT1Z6PN+Dve/tZXmb5TQv1Rx3s7tN\nPbac2EKHhR0IHBHIe7+9R0RchIPSioiIiNiXbX/1iPxr+/bt9zyuXLmy1bWBgYEUKFCAw4cPA5bz\nZqKioqhYseIDz61RowYr/t0qYcWKFbRu3fqhPa9fv86GDRsAKFiwIHnz5rU6j4iIiIiIWCFLFhg6\nFN5/Hz77DH74Ae7ceXLd7Nkwdy689RYMGAB58jg+qzwgq09W4nrFOeW61jKZTIQUDCGkYAgnr5xk\n0tZJTNg6gaMXjz65+F+Xbl5i7D9jGfvPWKrkrUKnCp1oVqoZXu5eSYkvIiIi4nBaSSNJsnv37nse\nlypVyqb6+59/f7//NGvWLPH7H3744ZH9ZsyYwbVr1x6oERERERERO8uVC777DvbsgVatrKuJj4eJ\nE6FIEejVC86edWxGeYDZZCZ7xuwp/mU2Je22Q07fnPSr3o/o96NZ9NoiGhRrgAnrdm/4z7qYdbT+\ntTV5RuThw6Ufsv/s/iRlEREREXEkDWnEZtevX7/n/BfA5pUr9z9/7yO2PwgKCqJhw4YArFmzhgkT\nJjzwnJiYGPr27QuAt7c33bp1symLiIiIiIgkQeHCMH06bN8O9etbV3PzJnzzDRQqZFmNc+WKYzNK\nqudmdqN+sfosfG0hh7od4pNqn5DTN6dNPc5eP8vw9cMpNqYYtX6uxS9Rv3A7/raDEouIiIjYRtud\nic3OnDmDYRiJjz08PMiRI4dNPXLnzn3P47i4Ry+7HzFiBOvWrePcuXN06tSJbdu20bx5c3x9fdm0\naRNDhgxJrB8yZMgDvZMiLi6O06dP21Rz4MCBZF9XRERERCTVeeYZWLQI1q61nFmzbt2Tay5dgv79\nYcwY6NcP3nkHMmRwfFZJ1fL75+ezkM/oX6M/C/YuYPyW8SyLXmZTj2XRy1gWvYycvjlpX7Y9Hcp3\nIF/mfA5KLCIiIvJkGtKIza7c92k3Hx8fTCbblp1nzJjxsT3vVqRIERYvXkzTpk05fvw448ePZ/z4\n8fc8x2w28+mnn/LBBx/YlONRvvvuOwYNGmSXXiIiIiIi6ULVqrBmDfz2G/TtCzt3PrkmLg66dYMR\nI2DwYHj9dXBzc3xWSdU83DxoWqopTUs1Zf/Z/Xy/5Xsmb5/MuevnrO5x8spJPl/zOUPWDqF+0fp0\nqtCJlwu/jJtZ//6JiIhIytJ2Z2Kz+wcqXl62H8Do7e392J73q1SpEpGRkXz++eeUL18ef39/vLy8\nKFiwIG+//TYbN25k4MCBNucQERERERE7MpksW59t22bZCq1QIevqjhyBtm0tq3Lmz4e7Vu6LPE7R\nrEUZXns4x3oc4+dXf6ZK3io21ScYCSzct5D6M+pT+NvCDFkzhJNXTjoorYiIiMiD0syQ5saNGyxa\ntIgRI0YwatQoli1bRnx8vFW1x48f5+2336Zdu3YOTpk23Lhx457Hnp6eNvfIcN9WBtevX39ijb+/\nP/369WPz5s2cP3+e69evEx0dzaRJk6hQoYLNGURERERExEHMZmjVCnbvhu++g5xWniESGQmNG0Pl\nyrBypUMjStri5e7FG0+/wdq317Kz0066VOxCJs9MNvU4cvEI/f7qR96ReWkxuwV/Hfrrnq2+RURE\nRBwhTWx3Nnv2bN577z3OnDlzz89z587Nl19+SatWrR5bf/78eaZMmYLJZGLSpEmOjJom3L9y5tat\nWzb3uHnz5mN7Olvnzp1p3ry5TTUHDhygcePGDkokIiIiIpIKeXrCu+9CmzYwejQMGwYXLjy5bsMG\nePFFqF0bhgyB8uUdn1XSjNIBpRlTbwxfvvQlsyJmMW7zOLae2Gp1/Z2EO8yOms3sqNkUy1qMd8q/\nQ9tn2pLVJ6sDU4uIiEh6leqHNNOnT6dt27YYhvHAJ1xiY2Np3bo1v/32Gz/88MMDW2xJ0vj6+t7z\n+P6VNda4f+XM/T2dLUeOHOTIkcPZMURERERE0oaMGaFPH3jnHfjqKxg1CqxYTc/SpZav5s3hs8+g\neHHHZ5U0w9fTl/bl2tO+XHs2H9/M+M3jmbFrBtfvWPHv3r/2nd1Hz6U96bu8Ly2CWtCpQieez/O8\nzeeyioiIiDxKqt7uLC4uji5dupCQkIBhGDRu3JjRo0fzzTff0KBBA9zc3DAMg5kzZ/LSSy9x6dIl\nZ0dOE+4fqFy7ds3mJeBXr159bE8REREREUmDsmSBoUPhwAHo1Ancrfzc4OzZEBQEHTtCbKxjM0qa\nVCGwAhNfmcjxnsf5ts63lMpeyqb6m/E3+Xnnz1T5sQplvi/DuH/Gcemm7jGIiIhI8qXqIc2kSZO4\ndOkSZrOZmTNnMnfuXLp06UL37t1ZsGAB69evp1SpUhiGwYYNG6hZsybnz593duxUL1u2bPd8auj2\n7dvExcXZ1OPYsWP3PNaqFRERERGRdCQwEMaNs5xZ89pr1tXEx8MPP0CRIvDhh3D2rGMzSprk7+VP\n1+e6EvFuBKvfXE2r0q3wdLPtnNWdp3bS+bfOBH4TyDsL32HbiW0OSisiIiLpQaoe0ixduhSTycTr\nr79OaGjoA7+vUKECGzdupGHDhhiGwdatW6lZsybnzp1zQtq0w9vbm3z58t3zs6NHj9rU4/7nlyhR\nItm5REREREQklSlSBGbMgG3boF4962pu3oThw6FQIfj8c7hyxbEZJU0ymUxUy1+N6U2mE9s9lq9e\n+orCWQrb1OPq7atM2DqBchPK8dzE55i8bTLXbl9zUGIRERFJq1L1kCYqKgrgsQe8Z8yYkXnz5vHW\nW29hGAY7duygZs2anNWnrpLl/qHKf/9bWGv37t2P7SciIiIiIulImTKweDGsXg1VqlhXc+kSfPop\nFC4Mo0dbhjciSZA9Y3Y+rPIh+7ruY+kbS2lSsgluJjebemw6tom3F7xN4DeBdFvSjd2ndz+5SERE\nRIRUPqS5cOECAHnz5n3s80wmE5MmTeKdd97BMAx27txJSEgIZ86cSYmYaVKZMmXuefz3339bXXvi\nxAkOHz6c+NjDw4NSpWzbD1hERERERNKgatVgzRpYtAhKl7auJi4O3n8fSpSAn3+2bIsmkgRmk5la\nhWvxS4tfOPLBEQa9MIg8fnls6nHx5kW+3fQtpb4rxQtTXmBWxCxu3tEAUURERB4tVQ9pMmTIAMDl\ny5etev64cePo3LkzhmEQERGhFTXJ0KBBg3seL1u2DMMwrKpdunTpPY9ffPFFfH197ZZNRERERERS\nMZMJ6teH7dth2jQoWNC6usOHoU0beOYZmD8frHx/IvIwuf1y079Gfw51O8T8lvOpW6QuJkxPLrzL\nqiOreO2X18g7Mi99lvUh+ny0g9KKiIhIapaqhzR58lg+0bJ3716ra8aMGUOXLl0SBzUvvvgip0+f\ndlTENKty5cpky5Yt8XF0dDQrV660qnbSpEn3PG7UqJE9o4mIiIiISFpgNsPrr8OePTB2LAQEWFcX\nGQmNG0PlyrBqlWMzSprnbnbnleKv8Nvrv3Hw/YN8XPVjcmTMYVOP09dOM2zdMAp/W5g60+owb888\n7iTccVBiERERSW1S9ZDm6aefxjAM/vrrL5vqRo8ezXvvvYdhGERGRtKyZUsHJUy7zGYzb7755j0/\nGzRo0BNX0yxfvpw1a9YkPs6UKRMtWrRwREQREREREUkLPD2hc2c4eBCGDIHMma2r27ABXngB6tSB\nrVsdGlHSh4JZCjKk5hBiuscQ1iyMFwu8aHOPPw7+wathr1LgfwUYuHIgsZdiHZBUREREUpNUPaSp\nXr06AAsXLuTatWs21X777bd07doVwzC0kiaJevfufc82ZatWrWLYsGGPfP6xY8do3779PT/r1q3b\nPStyREREREREHipjRvj4Y4iOht69wcvLuro//oDy5SE0FPbtc2xGSRc83TxpEdSCv9r+xe4uu/ng\nuQ/w9/K3qcexy8cYtGoQ+f+Xn8azGvPHgT9IMBIclFhERERcmcmw9iARFxQdHU2RIkUwmUyMGjWK\n9957z+Ye3bt3Z9SoUQCYTCbi08ghk+vWreP69esP/HzHjh306tUr8XFAQADTpk17aI/AwEBKlSr1\n2OsMHTqUvn373vOzd999l08++YTAwEAAEhISWLBgAd26dePo0aP39I+MjMTf37Y/Zl1VZGQkwcHB\niY8jIiIICgpyYiIRERERkTTs+HH47DP44Qew9n2cmxu0awf9+0Pu3I7NJ+nK9dvXCY8MZ/yW8WyI\n3ZCkHgX9C/JO+Xd4q+xbNm+pJiIiIrZxpXu5qXpIA/Dmm29y7NgxcufOzZQpU5LUo3fv3oSHhwNw\n6NAhO6ZzngIFCnDkyJFk9Wjbtu0T/ztNSEigUaNGLFq06J6fu7m5kT9/fjJnzsyhQ4e4cOHCPb/3\n9vbmzz//pEqVKsnK6AxTpkx56H8vV69eZfPmzYmPNaQREREREUkB+/dbhi6zZllf4+UFXbtaVuRk\nzeq4bJIubT+5ne83f8+0XdO4cuuKzfUeZg+almpKp/KdqJ6/OiaTyQEpRURE0jcNacThUmpIA3Dj\nxg3eeustZln5pihr1qzMmTOHF154IVn5nGXgwIEMGjToic/TkEZEREREJAVt2wb9+sGSJdbX+PnB\nRx9Bt25w11bOIvZw+eZlZuyawbjN49hxakeSepTIVoJO5TvR5pk2ZPHOYueEIiIi6ZcrDWlS9Zk0\n4hq8vLyYOXMmc+bMoUyZMo98XsaMGencuTNRUVGpdkADlgFYjRo1HviqUKGCs6OJiIiIiKRfZcvC\nb7/BqlVQubJ1NZcuwSefQOHCMGYM3Lrl2IySrmTKkIl3KrzDtne2sb7deto+0xYvdyvPUvrXnjN7\n+OCPDwgcEchb899i07FN6LO2IiIiaUu6WUmzfPlyateuDVjOnrlz546TE6VdBw4cYOPGjRw7doxb\nt27h7+9PyZIlqVKlCl7WHu6ZCrnS9FVEREREJF0zDFi0CPr2hYgI6+sKFIDBg6FVK8v5NSJ2du76\nOX7a8RPjN49n79m9SepRNmdZOlXoRKvSrfD11AowERGRpHCle7npakhTq1YtwDKkibf2YEkRK7nS\nC1tERERERID4eJg503JmjS3njwYHwxdfQMOGoPNAxAEMw2DVkVWM3zyeubvncjvhts09Mnlm4o2n\n36BThU48HfC0A1KKiIikXa50L1fbnYmIiIiIiEja5OYGb7wBe/ZYtjMLCLCuLiICGjWCKlUs26eJ\n2JnJZOKFAi8wq9ksYrrHMLTmUAr4F7Cpx+Vblxm3eRzPjH+GypMq89OOn7h++7pjAouIiIjDaEgj\nIiIiIiIiaZunJ3TpAgcPWlbIZM5sXd369fDCC1C3Lmzb5tCIkn4F+AbQp2ofDr5/kCWvL+GV4q9g\nNtl2u2Z97HrazmtLnpF56PlHT/ad3eegtCIiImJvGtKIiIiIiIhI+pAxo+Wcmuho+OgjsPbMzN9/\nh3LloGVL2L/fsRkl3TKbzNQpUof5LedzuNth+lfvTy7fXDb1OHf9HCM2jKD4mOLU/KkmsyNncyv+\nloMSi4iIiD1oSCMiIiIiIiLpy1NPwbBhcOAAvPOOZVs0a4SFQcmSlppjxxybUdK1vJnzMujFQRz5\n4AhzW8ylduHaNvf469BftJjTgnwj89FveT8OXzhs/6AiIiKSbBrSiIiIiIiISPqUOzeMHw+7d1tW\nyVgjPh4mTIAiRaB3bzh3zrEZJV3zcPPg1ZKv8scbf7C/634+qvwR2Xyy2dTj1NVTDFk7hEKjClF/\nRn0W7l1IfEK8gxKLiIiIrTSkERERERERkfStaFGYORO2boU6dayruXEDvvoKChWCIUPg6lXHZpR0\nr8hTRRhWaxix3WOZ3mQ61fJVs6newOC3/b/xyqxXKDiqIJ+v/pwTl084KK2IiIhYS0MaERERERER\nEYCyZWHJEli5Ep5/3rqaixehXz8oXBjGjoVbOv9DHCuDewZalW7F6rdWE/FuBF2f7UrmDJlt6hFz\nKYZPV3xK3pF5aRbejGXRy0gwEhyUWERERB5HQxoRERERERGRu9WoAevWwfz5EBxsXc2pU/Dee1Ci\nBEybZtkWTcTBgnIE8W3dbznW4xiTXplExcCKNtXHG/H8svsXav1ci+JjijP87+GcuXbGQWlFRETk\nYTSkEREREREREbmfyQSvvALbt8PPP0OBAtbVHToErVtbVuUsXAiG4dCYIgAZPTPydtm32dRhE5s7\nbKZDuQ74ePjY1OPAuQN8+OeH5B6RmzfmvsHao2sx9O+viIiIw2lIIyIiIiIiIvIobm7wxhuwdy+M\nHg0BAdbV7dplGfJUrQqrVzs2o8hdygeWZ0LDCRzvcZyx9cYSnMPK1WD/uhV/i+m7plNtcjWeHv80\nYzeN5eKNiw5KKyIiIhrSiIiIiIiIiDyJp6dlO7MDB+Dzz8HPz7q6v/+2bJ9Wr55lVY5ICsnslZnO\nFTuzs9NO1r61ljeefoMMbhls6hERF8F7S94jcEQgHRZ0YMvxLQ5KKyIikn5pSCMiIiIiIiJiLV9f\n6NcPoqPhww/By8u6uiVLLFugvfaaZdAjkkJMJhNV8lXh51d/JrZHLMNrDafIU0Vs6nHt9jUmbptI\nhR8qUPGHikzaOomrt646KLGIiEj6YjKcuMHo6hRc8r1582Z69eoFWP5AidchjpJEU6ZMYcqUKQ/8\n/OrVq2zevDnxcUREBEFBQSmYTEREREREUtyxYzB4MEyaBNa+z3R3h3btoH9/CAx0bD6Rh0gwElhx\naAXjt4xn3p553Em4Y3MPvwx+tHm6De9UeMfmLdVEREScLTIykuDg////L2fey3XqkMZsNmMymVL0\nmoZhaEgjyTJw4EAGDRr0xOdpSCMiIiIiko7s22cZuoSFWV/j7Q1du0Lv3vDUU47LJvIYJy6f4Mdt\nPzJh6wSOXjyapB5V81WlU/lONCvVjAzutm2pJiIi4gwa0vzrvyFNSkX471oa0khyaCWNiIiIiIg8\n0tatlu3Qfv/d+prMmeGjj6BbN8iY0XHZRB4jPiGeJQeWMH7zeH7b/xsGtt+ryeaTjbfKvEXH8h1t\n3lJNREQkJWlI8y+tpJG0xJVe2CIiIiIi4mSrVsHHH8P69dbXBARYVuO0bw+eno7LJvIERy4c4Yet\nPzBx60ROXT2VpB61CtWiU4VONCzWEA83DzsnFBERSR5Xupfr1CFNgQIFUnxI859Dhw455bqSdrnS\nC1tERERERFyAYcDChdC3L0RGWl9XqJDlnJvXXgOz2XH5RJ7gdvxt5u+dz/jN41l+aHmSeuTyzUX7\ncu3pUK4DeTPntXNCERGRpHGle7lOHdKIpCWu9MIWEREREREXEh8PM2ZYVskcPmx9XenSMGQI1K8P\nTvqAo8h/9p3dx4QtE5i8fTLnrp+zud5sMlO/aH3erfAutQvXxs3s5oCUIiIi1nGle7n6SI6IiIiI\niIiII7m5QevWsGcPjB4NOXJYV7drFzRsCNWqwZo1js0o8gTFshZjeO3hxHaP5afGP1E5b2Wb6hOM\nBBbuW0i9GfUoMroIQ9cM5dSVpG2lJiIikpZoSCMiIiIiIiKSEjJkgPfeg4MH4bPPwM/Purp166B6\ndcuKmu3bHZtR5Am8Pbxp/Uxr1r29jh2ddtC5QmcyeWayqcfhC4fp+1df8ozMQ+icUFYcWoE2ehER\nkfRKQxoRERERERGRlOTrC598AtHR0KsXeHlZV/fbb1C2LLRqBQcOODajiBWeDniasfXHcrzncSY0\nmEDZnGVtqr+TcIfwyHBCfgqh5NiSjFw/MklbqYmIiKRmGtKIiIiIiIiIOEPWrPD117B/P3ToYNkW\nzRozZ0LJkvDuu3D8uGMziljB19OXDuU7sKXjFja138RbZd7C293bph57z+6lx9Ie5B6Rm7bz2rIh\ndoNW14iISLqgIY2IiIiIiIiIM+XJAxMmQFQUtGhhXc2dOzB+PBQpAn36wPnzjs0oYgWTyUTF3BX5\nsdGPHOtxjFF1RlEyW0mbety4c4OfdvzE85Oep+z3ZRm/eTyXb152UGIRERHn05BGRERERERExBUU\nKwZhYbBlC7z8snU116/DsGFQqBAMHQpXr9ovj2HApUtw5ozlP7WqQWyQxTsL7z/3PpGdI1n15ipe\nC34ND7OHTT12nNrBu4vfJXBEIJ0WdWL7SZ3JJCIiaY+GNCIiIiIiIiKupFw5+P13WLECKlWyrubC\nBejb17Ky5rvv4NatpF171y5Ln5desmzHljkzZM9u+c+sWS0/79sXIiKS1l/SHZPJRPX81ZnRdAax\nPWIZ9tIwCmUpZFOPK7eu8P2W7yn7fVkqTazElO1TuHb7moMSi4iIpCyToQ0+RewiMjKS4ODgxMcR\nEREEBQU5MZGIiIiIiKR6hgELFlgGI1FR1tcVKgSffQYtW4LZis9nLl5sWZGzZo3116hWzbLVWr16\n1teIAAlGAsuilzF+83gW7F1AvBFvcw9/L3/aPtOWd8q/Q8nstm2pJiIi4kr3crWSRkRERERERMRV\nmUzQqBHs3AlTp0L+/NbVRUfD669D2bKWAcyjPp959iy0agUNGtg2oAHL8+vXt1zn7FnbaiVdM5vM\n1C5cm7mhcznywREG1hhI7ky5bepx4cYFRm0cRanvSvHi1BcJiwjjVnwSV5CJiIg4kYY0IiIiIiIi\nIq7OzQ3atIG9e+Hbby1bkFlj507LAKZaNVi79sHfPf00zJyZvGwzZlj67NqVvD6SLuX2y82AFwZw\n+IPDzAudR50idTBhsqnHysMraflLS/KOzMvHyz7m0PlDDkorIiJifxrSiIiIiIiIiKQWGTJA165w\n8CAMHgx+ftbVrVtnGdTUrw87dlgGNC+8AMeP2yfX8eNQo4YGNZJk7mZ3GpVoxJLXl3Dg/QP0qdKH\n7D5WDiP/FXc1ji/XfUnhbwtTd3pd5u+Zz52EOw5KLCIiYh86k0bETlxpH0MREREREUknzpyBL7+E\nMWPg5k3r67y94fp1++cJDLQMgLJmtX9vSXdu3rnJvD3zGL9lPCsPr0xSjzx+eehQrgPtyrYjt59t\nW6qJiEja5Ur3crWSRkRERERERCS1ypYNhg+H/fuhfXvLtmjW+D/27jzO6rn///jjzEx7SSpLmBZL\nZdq0SVS6ZA0RhRAR2pQi28V11WUXFaFImWxJslaytIloV83UVLSSRNKqaZnz++NcX7/r+3XpnKk+\nZ87MPO63WzfOeL0/72d/TPg85/N5B1HQQOSJmp49g7m2Cp1iKcW4staVTL1+Kku6LaHXab04vPjh\nubrG91u/55/T/knlwZVpO6Ytn3z3CTnhnIASS5KUez5JI+VSeno66enpf/r6jh07mDt37h+ffZJG\nkiRJUtwtWwYPPABjx+ZtjvHjI69Wkw6xnXt28lbmWwybO4xZP8w6oGtUK1eNWxvcSqd6nahYKnev\nVJMkFQyJ9CSNJY2US/369aN///5R5yxpJEmSJOWZefPgvvvgk0/yZv/mzWH69LzZW4XGgh8X8MK8\nF3ht0Wvs2LMj1+uLJhfl8pqX06VhF5qlNiMUCgWQUpKUiCxppHzMJ2kkSZIk5RtTp8K998KsA3vi\n4KAsXgz/cfNDCsrW7K28sfgNhs4dyqKfFh3QNWpWqEmXhl3oWLdjrl+pJknKfyxppAIokb6xJUmS\nJOkP4TC8/37kzJpNm+K37333wcMPx28/FXrhcJhZP8xi2NxhjMkcw669u3J9jRIpJbi61tV0adiF\nhpUa+nSNJBVQiXQvNylPdpUkSZIkSfERCsGll0LduvHdd/bs+O6nQi8UCtHkuCakX5rOD31+YOC5\nAzm5/Mm5usbve39n5DcjafxSYxoOb8jwecPZvnt7QIklSbKkkSRJkiSp4AuHYcGC+O45b15kXykP\nHFHiCHqf3pus7llM6TiF9mntSUlKydU15v84n1vG30KlpyrRfUJ3Fv+0OKC0kqTCzJJGkiRJkqSC\nbts22Lw5vntu3gzbfQJBeSsUCtGyakvGXDGGdb3X8cjfHqFy2cq5usa23dt4fu7z1BlWhzNGnsGr\nC189oFepSZL031jSSJIkSZJU0O3enTf7Zmfnzb7Sf3F06aO5t9m9fNfzOyZ2mMgl1S8hKZS7W2Mz\n182k43sdOXbgsdz5yZ0s37Q8oLSSpMLCkkaSJEmSpIKuaNG82bdYsbzZV9qP5KRkLjjpAt6/6n1W\n9VrFA80f4JjSx+TqGr/+/itPffUU1Z+tTqtXWvH2krfZs29PQIklSQWZJY0kSZIkSQVdmTJQrlx8\n9yxXDkqXju+eUi6llk3lXy3/xZrb1zCu/TjOqXZOrq8xedVk2o1tR+rgVO6fcj9rflsTQFJJUkFl\nSSNJkiRJUkEXCkH9+vHds0GDyL5SPlAkuQhta7blk+s+YcVtK+jbtC/lS5TP1TU2bN/AwzMepurT\nVbnojYuYsHwC+3L2BZRYklRQWNJIkiRJklQYNG5csPeTDpETjziRJ855Pf2fpAAAIABJREFUgu/7\nfM/rbV/nzNQzc7U+TJgJKyZw0eiLqPZMNR7+/GF+3PZjQGklSfmdJY0kSZIkSYXB1VfHd7+aNeO7\nn3SIFU8pTofaHZjRaQaLuy6mR6MeHFbssFxdY+2Wtdw/9X5SB6fSbmw7Jq+cTE44J6DEkqT8yJJG\nkiRJkqTCoHZtaNYsfvtddx3ccgv8+mv89pQCUuvIWgy5cAjr+6znpYtfomGlhrlavzdnL28veZtW\nr7aixrM1eGrmU2zauSmgtJKk/MSSRpIkSZKkwuLuu+O73/DhUKMGvPoqhMPx3VsKQKmipbip/k3M\nuXkOc26eQ+dTO1OySMlcXWPFryu489M7OXbgsVz37nV8ufZLwn5/SFKhZUkjSZIkSVJh0bp1/F97\n9vPP0LEjnH02LFsW372lADWs1JDhlwxnfZ/1PHvBs6RVTMvV+ux92by26DXOfPlM6g6ry/Nznmdr\n9taA0kqSEpUljSRJkiRJhcmQIVCpUvz3nToV6tSBf/4Tdu2K//5SQMoWL0v3xt1Z3HUxMzrN4Jra\n11A0uWiurrF442K6T+xOpacqccuHtzD/x/kBpZUkJRpLGkmSJEmSCpPy5WHSJChX7tBet2gMN6V3\n74Z//StyPs5nnx3a/aU8FgqFODP1TF5r+xo/9PmBAecM4MQjTszVNXbs2cHw+cNp8GIDGg9vzMgF\nI9m5Z2dAiSVJiSAU9qWX0iGRmZlJrVq1/vickZFBWlruHnWWJEmSpLhZvBjOPx/Wrz/4a1WqFCl+\n1q+Hbt1g5crY1nXoAAMHwlFHHXwGKQHlhHOYsmoKw+YO472s99gX3pfra5QtVpaOdTtya4NbSTsy\ntvsMOeEcNu3clOu9Dlb5kuVJCvkz4ZISXyLdy7WkkQ6RRPrGliRJkqSYbNoEPXvCG28c+DU6dIBn\nnok8oQPw++/w8MPwxBOwZ0/09WXLwmOPwS23QJI3d1Vwrd+2npELRvLivBdZt3XdAV2jWWozujbs\nStuabSmWUuwv537e8TNHPnnkgUY9YBvv3EjFUhXjvq8k5VYi3cv1v34kSZIkSSqsypeH11+H8eOh\nefPcrW3eHCZMiKz/n4IGoEQJeOghWLgwtmtu2QJdu8IZZ0TWSAVUpTKVuL/5/azqtYoPrvqAC0+6\nkBChXF1jxtoZdHinA8cNOo67P72b7379LqC0kqR4saSRJEmSJKmwa90apk+PvALtvvugVas/n1lT\nrlzk6/fdF5mbPh0uvPCvr1mzJkybBi+//L9LnL/y9dfQoAHceSds335Qvx0pkSUnJXNx9YuZ0GEC\nK3ut5L4z7+OoUrl75d8vO3/hiZlPcOKQEznvtfN4d+m77M3ZG1BiSVKQfN2ZlEvp6emkp6f/6es7\nduxg7ty5f3z2dWeSJEmS8rVwOFKWZGdDsWJQujSEcvdT/3/45Re4+24YOTK2+eOPh2efhUsuObD9\npHxm977dvJ/1PsPmDWPKqikHdI1KZSrR+dTOdK7fmeIpxX3dmSTtRyK97sySRsqlfv360b9//6hz\nljSSJEmS9H98/jl06QJLl8Y236YNDBkSKW2kQmLZL8t4cd6LvPzNy2zetTnX65NCSZxb7VwmfTcp\ngHT7Z0kjKb9IpJLG151JuVSlShVatGjxp18NGzbM62iSJEmSlNiaN4dvvoFHHoHixaPPv/9+5LVp\nAwfCXl/lpMKheoXqPHXeU/zQ5wdGXTqK0487PVfrc8I5eVLQSJIOjE/SSIdIIrWvkiRJkpTwVq6E\n7t1hUow3k+vWhRdegNNOCzaXlIAWbljIC/Ne4NVFr7J9d+Ke2eSTNJLyi0S6l+uTNJIkSZIkKf6q\nVYOJE+Gtt+CYY6LPL1wIp58O3brBb78Fn09KIHWPrsvzrZ9nfZ/1vHDRC9Q7ul5eR5IkHSKWNJIk\nSZIkKW+EQtCuXeSMmh49Ip/3JxyGoUOhRg0YPTryWSpEyhQrwy0NbmH+LfOZ1XkWnep1onhKDK8O\nlCQlLEsaSZIkSZKUt8qWhSFDYPZsqF8/+vxPP0GHDnDeefDtt8HnkxJMKBSi8bGNGdlmJOv7rOfp\n85+mZoWaeR1LknQALGkkSZIkSVJiaNgQZs2CwYOhdOno859+CrVqwYMPQnZ28PmkBFSuRDl6ntaT\nzG6ZTLt+GlfVuoqUUEpex5IkxciSRpIkSZIkJY6UFOjVC7Ky4PLLo89nZ8M//gF168LUqcHnkxJU\nKBSiRZUWjL58NAu7LszrOJKkGFnSSJIkSZKkxHPssfD22zB+PFSuHH1+2TL429/g+uvh55+Dzycl\nsIolK+Z1BElSjCxpJEmSJElS4mrdGjIz4e67I0/ZRPPKK1C9Orz0EuTkBJ9PkiTpIFjSSJIkSZKk\nxFaqFDz2GMyfD02bRp/fvBluvhmaN4eMjODzSZIkHSBLGkmSJEmSlD/Urg0zZsDw4VCuXPT5L7+E\nU0+Fe+6BnTuDzydJkpRLljSSJEmSJCn/SEqCzp0jZ9B07Bh9fu9eePxxSEuDCROCzycVYuFwOK8j\nSFK+Y0kjSZIkSZLyn4oVYdQomDIlcgZNNKtXw0UXwRVXwA8/BB5PKowueP0C3ln6Dvty9uV1FEnK\nNyxpJEmSJElS/tWyJSxcCP/6FxQrFn1+3DioUQOefhr2eSNZOpTmb5jP5W9dTo3najBs7jB+3/N7\nXkeSpIRnSSNJkiRJkvK3YsXggQdg8WJo1Sr6/PbtcPvt0LgxzJ0bfD6pkPn212/pOqErlQdX5sHp\nD7Jp56a8jiRJCcuSRpIkSZIkFQwnnQSffAJvvAFHHRV9fv78SFFz222wZUvw+aRC5uedP/OPaf8g\ndXAqt028jVWbV+V1JElKOJY0kiRJkiSp4AiF4OqrISsLunaNfN6fcBiefRZq1oSxYyOfJR1SO/fs\n5Nk5z3LikBO56u2rmLd+Xl5HkqSEYUkjSZIkSZIKnsMPh+efh5kzoW7d6PM//gjt20Pr1rByZfD5\npEIoJ5zDmMwxNBzekLNfOZtJ304ibDEqqZCzpJEkSZIkSQVXkyaRc2eefBJKlYo+/9FHkJYGjz4K\nu3cHn08qQJJycatxyqopXPD6BdQdVpdXF77Knn17AkwmSYnLkkaSJEmSJBVsKSlwxx2wZAm0aRN9\nftcuuO8+OPVUmDEj+HxSATH3lrn0btKbUkViKET/bfHGxXR8ryPVnqnGUzOfYmv21gATSlLisaSR\nJEmSJEmFQ2oqvPde5Nfxx0efX7IEmjeHm26CTZuCzyflc8cddhwDzxvIut7reORvj3BUqaNiXvv9\n1u+589M7SR2Uyj2f3cP6besDTCpJicOSRpIkSZIkFS5t2kQKmDvugOTk6PMjR0L16pCeDp6fIUVV\nrkQ57m12L6tvX83wi4dTvXz1mNduyd7C418+TpXBVbjx/RtZ8vOSAJNKUt6zpJEkSZIkSYVP6dKR\nc2rmzYPTTos+v2kTdOoELVvC0qXB55MKgOIpxelcvzNLui/h/ave58zUM2NeuydnDy9/8zJpz6dx\n8eiL+XzN54QtSSUVQJY0kiRJkiSp8KpbF2bOhKFDoWzZ6PPTp0fW3H8//P578PmkAiAplMQl1S9h\nRqcZzLxxJpfVuIwQoZjXj18+nhbpLWgyognjloxjX86+ANNKUnyFwlbQUq6kp6eTnp7+p6/v2LGD\nuXPn/vE5IyODtLS0OCaTJEmSJB2UDRsir0B7443Y5qtVg+efh/POCzaXlEs54Rw27Yz/OUrlS5Yn\nKRTbz4Qv37Scp2Y+xaiFo8jel52rfU484kT6NOnDDfVuoESREgcSVVIhl5mZSa1atf74nJf3ci1p\npFzq168f/fv3jzpnSSNJkiRJ+dSnn0K3bvDtt7HNX3klDBoExxwTbC6pAPpp+088O/tZnpvzHJt3\nbc7V2oolK9KjcQ+6N+pO+ZLlA0ooqSCypJHyMZ+kkSRJkqRCYNcuePRReOwx2L07+vxhh8Ejj0CX\nLpCcHHw+qYDZvns7IxeMZOBXA1mzZU2u1pZIKcFNp95En9P7ULVc1YASSipILGmkAiiRvrElSZIk\nSYdIVhZ07QrTpsU236gRvPACnHpqoLGkgmpvzl7eXvI2T3z5BAs2LMjV2qRQEleccgV9m/alYaWG\nASWUVBAk0r3c2F4SKUmSJEmSVBjVqAFTpsArr0DFitHn58yBhg2hd2/Yti34fFIBk5KUwlW1rmLe\nLfP47LrPOO+E2M98ygnn8FbmWzQa3oi/jfobH634CH8+XVKis6SRJEmSJEnan1AIrrsu8lTNzTdH\nn8/JgcGD4ZRT4N13wZvEUq6FQiHOrnY2k66dxDe3fsO1da4lJSkl5vVTV0/lwjcupM6wOryy8BV2\n74vhtYWSlAcsaSRJkiRJkmJxxBHw4ovwxRfwH69I+Uvffw9t28Ill8Ca3J2xIen/q3t0XV697FVW\n9lxJnyZ9KF20dMxrMzZmcP1711Pt6Wo8OfNJtmZvDTCpJOWeJY0kSZIkSVJunHEGzJ8Pjz8OJUpE\nnx8/PvJUzYABsGdP8PmkAur4ssfz1HlPsa73Oh49+1GOLn10zGt/2PYDfT/ty/GDjufuT+9m/bb1\nASaVpNhZ0kiSJEmSJOVWkSJw112wZAm0bh19fufOyHyDBjBzZvD5pALs8OKHc8+Z97C612peuvgl\nalSoEfPardlbeWLmE1QZXIVO73cic2NmgEklKTpLGkmSJEmSpANVpQp8+CGMGwfHHht9fvHiyJM4\nt94Kv/4aeDypICuWUoyb6t9EZrdMPrjqA85MPTPmtXty9pD+TTq1htbiojcuYvrq6YQ9P0pSHrCk\nkSRJkiRJOhihUOTsmaVLoVcvSIrhdsuLL0KNGvDaa+CNYemgJIWSuLj6xczoNIOvbvqKtjXbEiIU\n8/oJKyZw1qizaDKiCW8veZt9OfsCTCtJ/5sljSRJkiRJ0qFQpgwMHgxz5kDDhtHnf/4ZrrsOWrWC\n5cuDzycVAk2Oa8K49uPI6pHFrQ1upVhysZjXzv5hNu3GtqP6s9V5fs7z7NyzM8CkkhRhSSNJkiRJ\nknQo1a8PX38NQ4ZEiptopkyB2rWhXz/YtSvweFJhcHL5kxl20TDW9l7LA80f4IgSR8S89rvN39F9\nYncqD65M/2n9+WXnLwEmlVTYWdJIkiRJkiQdasnJ0KMHZGVB+/bR53fvhv79oU4dmDw5+HxSIXFk\nqSP5V8t/sfb2tTxz/jNUObxKzGt/2fkL/ab3I3VQKj0m9mDl5pXBBZVUaFnSSJIkSZIkBaVSJRgz\nBj76CKpWjT6/YkXk9WfXXgs//RR8PqmQKFW0FLeddhsrblvBm5e/Sf1j6se89ve9v/PcnOc4achJ\ntB/bnjk/zAkwqaTCxpJGkiRJkiQpaOefDxkZcN99UKRI9PnXX4caNeCFFyAnJ/h8UiGRkpTClbWu\nZO7Nc5nccTLnnXBezGtzwjmMXTKWxi81puWolkxcMZFwOBxgWkmFgSWNJEmSJElSPJQsCQ8/DN98\nA82aRZ//7Tfo0gXOOAMWLQo+n1SIhEIh/lb1b0y6dhILuyzkujrXkZKUEvP6aaun0fqN1tQeWptR\n34xi977dAaaVVJBZ0kiSJEmSJMXTKafA9OkwciSULx99/uuvoX596NsXduwIPp9UyNQ5qg6vXPYK\nK3uu5I7T76B00dIxr838OZMb3r+Bak9XY8CXA9iya0uASSUVRJY0kiRJkiRJ8RYKQadOkJUFN9wQ\nfX7fPnjyyUjB88EHgceTCqPjyx7Pk+c+ybre63js7Mc4uvTRMa/9YdsP3PXZXaQOTuWuT+/ih60/\nBJhUUkFiSSNJkiRJkpRXKlSAl1+GadOgZs3o82vXQps2cNllsG5d4PGkwujw4odz95l3s7rXakZc\nMoKaFWL43vy3rdlbGTBzAFWfrsoN791AxsaMAJNKKggsaSRJkiRJkvJaixaRs2oeegiKF48+/957\nkVJn4EDYuzf4fFIhVCylGDeeeiMZ3TL48OoPaZYaw1lS/7YnZw+jFo6i9tDatH6jNdNWTyMcDgeY\nVlJ+ZUkjSZIkSZKUCIoWhb//HTIy4Lzzos/v2AF33AGNGsHs2cHnkwqppFASF518EZ93+pyvb/qa\ny2teTohQzOsnrphIy1EtOe2l0xibOZZ9OfsCTCspv7GkkSRJkiRJSiQnnAAffQRjxsDRMZyJ8c03\n0KQJdOsGv/0WfD6pEDvtuNN4u/3bLOuxjC4NulA8JYYn3/5tzvo5tH+7PSc/ezLPzX6OnXt2BphU\nUn5hSSNJkiRJkpRoQiFo3x6ysqBHj8jn/QmHYejQyCvQ3nwz8llSYE4qfxJDLxrKmtvX8I/m/+CI\nEkfEvHbl5pX0+KgHqYNS6TetHz/v+DnApJISnSWNJEmSJElSoipbFoYMgVmz4NRTo89v2ABXXw3n\nnw/ffht8PqmQO7LUkfRv2Z+1t69lyAVDqHp41ZjXbvp9E/2n9yd1cCrdJ3Tnu1+/CzCppERlSSNJ\nkiRJkpTo/ufcmcGDoXTp6POffAK1asFDD0F2dvD5pEKuVNFS9Gjcg+W3LWfMFWNocEyDmNfu2ruL\n5+c+z8nPnky7se2Y/YNnTEmFiSWNJEmSJElSfpCSAr16wdKl0LZt9PnsbHjgAahXD6ZNCzyeJEhJ\nSqF9Wnvm3DyHKR2ncP6J58e8Niecw9tL3ua0l07jrPSzmLB8AjnhnADTSkoEljSSJEmSJEn5yXHH\nwbhx8OGHULly9PmsLGjZEm64AX727AspHkKhEC2rtuSjaz5iUZdFdKzbkZSklJjXT18znYtGX0Tt\nobV5ecHLZO/1iTipoLKkkSRJkiRJyo8uuggyM+GuuyJP2UQzahTUqAEjRkCOP50vxUvto2oz6tJR\nrOy5kjtOv4MyRcvEvHbJz0u48YMbqfZMNZ748gm27NoSYFJJecGSRpIkSZIkKb8qVQoefxzmz4em\nTaPP//ordO4MLVpECh5JcXN82eN58twnWdd7HY+3epxjSh8T89r129Zz92d3c/yg4+n7SV++3/p9\ngEklxZMljSRJkiRJUn5XuzbMmAEvvgjlykWf/+KLyFk1994LO3cGn0/SH8oWL8tdZ9zFql6rGHnJ\nSE6peErMa7ft3saTXz1J1aercv1717P4p8UBJpUUD5Y0kiRJkiRJBUFSEtx8c+QMmuuuiz6/dy88\n9hikpcHEicHnk/S/FEspRqdTO7G462LGXz2e5pWbx7x2b85eXln4CnWG1eHC1y9k6qqphMPhANNK\nCkoo7HevlCvp6emkp6f/6es7duxg7ty5f3zOyMggLS0tjskkSZIkSfoPU6ZA166wfHls81dcAYMH\nw7HHBptL0l+a/cNsBswcwLgl4wiTu9u2DY5pwF1n3EXbmm1JSYrhnCqpEMvMzKRWrVp/fM7Le7mW\nNFIu9evXj/79+0eds6SRJEmSJOW57OzImTWPPBL5+2jKlIGHHoLu3SE5Ofh8kv6rb3/9loFfDeTl\nb15m195duVpb9fCq9Dm9D53qdaJU0VIBJZTyN0saKR/zSRpJkiRJUr6zYkXkqZrJk2Obb9AAhg2D\nhg2DzSVpv37e8TPPzn6W5+Y8x6bfN+VqbfkS5eneqDs9GvegYqmKASWU8idLGqkASqRvbEmSJEmS\n/iQchtGjoXdv2Lgx+nxSUuSJmocegsMOCz6fpL+0c89OXl7wMgO/HsjKzStztbZ4SnE61etEn9P7\ncOIRJwaUUMpfEuleblKe7CpJkiRJkqT4CoWgQwfIyoJbb40+n5MDQ4ZAjRowdmyk5JGUJ0oWKUn3\nxt1Z1mMZY64YQ8NKsT/ltmvvLobOHcrJQ07mireuYNb3swJMKim3LGkkSZIkSZIKk3LlIq8ymzkT\n6tSJPv/jj9C+PbRuDatWBZ9P0l9KSUqhfVp7ZneezdTrp3LBiRfEvDZMmHFLx9FkRBNapLdg/PLx\n5IRzAkwrKRaWNJIkSZIkSYXR6afD3LkwYACULBl9/qOPIC0NHnsMdu8OPp+kvxQKhTiryllMvGYi\ni7su5vq611MkqUjM6z9f8zkXj76YWs/XYuSCkWTvzQ4wraT9saSRJEmSJEkqrIoUgTvvhKVL4ZJL\nos///jvcey/Urw9ffBF8PklR1TqyFumXprOy10ruPP1OyhQtE/Papb8s5aYPbqLq01V5/IvH+W3X\nbwEmlfTfWNJIkiRJkiQVdqmp8P778N57cPzx0eczM6FZM+jcGTZtCj6fpKiOO+w4Bpw7gHW91/FE\nqyeoVKZSzGt/3P4j90y+h9RBqdz5yZ18v/X7AJNK+k+WNJIkSZIkSYpo0waWLIE+fSA5Ofr8iBFQ\nowaMGgXhcPD5JEVVtnhZ+p7Rl1W9VvFym5dJq5gW89ptu7fx1FdPUfXpqnR8tyOLf1ocYFJJYEkj\nSZIkSZKk/1S6NDz1VOS8mtNOiz7/yy9www3QsiVkZQUeT1JsiiYX5YZ6N7Co6yLGXz2eFpVbxLx2\nb85eXl30KnWG1eGC1y9gyqophC1ipUBY0kiSJEmSJOnP6tWDL7+E55+HsmWjz0+fDnXqwAMPRM6u\nkZQQkkJJtD65NdNumMbszrNpd0o7kkKx3xae9O0kzn7lbBoNb8SYjDHszdkbYFqp8LGkkSRJkiRJ\n0n+XnAxdu0aekLn66ujze/bAQw9B7drwySfB55OUK42ObcRb7d5ieY/ldGvYjRIpJWJeO+/HeVw1\n7ipOHnIyQ2YNYcfuHQEmlQoPSxpJkiRJkiTt39FHwxtvwMcfwwknRJ//7js477xIsbNhQ/D5JOXK\nCUecwHOtn2PN7Wv4Z4t/Ur5E+ZjXrvptFT0n9SR1cCr/mPoPNu7YGGBSqeCzpJEkSZIkSVJszj0X\nFi+OvNKsSJHo82++CTVqRF6Ztm9f8Pkk5UrFUhXpd1Y/1vZey3MXPke1ctViXvvr77/y4OcPUnlw\nZbqM78KKTSsCTCoVXJY0kiRJkiRJil2JEvCvf8GiRXDWWdHnt2yB7t2haVNYsCDweJJyr2SRknRr\n1I3lPZbz1hVv0ahSo5jX7tq7ixfmvUD1Z6tz+VuXM+v7WQEmlQoeSxpJkiRJkiTlXo0aMGUKjBoF\nFSpEn589Gxo2hD59YNu24PNJyrXkpGTapbVjVudZTL1+KheedGHMa8OEeWfpOzQZ0YTmLzfnw2Uf\nkhPOCTCtVDBY0kiSJEmSJOnAhELQsSNkZUHnztHnc3Jg0CA45RR4910Ih4PPKCnXQqEQZ1U5iwkd\nJpDRNYMb6t1AkaQYXnH4bzPWzuCSNy+h1vO1GLlgJNl7swNMK+VvljSSJEmSJEk6OOXLw/DhMGMG\npKVFn//+e2jbFtq0gTVrgs8n6YClHZnGy21eZlWvVfRt2pfDih0W89qlvyzlpg9uourTVXnsi8f4\nbddvASaV8idLGkmSJEmSJB0aZ54J8+fDY49Fzq6J5sMPI0/VDBgAe/YEn0/SATv2sGN54pwnWHv7\nWgacM4BKZSrFvPbH7T9y7+R7OX7Q8dzx8R2s27IuwKRS/mJJI0mSJEmSpEOnaFG4+27IzIQLYzjP\nYudOuOsuaNAAvvoq+HySDkrZ4mW5s+mdrOq1ivQ26aRVjOHpuX/bvns7A78eSLVnqnHdu9ex6KdF\nASaV8gdLGkmSJEmSJB16VavC+PEwdixUiuEn7hcvhqZN4dZbYfPm4PNJOihFk4tyfb3rWdx1MRM6\nTOCsKmfFvHZvzl5eW/QadYfV5fzXzmfyysmEPaNKhZQljSRJkiRJkoIRCsEVV8DSpdCzJyTFcCvq\nxRehRg14/XXwpq2U8EKhEBeedCFTr5/KnJvn0D6tPUmh2G87f/zdx7R6tRUNhzfkzYw32ZuzN8C0\nUuKxpJEkSZIkSVKwDjsMnn4aZs+OvNYsmo0b4dpr4ZxzYPny4PNJOiQaVmrImCvGsOK2FXRv1J0S\nKTGcTfVv83+cz9XjruakISfxzKxn2LF7R4BJpcRhSSNJkiRJkqT4aNAAZs2CIUOgTJno85MnQ+3a\n0L8/7NoVfD5Jh0S1ctV49sJnWdt7Lf1a9KNCyQoxr13922p6TepF6uBUHpjyABt3bAwwqZT3LGkk\nSZIkSZIUP8nJ0KMHZGVBu3bR53fvhn79oG5dmDIl8HiSDp0KJSvwz7P+yZrb1/D8hc9zQrkTYl77\n6++/8tCMh0gdlEqX8V1YsWlFgEmlvGNJI0mSJEmSpPirVAneegsmToSqVaPPL18OZ58N110XeR2a\npHyjZJGSdG3UlWU9ljG23VgaVWoU89rsfdm8MO8Fqj9bnbZj2vLVuq8CTCrFnyWNJEmSJEmS8s4F\nF0BGBtx7L6SkRJ9/7TWoXh1efBFycoLPJ+mQSU5K5opTrmBW51lMu34arU9qHfPaMGHezXqXpiOb\n0uzlZnyw7ANywv4ZoPzPkkaSJEmSJEl5q2RJeOQR+OYbaNYs+vxvv8Gtt8KZZ8LixcHnk3RIhUIh\nWlRpwfgO48nomkGnep0oklQk5vVfrP2CNm+2Ie35NEbMH0H23uwA00rBsqSRJEmSJElSYkhLg2nT\nYMQIOOKI6PNffQWnngp33QU7dgQeT9Khl3ZkGiPbjGRVr1Xc1fQuDit2WMxrs37JovOHnanydBUe\nnfEom3/fHGBSKRiWNJIkSZIkSUocSUlw442wbBnccEP0+X37YMAAOOUU+PDDwONJCsaxhx3L4+c8\nzrre63jynCc5tsyxMa/dsH0D9025j9TBqfT5uA9rt6wNMKl0aFnSSJIkSZIkKfFUqAAvvxx5sqZG\njejza9fCJZdA27awbl3g8SQF47Bih3FH0ztY2Wsloy4dRa0ja8W8dvvu7Qz6ehDVnq7Gte9cy8IN\nCwNMKh0aljSSJEmSJElKXC1aRM6qeeghKF48+vy770aeqhk0CPbuDT6fpEAUTS5Kx7odWdRlERM7\nTKRllZYxr90X3sfri1+n3gv1OO+18/hs5WeEw+EA00oHzpJGkiTpMVz1AAAgAElEQVRJkiRJia1Y\nMfj73yEjA849N/r89u3Qpw80agSzZwefT1JgQqEQF5x0AVOun8Kcm+dwZdqVJIViv639yXefcM6r\n59DgxQaMXjyavTmWt0osljSSJEmSJEnKH044ASZNgjffhKOPjj7/zTfQpAl07w5btgSfT1KgGlZq\nyJtXvMmK21bQo1EPSqSUiHntgg0L6PBOB0585kSemfUM23dvDzCpFDtLGkmSJEmSJOUfoRBceSUs\nXQrdukU+7084DM8/HznX5s03I58l5WvVylVjyIVDWNt7Lf3P6k+FkhViXrtmyxp6TepF6qBU7p9y\nPz9t/ynApFJ0ljSSJEmSJEnKfw4/HJ57Dr7+GurViz6/YQNcfTWcfz58913w+SQFrkLJCvyjxT9Y\ne/tahrYeygnlToh57eZdm3l4xsNUHlyZWz+8leWblgeYVPprljSSJEmSJEnKvxo3hjlzYOBAKFUq\n+vwnn0CtWvDQQ5CdHXw+SYErUaQEXRp2YVmPZbzd7m0aH9s45rXZ+7J5cf6L1Hi2BpeNuYyZ62YG\nmFT6M0saSZIkSZIk5W8pKdC7d+QVaJddFn1+1y544IHIEzjTpwefT1JcJCclc/kpl/P1TV8z/Ybp\nXHTyRTGvDRPmvaz3OGPkGZw58kzez3qfnHBOgGmlCEsaSZIkSZIkFQzHHw/vvAMffACpqdHns7Lg\nrLPghhvgl1+CTicpTkKhEM0rN+fDqz8ks1smN9a7kSJJRWJe/+W6L7l0zKWc8twpvDT/JXbt3RVg\nWhV2ljSSJEmSJEkqWC6+GJYsgb59ITk5+vyoUVC9OowcCTn+5LxUkJxS8RRGtBnB6ttXc/cZd1O2\nWNmY1y7btIybP7yZKoOr8MiMR9j8++YAk6qwCoXD4XBeh5Dyk/T0dNLT0//09R07djB37tw/Pmdk\nZJCWlhbHZJIkSZIk6U8WLYIuXeCrr2Kbb9YMhg4F/59eKpC2Zm/lpfkvMejrQXy/9ftcrS1VpBQ3\n17+Z25vcTuXDKweUUPGQmZlJrVq1/vicl/dyLWmkXOrXrx/9+/ePOmdJI0mSJElSgsjJgREj4K67\n4Lffos+npESewrn/fihZMvh8kuJu977djMkYw4CZA1i8cXGu1iaHkrmy1pX0bdqXekfXCyihgmRJ\nI+VjPkkjSZIkSVI+tXEj3HEHvPZabPNVq8Jzz8EFFwSbS1KeCYfDfPzdxwyYOYApq6bkev051c6h\nb9O+tKrWilAoFEBCBcGSRiqAEukbW5IkSZIk7cfkydC1K6xYEdt8u3YweDBUqhRsLkl5at76eTz5\n1ZO8lfkWOeHcnU9V7+h69G3al3antKNIcpGAEupQSaR7uUl5sqskSZIkSZKUV84+O3JWTb9+ULRo\n9PmxY6FGDRgyBPbtCzyepLzRoFIDRl8+mm9v+5bbGt9GySKxv+7wmw3fcM0713DikBMZ/PVgtu/e\nHmBSFSSWNJIkSZIkSSp8iheHf/4TFi+OlDbRbNsGPXvCaafBvHnB55OUZ6qWq8ozFzzD2tvX8q+z\n/kXFkhVjXrt2y1p6f9yb1EGp/H3y39mwfUOASVUQWNJIkiRJkiSp8Dr5ZPj008g5NUceGX1+3jxo\n3Bh69YKtW4PPJynPlC9ZngdaPMCa29cwrPUwTjzixJjXbt61mUe+eIQqg6twy4e3sOyXZQEmVX5m\nSSNJkiRJkqTCLRSCa66BrCy49dbo8zk58MwzULMmvP02eOSzVKCVKFKCWxveSlb3LMa1H0eT45rE\nvDZ7XzbD5w+n5nM1ufTNS/ly7ZcBJlV+ZEkjSZIkSZIkAZQrB8OGwcyZULt29Pn166FdO7joIli1\nKvh8kvJUclIybWu2ZeaNM5nRaQYXn3xxzGvDhHl/2fuc+fKZnDHyDN7Leo+ccE6AaZVfWNJIkiRJ\nkiRJ/+n00yOvNRswAErGcHD4xImQlgaPPQZ79gSfT1KeCoVCnJl6Jh9c/QFLui3hxno3UjS5aMzr\nZ66byWVjLqPmczUZPm84u/buCjCtEp0ljSRJkiRJkvR/FSkCd94JS5bAxTH8tPzvv8O998Kpp8IX\nXwSfT1JCqFmxJiPajGB1r9Xcc8Y9lC1WNua1yzct55bxt1BlcBUe/vxhfv391wCTKlFZ0kiSJEmS\nJEl/pXJleP99ePddOO646POZmdCsGXTuDJs2BZ9PUkI4pswxPNrqUdb1XsdT5z7FcYfF8OfFv/20\n4yfun3o/qYNSuX3S7az5bU2ASZVoLGkkSZIkSZKk/QmF4NJLI0/V9O4NSTHcUhsxAmrUgFdegXA4\n+IySEkKZYmXoc3ofVvZcyauXvUrtI2M43+rfduzZwdOznuaEZ06gw7gOLPhxQYBJlShC4bD/lpAO\nhczMTGrVqvXH54yMDNLS0vIwkSRJkiRJCsSCBdClC8yeHdv8WWfB0KGR0kZSoRIOh/nku08YMHMA\nk1dNzvX6VtVa0bdpX86pdg6hUOgv53LCOWzaGf+n98qXLE9SKP89C5JI93ItaaRDJJG+sSVJkiRJ\nUsD27YMXXoicQ7N1a/T5IkXgnnsi8yVKBJ9PUsKZ/+N8BswcwNjMsewL78vV2rpH1aVv0760T2tP\nkeQif/rnP+/4mSOfPPJQRY3Zxjs3UrFUxbjve7AS6V5u/qu4JEmSJEmSpLyWnAzdukFWFlx1VfT5\nPXvgwQehdm349NPg80lKOPWPqc/oy0fzbc9v6dm4JyWLlIx57cKfFnLtu9dy4pATGfTVILZlbwsw\nqeLJkkaSJEmSJEk6UMccA6NHw6RJUK1a9PnvvoNzz4UOHWDDhuDzSUo4VQ6vwtMXPM3a29fyYMsH\nObJU7E/ArN2ylj6f9CF1cCr3Tb6PDdv9cyS/s6SRJEmSJEmSDtZ550FGBtx/f+TVZtGMHh05o2bo\nUMjJCT6fpIRTvmR57m9+P6t7reaFi17gpCNOinntb7t+49EvHqXy4Mrc/MHNrPh1RYBJFSRLGkmS\nJEmSJOlQKFEi8kqzhQuhRYvo81u2RF6Z1rQpfPNN8PkkJaQSRUpwS4NbWNp9Ke+0f4fTjzs95rW7\n9+3mpQUvccbIMwJMqCBZ0kiSJEmSJEmHUs2aMHUqpKdDhQrR52fNgoYN4Y47YPv2wONJSkzJSclc\nVvMyZt40ky86fcEl1S/J60iKA0saSZIkSZIk6VALheD66yErC266Kfr8vn0wcGCk4HnvveDzSUpo\nZ6SewftXvc+Sbku46dSbKJpcNK8jKSCWNJIkSZIkSVJQypeHl16Czz+HU06JPv/993DZZdCmDaxZ\nE3w+SQmtZsWavHTJS6zutZp7z7yXw4sfnteRdIhZ0kiSJEmSJElBa9YMFiyARx+NnF0TzQcfREqd\nJ5+EPXuCzycpoR1T5hgeOfsR1t6+loHnDuT4w47P60g6RCxpJEmSJEmSpHgoWhTuuQcyM+GCC6LP\n79wJfftGzqv56qvg80lKeGWKlaH36b35rud3vHbZa9Q5qk5eR9JBsqSRJEmSJEmS4qlqVZgwAcaO\nhUqVos8vWgRnnAFdusDmzcHnk5TwiiQX4Zo61/DNrd/w8bUf07xy87yOpANkSSNJkiRJkiTFWygE\nV1wBS5fCbbdBUpTbdOEwvPAC1KgBr78e+Syp0AuFQpx7wrm83e7tvI6iA2RJI0mSJEmSJOWVww6D\nZ56BWbOgQYPo8xs3wrXXwrnnwooVweeTJAXKkkaSJEmSJEnKaw0bRoqap5+GMmWiz3/2GdSuDf37\nQ3Z28PkkSYGwpJEkSZIkSZISQXIy9OwZeQXaFVdEn8/Ohn79oE4dmDIl8HiSpEPPkkaSJEmSJElK\nJMceC2PHwoQJUKVK9Pnly+Hss+G66yKvQzsQ4TBs3Qq//BL5q2feSFJcWNJIkiRJkiRJiejCCyEz\nE+65B1JSos+/9hrUqAHDh0NOTvT5xYvhvvugVSsoXx7KloWKFSN/LV8+8vX77oOMjIP/vUiS/itL\nGkmSJEmSJClRlSwJjz4KCxbAGWdEn9+8GW65BZo1i5Qw/82ECdC8eeQ1aY8+CpMnR9b93+tMnhz5\n57VrR+YnTjz4348k6X+xpJEkSZIkSZISXa1a8Pnn8NJLcMQR0ednzoT69eHuu2HHjsjXNm2CDh3g\nootgxozc7T9jBrRuDddcE7mOJOmQsKSRJEmSJEmS8oOkJLjpJsjKguuvjz6/dy888QSkpcGQIZEn\nZ0aPPrgMb7wRuc5fPaUjScoVSxpJkiRJkiQpP6lYEdLTYepUqF49+vyaNdCzJ6xff2j2X78eWrSw\nqJGkQ8CSRpIkSZIkScqPzjoLFi6EBx+EYsXiu/fmzXD++b76TJIOkiWNJEmSJEmSlF8VKwb33w8Z\nGXDuufHde/36yBM6kqQDZkkjSZIkSZIk5XcnngiTJkXOnDnqqPjt+8YbMGFC/PaTpALGkkaSJEmS\nJEkqCEIhuOoqyMqCbt3it+8TT8RvL0kqYCxpJEmSJEmSpILk8MOhS5f47ff555HXrUmScs2SRpIk\nSZIkSSpoRo8u2PtJUgFhSSNJkiRJkiQVNLNnF+z9JKmAsKSRJEmSJEmSCpJwGObPj++e8+ZF9pUk\n5UpKXgeQJEmSJEmSdAht2wabN8d3z82bYft2KFMmvvtKAqB8yfJsvHNjnuyrg2NJI0mSJEmSJBUk\nu3fnzb7Z2ZY0Uh5JCiVRsVTFvI6hA+DrziRJkiRJkqSCpGjRvNm3WLG82VeS8jFLGkmSJEmSJKkg\nKVMGypWL757lykHp0vHdU5IKAEsaSZIkSZIkqSAJhaB+/fju2aBBZF9JUq5Y0kiSJEmSJEkFTePG\nBXs/SSogLGkkSZIkSZKkgubqqwv2fpJUQFjSSJIkSZIkSQVN7drQrFn89pswAcLh+O0nSQWEJY0k\nSZIkSZJUEN19d/z2uuceaNsWtmyJ356SVABY0kiSJEmSJEkFUevW8X0N2XvvQaNGkJERvz0lKZ+z\npJEkSZIkSZIKqiFDoFKl+O23YgWcdhq88Ub89pSkfMySRpIkSZIkSSqoypeHSZOgXLn47blzJ1xz\nDfTsCbt3x29fScqHLGkkSZIkSZKkgqx2bZg+/dA9UVOpEjz2GJQsuf+5IUOgZUv44YdDs68kFUCW\nNJIkSZIkSVJBV7s2LFoEHToc3HU6dIhc5+67YdYsOOmk/c/PnAn168O0aQe3ryQVUJY0kiRJkiRJ\nUmFQvjy8/jqMHw/Nm+dubfPmMGFCZH358pGv1aoFc+bAZZftf+3GjdCqFTz5JITDB5ZdkgqolLwO\nIOU36enppKen/+nrO3bsiH8YSZIkSZKk3GrdOvIrIwNGj4bZs2HePNi8+f/PlCsHDRpA48Zw9dWR\nQua/KVsWxo2DAQPg3nshJ+e/z+3bB337wtdfw8iRcNhhh/73JUn5kCWNlEurV69m+vTpeR1DkiRJ\nkiTp4NSqBQ8/HPn7cBi2b4fsbChWDEqXhlAotuuEQnDXXdCwIVx1Ffz881/PjhsXKYfeeQdOOeXg\nfw+SlM9Z0ki5VKVKFVq0aPGnr+/YsYO5c+fmQSJJkiRJkqSDFApBmTKRXwfqb3+D+fOhXbvIEzN/\nZdmyyBM6I0bAlVce+H6SVACEwmFfBCkdCpmZmdT6j0d/MzIySEtLy8NEkiRJkiRJeWD3bujTB557\nLvrs7bfDE09AkSLB55Kkf0uke7lJebKrJEmSJEmSpIKpaFF49ll49VUoUWL/s4MHR57A+fHH+GST\npARjSSNJkiRJkiTp0Lv22shrz044Yf9zX3wB9evDjBnxySVJCcSSRpIkSZIkSVIw6tSBuXPhkkv2\nP7dhA7RsCYMGgaczSCpELGkkSZIkSZIkBefww+Hdd+GRRyBpP7cj9+2LnGVz1VWwbVv88klSHrKk\nkSRJkiRJkhSspCS49174+GOoUGH/s2+9BaedBllZ8ckmSXnIkkaSJEmSJElSfLRqBfPmQaNG+59b\nujQy8/bb8cklSXnEkkaSJEmSJElS/KSmwowZ0KXL/ue2b4d27eDOO2Hv3vhkk6Q4s6SRJEmSJEmS\nFF/FisHQoZCeDsWL73/2qaciT+Bs2BCXaJIUT5Y0kiRJkiRJkvLG9dfDV19B1ar7n5s+HerXhy+/\njE8uSYoTSxpJkiRJkiRJeadevcg5Na1b73/uxx/hrLPgmWcgHI5LNEkKmiWNJEmSJEmSpLxVrhx8\n8AE8+CCEQn89t3cv9OoF11wTObNGkvI5SxpJkiRJkiRJeS8pCe6/Hz76CI44Yv+zo0dDkyawfHl8\nsklSQCxpJEmSJEmSJCWO886LvP6sQYP9z2VmQsOG8O678cklSQGwpJEkSZIkSZKUWKpUgS++gJtv\n3v/ctm3Qti3cc0/kVWiSlM9Y0kiSJEmSJElKPMWLw4svwogRUKzY/mcffxzOPRc2boxPNkk6RCxp\nJEmSJEmSJCWuG2+EmTMjT9fsz9SpUL8+fPVVXGJJ0qFgSSNJkiRJkiQpsdWvHzmn5vzz9z/3ww/Q\nogU89xyEw/HJJkkHwZJGkiRJkiRJUuI74giYMAH++U8Ihf56bs8e6NEDOnaEHTvil0+SDoAljSRJ\nkiRJkqT8ISkJ+vWD8eOhXLn9z772Gpx+Onz7bVyiSdKBsKSRJEmSJEmSlL9ceGHk9Wennrr/ucWL\noWFD+OCD+OSSpFyypJEkSZIkSZKU/1StCl9+CZ067X9uyxZo0wb+/nfYty8+2SQpRpY0kiRJkiRJ\nkvKnEiVgxAh48UUoWnT/s488AuefDz//HJ9skhQDSxpJkiRJkiRJ+VcoBDffDF98Aamp+5/97DNo\n0ABmz45PNkmKwpJGkiRJkiRJUv7XqFHknJpzz93/3Lp10KwZDBsG4XB8sknSX7CkkSRJkiRJklQw\nVKgAEyfC/ffvf273bujaNXKezc6d8ckmSf+FJY0kSZIkSZKkgiM5GR58ED74AMqW3f/sqFHQtCl8\n9118sknS/2FJI0mSJEmSJKngufji/8fenUdHUabtH786IRBIQgIExCASFpVNxbDv8ENEBURkQBRG\nZBkVRHB0WF9EUEYEXEZHxxk3IiC+YgREFhFQIgISQhCEIIJhl30NgSSY1O+Pfu2hE9IkpFNV3f39\nnJMjT+Xuqos5586Evruecm5/dvvtnuu2bJGaNJEWLzYnFwBchiENAAAAAAAAAP9Uu7a0bp30yCOe\n686ccQ51Jk6UcnLMyQYAYkgDAAAAAAAAwJ+VKyfFx0vvvCOFhHiuffFF6d57pZMnTYkGAAxpAAAA\nAAAAAPg3h0N64glpzRrphhs81379tdS4sZScbE42AAGNIQ0AAAAAAACAwNC8uZSSInXq5Llu3z6p\ndWvp/ffNyQUgYDGkAQAAAAAAABA4KleWli+Xxo3zXJedLf3lL9LgwdLFi+ZkAxBwGNIAAAAAAAAA\nCCzBwdJLL0kLF0rly3uu/fBD5101e/aYkw1AQGFIAwAAAAAAACAw9ejhfPbMrbd6rtu82fmcmmXL\nzMkFIGAwpAEAAAAAAAAQuG66SVq/XurXz3Pd6dNS167S5MlSbq452QD4PYY0AAAAAAAAAAJbWJg0\ne7b01ltSSEjBdYYhTZokdesmnTplWjwA/oshDQAAAAAAAAA4HNKTT0qJiVJMjOfaZcuc259t3mxO\nNgB+iyENAAAAAAAAAPyhZUspJUXq0MFz3d69ztqZM81IBcBPMaQBAAAAAAAAgMtdd520YoU0erTn\nuqwsadAg6bHHpMxMc7IB8CsMaQAAAAAAAAAgr1KlpGnTpM8/lyIiPNe+957Upo20b5852QD4DYY0\nAAAAAAAAAFCQBx6QNm6UGjTwXLdpkxQXJ339tTm5APgFhjQAAAAAAAAA4Mktt0g//CD17eu57tQp\n6e67pSlTpNxcc7IB8GkMaQAAAAAAAADgasLDpblzpTfecG6FVhDDkJ57TurRQzp92rx8AHwSQxoA\nAAAAAAAAKAyHQxoxQlq9Wrr+es+1ixdLTZpIW7aYEg2Ab2JIAwAAAAAAAABF0bq1lJIitWvnuS4t\nTWrRQpo1y5xcAHwOQxoAAAAAAAAAKKqqVaWVK6Vnn/Vcl5kpDRggDR0qZWWZkw2Az2BIAwAAAAAA\nAADXIiREeuUVad485zNrPPn3v5133hw4YE42AD6BIQ0AAAAAAAAAFEfv3lJSklSvnue6pCQpLs55\nBw4AiCENAAAAAAAAABRfvXrShg3OgY0nJ05IXbpIU6dKubnmZANgWwxpAAAAAAAAAMAbIiKkTz+V\nXn1VCg4uuC43Vxo/XurZUzpzxrx8AGyHIQ0AAAAAAAAAeIvDIT3zjPTNN9J113muXbRIatpU+ukn\nc7IBsB2GNAAAAAAAAADgbe3aSSkpUuvWnut275aaN5c+/ticXABshSENAAAAAAAAAJSEmBjp22+l\np5/2XHfxotS/vzR8uJSdbU42ALbAkAYAAAAAAAAASkpIiPT669Inn0hhYZ5r335bat9eOnjQnGwA\nLMeQBgAAAAAAAABKWt++0oYN0i23eK774QcpLs55Bw4Av8eQBgAAAAAAAADM0KCBlJQkPfCA57rj\nx6U775SmT5cMw5xsACzBkAYAAAAAAAAAzFK+vJSQ4BzABHl4ezY3VxozRvrTn6Rz58zLB8BUDGkA\nAAAAAAAAwEwOhzRqlLRypVSliufa+fOlpk2l7dvNyQbAVAxpAAAAAAAAAMAKHTtKKSlSy5ae6375\nRWrWTPrf/zUnFwDTMKQBAAAAAAAAAKtUqyatXi099ZTnugsXpIcekp5+Wrp0yZRoAEoeQxoAAAAA\nAAAAsFLp0tKbb0pz5kjlynmufeMN5x04v/1mTjYAJYohDQAAAAAAAADYQb9+0g8/SHXqeK5bu1aK\ni5MSE83JBaDEMKQBAAAAAAAAALu49VYpOVnq0cNz3dGjUqdO0quvSoZhTjYAXseQBgAAAAAAAADs\nJDJSmj9fmjpVCvLwFm5OjvS3v0l9+kjp6eblA+A1DGkAAAAAAAAAwG6CgqSxY6Wvv5aioz3XJiRI\nzZpJO3aYkw2A1zCkAQAAAAAAAAC76tRJSkmRmjf3XPfzz85BzWefmZMLgFcwpAEAAAAAAAAAO6te\nXUpMlIYN81x3/rxz67Nnn5UuXTInG4BiYUgDAAAAAAAAAHZXpoz09tvSrFlS2bKea197zXkHzpEj\n5mQDcM0Y0gAAAAAAAACAr/jzn6X166XatT3XrVkj3XGH9P335uQCcE0Y0gAAAAAAAACAL7n9dik5\nWere3XPdkSNSx47SG29IhmFONgBFwpAGAAAAAAAAAHxNVJS0cKE0ZYrkcBRc9/vv0tNPSw895Hxm\nDQBbYUgDAAAAAAAAAL4oKEj6n/+RvvpKqlTJc+2nn0rNm0s7d5qTDUChMKQBAAAAAAAAAF92113S\npk1Skyae61JTpaZNpc8/NycXgKtiSAMAAAAAAAAAvq5GDWnNGumxxzzXpadLf/qTNHq0cys0AJZi\nSAMAAAAAAAAA/iA0VPrPf6QPP3T+2ZMZM6TOnaWjR83JBuCKGNLAJ5w7d06JiYl69dVX9dBDD+nm\nm29WUFCQHA6HHA6H9u7da3VEAAAAAAAAwB4GDpTWrZNq1vRct3q1FBfnrAVgiVJWBwAKo3379vrx\nxx+tjgEAAAAAAAD4hjvucD6npn9/aenSgut++01q3156/XXpySclh8O8jAC4kwa+wTAM158jIyPV\noUMHVa1a1cJEAAAAAAAAgM1VqCB9+aU0ebLn4cvvv0tPPeUc6GRkmJcPAEMa+IZBgwZp7ty5+uWX\nX3T69Gl9++23uuWWW6yOBQAAAAAAANhbUJA0caLzbpoKFTzXzp0rtWgh7dplTjYAbHcG3zBixAir\nIwAAAAAAAAC+6+67pZQUqVcv538Lsm2b1KSJ9NFH0v33m5cPCFAMaQLUr7/+qqSkJB08eFDZ2dmq\nUKGC6tatq1atWik0NNTqeAAAAAAAAAC8LTZWWrtWGj5c+uCDguvOnZN69pTGjpVefFEqxdvIQEmh\nu2zg0KFDSkpK0oYNG5SUlKTk5GSlp6e7vl+jRg3t3bvXK9dauHChXnzxRaUUMC0PDw/Xo48+quef\nf17R0dFeuSYAAAAAAAAAmwgNld5/37mt2fDhUlZWwbUvvywlJUmffCJVqWJeRiCAMKSxyNq1a/Xq\nq69qw4YN+u2330r8ellZWRo8eLA+/vhjj3Xnz5/XW2+9pU8//VQJCQlq165diWcDAAAAAAAAYLIh\nQ6Q77nBuf7ZvX8F133wjNW4sJSRIzZublw8IEEFWBwhUGzdu1IIFC0wZ0OTm5urBBx/MN6AJDg5W\nzZo11ahRI0VGRrp97/jx47rnnnu0fv36Es8HAAAAAAAAwAKNG0ubNklduniuO3hQattWeucdyTDM\nyQYECIY0NhQeHu7V882YMUNffPGF27EnnnhC+/fvV1pamjZv3qxTp05p/vz5uvHGG101Fy5cUJ8+\nfXT27Fmv5gEAAAAAAABgE5UqSUuWSBMneq67dEkaNkwaMEC6cMGcbEAAYLszi0VERKhx48Zq2rSp\nmjVrpqZNm2rPnj3q2LGjV85/8uRJ/f3vf3c7NnXqVI0dO9btWFBQkHr27KlmzZqpTZs2rmfgHDx4\nUK+99pomT57s8TrffPONLnjhh/Mdd9yhatWqFfs8AAAAAAAAAAopOFiaPFlq1kzq3186c6bg2tmz\npS1bpPnzpdq1zcsI+CmGNBbp3r277rrrLtWtW1dBQe43NO3Zs8dr15k+fbrS09Nd63bt2mnMmDEF\n1lerVk3vv/++7rzzTtex119/XSNGjFClSpUKfN2gQYO0z9PelYU0e/Zs9e/fv9jnAQAAAAAAAFBE\nXbs6tz/r1Uv68ceC67ZudW6VNnu21L27efkAP8R2ZxapXbu26tevn29A4025ubmaOXOm27FJkybJ\n4XB4fF2nTp3Utm1b1zo9PV3z5s0rkYwAAAAAAAAAbKRWLbTx9dgAACAASURBVGndOue2Zp6cPSvd\nd580YYKUk2NONsAPcSeNH1u3bp2OHz/uWteqVUsdOnQo1GsHDx6sNWvWuNYLFy7U0KFDC6z/4Ycf\n9Pvvv19z1j9UrFix2OcAAAAAAAAAUAxly0ozZ0otW0ojRkjZ2QXX/v3vUlKSNHeuFB1tXkbATzCk\n8WNLlixxW3fu3Pmqd9FcXnu51atXKyMjQ2FhYVesr1q16rWFBAAAAAAAAGA/Dof0+ONSXJxz+7MD\nBwquXbHCuf1ZQoLUtKl5GQE/wHZnfuzHPPtGtmrVqtCvjYmJUWxsrGudnZ2t1NRUb0UDAAAAAAAA\n4AuaNpVSUqQ8H+rOZ/9+qU0b6d13JcMwJxvgBxjS+LEdO3a4revXr1+k1+etz3s+AAAAAAAAAAEg\nOlpatkz6n//xXJed7bz7ZtAg6eJFc7IBPo4hjZ+6ePGi9u/f73asevXqRTpH3vqdO3cWOxcAAAAA\nAAAAHxQcLE2ZIi1aJEVGeq6Nj5datZLS0kyJBvgynknjp06cOCHjstsKQ0JCVKVKlSKdo1q1am7r\nY8eOeSXbtdi9e7e+//57t2NHjhxx/TkhIUHRlz2YLDw8XH/605+u+XrHjh3T8ePHi5wRAAAAAAAA\n8Gvdu0vJyc7n1GzdWnDdjz86n1Pz8cfSvfealw/wMQxp/NT58+fd1uXKlZPD4SjSOcLCwjye00zf\nf/+9Bg4cWOD3R40a5bauUaNGsYY0//rXvzR58uRrfj0AAAAAAADgt+rUkdavd25tNmdOwXVnzkhd\nu0oTJzq/goPNywj4CLY781N5ByqhoaFFPkfZsmU9nhMAAAAAAABAgCpXTpo1S3r7bSkkxHPtCy9I\n3bpJJ0+akw3wIQxp/FRmZqbbunTp0kU+R5kyZdzWFy182Nejjz4qwzAK/bV3717LsgIAAAAAAAAB\nweGQhg2TvvtOuuEGz7VffeXc/mzTJnOyAT6C7c78VN47Z7Kzs4t8jqysLI/n9GfDhg1T7969i/Sa\n3bt36/777y+hRAAAAAAAAIBNtWjhHL489JD0zTcF1+3bJ7Vu7bz7ZvBg8/IBNsaQxk+Fh4e7rfPe\nWVMYee+cyXtOf1alShVVqVLF6hgAAAAAAACAb6hSRVq+XHruOenllwuuy8qShgxxPtPmrbekAPpg\nOHAlbHfmp/IOVC5cuCDDMIp0joyMDI/nBAAAAAAAAACXUqWkqVOlBQuk8uU9137wgdSmjcRjCxDg\nGNL4qejoaDkcDtf60qVLOnbsWJHOcejQIbc1d5YAAAAAAAAAuKr775c2bpQaNvRct2mT8zk1X31l\nTi7AhhjS+KmyZcvqxhtvdDu2f//+Ip0jb33dunWLnQsAAAAAAABAALj5ZumHH6SHH/Zcd+qUdO+9\n0osvSrm55mQDbIQhjR/LO1RJTU0t0ut37Njh8XwAAAAAAAAAUKCwMGnOHOnNN51boRXEMKSJE6X7\n7pNOnzYvH2ADDGn8WKNGjdzW69atK/RrDx8+rL2X7QcZEhKi+vXreysaAAAAAAAAgEDgcEhPPSUl\nJkoxMZ5rlyxxbn+2ebM52QAbYEjjx7p16+a2XrlypQzDKNRrv/76a7d1x44dFR4e7rVsAAAAAAAA\nAAJIq1ZSSorUvr3nuj17nLXx8abEAqzGkMaPtWrVStHR0a51WlqaVq9eXajXfvDBB27rHj16eDMa\nAAAAAAAAgEBz3XXSypXSqFGe6zIzpYEDpccfl7KyzMkGWIQhjR8LCgrSo48+6nZs8uTJV72bZtWq\nVVqzZo1rHRERoT59+pRERAAAAAAAAACBpFQpafp0KSFButrOPe++K7VtK+3fb042wAIMafzcmDFj\n3LYpS0xM1LRp0wqsP3TokIYMGeJ2bOTIkW535AAAAAAAAABAsfTqJW3cKNWr57lu40YpLk5ascKc\nXIDJSlkdIJCtXbtWFy9ezHd8y5YtbuvMzEytXLnyiueIiYlR/fr1C7xGdHS0xo8fr/Hjx7uOjRs3\nTvv379eECRMU838P68rNzdWiRYs0cuRI7b9sMh0TE6Nnn322SH8vAAAAAAAAALiqunWlpCRpyBDp\n008Lrjt5UurSRZoyRRo7Vgri3gP4D4dR2CfJw+tiY2O1b9++Yp1jwIABir/KQ7Ryc3PVo0cPLV68\n2O14cHCwatSoocjISO3Zs0dnzpxx+37ZsmW1YsUKtW7dulgZ/U18fPwV/zfPyMhQcnKya71t2zY1\naNDAxGQAAAAAAACADzIM6Y03nM+q+f13z7Xdu0uzZklRUeZkg1/avn27GjZs6Fpb+V4ud9IEgKCg\nIH322WcaOHCg/vd//9d1PCcnR2lpaVd8TaVKlZSQkMCA5gr27t2rxMREq2MAAAAAAAAA/sHhkJ5+\nWmrSROrdWzpypODaL7901s2fL912m3kZgRLCfWEBIjQ0VJ988okSEhLUqFGjAuvCwsI0bNgwpaam\nqkOHDuYF9CGxsbFq3759vq8mTZpYHQ0AAAAAAADwXW3aSCkpUtu2nut+/VVq0UKaPducXEAJYruz\nALV7925t2LBBhw4dUnZ2tqKiolSvXj21bt1aoaGhVsfzSXa6RQ4AAAAAAADwWZcuSWPGSK+/fvXa\noUOddWXKlHwu+A07vZfLdmcBqk6dOqpTp47VMQAAAAAAAADAXUiI9NprzrtlBg2SMjIKrn3nHefd\nNwkJ0g03mJcR8BK2OwMAAAAAAAAA2E+fPlJSklS3rue6DRukuDjpm2/MyQV4EUMaAAAAAAAAAIA9\n1a/vHNT86U+e644flzp3lqZNk3jCB3wIQxoAAAAAAAAAgH1FREjz5kmvvCIFBxdcl5srjR0rPfCA\ndPasefmAYmBIAwAAAAAAAACwN4dDevZZadUq6brrPNcuXCg1bSpt22ZONqAYGNIAAAAAAAAAAHxD\n+/ZSSorUqpXnul27pObNpblzzckFXCOGNAAAAAAAAAAA3xETI337rTRihOe6Cxekfv2cddnZ5mQD\nioghDQAAAAAAAADAt5QuLb3xhvNOmXLlPNf+859Shw7SoUOmRAOKgiENAAAAAAAAAMA3PfSQtGGD\ndPPNnuvWr5fi4qTVq02JBRQWQxoAAAAAAAAAgO9q2FDauFHq2dNz3bFj0p13Sq+8IhmGOdmAq2BI\nAwAAAAAAAADwbeXLS59/Lk2bJgV5eNs7J0caNUrq3Vs6d868fEABGNIAAAAAAAAAAHyfwyGNHi2t\nWCFVruy59vPPpWbNpNRUc7IBBWBIAwAAAAAAAADwH//v/0kpKVKLFp7rdu50Dmo+/dScXMAVlLI6\nAOBr4uPjFR8fn+94RkaG+WEAAAAAAAAA5HfDDVJiovTMM9Lbbxdcl5Eh9e0r/fCDNH26FBJiXkZA\nDGmAItu7d68SExOtjgEAAAAAAADAk9Klpbfect5R89hj0sWLBdf+4x9ScrI0b550/fXmZUTAY0gD\nFFFsbKzat2+f73hGRoaSk5MtSAQAAAAAAACgQP37S7fdJvXqJe3eXXDd999LcXHOQU3btublQ0Bz\nGIZhWB0C8Afbt29Xw4YNXett27apQYMGFiYCAAAAAAAA4HLmjDRggLRokee64GBpxgzp6aclh8Oc\nbDCVnd7LDbLkqgAAAAAAAAAAmCkqSlqwQHrpJSnIw1vjOTnOZ9n07Sulp5uXDwGJIQ0AAAAAAAAA\nIDAEBUnjxknLl0vR0Z5r582TmjeXfv7ZnGwISAxpAAAAAAAAAACB5c47pZQUqVkzz3U7dkhNm0oJ\nCebkQsBhSAMAAAAAAAAACDzVq0vffSc98YTnuvPnpd69pb/9Tfr9d3OyIWAwpAEAAAAAAAAABKYy\nZaR33pHi46XQUM+1r77qvAPnyBFToiEwMKQBAAAAAAAAAAS2AQOk9eulWrU81yUmSnFx0tq15uSC\n32NIAwAAAAAAAABAo0ZScrLUtavnusOHpQ4dpDfflAzDlGjwXwxpAAAAAAAAAACQpAoVpEWLpBdf\nlByOgut+/10aOVLq18/5zBrgGjGkAQAAAAAAAADgD0FB0oQJ0rJlUsWKnms/+URq0UL65RdzssHv\nMKQBAAAAAAAAACCvLl2klBSpSRPPddu3O2sWLDAnF/wKQxoAAAAAAAAAAK6kRg1pzRrpL3/xXJee\nLj3wgDR2rHMrNKCQGNIAAAAAAAAAAFCQ0FDp3XelDz6QypTxXDttmnTXXdKxY+Zkg89jSAMAAAAA\nAAAAwNUMGiStWyfFxnqu+/ZbKS5OWr/elFjwbQxpAAAAAAAAAAAojLg4adMm6e67PdcdOiS1by+9\n/bZkGOZkg09iSAMAAAAAAAAAQGFVrCgtWSI9/7zkcBRcd+mSNHy49MgjUkaGefngU0pZHQDwNfHx\n8YqPj893PIMftAAAAAAAAEBgCAqSJk2SmjeX+vWTTp8uuHbOHGnLFmn+fKlOHdMiwjcwpAGKaO/e\nvUpMTLQ6BgAAAAAAAACr3XOPc/uzXr2kzZsLrvvpJ6lJE2nWLOm++8zLB9tjSAMUUWxsrNq3b5/v\neEZGhpKTky1IBAAAAAAAAMAyNWtKa9c6tzb78MOC686elXr0kMaPl154QQoONi8jbMthGDy1CPCG\n7du3q2HDhq71tm3b1KBBAwsTAQAAAAAAADDV++9LTz4pZWd7rrvzTmnuXKlyZXNywY2d3ssNsuSq\nAAAAAAAAAAD4myFDnHfV3Hij57qVK6XGjaWkJHNywbYY0gAAAAAAAAAA4C1NmjifU3PXXZ7rDhyQ\n2raV/v1viQ2vAhZDGgAAAAAAAAAAvCk6Wlq6VJowwXNddrY0dKg0cKB04YI52WArDGkAAAAAAAAA\nAPC24GDpxRelL7+UoqI81370kdSqlfTrr+Zkg20wpAEAAAAAAAAAoKR06yYlJ0u33+65bssW51Zp\nixebkwu2wJAGAAAAAAAAAICSVLu2tG6dNGCA57ozZ6Tu3aWJE6WcHHOywVIMaQAAAAAAAAAAKGnl\nykkzZ0r//rcUEuK59sUXpXvvlU6eNCcbLMOQBgAAAAAAAAAAMzgc0uOPS2vWSDfc4Ln266+luDjn\nVmnwWwxpAAAAAAAAAAAwU/PmUkqK1KmT57r9+6XWraX33zcnF0zHkAYAAAAAAAAAALNVriwtXy6N\nG+e5Ljtb+stfpMGDpYsXzckG0zCkAQAAAAAAAADACsHB0ksvSQsXSuXLe6798EPnXTV79piTDaZg\nSAMAAAAAAAAAgJV69HA+e+bWWz3Xbd4sNW4sLVtmTi6UOIY0AAAAAAAAAABY7aabpPXrpf79Pded\nPi117SpNnizl5pqTDSWGIQ0AAAAAAAAAAHYQFibNmiW99ZYUElJwnWFIkyZJ3bpJp06ZFg/ex5AG\nAAAAAAAAAAC7cDikJ5+UEhOlatU81y5b5tz+bPNmc7LB6xjSAAAAAAAAAABgNy1bSikpUseOnuv2\n7nXWzpxZtPMbhnTunHTihPO/hnHNUXHtGNIAAAAAAAAAAGBHVapIX38tjR7tuS4rSxo0SHrsMSkz\ns+C6n36Sxo+X7rxTqlRJioyUKld2/rdSJefx8eOlbdu8+/dAgRjSAAAAAAAAAABgV6VKSdOmSfPn\nSxERnmvfe09q00bat8/9+JIlUrt20m23SVOnSqtWSadPu9ecPu08PnWqdOutzvqlS737d0E+pawO\nAPia+Ph4xcfH5zuekZFhfhgAAAAAAAAAgaFnT6lBA+mBB6Tt2wuu27RJiouTPvnE+byap55y/rmo\n1qxxfj38sPTmm847beB1DGmAItq7d68SExOtjgEAAAAAAAAg0Nx8s/TDD85tzTwNXk6dkrp0cd55\nk55evGvOnSutXi199ZXzDht4FUMaoIhiY2PVvn37fMczMjKUnJxsQSIAAAAAAAAAASM8XPr4Y6lF\nC+nZZ6Xffy+4trgDmj/89pvUvr2UmMigxsschmEYVocA/MH27dvVsGFD13rbtm1q0KCBhYkAAAAA\nAAAA+LW1a6XevaXDh825XkyMtHWrz299Zqf3coMsuSoAAAAAAAAAACie1q2llBSpXTtzrvfbb9KI\nEeZcK0AwpAEAAAAAAAAAwFdVrSqtXOnc+swMc+dKS5aYc60AwJAGAAAAAAAAAABfFhIivfKKVK+e\nOdebPt2c6wQAhjQAAAAAAAAAAPi6n36Sduww51rffSdt22bOtfwcQxoAAAAAAAAAAHzdJ5/49/X8\nFEMaAAAAAAAAAAB8XVKSf1/PT5WyOgDgL7KystzWu3fvtigJAAAAAAAAgIBiGNLGjeZeMynJueWZ\nw2Hudb0g73u3ed/bNRNDGsBLDhw44La+//77LUoCAAAAAAAAACXs3Dnp1lutTuEVBw4cUFxcnCXX\nZrszAAAAAAAAAAAACzCkAQAAAAAAAAAAsIDDMAzD6hCAPzhz5owSExNd6+rVq6tMmTIWJjLX7t27\n3bZ4W7hwoerUqWNhIgAljb4HAgs9DwQe+h4ILPQ8EHgCue+zsrLcHl/Rvn17RUVFWZKFZ9IAXhIV\nFaUePXpYHcM26tSpowYNGlgdA4CJ6HsgsNDzQOCh74HAQs8DgSfQ+t6qZ9DkxXZnAAAAAAAAAAAA\nFmBIAwAAAAAAAAAAYAGGNAAAAAAAAAAAABZgSAMAAAAAAAAAAGABhjQAAAAAAAAAAAAWYEgDAAAA\nAAAAAABgAYY0AAAAAAAAAAAAFmBIAwAAAAAAAAAAYAGGNAAAAAAAAAAAABZgSAMAAAAAAAAAAGAB\nhjQAAAAAAAAAAAAWKGV1AAD+oXLlynr++efd1gD8G30PBBZ6Hgg89D0QWOh5IPDQ9/bgMAzDsDoE\nAAAAAAAAAABAoGG7MwAAAAAAAAAAAAswpAEAAAAAAAAAALAAQxoAAAAAAAAAAAALMKQBAAAAAAAA\nAACwAEMaAAAAAAAAAAAACzCkAQAAAAAAAAAAsABDGgAAAAAAAAAAAAswpAEAAAAAAAAAALAAQxoA\nAAAAAAAAAAALMKQBAAAAAAAAAACwAEMaAAAAAAAAAAAACzCkAQAAAAAAAAAAsABDGgAAAAAAAAAA\nAAuUsjoAAGv8+uuvSkpK0sGDB5Wdna0KFSqobt26atWqlUJDQ62OB8DL7Nbzly5d0s6dO7V9+3Yd\nPXpU6enpCg8PV6VKlXTbbbepYcOGCgrisyRAcdit78+dO6eff/5Z+/bt0+HDh5WRkSFJioqKUtWq\nVRUXF6caNWqYngvwF3breQAlj74HAo/d+z4nJ0ebNm1Samqqjh07pkuXLik8PFw33HCD6tWrp7p1\n6/Jv/SsxAASUBQsWGHFxcYakK36Fh4cbw4cPN44fP25aptzcXCM1NdWIj483hg0bZjRu3NgICQlx\nyzVgwADT8gD+xE49n5aWZkyfPt3o3LmzUbZs2QIzSTIiIyONJ5980vjll19KPBfgb+zS9xkZGcbb\nb79tPPjgg0ZsbKzHnv/jKzY21pg8ebJx8uTJEs0G+BO79HxhZWRkGLVr186Xk9/3gcKzU9+3b9++\nUP8fX9DXzJkzSzwj4A/s1PdXkpaWZgwdOtSIiory2PPly5c3evToYSxZssSSnHbFkAYIEJmZmUa/\nfv0K/YtS5cqVjcTExBLN9OGHHxqdOnUyIiMjr5qHf7QBRWOnns/MzDSaN29+Tf9oK126tDFjxgwj\nNze3RLIB/sROfW8YhrFr165rfsOmSpUqxueff15i2QB/YLeeL6y//vWv/L4PXCM79j1DGqBk2bHv\nL5eTk2O89NJLRpkyZYrU+w8++KBpGX0B9xYBASA3N1cPPvigPv74Y7fjwcHBqlmzpho1aqTIyEi3\n7x0/flz33HOP1q9fX2K5vvjiC61atUpnz54tsWsAgchuPX/p0iVt2LDhit8LDQ1VzZo11bRpU9Wv\nX1+lS5d2+352drZGjRql4cOHez0X4E/s1veeREVFqV69emrevLluv/12ValSJV/NsWPH1Lt3b8XH\nx5uaDfAVvtTzl0tKStIbb7xh2fUBX+arfQ/g2tm97y9duqS+fftq/PjxysrKcvteZGSk6tatq2bN\nmqlevXoqV65ciefxZQxpgAAwY8YMffHFF27HnnjiCe3fv19paWnavHmzTp06pfnz5+vGG2901Vy4\ncEF9+vSxZIgSFhZm+jUBf2H3nq9Zs6YmTZqktWvX6ty5c0pLS1NSUpK2b9+uM2fOaPbs2fmeS/Gv\nf/1Lb731VonmAnyZnfu+YcOGGjVqlBYtWqQjR47o9OnTSk1N1Q8//KAff/xRR48eVVpamp577jmV\nLVvW9brc3Fw9/vjj+vnnn0ssG+Cr7NzzBcnOztbgwYOVm5srid/3gaLylb5fsWJFkb66dOliSi7A\nF9m97wcPHqzPPvvMtS5VqpSefPJJJSUl6fTp09qxY4c2bNig1NRUpaena8eOHfrHP/6hVq1ayeFw\nlGg2n2P1rTwAStaJEyeMiIgIt1sKp06dWmD9wYMH8+0bP3HixBLJ1qNHD0OSUbVqVaN79+7Giy++\naHz11VfGyZMnjeeff57tD4BrYMeeT09PNyQZrVu3NpYvX16orctOnTplNG3a1C1XVFQUz6kArsCO\nfW8YhnH+/Hlj165dRXrN5s2bjQoVKrhl69Onj9ezAb7Mrj1/NZf/fl+tWjXjmWee4fd9oJDs3Pd5\ntzsD4B127nvDMIzZs2e7XSsmJsbYsmVLoV9/6tSpEsvmi/jpCfi50aNHu/3QbNeu3VXfIF25cqXb\nayIiIowTJ054PdumTZuM/fv3X/F7DGmAa2PHns/KyjIWL15c5NcdOnTICAsLc8v27rvvei0X4C/s\n2PfF8e9//9stW1hYmHHx4kWrYwG24Ys9v23bNqN06dKu6y9YsIDf94EisHPfM6QBSoad+/748eNG\ndHS06zqRkZFF/nAW3LHdGeDHcnNzNXPmTLdjkyZNuuothZ06dVLbtm1d6/T0dM2bN8/r+eLi4lS9\nenWvnxcIVHbt+dKlS6tr165Ffl1MTIwGDBjgdmz58uXeigX4Bbv2fXE89NBDCgr67z9TMjIytH//\nfgsTAfbhiz2fm5urwYMHKzs7W5LUs2dP3X///aZcG/AHvtj3AIrH7n3/97//XSdOnHCtX3rpJdWp\nU8fr1wkkDGkAP7Zu3TodP37cta5Vq5Y6dOhQqNcOHjzYbb1w4UJvRgNQAvyx5y//BVMSb9QCefhj\n35cvX16VK1d2O3b5PwKBQOaLPf+Pf/xDGzZskOTsb54xBxSNL/Y9gOKxc99nZWVp1qxZrnXVqlX1\n+OOPe/UagYghDeDHlixZ4rbu3LlzoR/M1blzZ7f16tWrlZGR4bVsALzPH3u+QoUKbmsrHnQM2Jk/\n9r0kZWZmuq2joqIsSgLYi6/1fFpamp577jnXeurUqYqJiSnRawL+xtf6HkDx2bnvFyxYoFOnTrnW\nffv2VXBwsNfOH6gY0gB+7Mcff3Rbt2rVqtCvjYmJUWxsrGudnZ2t1NRUb0UDUAL8secPHTrktq5U\nqZJFSQB78se+37lzp9tANjw8XDfffLOFiQD78LWe/8tf/qILFy5Iklq2bKmhQ4eW6PUAf+RrfQ+g\n+Ozc93kHSB07dvTauQMZQxrAj+3YscNtXb9+/SK9Pm993vMBsBd/7Pk1a9a4rXmjFnDnj30/ZcoU\nt3W/fv1UqlQpi9IA9uJLPf/+++/rm2++kSSFhITovffeK/SngAH8ly/1/R/Onj2rrVu36rvvvlNK\nSor27dunnJycEr8u4C/s3PcbN250W99+++2SpJycHC1btkx9+/bVLbfcorCwMEVFRemmm25Snz59\nNHPmTNcHN5Af/9oB/NTFixfzPbuhevXqRTpH3vqdO3cWOxeAkuGPPX/u3DklJCS4Hbv33nstSgPY\nj7/1fWZmpsaOHas5c+a4jlWuXFkvvPCCZZkAO/Glnj98+LBGjRrlWo8ePVoNGjQokWsB/syX+v4P\nd9xxh7Zu3arc3Fy34+Hh4WrdurV69eqlRx55RGXKlCnRHICvsnPfnz17Vr/88otrHRwcrBo1aigt\nLU39+/fX+vXrr/ia3bt367PPPtOECRP08ssv689//rNX8vgThjSAnzpx4oQMw3CtQ0JCVKVKlSKd\no1q1am7rY8eOeSUbAO/zx56fMmWKzp8/71pHR0erW7duFiYC7MUX+37Dhg1KT093rTMzM3Xs2DEl\nJyfr888/d7t+1apVtXTp0iL/nQB/5Us9P2zYMJ05c0aSdNNNN2nChAklch3A3/lS3/8h7zZNfzh/\n/ryWL1+u5cuXa+LEiXrzzTfVu3fvEs0C+CI7931aWppbtoiICKWmpqpVq1aFen7sb7/9pkceeUTb\nt2/Xyy+/7JVM/oIhDeCnLn9jU5LKlStX5O0FwsLCPJ4TgH34W8+vW7dOr732mtuxCRMmqFy5chYl\nAuzHF/v+8ccf15YtWzzWhIaG6tFHH9ULL7ygypUrl2gewJf4Ss/PmzdPCxcudK3/85//KDQ01OvX\nAQKBr/R9UR05ckR9+vTR3/72N82YMcPqOICt2Lnv//gAxh8cDoe6devmGtCUK1dODz/8sNq1a6dK\nlSrp5MmTSkxM1Ny5c3Xx4kXX66ZNm6Zq1arpqaee8kouf8CQBvBTeX8AX8s/jMqWLevxnADsw596\n/tixY+rbt6/bvtVNmzbV8OHDLckD2JU/9f0fSpcurREjRuixxx5jQAPk4Qs9f/LkSbc3XAYOHMgD\nhYFi8IW+l5y5OnfurHvuuUeNGjVSnTp1FBUVpaysLB07dkzr16/XJ598oqVLl7p9Cv+VV15RpUqV\nNHbsWK9nAnyVnfs+75Dm9OnTOn36tCSpcePGmj9/vm688Ua3mj//+c+aMGGCevTooa1bt7qOjxo1\nSl26dOG5s/8nyOoAAEpGZmam27p06dJFPkfePWIvn3oDsBd/6fmsrCz17NlTBw4ccB2LiIjQ3Llz\nFRwcbHoewM78pe8vl52drenTp+uWW27RkCFD3LZGxQOn7AAAF+1JREFUAwKdL/T8008/7dpSpUqV\nKnrllVe8en4g0PhC3z/zzDM6ePCgFi1apKFDh6ply5aqXLmyQkJCFB4erlq1aqlfv35avHixvvvu\nu3zbMI0fP/6qd9kCgcTOfV/QsOeGG27QihUr8g1o/hAbG6tVq1apatWqrmNZWVn8nnAZhjSAn8o7\nac/Ozi7yObKysjyeE4B9+EPP5+bmqn///lq3bp3rWHBwsD7++GPVqVPH1CyAL/DFvv/xxx9lGIbr\n69y5c/rll180Z84c3XPPPa66nJwcffDBB2rTpo1OnjxZopkAX2H3nl+2bJnmzJnjWr/++uuqWLGi\n184PBCK7970k3XfffapUqVKhatu0aaPVq1crOjradcwwDJ5bBVzGzn1f0HlmzJihChUqeHxtdHR0\nvufQzJ492/IPidkFQxrAT4WHh7ut807iCyPvD8q85wRgH/7Q88OGDVNCQoJr7XA49N5776l79+6m\n5gB8hT/0fUREhG666Sb169dPS5cu1ddff+32D7ytW7dqwIABpmYC7MrOPZ+enq4nnnjCtb777rv1\n8MMPe+XcQCCzc99fqzp16uR7Ds3SpUt16tQpixIB9mLnvr/SeSpWrKhevXoV6vUPPvigIiMjXevM\nzEwlJSV5JZuvY0gD+Km8PzgvXLjgtvdrYWRkZHg8JwD78PWeHzdunP7zn/+4HXv11Vc1cOBA0zIA\nvsbX+/5KOnfurCVLligo6L//TFmyZIlWrFhhYSrAHuzc82PHjtX+/fslOR8a/M4773jlvECgs3Pf\nF8cjjzzi9uy53NxcrVy50sJEgH3Yue+vdJ6WLVsqJCSkUK8PDQ1Vs2bN3I4lJyd7JZuvY0gD+Kno\n6Gg5HA7X+tKlS679oQvr0KFDbusqVap4JRsA7/Plnn/55Zfz3fY8ceJE/fWvfzXl+oCv8uW+96Rl\ny5bq37+/27H4+HhrwgA2Ytee37Nnj9tQZvLkyYqNjS32eQHYt++LKygoSB06dHA7tnPnTmvCADZj\n576/7rrr8h27+eabi3SOW265xW1d1L+bv2JIA/ipsmXL5ntg1x+fbiusvPV169Ytdi4AJcNXe/7t\nt9/WuHHj3I6NHDlSkydPLvFrA77OV/u+MB544AG39eXPqgIClV17/uzZs26f8B01apQcDsdVv/L+\nf/1HH33k9v2oqKhiZwN8nV373huqV6/utj5+/LhFSQB7sXPf165dW6VLl3Y7Vr58+SKdI2/96dOn\ni53LHzCkAfxY3h/CqampRXr9jh07PJ4PgL34Ws/PmjVLTz31lNuxQYMG6fXXXy/R6wL+xNf6vrBq\n167ttj5y5IhFSQB78deeB1Awf+37vNsjXbp0yaIkgP3Yte+Dg4Pz3TmTlZVVpHPkfcZOuXLlip3L\nHzCkAfxYo0aN3NZF+RTq4cOHtXfvXtc6JCRE9evX91Y0ACXAl3r+888/16BBg9w+edunTx+99957\nbrd2A/DMl/q+OAq7zzXg7wKl5wH8l7/2fd4PYFz+jBog0Nm57+Pi4tzWR48eLdLr825vVqlSpWJn\n8gelrA4AoOR069ZN06ZNc61XrlwpwzAK9Qbo119/7bbu2LGjLR4wCKBgvtLzy5Yt08MPP6ycnBzX\nsa5du2rOnDluDwsHcHW+0vdFtW/fPrf1lfa/BgKRHXu+Tp06WrFiRZFfN2vWLM2ePdu1vuuuuzRq\n1CjXmuEs4GTHvveG77//3m2dd/szIJDZue/vu+8+zZo1y7XetGlTkV6ftz7vM2oCFUMawI+1atVK\n0dHROnHihCQpLS1Nq1evVseOHa/62g8++MBt3aNHjxLJCMB7fKHnExMT1atXL2VnZ7uOdezYUQkJ\nCbwZA1wDX+j7a/Hll1+6rW+77TaLkgD2YseeDw8P15133lnk1+V9g/b666+/pvMA/s6OfV9ciYmJ\n+vXXX92OderUyaI0gP3Yue/vvvtuhYaGurYt27p1q3bt2qWbbrrpqq/dvn17vq3YOnTo4NV8voqP\nqwJ+LCgoSI8++qjbscmTJ7ttL3Qlq1at0po1a1zriIgI9enTpyQiAvAiu/d8cnKyunfvrosXL7qO\ntWjRQosWLVJoaKjXrwcEArv3/bXYsWOHZs6c6XbMLm8qAVbzx54H4Jm/9X1GRoZGjBjhduzWW29V\nrVq1LEoE2I+d+z4sLEz9+/d3OzZlypRCvfaFF15wW7dv315VqlTxWjZfxpAG8HNjxoxxu60xMTHR\n7ZbJvA4dOqQhQ4a4HRs5cqSio6M9XsfhcLh9rV69uli5AVwbu/b89u3bdffddys9Pd11rFGjRlq2\nbJlttlwAfJUd+z49PV3Dhg3TwYMHC/eX+D/btm1Tly5d3O62q1Gjhnr37l2k8wD+zI49D6Bk2bXv\nR44cqd9+++3qf4H/c+LECd13333aunWr2/HJkycX+hxAoLBr30vS888/7/ZBy1mzZunDDz/0+Jp/\n/etfmjdvntuxcePGXfVagYIhDeDnoqOjNX78eLdj48aN07Bhw9x+mcrNzdXChQvVqlUrtweMxcTE\n6Nlnny2RbJmZmVq5cuUVv9LS0txqDx8+XGDt4cOHSyQf4Ivs2POHDx/WXXfdpZMnT7qOhYWFafTo\n0UpOTi6wtwv6AuDOjn2fk5Ojd955R7Vq1VL37t01a9Ys/frrr1f89F92drbWrVunoUOHKi4uTgcO\nHHB9z+Fw6J///KfKli3r1XyAL7NjzwMoWXbt+zfffFO1atVSz5499fHHH7td83IHDhzQjBkzdOut\nt+qbb75x+97999+vnj17ej0b4Ovs2veSdMMNN2jMmDFux4YMGaLhw4e7/S4vSfv379fQoUM1fPhw\nt+MPPfSQunTpUiL5fJHDuNp9UgB8Xm5urnr06KHFixe7HQ8ODlaNGjUUGRmpPXv26MyZM27fL1u2\nrFasWKHWrVtf9Rp5H1727bffXnVfyb1796pmzZqF+0t4MHPmzHy3gQKBzG49X9i9cwuLX12A/OzW\n92fOnFGFChXyHY+IiFDVqlUVFRUlwzB09uxZ7d27V5cuXbri9d577z0NHjz4qtmAQGO3nr8WkyZN\ncvv0/IABAxQfH++18wP+xo59f6WHmJcvX17XX3+9IiMjdenSJR09erTAu23atm2r5cuX82EMoAB2\n7Ps/5OTk6P7778+XzeFwqGbNmqpUqZJOnjyZ70PYkhQXF6fExER21bgMd9IAASAoKEifffaZ+vbt\n63Y8JydHaWlp2rx5c74f6JUqVdLSpUsL9QMdgL3Q80Dg8ZW+T09P165du7Rx40YlJydr165dVxzQ\n3HTTTVq1ahUDGqAAvtLzALzHV/r+3Llz2rlzp5KSkrR58+YrDmiCgoI0evRorVq1igEN4IGd+z44\nOFgJCQkaMGCA23HDMJSWlqaNGzdecUBz3333MaC5AoY0QIAIDQ3VJ598ooSEBDVq1KjAurCwMA0b\nNkypqale/aQcAHPR80DgsVPfR0ZGKjExUWPGjFGzZs1UunTpq74mJCREnTp10pw5c/TTTz959Q48\nwB/ZqecBmMNuff/uu++qb9++ql69eqHqq1atqpEjR2rnzp2aNm2aQkJCSiwb4C/s1veXK1OmjOLj\n47Vs2TKPQyGHw6HmzZvryy+/1BdffMGA5grY7gwIULt379aGDRt06NAhZWdnKyoqSvXq1VPr1q3d\nHv4FwD/Q80DgsVPfZ2VlKTU1Vb/++qsOHz6s9PR0Sc5hTlRUlOrWratbb721UMMcAFdmp54HYA47\n9f3Jkye1Y8cO7du3T8ePH1dGRoaCg4NVoUIFRUdH64477lCtWrVMzQT4Izv1fV6HDh3S+vXrtW/f\nPmVmZqpChQq6/vrr1bp1a1WpUsXSbHbHkAYAAAAAAAAAAMACbHcGAAAAAAAAAABgAYY0AAAAAAAA\nAAAAFmBIAwAAAAAAAAAAYAGGNAAAAAAAAAAAABZgSAMAAAAAAAAAAGABhjQAAAAAAAAAAAAWYEgD\nAAAAAAAAAABgAYY0AAAAAAAAAAAAFmBIAwAAAAAAAAAAYAGGNAAAAAAAAAAAABZgSAMAAAAAAAAA\nAGABhjQAAAAAAAAAAAAWYEgDAAAAAAAAAABgAYY0AAAAAAAAAAAAFmBIAwAAAAAAAAAAYAGGNAAA\nAAAAAAAAABZgSAMAAAAAAAAAAGABhjQAAAAAAAAAAAAWYEgDAAAAAAAAAABgAYY0AAAAAAAAAAAA\nFmBIAwAAAAAAAAAAYAGGNAAAAAAAAAAAABZgSAMAAAAAAAAAAGABhjQAAAAAAAAAAAAWYEgDAAAA\nAAAAAABgAYY0AAAAABAA4uPj5XA4XF/x8fFWRwIAAAACHkMaAAAAAAAAAAAACzCkAQAAAAAAAAAA\nsABDGgAAAAAAAAAAAAswpAEAAAAAAAAAALCAwzAMw+oQAAAAAAAAAAAAgYY7aQAAAAAAAAAAACzA\nkAYAAAAAAAAAAMACDGkAAAAAAAAAAAAsUMrqAAAAAAAAz9LT07V582bt3LlTZ86cUVZWlsqVK6cK\nFSooNjZW9evX13XXXWd1zGLZuXOntmzZouPHj+vs2bOqWLGiYmJi1KZNG1WsWNHqeAAAAECJYEgD\nAAAAADaVkpKiKVOmaMmSJcrOzvZYW7NmTXXt2lVDhw5V/fr1830/Pj5eAwcOdK1nzpypRx99NF/d\npEmTNHny5GJn//bbb9WhQwePNefPn9err76qjz76SHv27LliTXBwsNq2basXXnhBbdu2LXYuAAAA\nwE7Y7gwAAAAAbOjll19W06ZNtWDBgqsOaCRpz549euuttzR37lwT0hXf4sWLVbt2bU2aNKnAAY0k\n5eTkaPXq1WrXrp0ef/xx/f777yamBAAAAEoWd9IAAAAAgM188MEHGjduXL7jERERio2NVVhYmC5e\nvKhTp07p4MGDMgzDgpTX7t1339WwYcOUk5PjdrxcuXKqUaOGIiIidOrUKaWlpSk3N9ftdUePHtWC\nBQvkcDjMjg0AAAB4HUMaAAAAALCRrKwsjR492u1Yr169NG7cOMXFxeUbTqSnp2vjxo1aunSp5syZ\nU+zrP/LII2rTpk2RXrNp0yaNHTvW7VhYWNgVa1etWqWhQ4e6DV+6d++uZ599Vq1bt1apUv/9Z+qp\nU6f0/vvva8qUKUpPT5ckffHFF5o+fbrGjBlTpIwAAACAHTkMX/vIFQAAAAD4saVLl6pr166u9SOP\nPKKPPvqoUK/Nzs7WwYMHVatWrXzfK+wzaYpq7969atGihY4ePeo6Nnr0aE2bNi1f7ZkzZ1SvXj0d\nOXJEkv5/e/cbWmXdxgH8Ok095oywlkujoUSksyCZRRALswiyhVEmR99kvcgycIVSEkQEReuPCBo2\nkGJYpFKBtmZQYbGNKFAwormkGiIprdU6lZbaPM+Lh+7nOW3Z/ul9Bp8PHNj1O78/19nbL/f9i3PO\nOSc2b94c991332nP6OjoiPnz58cPP/wQERETJkyIgwcPxsUXXzzi/gEAIE3upAEAACghBw4cKKpX\nrlw56LUTJkwYMKA5U3p7e+PWW28tCmhyuVw0NDQMOL+xsTEJaCIinnnmmX8NaCIiqquro6mpKalP\nnDgRL7300vAbBwCAEiGkAQAAKCG///57UT1+/PiUOjm948ePxx133BGdnZ3JWG1tbTQ1NQ14X0xf\nX19s3LgxqauqqmL16tWDPm/hwoUxd+7cpH777beH2TkAAJQOIQ0AAEAJmT59elE9GvfMjLZCoRDL\nly+P1tbWZGzWrFmxc+fOyGazA675/PPP4/Dhw0mdy+WGHEDdcsstyd+dnZ3R09MzxM4BAKC0CGkA\nAABKyIIFC6KsrCyp169fHytXroxvv/02xa6KrV27NrZt25bUlZWV8d5778WUKVP+cU1bW1tRPW/e\nvCGfW1VVVVTv379/yHsAAEApEdIAAACUkEsvvbTfPS0vv/xyXHbZZTFv3rxYu3Zt7Nq1K3766adU\n+tu0aVM8//zzSV1eXh7vvvtuzJgx47Tr/h6oLFmyJDKZzJA+Dz30UNEeaf0PAABgtAhpAAAASsyG\nDRvi9ttv7ze+d+/eeO655+K2226LioqKmDt3bjz++OPx5ZdfnpW+mpubY9WqVUldVlYW27ZtG9RT\nMT/++OOo95PP50d9TwAAOJuENAAAACVm4sSJsXPnznjjjTfi6quvHnBOoVCIffv2xbPPPhtXXnll\n1NXVxddff33GetqzZ0/kcrno6+tLxjZu3Bh1dXWDWv/zzz+Pek+nTp0a9T0BAOBsGpd2AwAAAPSX\nyWRi6dKlsXTp0ujo6IgPPvggPv7442hvb4+enp5+81taWqK1tTVaWlqitrZ2VHvp6uqKurq6OHbs\nWDL26KOPxoMPPjjoPSZNmlRUNzQ0RE1NzYj6mjNnzojWAwBA2oQ0AAAAJa66ujqqq6ujvr4+CoVC\ndHZ2xvvvvx9vvfVWtLe3J/N+/fXXWLx4cXzzzTcxefLkUTm7t7c3Fi5cGN9//30ylsvloqGhYUj7\nVFRUFNUzZ86Mm2++eVR6BACAscrrzgAAAMaQTCYTs2fPjvr6+mhra4vW1taiAKS7uztee+21UTnr\n+PHjsWjRoujs7EzGbrjhhmhqaopMJjOkvWbOnFlUn8lXswEAwFghpAEAABjDamtr+z3V8v9P1wxX\noVCIe+65J9ra2pKx2bNnx44dOyKbzQ55vxtvvLGo3r1794h7BACAsU5IAwAAMMZdf/31RfVAd9YM\n1WOPPRbbt29P6srKyti1a1dMmTJlWPtde+21RWt3794dHR0dI+4TAADGMiENAADAGPf3UGa4Qcpf\nNm3aFC+88EJSl5eXR0tLS8yYMWPYe44fPz4efvjhpC4UCrFixYo4efLkSFoFAIAxTUgDAABQQp54\n4ol4/fXX488//xzU/EKhEOvWrSsaq6mpGfb5zc3NsWrVqqQuKyuL7du3j2jPv9TX10dlZWVSt7e3\nx+LFiyOfzw96j6NHj8aGDRvilVdeGXE/AACQtnFpNwAAAMD/fPHFF/H000/H6tWr484774xFixbF\nNddcExdeeGHRvFOnTsUnn3wSTz31VHz44YfJ+KRJk2LZsmXDPj+Xy0VfX19SL1myJLLZbNEZg1FT\nU9PviZ7zzz8/3nzzzbjpppuSJ2jeeeedmDNnTjzyyCNx9913R1VVVb+9Dh06FJ999lns2LEjmpub\n45dffoknn3xyGL8OAABKi5AGAACgBHV3d0djY2M0NjZGRMS0adOioqIiysvL4+jRo9HV1RW//fZb\nv3Xr1q2LSy65ZNjnHjt2rKjeunVrbN26dcj7fPTRRzF//vx+47W1tbFly5a49957448//oiIiO++\n+y7WrFkTa9asiWnTpsXUqVMjm81GPp+P7u7u6O3tHdZvAQCAUiekAQAAGAOOHDkSR44c+cfvzz33\n3Fi/fn2sWLHiLHY1PLlcLi6//PJYtmxZHDhwoOi7f/udEf99Bdv06dPPZIsAAHBWuJMGAACghGze\nvDleffXVuOuuu4rub/knF1xwQTzwwAOxf//+MRHQ/KWmpiY6Ojpiy5Ytcd1110VZWdlp52ez2Viw\nYEG8+OKLcejQobj//vvPUqcAAHDmZAqFQiHtJgAAABhYV1dXfPXVV3Hw4MHI5/Nx4sSJmDx5clx0\n0UVx1VVXRXV1dYwbN/ZfkpDP5+PTTz+Nw4cPR09PT5w8eTLOO++8mDp1asyaNSuuuOKKmDhxYtpt\nAgDAqBLSAAAAAAAApMDrzgAAAAAAAFIgpAEAAAAAAEiBkAYAAAAAACAFQhoAAAAAAIAUCGkAAAAA\nAABSIKQBAAAAAABIgZAGAAAAAAAgBUIaAAAAAACAFAhpAAAAAAAAUiCkAQAAAAAASIGQBgAAAAAA\nIAVCGgAAAAAAgBQIaQAAAAAAAFIgpAEAAAAAAEiBkAYAAAAAACAFQhoAAAAAAIAUCGkAAAAAAABS\nIKQBAAAAAABIgZAGAAAAAAAgBUIaAAAAAACAFAhpAAAAAAAAUiCkAQAAAAAASIGQBgAAAAAAIAVC\nGgAAAAAAgBQIaQAAAAAAAFIgpAEAAAAAAEiBkAYAAAAAACAFQhoAAAAAAIAUCGkAAAAAAABSIKQB\nAAAAAABIgZAGAAAAAAAgBUIaAAAAAACAFAhpAAAAAAAAUiCkAQAAAAAASIGQBgAAAAAAIAVCGgAA\nAAAAgBT8B13gP1GiIXUUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res_h_copy = dict(res_h)\n", + "res_h_copy.pop('HWT')\n", + "\n", + "exp.plot_compression_experiments(res_h_copy, comp_ratios,\n", + " \"../figs/compression_human2.png\")\n", + "Image(filename=\"../figs/compression_human2.png\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Reconstruction Error: FSWT vs GWT" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " GWT error| FSWT error| Reduction\n", + "-----------------------------------------------\n", + " 6.8382095| 5.0477291| -0.2618347\n", + " 3.8316544| 2.7098935| -0.2927615\n", + " 2.1117686| 1.7143273| -0.1882031\n", + " 1.1529724| 0.6686821| -0.4200363\n", + " 0.5595893| 0.2221975| -0.6029275\n", + " 0.2478246| 0.0556169| -0.7755798\n", + "\n" + ] + } + ], + "source": [ + "reduction = np.divide(res_h['FSWT'], res_h['GWT']) - 1\n", + "text = \"{:>15s}|{:>15s}|{:>15s}\\n\".format('GWT error', 'FSWT error', 'Reduction')\n", + "text += \"-\"*47 + \"\\n\"\n", + "for i in range(len(comp_ratios)):\n", + " text += \"{:>15.7f}|{:>15.7f}|{:>15.7f}\\n\".format(res_h['GWT'][i], res_h['FSWT'][i], reduction[i])\n", + "print(text)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Wikipedia" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "G = io.read_graph(\"../\" + data.wiki[\"path\"] + \"wiki.graph\",\n", + " \"../\" + data.wiki[\"path\"] + \"wiki.data\")\n", + "F = io.read_values(\"../\" + data.wiki[\"path\"] + \"wiki.data\", G)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#vertices = 4881\n", + "#edges = 11937\n" + ] + } + ], + "source": [ + "print(\"#vertices = \", G.number_of_nodes())\n", + "print(\"#edges = \", len(G.edges()))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "algs = [static.OptWavelets(n=20), static.GRCWavelets(), static.Fourier(), static.HWavelets()]\n", + "\n", + "comp_ratios = [0.1, 0.20, 0.30, 0.40, 0.50, 0.60]\n", + "sys.setrecursionlimit(G.number_of_nodes())\n", + "res_w, time_w = exp.compression_experiment(G, F, algs, comp_ratios, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmQAAARLCAYAAACa4sznAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAuIwAALiMBeKU/dgAAIABJREFUeJzs3Xl4lNX9///XJJnsK0lYQhJCBIGwWiDsBIq2ilBUFNcq\nFrVor4LWnU9VaPVX69Yf1WItWvWnIMoiLpTPz4JsAoZ9p+xJZJFA2LIvzHz/yJdp7plJMpPkngnh\n+biuXObc97nPOeMFh3vO+ywWu91uFwAAAAAAAAAAAEwT4O8GAAAAAAAAAAAAtHQEZAAAAAAAAAAA\nAExGQAYAAAAAAAAAAMBkBGQAAAAAAAAAAABMRkAGAAAAAAAAAADAZARkAAAAAAAAAAAATEZABgAA\nAAAAAAAAwGQEZAAAAAAAAAAAAExGQAYAAAAAAAAAAMBkBGQAAAAAAAAAAABMRkAGAAAAAAAAAADA\nZARkAAAAAAAAAAAATEZABgAAAAAAAAAAwGQEZAAAAAAAAAAAAExGQAYAAAAAAAAAAMBkBGQAAAAA\nAAAAAABMRkAGAAAAAAAAAADAZARkAAAAAAAAAAAATEZABgAAAAAAAAAAwGQEZAAAAAAAAAAAAExG\nQAYAAAAAAAAAAMBkBGQAAAAAAAAAAABMRkAGAAAAAAAAAADAZARkAAAAAAAAAAAATEZABgAAAAAA\nAAAAwGQEZAAAAAAAAAAAAExGQAYAAAAAAAAAAMBkBGQAAAAAAAAAAABMRkAGAAAAAAAAAADAZARk\nAAAAAAAAAAAATBbk7wYAl6Nz585p1apVjnRKSopCQkL82CIAAAAAAAAAgLPy8nL98MMPjnRWVpZi\nY2P90hYCMkADrFq1SjfddJO/mwEAAAAAAAAA8MLixYs1btw4v9TNlmUAAAAAAAAAAAAmIyADAAAA\nAAAAAABgMrYsAxogJSXFkF68eLE6derkp9YAAAAAAAAAANw5ePCg4fgJ57FdXyIgAzRASEiIId2p\nUyd1797dT60BAAAAAAAAAHjCeWzXl9iyDAAAAAAAAAAAwGQEZAAAAAAAAAAAAExGQAYAAAAAAAAA\nAMBkBGQAAAAAAAAAAABMRkAGAAAAAAAAAADAZARkAAAAAAAAAAAATEZABgAAAAAAAAAAwGQEZAAA\nAAAAAAAAAExGQAYAAAAAAAAAAMBkBGQAAAAAAAAAAABMRkAGAAAAAAAAAADAZARkAAAAAAAAAAAA\nTEZABgAAAAAAAAAAwGQEZAAAAAAAAAAAAEwW5O8GAABwJbLb7bLZbLLb7f5uCgAAAAA0exaLRQEB\nAbJYLP5uCgA0GAEZAAB8wG63q6ysTIWFhSosLFRFRYW/mwQAAAAAl53AwEBFREQoKipKERERCgwM\n9HeTAMBjBGQAADBZSUmJjh8/rsrKSn83BQAAAAAuaxcvXtSFCxd04cIFSVJUVJTatWtHYAbAZYEz\nZAAAMFFJSYny8vIIxgAAAACACQoLC5Wbm8t3LgCXBQIyAACY5FIwhnNiAAAAAMA85eXlysnJUXl5\nub+bAgB1YssyAABMYLfbdfz4cZdgjNVqVXR0tCIjI2W1WjmQEgAAAAA8YLfbdfHiRZWWlqqwsFAl\nJSWG71tVVVU6efKkUlNT/dhKAKgbARkAAExQVlbmsmQ+KipK7du3JwgDAAAAAA1gtVoVGhqquLg4\nVVRU6IcfflBFRYXjfnFxsSorK2W1Wv3YSgCoHVuWAQBggsLCQkPaarUSjAEAAACAJhIcHKwOHToo\nIMA4vHn+/Hk/tQgA6kdABgAAEzgHZKKjownGAAAAAEATCgoKUnR0tOEaARkAzRkBGQAAmpjdbjcs\nm5ekyMhIP7UGAAAAAFou54BMZWWly1meANBcEJABAKCJ2Ww2l2vsYQwAAAAATc/5u5bdbicgA6DZ\nIiADAEATc/fyz3ZlAAAAAND0nM+QkdxPkgOA5oCADAAAAAAAAAAAgMkIyAAAAAAAAAAAAJiMgAwA\nAAAAAAAAAIDJCMgAAAAAAAAAAACYjIAMAAAAAAAAAACAyQjIAAAAAAAAAAAAmIyADAAAAAAAAAAA\ngMkIyAAAAAAAAAAAAJiMgAwAAAAAAAAAAIDJgvzdAAAAAPhWaWmptmzZogMHDujs2bMqLi5WWFiY\noqOjlZqaqquuukrp6ekKCGDuDgD/OHnypLZv367c3FydO3dO5eXlioyMVGxsrBITE9W7d28lJyf7\nu5kAAACAV/iWDQAA4GdpaWmyWCyN+nn00UfrrMNut+uLL77QDTfcoOjoaA0dOlT333+/fve73+m5\n557TE088oYceekjXX3+9OnfurNjYWI0cOVLTp09Xdna2bDabS5kVFRUKDw83tGPfvn1effY5c+a4\nfJbnnnvOqzLKy8sVFhZmKGPXrl2aPn16o/+/evKTk5PjVXsBuHfgwAE99dRT6ty5s9q2bauf//zn\neuihh/TUU0/pueee02OPPab7779fY8aMUUpKilq3bq1bb71V8+fPV2lpaa3lrlmzxvB3Nikpyeu2\nPfjggy5/95cvX+5VGatWrTI8n5iYKLvdrhEjRpjeT6WlpXn9meF/VVXnVVi4TSUl+1VWdlSVlWdl\ns5XLbrf7u2ktnvO72cqVK00r64cffjDct1qtKi4u9qqOl156yeXv/XvvvedVGbm5uYbnAwMDdf78\neU2cONEn71MAcKVghQwAAGg4u10qLJQqKqTgYCkqSuILVbOTm5urX/3qV/r22289fqawsFArV67U\nypUrNWPGDC1evFjjxo0z5AkODtbAgQO1YsUKx7XVq1erS5cuHtezatUql2urV6/2+HlJys7OVllZ\nmSMdHx+v7t27a8GCBV6VgyuLzW5TQUmBz+uND49XgIV5cTUdO3ZMTz31lObNm+c2+FubU6dOaeHC\nhVq4cKGioqI0depUPf7444qNjTXky8zMVGhoqKOfOHHihA4cOKDOnTt7XFdtfdWoUaMaXMbw4cMZ\nhEQ9LNq2bYQuXjzvdD1AgYHhCgiI+L//DVdgYLgCAyMcv1f/1zVdM7/xeeM9iyWYP58+kpKSoo4d\nO+rIkSOSpKqqKq1bt07XXXedx2XU1kdNmjSpwWX06dNHMTExHj8PAPAMARkAAOCdnTulTz6RNmyQ\ntmyRzp797724OOknP5EyM6W77pJ69PBfOyFJOnz4sIYPH65jx4653AsODlbHjh0VExOj8vJynTlz\nRseOHXM7IFrbbNysrCyXgMyDDz7ocfvcBV82bNig8vJyhYSENKgMBjnhiYKSArV+rbXP681/Il+J\nEYk+r7e5WrJkie69916dOXPG7f2IiAglJCQoISFB5eXlOnnypAoKClz6qcLCQr344ot66623lJub\nq+joaMe9kJAQDRw40DArffXq1R4HZH788UcdOHDA5bq3wWPn/FlZWV49jytPUFC02rd/WHl5Lzvd\nsenixSJdvFikykpz6rZYQpSZuVdhYR3NqQAGWVlZjoCMVN1feBqQqaqq0vr1612u00cBQPNEQAYA\nAHhmyRLpz3+W1qypPc/Zs9Ly5dU/f/qTNGyY9Mwz0ujRvmtnC/Daa6+pd+/eXj2Tmprqcq2yslJj\nx441BGMsFovuvvtu/frXv9bAgQMVFGR8HSwqKtLmzZu1dOlSLViwQIcOHaqz3uHDhxvS3nz5z8/P\nd7vFWVlZmTZs2KBhw4Z5VE5tAwj33nuvhg4d6lEZjz/+uHbs2OFIP/nkk/rZz37m0bNt27b1KB8A\no48++kj333+/Ll68aLjevXt3PfDAAxo1apR69uzp8lxFRYVWr16tpUuXauHChcrNzXXcO3funCoq\nKlyeGT58uEtAxtOZ47X1a9nZ2aqoqFBwcHC9ZVRWVur77783XLvUV73++us6W3NyQx2cB2g//vhj\ntWnTpt7nwsLCPCofzU/79lP1ww9vyG53/XNtpjZt7iEY40PDhw/XBx984Eh78z61ZcsWFRUVuVzP\nycnRDz/8oJSUFI/Kqe196qmnntI999zjURn33HOPTp486Ug35J0WAFo6AjIAAKBuBQXSb39bvSrG\nW2vWVP/cdZf0179K8fFN374WqG/fvhoxYkSjy/n73/+uPXv2ONKhoaFauHChRtcRIIuMjFRWVpay\nsrL08ssva9WqVfrLX/6iwMBAt/kHDhyo4OBgxwBoXl6ecnJyPDqvoOYX/+DgYHXu3Fm7d++WVL1t\nhicBGXezQi8NIKSnpys9Pb3eMiQpLi7OkM7IyNC1117r0bMAvLdhwwZNmjTJEIyJjY3VX//6V919\n990KCKh9W7fg4GBde+21uvbaa/Xyyy/rgw8+0EsvvWQIzDhznuntbnuf2tTsq3r37q2dO3fKZrOp\ntLRUGzZs8Cjwu3nzZsOZEHFxcY5gU9++fT1ui7MhQ4ZwPkwLFxLSVm3b3qcTJ2b7rE6LJVhpac/7\nrD649lHZ2dkerxau2UclJyervLxcp06dklTd13kSTHFeCWixWBzvYRkZGcrIyPDoc4SGhhrSTfVO\nCwAtCZsXo9EqKyv15Zdf6oUXXtCYMWOUkZGhNm3aKDg4WFFRUerSpYvuvvtuffnllx4fPvjtt99q\n4sSJ6tq1q6KiomS1WhUfH68hQ4bo+eef1w8//GDypwIASJJ27JB69WpYMKamuXOry9m5s2naBY98\n+OGHhvQLL7xQZzDGnaysLC1evFhjx451ez8sLEyZmZmGa57O6qyZr1+/foYVKZ6W4TwrNDY2Vr16\n9fLoWQD+cebMGU2YMEGVNfZaSk5O1nfffadf/vKXdQZjnFmtVj344IPat2+fHn744VrzDRo0yLCS\nJTc31+PvFDX7oxtvvNEw27sh/Z0kDRs2zKvPiStbSsrjkny3FWdS0q8VGuq68hbmSU9PV3JysiNd\nXl6u7Oxsj56t2b8MHz7cECRuaB/Vs2dPtWrVyqNnAQDe4Q0QjXby5EmNGzdOf/jDH7RkyRLt3btX\n+fn5qqysVFFRkfbv36+5c+dq3LhxGjp0qE6cOFFrWaWlpRo/frxGjRqlDz/8UPv27VNRUZGqqqp0\n5swZrVu3Tn/84x/VtWtXvf/++z78lABwBdqxQxoxQjp+vGnKO35cysoiKOMjZ86c0ebNmx3pgIAA\nr8528UZDty1zHkCouSJm/fr1qqqq8qoMiUFO4HIwffp0w2oWq9WqL7/8Ut27d29wmSEhIZo1a5YW\nLFjgdguxsLAw9evXz3DNk1UyZ8+e1a5duxxp576qoYOdnM0Ab4SHd1FCwk0+qSsgIEypqdN8UheM\nGvI+Zbfb9d133xnKoI8CgOaNb6toEq1atdLNN9+sl156SXPnztW3336rrVu3auXKlZo5c6ZjOf66\ndes0atQolZWVuS3n3nvv1aJFiyRVL+OfMWOGli5dqg0bNmj+/Pm65ZZbJEklJSWaNGmSvv76a998\nQAC40hQUSDfcUH0mTFM6e1a6/vrq8mGqmufGSFJCQoLiTdoyzvlLuydf/s+dO6edNYJzw4YNM8zo\nLCoq0pYtW+othwEE4PJSUFCg9957z3Bt2rRpuuaaa5qk/PHjxys6OtrtvYb0VWvWrHGs8g8MDNTg\nwYMNg53r1q1zOQPHmc1m09q1a+tsC1CflJSnfFJPcvJUhYRwNpo/NKSP2rlzp+EMqmHDhhn6qH37\n9hnOdKkN71MA4DsEZNBoSUlJOnXqlBYtWqRp06bpzjvv1MiRI9WnTx9lZWVpypQp2rJli2Ork717\n9+qf//ynSznbt2/XggULJEmJiYnasWOHnn/+eV1//fXq37+/br31Vi1cuFCzZs2SVD0T5LnnnvPd\nBwWAK8lvf9t0K2OcHT8uTZliTtlwKCwsNKTrGzBsjMGDByso6L9HEx44cKDOFbFS9SCnzWaTVL16\nZ8iQIUpMTFTXrl0deeqbvW6z2QyzQiUGEIDm7u2331ZJSYkjHR4erscee8wndTfkHJmaefr06aOo\nqCjDYGdhYWG9wePt27fr3LlzjnR0dLT69OnjabMBSVJMzEDFxNR/tlpjBAZGKyXlSVPrQO2c+6h1\n69bVu1q4Zh+VkJCgbt266ZprrlFkZKTjen2BnTNnzhhWAkquq3UAAE2HgAwaLSAgoN6tQYKCgvTs\ns8860itWrHDJs2bNGsfvDz74oGH/1JomT56spKQkSdK2bdsM+8YDAJrAkiWNPzOmPnPnVtcD08TG\nxhrSBQUFOnjwoCl1RUZGuhxKXd+X/5r3e/XqpZiYGEnyapsN51mhUVFRTTbLHoA5vvjiC0P6tttu\nc/z9N9uQIUMMweP9+/fXO3O8Zj90qX9q06aNOnfu7DZPfWVI0tChQxUYGOhxu4FLzF4lk5LyhKxW\nzg3xly5duqhNmzaOdHFxsWH7WXdq9i9Dhw6VxWJRYGCgBg0a5DaPOzVXAkpSRkaGEhMTvW0+AMBD\nBGSuUIcOHdInn3yiV199VS+99JJmzZqlb7/9ttatxJpCza0DLly44HK/5rW0tLRay7FYLOrQoYMj\n7TwDGADQSH/+s2/qeeUV39RzhUpPT1doaKjh2tNPP234wt2UvN333Pn8mEtqblv23XffOVbR1FfG\npWcZ5ASar6KiIm3dutVw7cYbb/RZ/ZGRkS5B27r6Kuf21tZXeRuQYSUfGio+frTCwzNMKdtqTVBy\n8qOmlA3Pefs+VXNiK30UAFweCMg0A8eOHdPnn3+uZ555Rj/96U8VHR0ti8Xi+KkrOOGtxYsXq2/f\nvurUqZPuuusuPfXUU/r973+v3/zmNxo1apQSExP129/+VqdPn26yOi/5+OOPHb/X3I7kkquvvtrx\ne05OTq3l2O12xyGgMTExat26ddM1EgCudDt3SjW+2Jlq9WrJaXsENJ3Q0FCNGjXKcG3RokUaNWqU\ny1kGTcGbrYCKi4sNW/zUHECouULm3Llz2rFjR63lMIAAXF7Wr1/vsn1iv379fNoGb/qqtWvXGtpb\ns3+q+bvz7HJna5z+XaWvQkNZLAFKTTVnlUxq6jMKCooypWx4zps+yvl8mNrep5xXFDvjfQoAfCuo\n/iwww9q1a/X6668rOztbx83ao7+G8vJyTZo0SXPmzKkzX1FRkd566y19+umnWrBgQaP2DbXZbMrP\nz9d//vMfzZ49W3PnzpUkBQcHa/LkyS75x4wZo+TkZB09elTvvvuuHnnkEbVv394l3zvvvOP4fzZ5\n8mRmwgJoeaqqpKNH/VP33//u2/reflt60k97lScnS0HN81Vo8+bN9e4ZXlPfvn0VFxfncv2ZZ57R\nEqet4VasWKGhQ4eqQ4cO+tnPfqZBgwYpMzNT3bp1q3cL0roMHTpUAQEBjhUte/bsUUFBgeLj413y\nOu+JXnPQoGPHjmrfvr2OHTsmqXqQoLazFhjkbBmqbFU6esH3fV5BSYHP65SkvPN5Kq4s9nm9ydHJ\nCgrwb5+3f/9+Qzo6OlodO3b0aRuysrL02muvOdJ1zRyvea9bt25KSEhwpGv2W2fPntXOnTvVq1cv\nlzL27t2rU6dOOdLutnhE82ezVam83E/vZk6iogbJam2rysofm6xMq7WNWrW6UaWlOU1WZkOFhCQr\nwM99lTvevpvV5M1OJM7vMmvXrpXNZnP7jlazj4qKijK8Lw0YMEBWq1WVlZWy2+1as2aNfvGLX7iU\n4W7lIu9TAGCu5vev3BVi48aN+vzzz31Sl81m0+233+6yX3NgYKBSU1MVExOjI0eO6Pz58457p06d\n0g033KBly5YZ9h6tz+nTp+vcazQmJkZz585Vt27dXO6Fhobqq6++0tixY3X06FH17NlTjz76qAYM\nGKBWrVopNzdX8+bN08KFCyVJt99+u2bMmOFx2wDgsnH0qOTjASq/mTWr+scfjhyRmnAValN64okn\nvMq/YsUKjRgxwuX60KFD9dxzz+mPf/yjy73c3FzNnj1bs2fPllQ9SJiZmakRI0bohhtu8HrWekxM\njHr37u34Un/py/9NN93kkrfmAEKXLl1cVrsOGzZM8+bNc+SdMmWKSxnOs0IjIiJ8PtMeTePohaPq\nOPMK6fMk9Zvtnz+nR6YeUVpsml/qvuTMmTOGdM0Ah684B4937dqls2fPug1q17a1oiR16tRJbdu2\n1Y8//ujI6y4g4xzwGTx4sOEcG1weysuPKju75fZTlZUntXGj63d0fxgw4IjCwtL83QwX3r6bNVT3\n7t0VHx+vgoLqSQOXVgu7m5xSs38ZPHiwYbJqeHi4+vbtq++//96R111Axnkl4NVXX622bds22ecB\nALhiy7JmKDIysknLe/XVV12CMZMnT1ZeXp4OHz6srVu36syZM1q0aJFSU1MdeUpKSjRhwgRDoKah\nLBaLfve732nfvn0aPXp0rfn69OmjrVu36sUXX5TNZtMLL7yg66+/XpmZmbrtttu0cOFCDRgwQAsW\nLNC8efMUEhLS6LYBANCS/eEPf9DMmTNdzpNxVlRUpG+//VbPP/+8+vfvrx49euif//xnnWe4OHOe\nUVnbzHN3h2TX5LwVUH1lSAxyApcD54BMTEyMV8+vXr1ay5Ytq/enrm0ZY2NjDYGTS8FjZ2VlZdq4\ncaMjXV9f5Ul/JzHzHEDdLBaLS3/TFO9T9FEA0HwQkPGzqKgojRgxQk8++aTmz5+vnJwcffXVV01W\nfkFBgV566SXDtT/96U96++23lZSU5LgWEBCgm2++WevWrTOcWXP06FG98cYbHtcXFxennTt3aufO\nndq2bZuWL1+uF198USkpKZo5c6YmTZrk2IKkNgsWLNCcOXNqDQRt2bJFH374YZ17ygMAgP+aMmWK\nDhw4oEceecTjAdDdu3dr0qRJyszMdJzdVh9P9j0vLy/Xhg0bHGl326PWHEDIz8/X3r17XfIwgABc\nfgoLCw3piIgIr56/5ZZbdN1119X7c/fdd9dZjid9VXZ2tsrLyx3p+voqBjsBNBVP+qjc3Fzl5eU5\n0vX1UVu2bFFRUZFLHvooAPA9AjJ+MnbsWO3evVvnzp3TihUr9Morr+jWW29Vhw4dmrSeV155xfDF\nZ/jw4Xr66adrzd++fXu9++67hmt/+ctfHMtl6xMYGKgePXqoR48e6t27t37605/qf/7nf7R7926N\nGjVKS5YsUd++fd0OrNhsNt1zzz16+OGHtXfvXo0cOVL/+7//q7Nnz6qiokK5ubmaNWuW4uLi9NVX\nX2nw4MFNGrwCAKC5WLFihex2u8c/7rYrc5acnKy//e1vOnnypL788ks99thj6tevn4KDg+t8bvPm\nzcrMzNShQ4fqrWPYsGGyWCyO9Pbt23XhwgVDnuzsbMNe6u5mdPbo0cOwfZC7gU4GEIDLT1SU8cDw\n4mLfn6Ujebaar+YAaIcOHZSSkuKSp2b/dfLkSe3bt89w//Dhwzpa40y4sLAw9e/fv8HtBuA/3r6b\n1fzxdpzHuY9yt4qvZh8VEhKizMxMlzxDhgxxvJddvHjRZfVgWVmZYZKMu7oBAE2PgIyfXHXVVcrI\nyGjU4bn1sdlsev/99w3Xpk+fbhgocWfUqFGGLxeFhYX67LPPGtWWyMhIffTRRwoLC9PJkyc1efJk\nlzzvvPOO5syZI0m67bbbtHz5cv385z9XbGysrFarUlNT9fDDDys7O1vx8fEqLi7W3XffrdOnTzeq\nbQAAXElCQkI0duxYvfHGG9q4caMKCwu1adMmzZw5U2PHjnUboMnPz9f48eMNe4y7Ex8fr+7duzvS\n7r781xz4TElJMazMvcRisWjIkCFun5GknJwcw6zQsLAwtwMRAJqXVq1aGdJNsTVyQzgHj7du3eqy\neqeu82Mu6dWrl2HVoXNf5ZweNGhQvUFwAOjdu7ehbzl16pTLpNaa/UtmZqbb7dxbtWpleC9z7pO+\n//57VVRUONLp6elKTk5udPsBAHUjINOCrVu3TqdOnXKk09PTPZpBK0mTJk0ypBcvXtzo9rRu3VpD\nhw6VVP0icOLECcP9S4cKS9Jrr71Wa+AoLS3NcbhvYWGhPvnkk0a3DQCAK1VwcLD69u2rKVOm6Msv\nv9Tx48f15JNPGg6GlapXu8ybN6/e8urbZqO+/c7d3atvkHPgwIEMcgKXAeeAjKer8C85ffq029nn\nK1as8KqchIQEZWRkONLOwePKykrHQdhS7X1VQECABg8e7EjX1d9JzDwH4JmAgADH2MklTfE+RR8F\nAM0DJ5+2YEuWLDGkr7vuunpXx9TMW9PKlStVXFzs9T7PzhISEhy/5+TkqF27do70nj17JFUHblJT\nU+ssp+ZS/0vPAUCLkZwsHTnin7rvuUeq4zDkJjdkiPTxx76rryZmALoVHx+vV155RcOHD9dNN91k\nWBXz8ccfe3Q2w9/+9jdHuuaX/aqqKq1fv96Rrm3WuWQcQDh69KgOHz6s9PR0lzIv1YnLV3J0so5M\n9X2fV1BSoH6z+/m83k0PblJ8eLzP602O9n+fd/XVVxvS58+fV05OjtuVcmbLysrS7t27HenVq1fr\n+uuvl1S9VWPN7dTq66uWLl0qyXVbIfqqliMkJFkDBvjp3awe+/dP1tmz/7/Xz3Xp8k/Fxo40oUWN\nExLi/76qOcjKyjKM6axevdqx08iPP/6oAwcOOO7V10e9/fbbkqSNGzeqrKxMoaGhjjKd6wQAmI+A\nTAu2bds2Q7rm7K36JCUlKS0tTTk5OZKkiooK7dmzp9F7HtfcQ9l5D+mgoCCVl5ersrKy3nJq5rFa\nrY1qEwA0O0FBkh8GpyRJw4f7NiCTleW/z4o6jRkzRvfdd5/++c9/Oq5999139T7nPCiwadMmlZaW\nKiwszOVA2bpmdPbt21dhYWEqLS2VVD1oQECmZQoKCFJabJrP642wNm6iUUOlxqQqMSLRL3X726BB\ngxQYGGgI9G7atMkvAZnhw4dr1qxZjnTNfqXm761bt1aXLl1qLadmP5aXl+cIMB0/ftxw9lZISIgG\nDBjQVM2HjwUEBCksLM3fzXArLW261wGZ6OjBatt2oscTNuF7zu9TNQO+NfuowMDAOsd6avZRFRUV\n+v777zVixAiXlYAS71MA4CtsWdaCOe8xWnNZviec8zuX562cnBzHP/gRERG66qqrDPcvpc+ePavt\n27fXWdYSrgK4AAAgAElEQVS3337r8hwAoAnceWfLrg9emTBhgiFdVFRU75kPbdq0MQxeVlZWOlbF\n1BxAcN4yyFlwcLBh8PLSs86zQkNCQjRw4EAPPg0Af4uMjNQ111xjuPavf/3LL21xHnjcuHGjIQB8\nSV2BY6l65X7NsxsuPescOB4wYIBjVjrQlGJiBiompu4/p87S0/8fgjHNXN++fRUZGelIX1otLBn7\nlz59+rhMdq0pOTnZEPS+9KzzSsDU1FS/BMcB4EpEQKaFKi0tNRx2K1UfnOsN5/z79u1zm2/OnDk6\nffp0nWWdOnVKEyZMcKxsufPOOxUWFmbIc/PNNzt+f/jhhw0zaGtau3at3nnnHUnVs0HGjBlT9wcB\nAHiuZ0+pnsGnJjN8uNSjh2/qQoO4+2JeUlJS73O1nSPjzSCncx53ZUjVB9kyyAlcPsaNG2dIf/bZ\nZ7pw4YLP29G2bVvDFmqXZo7bbDbDeTJ1bQUkVQeFMzMzHena+ipmnsNMKSlPeZw3Lu46xcby57G5\nCwoKcln54q5/qa+Pkjx7n6KPAgDfISDTQl068PISq9Wq1q1be1VG+/btDen8/Hy3+WbPnq2UlBSN\nHz9eb731lr799ltt3bpVGzdu1OLFi/XYY4+pS5cu2rhxoySpU6dOevnll13Keeyxxxxnx6xfv169\nevXSG2+8obVr12rbtm1aunSpfvOb32jkyJEqKyuTJE2ZMqXRK2Ty8/O1e/dur34OHjzYqDoBoFl7\n+umWVQ8arObMyUvi4+s/+8L5S/3q1atls9kMW555G5A5fPiwjh07xgACcJl7+OGHFR4e7kgXFxdr\n5syZfmmLu75qx44dOnfunOOat31VbStk6Ktgpvj40QoP92xHjI4dXzS5NWgq7vqoM2fOaNeuXY5r\n3vZR33//vSorK+mjAMCPOEOmhXJeXRIeHu71kuSICOO+2rWtWJGksrIyLVq0SIsWLaqzzNGjR+u9\n995zO5gTExOj5cuXa/z48dqxY4eOHDmixx9/3G05FotFv/nNb/Taa6958EnqNmvWLM2YMaPR5QBA\ni3HjjdVbiX3yiXl13HWXNHq0eeWjSVyaTHFJ27ZtFRwcXO9zzrM1s7OztXnzZp09e7bWPO44nzex\nevVqx8zOSxhAAC4v8fHx+tWvfqW33nrLce3FF1/UuHHj1KtXL5+2Zfjw4Zo9e7YjvXr1asXGxjrS\nMTEx6t27d73l1BzsPHjwoHbu3Kk9e/Y4rlmtVg0aNKiJWg24slgClJLypPbtu7/OfPHx4xQdnVln\nHjQfzu9Kq1ev1po1awyTb70NyJSUlCg7O9vlXEDepwDAd1gh00I5B08aspWH85ZitQVkPvroI73z\nzju677771L9/f6WmpiosLEzBwcFKTEzUoEGD9Oijj+r777/XkiVL1LZt21rr7NSpkzZt2qR58+bp\n1ltvVXp6uiIiIhQUFKS4uDj17dtXU6ZM0datW/Xmm28qIIA/wgBgijfflJKSzCk7KUn661/NKRsO\np0+f1ty5c2Wz2Rr0fEVFhd58803DtZ///OcePZucnKz09HRHurS01DCJIioqSn369Km3HOfzJj7/\n/HPt3r3bkbZarXUeZAugeZo+fbphe+SKigr94he/0H/+8x+ftsN5AHL9+vVavny5Iz148GCPvm84\n53vxxRcNA6b9+/c3rAoCzNCmzV0KDq7r3c2ijh3/6LP2oPEyMzMN4zKHDx/W3LlzHelu3bopISGh\n3nK6du2qxMRER/rNN980nAmYlJSkTp06NVGrAQD1YTS7hbq0pdclnsxmdVbzcEpJjkMunaWkpOih\nhx7SBx98oA0bNig3N1clJSUqLy9Xfn6+1q1bp7/85S+Gg3nrYrVadfvtt2v+/Pk6dOiQioqKVFlZ\nqTNnzmjTpk2aOXOmRzPVAACNEB8v/e//SnFxTVtuXFx1uR5se4XGKSoq0t13362ePXvq448/rvXf\ncXfKysp0zz33GIIfknTvvfd6XIbzQOeCBQscvw8ePFiBgYEelVNzVufChQsNg5z9+vVjkBO4DMXH\nx+vTTz+V1Wp1XMvNzdWQIUM0b948w99zT+zfv79B7UhJSVHHjh0d6dLSUi1ZssSR9mQlnyRFR0cb\nvp/U7O8kZp7DNwICgpWc/Fit91u3vkORkT192CI0VnBwsAYOHGi4VrN/8bSPkqShQ4e6LUOijwIA\nXyMg00I5r4ipqKjwuozy8vI6y2wpHnnkEe3atcurn8WLF/u72QBgvp49pVWrmm6lTFJSdXk9GQzw\npT179uiXv/yl2rZtqwcffFDz58/XiRMn3OY9fvy4Zs2apW7dumn+/PmGe7fccot++tOfelyv8yBB\nzZU6nmyv4S6v82ofBhCAy9egQYP0j3/8w7Cy5MyZM7rzzjt1zTXX6M0339TevXvdPmu323XkyBH9\n/e9/19ChQ/XrX/+6we2gr0JLkpT0kAIDY9zcCVRaGtt0X47oowCg5eEMmRYqMjLSkHZeMeMJ55m0\nzmW2FK1bt1br1q393QwAaJ569pR27JCmTJFqbJHgtbvuqt6mjJUxfnPhwgW9++67evfddyVVz1BP\nSEhQbGysysrKdOLECeXn57t9dsCAAXr//fe9qq+uL/cNndHpTR0Amr+JEycqLi5OEydO1Llz5xzX\nt2/frilTpkiq/g6SmJiohIQE2e12FRYW6ujRoyouLnZbZkJCgp5//nmP25CVlaUPP/zQ5XpoaKj6\n9+/vcTnDhg3TX91sxxkUFKQhQ4Z4XA7QGEFB0Wrf/mHl5b1suN6u3f0KD+/sp1ahMZrqfaqu4A3v\nUwDgW6yQaaGcgyclJSVeL/13/pLTUgMyAIB6xMdLc+ZIX38tefHFT1J1/iVLqp8nGONTkZGRdW7x\nWVBQoH379ik7O1vbt293G4wJCAjQ5MmT9e9//1vR0dFe1d+xY0fDGRGXhISEKDPT8wOFExMT1bVr\nV5frgYGBDHICLcC4ceO0Y8cO3X777bJYLC73i4qKdOTIEW3cuFGbNm3Svn373AZj4uLi9MQTT+jA\ngQP61a9+5XH9tQ1EDhgwwKttn2sb7PzJT37C9yj4VPv2U2Sx/PfPrsUSrA4dnvNji9AYAwcOdNsX\ndejQwe17Vm2uueYat31RmzZt3L5nAQDMQ0CmhUpISDB8oamsrKx11mttjh07ZkizigQArnA33li9\n5djOndK0adK117qeMRMXV3192rTqfKtWSaNH+6e9V7iEhARt27ZNhw4d0htvvKGxY8cqzsMzgdq1\na6epU6dq27ZtevvttxUVFdWgNrgb6MzMzHQ5p64+7gY6r7nmmga3C0DzkpKSonnz5mnv3r16/PHH\nlZ6e7tFzbdq00U033aR58+bpxIkTevXVVxUbG+tV3enp6UpOTna57s3M80tt6dzZdQWCt+UAjRUS\n0k5t2/73zLekpMkKDU31Y4vQGGFhYW4nsnjbtwQGBmrQoEEu173Z9gwA0DQsdm+XTcB0K1eu1MiR\nIx3pDh06KCcnx+ty0tLSlJub60hv2LDBq2X3o0eP1tKlSx3pDz/80KvDfFuy3bt3q0ePHo70rl27\n1L17dz+2CEBzUlVVpQMHDhiude7cWUFBLXCnULtdKiqSysulkBApMlJyM8MZzYPdbldubq7279+v\nvLw8nT9/XqWlpQoPD1dUVJSSkpLUu3dvt4OTQEtjs9tUUFLg83rjw+MVYGFeXH1OnDihHTt2KDc3\nV2fPnlVFRYWioqIUFxen+Ph49ezZUx06dPB3M4FmqaRknzZs6KaAgDANHHhYwcFt/N0kwFRX1Pcv\nAA3SnMZy6ZlasK5duxoCMnv27PEqION8iCbLWAEALiwWKSqq+gfNnsViUVpamtLS0vzdFMDvAiwB\nSoxI9HczUIt27dqpXbt2/m4GcFkKD++ihIRxCg/vSjAGAIBmhqlZLVifPn0M6XXr1nn87IkTJwyr\ncqxWqzIyMpqqaQAAAAAAwCQdOjynlJQn/d0MAADghIBMCzZmzBhDetmyZfJ0h7pvvvnGkB45ciSH\nUQIAAAAAcBmIivqJrNZW/m4GAABwQkCmBRs8eLASEhIc6cOHD2vlypUePfvee+8Z0uPGjWvKpgEA\nAAAAAAAAcEUhINOCBQQEaOLEiYZrM2bMqHeVzPLly7VmzRpHOioqShMmTDCjiQAAAAAAAAAAXBEI\nyLRwTz/9tGGrsVWrVunPf/5zrfmPHTumBx54wHBt6tSphpU2AAAAAAAAAADAO0H+bsCVbO3atSot\nLXW5vn37dkO6rKxMy5Ytc1tGUlKSMjIyaq0jISFB06ZN07Rp0xzXnn32WeXl5en3v/+9kpKSJEk2\nm01ffvmlpk6dqry8PEP5jz/+uFefCwAAAAAAAAAAGBGQ8aO7775bubm59eY7efKkrrvuOrf37rvv\nPn3wwQd1Pv/0009r3bp1+vrrrx3X3n77bf3jH/9Qhw4dFBMToyNHjujcuXOG58LCwvTZZ58pNja2\n/g8DAAAAAAAAAABqxZZlV4CAgADNnz9fd9xxh+H6xYsXdfjwYW3dutUlGBMfH69//etfGjJkiC+b\nCgAAAAAAAABAi0RA5goRGhqqTz75RAsWLFCfPn1qzRcREaFHHnlEe/bs0YgRI3zXQAAAAAAAAAAA\nWjC2LPOjnJwcn9c5fvx4jR8/XgcPHlR2draOHTumiooKxcbGqlu3bhoyZIhCQ0N93i4AAAAAAAAA\nAFoyAjJXqE6dOqlTp07+bgYAAAAAAAAAAFcEtiwDAAAAAAAAAAAwGQEZAAAAAAAAAAAAkxGQAQAA\nAAAAAAAAMBkBGQAAAAAAAAAAAJMRkAEAAAAAAAAAADAZARkAAAAAAAAAAACTEZABAAAAAAAAAAAw\nGQEZAAAAAAAAAAAAkxGQAQAAAAAAAAAAMBkBGQAAAAAAAAAAAJMRkAEAAAAAAAAAADAZARkAAAAA\nAAAAAACTEZABAAAAAAAAAAAwGQEZAAAAAAAAAAAAkxGQAQAAAAAAAAAAMBkBGQAAAAAAAAAAAJMR\nkAEAAAAAAAAAADAZARkAAAAAAAAAAACTEZABAAAAAAAAAAAwGQEZAAAAP0tLS5PFYmnUz6OPPqqc\nnJxGl+PJz/Tp0/39vwwAAAAAgMsOARkAAAAAAAAAAACTEZABAAAAAAAAAAAwWZC/GwAAAC5PZyor\ndfuePYZrn2ZkqJXV6qcWtRyvvfaaevfu7dUzqampatu2rf797397lP+bb77Rq6++6kj36tVLr7/+\nukfPpqene9U2AAAAAABAQAYAADTQvPx8LTt71nDt0/x8Pdy+vZ9a1HL07dtXI0aMaNCz1157rUf5\njh49akjHxcV5/CwAAAAAAPAeW5YBAIAG+eDHHz26BgAAAAAAAAIyAACgAXYXF2tjYaHL9Q2FhdpT\nXOyHFgEAAAAAADRvBGQAAIDXPqxjJUxd9wAAAAAAAK5UBGQAAIBXqmw2fXTyZK33Pzp5UlU2mw9b\nBAAAAAAA0PwF+bsBAACgebHb7TpdWVnr/RXnzunHiopa75+oqNDnp09rRGxsrXkSrFZZLJZGtRMA\nAAAAAOByQkAGAAAYbC8q0jWbNzeqjAl79tR5f1u/fuodGdmoOgAAAAAAAC4nbFkGAAAMFp0+bX4d\np06ZXgcAAAAAAEBzwgoZAACamSqbTUfLy/1W/6f5+T6p4/62bU2vpy7JISEKCmiec1M2b96sqqoq\nj/P37dtXcXFxJrYIAAAAAAA0FgEZAACamaPl5eqYne3vZphqX2mp3z/jkQEDlBYW5tc21OaJJ57w\nKv+KFSs0YsQIcxoDAAAAAACaRPOcFgoAAAAAAAAAANCCEJABAAAAAAAAAAAwGVuWAQAANDNsQQYA\nAAAAQMvDChkAAAAAAAAAAACTEZABAAAAAAAAAAAwGVuWAQDQzCSHhOjIgAH+bobBg/v2adm5cw16\n9rq4OP3j6qubuEWNlxwS4u8mAAAAAACAKwgBGQAAmpmggAClhYX5uxkOdrtd24uLG/z89qIidQgN\nlcViacJWAQAAAAAAXF7YsgwAANTpcFmZTlVWNvj5/MpKHSkra8IWAQAAAAAAXH4IyAAAgDqtP3++\n8WVcuNAELQEAAAAAALh8EZABAAB1qi+Ykh4aqo6hoXWX0QRBHQAAAAAAgMsZARkAAFCnugIy97Zp\no639+mlbv376ZZs2DSoDAAAAAADgSkBABgAA1Mput6vk4kWX6zGBgfqkWzd92K2booOCFB0UpP+v\nWzfN7dZN0YGBLvmLL16U3W73RZMBAAAAAACaJQIyAACgVhaLRZv79dPU9u1l+b/XhsbEaHv//rrD\nzYqYO9u00fZ+/TQkOrr6eUmPJidrc79+slgsLvkBAAAAAACuFEH+bgAAAGjeIgID9f927qxbExO1\n/sIFPZacrKCA2ud0pIWFaWWfPnrj6FENjo7W0NhYH7YWAAAAAACgeSIgAwAAPDI0Ntbj4EpQQICe\nSk01uUUAAAAAAACXD7YsAwAAAAAAAAAAMBkBGQAAAAAAAAAAAJOxZRkAAICf5eTk+LzOiRMnauLE\niT6vFwAAAACAKxUrZAAAAAAAAAAAAExGQAYAAAAAAAAAAMBkBGQAAAAAAAAAAABMRkAGAAAAAAAA\nAADAZARkAAAAAAAAAAAATEZABgAAAAAAAAAAwGQEZAAAAAAAAAAAAExGQAYAAAAAAAAAAMBkBGQA\nAAAAAAAAAABMRkAGAAAAAAAAAADAZARkAAAAAAAAAAAATEZABgAAAAAAAAAAwGQEZAAAAAAAAAAA\nAExGQAYAAAAAAAAAAMBkBGQAAAAAAAAAAABMRkAGAAAAAAAAAADAZARkAABoYhaLxeWa3W73Q0sA\nAAAAoGWz2Wwu1wICGPIE0DwF+bsBuPxVVlZq6dKl2rx5szZv3qzDhw+roKBAZ8+eVUhIiJKSktSv\nXz/dfvvtGjt2rNuByqYsBwD8zd3Lf2VlpaxWqx9aAwAAAAAtV2VlpSFtsVgYMwLQbBGQQaOdPHlS\n48aNc3uvsrJS+/fv1/79+zV37lwNHjxYCxYsULt27UwrBwD8zWKxKDg4WBUVFY5rRUVFCg8P92Or\nAAAAAKDluXDhgiFttVoJyABotgjIoEm0atVKWVlZ6tevnzp27Ki2bdsqLi5O58+f1/bt2/Xuu+9q\n586dWrdunUaNGqUtW7YoNDTUtHIAwN+ioqJUUFDgSF+4cEGJiYl8MQAAAACAJlJVVeUSkImJifFT\nawCgfhY7m9qjkS7t1VnX/pxVVVW65ZZb9NVXX0mS/va3v+mRRx4xpRxf2L17t3r06OFI79q1S927\nd/d5OwA0X6WlpcrJyTFci4qKUvv27QnKAAAAAEAjVVRU6IcffjDsTCBJnTp1YrtoAAbNaSyXFTJo\nNE8OSgsKCtKzzz7rCKSsWLHCJZDSVOUAQHMQGhoqq9Vq2M+4sLBQhw4dUnR0tCIjIxUUFMRhkwAA\nAADgAbvdrosXL6qkpERFRUUqKSmR8zzziIgIgjEAmjUCMleoQ4cOacOGDTp69KgqKioUFxenrl27\navDgwaZtARYdHe343Xk5qT/KAQAzWSwWJSUlKS8vz/AlobKyUgUFBYbtzAAAAAAAjWO1WtWmTRt/\nNwMA6kRAphk4duyYNmzYoOzsbG3YsEGbNm1SYWGh436HDh1ctr1pqMWLF+uPf/yjtmzZ4vZ+ZGSk\nJk6cqBdeeEEJCQlNUuclH3/8seP3rl27+r0cADBbeHi4UlNTXYIyAAAAAICmExISopSUFFbHAGj2\nCMj4ydq1a/X6668rOztbx48fN72+8vJyTZo0SXPmzKkzX1FRkd566y19+umnWrBggYYPH97gOm02\nm/Lz8/Wf//xHs2fP1ty5cyVJwcHBmjx5ss/LAQB/uBSUOX78uGH7MgAAAABA40VFRaldu3YKDAz0\nd1MAoF4EZPxk48aN+vzzz31Sl81m0+23364vvvjCcD0wMFCpqamKiYnRkSNHdP78ece9U6dO6YYb\nbtCyZcs0aNAgj+s6ffq0EhMTa70fExOjuXPnqlu3bj4pBwCag/DwcF111VUqLy/XhQsXVFhY6HLw\nJAAAAACgfoGBgYqMjFRkZKQiIiIIxAC4rBCQaYYiIyNVVFTUZOW9+uqrLsGYyZMn67nnnlNSUpKk\n6qDNF198oUcffVR5eXmSpJKSEk2YMEG7du1STExMo9pgsVj02GOP6amnnmrUfp5NVQ4A+JrFYlFo\naKhCQ0PVunVr2e122Ww2tjIDAAAAAA9YLBYFBATIYrH4uykA0GAEZPwsKipKffv2Vf/+/ZWZman+\n/fvryJEjGjlyZJOUX1BQoJdeeslw7U9/+pOeeeYZw7WAgADdfPPNyszM1NChQx1n1hw9elRvvPGG\nZsyY4VF9cXFx2rlzpyTp4sWLKigo0Pr16/WPf/xDM2fO1L59+/TOO++offv2PikHAJori8XCTC4A\nAAAAAIAriMXO1Fy/OHTokMrLy9W1a1cFBAQY7q1cudIQkOnQoYMjQOKtp59+Wq+88oojPXz4cK1c\nubLO2QTLly/Xtdde60hHRUXpyJEjio+Pb1AbpOqzacaPH69vvvlGbdq00YoVKxq03VhTldNYu3fv\nVo8ePRzpXbt2qXv37j5vBwAAAAAAAACgds1pLDeg/iwww1VXXaWMjAyXYExTstlsev/99w3Xpk+f\nXu/SzlGjRmnYsGGOdGFhoT777LNGtSUyMlIfffSRwsLCdPLkSU2ePNmv5QAAAAAAAAAA4EsEZFqw\ndevW6dSpU450enq6RowY4dGzkyZNMqQXL17c6Pa0bt1aQ4cOlSStXr1aJ06c8Gs5AAAAAAAAAAD4\nCgGZFmzJkiWG9HXXXefxwWfXXXedIb1y5UoVFxc3uk0JCQmO3xu6DVtTlgMAAAAAAAAAgC8QkGnB\ntm3bZkgPHjzY42eTkpKUlpbmSFdUVGjPnj2NbtPRo0cdv0dFRfm9HAAAAAAAAAAAfIGATAu2d+9e\nQzojI8Or553zO5fnrZycHH3//feSpIiICF111VV+LQcAAAAAAAAAAF8hINNClZaWKi8vz3AtJSXF\nqzKc8+/bt89tvjlz5uj06dN1lnXq1ClNmDBBlZWVkqQ777xTYWFhppQDAAAAAAAAAEBzE+TvBsAc\np0+flt1ud6StVqtat27tVRnt27c3pPPz893mmz17th544AGNHj1aI0eOVEZGhuLi4lRVVaVjx45p\n1apV+vDDD3X27FlJUqdOnfTyyy+bVo638vPzderUKa+eOXjwYKPrBQAAAAAAAABcOQjItFBFRUWG\ndHh4uCwWi1dlRERE1FlmTWVlZVq0aJEWLVpUZ5mjR4/We++9p/j4eFPL8casWbM0Y8aMRpcDAAAA\nAAAAAEBtCMi0UM7Bk9DQUK/LcN4KrLaAzEcffaSlS5dq3bp12rNnj06ePKlTp07p4sWLiomJUadO\nnTRgwADdcccdGjBgQK31NVU5AAAAAAAAAAA0NwRkWqiysjJDOjg42OsyQkJCDOnS0lK3+VJSUvTQ\nQw/poYce8roOM8oBAAAAAAAAAKC5ISDTQjmviKmoqPC6jPLy8jrLbCkeeeQR3XbbbV49c/DgQd10\n000mtQgAAAAAAAAA0NIQkGmhIiMjDWnnFTOecF4R41xmS9G6dWu1bt3a380AAAAAAAAAALRgAf5u\nAMzhHDwpKSmR3W73qozi4uI6ywQAAAAAAAAAAJ4hINNCJSQkyGKxONKVlZXKz8/3qoxjx44Z0qwi\nAQAAAAAAAACgYQjItFBhYWFKTU01XMvLy/OqDOf8Xbt2bXS7AAAAAAAAAAC4EhGQacGcAyh79uzx\n6vm9e/fWWR4AAAAAAAAAAPAMAZkWrE+fPob0unXrPH72xIkTysnJcaStVqsyMjKaqmkAAAAAAAAA\nAFxRCMi0YGPGjDGkly1bJrvd7tGz33zzjSE9cuRIRUZGNlnbAAAAAAAAAAC4khCQacEGDx6shIQE\nR/rw4cNauXKlR8++9957hvS4ceOasmkAAAAAAAAAAFxRCMi0YAEBAZo4caLh2owZM+pdJbN8+XKt\nWbPGkY6KitKECRPMaCIAAAAAAAAAAFcEAjIt3NNPP23YamzVqlX685//XGv+Y8eO6YEHHjBcmzp1\nqmGlDQAAAAAAAAAA8E6QvxtwJVu7dq1KS0tdrm/fvt2QLisr07Jly9yWkZSUpIyMjFrrSEhI0LRp\n0zRt2jTHtWeffVZ5eXn6/e9/r6SkJEmSzWbTl19+qalTpyovL89Q/uOPP+7V5wIAAAAAAAAAAEYW\nu6envKPJpaWlKTc3t1Fl3Hffffrggw/qzGOz2TRu3Dh9/fXXhuuBgYHq0KGDYmJidOTIEZ07d85w\nPywsTP/+9781ZMiQRrWxJdq9e7d69OjhSO/atUvdu3f3Y4sAAAAAAAAAAM6a01guW5ZdAQICAjR/\n/nzdcccdhusXL17U4cOHtXXrVpdgTHx8vP71r38RjAEAAAAAAAAAoAkQkLlChIaG6pNPPtGCBQvU\np0+fWvNFRETokUce0Z49ezRixAjfNRAAAAAAAAAAgBaMM2T8KCcnx+d1jh8/XuPHj9fBgweVnZ2t\nY8eOqaKiQrGxserWrZuGDBmi0NBQn7cLAAAAAAAA+D/s3XuUnWV9L/DvnslM7pnEDAmZMLlAKpCg\nYqWA3CGHU3XBAUEBK4XYIAfSI5GCUtFyU4u3SltBawGVtggKIiWirkIAjcGGIhclXARyIyEmAWLI\njUwys88fMSOT68xk9uydmc9nrax533c/7+/57cBeSeY7z/MC9GQCmV5qwoQJmTBhQrnbAAAAAACA\nXsGWZQAAAAAAACUmkAEAAAAAACgxgQwAAAAAAECJCWQAAAAAAABKTCADAAAAAABQYgIZAAAAAACA\nEhPIAAAAAAAAlJhABgAAAAAAoMQEMgAAAAAAACUmkAEAAAAAACgxgQwAAAAAAECJCWQAAAAAAABK\nTEq9g/UAACAASURBVCADAAAAAABQYgIZAAAAAACAEhPIAAAAAAAAlJhABgAAAAAAoMQEMgAAAAAA\nACUmkAEAAAAAACgxgQwAAAAAAECJCWQAAAAAAABKTCADAAAAAABQYgIZAAAAAACAEhPIAAAAAAAA\nlJhABgAAAAAAoMQEMgAAAAAAACUmkAEAAAAAACgxgQwAAAAAAECJCWQAAAAAAABKTCADAAAAAABQ\nYgIZAAAAAACAEhPIAAAAAAAAlJhABgAAAAAAoMQEMgAAAAAAACUmkAEAAAAAACgxgQwAAAAAAECJ\nCWQAAAAAAABKTCADAAAAAABQYgIZAAAAAACAEhPIAAAAAAAAlJhABgAAAAAAoMQEMgAAAAAAACUm\nkAEAAAAAACgxgQwAAAAAAECJCWQAAAAAAABKTCADAAAAAABQYgIZAAAAAACAEhPIAAAAAAAAlJhA\nBgAAAAAAoMQEMgAAAAAAACUmkAEAAAAAACgxgQwAAAAAAECJCWQAAAAAAABKTCADAAAAAABQYgIZ\nAAAAAACAEhPIAAAAAAAAlJhABgAAAAAAoMQEMgAAAAAAACUmkAEAAAAAACgxgQwAAAAAAECJCWQA\nAAAAAABKTCADAAAAAABQYgIZAAAAAACAEhPIAAAAAAAAlJhABgAAAAAAoMQEMgAAAAAAACUmkAEA\nAAAAACgxgQwAAAAAAECJCWToEi+++GJuuOGGnHnmmTnwwAMzePDg1NbWZsSIETnuuOPy93//91m2\nbFm76z3wwAOZMmVKDjjggAwePDg1NTUZPnx4jjzyyFxxxRV56aWXSvhuAAAAAACgaxWKxWKx3E2w\nZ5syZUpuueWWXY4bMmRIbrjhhpx99tk7HLN+/fqcffbZueuuu3Zaa8CAAbn++uvzkY98pMP9doW5\nc+fmoIMOaj1/6qmnMmnSpLL0AgAAAADA9lXS93L7lGVWepTFixcnSQYOHJiTTz45J5xwQvbff/8M\nHjw4L730Uu64447ceuutef3113POOeekpqYmZ5555nZrnXPOOa1hzLBhw/Lxj388hx56aIYPH56F\nCxfmtttuy1133ZV169Zl6tSp2WuvvXLSSSd123sFAAAAAIDOsEKG3XbOOefkXe96V6ZOnZpBgwZt\nd8ztt9+eD33oQ0mS+vr6LFy4MAMGDGgz5sknn8zBBx+cJNlrr73y2GOPZZ999tmm1je+8Y1MmzYt\nSXLwwQfn8ccf78q30y6VlKoCAAAAALB9lfS9XM+QYbf927/9W6ZPn77DMCZJzjrrrJx66qlJklde\neSX333//NmNmzZrVevzRj350u2FMklxwwQVpaGhIkjzxxBNZs2bN7rQPAAAAAAAlZ8uyXurFF1/M\nI488ksWLF6epqSnDhg3LAQcckCOOOCL9+vUryZyTJ0/O3XffnST57W9/u83rr7/+euvxuHHjdlin\nUChk7Nixefnll5Mkq1ev3mkYBAAAAAAA5SaQqQBLlizJI488kjlz5uSRRx7Jo48+mtWrV7e+Pnbs\n2CxYsKBL5rr77rvz2c9+No899th2Xx80aFCmTJmSK6+8MvX19V0y5xZNTU2tx9XV1du8/ta3vrX1\neGfvt1gsZuHChUmSurq6jBgxouuaBAAAAACAErBlWZnMnj07p512WkaPHp199tknp512Wr74xS/m\nwQcfbBPGdJUNGzbk7LPPzvvf//4dhjFJsmbNmlx//fWZOHFifv7zn3dpDw8++GDr8fb26DvppJNa\ntym76aabsmTJku3W+eY3v9m6OuaCCy7YbrgDAAAAAACVxAqZMvmf//mf/PCHP+yWuVpaWnLmmWfm\nP//zP9tcr66uzpgxY1JXV5f58+dn1apVra+tWLEi733ve3P//ffn3e9+92738Oijj+YnP/lJkmT0\n6NE5/vjjtxnTr1+/zJgxIyeffHIWL16ct73tbfn4xz+eww47LG95y1uycOHC3H777fnBD36QJDnz\nzDNz9dVX73ZvAAAAAABQalbIVKCufh7Kl7/85W3CmAsuuCCLFi3KvHnz8vjjj+e1117LXXfdlTFj\nxrSOWbduXc4444w2QU1nrFmzJlOmTElzc3OS5Nprr01NTc12xx588MF5/PHH87nPfS4tLS258sor\n8573vCeHHnpoPvjBD+YHP/hBDjvssNx55525/fbb07dv393qDQAAAAAAuoNApswGDx6c4447Lp/4\nxCdyxx13ZMGCBZkxY0aX1X/11Vfz+c9/vs21a6+9Nt/4xjfS0NDQeq2qqirvf//78/DDD2fcuHGt\n1xcvXpyvfvWrnZ6/paUlH/7whzN37twkyVlnnZW//Mu/3Ok9d955Z2699dYdBkGPPfZYbrnllvz6\n17/udF8AAAAAANCdBDJlcvLJJ2fu3Ln5/e9/nwcffDBf+tKX8oEPfCBjx47t0nm+9KUvtXkmzTHH\nHJPLLrtsh+NHjx6dm266qc216667Lq+++mqH5y4Wi/noRz+ae+65J0ly2GGHbVP7zVpaWnL22Wfn\nwgsvzDPPPJPjjz8+P/3pT7Ny5co0NTVl4cKF+frXv55hw4ZlxowZOeKII7o0vAIAAAAAgFIRyJTJ\nfvvtl4kTJ6aqqnT/CVpaWvLtb3+7zbWrrroqhUJhp/dNnjw5Rx99dOv56tWr8/3vf79DcxeLxUyb\nNi3f+ta3kiTvfOc789Of/jQDBw7c4T3f/OY3c+uttyZJPvjBD2bmzJn58z//8wwdOjQ1NTUZM2ZM\nLrzwwsyZMyfDhw/P2rVr8+EPfzivvPJKh3oDAAAAAIDuJpDpwR5++OGsWLGi9XzffffNcccd1657\np06d2ub87rvv7tDcH/vYx/Iv//IvSZK3v/3tue+++zJ06NCd3nPjjTe2Hn/lK1/ZYXA0bty4XHTR\nRUk2h0W33XZbh3oDAAAAAIDuJpDpwe6999425yeeeOIuV8e8eeybPfTQQ1m7dm277v3Yxz6WG264\nIUnytre9LTNnzszw4cN3ed/TTz+dJBkxYkTGjBmz07F/9md/ts19AAAAAABQqQQyPdgTTzzR5vyI\nI45o970NDQ0ZN25c63lTU1O7go+LLroo119/fZJk0qRJmTlzZurr69s1Z58+fZIkGzdu3OXYN4+p\nqalpV30AAAAAACgXgUwP9swzz7Q5nzhxYofu33r81vW2Nn369Hzta19LsjmMeeCBB7LXXnu1e779\n9tsvSbJy5co8+eSTOx37wAMPbHMfAAAAAABUKoFMD7V+/fosWrSozbXGxsYO1dh6/HPPPbfDsRdf\nfHH++Z//OcnmIOeBBx7IiBEjOjTf+9///tbjCy+8MGvWrNnuuNmzZ+eb3/xmkqS6ujonnXRSh+YB\nAAAAAIDu1qfcDVAar7zySorFYut5TU1NhwOS0aNHtzlfvnz5dsdddtll+cd//MckyV577ZWvfe1r\nWb58+Q7HJ8mwYcO2qX/xxRfn29/+dhYtWpRf/vKXefvb357/9//+Xw477LAMHDgwS5cuzY9+9KPc\neOONrVuWXXTRRVbIAAAAAABQ8QQyPdTWq0sGDBiQQqHQoRoDBw7cac0tvve977Uer1ixIpMnT95l\n7XPPPTff+c532lyrq6vLzJkzc/rpp+fXv/515s+fn0suuWS79xcKhfz1X/91vvKVr+xyrl1Zvnx5\nVqxY0aF7Xnjhhd2eFwAAAACA3kMg00NtHZ7069evwzX69++/05qlMGHChDz66KO56667cuedd+ax\nxx7LsmXLsmHDhgwePDj77rtvjjzyyPzVX/1V3vGOd3TJnF//+tdz9dVXd0ktAAAAAADYHoFMD/XG\nG2+0Oa+tre1wjb59+7Y5X79+/XbHLViwoMO1d6ampiZnnnlmzjzzzC6tCwAAAAAA5VJV7gYoja1X\nxDQ1NXW4xoYNG3ZaEwAAAAAAaB8rZHqoQYMGtTnfesVMe2y9Imbrmj3FtGnT8sEPfrBD97zwwgs5\n9dRTS9QRAAAAAAA9jUCmh9o6PFm3bl2KxWIKhUK7a6xdu3anNXuKESNGZMSIEeVuAwAAAACAHsyW\nZT1UfX19m/Bl48aNWb58eYdqLFmypM250AIAAAAAADpHINND9e/fP2PGjGlzbdGiRR2qsfX4Aw44\nYLf7AgAAAACA3kgg04NtHaA8/fTTHbr/mWee2Wk9AAAAAACgfQQyPdjBBx/c5vzhhx9u971Lly7N\nggULWs9ramoyceLErmoNAAAAAAB6FYFMD3bSSSe1Ob///vtTLBbbde9//dd/tTk//vjjM2jQoC7r\nDQAAAAAAehOBTA92xBFHpL6+vvV83rx5eeihh9p1780339zm/JRTTunK1gAAAAAAoFcRyPRgVVVV\nmTJlSptrV1999S5XycycOTOzZs1qPR88eHDOOOOMUrQIAAAAAAC9gkCmh7vsssvabDX2s5/9LF/8\n4hd3OH7JkiU577zz2lybPn16m5U2AAAAAABAx/QpdwO92ezZs7N+/fptrj/55JNtzt94443cf//9\n263R0NCQiRMn7nCO+vr6XH755bn88stbr33qU5/KokWL8pnPfCYNDQ1JkpaWltxzzz2ZPn16Fi1a\n1Kb+JZdc0qH3BQAAAAAAtFUotvcp73S5cePGZeHChbtV49xzz813vvOdnY5paWnJKaeckh/96Edt\nrldXV2fs2LGpq6vL/Pnz8/vf/77N6/379899992XI488crd67Inmzp2bgw46qPX8qaeeyqRJk8rY\nEQAAAAAAW6uk7+XasqwXqKqqyh133JGzzjqrzfXm5ubMmzcvjz/++DZhzPDhw/PjH/9YGAMAAAAA\nAF1AINNL9OvXL7fddlvuvPPOHHzwwTscN3DgwEybNi1PP/10jjvuuO5rEAAAAAAAejDPkCmjBQsW\ndPucp59+ek4//fS88MILmTNnTpYsWZKmpqYMHTo0Bx54YI488sj069ev2/sCAAAAAICeTCDTS02Y\nMCETJkwodxsAAAAAANAr2LIMAAAAAACgxAQyAAAAAAAAJSaQAQAAAAAAKDGBDAAAAAAAQIkJZAAA\nAAAAAEpMIAMAAAAAAFBiAhkAAAAAAIASE8gAAAAAAACUmEAGAAAAAACgxAQyAAAAAAAAJSaQAQAA\nAAAAKDGBDAAAAAAAQIkJZAAAAAAAAEpMIAMAAAAAAFBiAhkAAAAAAIASE8gAAAAAAACUmEAGAAAA\nAACgxAQyAAAAAAAAJSaQAQAAAAAAKDGBDAAAAAAAQIkJZAAAAAAAAEpMIAMAAAAAAFBiAhkAAAAA\nAIASE8gAAAAAAACUmEAGAAAAAACgxAQyAAAAAAAAJSaQAQAAAAAAKLE+5W4AKJ9Nm1Zl/fr5qa4e\nkKqqAamuHpjq6gEpFGpTKBTK3R4AAAAAQI8hkIFerZAnnjguzc2rtrpe9YeQZuCbwprNgc2W4y0B\nztbnbx7f9v62rwl9AAAAAIDeRCADvVifPkMyevSFWbToC1u90pLm5jVpbl6TjRtLM3eh0DeHHvpM\n+vcfX5oJAAAAAAAqiGfIQC83evT0FAq13T7vyJFnC2Ogm23atCqrVz+Rdet+mzfeWJyNG1empWVD\nisViuVsDAAAA6PGskIFerm/fvbP33udm6dIbu23OQqE248Zd0W3zAVvYphAAAACgXAQyQBobL8nS\npTcl6Z6fkm9o+L/p129Mt8wF/JFtCgEAAADKx5ZlQAYM2D/19ad2y1xVVf0zZszl3TIXsC3bFAIA\nAACUh0AGSJI0Nn6yW+bZZ5/p6dt3726ZC9jWlm0Ku5NtCqF8PDsKAACgctiyDEiS1NUdnrq6o7Nq\n1aySzVFdPSSNjZ8oWX2gfWxTCL2JZ0cBAABUCoEM0Kqx8ZMlDWQaGy9NTc1bSlYfaJ8t2xS+8soP\nSz6XbQqhvDw7CgAAoHLYsgxoNXz4+zJgwMSS1K6pqc8++3y8JLWBjrNNIfQenh0FAABQGQQyQKtC\noSpjxpTmm7Rjxvxt+vQZXJLaQMdt2aawlGxTCJXBs6MAAAAqg0AGaGPEiA+ltnZ0l9asrR2VESP+\nMs3N69PS0pRisaVL6wOdU+pVMrYphMrR2HhJku57notnRwEAAGzLM2SANqqqatPYeHFefPHSLqvZ\n1LQ0v/zlyG2uFwp9klSnUOiTQmH7X3ve6x2pITOntLZsU7hu3dNdXts2hVBZPDsKAACg/AQywDZG\njfpoFiz4bJqbV5V0nmJxU5JNKRY3lHSePVllhkqV83pSlUKh+37iu6fZsk3hs89O6fLatimEytPY\n+MluCWQ8OwoAAGD7BDLANvr0GZLRoy/MokVfKHcrvZ7Qqj3aG+hUZqhU7tBqxIgPZd68T6epaUmX\n/ReprW1IQ8O0LqsHdI0tz45atWpWyebw7CgAAIAdE8gA2zV69EV56aWvplhsKncrsAvNKRabUyyW\nu49KtvNAp7l5XZfO1q/fuLzwwsf/UP/NoVH1VmFR9Va9bLnW501jt39td2vu+n4rr+iZGhs/WdJA\nxrOjoPw2bVqV9evnp7p6QKqqBqS6emCqqwekUKj15xv0QD7zAHsWgQywXX37jsree5+TpUtvKncr\nwG7r3tDq9dcfzuuvP9w9k5VMoQQhz9b3l6JmOcKsra/5h38l8+wo6A0KeeKJ47az/XDVH75hO/BN\n37jd/M3bLcdbvpm79fmbx7e9v+1rvgEM5eAzD7AnEcgAO9TYeGmWLr05iaUHQG9TTLG4McXixnI3\nsgcqRZhVilVQvTPM8uwo6Pl2vP1wS5qb16S5eU02luiPt0Khbw499Jn07z++NBMA2/CZB9izCGSA\nHRowYP/U15/aqQcAv/Wt/5q6uqNSLG76w0/mb8rmn9L/4/nWX3vK6wC9mzCr87onzEoKqarqn5aW\n9V3WeU3NyNTXfyCbNq1JdXX/P8wDlMvo0dPLsv3wyJFn+8YslIHPPMCeQyAD7FRj4yc7HMgMGXJE\nRo06r9cuXS4WWzoV6FRSqCS0AiiHPTfM2rhxWebMGdd6Xij0TXV1/622QNne1/aN2dH1QqGqfG8a\nKljfvntn773PzdKlN3bbnIVCbcaNu6Lb5gP+yGceYM8hkAF2qq7u8NTVHd2hBwDvu+/f99owJtm8\nHUyhUFvuNipaZ0Or3vO60ArYsxWLG7Jp04Ykvy/pPFVV/VJVtbPQ5s1fOxsQ9RP8sEdqbLzkD8+D\n7J7thxsa/m/69RvTLXMB2/KZB9gzCGSAXWps/GS7A5lhw07M0KHHlrgj9nRCq13bHFp1fyC0ZMk3\nsnbtkx3ud9iwP0/fvqNb622eq7nNHH+8tqn1tbY9NW/Va/vvB3qnlpY30tLyRsnnaRvU7Dr86UxA\ntDn46b0/0ELX253thzuqqqp/xoy5vOTzADvmMw+9x6ZNq7J+/fw3/b1yYKqrB6RQqPX3yT2AQAbY\npeHD35cBAyZm3bqndzl2/PjPdUNH0PNtDq2qktR067wDB74jjz/+7g7dM2TIEXn7239S1r/4/THA\n6lyg07FAqHtCpu66H9i1lpb1aWlZn02bXi3pPF27pdv2A6Kqqr7+od6LdGb74c7YZ5/p6dt375LP\nA+yczzz0FoU88cRxaW5etdX1qj/8nW9gm78PVlcP3OrviNuet/3748Advib02X0CGWCXCoWqNDZ+\nIs8995Gdjhs+/JQMGXJoN3UFlMKeuk1huQKsnmDr1ViVEBLtKcEZdLWWlnVpaVlX4lkKXbyl2/YD\nIv9Yrwyd+XO9o6qrh6Sx8RMlqw+0n8889A59+gzJ6NEXZtGiL2z1Skuam9ekuXlNNpbosZSFQt8c\neugz6d9/fGkm6AUEMkC7jBz5F5k//9Npanp5ByMKGT/+s93aE1AatinsXYRZnVMsFpO07FagUwkh\n08aNr+bVV+8p128jZVFMS8vatLSsLfE8Ve1asbO7z/wpFGoEP7vQkT/XO1f/0tTUvKVk9YGO8ZmH\n3mH06Ol56aWvplhs6tZ5R448WxizmwQyQLtUVdVmn30uzrx52/9JmBEjzsqgQW/r5q6AUrBNIeza\n5m8AV6dQqC53K7vtqadO69T2Jgcd9J8ZOvS4NDdvXtWx+ev6Nx3v6Ov6Xbz+xzHNzWtjNdKeqvQ/\noblZdZdu6bbjlUF7bmjdkT/XO6qmpj777PPxLq8LdJ7PPPQOffvunb33PjdLl97YbXMWCrUZN+6K\nbpuvpxLIAO3W0HB+Fi783Hb2qKzOuHFXl6UnoOvZphB6l87sNz9kyBEZPvzkFAqF9OkzpESdbdbS\nsnEH4U37wp/2BURrk7SU9H1QKs1pbl6d5ubVJQ1+CoU+Xbql246Coaqqrv8neqFQlTFjPplnn53S\n5bXHjPnb9OkzuMvrAp3nMw+9R2PjJVm69KYkxW6Zr6Hh/6ZfvzHdMldPJpAB2m1He1SOGvWRDBjw\nJ2XqCigF2xRC71Hpz46qqqpJVVVd+vSpK9kcxWIxxeLGXa7Y2Xm4057wZ1266x/MdK1icVOam19P\nc/PrJZ2nUKjt0i3dthwPHvzu1NaOSlPT0i7rtba2IQ0N07qsHtB1Roz4UObN+3SampZ0WU2feag8\nAwbsn/r6Uzu12r2jqqr6Z8yYy0s+T28gkAE6ZPToi9rsUVko1Gbs2L8rc1dAV7NNIfQuvf3ZUYVC\n4Q/fCK9NMrRk82wOfpp2M9Rp3xjBz55p8/8fTdtZkV55+vSpy1NPndrO0e0LcNsf9JZnXNf315Gx\nve33sOvn7im/h0n7eqytHdmlgczQocdnxYo7Wv+87MzXQqHac7+gi3VmtXtn7LPP9PTtu3fJ5+kN\nBDJAh/TtOyp7733OH5ZEJg0NF1iuCD2UbQqh9/DsqO6xOfjpm6qqvkmGlWyeYrGYlpYN7XpOz+6s\n+tkc/NBbrVv3TNate6bcbQDdZPnyW7N8+a27WaWwW4FO936t6pLfNyi1zqx276jq6iFpbNz+D2vS\ncQIZoMMaGy/N0qU3p6qqf8aOtVwReirbFELv4dlRPUuhUEh1db9UV/dLTc1bSjbP5uDnjXY+p6fz\nq35aWt4o2XsAoDsVUyxuSHPzhnI3skuFQp8KCIXas+qoj1VHdGi1e+fqX1rSv1P2NgIZoMM271F5\nSgYMOCC1tSPL3Q5QQrYphN7Ds6PoqM3BT/9UV/dPTc3wks1TLLakpeWNXa7o2d1VP8Vi5X+DEIDu\nUSxuSrG46Q/Pf6tsXRPw9LXqaA/WkdXuHVVTU5999vl4l9ftzQQyQKeMHft36ddvXLnbAErMNoXQ\ne3h2FJWqUKhKdfXmh9OXUrHY/IfApn3P6elsQLTlhxwAoCtsef5Y5asu+4qiNwdQPWnVUaFQlTFj\nPplnn53S5bXHjPnb9OkzuMvr9mYCGaBTBg/+03K3AHQT2xRC7+HZUfRmhUJ1+vQZlGRQSedpadn0\nptCnfeFPZwKiYnFjSd8HAHRM8x+eP7c+zc3l7mXnKiM0as/X6taeR4z4UObN+3SampZ02e9DbW1D\nGhqmdVk9NhPIAAA7ZZtC6D08OwpKr6qqT6qqBicp7U+btrRsbBPUvPl43rzL8/rrD3e45l57fTD9\n+09IUmzX+GKxfeP+MLos49rfY7nGVX6P5euv/WN73+9h27ErV87Mhg2LOnDvZv37/0mqqgakWGxK\nS0vTdr8Kf+mJ9pxVR1VtApqWlq7teezYz6S6un+X1kQgAwC0g20Koffw7CjoGaqqalJVVZM+fYZs\n89p++/1DHn/83R2qN2TIEZk48Xt73DYuQLJq1X936jP/znf+Ypef+WKxmGJx4w4Dm85/3dDl9ToW\naMGeYPNz9pI3unzVUb9+4zNq1NSuLUoSgQwA0A62KYTew7OjoOerqzs8dXVHZ9WqWe2+Z999/14Y\nA3uoUn7mC4VC60/nV7pisbkEwVHHg6FdjbHqiEowbtxVe8Tnek8kkAEAANrw7Cjo+RobP9nub84O\nG3Zihg49tsQdAaXkM7/5WWGbt1+q7C2YSrfqqOu/JhX+MBg6ZcCAAzNy5IfL3UaPJZABAADa8Owo\n6PmGD39fBgyYmHXrnt7l2PHjP9cNHQGl5DO/59jzVh1tLNE2c137lfYbN+6aFArV5W6jxxLIAAAA\n2/DsKOjZCoWqNDZ+Is8995Gdjhs+/JQMGXJoN3UFlIrPPKWwedVRdZJ+5W5lpzavOtpU8u3mesKq\no0GD3pm99jqtrD30dAIZusSLL76Yn/70p/n5z3+eX//611m8eHE2bNiQoUOHZuLEifnf//t/Z+rU\nqRk5csc/Yblx48b85Cc/ya9+9av86le/yrx58/Lqq69m5cqV6du3bxoaGnLIIYfkzDPPzMknn2z/\nYgCAEvLsKOj5Ro78i8yf/+k0Nb28gxGFjB//2W7tCSgdn3l6q82rjmqS1KS6emC529mptquOOh/s\nvPzyN7J27a87PP/48Z9LoVBVgnfGFoVisVgsdxPs2aZMmZJbbrlll+OGDBmSG264IWefffZ2X1+8\neHEaGxvbNecRRxyRO++8M6NGjepQr11l7ty5Oeigg1rPn3rqqUyaNKksvQAAAHTWokVfybx5n9ju\nayNGfCgTJ363mzsCSslnHnqHVav+O48//u4O3TNkyBF55zt/0SN/CL6SvpdrhQy7bfHixUmSgQMH\n5uSTT84JJ5yQ/fffP4MHD85LL72UO+64I7feemtef/31nHPOOampqcmZZ5653Vpvectbcuyxx+aQ\nQw7J+PHjs/fee2fYsGFZtWpVnnzyydx00035zW9+k4cffjiTJ0/OY489ln79KntZJAAAQKVqaDg/\nCxd+Ls3Nq7Z6pTrjxl1dlp6A0vGZh96hru7w1NUdnVWrZrX7nn33/fseGcZUGitk2G3nnHNO3vWu\nd2Xq1KkZNGjQdsfcfvvt+dCHPpQkqa+vz8KFCzNgwIA2Y1paWpIkVVU7Xha3adOmnHbaaZkxY0aS\n5IYbbsi0adO64m10SCWlqgAAALtj3rxPZdGiL7S5NmrUedl//xvL1BFQSj7z0Du88sqP8tRTYmTI\nYAAAIABJREFUJ7dr7LBhJ+Yd7/ivEndUPpX0vVwbwrHb/u3f/i3Tp0/fYRiTJGeddVZOPfXUJMkr\nr7yS+++/f5sxVVVVOw1jkqRPnz751Kc+1Xr+4IMPdrJrAAAAkmT06ItSKNS2nhcKtRk79u/K2BFQ\nSj7z0DsMH/6+DBgwsV1jx4//XIm7YQtblvVSL774Yh555JEsXrw4TU1NGTZsWA444IAcccQRJdsC\nbPLkybn77ruTJL/97W87XWfIkCGtx6+//vpu9wUAANCb9e07KnvvfU6WLr0pSdLQcEH69RtT5q6A\nUvGZh96hUKhKY+Mn8txzH9npuOHDT8mQIYd2U1cIZCrAkiVL8sgjj2TOnDl55JFH8uijj2b16tWt\nr48dOzYLFizokrnuvvvufPazn81jjz223dcHDRqUKVOm5Morr0x9fX2XzLlFU1NT63F1dXWn6/zH\nf/xH6/EBBxywWz0BAACQNDZemqVLb05VVf+MHXt5udsBSsxnHnqHkSP/IvPnfzpNTS/vYEQh48d/\ntlt76u0EMmUye/bs/MM//EPmzJmTl1/e0Qei62zYsCFTp07NrbfeutNxa9asyfXXX5/vfe97ufPO\nO3PMMcd0WQ9v3l6sI3v0tbS0ZPny5Xn22Wdz44035rvf/W6SpLa2NhdccEGX9QcAANBbDRiwf+rr\nT8mAAQektnZkudsBSsxnHnqHqqra7LPPxZk37xPbfX3EiLMyaNDburmr3k0gUyb/8z//kx/+8Ifd\nMldLS0vOPPPM/Od//meb69XV1RkzZkzq6uoyf/78rFq1qvW1FStW5L3vfW/uv//+vPvd797tHh59\n9NH85Cc/SZKMHj06xx9//E7Hv/LKK9lrr712+HpdXV2++93v5sADD9zt3gAAAEjGjv279Os3rtxt\nAN3EZx56h4aG87Nw4efS3Lxqq1eqM27c1WXpqTfb+RPUKYtBgwZ1ab0vf/nL24QxF1xwQRYtWpR5\n8+bl8ccfz2uvvZa77rorY8b8cc/QdevW5YwzzmgT1HTGmjVrMmXKlDQ3NydJrr322tTU1HSqVqFQ\nyN/8zd/kueeey/ve977d6gsAAIA/Gjz4T1NT85ZytwF0E5956B369BmS0aMv3Ob6qFEfyYABf1KG\njnq3ig1kmpub8/rrr7f+2rhxY7lbKonBgwfnuOOOyyc+8YnccccdWbBgQWbMmNFl9V999dV8/vOf\nb3Pt2muvzTe+8Y00NDS0Xquqqsr73//+PPzwwxk3blzr9cWLF+erX/1qp+dvaWnJhz/84cydOzdJ\nctZZZ+Uv//Ivd3nfsGHD8pvf/Ca/+c1v8sQTT2TmzJn53Oc+l8bGxvzTP/1Tpk6dmiVLlnS6LwAA\nAACA3mD06ItSKNS2nhcKtRk79u/K2FHvVbGBzC233JJhw4a1/po1a1a5W+pSJ598cubOnZvf//73\nefDBB/OlL30pH/jABzJ27NgunedLX/pSVq9e3Xp+zDHH5LLLLtvh+NGjR+emm25qc+26667Lq6++\n2uG5i8ViPvrRj+aee+5Jkhx22GHb1N6R6urqHHTQQTnooIPyjne8IyeccEI+/elPZ+7cuZk8eXLu\nvffevOtd78ozzzzT4b4AAAAAAHqLvn1HZe+9z2k9b2i4IP36jdnJHZRKxQYyy5YtS7FYTLFYTF1d\nXU444YRyt9Sl9ttvv0ycODFVVaX7T9DS0pJvf/vbba5dddVVKRQKO71v8uTJOfroo1vPV69ene9/\n//sdmrtYLGbatGn51re+lSR55zvfmZ/+9KcZOHBgh+psbdCgQfn3f//39O/fP8uWLcsFF1ywW/UA\nAAAAAHq6xsZLkxRSVTUgY8deXu52eq2KDWS2PEelUCh0+aqR3uLhhx/OihUrWs/33XffHHfcce26\nd+rUqW3O77777g7N/bGPfSz/8i//kiR5+9vfnvvuuy9Dhw7tUI0dGTFiRI466qgkyc9//vMsXbq0\nS+oCAAAAAPREAwbsn/r6U7LPPheltnZkudvptfqUu4EdGTVqVLlb2OPde++9bc5PPPHEXa6OefPY\nN3vooYeydu3adq1w+djHPpYbbrghSfK2t70tM2fOzPDhw9vZdfvU19e3Hi9YsMD/LwAAAAAAOzF2\n7N+lX79x5W6jV6vYFTIHHnhgks1bX7300ktl7mbP9MQTT7Q5P+KII9p9b0NDQ8aNG9d63tTUlKef\nfnqX91100UW5/vrrkySTJk3KzJkz24QnXWXx4sWtx4MHD+7y+gAAAAAAPcngwX+ampq3lLuNXq1i\nA5lJkyZl0qRJSZKVK1dmzpw5Ze5oz7P1A+8nTpzYofu3Hr91va1Nnz49X/va15Js/u/3wAMPZK+9\n9urQnO2xYMGC/Pd//3eSZODAgdlvv/26fA4AAAAAAOhKFRvIJMn555/fenzllVeWsZM9z/r167No\n0aI21xobGztUY+vxzz333A7HXnzxxfnnf/7nJJuDnAceeCAjRozo0Hy33nprXnnllZ2OWbFiRc44\n44xs3LgxSfKhD30o/fv379A8AAAAAADQ3Sr2GTJJMm3atHz/+9/P7Nmzc9999+XSSy/NV77ylXK3\ntUd45ZVXUiwWW89ramo6HJCMHj26zfny5cu3O+6yyy7LP/7jPyZJ9tprr3zta1/L8uXLdzg+SYYN\nG7ZN/RtvvDHnnXde3ve+9+X444/PxIkTM2zYsGzatClLlizJz372s9xyyy1ZuXJlkmTChAn5whe+\n0KH3tD3Lly/PihUrOnTPCy+8sNvzAgAAAADQe1R0IFNdXZ0ZM2bk//yf/5Nf/OIXue666/LII4/k\nmmuuyXHHHVfu9iramjVr2pwPGDAghUKhQzUGDhy405pbfO9732s9XrFiRSZPnrzL2ueee26+853v\nbHP9jTfeyF133ZW77rprp/e/733vy80335zhw4fvcq5d+frXv56rr756t+sAAAAAAMCOVHQgc801\n1yRJjj322Dz//PNZtmxZZs+encmTJ2fkyJE55JBDMn78+AwZMiQ1NTUdqn3FFVeUouWKsXV40q9f\nvw7X2HorsB0FMl3l3//93/OTn/wkDz/8cJ5++uksW7YsK1asSHNzc+rq6jJhwoQcdthhOeuss3LY\nYYeVtBcAAAAAAOhKFR3IXHXVVW1WdRQKhdZtuH73u9/l3nvv7XTtnh7IvPHGG23Oa2trO1yjb9++\nbc7Xr1+/3XELFizocO3taWxszPnnn9/m2UEAAAAAANATVHQgsz0d3XZra8Vicbdr7Am2XhHT1NTU\n4RobNmzYac2eYtq0afngBz/YoXteeOGFnHrqqSXqCAAAAACAnqbiA5k3P5ie9hs0aFCb861XzLTH\n1ititq7ZU4wYMSIjRowodxsAAAAAAPRgFR3IPPjgg+VuYY+1dXiybt26Dq8OWrt27U5rAgAAAAAA\n7VPRgcyxxx5b7hb2WPX19W2eubNx48YsX748I0eObHeNJUuWtDm3igQAAAAAADqnqtwNUBr9+/fP\nmDFj2lxbtGhRh2psPf6AAw7Y7b4AAAAAAKA3Esj0YFsHKE8//XSH7n/mmWd2Wg8AAAAAAGgfgUwP\ndvDBB7c5f/jhh9t979KlS7NgwYLW85qamkycOLGrWgMAAAAAgF6lRwQya9asydKlS7NmzZpyt1JR\nTjrppDbn999/f+szZXblv/7rv9qcH3/88Rk0aFCX9QYAAAAAAL3JHhfIrF69Ot/85jfz4Q9/OPvt\nt19qa2tTV1eXffbZJ3V1damtrc2ECRNy9tln58Ybb+zVIc0RRxyR+vr61vN58+bloYceate9N998\nc5vzU045pStbAwAAAACAXmWPCWTWrVuXv/mbv8no0aMzbdq03H777Zk/f342bdqUYrHY+mvTpk2Z\nN29ebrvttlxwwQUZPXp0Lr300qxfv77cb6HbVVVVZcqUKW2uXX311btcJTNz5szMmjWr9Xzw4ME5\n44wzStEiAAAAAAD0CntEIPPkk0/m4IMPzj/90z9lzZo1rYFCoVDY4a8kKRaLWb16da677rocfPDB\nefLJJ8v5Nsrisssua7PV2M9+9rN88Ytf3OH4JUuW5Lzzzmtzbfr06W1W2gAAAAAAAB3Tp9wN7Mpz\nzz2X//W//ldeffXVJJtDmC2rYZLNqzeGDx+egQMHZu3atXn11VezevXq1vu3jH/++edz4oknZvbs\n2fmTP/mTsryXrc2ePXu7K3e2Do7eeOON3H///dut0dDQkIkTJ+5wjvr6+lx++eW5/PLLW6996lOf\nyqJFi/KZz3wmDQ0NSZKWlpbcc889mT59ehYtWtSm/iWXXNKh9wUAAAAAALRVKLb3Ke9lsHHjxhx0\n0EF5/vnn26x6Ofzww/NXf/VXmTx5csaPH7/NffPnz88DDzyQb33rW/nlL3/Z5t79998/v/nNb9Kn\nT/mzqHHjxmXhwoW7VePcc8/Nd77znZ2OaWlpySmnnJIf/ehHba5XV1dn7Nixqaury/z58/P73/++\nzev9+/fPfffdlyOPPHK3euyJ5s6dm4MOOqj1/KmnnsqkSZPK2BEAAAAAAFurpO/lVvSWZTfccENr\nGFMsFjN48ODcfvvtefjhh3PeeedtN4xJkvHjx2fq1KmZPXt2vv/972fIkCGtr/32t7/NDTfc0F1v\noSJUVVXljjvuyFlnndXmenNzc+bNm5fHH398mzBm+PDh+fGPfyyMAQAAAACALlDRgczXv/711jBm\nwIABeeCBBzr8cPkPfOADefDBB9O/f//WWr0tkEmSfv365bbbbsudd96Zgw8+eIfjBg4cmGnTpuXp\np5/Occcd130NAgAAAABAD1b+fbt24Pnnn88LL7yQQqGQQqGQq6++On/6p3/aqVoHH3xwrrrqqnzy\nk59Mkrz44ot5/vnny/4smQULFnT7nKeffnpOP/30vPDCC5kzZ06WLFmSpqamDB06NAceeGCOPPLI\n9OvXr9v7AgAAAACAnqxiA5nHH388yebnvtTW1mbq1Km7Ve+8887Lpz/96WzcuDFJ8sQTT5Q9kCmn\nCRMmZMKECeVuAwAAAAAAeoWK3bJs+fLlSZJCoZDx48dn6NChu1Vv6NCh2XfffVvPly1btlv1AAAA\nAAAA2qtiA5k1a9a0Hg8ZMqRLag4ePLj1eO3atV1SEwAAAAAAYFcqNpCpr69PsnnLsiVLlnRJzZdf\nfrn1ePjw4V1SEwAAAAAAYFcqNpBpaGhoPV66dGmeeuqp3ao3d+7cNoHMm+sDAAAAAACUUsUGMkce\neWT69OmTQqGQJLnqqqt2q96b7+/Tp0+OOuqo3aoHAAAAAADQXhUbyNTV1eXoo49OsVhMsVjMD3/4\nw1xzzTWdqvX5z38+P/jBD1IoFFIoFHLMMcd02XNpAAAAAAAAdqViA5kkufLKK5MkhUIhxWIxV199\ndU499dS8+OKL7bp/3rx5Oe2003LFFVe01kiSK664omQ9AwAAAAAAbK1PuRvYmWOOOSZnn312/uM/\n/qM1UJkxY0Z+9KMf5aijjsoJJ5yQt7/97amvr8/AgQOzdu3avPrqq3nyySfzwAMP5Be/+EXrCpst\nq2POPvvsHH300eV+awAAAAAAQC9S0YFMktx8881ZunRpZs6c2fo8mZaWlsyaNSuzZs3a6b1vDmKK\nxWJOPPHE3Hzzzd3RNgAAAAAAQKuK3rIsSWpqanLvvffm4osvTvLHkGXL8Y5+JX/c6qxQKOSSSy7J\njBkz0qdPxWdQAAAAAABAD1PxgUyS1NbW5h/+4R8yZ86cnHXWWampqWkNXXakWCympqYmf/EXf5E5\nc+bky1/+cmpra7upYwAAAAAAgD/ao5aLHHLIIfnud7+bVatW5Ze//GXmzJmThQsXZuXKlVmzZk0G\nDRqUYcOGZezYsTn88MNz+OGHp66urtxtAwAAAAAAvdweFchsUVdXl/e85z15z3veU+5WAAAAAAAA\ndqliA5nm5uasXbu29bx///6pqakpY0cAAAAAAACdU7HPkLnlllsybNiw1l+zZs0qd0sAAAAAAACd\nUrGBzLJly1IsFlMsFlNXV5cTTjih3C0BAAAAAAB0SsUGMoMGDUqSFAqFjB07tszdAAAAAAAAdF7F\nBjKjRo0qdwsAAAAAAABdomIDmQMPPDBJUiwW89JLL5W5GwAAAAAAgM6r2EBm0qRJmTRpUpJk5cqV\nmTNnTpk7AgAAAAAA6JyKDWSS5Pzzz289vvLKK8vYCQAAAAAAQOdVdCAzbdq0HHnkkSkWi7nvvvty\n6aWXlrslAAAAAACADqvoQKa6ujozZszIUUcdlWKxmOuuuy7HHHNMHnrooXK3BgAAAAAA0G59yt3A\nzlxzzTVJkmOPPTbPP/98li1bltmzZ2fy5MkZOXJkDjnkkIwfPz5DhgxJTU1Nh2pfccUVpWgZAAAA\nAABgGxUdyFx11VUpFAqt54VCIcViMUnyu9/9Lvfee2+nawtkAAAAAACA7lLRgcz2vDmg6Yxisbjb\nNQAAAAAAADqi4gOZLStiAAAAAAAA9lQVHcg8+OCD5W4BAAAAAABgt1V0IHPssceWuwUAAAAAAIDd\nVlXuBgAAAAAAAHq6il0h09zcnLVr17ae9+/fPzU1NWXsCAAAAAAAoHMqdoXMLbfckmHDhrX+mjVr\nVrlbAgAAAAAA6JSKDWSWLVuWYrGYYrGYurq6nHDCCeVuCQAAAAAAoFMqNpAZNGhQkqRQKGTs2LFl\n7gYAAAAAAKDzKjaQGTVqVLlbAAAAAAAA6BIVG8gceOCBSZJisZiXXnqpzN0AAAAAAAB0XsUGMpMm\nTcqkSZOSJCtXrsycOXPK3BEAAAAAAEDnVGwgkyTnn39+6/GVV15Zxk4AAAAAAAA6r6IDmWnTpuXI\nI49MsVjMfffdl0svvbTcLQEAAAAAAHRYRQcy1dXVmTFjRo466qgUi8Vcd911OeaYY/LQQw+VuzUA\nAAAAAIB261PuBnbmmmuuSZIce+yxef7557Ns2bLMnj07kydPzsiRI3PIIYdk/PjxGTJkSGpqajpU\n+4orrihFywAAAAAAANuo6EDmqquuSqFQaD0vFAopFotJkt/97ne59957O11bIAMAAAAAAHSXig5k\ntufNAU1nFIvF3a4BAAAAAADQERUfyGxZEQMAAAAAALCnquhA5sEHHyx3CwAAAAAAALutogOZY489\nttwtAAAAAAAA7LaqcjcAAAAAAADQ0wlkAAAAAAAASkwgAwAAAAAAUGICGQAAAAAAgBLrU+4GOuu1\n117LM888k9deey2rVq1KS0tL/vzP/zwjR44sd2sAAAAAAABt7FGBzPLly3P99dfnBz/4QZ599tlt\nXr/vvvu2G8h8+9vfzksvvZQkaWhoyHnnnVfyXgEAAAAAALbYYwKZL3/5y7niiivS1NSUYrG4zeuF\nQmGH965ZsyZXXXVVCoVCqqurc/LJJ1tJAwAAAAAAdJuKf4ZMc3NzTjvttPzt3/5tNmzYsM3rOwti\ntpg6dWqGDBmSYrGY5ubmfPe73y1FqwAAAAAAANtV8YHMX//1X+fuu+9OsVhMoVBIsVjMO9/5zlx2\n2WW54YYbtrtaZmsDBgzIySef3Hr+4x//uJQtAwAAAAAAtFHRgcwvfvGL/Ou//msKhUIKhULq6+tz\n77335le/+lWuvfbaXHjhhUnat0rm1FNPTZIUi8XMnj07TU1NJe0dAAAAAABgi4oOZK644ookm0OU\nwYMH52c/+1ne+973dqrWYYcd1nq8YcOGPPfcc13SIwAAAAAAwK5UbCCzcuXKzJo1q3V1zGc+85kc\ncMABna63zz77ZNiwYa3nzz77bFe0CQAAAAAAsEsVG8j84he/SHNzc4rFYqqqqnLeeeftds0RI0a0\nHi9fvny36wEAAAAAALRHxQYyL7/8cpLNz4fZd999M3To0N2uWVdX13q8evXq3a4HAAAAAADQHhUb\nyLz22mutx295y1u6pOaGDRtaj2tqarqkJgAAAAAAwK5UbCBTitUsb96mrL6+vktqAgAAAAAA7ErF\nBjJ77bVXkqRYLGbhwoVpaWnZrXovvfRSli5d2nre0NCwW/UAAAAAAADaq2IDmXe84x2tx+vWrcvs\n2bN3q94dd9zRelxdXZ3DDz98t+oBAAAAAAC0V8UGMm9961szfvz4FAqFJMlXv/rVTtd6/fXXc911\n16VQKKRQKOTP/uzPMnjw4K5qFQAAAAAAYKcqNpBJknPOOSfFYjHFYjH33HNP/j979x5cdX3nj/91\nEhCQUERi2gYJKbAdjLalUytjqBqkbqsDg4iAttZisV1ER9q6jqvjrjLq13qfblkdR6y6LWIlIorW\njgXBC6kgclEBcRBClnghXJQ7Ycn5/bHj+XG4hMTkk0B4PGacOe/35/1+vV9H/stz3p/zxBNPNLrG\n3r174/LLL4/q6upIp9MRETF+/PjmbhUAAAAAAOCQjuhA5l//9V+joKAgUqlUpNPpuPLKK+Oee+6J\nvXv3Nmj/+++/H+eee27MnDkzczvmm9/8ZvzkJz9JuHMAAAAAAID/X7vWbqA+nTt3jsmTJ8fw4cOj\nrq4u9u7dG//2b/8WDz74YFx66aXxve99LyIi0ul0pFKpePvtt2PTpk2xatWqeOWVV+KVV17J3LCJ\niOjUqVM8+eSTmdegAQAAAAAAtIQjOpCJiBgyZEj813/9V+Y1Y+l0OtauXRt33XVX1rp0Oh3/9m//\ndsDcF+FL+/bt47HHHovvfve7LdP4MWbLli2xePHiWLhwYSxcuDDefvvtWLVqVSYMW7NmTRQXFze4\n3iuvvBL//d//HW+++WZUV1fHrl274itf+Ur069cvBg8eHL/85S+jZ8+eCX0bAAAAAABoXkd8IBMR\n8atf/Sr69OkTP/vZz+KTTz7JhCz7Bi5fjL/wxSvK0ul0fPWrX41p06bFD37wgxbv/VhxzjnnxJIl\nS5pcZ+fOnXHZZZfF9OnTD3i2adOmqKioiIqKirjvvvti0qRJccUVVzT5TAAAAAAASNoR/Rsy+xo8\neHCsWLEi/t//+3/x9a9/PRO+fPFKsn3DmC/mTzjhhJg4cWKsXLlSGJOwff//d+3aNcrKyuJrX/ta\no+tcfvnlmTCmW7duMXHixHjppZdiwYIFMW3atLjooosiImLHjh0xduzYeOGFF5rnCwAAAAAAQIJS\n6f2TjKNAXV1dLF26NF5//fVYsWJFbNy4MT777LM4/vjjIz8/P77xjW/EoEGD4owzzoh27Y6KS0BH\nvf/8z/+Mk046KU4//fTo27dvpFKpKCsri1dffTUiGvbKsqVLl0b//v0jIuKkk06KRYsWxcknn3zA\nuoceeijzCrv+/fvH4sWLm/fLNMCyZcvitNNOy4zfe++9OPXUU1u8DwAAAAAADu1I+lvuUZlW5OTk\nxHe/+12/B3MEufbaa5tc4/XXX898/uUvf3nQMCYiYty4cXH77bfHRx99FEuWLIlt27ZFXl5ek88H\nAAAAAICkHJWBDE334YcfxoIFC2LdunVRW1sb3bp1i379+kVpaWl07NixVXrasmVL5nN9t2lSqVT0\n6tUrPvroo4iI2Lp1q0AGAAAAAIAjmkDmCFBdXR0LFiyI+fPnx4IFC2LhwoWxdevWzPNevXpFZWVl\ns5w1Y8aMuO2222LRokUHfZ6XlxdjxoyJW265JfLz85vlzIb65je/mflc3/dNp9Oxdu3aiPi/36sp\nKChIujUAAAAAAGiSnNZu4Fg1b968uOiii6JHjx5x8sknx0UXXRR33XVXzJkzJyuMaS67d++Oyy67\nLIYPH37IMCYiYtu2bTFp0qQoKSmJ1157rdn7qM+QIUMyrymbPHlyVFdXH3Tdww8/nLkdM27cuMjN\nzW2xHgEAAAAA4MtwQ6aVvPXWW/Hss8+2yFl1dXUxevToeO6557Lmc3Nzo6ioKLp27Rpr1qyJzz//\nPPOspqYmzj///Jg1a1aceeaZLdJnx44dY+bMmTF06NBYt25dfOtb34pf//rXMWDAgDjxxBNj7dq1\n8dRTT8UzzzwTERGjR4+OiRMntkhvAAAAAADQFG7IHIGa+/dQ7rnnngPCmHHjxkVVVVWsXr06Fi9e\nHJs2bYrp06dHUVFRZs2OHTti1KhRWUFN0vr37x+LFy+O22+/Perq6uKWW26JH//4x3HGGWfEyJEj\n45lnnokBAwZEeXl5PPXUU9GhQ4cW6w0AAAAAAL4sgUwr69KlS5SVlcX1118f06ZNi8rKypg5c2az\n1d+4cWPccccdWXN33nlnPPTQQ1FYWJiZy8nJieHDh0dFRUUUFxdn5tetWxf3339/s/XTEOXl5TFl\nypRDBkGLFi2KJ554It55550W7QsAAAAAAL4sgUwrGTp0aCxbtiw+++yzmDNnTtx9991x8cUXR69e\nvZr1nLvvvjvrN2nOPvvsuOGGGw65vkePHjF58uSsuQceeCA2btzYrH0dTF1dXVx22WVx1VVXxYoV\nK2LQoEHxt7/9LTZv3hy1tbWxdu3aePDBB6Nbt24xc+bMKC0tbdbwCgAAAAAAkiKQaSV9+vSJkpKS\nyMlJ7p+grq4uHnvssay5W2+9NVKpVL37Bg8eHGeddVZmvHXr1nj66acT6XFfDz/8cEyZMiUiIkaO\nHBmzZ8+OH/3oR3HCCSdE+/bto6ioKK666qqYP39+dO/ePbZv3x4//elPY8OGDYn3BgAAAAAATSGQ\nacMqKiqipqYmM+7du3eUlZU1aO/YsWOzxjNmzGjO1g7qkUceyXy+9957DxkcFRcXx7XXXhsR/xcW\nTZ06NfHeAAAAAACgKQQybdiLL76YNT7vvPMOeztm37X7mjt3bmzfvr3ZejuY5cuXR0REQUFBFBUV\n1bv2+9///gH7AAAAAADgSCWQacOWLFmSNS4tLW3w3sLCwiguLs6Ma2trEw8+2rVrFxERe/bsOeza\nfde0b98+sZ4AAAAAAKA5CGTasBUrVmSNS0pKGrV///X712tuffr0iYiIzZs3x9KlS+scLocqAAAg\nAElEQVRd+8orrxywDwAAAAAAjlQCmTZq586dUVVVlTXXs2fPRtXYf/3KlSub3Fd9hg8fnvl81VVX\nxbZt2w66bt68efHwww9HRERubm4MGTIk0b4AAAAAAKCp2rV2AyRjw4YNkU6nM+P27dtHQUFBo2r0\n6NEja7x+/fpDrl21alW88cYbWXOffPJJ5nN5eXnk5+dnxnl5eXHxxRdnrf/Nb34Tjz32WFRVVcU/\n/vGP+Pa3vx3XXHNNDBgwIDp37hwff/xxvPDCC/HII49kXll27bXXNvmGzPr166OmpqZRe1atWtWk\nMwEAAAAAOLYIZNqo/W+XHH/88ZFKpRpVo3PnzvXW3Ncbb7wRV1xxxSGfX3/99VnjXr16HRDIdO3a\nNWbPnh0jRoyId955J9asWRPXXXfdQeulUqm4+uqr49577z3c1zisBx98MCZOnNjkOgAAAAAAcCgC\nmTZq//CkY8eOja7RqVOnemsmoW/fvrFw4cKYPn16lJeXx6JFi+LTTz+N3bt3R5cuXaJ3794xcODA\n+MUvfhHf+c53Eu8HAAAAAACag0Cmjdq1a1fW+Ljjjmt0jQ4dOmSNd+7ceci1Y8aMiTFjxjT6jINp\n3759jB49OkaPHt0s9QAAAAAAoLUJZNqo/W/E1NbWNrrG7t27663ZVowfPz5GjhzZqD2rVq2KCy+8\nMKGOAAAAAABoa9pMILNr166YNWtWfPDBB5GbmxunnnpqDBo0KHJzcw+796OPPoqbb745UqlUPPro\noy3QbfLy8vKyxvvfmGmI/W/E7F+zrSgoKIiCgoLWbgMAAAAAgDasTQQy06ZNi2uuuSY2bNiQNd+j\nR4/43e9+Fz/5yU/q3b958+Z4/PHH23Qgs2PHjkin05FKpRpcY/v27fXWBAAAAAAAGiantRtoqilT\npsSll14aGzZsiHQ6nfXfunXr4mc/+1lcdtll9f7+SVuUn5+fFb7s2bMn1q9f36ga1dXVWWO3SAAA\nAAAA4Ms5qgOZ9evXx9VXXx11dXWRTqfjwgsvjD/84Q9x3333xZAhQyI3NzfS6XRMnTo1fvjDH8aW\nLVtau+UW06lTpygqKsqaq6qqalSN/df369evyX0BAAAAAMCx6KgOZB599NHYsmVL5OTkxNSpU2P6\n9Olx9dVXx29+85t4/vnn4x//+EeUlJREOp2ON998MwYPHhybN29u7bZbzP4ByvLlyxu1f8WKFfXW\nAwAAAAAAGuaoDmRefvnlSKVS8dOf/jRGjx59wPPTTz895s+fH0OHDo10Oh2LFi2KwYMHx6ZNm1qh\n25bXv3//rHFFRUWD93788cdRWVmZGbdv3z5KSkqaqzUAAAAAADimHNWBzBc3PkaOHHnINZ07d44Z\nM2bEFVdcEel0OpYuXRqDBw+OjRs3tlSbrWbIkCFZ41mzZkU6nW7Q3pdffjlrPGjQoMjLy2u23gAA\nAAAA4FhyVAcyn332WURE9OzZs951qVQqHn300fiXf/mXSKfT8c4778S5554bGzZsaIk2W01paWnk\n5+dnxqtXr465c+c2aO+jjz6aNR42bFhztgYAAAAAAMeUozqQ6dChQ0REbN26tUHrH3rooRg/fnyk\n0+l477332vxNmZycnBgzZkzW3MSJEw97S2b27Nnx+uuvZ8ZdunSJUaNGJdEiAAAAAAAcE47qQObk\nk0+OiIiVK1c2eM+kSZPi6quvzoQygwYNipqamqRabHU33HBD1qvGXn311bjrrrsOub66ujquvPLK\nrLkJEyZk3bQBAAAAAAAap11rN9AU3/72t+P999+PV155JcaOHdvgfX/4wx8ilUrFpEmTYtmyZXHJ\nJZck2OWhzZs3L3bu3HnA/NKlS7PGu3btilmzZh20RmFhYZSUlBzyjPz8/LjpppvipptuyszdeOON\nUVVVFTfffHMUFhZGRERdXV08//zzMWHChKiqqsqqf9111zXqewEAAAAAANlS6Yb+yvsR6MEHH4xr\nrrkm8vLy4pNPPonjjz++UfsnTJiQCWfS6XSkUqnYu3dvQt0eqLi4ONauXdukGj//+c/j8ccfr3dN\nXV1dDBs2LF544YWs+dzc3OjVq1d07do11qxZk/lNni906tQp/v73v8fAgQOb1GNbtGzZsjjttNMy\n4/feey9OPfXUVuwIAAAAAID9HUl/yz2qX1n24x//OCIitm/fHn/84x8bvf/3v/99TJgw4bC/qXK0\ny8nJiWnTph1wE2jv3r2xevXqWLx48QFhTPfu3eOvf/2rMAYAAAAAAJrBUR3I9O7dOy6//PI499xz\nY+HChV+qxgMPPBDXX3999OrVK4qKipq5wyNHx44dY+rUqVFeXh79+/c/5LrOnTvH+PHjY/ny5VFW\nVtZyDQIAAAAAQBt2VL+yjC9v1apVMX/+/Kiuro7a2to44YQT4pRTTomBAwdGx44dW7u9I96RdM0N\nAAAAAICDO5L+ltuuVU6l1fXt2zf69u3b2m0AAAAAAMAx4ah+ZVljzJ49O3JzcyM3NzfatZNDAQAA\nAAAALeeYSia8nQ0AAAAAAGgNx8wNGQAAAAAAgNYikAEAAAAAAEiYQAYAAAAAACBhAhkAAAAAAICE\nCWQAAAAAAAASJpABAAAAAABImEAGAAAAAAAgYQIZAAAAAACAhAlkAAAAAAAAEiaQAQAAAAAASJhA\nBgAAAAAAIGECGQAAAAAAgIS1a83DX3vttRY7a+nSpS12FgAAAAAAwL5aNZApKyuLVCrVYuelUqlI\np9Mtdh4AAAAAAEBEKwcyX2ipkKQlwx8AAAAAAIAvHBGBjKAEAAAAAABoy1o1kCkqKhLGAAAAAAAA\nbV6rBjKVlZWteTwAAAAAAECLyGntBgAAAAAAANo6gQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAk\nTCADAAAAAACQMIEMAAAAAABAwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIE\nMgAAAAAAAAkTyAAAAAAAACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCAD\nAAAAAACQMIEMAAAAAABAwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAA\nAAAAAAkTyAAAAAAAACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAA\nAACQMIEMAAAAAABAwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAA\nAAkTyAAAAAAAACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCADAAAAAACQ\nMIEMAAAAAABAwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAlr\n19oN0DZs2bIlFi9eHAsXLoyFCxfG22+/HatWrYp0Oh0REWvWrIni4uJ6a+zZsydeeumlePvtt+Pt\nt9+O1atXx8aNG2Pz5s3RoUOHKCwsjNNPPz1Gjx4dQ4cOjVQq1QLfDAAAAAAAmk4gQ7M455xzYsmS\nJU2q8emnn8awYcMO+mzPnj3xwQcfxAcffBBPPvlklJaWRnl5eXz9619v0pkAAAAAANASBDI0iy9u\nwkREdO3aNb773e/G+++/H5988kmj6px44olxzjnnxOmnnx7f+MY34mtf+1p069YtPv/881i6dGlM\nnjw53n333aioqIjBgwfHokWLomPHjs39dQAAAAAAoFkJZGgWv/jFL+Kkk06K008/Pfr27RupVCrK\nysoaFcgUFhZGTU1N5OQc/KeNzjnnnBg/fnxcdNFFMXPmzFixYkX88Y9/jPHjxzfX1wAAAAAAgEQc\n/C/f0EjXXnttXHrppfFP//RPX/q3XXJycg4ZxnyhXbt2ceONN2bGc+bM+VJnAQAAAABAS3JD5hj1\n4YcfxoIFC2LdunVRW1sb3bp1i379+kVpaekR/wqwr3zlK5nPW7ZsacVOAAAAAACgYQQyR4Dq6upY\nsGBBzJ8/PxYsWBALFy6MrVu3Zp736tUrKisrm+WsGTNmxG233RaLFi066PO8vLwYM2ZM3HLLLZGf\nn98sZza3P//5z5nP/fr1a8VOAAAAAACgYQQyrWTevHlx3333xfz58+Ojjz5K/Lzdu3fH2LFjY8qU\nKfWu27ZtW0yaNCn+8pe/RHl5eZx99tmJ93Y4dXV1sX79+nj//ffjkUceiSeffDIiIo477rgYN25c\nK3cHAAAAAACHJ5BpJW+99VY8++yzLXJWXV1djB49Op577rms+dzc3CgqKoquXbvGmjVr4vPPP888\nq6mpifPPPz9mzZoVZ555Zov0ua8NGzbESSeddMjnXbt2jSeffDJOOeWUFuwKAAAAAAC+nPp/QZ1W\nkZeX16z17rnnngPCmHHjxkVVVVWsXr06Fi9eHJs2bYrp06dHUVFRZs2OHTti1KhRWUFNa0ulUvHb\n3/42Vq5cGRdccEFrtwMAAAAAAA0ikGllXbp0ibKysrj++utj2rRpUVlZGTNnzmy2+hs3bow77rgj\na+7OO++Mhx56KAoLCzNzOTk5MXz48KioqIji4uLM/Lp16+L+++9vtn4aqlu3bvHuu+/Gu+++G0uW\nLInZs2fH7bffHj179ozf//73MXbs2Kiurm7xvgAAAAAA4MvwyrJWMnTo0Pjnf/7n6NevX+TkZOdi\na9asabZz7r777ti6dWtmfPbZZ8cNN9xwyPU9evSIyZMnxw9/+MPM3AMPPBDXXnttdO/evdn6Opzc\n3Nw47bTTsubOPffcmDBhQowYMSJefPHF+N73vhdz5szx2jIAAAAAAI54bsi0kj59+kRJSckBYUxz\nqquri8ceeyxr7tZbb41UKlXvvsGDB8dZZ52VGW/dujWefvrpRHpsrLy8vPjTn/4UnTp1ik8//TTG\njRvX2i0BAAAAAMBhCWTasIqKiqipqcmMe/fuHWVlZQ3aO3bs2KzxjBkzmrO1JikoKIgf/OAHERHx\n2muvxccff9zKHQEAAAAAQP0EMm3Yiy++mDU+77zzDns7Zt+1+5o7d25s37692Xprqvz8/MznysrK\n1msEAAAAAAAaQCDThi1ZsiRrXFpa2uC9hYWFUVxcnBnX1tbG8uXLm6u1Jlu3bl3mc5cuXVqxEwAA\nAAAAODyBTBu2YsWKrHFJSUmj9u+/fv96raWysjLefPPNiIjo3Llz9OnTp5U7AgAAAACA+glk2qid\nO3dGVVVV1lzPnj0bVWP/9StXrmxyX/WZMmVKbNiwod41NTU1MWrUqNizZ09ERFx66aXRqVOnRPsC\nAAAAAICmatfaDZCMDRs2RDqdzozbt28fBQUFjarRo0ePrPH69esPuXbVqlXxxhtvZM198sknmc/l\n5eVZv/uSl5cXF198cdb6Rx55JK688sq44IILYtCgQVFSUhLdunWL//3f/43q6up49dVX44knnojN\nmzdHRETfvn3jd7/7XaO+EwAAAAAAtAaBTBu1bdu2rPHxxx8fqVSqUTU6d+5cb819vfHGG3HFFVcc\n8vn111+fNe7Vq9cBgUxExK5du2L69Okxffr0enu74IIL4tFHH43u3bvXu64h1q9fHzU1NY3as2rV\nqiafCwAAAADAsUMg00btH5507Nix0TX2fxVYfYFMc/jTn/4UL730UlRUVMTy5cvj008/jZqamti7\nd2907do1+vbtGwMGDIhLLrkkBgwY0GznPvjggzFx4sRmqwcAAAAAAPsTyLRRu3btyhofd9xxja7R\noUOHrPHOnTsPuXbMmDExZsyYRp+xr549e8avfvWr+NWvftWkOgAAAAAAcKTJae0GSMb+N2Jqa2sb\nXWP37t311gQAAAAAABrGDZk2Ki8vL2u8/42Zhtj/Rsz+NduK8ePHx8iRIxu1Z9WqVXHhhRcm1BEA\nAAAAAG2NQKaN2j882bFjR6TT6UilUg2usX379nprthUFBQVRUFDQ2m0AAAAAANCGeWVZG5Wfn58V\nvuzZsyfWr1/fqBrV1dVZY6EFAAAAAAB8OQKZNqpTp05RVFSUNVdVVdWoGvuv79evX5P7AgAAAACA\nY5FApg3bP0BZvnx5o/avWLGi3noAAAAAAEDDCGTasP79+2eNKyoqGrz3448/jsrKysy4ffv2UVJS\n0lytAQAAAADAMUUg04YNGTIkazxr1qxIp9MN2vvyyy9njQcNGhR5eXnN1hsAAAAAABxLBDJtWGlp\naeTn52fGq1evjrlz5zZo76OPPpo1HjZsWHO2BgAAAAAAxxSBTBuWk5MTY8aMyZqbOHHiYW/JzJ49\nO15//fXMuEuXLjFq1KgkWgQAAAAAgGOCQKaNu+GGG7JeNfbqq6/GXXfddcj11dXVceWVV2bNTZgw\nIeumDQAAAAAA0DjtWruBY9m8efNi586dB8wvXbo0a7xr166YNWvWQWsUFhZGSUnJIc/Iz8+Pm266\nKW666abM3I033hhVVVVx8803R2FhYURE1NXVxfPPPx8TJkyIqqqqrPrXXXddo74XAAAAAACQLZVu\n6K+80+yKi4tj7dq1Tarx85//PB5//PF619TV1cWwYcPihRdeyJrPzc2NXr16RdeuXWPNmjXx2Wef\nZT3v1KlT/P3vf4+BAwc2qce2aNmyZXHaaadlxu+9916ceuqprdgRAAAAAAD7O5L+luuVZceAnJyc\nmDZtWlxyySVZ83v37o3Vq1fH4sWLDwhjunfvHn/961+FMQAAAAAA0AwEMseIjh07xtSpU6O8vDz6\n9+9/yHWdO3eO8ePHx/Lly6OsrKzlGgQAAAAAgDbMb8i0osrKyhY/c8SIETFixIhYtWpVzJ8/P6qr\nq6O2tjZOOOGEOOWUU2LgwIHRsWPHFu8LAAAAAADaMoHMMapv377Rt2/f1m4DAAAAAACOCV5ZBgAA\nAAAAkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAA\nAAAJE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAA\nkDCBDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJ\nE8gAAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCB\nDAAAAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gA\nAAAAAAAkTCADAAAAAACQMIEMAAAAAABAwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAA\nAAAAQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAA\nAAAkTCADAAAAAACQMIEMAAAAAABAwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAA\nQMIEMgAAAAAAAAkTyAAAAAAAACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAk\nTCADAAAAAACQMIEMAAAAAABAwgQyAAAAAAAACRPIAAAAAAAAJEwgAwAAAAAAkDCBDAAAAAAAQMIE\nMgAAAAAAAAkTyAAAAAAAACRMIAMAAAAAAJAwgQwAAAAAAEDCBDIAAAAAAAAJE8gAAAAAAAAkTCDD\nEemVV16JMWPGRL9+/aJLly7Rvn376N69ewwcODD+4z/+I/7nf/6ntVsEAAAAAIAGa9faDcC+du7c\nGZdddllMnz79gGebNm2KioqKqKioiPvuuy8mTZoUV1xxRSt0CQAAAAAAjSOQ4Yhy+eWXZ8KYbt26\nxa9//es444wzonv37rF27dqYOnVqTJ8+PXbs2BFjx46Nk046KYYMGdLKXQMAAAAAQP0EMhwxli5d\nGuXl5RERcdJJJ8WiRYvi5JNPzjz//ve/HxdffHE89NBDMX78+Ein0/Hv//7vAhkAAAAAAI54fkOG\nI8brr7+e+fzLX/4yK4zZ17hx46KwsDAiIpYsWRLbtm1rkf4AAAAAAODLckOGJvnwww9jwYIFsW7d\nuqitrY1u3bpFv379orS0NDp27NioWlu2bMl8Li4uPuS6VCoVvXr1io8++igiIrZu3Rp5eXlfqn8A\nAAAAAGgJApk2pLq6OhYsWBDz58+PBQsWxMKFC2Pr1q2Z57169YrKyspmOWvGjBlx2223xaJFiw76\nPC8vL8aMGRO33HJL5OfnN6jmN7/5zczn+vpMp9Oxdu3aiIjo2rVrFBQUNLxxAAAAAABoBV5ZdpSb\nN29eXHTRRdGjR484+eST46KLLoq77ror5syZkxXGNJfdu3fHZZddFsOHDz9kGBMRsW3btpg0aVKU\nlJTEa6+91qDaQ4YMybymbPLkyVFdXX3QdQ8//HDmdsy4ceMiNze3kd8CAAAAAABalhsyR7m33nor\nnn322RY5q66uLkaPHh3PPfdc1nxubm4UFRVF165dY82aNfH5559nntXU1MT5558fs2bNijPPPLPe\n+h07doyZM2fG0KFDY926dfGtb30rfv3rX8eAAQPixBNPjLVr18ZTTz0VzzzzTEREjB49OiZOnNj8\nXxQAAAAAAJqZGzJtWHP/rso999xzQBgzbty4qKqqitWrV8fixYtj06ZNMX369CgqKsqs2bFjR4wa\nNSorqDmU/v37x+LFi+P222+Purq6uOWWW+LHP/5xnHHGGTFy5Mh45plnYsCAAVFeXh5PPfVUdOjQ\noVm/IwAAAAAAJEEg00Z06dIlysrK4vrrr49p06ZFZWVlzJw5s9nqb9y4Me64446suTvvvDMeeuih\nKCwszMzl5OTE8OHDo6KiIoqLizPz69ati/vvv79BZ5WXl8eUKVMOGeAsWrQonnjiiXjnnXca/0UA\nAAAAAKAVCGSOckOHDo1ly5bFZ599FnPmzIm77747Lr744ujVq1eznnP33Xdn/SbN2WefHTfccMMh\n1/fo0SMmT56cNffAAw/Exo0bD7mnrq4uLrvssrjqqqtixYoVMWjQoPjb3/4Wmzdvjtra2li7dm08\n+OCD0a1bt5g5c2aUlpY2a+gEAAAAAABJEcgc5fr06RMlJSWRk5PcP2VdXV089thjWXO33nprpFKp\nevcNHjw4zjrrrMx469at8fTTTx9y/cMPPxxTpkyJiIiRI0fG7Nmz40c/+lGccMIJ0b59+ygqKoqr\nrroq5s+fH927d4/t27fHT3/609iwYUMTvh0AAAAAACRPIMNhVVRURE1NTWbcu3fvKCsra9DesWPH\nZo1nzJhxyLWPPPJI5vO99957yMCnuLg4rr322oj4v5Bn6tSpDeoFAAAAAABai0CGw3rxxRezxued\nd95hb8fsu3Zfc+fOje3btx907fLlyyMioqCgIIqKiuqt+/3vf/+AfQAAAAAAcKQSyHBYS5YsyRqX\nlpY2eG9hYWEUFxdnxrW1tYcMUNq1axcREXv27Dls3X3XtG/fvsH9AAAAAABAaxDIcFgrVqzIGpeU\nlDRq//7r96/3hT59+kRExObNm2Pp0qX11nzllVcO2AcAAAAAAEcqgQz12rlzZ1RVVWXN9ezZs1E1\n9l+/cuXKg64bPnx45vNVV10V27ZtO+i6efPmxcMPPxwREbm5uTFkyJBG9QMAAAAAAC2tXWs3wJFt\nw4YNkU6nM+P27dtHQUFBo2r06NEja7x+/fqDrvvNb34Tjz32WFRVVcU//vGP+Pa3vx3XXHNNDBgw\nIDp37hwff/xxvPDCC/HII49kXll27bXXNvmGzPr166OmpqZRe1atWtWkMwEAAAAAOLYIZKjX/rdU\njj/++EilUo2q0blz53prfqFr164xe/bsGDFiRLzzzjuxZs2auO666w66NpVKxdVXXx333ntvo3o5\nmAcffDAmTpzY5DoAAAAAAHAoAhnqtX940rFjx0bX6NSpU70199W3b99YuHBhTJ8+PcrLy2PRokXx\n6aefxu7du6NLly7Ru3fvGDhwYPziF7+I73znO43uBQAAAAAAWoNAhnrt2rUra3zcccc1ukaHDh2y\nxjt37qx3ffv27WP06NExevToRp8FAAAAAABHIoEM9dr/RkxtbW2ja+zevbvemq1t/PjxMXLkyEbt\nWbVqVVx44YUJdQQAAAAAQFsjkKFeeXl5WeP9b8w0xP43Yvav2doKCgqioKCgtdsAAAAAAKANy2nt\nBjiy7R+e7NixI9LpdKNqbN++vd6aAAAAAADQ1glkqFd+fn6kUqnMeM+ePbF+/fpG1aiurs4au40C\nAAAAAMCxRiBDvTp16hRFRUVZc1VVVY2qsf/6fv36NbkvAAAAAAA4mghkOKz9A5Tly5c3av+KFSvq\nrQcAAAAAAG2dQIbD6t+/f9a4oqKiwXs//vjjqKyszIzbt28fJSUlzdUaAAAAAAAcFQQyHNaQIUOy\nxrNmzYp0Ot2gvS+//HLWeNCgQZGXl9dsvQEAAAAAwNFAIMNhlZaWRn5+fma8evXqmDt3boP2Pvro\no1njYcOGNWdrAAAAAABwVBDIcFg5OTkxZsyYrLmJEyce9pbM7Nmz4/XXX8+Mu3TpEqNGjUqiRQAA\nAAAAOKIJZGiQG264IetVY6+++mrcddddh1xfXV0dV155ZdbchAkTsm7aAAAAAADAsaJdazdA082b\nNy927tx5wPzSpUuzxrt27YpZs2YdtEZhYWGUlJQc8oz8/Py46aab4qabbsrM3XjjjVFVVRU333xz\nFBYWRkREXV1dPP/88zFhwoSoqqrKqn/dddc16nsBAAAAAEBbkUo39NfZOWIVFxfH2rVrm1Tj5z//\neTz++OP1rqmrq4thw4bFCy+8kDWfm5sbvXr1iq5du8aaNWvis88+y3reqVOn+MEQiBoAACAASURB\nVPvf/x4DBw5sUo9HkmXLlsVpp52WGb/33ntx6qmntmJHAAAAAADs70j6W65XltFgOTk5MW3atLjk\nkkuy5vfu3RurV6+OxYsXHxDGdO/ePf7617+2qTAGAAAAAAAaSyBDo3Ts2DGmTp0a5eXl0b9//0Ou\n69y5c4wfPz6WL18eZWVlLdcgAAAAAAAcgfyGTBtQWVnZ4meOGDEiRowYEatWrYr58+dHdXV11NbW\nxgknnBCnnHJKDBw4MDp27NjifQEAAAAAwJFIIEOT9O3bN/r27dvabQAAAAAAwBHNK8sAAAAAAAAS\nJpABAAAAAABImEAGAAAAAAAgYQIZAAAAAACAhAlkAAAAAAAAEiaQAQAAAAAASJhABgAAAAAAIGEC\nGQAAAAAAgIQJZAAAAAAAABImkAEAAAAAAEiYQAYAAAAAACBhAhkAAAAAAICECWQAAAAAAAASJpAB\nAAAAAABImEAGAAAAAAAgYQIZAAAAAACAhAlkAAAAAAAAEiaQAQAAAAAASJhABgAAAAAAIGECGQAA\nAAAAgIQJZAAAAAAAABImkAEAAAAAAEiYQAYAAAAAACBhAhkAAAAAAICECWQAAAAAAAASJpABAAAA\nAABImEAGAAAAAAAgYQIZAAAAAACAhAlkAAAAAAAAEiaQAQAAAAAASJhABgAAAAAAIGECGQAAAAAA\ngIQJZAAAAAAAABImkAEAAAAAAEiYQAYAAAAAACBhAhkAAAAAAICECWQAAAAAAAASJpABAAAAAABI\nmEAGAAAAAAAgYQIZAAAAAACAhAlkAAAAAAAAEiaQAQAAAAAASJhABgAAAAAAIGECGQAAAAAAgIQJ\nZAAAAAAAABImkAEAAAAAAEiYQAYAAAAAACBhAhkAAAAAAICECWQAAAAAAAASJpABAAAAAABImEAG\nAAAAAAAgYQIZAAAAAACAhAlkAAAAAAAAEiaQAQAAAAAASJhABgAAAAAAIGECGQAAAAAAgIQJZAAA\nAAAAABImkAEAAAAAAEiYQAYAAAAAACBhAhkAAAAAAICECWQAAAAAAAASJpABAAAAAABImEAGAAAA\nAAAgYQIZAAAAAACAhAlkAAAAAAAAEiaQAQAAAAAASJhABgAAAAAAIGECGQAAAAAAgIS1a+0GYF97\n9uyJl156Kd5+++14++23Y/Xq1bFx48bYvHlzdOjQIQoLC+P000+P0aNHx9ChQyOVSrV2ywAAAAAA\ncFgCGY4on376aQwbNuygz/bs2RMffPBBfPDBB/Hkk09GaWlplJeXx9e//vUW7hIAAAAAABpHIMMR\n58QTT4xzzjknTj/99PjGN74RX/va16Jbt27x+eefx9KlS2Py5Mnx7rvvRkVFRQwePDgWLVoUHTt2\nbO22AQAAAADgkAQyHFEKCwujpqYmcnIO/vNG55xzTowfPz4uuuiimDlzZqxYsSL++Mc/xvjx41u4\nUwAAAAAAaLiD/9UbWklOTs4hw5gvtGvXLm688cbMeM6cOUm3BQAAAAAATeKGDE324YcfxoIFC2Ld\nunVRW1sb3bp1i379+kVpaWlirxL7yle+kvm8ZcuWRM4AAAAAAIDmIpBpY6qrq2PBggUxf/78WLBg\nQSxcuDC2bt2aed6rV6+orKxslrNmzJgRt912WyxatOigz/Py8mLMmDFxyy23RH5+frOc+YU///nP\nmc/9+vVr1toAAAAAANDcBDJtwLx58+K+++6L+fPnx0cffZT4ebt3746xY8fGlClT6l23bdu2mDRp\nUvzlL3+J8vLyOPvss7/0mXV1dbF+/fp4//3345FHHoknn3wyIiKOO+64GDdu3JeuCwAAAAAALUEg\n0wa89dZb8eyzz7bIWXV1dTF69Oh47rnnsuZzc3OjqKgounbtGmvWrInPP/8886ympibOP//8mDVr\nVpx55pkNPmvDhg1x0kknHfJ5165d48knn4xTTjml8V8EAAAAAABaUP2/ns5RLy8vr1nr3XPPPQeE\nMePGjYuqqqpYvXp1LF68ODZt2hTTp0+PoqKizJodO3bEqFGjsoKaLyuVSsVvf/vbWLlyZVxwwQVN\nrgcAAAAAAEkTyLQhXbp0ibKysrj++utj2rRpUVlZGTNnzmy2+hs3bow77rgja+7OO++Mhx56KAoL\nCzNzOTk5MXz48KioqIji4uLM/Lp16+L+++9v8HndunWLd999N959991YsmRJzJ49O26//fbo2bNn\n/P73v4+xY8dGdXV1k78XAAAAAAAkLZVOp9Ot3QRN8+GHH8bu3bujX79+kZOTnbHNnTs3Bg0alBn3\n6tUrKisrv9Q5N9xwQ9x9992Z8dlnnx1z586NVCp1yD2zZ8+OH/7wh5lxly5dYs2aNdG9e/cv1UPE\n//02zYgRI+Lll1+Or371qzFnzpwWf23ZsmXL4rTTTsuM33vvvTj11FNbtAcAAAAAAOp3JP0t1w2Z\nNqBPnz5RUlJyQBjTnOrq6uKxxx7Lmrv11lvrDWMiIgYPHhxnnXVWZrx169Z4+umnm9RLXl5e/OlP\nf4pOnTrFp59+GuPGjWtSPQAAAAAASJpAhgapqKiImpqazLh3795RVlbWoL1jx47NGs+YMaPJ/RQU\nFMQPfvCDiIh47bXX4uOPP25yTQAAAAAASIpAhgZ58cUXs8bnnXfeYW/H7Lt2X3Pnzo3t27c3uaf8\n/PzM5y/7GjYAAAAAAGgJAhkaZMmSJVnj0tLSBu8tLCyM4uLizLi2tjaWL1/e5J7WrVuX+dylS5cm\n1wMAAAAAgKQIZGiQFStWZI1LSkoatX//9fvXa6zKysp48803IyKic+fO0adPnybVAwAAAACAJAlk\nOKydO3dGVVVV1lzPnj0bVWP/9StXrjzouilTpsSGDRvqrVVTUxOjRo2KPXv2RETEpZdeGp06/X/s\n3Xl8VPW9//H3zGRPIAkJAUHZBIWoLbJoBbFQa60rWiqCWtHqT4VaqVcF8doqXmzBpfaqVVtrRUDR\nui/gVVBBLRSUulQCKAYBEcjCkpCQzGTm/P4IGTLJJJnJzJlzZub1fDzOI/l+z/aZ1C9Nzvuc78kM\nqx4AAAAAAAAAAGIpxeoCYH8VFRUyDMPfTk1NVVFRUVjH6N27d0C7rKws6HaPP/64rr76ap199tka\nN26ciouLlZ+fr4aGBu3YsUMrV67UU089pb1790qSBg4cqLlz54b5iQKVlZWpvLw8rH02b94c0TkB\nAAAAAAAAAMmFQAYdOnDgQEA7KytLDocjrGNkZ2e3e8zm6urq9NJLL+mll15q95hnn322nnjiCRUU\nFIRVS0uPPPKIZs+eHdExAAAAAAAAAMCO9ng8urjFO72fKy5Wt9RUiypKXgQy6FDL8CQjIyPsY7Sc\nUqytQGbhwoV68803tWrVKpWUlGj37t0qLy+X1+tVbm6uBg4cqJNPPlmTJk3SySefHHYdAAAAAAAA\nyYwLs0DyebasTMsPzTjU5LmyMk1tMasRzEcggw7V1dUFtNPS0sI+Rnp6ekD74MGDQbc76qijdM01\n1+iaa64J+xwAAAAAAABoHxdmgeQzf9euoH2M+9gjkEGHWj4R43a7wz5GfX19u8e00rRp03TRRReF\ntc/mzZt1wQUXmFQRAAAAAMQOd8sDyYULs0ByWV9To4+qq1v1r62uVklNjYpbvGoC5iKQQYdycnIC\n2i2fmAlFyydiWh7TSkVFRSoqKrK6DAAAAACwBHfLA8mDC7NA8nkqSAjbfN28o4+OYTVwWl0A7K9l\neFJbWyvDMMI6Rk1NTbvHBAAAAABYo6275QEkno4uzAJILA0+nxbu3t3m+oW7d6vB54thReAJGXSo\nsLBQDofDH8J4PB6VlZWpR48eIR9jx44dAW2eSAEAALAnpi4Ckgt3ywPJI5QLs3f3768UJ/dvA/HC\nMAxVeDxtrn9v3z7tauf1Ezvdbr1cUaGxeXltblOYmiqHwxFRnTiMQAYdyszMVJ8+fbR161Z/37Zt\n28IKZLZt2xbQHjx4cNTqAwAAQPQwdRGQXJjGBEgcXJgFks9nBw7oxHXrIjrGxBY3Y7X06YgR+j6z\nHUUNgQxCMnjw4IBApqSkRCNHjgx5/w0bNrQ6HgAAAOyHF/0CyYO75YHEwoVZIPm8VFFh/jnKyxn3\nUUQgg5AMHTpUb731lr+9atUqTZkyJaR9d+7cqW+++cbfTk1NVXFxcbRLBAAAQISYughILNwtDyQX\nLswinhmGIUNqXJp/L8nXzrqmtq+dddE8jq+DcxiG0XiMGB3nyRi8++mligrN7t/f9PMkCwIZhOTc\nc8/VvHnz/O3ly5fLMIyQfvF+++23A9rjxo1TDv/nDQAAYDtMXQQkFu6WB+JD04VXn2HI2/z7Fn3e\nINs171vczhNv0fLkrl06NiuLC+MWfeZE/Nk1LbCvDTU1KnO7VZSWZnUpCYFABiEZNWqUCgsLVXHo\nbovS0lKtWLFC48aN63DfJ554IqA9fvx4U2oEAABA5zF1EZB4uFsewS70B3yNsK8pMAi1r72wIdS+\njkKJUPrs9tnj6WL09vp6XdpiWnoAiat/RoaeGTKEMCaKCGQQEqfTqSuuuEL33Xefv2/27NkaO3Zs\nu0/JvPPOO/rggw/87S5dumjixImm1goAAIDWmLoISD4vlZebfo4Xy8s1q0+fsC9OR+NifSJemI/2\nZ4+nC/0AAHv5RY8eenjQIHVNIUKIJn6aCNnMmTP12GOP6cCBA5KklStXat68ebr11luDbr9jxw5d\nffXVAX3Tp09XYWGh6bUCAKJjj8eji1tMVfJccbG6paZaVBGAzmLqIuAwwzDUcOiitVeNF7L97abv\nD/V7o7itV2q9r0nbHvR6tb621vSf5fraWmU2uwkPAADEt1yXS48ec4wm9+hhdSkJiUAmQfzzn//U\nwYMHW/V/9tlnAe26ujotX7486DF69eql4uLiNs9RWFio2267Tbfddpu/b9asWdq2bZtuv/129erV\nS5Lk8/n02muvafr06dq2bVvA8W+66aawPhcAwFrPlpVp+d69AX3PlZVpau/eFlUEoLOYuigx+UK4\nWG9WuBDP2/LUAAAAQGundO2qxcXF6puRYXUpCcthGAa/iyaAfv36aevWrREdY8qUKZo/f3672/h8\nPo0fP15vvPFGQL/L5VLfvn2Vm5urLVu2aN++fQHrMzMztWzZMo0ePTqiGu1i/fr1Ov744/3tL774\nQscdd5yFFQGAOU5at04fVVcH9nXpojXDh1tUEYDOOn7tWtPvlj8+O1v/GTky7P2a3nEQ7KJ6wFMA\nHVyAt8O2sQ4XAAAAEF8czReHI2jb2c66psXZvN3s+wNer6q8nftNce6AAZrZp09En8+O7HQtlydk\nEBan06nnn39eV155pZ599ll/v9frVWlpadB9CgoK9MILLyRMGAMAyWJ9TU2rMEaS1lZXq6SmRsXZ\n2RZUBSQ3wzDkMQy5fT65D32tb9Fu/rXe55Pb51O5x6MNMZi66IuaGh27Zo0cUlgBB8ECAAD2k+l0\nKtPpDOsisbODC8gOh6PxGDE4TiQXtK04jp1+dqEch59dJ48Tg/ctjv/Pf/RaZWWn9l29f3+Uq0FL\nBDIIW0ZGhhYvXqyf//znmjNnjj799NOg22VnZ2vKlCm64447VFRUFOMqAQCRemrXrnbXzTv66BhW\nA5jLOBQM+EOMEEKONte1sW9Ix+1gX08cPNz+ZZBpdAEAycGlxguRTkkuh0NOh8Pf5zrUH2pfwLpO\n9jXVEElfe58pGp/T7M9+8fr1WrJnT6f+9/xJfr5eOeGETu0LwBqGYWh1VVWn919dVSXDMGISHCUr\nApkE8c0338T8nBMmTNCECRO0efNmrVmzRjt27JDb7VZeXp6GDBmi0aNHK4P5BgEgLjX4fFq4e3eb\n6xfu3q27+/dXitMZw6oQr7zthBAdBRXtPf0Ryb7BQhX7Rx0AkLzscLE+3AvzdrlYH6tQgot39mMY\nhtYGeeI9VFyYBeJPaV2dyj2eTu9f5vFoS12dBmRmRrEqNEcgg4gNHDhQAwcOtLoMAEAYDMNQRTu/\npL23b592ud1trt/pduvligqNzctrc5vC1FT+eDOZL8j0VR09wdGZoCLSpz+YjgpAonOo8YK0S1LK\noQviTUvKoX7/902LRds+tWtXp98ndUrXrprdr1/MnyDg9wmgc7gwCySfaEw5trqqinFvIgIZAACS\n0GcHDujEdesiOsbEkpJ21386YoS+n5MT0TmsYhx634VdpqlqK1RpiIPpqwDEl6aL5/ESLthh26aw\nIR4YhqF7t2/v9P5fHzyoH+fnE5AAcYILs0Dy6Wi6sgEZGTIkbamra/sY+/fr0h49olwZmhDIAACQ\nhF6qqDD/HOXlQQMZb4hhQ6ymqWorGAEQ35ySLS7Wx9u2XGhPbNwtDyQXLswCyae9cX95jx56aNAg\nSdL1X33V5jTlkbyDBh0jkAEAIAm9VF5u+jn+sG2b/rZzZ6vww2f6mQFIjVMopTudSnM4lBbka7rD\nodK6Ou1taOjU8Y/NzNRlPXrYMlxgiiMgOO6WB5ILF2aB5GIYhmq9rSeMznW59Ngxx2hSs3B1wZAh\nOqtbN1335ZeqarFPjdfL+6NMRCADAEAc8Ph8OuD1BizVLdod9jc06IDXq6qGBu0N8kta1Gs2DH3X\nzntogHgWLNwIFnr413cQjLS1b7rT2f5x29k3xels9zMYhqEeq1Z1+mewt6FB/923L3+oAXGEu+WB\n5MGFWSD5OBwOrRsxQv9dWqoHd+yQIenU3FwtGjJEfTMyWm0/uUcPndK1qy7bsEH/rKqSQ9L0I4/U\nnP79GfMmIpABACDK3EHCk1DDkrb2YQotJIsUh+NwENHJoKLd8COU43awb0qCTOvE1EVA8uFueSB5\ncGEWSE7ZLpf+NGiQft69u1ZXVenGI49s90atfpmZWjF0qP747bca1bWrTs3Li2G1yYlABkBY9ng8\nurjFi7yfKy5Wt9RUiyoCItMUnrQVlLQXlrS1D+EJ7Mgl2e4Jjpb7pjri58XYiYCpi4Dkwt3yQPLh\nwiyQvE7Nywt5DKc4nZrRp4/JFaEJgQyAsDxbVqble/cG9D1XVqapvXtbVBGShWEYchtGWE+VhNLv\nITxBFLQMHaLxFEa44UZH+7q4cIYWmLoISC7cLQ8kLy7MAoB9EMgACMv8XbuC9hHIoDnDMFTfxrRd\n7T6J0kF/A+FJ0kltPn2VCU9wRGNaLFeCTF+F5MPURUDy4W55AAAAaxHIAAjZ+poafVRd3ap/bXW1\nSmpqVJydbUFViFTz8CTcl8S3t47wJLmcnpencfn5UX2xeSpBB2Aapi4Ckht3ywMAAFiDQAZAyJ4K\n8nRM83Xzjj46htUkJ8MwVNfiyZNOhSgtpvpqfUkO8SLb6VSOy+VfuqSkBLQD1nXQf/WmTVq6Z0+n\n6shxufTffftG+dMBMAtTFwEAAABA7BHIAAhJg8/X5nQlkrRw927d3b9/u1MeJBvDMHQwzGm7Qnl5\nvM/qD4ZO62xQ0ta6LJcrai9ANwwj6BNwoVpdVcVd8kCcYeoiAAAAAIgtAhkAkhovxlZ4PG2uf2/f\nPu1yu9tcv9Pt1ssVFRrbzsWZwtRU216sbQpPwnmqJJQnUQhP4ldnw5K2+qMZnpihtK5O5e38G9CR\nMo9HW+rqNCAzM4pVAYgFpi4CAAAAgNggkAEgSfrswAGduG5dRMeYWFLS7vpPR4zQ93NyIjqHdGje\n+2ZPnrQVlIQ7nRdvPIlPDrV+8iTsEKXFNF+ZTqetwxMzrN6/P/JjVFURyAAAAAAAALSBQAaAJOml\nigrTz/G3777TVUcc0emXxDf11xCexC2nOjFtVxvvROnSLDyx65NX8WR1VVW76wdkZMiQtKWuru1j\n7N+vS5u9CBwAAAAAAACHEcgAkCS9VF5u+jke/u47Pfzdd6afB9HRFJ6EG5S0tw/hiX21F8hc3qOH\nHho0SJJ0/Vdftfk+qY5CHQAAAAAAgGRGIANAZW63NtbWWl0GIuCUAkKQjp4qCWVdBuFJ0jAMQ7Ve\nb6v+XJdLjx1zjCY1e+plwZAhOqtbN1335ZeqarFPjdcrwzD47wYAAAAAACAIAhkAKkpL0wcnnqhL\nN2xodzoiRIdLChqYRPLy+HTCE0TA4XBo3YgR+u/SUj24Y4cMSafm5mrRkCHqm5HRavvJPXrolK5d\nddmGDfpnVZUckqYfeaTm9O/Pf4cAAAAAAABtIJABIEk6JTdXn44Y0e50RMkoxeEI66mSUJ5EITyB\nHWW7XPrToEH6effuWl1VpRuPPFIpTmeb2/fLzNSKoUP1x2+/1aiuXXVqXl4MqwUAAAAAAIg/BDIA\n/LqmpLQ7HZHdNQ9POhWiBHlqJc3hIDxBUjk1Ly/kcCXF6dSMPn1MrggAAAAAACAxEMgAaKVpOqJL\nNmww7SXdaQ5HREFJsH3S2rmbHwAAAAAAAACsRCADIKh+mZk6v6Cg04HMpO7dNblHjzaDFMITAAAA\nAAAAAMmEQAZAmyJ5Ouagz6fzCwujWA0AAAAAAAAAxC9uUQcQlGEYEQUyq6uqZBhGFCsCAAAAAAAA\ngPhFIAMgqNK6OpV7PJ3ev8zj0Za6uihWBAAAAAAAAADxi0AGQFCr9++P/BgRPGEDAAAAAAAAAImE\nQAZAUB2FKQMyMtQ/I6P9Y0Qh1AEAAAAAAACAREAgAyCo9gKZy3v00CcjRujTESP0ix49OnUMAAAA\nAAAAAEgmBDIAWjEMQ7Veb6v+XJdLi4cM0VNDhqhrSoq6pqRowZAhembIEHV1uVptX+P1yjCMWJQM\nAAAAAAAAALZGIAOgFYfDoXUjRmh6795yHOo7NTdXn40cqUlBnoiZ3KOHPhsxQqO7dm3cX9JvjjxS\n60aMkMPhaLU9AAAAAAAAACSbFKsLAGAtn+FTZW1l0HX/3StPp2c79PGBal13RC+leKtVXlMddNts\nSc8P6q1Hdzo0MqeLfpCbq9q6Papt47wFWQVyOsiEAQAAAAAAACQHAhkgyVXWVqrovqIOt7sryuct\nu7lM3bO7R/moAAAAAAAAAGBP3J4OAAAAAAAAAABgMgIZAAAAAAAAAAAAkxHIAAAAAAAAAAAAmIxA\nBgAAAAAAAAAAwGQpVhcAAABix2f4VFlbGfPzFmQVyOngPhAAAAAAAJC8CGQAAEgilbWVKrqvKObn\nLbu5TN2zu8f8vAAAAAAAAHbBraoAAAAAAAAAAAAmI5ABAAAAAAAAAAAwGVOWAQAAAAmMd0cBAAAA\ngD0QyAAAAAAJjHdHAQAAAIA9EMgAsMTZT5+t7LRspbnSOrWkOlM7va//GK5U7twFAAAAAAAAEBME\nMgAs8fHOj60uQZKU4kyJWsAT7cCI8AgAAAAAAABIHAQyAJJag69BDb4Gq8sIicvhimrIY1ZwlOZK\nIzwCAAAAAAAAWiCQAZKdYVhdAULkNbw62HBQBxsOWl1Kh6IZHpkVGjUthEcAACDR+AyfKmsrY37e\ngqwCfrcCAABoB4EMkOwOHLC6AiSgZAuPzA6NCI8AAEA4KmsrVXRfUczPW3Zzmbpnd4/5eQEAAOIF\ngQyQ7DxuqysALJUs4VGqK1VpzjR5fV6rPwYAAAAAAEBSIpABkl1qmiWnnfW+lOqT3K6OF08I2zQt\n9fyrhgQWT+FRS73/2FuprlSlOlOV4kxp9X2KMyVou911ke7fzrpQamz63uV0Wf3jBQAAAAAAcYBL\nl0Cyy8mx5LQ3/kvqXhv94xqSvM52wp121oW7hBMUtbUYjuj/DAA78vg88vg8VpdhCoccEQU6nQ2d\nYhVIOR1OORz8YwUAAAAAQKQIZIBkZ9VFtjeXSr5Mqa6ucamvP/x9BG1HXZ1S6uqUUl+vrLo6qc6+\nF4Cbh0d2C4paBlj1KYRHQFsMGQkdOEmK+CmioOGPI0qhVYShk8vhInACAABxzWf4VFlbGfPzFmQV\n8J5LAAgTgQwAawwfIcXihZ9eb2NY016gE6UwqM22J/hFWoekFF/jEg+8DnuFRO1NW0d4BERXU+AU\nj9PlhcKUae2iOC1eJKFTipNf9wEASHSVtZUquq8o5uctu7lM3WPxdz0AJBD+QgOQ2FwuKSurcbGK\nzxfbAChY2+2O+GO4DCmzoXGxu1DDo1gGRYRHgH01+BrU4IuDf9w6yeVwWXLeP3/0Z+Vn5HcYKkXa\nZlo9AAAAAPGCQAYAzOZ0SpmZjYtVmodCVoVDUQiFQhXv4ZGZQVFVmvTaEKs/NYBY8hpeS847e+Xs\nmJ3LrLAnGseJxjGYWg8AAABIDAQyAJAM7BIKud2xfzqo+ff19dZ9/jbEOjwqz5KKLAhknv2HlN0g\nNTgbQ6IGZ2Pw1LJtxrqmdkfreFoJiF+J/pSTFN3QqeW7nEwNtAidAAAAAD8CGQBAbDidUkZG42KV\n5qGQFVPHNX1NQj/6Rupea3UV7fM5Ohfk2Dlkar7Ox/tWgbiWLKFT1MOeCEKnaNdC6AQAAAACGQBA\n8rBTKBTrp4OavnfUSvJY9/ltzGlI6d7GJRF/RD5HfAZJoa4jcALiX1PoVKc6q0sxTaRBT6jT6rm9\nsZsqFgAAxJ7P8KmytjLm5y3IKpDTwR9fkSCQAQAglpqHQrm5sT9/Tbl0X1Hsz3vmT6SDTsnjkRoa\nGr+2932wdT5f7OtOIE5DSvM2LokeOMVTkBRqbQROQGJI9NDpiPuPUJorTamuVKU6U/1fmwKj5n3N\nA6R2t4/WcULYvuU6nmoCANhVZW2liiz4277s5jJ1z+4e8/MmEgIZAABgvoWLpEh/afP5wg9x4mG7\nhsSegihWAgKnBNQUOHUmSCrPki6eGPuaT9glKYSgrOkrgPjnNbw62HBQBxsOWl1K1EQ79An3ONEO\nogiZAACwFoEMAACID06nlJ7euCQSw5C8XvsGRpFsZxhW/3QTRiSBU3lW9OsJxTsLQn93lKFD73EK\n4WmiYO3O7GN2u1V4RugExCWPzyOPL7EeLY36E0YxfIop2PYuJ//AAgDiwL6YKQAAIABJREFUB4EM\nkOQKsgpUdnNZ2xssWyY9/JC0+l+hH/SUH0i/vkH68Y/bPS8AQJLDIaWkNC6ZmVZXE11NTzXZNTDq\n7HY81RR1DkkuQ3Il+I/W6zA3BLI6uCJ0AuJDooVMDjkinp4ukqeYzJgyj5AJABIXgQyQ5JwOZ/tz\nP15wSePyxRfS4sXS2rXSunXS3r2Ht8nPl4YPl046SZo8WTr+ePMLBwDYXyI/1dQUzNg9PPJ4JNVK\nWm/1Tw06FDp5pfQEnVpP6nzoZKenmzoKsgxmewJsxZCRkCFTOKGPLHooefv+7WrwNSjNleZfUl2p\nvPAbANpBIAMgNMcfL919d+P3hiEdOCDV1zdeZMvJabzDGwCAZOBwSKmpjUs8PNVUUy5Z8MJPPfqo\npKzAcKjl186u6+z+TKNnumQInXwO+4VELdu1KdLK/lb/pAB0liFDbq9bbq9bsnHONPzx4UH7U5wp\nASFNuis9oN3ekp6SrjRniNuFeswg5yc4AmAVAhkA4XM4pC5dGhcAAIBgJkyQ2nsK1wpN0+hZFQiZ\nfQ6fz+qfcFJwGo2BU7pXtr1QWp4lFc2I/Xmf/YeU3XA4IPK4Ar82BOlrHiiZtT3T6QGx1eBrUIOv\nQbWeEF8mZxGCIwBWIJABAAAAkBwSdRq9Jj6f9U8hmbk/gZPt/egbqbtNr796HfYJiKKyPSETEDGC\nI4IjwAoEMgAAAACQCJxOKS2tcUlETYFTvAZKHW3jTeB53mzAZUiuBinD6kKixNCh6fPsEhBFY3tC\nJiCoeA2OwgmPQg2OwgmPCI5gVwQyAAAkkYKsApXdXNZ6xd490m23SS++1PmDT/iZ9PvfS/ndgp4X\nAICIJEPg5PVGJ/Sp2yNtvsbqTwQTOZSYIZPXaWFAlOKUJ80pT4pLnlSnPClOeVKdanA55ElxyONy\nHAqOHPI4jcPHcRjyOHz+rw3yySOfPPLKI4JWJA+CI4IjhIZABgCAJOJ0ONU92DsdsrtLC16ULl4i\n3XOP9P77oR/0tNOkmTOls8+OXqEAACQbp7NxSU2N/Fg15dJ9FgQyX30lOXOk+nqprq5xafq+vb5o\nbd/QEPvPjKhxSErxNS7WhEy+Q0v0/jtqCpnCCogyUuVJT1VDRqo8GWnypKXIk35oSUtRQ6qrsS/t\nUHCU6tS+FK/m5XwatbqBRJYowZFDDqtLRCcRyAAAgMPOOadx+eILafFiae1aad06ae/ew9vk50vD\nh0snnSRNniwdf7x19QIAAPvIzW28ycMqDQ2NwUwsQ6CWfXV1kmFY9zOArTQPmULnObSErjxLmjcj\nrF2i4qO3+6mL0uROT5E7zSV3qkvuNGfj11Sn3KkOuVOcqk9RY9sluVMcjV+bFqcht8uQ2ynVO31y\nO3xyO4xDX31yO7xyq9lieFVveOQ2Gg4vPo9/8Ro8lYTEEC/BEcJHIAMAAFo7/njp7rsbvzcM6cCB\nxgsN6elSTo7k4G4cAABgMykpjUt2tnU1GEZjMBTLEKitPsBkfT/9Rt1tdq3Ye+jdSm6XVN8U+qSn\nyJ2RIndas69prkOLU/XprsMhUoqjWZjkkNt16GvKoeM51RggNYVJzkPhkfNwiFQvb+P3/hCp4fDX\nQwvBEZC8CGQAAED7HA6pS5fGBUDcCfruqA0l0sUXS7t2R36Cnj2k556ThhS3Oi8AJB2Ho3HaudRU\na393MgzJ7bZu+rimPk94T3oAkfK/W6n5zHPVDYrmVHTR4HUo8EmhDpb69EMBkv9pJOfhr01LikP1\nAUFS0/4O/1NITU8k1bcIkfwBUtPXQyGSV2E93gUgBAQyAAAAQAIL+u6oET+U1q6XbrhBeuaZzh/8\nkkukBx+UCghfAMBWHI7GJ5vT06WuXa2rw+cLnEbOiieHeL8QbMhlSJkNjUtovIcWt3lFBTtriMFR\nfUoI26U2PY3UPERq52mkphCp6WvzEMnpk1s+1Tt8qleDDCZwQBwhkAEAAACSUUGB9PTTjaHKPfdI\n778f+r6nnSbNnCmdfbZ59QEA4p/TKWVmNi5WCuf9QmaFRrxfCHEo/OCoPb5DS/R1FByFFBg1n+Yu\n2JIif4BU3zS9XUrTk0hB3o3kNFTvMhrfieRsDI8IjiARyAAAAADJ7ZxzGpcvvpAWL5bWrpXWrZP2\n7j28TX6+NHy4dNJJ0uTJje+ZAgAgXtj9/UKRhkDufZKWWPfZAItFNzhqT1Og1Ll3ALUVHIUaGDUP\njfZkSHPGRu2DIYYIZIBOqG/xgsTNmzdbVAkAAECUOByNT8tccknjRaPa2sb3D6SlSVlZjeubrF9v\nXZ0AOrSndo9U1vF20baxZKPKsiw4MRDvMjIal9zcTu2+p3aPND/2gczGG6arzJfe+K6ghobDX5sv\nHk9gf2e2ab4eiGeGGl9nFOQ/ZZekzENLKPZkSHOKO94u2jaWbIjL/69vee225bXdWHIYBs9LAuF6\n9dVXdcEFF1hdBgAAAAAAAAAgDK+88orGjx9vybmdlpwVAAAAAAAAAAAgiRDIAAAAAAAAAAAAmIwp\ny4BO2Ldvn1auXOlvH3XUUUpPT7ewotjavHlzwJRtr7zyigYOHGhhRQDMxJgHkg/jHkg+jHsguTDm\ngeSTzOO+vr5e27dv97d/+MMfKi8vz5JaUiw5KxDn8vLyLJtn0I4GDhyo4447zuoyAMQIYx5IPox7\nIPkw7oHkwpgHkk+yjfthw4ZZXYIkpiwDAAAAAAAAAAAwHYEMAAAAAAAAAACAyQhkAAAAAAAAAAAA\nTEYgAwAAAAAAAAAAYDICGQAAAAAAAAAAAJMRyAAAAAAAAAAAAJiMQAYAAAAAAAAAAMBkBDIAAAAA\nAAAAAAAmI5ABAAAAAAAAAAAwGYEMAAAAAAAAAACAyQhkAAAAAAAAAAAATJZidQEA4k/37t11xx13\nBLQBJC7GPJB8GPdA8mHcA8mFMQ8kH8a9PTgMwzCsLgIAAAAAAAAAACCRMWUZAAAAAAAAAACAyQhk\nAAAAAAAAAAAATEYgAwAAAAAAAAAAYDICGQAAAAAAAAAAAJMRyAAAAAAAAAAAAJiMQAYAAAAAAAAA\nAMBkBDIAAAAAAAAAAAAmI5ABAAAAAAAAAAAwGYEMAAAAAAAAAACAyQhkAAAAAAAAAAAATEYgAwAA\nAAAAAAAAYDICGQAAAAAAAAAAAJMRyAAAAAAAAAAAAJgsxeoCAJjr66+/1tq1a/Xtt9/K7XYrPz9f\ngwcP1qhRo5SRkWF1eQBMYLdx7/F4tGnTJq1fv167d+9WdXW1cnJyVFBQoO9973s6/vjj5XRyjwgQ\nCbuN+6qqKm3cuFFbt27Vzp07VVNTI0nKy8tTz549NWzYMPXt2zfmdQGJwm5jHoD5GPdA8rH7uPd6\nvVq3bp1KSkpUVlYmj8ejnJwcHXnkkRoyZIgGDx7M3/rBGAAS0ssvv2wMGzbMkBR0ycnJMa6//nqj\nvLw8ZjX5fD6jpKTEmD9/vjFt2jRj+PDhRmpqakBdU6ZMiVk9QKKx07gvLS017rnnHuOMM84wMjMz\n26xJkpGbm2v86le/Mr788kvT6wISjV3GfU1NjfHnP//ZuPjii41+/fq1O+abln79+hmzZ882Kisr\nTa0NSCR2GfOhqqmpMY4++uhWdfI7PxA6O437H/7whyH9f3xby5NPPml6jUAisNO4D6a0tNSYOnWq\nkZeX1+6Y79q1qzF+/HhjyZIlltRpVwQyQIKpq6szLr300pB/IerevbuxcuVKU2v6+9//bpx++ulG\nbm5uh/XwxxkQPjuN+7q6OuPkk0/u1B9oaWlpxr333mv4fD5TagMSiZ3GvWEYxldffdXpizNFRUXG\niy++aFptQCKw25gP1Y033sjv/EAn2XHcE8gA5rLjuG/O6/Uav//974309PSwxv7FF18csxrjAc8M\nAQnE5/Pp4osv1tNPPx3Q73K51L9/fw0dOlS5ubkB68rLy3XWWWdp9erVptX16quv6p133tH+/ftN\nOweQrOw27j0ej9asWRN0XUZGhvr376+RI0equLhYaWlpAevdbrduueUWXX/99VGvC0gkdhv37cnL\ny9OQIUN08skn6/vf/76KiopabVNWVqaLLrpI8+fPj2ltQLyIpzHf3Nq1a/W///u/lp0fiGfxOu4B\ndJ7dx73H49GkSZN02223qb6+PmBdbm6uBg8erJNOOklDhgxRVlaW6fXEMwIZIIHce++9evXVVwP6\nrrvuOm3btk2lpaX65JNPtGfPHr300kvq06ePf5va2lpNnDjRksAkOzs75ucEEondx33//v115513\n6p///KeqqqpUWlqqtWvXav369dq3b58WLlzY6j0SjzzyiB5++GFT6wLimZ3H/fHHH69bbrlFr732\nmnbt2qW9e/eqpKRE//rXv/Tpp59q9+7dKi0t1W9/+1tlZmb69/P5fLr22mu1ceNG02oD4pWdx3xb\n3G63rrrqKvl8Pkn8zg+EK17G/bJly8JazjzzzJjUBcQju4/7q666Ss8//7y/nZKSol/96ldau3at\n9u7dqw0bNmjNmjUqKSlRdXW1NmzYoD/96U8aNWqUHA6HqbXFHasf0QEQHRUVFUaXLl0CHgn8wx/+\n0Ob23377bas53n/3u9+ZUtv48eMNSUbPnj2N8847z/if//kf4//+7/+MyspK44477mD6AqCT7Dju\nq6urDUnG6NGjjbfeeiuk6cf27NljjBw5MqCuvLw83isBBGHHcW8YhnHgwAHjq6++CmufTz75xMjP\nzw+obeLEiVGvDYhndh3zHWn+O37v3r2N//qv/+J3fiBEdh73LacsAxAddh73hmEYCxcuDDhXr169\njM8++yzk/ffs2WNabfGIfz2BBDFjxoyAfxxPO+20Di+ELl++PGCfLl26GBUVFVGvbd26dca2bduC\nriOQATrPjuO+vr7eeOONN8Leb8eOHUZ2dnZAbX/961+jVheQKOw47iPx2GOPBdSWnZ1tHDx40Oqy\nANuIxzH/xRdfGGlpaf7zv/zyy/zOD4TBzuOeQAYwh53HfXl5uVFYWOg/T25ubtg3YiEQU5YBCcDn\n8+nJJ58M6Lvzzjs7fCTw9NNP15gxY/zt6upq/eMf/4h6fcOGDdNRRx0V9eMCycyu4z4tLU3nnHNO\n2Pv16tVLU6ZMCeh76623olUWkBDsOu4jMXnyZDmdh/8kqamp0bZt2yysCLCPeBzzPp9PV111ldxu\ntyTpwgsv1AUXXBCTcwOJIB7HPYDI2H3c33333aqoqPC3f//732vgwIFRP08yIZABEsCqVatUXl7u\nbw8YMEBjx44Nad+rrroqoP3KK69EszQAJknEcd/8l0lJXJQFWkjEcd+1a1d17949oK/5H3xAMovH\nMf+nP/1Ja9askdQ4vnknHBCeeBz3ACJj53FfX1+vBQsW+Ns9e/bUtddeG9VzJCMCGSABLFmyJKB9\nxhlnhPzCrDPOOCOgvWLFCtXU1EStNgDmSMRxn5+fH9C24iXEgJ0l4riXpLq6uoB2Xl6eRZUA9hJv\nY760tFS//e1v/e0//OEP6tWrl6nnBBJNvI17AJGz87h/+eWXtWfPHn970qRJcrlcUTt+siKQARLA\np59+GtAeNWpUyPv26tVL/fr187fdbrdKSkqiVRoAkyTiuN+xY0dAu6CgwKJKAHtKxHG/adOmgPA1\nJydHxxxzjIUVAfYRb2P+//2//6fa2lpJ0imnnKKpU6eaej4gEcXbuAcQOTuP+5Zh0bhx46J27GRG\nIAMkgA0bNgS0i4uLw9q/5fYtjwfAfhJx3H/wwQcBbS7KAoEScdzPmTMnoH3ppZcqJSXFomoAe4mn\nMf+3v/1N7777riQpNTVVjz/+eMh39wI4LJ7GfZP9+/fr888/1/vvv69///vf2rp1q7xer+nnBRKF\nncf9Rx99FND+/ve/L0nyer168803NWnSJB177LHKzs5WXl6eBg0apIkTJ+rJJ5/036SB1vhrB4hz\nBw8ebPWehaOOOiqsY7TcftOmTRHXBcA8iTjuq6qq9MILLwT0nX322RZVA9hPoo37uro63XrrrVq0\naJG/r3v37rrrrrssqwmwk3ga8zt37tQtt9zib8+YMUPHHXecKecCElk8jfsmJ554oj7//HP5fL6A\n/pycHI0ePVoTJkzQ5ZdfrvT0dFPrAOKVncf9/v379eWXX/rbLpdLffv2VWlpqS677DKtXr066D6b\nN2/W888/r9tvv11z587VL37xi6jUk0gIZIA4V1FRIcMw/O3U1FQVFRWFdYzevXsHtMvKyqJSGwBz\nJOK4nzNnjg4cOOBvFxYW6txzz7WwIsBe4nHcr1mzRtXV1f52XV2dysrK9PHHH+vFF18MOH/Pnj21\ndOnSsD8TkKjiacxPmzZN+/btkyQNGjRIt99+uynnARJdPI37Ji2nWmpy4MABvfXWW3rrrbf0u9/9\nTg8++KAuuugiU2sB4pGdx31paWlAbV26dFFJSYlGjRoV0vtev/vuO11++eVav3695s6dG5WaEgWB\nDBDnml/AlKSsrKywpwfIzs5u95gA7CXRxv2qVav0xz/+MaDv9ttvV1ZWlkUVAfYTj+P+2muv1Wef\nfdbuNhkZGbriiit01113qXv37qbWA8STeBnz//jHP/TKK6/423/5y1+UkZER9fMAySBexn24du3a\npYkTJ+rmm2/Wvffea3U5gK3Yedw33WzRxOFw6Nxzz/WHMVlZWbrkkkt02mmnqaCgQJWVlVq5cqWe\neeYZHTx40L/fvHnz1Lt3b/3617+OSl2JgEAGiHMt/6HtzB9AmZmZ7R4TgL0k0rgvKyvTpEmTAuaZ\nHjlypK6//npL6gHsKpHGfZO0tDTdcMMNuuaaawhjgBbiYcxXVlYGXFy58soredkvEIF4GPdSY11n\nnHGGzjrrLA0dOlQDBw5UXl6e6uvrVVZWptWrV2vx4sVaunRpwN319913nwoKCnTrrbdGvSYgXtl5\n3LcMZPbu3au9e/dKkoYPH66XXnpJffr0CdjmF7/4hW6//XaNHz9en3/+ub//lltu0Zlnnsl7Yg9x\nWl0AgMjU1dUFtNPS0sI+Rsv5XJsn2QDsJ1HGfX19vS688EJt377d39elSxc988wzcrlcMa8HsLNE\nGffNud1u3XPPPTr22GN19dVXB0xvBiS7eBjzv/nNb/zTohQVFem+++6L6vGBZBMP4/6//uu/9O23\n3+q1117T1KlTdcopp6h79+5KTU1VTk6OBgwYoEsvvVRvvPGG3n///VZTKd12220dPj0LJBM7j/u2\ngp0jjzxSy5YtaxXGNOnXr5/eeecd9ezZ099XX1/P7wnNEMgAca5leu52u8M+Rn19fbvHBGAviTDu\nfT6fLrvsMq1atcrf53K59PTTT2vgwIExrQWIB/E47j/99FMZhuFfqqqq9OWXX2rRokU666yz/Nt5\nvV498cQTOvXUU1VZWWlqTUC8sPuYf/PNN7Vo0SJ/+4EHHlC3bt2idnwgGdl93EvS+eefr4KCgpC2\nPfXUU7VixQoVFhb6+wzD4D1TQDN2HvdtHefee+9Vfn5+u/sWFha2em/MwoULLb8hzC4IZIA4l5OT\nE9Buma6HouU/iC2PCcBeEmHcT5s2TS+88IK/7XA49Pjjj+u8886LaR1AvEiEcd+lSxcNGjRIl156\nqZYuXaq333474I+5zz//XFOmTIlpTYBd2XnMV1dX67rrrvO3f/rTn+qSSy6JyrGBZGbncd9ZAwcO\nbPXemKVLl2rPnj0WVQTYi53HfbDjdOvWTRMmTAhp/4svvli5ubn+dl1dndauXRuV2uIdgQwQ51r+\nA1lbWxswT2soampq2j0mAHuJ93E/a9Ys/eUvfwnou//++3XllVfGrAYg3sT7uA/mjDPO0JIlS+R0\nHv6TZMmSJVq2bJmFVQH2YOcxf+utt2rbtm2SGl/o++ijj0bluECys/O4j8Tll18e8K44n8+n5cuX\nW1gRYB92HvfBjnPKKacoNTU1pP0zMjJ00kknBfR9/PHHUakt3hHIAHGusLBQDofD3/Z4PP65nEO1\nY8eOgHZRUVFUagNgjnge93Pnzm316PLvfvc73XjjjTE5PxCv4nnct+eUU07RZZddFtA3f/58a4oB\nbMSuY37Lli0BAczs2bPVr1+/iI8LwL7jPlJOp1Njx44N6Nu0aZM1xQA2Y+dx36NHj1Z9xxxzTFjH\nOPbYYwPa4X62REUgA8S5zMzMVi/SarpjLVQttx88eHDEdQEwT7yO+z//+c+aNWtWQN/06dM1e/Zs\n088NxLt4Hfeh+NnPfhbQbv5uKSBZ2XXM79+/P+DO3VtuuUUOh6PDpeX/1z/11FMB6/Py8iKuDYh3\ndh330XDUUUcFtMvLyy2qBLAXO4/7o48+WmlpaQF9Xbt2DesYLbffu3dvxHUlAgIZIAG0/Me2pKQk\nrP03bNjQ7vEA2E+8jfsFCxbo17/+dUDfL3/5Sz3wwAOmnhdIJPE27kN19NFHB7R37dplUSWAvSTq\nmAfQtkQd9y2nOPJ4PBZVAtiPXce9y+Vq9URMfX19WMdo+U6crKysiOtKBAQyQAIYOnRoQDucO0t3\n7typb775xt9OTU1VcXFxtEoDYJJ4GvcvvviifvnLXwbcUTtx4kQ9/vjjAY9nA2hfPI37SIQ6LzWQ\n6JJlzAM4LFHHfcubLZq/UwZIdnYe98OGDQto7969O6z9W05RVlBQEHFNiSDF6gIARO7cc8/VvHnz\n/O3ly5fLMIyQLnS+/fbbAe1x48bZ4sV/ANoXL+P+zTff1CWXXCKv1+vvO+ecc7Ro0aKAF3kD6Fi8\njPtwbd26NaAdbL5qIBnZccwPHDhQy5YtC3u/BQsWaOHChf72T37yE91yyy3+NkEs0MiO4z4aPvzw\nw4B2yynMgGRm53F//vnna8GCBf72unXrwtq/5fYt3ymTrAhkgAQwatQoFRYWqqKiQpJUWlqqFStW\naNy4cR3u+8QTTwS0x48fb0qNAKIrHsb9ypUrNWHCBLndbn/fuHHj9MILL3DhBeiEeBj3nfH6668H\ntL/3ve9ZVAlgL3Yc8zk5Ofrxj38c9n4tL8YeccQRnToOkOjsOO4jtXLlSn399dcBfaeffrpF1QD2\nY+dx/9Of/lQZGRn+qcc+//xzffXVVxo0aFCH+65fv77VdGpjx46Nan3xiltTgQTgdDp1xRVXBPTN\nnj07YHqgYN555x198MEH/naXLl00ceJEM0oEEGV2H/cff/yxzjvvPB08eNDf94Mf/ECvvfaaMjIy\non4+IBnYfdx3xoYNG/Tkk08G9NnlAhJgtUQc8wDal2jjvqamRjfccENA3wknnKABAwZYVBFgP3Ye\n99nZ2brssssC+ubMmRPSvnfddVdA+4c//KGKioqiVls8I5ABEsTMmTMDHktcuXJlwCOPLe3YsUNX\nX311QN/06dNVWFjY7nkcDkfAsmLFiojqBtB5dh3369ev109/+lNVV1f7+4YOHao333zTNtMmAPHK\njuO+urpa06ZN07fffhvahzjkiy++0JlnnhnwFF3fvn110UUXhXUcIJHZccwDMJddx/306dP13Xff\ndfwBDqmoqND555+vzz//PKB/9uzZIR8DSBZ2HfeSdMcddwTcVLlgwQL9/e9/b3efRx55RP/4xz8C\n+mbNmtXhuZIFgQyQIAoLC3XbbbcF9M2aNUvTpk0L+KXJ5/PplVde0ahRowJe/NWrVy/ddNNNptRW\nV1en5cuXB11KS0sDtt25c2eb2+7cudOU+oB4Zcdxv3PnTv3kJz9RZWWlvy87O1szZszQxx9/3Ob4\nbmsBEMiO497r9erRRx/VgAEDdN5552nBggX6+uuvg97V53a7tWrVKk2dOlXDhg3T9u3b/escDoce\neughZWZmRrU+IJ7ZccwDMJddx/2DDz6oAQMG6MILL9TTTz8dcM7mtm/frnvvvVcnnHCC3n333YB1\nF1xwgS688MKo1wbEO7uOe0k68sgjNXPmzIC+q6++Wtdff33A7/KStG3bNk2dOlXXX399QP/kyZN1\n5plnmlJfPHIYHT3/BCBu+Hw+jR8/Xm+88UZAv8vlUt++fZWbm6stW7Zo3759AeszMzO1bNkyjR49\nusNztHyp2HvvvdfhHJDffPON+vfvH9qHaMeTTz7Z6jFOINnZbdyHOtdtqPg1BWjNbuN+3759ys/P\nb9XfpUsX9ezZU3l5eTIMQ/v379c333wjj8cT9HyPP/64rrrqqg5rA5KN3cZ8Z9x5550Bd8VPmTJF\n8+fPj9rxgURjx3Ef7AXjXbt21RFHHKHc3Fx5PB7t3r27zadoxowZo7feeosbL4A22HHcN/F6vbrg\nggta1eZwONS/f38VFBSosrKy1U3XkjRs2DCtXLmS2TKa4QkZIIE4nU49//zzmjRpUkC/1+tVaWmp\nPvnkk1b/cBcUFGjp0qUh/cMNwH4Y90DyiZdxX11dra+++kofffSRPv74Y3311VdBw5hBgwbpnXfe\nIYwB2hAvYx5A9MTLuK+qqtKmTZu0du1affLJJ0HDGKfTqRkzZuidd94hjAHaYedx73K59MILL2jK\nlCkB/YZhqLS0VB999FHQMOb8888njAmCQAZIMBkZGVq8eLFeeOEFDR06tM3tsrOzNW3aNJWUlET1\n7jcAsce4B5KPncZ9bm6uVq5cqZkzZ+qkk05SWlpah/ukpqbq9NNP16JFi/Sf//wnqk/WAYnITmMe\nQGzYbdz/9a9/1aRJk3TUUUeFtH3Pnj01ffp0bdq0SfPmzVNqaqpptQGJwm7jvrn09HTNnz9fb775\nZrsBkMPh0Mknn6zXX39dr776KmFMEExZBiS4zZs3a82aNdqxY4fcbrfy8vI0ZMgQjR49OuClXAAS\nB+MeSD52Gvf19fUqKSnR119/rZ07d6q6ulpSY3CTl5enwYMH64QTTggpuAEQnJ3GPIDYsNO4r6ys\n1IYNG7R161aVl5erpqZGLpdL+fn5Kiws1IknnqgBAwbEtCYgEdno9BqpAAAMkklEQVRp3Le0Y8cO\nrV69Wlu3blVdXZ3y8/N1xBFHaPTo0SoqKrK0NrsjkAEAAAAAAAAAADAZU5YBAAAAAAAAAACYjEAG\nAAAAAAAAAADAZAQyAAAAAAAAAAAAJiOQAQAAAAAAAAAAMBmBDAAAAAAAAAAAgMkIZAAAAAAAAAAA\nAExGIAMAAAAAAAAAAGAyAhkAAAAAAAAAAACTEcgAAAAAAAAAAACYjEAGAAAAAAAAAADAZAQyAAAA\nAAAAAAAAJiOQAQAAAAAAAAAAMBmBDAAAAAAAAAAAgMkIZAAAAAAAAAAAAExGIAMAAAAAAAAAAGAy\nAhkAAAAAAAAAAACTEcgAAAAAAAAAAACYjEAGAAAAAAAAAADAZAQyAAAAAAAAAAAAJiOQAQAAAAAA\nAAAAMBmBDAAAAAAAAAAAgMkIZAAAAAAAAAAAAExGIAMAAAAAAAAAAGAyAhkAAAAAAAAAAACTEcgA\nAAAAAAAAAACYjEAGAAAAABLM/Pnz5XA4/Mv8+fOtLgkAAABIegQyAAAAAAAAAAAAJiOQAQAAAAAA\nAAAAMBmBDAAAAAAAAAAAgMkIZAAAAAAAAAAAAEzmMAzDsLoIAAAAAAAAAACARMYTMgAAAAAAAAAA\nACYjkAEAAAAAAAAAADAZgQwAAAAAAAAAAIDJUqwuAAAAAABwWHV1tT755BNt2rRJ+/btU319vbKy\nspSfn69+/fqpuLhYPXr0sLrMiGzatEmfffaZysvLtX//fnXr1k29evXSqaeeqm7dulldHgAAAGAK\nAhkAAAAAsIF///vfmjNnjpYsWSK3293utv3799c555yjqVOnqri4uNX6+fPn68orr/S3n3zySV1x\nxRWttrvzzjs1e/bsiGt/7733NHbs2Ha3OXDggO6//3499dRT2rJlS9BtXC6XxowZo7vuuktjxoyJ\nuC4AAADATpiyDAAAAAAsNnfuXI0cOVIvv/xyh2GMJG3ZskUPP/ywnnnmmRhUF7k33nhDRx99tO68\n8842wxhJ8nq9WrFihU477TRde+21amhoiGGVAAAAgLl4QgYAAAAALPTEE09o1qxZrfq7dOmifv36\nKTs7WwcPHtSePXv07bffyjAMC6rsvL/+9a+aNm2avF5vQH9WVpb69u2rLl26aM+ePSotLZXP5wvY\nb/fu3Xr55ZflcDhiXTYAAAAQdQQyAAAAAGCR+vp6zZgxI6BvwoQJmjVrloYNG9YqiKiurtZHH32k\npUuXatGiRRGf//LLL9epp54a1j7r1q3TrbfeGtCXnZ0ddNt33nlHU6dODQhazjvvPN10000aPXq0\nUlIO/0m6Z88e/e1vf9OcOXNUXV0tSXr11Vd1zz33aObMmWHVCAAAANiRw4i326sAAAAAIEEsXbpU\n55xzjr99+eWX66mnngppX7fbrW+//VYDBgxotS7Ud8iE65tvvtEPfvAD7d692983Y8YMzZs3r9W2\n+/bt05AhQ7Rr1y5JktPp1OOPP65f/vKX7Z6jpKREY8eOVXl5uSQpLS1NW7duVc+ePSOuHwAAALAS\n75ABAAAAAIt8+eWXAe1p06aFvG9aWlrQMMYse/fu1VlnnRUQxkyaNElz584Nuv1jjz3mD2Mk6e67\n7+4wjJGk4uJizZ8/3992u916+OGHO184AAAAYBMEMgAAAABgkYMHDwa0U1NTLaqkffX19brgggu0\nceNGf9+YMWM0f/78oO938Xq9euihh/ztPn366Kabbgr5fGeffbZOPPFEf/vFF1/sZOUAAACAfRDI\nAAAAAIBFevXqFdCOxnthos0wDF1xxRV6//33/X2DBw/Wq6++qvT09KD7fPbZZ/ruu+/87UmTJoUd\nNv3kJz/xf79x40ZVVFSEWTkAAABgLwQyAAAAAGCRH/3oR3K5XP72Aw88oGnTpqm0tNTCqgLdeuut\nevbZZ/3tHj166M0331R+fn6b+3zwwQcB7REjRoR93j59+gS0N2zYEPYxAAAAADshkAEAAAAAixx1\n1FGt3qvy6KOP6uijj9aIESN06623aunSpdqzZ48l9T3yyCO65557/O3s7Gy98cYb6tevX7v7tQxP\nJk6cKIfDEdbyq1/9KuAYVv0MAAAAgGghkAEAAAAACz344IM677zzWvWvW7dO8+bN0znnnKPCwkKd\neOKJuu2227R+/fqY1PX666/rhhtu8LddLpeeffbZkJ52qaysjHo9+/fvj/oxAQAAgFgikAEAAAAA\nC2VkZOjVV1/VM888o6FDhwbdxjAMffrpp/rDH/6g448/Xueee642b95sWk0ff/yxJk2aJK/X6+97\n6KGHdO6554a0/759+6Jek8/ni/oxAQAAgFhKsboAAAAAAEh2DodDkydP1uTJk1VSUqJly5ZpxYoV\n+vDDD4O+zH7JkiV6//33tWTJEo0ZMyaqtWzZskXnnnuuamtr/X0zZszQ1KlTQz5GVlZWQHvu3Lka\nPnx4RHUdd9xxEe0PAAAAWI1ABgAAAABspLi4WMXFxZo+fboMw9DGjRv19ttv64UXXtCHH37o3666\nulo///nP9fXXXysnJycq5967d6/OPvts7d692983adIkzZ07N6zjFBYWBrT79++vH//4x1GpEQAA\nAIhXTFkGAAAAADblcDg0ZMgQTZ8+XR988IHef//9gLCjrKxMCxcujMq56uvrNX78eG3cuNHfd9pp\np2n+/PlyOBxhHat///4BbTOnVwMAAADiBYEMAAAAAMSJMWPGtHpapflTM51lGIamTJmiDz74wN83\nZMgQvfLKK0pPTw/7eOPGjQtov/vuuxHXCAAAAMQ7AhkAAAAAiCOjR48OaAd7x0y4Zs6cqeeee87f\n7tGjh5YuXar8/PxOHe+kk04K2Pfdd99VSUlJxHUCAAAA8YxABgAAAADiSMsAprOhSZNHHnlE9957\nr7+dnZ2tJUuWqF+/fp0+Zmpqqn7zm9/424Zh6Nprr5XH44mkVAAAACCuEcgAAAAAgEV++9vfatGi\nRWpoaAhpe8MwdP/99wf0DR8+vNPnf/3113XDDTf42y6XS88991xEx2wyffp09ejRw9/+8MMP9fOf\n/1z79+8P+Rg1NTV68MEH9cQTT0RcDwAAAGC1FKsLAAAAAIBk9Z///Edz5szRTTfdpJ/97GcaP368\nRo4cqYKCgoDtfD6fVq1apdmzZ2v58uX+/qysLF1yySWdPv+kSZPk9Xr97YkTJyo9PT3gHKEYPnx4\nqyd1cnNz9fzzz+v000/3Pxnz2muv6bjjjtONN96oiy66SH369Gl1rO3bt2vNmjV65ZVX9Prrr6uq\nqkp33HFHJz4dAAAAYC8EMgAAAABgsbKyMj322GN67LHHJElHHHGECgsLlZ2drZqaGm3ZskUHDhxo\ntd/999+v3r17d/q8tbW1Ae3Fixdr8eLFYR/nvffe09ixY1v1jxkzRgsWLNCVV16puro6SdKOHTt0\n88036+abb9YRRxyhoqIipaena//+/SorK9PevXs79VkAAAAAuyOQAQAAAACb2blzp3bu3Nnm+szM\nTD3wwAO69tprY1hV50yaNEmDBg3SJZdcoi+//DJgXUefU2qcRq1Xr15mlggAAADEBO+QAQAAAACL\nPP744/r73/+uCRMmBLxvpS3dunXTddddpw0bNsRFGNNk+PDhKikp0YIFC/SDH/xALper3e3T09P1\nox/9SPfdd5+2b9+ua665JkaVAgAAAOZxGIZhWF0EAAAAAEDasmWLNm3apK1bt2r//v1yu93KyclR\n9+7ddcIJJ6i4uFgpKfE/0cH+/fv1r3/9S999950qKirk8XjUpUsXFRUVafDgwTr22GOVkZFhdZkA\nAABAVBHIAAAAAAAAAAAAmIwpywAAAAAAAAAAAExGIAMAAAAAAAAAAGAyAhkAAAAAAAAAAACTEcgA\nAAAAAAAAAACYjEAGAPD/27NjAQAAAIBB/taj2FcaAQAAAAAzIQMAAAAAADATMgAAAAAAADMhAwAA\nAAAAMBMyAAAAAAAAMyEDAAAAAAAwEzIAAAAAAAAzIQMAAAAAADATMgAAAAAAADMhAwAAAAAAMBMy\nAAAAAAAAMyEDAAAAAAAwEzIAAAAAAAAzIQMAAAAAADATMgAAAAAAADMhAwAAAAAAMBMyAAAAAAAA\nMyEDAAAAAAAwEzIAAAAAAAAzIQMAAAAAADATMgAAAAAAADMhAwAAAAAAMBMyAAAAAAAAMyEDAAAA\nAAAwEzIAAAAAAAAzIQMAAAAAADATMgAAAAAAADMhAwAAAAAAMBMyAAAAAAAAMyEDAAAAAAAwEzIA\nAAAAAAAzIQMAAAAAADALU57pRK5BeYoAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exp.plot_compression_experiments(res_w, comp_ratios,\n", + " \"../figs/compression_wiki.png\")\n", + "Image(filename=\"../figs/compression_wiki.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmkAAARLCAYAAABvHEdXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAuIwAALiMBeKU/dgAAIABJREFUeJzs3Xt0VuWdL/BfriRAIEgQRZBApRXE24iogESPds704uip\nZ7StvWRqnbFdZ7Rdvc30zEzr1K7eO72N7RrbTjxequO1dhzPaXUkWLUgWBGBKgoBQeQmkOQFcn3P\nH0iaN/eEJDuXz2etLPM8797P/qWrxp393c/zZKXT6XQAAAAAAAAwqLKTLgAAAAAAAGA0EtIAAAAA\nAAAkQEgDAAAAAACQACENAAAAAABAAoQ0AAAAAAAACRDSAAAAAAAAJEBIAwAAAAAAkAAhDQAAAAAA\nQAKENAAAAAAAAAkQ0gAAAAAAACRASAMAAAAAAJAAIQ0AAAAAAEAChDQAAAAAAAAJENIAAAAAAAAk\nQEgDAAAAAACQACENAAAAAABAAoQ0AAAAAAAACRDSAAAAAAAAJEBIAwAAAAAAkAAhDQAAAAAAQAKE\nNAAAAAAAAAkQ0gAAAAAAACRASAMAAAAAAJAAIQ0AAAAAAEAChDQAAAAAAAAJENIAAAAAAAAkQEgD\nAAAAAACQACENAAAAAABAAoQ0AAAAAAAACRDSAAAAAAAAJCA36QJgpNi/f39UVla2tGfMmBFjxoxJ\nsCIAAAAAANqqq6uL1157raVdVlYWxcXFidQipIF+UllZGVdccUXSZQAAAAAA0AsPPfRQXH755Ylc\n23JnAAAAAAAACTCTBnqpoqIiKioq2vXv2bNn8IsBAAAAAGDYEtJAL1VVVWXsPdOZhx56KE455ZRB\nqAgAAAAAgJ565ZVXMraumDFjRmK1CGmgl0pLS6OsrKxdfyqVilWrVrW0TznllDjttNMGszQAAAAA\nAHppzJgxiV1bSAO9VF5eHuXl5e36161bF/Pnzx/8ggAAAAAAGJayky4AAAAAAABgNBLSAAAAAAAA\nJEBIAwAAAAAAkAAhDQAAAAAAQAKENAAAAAAAAAkQ0gAAAAAAACRASAMAAAAAAJAAIQ0AAAAAAEAC\nhDQAAAAAAAAJENIAAAAAAAAkQEgDAAAAAACQACENAAAAAABAAoQ0AAAAAAAACchNugAAYPCk0+lo\nbm6OdDqddCkAAMAIl5WVFdnZ2ZGVlZV0KQBDlpAGAEawpqamSKVSUVNTE6lUKpqampIuCQAAGGVy\ncnJi3LhxUVRUFOPGjYucnJykSwIYMoQ0ADACNTU1xY4dO6KmpibpUgAAgFGuqakpqquro7q6OiIi\nioqK4sQTTxTWAISQBgBGnIaGhnjttdeirq4u6VIAAADaqampifr6+pgxY0bk5eUlXQ5AorKTLgAA\n6D91dXVRVVUloAEAAIY0f7sAHGEmDQCMIDt37ozGxsaMvqysrBg7dmwUFRVFYWFh5OTk2LgTAAAY\ncOl0OpqamuLQoUNRU1MTBw8ejHQ63fJ5Y2Nj7Ny5M04++eQEqwRIlpAGeqmioiIqKira9adSqcEv\nBqCVhoaGdr+L8vPzY8aMGZGfn59QVQAAwGiWl5cXBQUFMWnSpKivr4/XXnst6uvrWz5PpVLR0NBg\n2TNg1BLSQC9VVVVFZWVl0mUAtHPgwIGMdnZ2dsycOTNyc/3nHgAASF5+fn7MnDkzXn311Whubm7p\nP3DgQJSUlCRYGUByPLWBXiotLY2ysrJ2/alUKlatWpVARQBHtA1pJkyYIKABAACGlNzc3JgwYULs\n37+/pU9IA4xmntxAL5WXl0d5eXm7/nXr1sX8+fMHvyCAOLLWc+slAyKOhDQAAABDTduQpqGhIdLp\ntL0zgVEpO+kCAIBj13qpgKOs6QwAAAxFbf9WSafTkU6nE6oGIFlCGgAYATr6gyY723/mAQCAoaej\nv1U6evEMYDTw9AYAAAAAACABQhoAAAAAAIAECGkAAAAAAAASIKQBAAAAAABIgJAGAAAAAAAgAUIa\nAAAAAACABAhpAAAAAAAAEiCkAQAAAAAASICQBgAAAAAAIAG5SRcAAMDId+jQoXjuuedi48aNsW/f\nvkilUlFYWBgTJkyIk08+Od72trfF7NmzIzvbO0QAwMDYuXNnrFmzJrZs2RL79++Purq6GD9+fBQX\nF8eUKVPizDPPjOnTpyddJgCjjJAGAGAUKi0tjS1bthzTGDfeeGN873vf6/TzdDodDz/8cPzkJz+J\nxx57LBobG7scr6ioKM4555woKyuLd73rXXHuuee2C23q6+ujuLg4Dh061NL3hz/8Id7xjnf0uO47\n77wzPvShD2X0/f3f/3185Stf6fEYdXV1UVxcHIcPH27pW7t2bdx3331x00039Xicvtq8eXOUlpYO\n+HVgpOiv33mf+tSnYtasWf1UVee+9KUvxZe//OUBvw6MBhs3boxbb701HnzwwXjllVe6PX7KlCmx\ndOnSuPrqq+O9731vFBYWdnjck08+GUuXLm1pn3jiifH666/3qrbrrrsufvrTn2b0PfbYY3HJJZf0\neIzKysq46KKLWtolJSWxa9euuPjii6OysrJX9fTWzJkzo6qqakCvATAaCGkAgOEnnY6oqYmor4/I\nz48oKorIykq6KlrZsmVLfOxjH4v/+q//6vE5NTU1sWzZsli2bFncdNNN8dBDD8Xll1+ecUx+fn6c\nf/758cQTT7T0LV++vFchTUcPLJYvX97j8yMiVqxYkRHQTJ48OU477bS47777ejUOACNLc7o59h7c\nO+jXnTx2cmRnmY3a2vbt2+Pzn/983H333dHc3Nzj83bv3h33339/3H///VFUVBQ33nhjfOYzn4ni\n4uKM4xYuXBgFBQUt9wM7duyIjRs3xpw5c3p8rc7uSXob0rS2dOnSyHJfDDCsCGkAgOFh7dqIX/wi\nYuXKiOeei9i374+fTZoU8Sd/ErFwYcQHPxgxf35ydRKbNm2KpUuXxvbt29t9lp+fH7NmzYqJEydG\nXV1dvPnmm7F9+/YOH56k0+kOxy8rK2sX0lx33XU9rq+jQGblypVRV1cXY8aM6dMYHogAEBGx9+De\nOP7bxw/6dXd9dldMGTdl0K87VD3yyCPxkY98JN58880OPx83blyUlJRESUlJ1NXVxc6dO2Pv3r3t\n7kdqamri5ptvjh/96EexZcuWmDBhQstnY8aMifPPPz+WLVvW0rd8+fIehzRvvPFGbNy4sV1/b18c\naXt8WVlZr84HIHlCGgBgaHvkkYhvfCPiySc7P2bfvojHHz/y9bWvRVx4YcTf/m3Eu989eHUOc9/+\n9rfjzDPP7NU5J598cru+hoaGuOyyyzICmqysrLjmmmvir//6r+P888+P3NzMW9Da2tpYvXp1PPro\no3HffffFq6++2uV1Wy8tEtG7hxm7du2Kl156qV3/4cOHY+XKlXHhhRf2aJzOHoh85CMfiSVLlvRo\njM985jPxwgsvtLQ/97nPxZ/+6Z/26NwTTjihR8cx/L3Z0BBXr1+f0XfPvHlxXF5eQhWNDH39nXfC\nCSfEb37zmx4d/+tf/zq+9a1vtbTPOOOM+M53vtOjc2fPnt2r2oA/uv322+Mv//Ivo6mpKaP/tNNO\ni49//ONxySWXxOmnn97uvPr6+li+fHk8+uijcf/992cskbh///6or69vd87SpUvbhTTXXnttj+rs\n7P5lxYoVUV9fH/n5+d2O0dDQEL/73e8y+o7ek3znO9+Jfa1faurCO9/5zoz2HXfcEVOnTu32vM6W\nggOgd4Q0AMDQtHdvxN/8zZHZM7315JNHvj74wYgf/CBi8uT+r2+EOeecczLWM++rn/zkJ7G+1QPl\ngoKCuP/+++PdXQRm48ePj7KysigrK4uvf/3rUVlZGf/8z/8cOTk5HR5//vnnR35+fsvDkq1bt0ZV\nVVWP9mhp/UAkPz8/5syZE+vWrYuII8uF9CSkaWxsjGeeeSaj7+gDkdmzZ/f44eqkSZMy2vPmzYtL\nL720R+cyety9a1c81uYh2z27dsUnTjopoYpGhmP5ndfTf0+3bduW0Z40aZJ/x2GArVy5Mq699tqM\ngKa4uDh+8IMfxDXXXNNur7vW8vPz49JLL41LL700vv71r0dFRUV89atf7XI/q7azVnqzB0zre5Iz\nzzwz1q5dG83NzXHo0KFYuXJlj176WL16daRSqZb2pEmTWgKoc845p8e1tLV48WJ73wEMIguWAgBD\nzwsvRJxxRt8CmtbuuuvIOGvX9k9ddOu2227LaH/pS1/qMqDpSFlZWTz00ENx2WWXdfh5YWFhLFy4\nMKOvp7NpWh+3YMGCjJkrPR3jueeei9ra2pZ2cXFxnHHGGT06F3qr4o03etQHMNq9+eabcdVVV0VD\nQ0NL3/Tp0+O3v/1tfPjDH+4yoGkrLy8vrrvuunjppZfiE5/4RKfHXXDBBRkzXrZs2RKvvfZaj67R\n+r7jPe95T8bsvr7c10REXHjhhb36OQEYGvzmBgCGlhdeiLjooojXX++f8V5/PaKsTFAzCN58881Y\nvXp1Szs7O7tXe8X0Rl+XPGt93NKlSzNmzjzzzDPR2NjYqzEiPBBh4KxLpeLZmpp2/StramJ9qzen\nAYj48pe/nDHrJS8vLx5++OE47bTT+jzmmDFj4pZbbon77ruvw+XHCgsLY8GCBRl9PZlNs2/fvnjx\nxRdb2m3vSfoa0tiPBmB48tckADB07N0b8a53Hdljpj/t2xfxZ392ZHwGTOt9aCIiSkpKYvIALTXX\n9iFETx5m7N+/P9a2CusuvPDCjKVEamtr47nnnut2HA9EGCy3dTFjpqvPAEabvXv3xs9+9rOMvi9+\n8Ytx9tln98v4V155ZUyYMKHDz/pyT/Lkk09GOp2OiIicnJxYtGhRRkjz9NNPt9tTp63m5uZ46qmn\nuqwFgOFBSAMADB1/8zf9N4Omrddfj7jhhoEZm4iIqGnzxn93DxeOxaJFiyI394/bK27cuDF27NjR\n5TlPPvlkNDc3R8SRWT6LFy+OKVOmxKmnntpyTHdvvzY3N8dvf/vbjD4PRBgIjc3NcfvOnZ1+fvvO\nndH41v+fAUa7H//4x3Hw4MGW9tixY+PTn/70oFy7L/vStD7mrLPOiqKiooyQpqamptsXR9asWRP7\n9+9vaU+YMCHOOuusnpYNwBAipAEAhoZHHjn2PWi6c9ddR67DgCguLs5o7927N1555ZUBudb48ePb\nbYjb3ZurrT8/44wzYuLEiRERvVpeZO3atbGv1UyvoqKifntLl9ElnU7H7vr6Tr8e2LMn3qiv7/T8\nHfX18eCePV2OcfQtbYCR7pe//GVG+y/+4i9a/js/0BYvXpzx4sjLL78cO7sI2SMy7zeO3odMnTo1\n5syZ0+Ex3Y0REbFkyZLIycnpcd0ADB1CGgBgaPjGNwbnOt/85uBcZxSaPXt2FBQUZPR94QtfGLAH\nxb3dl6btfjRHtV7y7Le//W3LbJvuxjh6rgci9MWa2to4/umnO/26ev36bse4av36Lsd4wb41wChQ\nW1sbv//97zP63vOe9wza9cePH9/uhY2u7kna1tvZPUlvQxozewGGLyENAJC8tWsjnnxycK61fHlE\nq41a6T8FBQVxySWXZPQ98MADcckll7RbM70/9GZ5kVQqlbFsSOsHIq1n0uzfvz9eeOGFTsfxQIT+\n8sCePQN/jd27B/waAEl75pln2i2xumDBgkGtoTf3JE899VRGva3vQ1p/33rfmo482ebe2T0JwPCV\n2/0hAMCI19gYsW1bctf/yU8G93o//nHE5z43uNeMiJg+PSJ3aN5+rV69OhobG3t8/DnnnBOTJk1q\n1/+3f/u38UibJeWeeOKJWLJkScycOTP+9E//NC644IJYuHBhzJ07N7Kz+/7O0JIlSyI7O7tl5sv6\n9etj7969MXny5HbHPv300xk/X+uHILNmzYqTTjoptm/fHhFHgpjO1nT3QGRkaGxujm11dYnWcM+u\nXYNyjb884YQBv05npo8ZE7nH8O/4QOqv33kMTY3NjbGtOpn7mr0H9yZy3a0HtkaqYfBnz02fMD1y\ns5O9t3n55Zcz2hMmTIhZs2YNag1lZWXx7W9/u6Xd1SyY1p/NnTs3SkpKWtqt70/27dsXa9eujTPO\nOKPdGBs2bIjdrYL4jpaBBWD4GJpPCQCAwbVtW8Qg/zGbqFtuOfI12DZvjigtHfzr9sBnP/vZXh3/\nxBNPxEUXXdSuf8mSJfEP//AP8ZWvfKXdZ1u2bIlbb701br311og48kBh4cKFcdFFF8W73vWuXr/1\nOnHixDjzzDNblgxJp9Px5JNPxhVXXNHu2NYPRN7xjnfE8ccfn/H5hRdeGHfffXfLsTfccEO7MV56\n6aWMNebHjRs36G/q0j+21dXFrBUrki5jwL106FCiP+fm886L0sLCxK7flf76ncfQtK16W8z6/ii6\nr4mIBbcm89+jzTdujtLi0kSufdSbb76Z0W4degyWti+OvPjii7Fv374Ow93Oll+NiDjllFPihBNO\niDfeeKPl2I5CmrYh0KJFizL2xQFgeBmarzUBADBs/dM//VN8//vfb7c/TVu1tbXxX//1X/GP//iP\nce6558b8+fPj5z//eZd7wrTVdiZLZ2+udrRBb2ttlxfpbowID0QAYChoG9JMnDixV+cvX748Hnvs\nsW6/ulq6tbi4OCNMOfriSFuHDx+OZ599tqXd3T1JT+5rIszsBRju/FUJvVRRUREVFRXt+lM2ZgWA\nFjfccEO8733vi6997Wtx5513xoEDB7o9Z926dXHttdfGLbfcEvfff3/MnDmz23PKysrie9/7Xku7\nozXg6+rqYuXKlS3ttm+tRmQ+ENm1a1ds2LAh5s6dm3GMByIAMPTU1NRktMeNG9er89/3vvfF3r3d\nL1M3c+bMqKqq6vTzsrKyeP7551valZWV8ed//ucZx6xYsSLqWi232dk9yb333hsRQhqA0cJMGuil\nqqqqqKysbPe1atWqpEsDgD574oknIp1O9/irJ8v+TJ8+Pf7lX/4ldu7cGQ8//HB8+tOfjgULFkR+\nfn6X561evToWLlwYr776arfXuPDCCyMrK6ulvWbNmqiurs44ZsWKFXH48OGMc9qaP39+xpIkHT0U\n8UAERo6B+J0HJKOoqCijndQLlD2Z3dv6ZZKZM2fGjBkz2h3T+j5l586d8dJLL2V8vmnTptjWai/J\nwsLCOPfcc/tcNwDJE9JAL5WWlkZZWVm7L2vSA0DHxowZE5dddll897vfjWeffTZqampi1apV8f3v\nfz8uu+yyDkObXbt2xZVXXhlNTU1djj158uQ47bTTWtpNTU3tliNp/ZBkxowZUdrBvkBZWVmxePHi\nDs+JOPKSxtatW1vahYWFsXDhwi5rAwAG3nHHHZfR7sns3YHQ9sWR3//+9+1m+XS1H81RZ5xxRsaS\nbW3vSdq2L7jggm5fgAFgaBPSQC+Vl5fHsmXL2n11tAQaANBefn5+nHPOOXHDDTfEww8/HK+//np8\n7nOfi5ycnIzj1qxZE3fffXe347V9c7Xtkmfd7UfT0WfdPRA5//zzPRABgCGgbUjTk6XLWtuzZ0+H\nM+ieeOKJXo1TUlIS8+bNa2m3fXGkoaEhfve737W0O7snyc7OjkWLFrW0u7qviTCzF2AksCcNABAx\nfXrE5s3JXf9DH4roYjPWfrd4ccQddwze9Y6aPn3wrzkMTJ48Ob75zW/G0qVL44orrsiYPXPHHXfE\nNddc0+X5ZWVl8S//8i8t7dYPLxobG+OZZ55paXf21mpE5sOSbdu2xaZNm2L27Nntxjx6TYav6WPG\nxObzzku6jHaue+mleGz//j6d+85Jk+Jf3/72fq7o2EwfMybpEhilpk+YHptvTOa+Zu/BvbHg1sFf\nZWHVdati8tjJg37d6ROSv7d5e5vffQcOHIiqqqoOZ84OtLKysli3bl1Le/ny5fFnf/ZnEXFkOdfW\nS7F1d0/y6KOPRkTEk08+mfGZexKAkUdIAwBE5OZGJPCHbIulSwc3pCkrS/bnpUPvfe9746Mf/Wj8\n/Oc/b+n77W9/2+15bR9yrFq1Kg4dOhSFhYXx3HPPRW1tbctnXc2kOeecc6KwsDAOHToUEUcegghp\nRqbc7OwoLSxMuowM6XQ61hzDPgpramtjZkFBxlI7MFrlZudGaXFpItcel9e7Tev7y8kTT44p46Yk\ncu2kXXDBBZGTk5PxkseqVasSCWmWLl0at9xyS0u79f1D6++PP/74eMc73tHpOK3vV7Zu3doSOr3+\n+usZe/aNGTMmzhuCLx0A0DuWOwMAkveBD4zs69FjV111VUa7tra227Xlp06dmvGgo6GhoWX2TOsH\nIm2XIWkrPz8/40HH0XPfeOON2LhxY0v/mDFj4vzzz+/BTwM9t+nw4djd0NDn83c1NMTmw4f7sSKA\n4WH8+PFx9tlnZ/T953/+ZyK1tH2J49lnn814+eOorl4aiYg499xzY0yr2YhHz2370sh5550XBQUF\nx1QzAMkT0gAAyTv99Ihu/ljtN0uXRsyfPzjXotc6euv14MGD3Z7X2b40vXkg0vaYjsaIiFi4cKEH\nIvS7Z/pho+tnqqv7oRKA4efyyy/PaP/7v/97VCfwO/GEE07IWH6tvr4+fve730Vzc3PG/jRdLXUW\nceSFkIULF7a0O7snMbMXYGQQ0gAAQ8MXvjCyrkOfpDpY7mny5O7X2G/7kGL58uXR3NycsVxab0Oa\nTZs2xfbt2z0QYVB0F7DMLiiIWd2Eg/0R9AAMR5/4xCdi7NixLe1UKhXf//73E6mlo3uSF154Ifa3\n2nOst/cknc2kcU8CMDIIaQCAoeE97xn4Zcg++MGId797YK/BMXn22Wcz2ieccELk5+d3e17bN1JX\nrFgRq1evjn379nV6TEeOrmt/1PLly1veXj3KAxEGQlchzUemTo3fL1gQzy9YEB+eOrVPYwCMZJMn\nT46PfexjGX0333xzvPDCC4NeS9v7jbb3EhMnTowzzzyz23FahzSvvPJKrF27NtavX9/Sl5eXFxdc\ncEE/VAxA0oQ0AMDQ8cMfRkybNjBjT5sW8YMfDMzYRETEnj174q677orm5uY+nV9fXx8//OEPM/r+\n+3//7z06d/r06TF79uyW9qFDh+Lb3/52S7uoqCjOOuusbsdpu679gw8+GOvWrWtp5+XlxaJFi3pU\nE/RUOp2Og602vD5qYk5O/GLu3Lht7tyYkJsbE3Jz4//MnRt3zZ0bE1qFiUelmpoinU4PRskAQ86X\nv/zlmDFjRku7vr4+/vzP/zz+8Ic/DGodbV/meOaZZ+Lxxx9vaS9atCiys7t/HNf2uJtvvjnjd/y5\n556bMXsIgOFLSAMADB2TJ0f83/8bMWlS/447adKRcXuwbBZ9V1tbG9dcc02cfvrpcccdd7RslNsT\nhw8fjg996EMZgUhExEc+8pEej9H2och9993X8v2iRYsyZsh0pfWbq/fff3/GA5EFCxZ4IEK/y8rK\nitULFsSNJ50UWW/1LZk4Mdace268v4OZMx+YOjXWLFgQiydMOHJ+RHxq+vRYvWBBZGVltTseYDSY\nPHly3HPPPZGXl9fSt2XLlli8eHHcfffdvQ6xX3755T7VMWPGjJg1a1ZL+9ChQ/HII4+0tHsyszci\nYsKECRkzblrf10SY2QswkghpAICh5fTTIyor+29GzbRpR8Y7/fT+GY9urV+/Pj784Q/HCSecENdd\nd13ce++9sWPHjg6Pff311+OWW26JuXPnxr333pvx2fve9774b//tv/X4um0ferSe0dOTtd87Orbt\nrCAPRBgo43Jy4ntz5sTys86Kb86eHU+ceWbM7GIPmtLCwlh21lnxjdmzY/lZZ8U/n3JKjOthEAkw\nUl1wwQXxr//6rxkzUN588834wAc+EGeffXb88Ic/jA0bNnR4bjqdjs2bN8dPfvKTWLJkSfz1X/91\nn+twTwJAb+QmXQAAQDunnx7xwgsRN9wQcdddfR/ngx88ssSZGTSJqK6ujp/+9Kfx05/+NCKOvOFa\nUlISxcXFcfjw4dixY0fs2rWrw3PPO++8+Ld/+7deXa+rhxU9fWs1ImLJkiV9ugb0hyXFxbGkuLhH\nx+ZmZ8fnTz55gCsCGF7Ky8tj0qRJUV5eHvv372/pX7NmTdxwww0RcWR50ylTpkRJSUmk0+moqamJ\nbdu2RSqV6nDMkpKS+Md//Mce11BWVha33XZbu/6CgoI499xzezzOhRdeGD/oYLne3NzcWLx4cY/H\nAWBoM5MGABiaJk+OuPPOiP/4j4hePGCPiCPHP/LIkfMFNINm/PjxXW6Eu3fv3njppZdixYoVsWbN\nmg4Dmuzs7Lj++uvjN7/5TUx4aymnnpo1a1bGWvRHjRkzJhYuXNjjcaZMmRKnnnpqu/6cnBwPRABg\nGLj88svjhRdeiKuvvrrDZSBra2tj8+bN8eyzz8aqVavipZde6jCgmTRpUnz2s5+NjRs3xsc+9rEe\nX7+zlzrOO++8yM/P7/E4nc26+ZM/+ZMYP358j8cBYGgT0gAAQ9t73nNkubK1ayO++MWISy9tv2fN\npElH+r/4xSPHVVZGvPvdydQ7ipWUlMTzzz8fr776anz3u9+Nyy67LCb1cH+hE088MW688cZ4/vnn\n48c//nEUFRX1qYaOHoosXLgwxowZ06txOnoocvbZZ/e5LgBgcM2YMSPuvvvu2LBhQ3zmM5+J2bNn\n9+i8qVOnxhVXXBF333137NixI771rW9FcQ9nOB41e/bsmD59erv+3szsPVrLnDlzjnkcAIa2rHRv\nd04DOrRu3bqYP39+S/vFF1+M0047LcGKgNGksbExNm7cmNE3Z86cyM0doSubptMRtbURdXURY8ZE\njB8fYbPsISmdTseWLVvi5Zdfjq1bt8aBAwfi0KFDMXbs2CgqKopp06bFmWee2eGDDAAYbprTzbH3\n4N5Bv+7ksZMjO8t7uN3ZsWNHvPDCC7Fly5bYt29f1NfXR1FRUUyaNCkmT54cp59+esycOTPpMkeF\nUff3CzDkDKVnuX7zAQDDT1ZWRFHRkS+GtKysrCgtLY3S0tKkSwGAAZedlR1Txk1Jugw6ceKJJ8aJ\nJ56YdBk/TGYTAAAgAElEQVQAkMFrFgAAAAAAAAkQ0gAAAAAAACRASAMAAAAAAJAAIQ0AAAAAAEAC\nhDQAAAAAAAAJENIAAAAAAAAkQEgDAAAAAACQACENAAAAAABAAoQ0AAAAAAAACRDSAAAAAAAAJEBI\nAwAAAAAAkAAhDQAAAAAAQAKENAAAAAAAAAkQ0gAAAAAAACRASAMAAAAAAJAAIQ0AjABZWVnt+pqb\nmxOoBAAAoGsd/a2Sne0xJTA6+e0HACNAR3/QNDQ0JFAJAABA19r+rZKVldXhi2cAo0Fu0gVAdxoa\nGuLRRx+N1atXx+rVq2PTpk2xd+/e2LdvX4wZMyamTZsWCxYsiKuvvjouu+wy/1EHRqWsrKzIz8+P\n+vr6lr7q6uoYN25cglUBAAC0V11dndHOy8vzPAcYtYQ0DHk7d+6Myy+/vMPPGhoa4uWXX46XX345\n7rrrrli0aFHcd999ceKJJw5ylQDJmzhxYuzevbulXV1dHVOmTIncXP+5BwAAhobGxsZ2Ic3EiRMT\nqgYgeZ7aMCwcd9xxUVZWFgsWLIhZs2bFCSecEJMmTYoDBw7EmjVr4qc//WmsXbs2nn766bjkkkvi\nueeei4KCgqTLBhhUbUOa5ubm2LJlS8yYMSPy8/MTrAwAACCivr4+XnvttXZ70ghpgNFMSMOQN23a\ntNi9e3enG8iVlZXFJz/5yXjf+94Xv/rVr2LDhg3x85//PD75yU8OcqUAycrLy4tx48ZFKpVq6auv\nr49NmzbF2LFjY/z48TF27NjIycmxlAAAADDg0ul0NDU1xcGDB6O2tjYOHjwY6XQ645hx48ZFXl5e\nQhUCJE9Iw5DXWTjTWm5ubvzd3/1d/OpXv4qIiCeeeEJIA4xKU6dOja1bt0ZjY2NLXzqdjlQqlRHe\nAAAAJC0vLy+mTp2adBkAiRLSMCBeffXVWLlyZWzbti3q6+tj0qRJceqpp8aiRYsGbBmyCRMmtHzf\ndm1TgNFizJgxUVpaGq+99lrU1dUlXQ4AAECHxowZEzNmzDCLBhj1hDSjwPbt22PlypWxYsWKWLly\nZaxatSpqampaPp85c2ZUVVX1y7Ueeuih+MpXvhLPPfdch5+PHz8+ysvL40tf+lKUlJT0yzWPuuOO\nO1q+P/XUU/t1bIDhJC8vL2bOnBk7duzI+H0PAAAwFBQVFcWJJ54YOTk5SZcCkDghzQj11FNPxXe+\n851YsWJFvP766wN+vbq6urj22mvjzjvv7PK42tra+NGPfhT33HNP3HfffbF06dI+X7O5uTl27doV\nf/jDH+LWW2+Nu+66KyIi8vPz4/rrr+/zuAAjQU5OTkyfPj2ampoilUpFbW1t1NbWRlNTU9KlAQAA\no0xOTk6MHz8+xo8fH+PGjRPOALQipBmhnn322XjwwQcH5VrNzc1x9dVXxy9/+cuM/pycnDj55JNj\n4sSJsXnz5jhw4EDLZ7t37453vetd8dhjj8UFF1zQ42vt2bMnpkyZ0unnEydOjLvuuivmzp3b+x8E\nYATKycmJCRMmtCwJmU6no7m5ud1mnQAAAP0tKysrsrOzIysrK+lSAIYsIc0oNH78+Kitre238b71\nrW+1C2iuv/76+Id/+IeYNm1aRBwJcn75y1/Gpz71qdi6dWtERBw8eDCuuuqqePHFF2PixInHVENW\nVlZ8+tOfjs9//vM2nAPoQlZWlrfWAAAAAIaI7KQLYGAVFRXFRRddFJ/73Ofi3nvvjaqqqvjVr37V\nb+Pv3bs3vvrVr2b0fe1rX4sf//jHLQFNRER2dnb8j//xP+Lpp5+O0tLSlv5t27bFd7/73R5fb9Kk\nSbF27dpYu3ZtPP/88/H444/HzTffHDNmzIjvf//7ce2118b27duP+ecCAAAAAICBlpW23smI9Oqr\nr0ZdXV2ceuqpkZ2dmcUtW7YsLr744pb2zJkzo6qqqk/X+cIXvhDf/OY3W9pLly6NZcuWdTmN9fHH\nH49LL720pV1UVBSbN2+OyZMn96mGiCN73Vx55ZXx61//OqZOnRpPPPHEoC95tm7dupg/f35L+8UX\nX4zTTjttUGsAAAAAAKBrQ+lZrpk0I9Tb3va2mDdvXruApj81NzfHv/3bv2X0ffnLX+52ndFLLrkk\nLrzwwpZ2TU1N/Pu///sx1TJ+/Pi4/fbbo7CwMHbu3BnXX3/9MY0HAAAAAAADTUhDnz399NOxe/fu\nlvbs2bPjoosu6tG51157bUb7oYceOuZ6jj/++FiyZElERCxfvjx27NhxzGMCAAAAAMBAEdLQZ488\n8khG+53vfGe3s2haH9vasmXLIpVKHXNNJSUlLd/3dQk3AAAAAAAYDEIa+uz555/PaC9atKjH506b\nNi1KS0tb2vX19bF+/fpjrmnbtm0t3xcVFR3zeAAAAAAAMFCENPTZhg0bMtrz5s3r1fltj287Xm9V\nVVXF7373u4iIGDduXLztbW87pvEAAAAAAGAgCWnok0OHDsXWrVsz+mbMmNGrMdoe/9JLL3V43J13\n3hl79uzpcqzdu3fHVVddFQ0NDRER8YEPfCAKCwt7VQ8AAAAAAAym3KQLYHjas2dPpNPplnZeXl4c\nf/zxvRrjpJNOymjv2rWrw+NuvfXW+PjHPx7vfve74+KLL4558+bFpEmTorGxMbZv3x6VlZVx2223\nxb59+yIi4pRTTomvf/3rvfyJAAAAAABgcAlp6JPa2tqM9tixYyMrK6tXY4wbN67LMVs7fPhwPPDA\nA/HAAw90Oea73/3u+NnPfhaTJ0/uVS1t7dq1K3bv3t2rc1555ZVjuiYAAAAAAKOLkIY+aRuoFBQU\n9HqMtsuRdRbS3H777fHoo4/G008/HevXr4+dO3fG7t27o6mpKSZOnBinnHJKnHfeefH+978/zjvv\nvF7X0ZFbbrklbrrppn4ZCwAAAAAAOiKkoU8OHz6c0c7Pz+/1GGPGjMloHzp0qMPjZsyYEX/1V38V\nf/VXf9XrawAAAAAAwFCVnXQBDE9tZ87U19f3eoy6urouxwQAAAAAgJHMTBr6ZPz48RnttjNreqLt\nzJm2Yybpk5/8ZPzFX/xFr8555ZVX4oorrhigigAAAAAAGGmENPRJ20Dl4MGDkU6nIysrq8djpFKp\nLsdM0vHHHx/HH3980mUAAAAAADCCWe6MPikpKckIZBoaGmLXrl29GmP79u0ZbaEIAAAAAACjiZCG\nPiksLIyTTz45o2/r1q29GqPt8aeeeuox1wUAAAAAAMOFkIY+axuqrF+/vlfnb9iwocvxAAAAAABg\nJLMnDX121llnxf/7f/+vpf3000/HRz/60R6du2PHjqiqqmpp5+Xlxbx58/q7xAFRUVERFRUV7frb\n7rEDAAAAAABdEdLQZ+9973vjG9/4Rkv7sccei3Q6nbFXTWd+/etfZ7QvvvjiGD9+fL/XOBCqqqqi\nsrIy6TIAAAAAABjmhDT02aJFi6KkpCT27NkTERGbNm2KZcuWxcUXX9ztuT/72c8y2pdffvmA1DgQ\nSktLo6ysrF1/KpWKVatWJVARAAAAAADDkZCGPsvOzo7y8vL49re/3dJ30003xUUXXdTlbJrHH388\nnnzyyZZ2UVFRXHXVVQNaa38qLy+P8vLydv3r1q2L+fPnD35BAAAAAAAMS9lJF8Dw9oUvfCFjmbLK\nysqMJdDa2r59e3z84x/P6LvxxhujpKRkwGoEAAAAAIChyEyaEeypp56KQ4cOtetfs2ZNRvvw4cPx\n2GOPdTjGtGnTYt68eZ1eo6SkJL74xS/GF7/4xZa+v/u7v4utW7fG3//938e0adMiIqK5uTkefvjh\nuPHGG2Pr1q0Z43/mM5/p1c8FAAAAAAAjQVY6nU4nXQQDo7S0NLZs2XJMY3z0ox+NioqKLo9pbm6O\nyy+/PP7jP/4joz8nJydmzpwZEydOjM2bN8f+/fszPi8sLIzf/OY3sXjx4mOqcahou9zZiy++GKed\ndlqCFQEAAAAA0NZQepZruTOOWXZ2dtx7773x/ve/P6O/qakpNm3aFL///e/bBTSTJ0+O//zP/xwx\nAQ0AAAAAAPSWkIZ+UVBQEL/4xS/ivvvui7POOqvT48aNGxef/OQnY/369XHRRRcNXoEAAAAAADDE\n2JNmBKuqqhr0a1555ZVx5ZVXxiuvvBIrVqyI7du3R319fRQXF8fcuXNj8eLFUVBQMOh19aeKiooO\nl4BLpVKDXwwAAAAAAMOWkIYBccopp8Qpp5ySdBkDoqqqKiorK5MuAwAAAACAYU5IA71UWloaZWVl\n7fpTqVSsWrUqgYoAAAAAABiOhDTQS+Xl5VFeXt6uf926dTF//vzBLwgAAAAAgGEpO+kCAAAAAAAA\nRiMhDQAAAAAAQAKENAAAAAAAAAkQ0gAAAAAAACRASAMAAAAAAJAAIQ0AAAAAAEAChDQAAAAAAAAJ\nyE26ABhuKioqoqKiol1/KpUa/GIAAAAAABi2hDTQS1VVVVFZWZl0GQAAAAAADHNCGuil0tLSKCsr\na9efSqVi1apVCVQEAAAAAMBwJKSBXiovL4/y8vJ2/evWrYv58+cPfkEAAAAAAAxL2UkXAAAAAAAA\nMBoJaQAAAAAAABIgpAEAAAAAAEiAkAYAAAAAACABQhoAAAAAAIAECGkAAAAAAAASIKQBAAAAAABI\ngJAGAAAAAAAgAblJFwDDTUVFRVRUVLTrT6VSg18MAAAAAADDlpAGeqmqqioqKyuTLgMAAAAAgGFO\nSAO9VFpaGmVlZe36U6lUrFq1KoGKAAAAAAAYjoQ00Evl5eVRXl7ern/dunUxf/78wS8IAAAAAIBh\nKTvpAgAAAAAAAEYjIQ0AAAAAAEAChDQAAAAAAAAJENIAAAAAAAAkQEgDAAAAAACQACENAAAAAABA\nAoQ0AAAAAAAACRDSAAAAAAAAJEBIAwAAAAAAkAAhDQAAAAAAQAJyky4AhpuKioqoqKho159KpQa/\nGAAAAAAAhi0hDfRSVVVVVFZWJl0GAAAAAADDnJAGeqm0tDTKysra9adSqVi1alUCFQEAAAAAMBwJ\naaCXysvLo7y8vF3/unXrYv78+YNfEAAAAAAAw1J20gUAAAAAAACMRkIaAAAAAACABAhpAAAAAAAA\nEiCkAQAAAAAASICQBgAAAAAAIAFCGgAAAAAAgAQIaQAAAAAAABIgpAEAAAAAAEiAkAYAAAAAACAB\nQhoAAAAAAIAECGkAAAAAAAASIKQBAAAAAABIgJAGAAAAAAAgAblJFwDDTUVFRVRUVLTrT6VSg18M\nAAAAAADDlpAGeqmqqioqKyuTLgMAAAAAgGFOSAO9VFpaGmVlZe36U6lUrFq1KoGKAAAAAAAYjoQ0\n0Evl5eVRXl7ern/dunUxf/78wS8IAAAAAIBhKTvpAgAAAAAAAEYjIQ0AAAAAAEAChDQAAAAAAAAJ\nENIAAAAAAAAkQEgDAAAAAACQACENAAAAAABAAoQ0AAAAAAAACRDSAAAAAAAAJEBIAwAAAAAAkAAh\nDQAAAAAAQAKENAAAAAAAAAnITboAAAAAAABg8LzZ0BBXr1+f0XfPvHlxXF5eQhWNXkIaAAAAAAAY\nRe7etSse27cvo++eXbviEyedlFBFo5flzgAAAAAAYBSpeOONHvUx8IQ0AAAAAAAwSqxLpeLZmpp2\n/StramJ9KpVARaObkAYAAAAAAEaJ27qYMdPVZwwMIQ0AAAAAAIwCjc3NcfvOnZ1+fvvOndHY3DyI\nFZGbdAEAAAAAAMCxS6fTsaehodPPn9i/P96or+/08x319fHgnj1xUXFxp8eU5OVFVlbWMdXJHwlp\nAAAAAABgBFhTWxtnr159TGNctX59l58/v2BBnDl+/DFdgz8S0kAvVVRUREVFRbv+lE21AAAAAIAE\nPbBnz8BfY/duIU0/EtJAL1VVVUVlZWXSZQAAAAAAZHhg9+6Bv8aePXHTrFkDfp3RQkgDvVRaWhpl\nZWXt+lOpVKxatSqBigAAAAD67s2Ghri6zfJG98ybF8fl5SVUEdBaQ3NzHGxujkNNTUf+2eb7g01N\ncai5OXbW18eGgwcHvJ4NqVTsqq+P4/PzB/xao4GQBnqpvLw8ysvL2/WvW7cu5s+fP/gFAQAAAByD\nu3ftisf27cvou2fXrvjESSclVBEMbel0OurT6Q6Dktbfd9jXg7Cl7XlNSf/ArcwqKIi75s4V0PQj\nIQ0AAAAAjGIVb7zRYZ+QhuEknU5H3dEQpIdBSUehSVdhS+vzmpP+gRPw4alT40dz5sSEXLFCf/K/\nJgAAAACMUutSqXi2pqZd/8qamlifSsW8ceMSqIqRojmdjsM9CDx6E5R0NivlcHNzpJP+gUeoiTk5\n8eO3vz0+MHVq0qWMSEIaAAAAABilbutgFk3rz77xtrcNYjUMhqa3lunqj2W4ugtbDjePxvkmI8sF\nEybEL+bNi5kFBUmXMmIJaQAAAABgFGpsbo7bd+7s9PPbd+6Mr86aFbnZ2YNY1ejUeDT46IdluLoL\nW+rT5pvQc5eXlAhoBpiQBgAAAABGoHQ6HXsaGjr9/In9++ON+vpOP99RXx8P7tkTFxUXd3pMSV5e\nZGVlHVOdQ1VDP8wu6el5DYIT+ig3KyvGZmdHYXZ2jM3Jyfjn0e+fra6O7V38u96VZw4c6OeKaUtI\nAwAAAAAj0Jra2jh79epjGuOq9eu7/Pz5BQvizPHjj+kaPZVOp6P+raW6jnV2SU/OaxqUn4qRKD8r\nq8PQZGx2dhS2+b5twNJV2NLRed3NdEun0zH16af7/LM8U10d6XR6xIaxQ4GQBgAAAABGoAf27Bnw\na9y/e3e8vbCw15u893VWivkm9FXBW6FGV4FHR6FJV0FJZ2PkDKFAY9Phw7G7ixl13dnV0BCbDx+O\n2YWF/VgVrQlpAAAAAGAEemD37gG/xle2bImvbNky4NdhZBqo2SVtxyjIzo7sIRScDKb+WK7smepq\nIc0AEtIAAAAAwDCVTqejtqkp9jQ0xO6Ghtjz1temQ4di/cGDSZfHMJMVMSCzSzo6viA72xJag+CZ\n6uouP59dUBDpiNh8+HDnYxw4ENdMndrPlXGUkAYAAAAAhoiG5ubY+1bQsrvNPzP66utb+upsOj+i\nZUfE2AGYXdLReflZWYKTEaarkOYjU6fGD+fMiYiI/7VxY9y+c2evx+DYCWkAAAAAYACk0+mofmuW\nS+tgpavwZX9jY9Jl0wO5WVk9Ck36upRX6/PyBCf0UTqdjoNNTe36J+bkxE/e/vZ4f6vZMf9n7tx4\n13HHxfUvvxzVbc5JNTVFOp32/8MBIqQBAAAAgB6ob25uF6p0FL60/r7BLJdBk5+VNSCzSzo6Lzc7\nO+kfF7qVlZUVqxcsiP+9aVP8YPv2SEfEkokT4465c2NmQUG74z8wdWpcMGFCfGjDhniqujqyIuLG\n6dPj5lmzBDQDSEgDAAAAwKiTTqfjQGNju1ktXYUvbd8up3tjsrIGZHZJR2FLjofI0M64nJz43pw5\n8T+nTIlnqqvj09OndxkylhYWxrKzzorvbtsWiyZMiCXFxYNY7egkpAEAAABg2Ktrbs7Yp6W7/Vz2\nNjZGo1kuvfKe446L90ye3ONZKQXZ2ZEtOIEhYUlxcY8Dl9zs7Pj8yScPcEUcJaQBAAAAYEhpTqdj\nf+tZLj0IX2rNcomII3ullOTltXxNafPP2954I1bX1vZ57E+cdFI/VwwwuglpAAAAABhQh5qaOgxY\nOgtf9jY0RHPSRQ8RE3Jy/hi05Od3Gr4c/X5ibm6ne0ek0+n4ypYtfa7lmepqm4cD9DMhDQAAAAA9\n1pROx77OlhHrZD+Xg80il4iIvKysdqFKV+HL5Ly8yO/HDeo3HT4cuxsa+nz+roaG2Hz4cMwuLOy3\nmgBGOyENAAAAwCiWOjrLpVWo0lX4srehIezkckRxbm7HoUsn4UtRTk6is1CeOXDg2MeorhbSAPQj\nIQ0AAACQ4c2Ghrh6/fqMvnvmzYvj8vISqoieamxujjcbG3u0pNjRvkNmuURERP5bs1yOBitdhS8l\nb81yyevHWS6D4Znq6i4/n11QEOmI2Hz4cOdjHDgQ10yd2s+VAYxeQhoAAAAgw927dsVj+/Zl9N2z\na5cNwwdZOp2O2jZ7uXQXvuxrbDTL5S3HtZ3l0k34Mi7hWS6DoauQ5iNTp8YP58yJiIj/tXFj3L5z\nZ6/HAKD3hDQAAABAhoo33uiwT0hzbBqam2NvV3u4dBC+1KVFLhERBdnZR2a5dDCjpaPw5bjc3Mgd\nZrNcBlo6nY6DTU3t+ifm5MRP3v72eH+r2TH/Z+7ceNdxx8X1L78c1W3OSTU1RTqdHvGBFsBgEdIA\nAAAALdalUvFsTU27/pU1NbE+lYp548YlUNXQk06no/qtWS493c9lf2Nj0mUPCVkRMbkHy4m1Dl/G\n5uQkXfawl5WVFasXLIj/vWlT/GD79khHxJKJE+OOuXNjZkFBu+M/MHVqXDBhQnxow4Z4qro6siLi\nxunT4+ZZswQ0AP1ISAMAAAC0uK2DWTStP/vG2942iNUMnvrm5nbhSnfhS4NZLhERMS47OyNU6TR0\neeufk/LyIsdD/kSMy8mJ782ZE/9zypR4pro6Pj19epczjkoLC2PZWWfFd7dti0UTJsSS4uJBrBZg\ndBDSAAAAABFxZNP5zvahiIi4fefO+OqsWUN+Gal0Oh0HGhvbzWTpKnxpu6TTaJUd0T5o6SZ8KTTL\nZdhZUlzc48AlNzs7Pn/yyQNcEcDoJaQBAACAUSKdTseehoZOP39i//54o76+08931NfHg3v2xEVd\nPNwtycvr96WQ6pqbM/Zp6W4/l72NjdFolktERBTl5HQ6o6Wj8KU4NzeyzXIBgEEjpAEAAIBRYk1t\nbZy9evUxjXHV+vVdfv78ggVx5vjxnX7enE7H/tazXHoQvtSa5RIREblZWe1Cla72c5mcmxsFZrkA\nwJAmpAEAAIBR4oE9ewb8GjdVVUVZcXGHS4rtbmiIvQ0N0TzgVQwPE9+a5dJ6VktX4cvE3FwbtgPA\nCCOkAQAAgFHigd27B/waD+7ZEw8OQhg01ORlZXU6o6Wj8GVyXl7kD/G9fQCAgSekgV6qqKiIioqK\ndv2pVGrwiwEAAOihXfX18YeDB5MuY9iYlJvb7XJirfuKcnLMcgEAek1IA71UVVUVlZWVSZcBAACQ\nobaxMbbV1cW2urrYXl//x+/f+ue2uroYrTu7jMnKaglVOg1dWoUvx+XmRp5ZLgDAIBDSQC+VlpZG\nWVlZu/5UKhWrVq1KoCIAAGAkS6fT8WbrAKZV6NL6++qm0RPBHJebmxGqdBe+jDPLBQAYooQ00Evl\n5eVRXl7ern/dunUxf/78wS8IAP4/e3ceH1V973/8PTOZrJMFss6AkKBYtipo3BAJSrH13uJW12o1\nFQHrtXr9XW/tCmjrw4f1tvqo2ivUJe51x1K64QIiUmhQUAEFgcgykw0CmUxIZjJzfn+YzM2QxWQy\nmZlMXs/HI4+cc2bO9/vJH61h3vmcDwBgyPIbhmp66Ho50KkrpiUQiHWpgybNbO6xo6W78GVEUpKS\n6HIBAAAJgpAGAAAAAIBB0BoIyNlD10vH48hcCfYIMpOk3D48TqzztXSLJdZlAwAAxAwhDQAAAAAA\n/eRuawvpdOkuiKnz+WJd5qC7tqBACx2OYPiSk5QkC48VAwAA6DNCGgAAAAAA2g2n+S9ZFotGpaSo\n3ucLO1By+/2akZMT4coAAACGD0IaAAAAAMCwMJzmv+RbrRqVkqLR7V+jkpP/77j9KyspSYZhqPD9\n98PeZ31jowzDkInuGQAAgLAQ0gAAAAAAhrzhMv/FLMnRTejS+diRnKzUPs552d3SMqDHstX6fNrT\n0qJxaWlhrwEAADCcEdIAAAAAAOJa5/kvPc2ASYT5LykmU7ehS+fjQqtVSWZzxPZcf+TIwNdobCSk\nAQAACBMhDQAAAAAgJgzD0EGfr9vQpfNxosx/6TWASU5WrtUa9ceGrW9s7PX1campMiTtaWnpeY0j\nR3RNYWGEKwMAABgeCGkAAAAAABHnNwxVe73dhi6dj1sNI9alDli+1dpt6NI5jMlMis9/fvcW0lxX\nWKiHxo+XJN2yc6eeqanp9xoAAADoXXz+lggAAAAAiFutgYAO9BC6dDyOLBHmv1gk2XsIXTqOHSkp\nSong48eiyTAMNXfTpZRtsejRE0/UVZ26Y56eOFEXjBypm3bs6NLZ5PH7ZRhG1LuAAAAAEgEhDQAA\nAAAgyN3W1m3o0jmMSaT5L709gqwwOVmWBA4eTCaTNpWW6me7d+t3Bw7IkDQjO1vPTpyosampXd5/\ndWGhzsrK0rXbt2tdY6NMkm4bPVq/KikhoAEAAAgTIQ0AAAAADAMd81+6C106HyfS/JfeApiRSUkE\nC5IyLBY9OH68LsvP1/rGRt0+erSSeukMKk5L0+qpU/Xb/fs1PStLM3JyolgtAABA4iGkAQAAAIAh\nrmP+S09zXzqOE2n+S08zYOJ5/ks8m5GT0+fAJcls1o/GjBnkigAAAIYHfnMFAAAAgDjW4vfL+RUB\nTLXXm1DzX3qaATOU578AAAAA3SGkAQAAANCrQz6frty2LeTai5MmaaTVGqOKEkfH/JfeZsDUJ8D8\nl1SzudvQpfNxos9/AQAAALpDSAMAAACgV3+srdWbDQ0h116srdUPRo2KUUXxr/P8l95mwLgTYP5L\ntsXS49yXUcx/AQAAAHpFSAMAAACgVxXV1d1eG64hTef5Lz09gixR5r8UWK09BzDJycx/AQAAAAaI\n36YBAAAA9Girx6N/ud1drm90u7XN49GkjIwYVDV4Os9/6SmAcXm9CsS60AGySHJ0E7p0DmOY/wIA\nAAAMPkIaAAAAAD16qpsums6v3Xf88VGsZmAa29q6DV06P44sUea/dBe6dD5m/gsAAAAQHwhpAAAA\nAHSrLRDQMzU1Pb7+TE2N7ikpUVKMuy0Mw1C9z9dt6NI5jEmU+S89zX3pOGb+CwAAADB0ENIAAAAA\nw9JVVwMAACAASURBVFRHuNGTdw4fVrXX2+PrLq9Xr9fXa1ZOTo/vybNaBxQYtAUCqvH5uu1+6ThP\npPkvvQYwycmyMf8FAAAASCj8hg8AAAAMU1uamjRt06YBrXHFtm29vr65tFQn22zdvjbc5r90F7p0\nHNuZ/wIAAAAMS4Q0AAAAwDD1Wn39oO/xP3v36rwRIxJ+/kt3wUtHIFPA/BcAAAAAPSCkAQAAAIap\n1+rqBn2PZ2tr9Wxt7aDvMxg65r/09giyEcx/AQAAADAAhDQAAADAMFTr9erT5uZYlxEzHfNfegpg\nmP8CAAAAIBr4VwcAAAAwDBUkJ2vttGm6Zvt27WlpiXU5EZNkMsnezSPHOj+KzJGSomTmvwAAAACI\nA4Q0AAAAwDDT4vfrI49HHzY1aXpWlhra2nS4rS3WZX2ltPb5L6OY/wIAAAAgQRDSAAAAAAnMGwjo\nY49HlW538OsTj0dthhHr0kLkJCX1GLx0HDP/BQAAAECiIaQBAAAAEoQvENBWj0ebmpqCgcxHTU3y\nxjiQKbRau5370vk8w2KJaY0AAAAAEAuENAAAAMAQ1BYI6NPm5pAOmc1NTWqNYSAzIytLF+fnh8yA\nYf4LAAAAAPSMkAYAAACIc37D0I5uApnmQCDWpYXItVr1X8cdF+syAAAAAGDIIKQBAAAA4kjAMLTr\n6NGQQOaDpiY1+f1R2d8kKdxenPWNjTIMg7kxAAAAANBHhDQYEnbt2qW//e1vevfdd/XRRx9p//79\nam1tVU5OjiZNmqTzzz9f8+bNU2FhYaxLBQAA6DPDMLSnpSUkkNnkdqsxSoFMhtmsUzIzVdr+VWC1\nas5HH4W9Xq3Ppz0tLRqXlhbBKgEAAAAgcRHSIO6Vl5frqaee6va1uro6rVmzRmvWrNF9992nRx55\nRNdee22UKwQAAPhqhmFob2urNnUKZCrdbjW0tUVl/zSzWdNsNpVmZurU9lDma+npsnTqenm2unrA\n+6xvbCSkAQAAAIA+IqRB3Nu/f78kKSMjQ3PnztV5552nr33ta8rMzNS+ffv08ssv67nnnlNjY6Ou\nu+46Wa1WXXnllTGuGgAADGeGYcjp9YaEMZVut+p9vqjsn2Iy6eT2QKbja2J6upLM5l7vW9/Y2Ovr\n41JTZUja09LS8xpHjugaupsBAAAAoE8IaRD3HA6HHnzwQc2bN082my3ktWnTpunCCy/Uv//7v+vq\nq6+WYRi65ZZbNHfuXKWnp8eoYgAAMNxUt7Z++aiypqZgIFPt9UZlb6vJpJMyMoJhzKmZmZqckaHk\nrwhkutNbSHNdYaEeGj9eknTLzp16pqam32sAAAAAAEIR0iDuPf3001/5nquuukovvviili9frvr6\ner355pu68MILo1AdAAAYbuq83i6PLDsQpUDGImlKp0CmNDNTX7fZlBJGIHMswzDU3M0snGyLRY+e\neKKu6tQd8/TEibpg5EjdtGNHl/k5Hr9fhmHI1OkxagAAAACA7hHSYFDs2rVLGzdu1P79++X1ejVi\nxAhNmDBB06dPV2pq6qDsOXv2bC1fvlyStGPHjkHZAwAADC+HfL5gINPx/YvW1qjsbZY06ZhA5qSM\nDKVZLIOyn8lk0qbSUv1s92797sABGZJmZGfr2YkTNbab39+uLizUWVlZunb7dq1rbJRJ0m2jR+tX\nJSUENAAAAADQR4Q0w8CBAwe0ceNGbdiwQRs3blRlZaXcbnfw9bFjx6qqqioiey1fvly//OUv9cEH\nH3T7us1mU3l5uRYvXqy8vLyI7NnB2+kvWC2D9OEFAABIXEfa2vTBMR0yu3uZvRJJJklfS08PCWSm\n2mzKiPLvNBkWix4cP16X5edrfWOjbh89utc5NsVpaVo9dap+u3+/pmdlaUZOThSrBQAAAIChj5Am\nQa1bt06/+c1vtGHDBjmdzkHfr7W1VfPmzdNzzz3X6/uampr08MMP68UXX9Qrr7yimTNnRqyGd955\nJ3g8efLkiK0LAAASj7utTR92mh+zye3WjqNHo7b/+LS0kEBmms2mzKT4+dV8Rk5OnwOXJLNZPxoz\nZpArAgAAAIDEFD//EkRE/etf/9Lrr78elb0CgYCuvPJKvfHGGyHXLRaLxowZo+zsbO3Zs0dHjhwJ\nvlZXV6cLLrhAb775ps4666wB11BZWam//vWvkqRRo0bp3HPPHfCaAAAgMTT7/drcKZCpdLv1aXOz\njCjtX5KaGhLInGKzKcdqjdLuAAAAAIB4RkgzDNlsNjU1NUVsvfvvv79LQHPTTTfpF7/4hRwOh6Qv\ng5w33nhD//mf/6m9e/dKkpqbm3XFFVfok08+UXZ2dtj7NzU1qby8XP72obX33nuvrHzwAQDAsNTi\n92uLxxMSyGzzeBSI0v5jUlJCA5nMTOXyewkAAAAAoAeENAkuMzNTp556qk477TSdfvrpOu2007Rn\nz56IdZocPHhQ99xzT8i1e++9Vz/+8Y9DrpnNZl1yySU6/fTTNWPGjOAMnP379+u3v/2t7rrrrrD2\nDwQCuuaaa7R161ZJ0lVXXaXvfe97Ya0FAACGltZAQB+3d8hsav/+icejNiM6PTKjkpN1aqdA5tTM\nTBUkJ0dlbwAAAABAYiCkSVBz587V+eefrwkTJsh8zLDXPXv2RGyfX//613K73cHzmTNn6s477+zx\n/aNGjdJjjz2mb3zjG8FrDzzwgG699Vbl5ub2a2/DMDR//nz96U9/kiSdccYZeuyxx/r5EwAAgKHA\nFwho6zEdMh95PPJFKZApsFp12jGBjD0lJSp7AwAAAAASFyFNgjr++OMHfY9AIKAnn3wy5NqSJUtk\nMpl6vW/27Nk655xztHbtWkmS2+3WSy+9pB/84Ad93tswDN1888164oknJEnTpk3T3/72N2VkZPTz\npwAAAPGmLRDQ9ubmYBizye3W5qYmtUYpkMlNStJpWVk61WYLhjKjUlK+8nccAAAAAAD6i5AGYXv/\n/fdVV1cXPB83bpxmzZrVp3vnzZsXDGkkafny5f0KaX74wx/q0UcflSSddNJJWrVqlXJycvp8PwAA\niA9+w9COToFMpdutD5uadDQQnSkyOUlJITNkSjMzNYZABgAAAAAQJYQ0CNvKlStDzufMmdPnDzTm\nzJkTcr569Wp5PJ4+dcL88Ic/1COPPCJJ+vrXv6633nqr349KAwAA0RcwDH1+9GiXQKbJ74/K/lkW\nS3CGTMf3campBDIAAAAAgJghpEHYNm/eHHI+ffr0Pt/rcDhUXFysqqoqSZLX69W2bdt02mmn9Xrf\nrbfeqocffliSNHnyZL311lvKy8vrX+EAAGDQGYahPS0tIYHMJrdbjVEKZDLMZp1yTIfMCWlpMhPI\nAAAAAADiCCENwrZ9+/aQ80mTJvXr/kmTJgVDmo71egtpbrvtNj300EOSvgxo3n77beXn5/drTwAA\nEHmGYWhva2uXQKahrS0q+6eZzZrWaX7MqZmZ+lp6uiwEMgAAAACAOEdIg7AcPXpUe/fuDbl23HHH\n9WuNY9//2Wef9fje22+/Xb/73e8kfRnuvP322yooKOjXfgAAYOAMw9CB1lZtamoKCWXqfb6o7J9i\nMunkToFMaWamJqanK8lsjsr+AAAAAABEEiENwlJfXy/DMILnVqu136HJqFGjQs5ra2u7fd+dd96p\nBx98UJKUn5+vhx56SLW1tT2+X5JGjBjRZf3+qK2tVV1dXb/u+fzzz8PeDwCAeFV9TIdMpdutmigF\nMlaTSSdlZIQEMpMzMmQlkAEAAAAAJAhCGoSlqakp5Dw9Pb3fQ3czMjJ6XbPDiy++GDyuq6vT7Nmz\nv3Lt66+/XhUVFf2qp7Pf//73uuuuu8K+HwCAoajO6w15XFml260DXm9U9rZImnJMIPN1m00pBDIA\nAAAAgARGSIOwHBuopKam9nuNtLS0XtcEAACD55DPFwxiOr72trZGZW+zpEnHBDInZWQozWKJyv4A\nAAAAAMQLQhqEpaWlJeQ8OTm532ukpKSEnB89erTb91VVVfV7bQAA8H8O+3z6oNMMmU1ut3Yf89/y\nwWKSNCE9Xad2CmSm2mzKIJABAAAAAICQBuE5tnPGG8ajUFqP+WvdcLpxBsvNN9+syy+/vF/3fP75\n57r44osHqSIAAPrG3damDzsFMpVut3b28IcQg2F8WlpIh8w0m02ZSfzKCQAAAABAd/gXM8Jis9lC\nzo/trOmLYztnjl0zlgoKClRQUBDrMgAA6JXH79fmYwKZz5qbZURp/3GpqSrNzAx2yZxisynHao3S\n7gAAAAAADH2ENAjLsYFKc3OzDMOQyWTq8xoej6fXNQEAwP856vfrI48nJJDZ5vEoEKX9x6SkhHTI\nnJKZqVwCGQAAAAAABoSQBmHJy8uTyWSSYXz5t7o+n0+1tbUqLCzs8xoHDhwIOadzBQCAL7UGAvr4\nmA6ZTzwe+aO0/6jk5GAYc2r7V0EY8+cAAAAAAEDvCGkQlrS0NI0ZM0ZffPFF8NrevXv7FdLs3bs3\n5HzChAkRqw8AgKHCFwjoE49HmzoFMh95PPIZ0XloWaHVGtIhc2pmpuwpKVHZGwAAAACA4Y6QBmGb\nMGFCSEizbds2nXbaaX2+f/v27V3WGwoqKipUUVHR5fqxj28DAOBYbYGAtjc3h3TIbGlqUmuUApm8\nYwMZm02jUlL69bhSAAAAAAAQOYQ0CNvUqVP197//PXj+/vvv6/rrr+/TvS6XS1VVVcFzq9WqSZMm\nRbrEQVFVVaU1a9bEugwAQJzzG4Y+aw9kOrpkPmxq0tFAdKbI5CQlhQQypZmZGkMgAwAAAABAXCGk\nQdi+/e1v67777guev/nmmzIMo08f/vzjH/8IOT/33HNls9kiXuNgKC4uVllZWZfrHo9HlZWVMagI\nABBrAcPQ50ePhnTIfOB2yxOlQCbLYtGpxwQyJampBDIAAAAAAMQ5QhqEbfr06crLy1N9fb0kaffu\n3Vq9erXOPffcr7z38ccfDzm/6KKLBqXGwVBeXq7y8vIu17du3aopU6ZEvyAAQFQZhqHdLS1dAplG\nvz8q+2eYzTrlmEDmhLQ0mQlkAAAAAAAYcghpEDaz2azy8nL9z//8T/DaXXfdpVmzZvX6l7tvvfWW\n1q5dGzzPzMzUFVdcMai1AgAQDsMw9EVLizY1NYWEMofb2qKyf5rZrGk2W0ggc2J6uiwEMgAAAAAA\nJARCGgzInXfeqUcffVRNTU2SpDVr1ui+++7Tj3/8427ff+DAAd14440h12677Tbl5eUNeq0AAPTG\nMAwdaG0NCWMq3W4djFIgk2IyaarNFvLYsonp6Uoym6OyPwAAAAAAiD5CmgS2bt06HT16tMv1LVu2\nhJy3tLTozTff7HYNh8OhSZMm9bhHXl6efvrTn+qnP/1p8NpPfvIT7d27Vz//+c/lcDgkSYFAQH/6\n05902223ae/evSHr/9d//Ve/fi4AACLB1R7IbOoUyNT4fFHZ22oy6aSMjJAOmckZGbISyAAAAAAA\nMKyYDMMwYl0EBkdxcbG++OKLAa1x/fXXq6Kiotf3BAIBXXTRRfrzn/8cct1isWjs2LHKzs7Wnj17\ndPjw4ZDX09LStGrVKp199tkDqjFeHDuT5pNPPtHkyZNjWBEADJ5DPp+u3LYt5NqLkyZppNUao4p6\nV+v1hoQxlW63nF5vVPa2SPp6+yPLTm3//nWbTSkEMgAAAAAAxEQ8fZZLJw0GzGw26+WXX9b3v/99\n/fGPfwxe9/v92r17d7f35Obm6pVXXkmYgAYAhps/1tbqzYaGkGsv1tbqB6NGxaii/3PQ5wsGMh3f\n97a2RmVvs6RJx3TInJSRoTSLJSr7AwAAAACAoYWQBhGRmpqqF154QZdddpl+9atfafPmzd2+LyMj\nQ9dff70WL16sgoKCKFcZGRUVFd12F3k8nugXAwAxUlFd3e21aIc0h30+fdDUFNIhs6elJSp7myRN\nSE8PhjGnZmZqqs2mDAIZAAAAAADQR4Q0Cayqqirqe37nO9/Rd77zHX3++efasGGDDhw4IK/Xq5yc\nHE2cOFFnn322UlNTo15XJFVVVWnNmjWxLgMAYmarx6N/ud1drm90u7XN49GkjIxB2dfd1hYSyGxy\nu7Wzm9lrg2V8WlpIh8w0m02ZSfwqBQAAAAAAwscnCxgUJ5xwgk444YRYlzEoiouLVVZW1uW6x+NR\nZWVlDCoCgOh6qpsums6v3Xf88QPew+P3a/MxHTKfNTcrWoP0xqWmdglkcuJ03g4AAAAAABi6CGmA\nfiovL1d5eXmX68cOmwKARNQWCOiZmpoeX3+mpkb3lJQoyWzu85pH/X5tOSaQ2d7crEAkCu6DMSkp\nIYHMqZmZGkkgAwAAAAAAooCQBgAABBmGoXqfr8fX3zl8WNVeb4+vu7xevV5fr1k5Od2+3hoIyNna\nqk1NTdrUHsh84vHIP+DK+2ZUcnKXQCY/OTlKuwMAAAAAAIQipAEAAEFbmpo0bdOmAa1xxbZtEapm\nYAqt1i6BjD0lJdZlAQAAAAAABBHSAACAoNfq62NdQljyjglkSjMz5UhOlslkinVpAAAAAAAAPSKk\nAQAAQa/V1cW6hK80Iikp2BnTEciMSUkhkAEAAAAAAEMOIQ0AAJAk1Xq9+rS5OdZlhMiyWELCmNLM\nTJWkphLIAAAAAACAhEBIAwAAJEkFyclaO22artm+XXtaWqK+f4bZHAxkOr6fkJYmM4EMAAAAAABI\nUIQ0AAAg6KzsbG0uLdUtO3fqmZqaQdsnzWzWNJstpEPmxPR0WQhkAAAAAADAMEJIA/RTRUWFKioq\nulz3eDzRLwYAIswXCOgfhw6p2uuN6LrHp6bqWyNHBrtkJqanK8lsjugeAAAAAAAAQw0hDdBPVVVV\nWrNmTazLAICI2nP0qP7gcukJl0s1Pl/E1j0pI0OvTp6sE9LTI7YmAAAAAABAoiCkAfqpuLhYZWVl\nXa57PB5VVlbGoCIACI8vENCKgwe11OnUqoYGGYOwx3cLCwloAAAAAAAAekBIA/RTeXm5ysvLu1zf\nunWrpkyZEv2CAKCfqo4e1WMul56orpYrwo81O9b6I0cGdX0AAAAAAIChjJAGAIBhoC0Q0J8PHtRS\nl0t/P3RoULpmurO+sVGGYchkMkVpRwAAAAAAgKGDkAYAgAS2t6VFj7lcetzlknOQu2a6U+vzaU9L\ni8alpUV9bwAAAAAAgHhHSAMAQIJpCwT0l0OHtNTp1F/D7JpJN5t1dUGBxqSkaPEXXwyonvWNjYQ0\nAAAAAAAA3SCkAQAgQexradHjLpcec7l0IMyumZMyMrTQ4dA1hYXKTkrSf+zY0ev7x6WmypC0p6Wl\nx/esP3JE1xQWhlUPAAAAAABAIiOkAQBgCPMbhv7aPmvmLwcPKhDGGmlms64qKNBCh0OnZ2aGzI9Z\n39jY433XFRbqofHjJUm37NypZ2pqun1fb2sAAAAAAAAMZ4Q0AAAMQftbWvREdbUec7m0r7U1rDW+\n3tE1U1CgHKu1y+uGYajZ7+9yPdti0aMnnqirOnXHPD1xoi4YOVI37dihxmPu8fj9MgwjJPwBAAAA\nAAAAIQ0AAEOG3zD09/ZZM38Os2sm1WzWlfn5Wuhw6MysrF6DE5PJpE2lpfrZ7t363YEDMiTNyM7W\nsxMnamxqapf3X11YqLOysnTt9u1a19gok6TbRo/Wr0pKCGgAAAAAAAC6QUgDAECcc7a26gmXS39w\nubQ3zK6ZyenpWuhw6NrCQo3opmumJxkWix4cP16X5edrfWOjbh89Wklmc4/vL05L0+qpU/Xb/fs1\nPStLM3JywqoXAAAAAABgOCCkAfqpoqJCFRUVXa57PJ7oFwMgYfkNQ6sOHdJSl0sr6uvV9aFjXy3F\nZNIV7bNmpn9F18xXmZGT0+fAJcls1o/GjAl7LwAAAAAAgOGCkAbop6qqKq1ZsybWZQBIUK7WVj1R\nXa0/OJ36IsyumYntXTPfKyzUyH50zQAAAAAAACC6CGmAfiouLlZZWVmX6x6PR5WVlTGoCMBQFzAM\nvdnQoKVOp/508KDaDKPfa6SYTLqsfdbMjOxsZsAAAAAAAAAMAYQ0QD+Vl5ervLy8y/WtW7dqypQp\n0S8IwJBV3dqqJ6ur9QeXS3taWsJa42tpaVrocOi6oiLl0jUDAAAAAAAwpBDSAAAQRQHD0NsNDVrq\ncml5fX1YXTPJJpO+0941M5OuGQAAAAAAgCGLkAYAgCio9Xq/7JpxOrUrzK6ZE9PStMDh0PWFhcpL\nTo5whQAAAAAAAIg2QhoAAAZJwDD0zuHDWuZ06vX6evnC6JqxdnTN2O0qy8mhawYAAAAAACCBENIA\nABBhdV6vKqqrtczl0udHj4a1xglpaVpgt6u8qEj5dM0AAAAAAAAkJEIaAAAiwDAMrT58WMtcLr1W\nVydvmF0zl+TlaaHDoVk5OTLTNQMAAAAAAJDQCGkAABiAeq9XT9XUaJnTqR1hds2MS03VAodD3y8q\nUgFdMwAAAAAAAMMGIQ0AAP1kGIbePXJES51OvRpm10ySyaSL8/K00G7XeSNG0DUDAAAAAAAwDBHS\nAADQRwd9Pj3dPmvm0+bmsNYoSU3VfLtd3y8qUlFKSoQrBAAAAAAAwFBCSAMAQC8Mw9B77V0zr9TV\nqTWMrhmLpIvaZ818g64ZAAAAAAAAtCOkAQCgG4d8Pj1TU6OlTqe2h9k1MzYlRfMdDt1QVCQ7XTMA\nAAAAAAA4BiEN0E8VFRWqqKjoct3j8US/GAARZRiG3m9s1FKnUy/X1aklEOj3GhZJc9tnzcwZOVIW\numYAAAAAAADQA0IaoJ+qqqq0Zs2aWJcBIIIafD492941szXMrpkxKSm60W7XPLtdDrpmAAAAAAAA\n0AeENEA/FRcXq6ysrMt1j8ejysrKGFQEIByGYeif7V0zL9XV6WgYXTNmSd/OzdVCh0PfpGsGAAAA\nAAAA/URIA/RTeXm5ysvLu1zfunWrpkyZEv2CAPTL4faumWUulz4O8zGFx7V3zdxQVKTRqakRrhAA\nAAAAAADDBSENACDhGYahjW63ljqd+mNtbdhdM/+Wm6uFdrsuyM2lawYAAAAAAAADRkgDAEhYR9ra\n9FxNjZY5ndoSZtfMqOTk4KyZ4+iaAQAAAAAAQAQR0gAAEophGKps75p5obZWzWF0zZgk/dvIkVrg\ncOjfRo5Uktkc+UIBAAAAAAAw7BHSAAASgru9a2apy6XNTU1hreFITtY8u1032u0aQ9cMAAAAAAAA\nBhkhDQBgSNvU3jXzfE2NPGF2zXxr5EgtsNv17dxcumYAAAAAAAAQNYQ0AIAhx93Wphdqa7XU6dQH\nYXbNFCUna15RkW6021WclhbhCgEAAAAAAICvRkgDABgyPnC7tczp1HO1tWry+/t9v0nS+SNGaIHD\nobm5ubLSNQMAAAAAAIAYIqQBAMS1prY2/bG2VktdLlW63WGtUWi16ga7XfPtdpXQNQMAAAAAAIA4\nQUgDAIhLm91uLXW59FxNjdxhdM1I0pwRI7TQ4dCFdM0AAAAAAAAgDhHSAADihsfv14vts2Y2htk1\nU2C16vtFRZrvcOh4umYAAAAAAAAQxwhpAAAx91FTk5Y6nXq2pkaNYXbNzM7J0UKHQxfl5SmZrhkA\nAAAAAAAMAYQ0AICYaPb79VL7rJl/NjaGtUZ+e9fMjXa7xqenR7hCAAAAAAAAYHAR0gAAouqTpiYt\ndbn0THW1joTZNXNue9fMxXl5SqFrBgAAAAAAAEMUIQ0AYNAd9fv1cl2dljqdej/MrpncpCR9327X\nfLtdJ9I1AwAAAAAAgARASAP0U0VFhSoqKrpc93g80S8GiHPbPB4tdTr1dE2NDre1hbVGWXa2Fjoc\nujQ/n64ZAAAAAAAAJBRCGqCfqqqqtGbNmliXAcSto36/Xqmr0zKXS+8dORLWGiOTklReVKT5drsm\nZGREuEIAAAAAAAAgPhDSAP1UXFyssrKyLtc9Ho8qKytjUBEQH7Z7PFrmcump6mo1hNk1c05718x3\n8vKUarFEuEIAAAAAAAAgvhDSAP1UXl6u8vLyLte3bt2qKVOmRL8gIIZa/H69Wl+vZU6n3g2za2ZE\nUpKub++amUTXDAAAAAAAAIYRQhoAQL991tysZU6nnqqu1sEwu2bOzsrSQodDl+XnK42uGQAAAAAA\nAAxDhDQAgD5pDQT0WvusmdWHD4e1Rk5Skq4rLNQCh0OT6ZoBAAAAAADAMEdIAwDo1c7mZi1zuVRR\nXa16ny+sNc5q75q5PD9f6XTNAAAAAAAAAJIIaQAA3fAGAnq9fdbM22F2zWRbLPpeUZEW2O36us0W\n4QoBAAAAAACAoY+QBgAQ9Hlzs/7gcunJ6mrVhdk1c2ZWlhbY7bqyoICuGQAAAAAAAKAXhDQAMMx5\nAwG9UV+vpU6n3gqzaybLYtG17bNmTqZrBgAAAAAAAOgTQhoAGKZ2Hz2qP7hcesLlUm2YXTOnZ2Zq\ngcOhqwoKlEHXDAAAAAAAANAvhDQAMIz4AgH96eBBLXU6taqhIaw1Mi0WXVNYqIV2u6ZmZka4QgAA\nAAAAAGD4IKQBgGFgT6eumZowu2ZKMzO10G7XVQUFsiXxnw8AAAAAAABgoOL2Uza/3y+PxxM8T0tL\nk9VqjWFFADC0+AIB/bm9a+YfDQ0ywljDZrHouwUFWuhw6BS6ZgAAAAAAAICIituQ5qmnntL8+fOD\n56tWrdJ5550Xw4oAYGj4oqVFf3A69UR1tVxeb1hrnGKzaaHDoasLCpRJ1wwAAAAAAAAwKOL2k7ea\nmhoZxpd/952Tk0NAAwC9aAsEtPLQIS11OvW3Q4fC6prJMJt1dfusmdKsrIjXCAAAAAAAACBU3IY0\nNptNkmQymTR27NgYVwMA8WlvS4sec7n0uMslZ5hdM1NtNi202/XdwkJl0TUDAAAAAAAARE3cfhpn\nt9tjXQIAxKW2QEB/be+a+euhQwqEsUa62ayrCwq0wOHQaZmZMplMEa8TAAAAAAAAQO/iNqSZ/H5+\nhgAAIABJREFUOHGiJMkwDO3bty/G1QBA7O3v6Jqprtb+1taw1jgpI0MLHQ5dU1iobLpmAAAAAAAA\ngJiK20/oJk+erMmTJ2vr1q1qaGjQhg0bdMYZZ8S6LACIKr9h6G/tXTMrDx4Mq2smzWzWVQUFWmC3\n64ysLLpmAAAAAAAAgDhhjnUBvVmwYEHwePHixTGsBACi60Brq+6uqlLJP/+pb3/8sVaEEdBMycjQ\nQyecIOdZZ+mJCRN0ZnY2AQ0AAAAAAAAQR+I6pLn55pt19tlnyzAMrVq1SnfccUesSwKAQeM3DP3l\n4EFd9PHHGrN+vRZXVWlfPx9rlmo26/rCQr0/bZo+Ki3VLaNHK8dqHaSKAQAAAAAAAAxE3D7uTJIs\nFotWrFihCy+8UO+9954eeOABbdy4UXfffbdmzZoV6/IwTFVUVKiioqLLdY/HE/1ikBCcra16wuXS\nYy6Xvghz1syk9HQtdDj0vcJCjSCUAQAAAAAAAIaEuA5p7r77bklSWVmZdu7cqZqaGq1bt06zZ89W\nYWGhSktLVVJSoqysLFn7+aHkokWLBqNkDANVVVVas2ZNrMvAEBcwDP3j0CEtdbm0or5e/jDWSDGZ\ndEVBgRY6HJrOrBkAAAAAAABgyInrkGbJkiUhHzqaTCYZhiFJqq6u1sqVK8Nem5AG4SouLlZZWVmX\n6x6PR5WVlTGoCENJdWurnqiu1h9cLlW1tIS1xoT0dC2023VdUZFG0jUDAAAAAAAADFlxHdJ0Z6B/\nKW4YBn9tjgEpLy9XeXl5l+tbt27VlClTol8Q4l7AMPRmQ4OWOp3608GDamsPm/sjxWTSZfn5Wuhw\naEZ2Nv8/BgAAAAAAACSAuA9pjDA+zASAeFDj9epJl0t/cLm0O8yuma+lpWmBw6Hri4qUS9cMAAAA\nAAAAkFDiOqR55513Yl0CAPRLwDD0dkODlrpcWl5fH1bXTLLJpO+0d83MpGsGAAAAAAAASFhxHdJ0\nN/cDAOJRrderiupqLXM6tSvMrpkTO7pmCguVl5wc4QoBAAAAAAAAxJu4DmkAIJ4ZhqF3Dh/WUqdT\nr9fXyxdG14zVZNKleXla6HBoVk4OXTMAAAAAAADAMEJIAwD9VOf16qnqai1zubTz6NGw1jghLU0L\n7HZdX1SkArpmAAAAAAAAgGGJkAYA+sAwDK05fFhLXS69VlcnbxhdM0kmky5p75o5NydHZrpmAAAA\nAAAAgGEtIUKapqYmud1uZWZmymazxbocAAmk3uvVUzU1WuZ0akeYXTPjUlO1wOFQeVGRCumaAQAA\nAAAAANBuyIU0brdbzz//vN59913985//1L59++T3+4OvWywWjRkzRmeeeabKysp09dVXE9wA6BfD\nMLT2yBEtdTr1ygC6Zi7KzdVCh0OzR4ygawYAAAAAAABAF0MmpGlubtbPf/5zPfbYY/J4PJK+/CD1\nWG1tbdq9e7f27NmjF154QXfccYfmz5+vX/7yl0pLS4t22QCGkEM+X3DWzKfNzWGtUZKaqvl2u75f\nVKSilJQIVwgAAAAAAAAgkQyJkGbLli26/PLLtWvXrmAwYzKZZPqKv0w3DENut1sPPPCAVqxYoZde\nekknn3xyNEoGMEQYhqF1R45oqcull2tr1RpG14xF0oXts2bm0DUDAAAAAAAAoI/iPqT57LPP9I1v\nfEMHDx6U9GU4YxhGMKzJzMxUbm6uMjIy5PF4dPDgQbnd7uD9He/fuXOn5syZo3Xr1mn8+PEx+VkA\nxI8Gn09Pt8+a2RZm18zYlBTNdzh0Q1GR7HTNAAAAAAAAAOinuA5pfD6fLrzwQh08eDDYNWMYhs48\n80zdcMMNmj17tkpKSrrct2fPHr399tt64okntH79+uC99fX1uvDCC/Xxxx8rKSmuf3QAg8AwDL3f\n2KhlTqdeqqtTSyDQ7zUskubm5Wmh3a45I0fKQtcMAAAAAAAAgDDFdVLxyCOPaOfOncFumKysLC1b\ntkxXXHFFr/eVlJRo3rx5mjdvnl555RXNnz9fjY2NkqQdO3bokUce0W233RaNHwFAHDjs8+mZmhot\nc7n0SftMq/46LiVF8+123WC3axRdMwAAAAAAAAAiIK5Dmt///vfBgCY9PV1vv/22TjnllH6tcdll\nl+mEE07QjBkzdPToURmGQUgDDAOGYeifjY1a5nLpxdpaHQ2ja8Ys6du5uVrocOibdM0AAAAAAAAA\niLC4DWl27typzz//XCaTSSaTSXfddVe/A5oOU6dO1ZIlS/SjH/1IkrRr1y7t3LmT2TRAAjrS1qZn\na2q01OnUx2F2zYxOSdGNdrvmFRVpdGpqhCsEAAAAAAAAgC/FbUjz4YcfSvryr+GTk5M1b968Aa13\n44036mc/+5l8Pp8kafPmzYQ0QIIwDEMb3W4tdTr1xwF0zfxbbq4W2u26IDeXrhkAAAAAAAAAgy5u\nQ5ra2lpJkslkUklJiXJycga0Xk5OjsaNG6fPPvtMklRTUzPgGgHEVmNbm55r75rZEmbXzKjkZM2z\n2zXPbtcYumYAAAAAAAAARFHchjRNTU3B46ysrIismZmZGTz2hPmBLoDYMgxDle1dMy/U1qo5jK4Z\nk6QLRo7UQodD/zZypJLM5sgXCgAAAAAAAABfIW5Dmry8PElffiB74MCBiKzpdDqDx7m5uRFZE4B0\nyOfTldu2hVx7cdIkjbRaI7aHu61Nz9fWaqnTqQ87hbj9YW/vmrnRbtdYumYAAAAAAAAAxFjchjQO\nhyN47HK59Mknn2jKlClhr7d169aQkKbz+gAG5o+1tXqzoSHk2ou1tfrBqFEDXntTe9fM8zU18oTZ\nNfPNkSO10G7Xt3Nz6ZoBAAAAAAAAEDfiNqQ5++yzlZSUJL/fL0lasmSJXnnllbDXW7JkSfA4KSlJ\nM2bMGGiJANpVVFd3ey3ckKaprU0vtHfNbAqza6YoOVnziop0o92u4rS0sNYAAAAAAAAAgMEUt39S\nnp2drXPOOUeGYcgwDL3++uu6++67w1rrnnvu0auvviqTySSTyaSZM2dGbM4NMNxt9Xj0L7e7y/WN\nbre29XP204dut2767DPZ16/Xgh07wgpozh8xQq9Onqy9Z56pX40bR0ADAAAAAAAAIG7FbUgjSYsX\nL5YkmUwmGYahu+66SxdffLF27drVp/t3796tSy+9VIsWLQquIUmLFi0atJqB4eapbrpo+vJah6a2\nNj3mdOr0TZt0yqZNWupyqam9g66vCq1W/WTMGO064wz9/eSTdWl+vqw81gwAAAAAAABAnIvbx51J\n0syZM3Xttdfq2WefDYYsK1as0J///GfNmDFD5513nk466STl5eUpIyNDHo9HBw8e1JYtW/T222/r\nvffeC3bidHTRXHvttTrnnHNi/aMBCaEtENAzNTU9vv5MTY3uKSnpdg7MlqYmLXU69WxNjdz9DGU6\nzBkxQgvsdl2Yl6dkQhkAAAAAAAAAQ0xchzSS9Pjjj8vlcumtt96SyWSSJAUCAa1du1Zr167t9d7O\n4YxhGJozZ44ef/zxaJQNJATDMFTv8/X4+juHD6va6+3xdZfXq9fr6zUrJ0eS5PH79UZ9vZ6urtYH\n/XwUWod8q1U3FBVpvsOh43mUGQAAAAAAAIAhLO5DGqvVqpUrV+onP/mJHnzwwWDwIin4+LLudA5n\nzGaz/t//+3+65557lJQU9z8yEDe2NDVp2qZNA1rjim3bIlLL7JwcLXA4dDFdMwAAAAAAAAASxJD4\npDM5OVm/+c1vtGHDBl111VWyWq29BjTSlwGO1WrVd7/7XW3YsEH333+/kpOTo1QxkBheq6+P6f55\nVqv++7jjtOP00/Xm1Km6oqCAgAYAAAAAAABAwhhSbSWlpaV6/vnndeTIEa1fv14bNmzQF198oYaG\nBjU1Nclms2nEiBEaO3aszjzzTJ155pnKzs6OddnAkPVaXV1M9j03J0cL7HZdkp+vFEIZAAAAAAAA\nAAlqSIU0HbKzs/Wtb31L3/rWt2JdCoahiooKVVRUdLnuCXPGSryq9Xr1aXNz1PbLTUpSeVGRFjgc\nOjE9PWr7AgAAAAAAAECsxG1I4/f7Qz70TktLk9VqjWFFwJeqqqq0Zs2aWJcx6AqSk7V22jRds327\n9rS0DNo+0zIydMeYMbo0L0+pFsug7QMAAAAAAAAA8SZuQ5qnnnpK8+fPD56vWrVK5513XgwrAr5U\nXFyssrKyLtc9Ho8qKytjUNHgOSs7W5tLS3XLzp16pqYmomtPTE/X0xMmqDQrK6LrAgAAAAAAAMBQ\nEbchTU1NjQzDkCTl5OQQ0CBulJeXq7y8vMv1rVu3asqUKdEvaJBlJSXp6YkTdcHIkbppxw41+v0D\nWi/dbNbvx4/X9XZ7hCoEAAAAAAAAgKEpbidy22w2SZLJZNLYsWNjXA2AqwsLtaW0VGcNoPPlrKws\nbTv9dAIaAAAAAAAAAFAchzR2PsQF4k5xWpouzM0N+/6L8vI0NjU1ghUBAAAAAAAAwNAVtyHNxIkT\nJUmGYWjfvn0xrgZAh/WNjeHfe+RIBCsBAAAAAAAAgKEtbkOayZMna/LkyZKkhoYGbdiwIcYVATAM\nY2AhTWNjcNYUAAAAAAAAAAx3cRvSSNKCBQuCx4sXL45hJQAkaXdLi+p8vrDvr/X5tKelJYIVAQAA\nAAAAAMDQFdchzc0336yzzz5bhmFo1apVuuOOO2JdEjCsReJxZQPpxAEAAAAAAACARBLXIY3FYtGK\nFSs0Y8YMGYahBx54QDNnztTq1atjXRowLH1VwDIuNVUlqam9r8FcGgAAAAAAAACQJCXFuoDe3H33\n3ZKksrIy7dy5UzU1NVq3bp1mz56twsJClZaWqqSkRFlZWbJarf1ae9GiRYNRMpDQegtpriss1EPj\nx0uSbtm5U8/U1PR7DQAAAAAAAAAYTuI6pFmyZIlMJlPw3GQyBYeOV1dXa+XKlWGvTUgD9I9hGGr2\n+7tcz7ZY9OiJJ+qqwsLgtacnTtQFI0fqph071HjMPR6/X4ZhhPxvGwAAAAAAAACGo7h+3Fl3TCZT\n8CscHSEPgP4xmUzaVFqq20aNUsf/+mZkZ2vLaaeFBDQdri4s1JbSUp2dlfXl/ZL+c/RobSotJaAB\nAAAAAAAAAMV5J41EqALEkwyLRQ+OH6/L8vO1vrFRt48erSRzz1lvcVqaVk+dqt/u36/pWVmakZMT\nxWoBAAAAAAAAIL7FdUjzzjvvxLoEAN2YkZPT58AlyWzWj8aMGeSKAAAAAAAAAGDoieuQpqysLNYl\nAAAAAAAAAAAADIohN5MGAAAAAAAAAAAgEcRtJ43f75fH4wmep6WlyWq1xrAiAAAAAAAAAACAyInb\nTpqnnnpKI0aMCH6tXbs21iUBAAAAAAAAAABETNyGNDU1NTIMQ4ZhKDs7W+edd16sSwIAAAAAAAAA\nAIiYuA1pbDabJMlkMmns2LExrgYAAAAAAAAAACCy4jaksdvtsS4BAAAAAAAAAABg0MRtSDNx4kRJ\nkmEY2rdvX4yrAQAAAAAAAAAAiKy4DWkmT56syZMnS5IaGhq0YcOGGFcEAAAAAAAAAAAQOXEb0kjS\nggULgseLFy+OYSUAAAAAAAAAAACRFdchzc0336yzzz5bhmFo1apVuuOOO2JdEgAAAAAAAAAAQETE\ndUhjsVi0YsUKzZgxQ4Zh6IEHHtDMmTO1evXqWJcGAAAAAAAAAAAwIEmxLqA3d999tySprKxMO3fu\nVE1NjdatW6fZs2ersLBQpaWlKikpUVZWlqxWa7/WXrRo0WCUDAAAAAAAAAAA0CdxHdIsWbJEJpMp\neG4ymWQYhiSpurpaK1euDHttQhoAAAAAAAAAABBLcR3SdKdzaBMOwzAGvAYAAAAAAAAAAMBAxX1I\n09E5AwAAAAAAAAAAkEjiOqR55513Yl0CAAAAAAAAAADAoIjrkKasrCzWJQAAAAAAAAAAAAwKc6wL\nAAAAAAAAAAAAGI7iupMG6NDY2KgPP/xQlZWVqqys1KZNm/T5558HZxbt2bNHxcXFsS0SAAAAAAAA\nAIB+IKTBkFBWVqbNmzfHugwAAAAAAAAAACKGx51hSOjomJGk7OxszZo1S0VFRTGsCAAAAAAAAACA\ngRmynTSHDh3S9u3bdejQIR05ckSBQEDf/OY3VVhYGOvSMAhuuOEG5efnq7S0VCeccIJMJpNmzZql\n6urqWJcGAAAAAAAAAEBYhlRIU1tbq4cfflivvvqqPv300y6vr1q1qtuQ5sknn9S+ffskSQ6HQzfe\neOOg14rIuvXWW2NdAgAAAAAAAAAAETVkQpr7779fixYtktfrDXn0VQeTydTjvU1NTVqyZIlMJpMs\nFovmzp1Lx80g27VrlzZu3Kj9+/fL6/VqxIgRmjBhgqZPn67U1NRYlwcAAAAAAAAAQMzFfUjj9/t1\n+eWX64033pBhGF3CGJPJ1G1o09m8efP0i1/8Qo2NjfL7/Xr++ed1++23D2bZceXAgQPauHGjNmzY\noI0bN6qyslJutzv4+tixY1VVVRWRvZYvX65f/vKX+uCDD7p93Wazqby8XIsXL1ZeXl5E9gQAAAAA\nAAAAYCgyx7qAr/If//EfWr58eTCgMQxD06ZN05133qlHHnnkKwMaSUpPT9fcuXOD53/5y18Gs+S4\nsG7dOl166aUaNWqURo8erUsvvVT33Xef3nnnnZCAJlJaW1t17bXX6pJLLukxoJG+7Gp6+OGHNWnS\nJL377rsRrwMAAAAAAAAAgKEirkOa9957T8uWLZPJZJLJZFJeXp5WrlypTZs26d5779UPfvADSb0/\n6qzDxRdfLEkyDEPr1q2T1+sd1Npj7V//+pdef/11OZ3OQd8rEAjoyiuv1HPPPRdy3WKxqKSkRFOn\nTlV2dnbIa3V1dbrgggu0fv36Qa8PAAAAAAAAAIB4FNchzaJFiyR9GaxkZmZqzZo1uuCCC8Ja64wz\nzgget7a26rPPPotIjUORzWaL6Hr333+/3njjjZBrN910k/bu3avdu3frww8/1KFDh/Taa69pzJgx\nwfc0Nzfriiuu0JEjRyJaDwAAAAAAAAAAQ0HchjQNDQ1au3ZtsIvm5z//uSZMmBD2eqNHj9aIESOC\n559++mkkyox7mZmZmjVrlv77v/9bL7/8sqqqqrRixYqIrX/w4EHdc889Idfuvfde/e///q8cDkfw\nmtls1iWXXKL3339fxcXFwev79+/Xb3/724jVAwAAAAAAAADAUJEU6wJ68t5778nv90v68rFZN954\n44DXLCgoUENDgySptrZ2wOvFs7lz5+r888/XhAkTZDaHZnF79uyJ2D6//vWvQ2bczJw5U3feeWeP\n7x81apQee+wxfeMb3whee+CBB3TrrbcqNzc3YnUBAAAAAAAAABDv4raTpmOWislk0rhx45STkzPg\nNTvPRekcLCSi448/XpMmTeoS0ERSIBDQk08+GXJtyZIlXzkjaPbs2TrnnHOC5263Wy+99NKg1AgA\nAAAAAAAAQLyK25Dm0KFDweORI0dGZM3W1tbgsdVqjciaw9n777+vurq64Pm4ceM0a9asPt07b968\nkPPly5dHsjQAAAAAAAAAAOJe3IY0g9H10vkRZ3l5eRFZczhbuXJlyPmcOXO+soum83s7W716tTwe\nT8RqAwAAAAAAAAAg3sVtSJOfny9JMgxDX3zxhQKBwIDW27dvn1wuV/C881B7hGfz5s0h59OnT+/z\nvQ6HQ8XFxcFzr9erbdu2Rao0AAAAAAAAAADiXtyGNCeffHLwuLm5WevWrRvQei+//HLw2GKx6Mwz\nzxzQepC2b98ecj5p0qR+3X/s+49dDwAAAAAAAACARBa3Ic2JJ56okpL/z969x0dV3/kff8/kfiMJ\nuUDCLdwCJJE7yoKSBFp/9mq7aqt0Lemj1rb2Qtu1q7XtVh/b6tJ120ftRXe36uzvV3W3slurtReL\nQAAFYxguEq4hhJAbuREgkxvJnN8fx8wwJFyGTObMJK/n43EeyfnOOefzoQ/Gtuft9/ud7lk+6yc/\n+cl1P+vcuXP66U9/KpvNJpvNpmXLlikpKSlQrY5JXV1dqqmp8RmbMmWKX8+49PojR44Muy8AAAAA\nAAAAAMJFpNUNXMlnP/tZPfbYY5KkV199Vf/5n/+pdevW+fWM/v5+ffazn1VdXZ0kyWaz6YEHHgh4\nr2NNS0uLDMPwnEdFRSkzM9OvZ0yaNMnn/OI9gy5VWVmpHTt2+Iw1NjZ6ft+4caPPPkOJiYm68847\n/ern0l6am5v9uqeysvK66wEAAAAAAAAAxp6QDmkefPBBPf3002pubpZhGLrvvvvU1NSkb33rW4qI\niLjq/YcPH9YXv/hF7dixwzMjJzc3V2vXrh3p1ke9jo4On/P4+HjPf8bXKiEh4YrPvNiOHTv0uc99\n7rKff/vb3/Y5nzZt2rBCml/96leegBAAAAAAAAAAgJEQ0iFNQkKCfv3rX+uTn/yk3G63+vv79fDD\nD+tXv/qV7rnnHi1ZskSSZBiGbDabdu/erba2NlVWVmrz5s3avHmzDMPwzPiIi4vTiy++6HeYgMEu\nDVRiY2P9fkZcXNwVnwkAAAAAAAAAwGgW0iGNJH30ox/VL3/5S88SZYZh6OTJk9qwYYPPdYZh6OGH\nHx40NhDIREVF6fnnn9eiRYuC0/go193d7XMeHR3t9zNiYmJ8zru6ui57bUlJiUpKSvyuAQAAAAAA\nAABAqAr5kEaS7r//fs2cOVP33nuvGhsbPcHLxSHMwPkAm80mm80mwzA0YcIEvfzyy7r55puD3vto\ndenMmd7eXr+f0dPTc8VnWumBBx7QXXfd5dc9lZWV+sQnPjFCHQEAAAAAAAAARpuwCGkkac2aNTp0\n6JCefvpp/eIXv1B9fb0k32DmYoZhKDU1Vd/4xje0fv16jRs3LpjtjnqJiYk+55fOrLkWl86cufSZ\nVsrMzFRmZqbVbQAAAAAAAAAARrGwCWkkKTk5WQ8//LD+4R/+Qfv27dP27dt16NAhtba2qr29XfHx\n8UpPT9f06dNVXFysG2+8UZGRYfVHDBuXBiqdnZ2DZjZdjcvluuIzAQAAAAAAAAAYzcIywbDb7Vq0\naBH7y1goPT3ds5ycJF24cEFNTU2aMGHCNT+jrq7O55yZKwAAAAAAAACAscRudQMIT3FxcZo6darP\nWE1NjV/PuPT6uXPnDrsvAAAAAAAAAADCBSENrtulocrBgwf9uv/QoUNXfB4AAAAAAAAAAKNZWC53\nhtCwcOFC/eUvf/Gcv/3221q3bt013dvQ0KDq6mrPeVRUlPLy8gLd4ohwOBxyOByDxi/dYwcAAAAA\nAAAAgCshpMF1++hHP6oNGzZ4zjdt2iTDMGSz2a567xtvvOFzXlxcrMTExID3OBKqq6tVWlpqdRsA\nAAAAAAAAgDBHSIPrtmLFCqWnp6ulpUWSVFVVpa1bt6q4uPiq9z777LM+57fffvuI9DgScnJyVFhY\nOGjc5XKpvLzcgo4AAAAAAAAAAOGIkAbXzW63q6SkRE8++aRn7LHHHlNRUdEVZ9O8+eab2r59u+c8\nKSlJn/rUp0a010AqKSlRSUnJoPGKigoVFBQEvyEAAAAAAAAAQFiyW90AwttDDz3ks0xZaWmpzxJo\nl6qrq9N9993nM7Z+/Xqlp6ePWI8AAAAAAAAAAIQiZtKMYm+99Za6uroGje/bt8/nvLu7W5s2bRry\nGdnZ2crLy7tsjfT0dD3yyCN65JFHPGPf+c53VFNTo+9973vKzs6WJLndbr366qtav369ampqfJ7/\n93//9379uQAAAAAAAAAAGA1shmEYVjeBkZGTk6OTJ08O6xnr1q2Tw+G44jVut1u33367/vCHP/iM\nR0REaNq0aUpOTtaJEyfU3t7u83lcXJz++te/auXKlcPqMVRcutzZgQMHlJ+fb2FHAAAAAAAAAIBL\nhdK7XJY7w7DZ7Xa9/PLLuvvuu33G+/v7VVVVpT179gwKaNLS0vTHP/5x1AQ0AAAAAAAAAAD4i5AG\nAREbG6uXXnpJGzdu1MKFCy97XUJCgh544AEdPHhQRUVFwWsQAAAAAAAAAIAQw540o1h1dXXQa95x\nxx264447VFlZqXfeeUd1dXXq7e1VSkqK5s2bp5UrVyo2NjbofQWSw+EYcgk4l8sV/GYAAAAAAAAA\nAGGLkAYjYtasWZo1a5bVbYyI6upqlZaWWt0GAAAAAAAAACDMEdIAfsrJyVFhYeGgcZfLpfLycgs6\nAgAAAAAAAACEI0IawE8lJSUqKSkZNF5RUaGCgoLgNwQAAAAAAAAACEt2qxsAAAAAAAAAAAAYiwhp\nAAAAAAAAAAAALEBIAwAAAAAAAAAAYIFRsydNd3e3Nm3apKNHjyoiIkL5+fkqLi5WRETEVe+tr6/X\n9773PdlsNj377LNB6BYAAAAAAAAAAIx1oyKkefnll/XVr35VLS0tPuOTJk3SP//zP2vt2rVXvP/M\nmTNyOByENAAAAAAAAAAAIGjCfrmzF154Qffcc49aWlpkGIbPUVtbq3vvvVd/93d/p66uLqtbBQAA\nAAAAAAAA8AjrmTRNTU36yle+IrfbLUn6xCc+oTVr1qi3t1dbtmzRn/70J/X39+ull17SiRMn9Kc/\n/Unjxo2zuGuEO4fDIYfDMWjc5XIFvxkAAAAAAAAAQNgK65Dm2Wef1blz52S32/XCCy/o05/+tOez\nb37zmyovL1dJSYkOHjyoXbt2ac2aNXrjjTeUmppqYdcId9XV1SotLbW6DQAAAAAAAABAmAvrkOaN\nN96QzWbTZz7zGZ+AZsDSpUv1zjvvaO3atXrttdfkdDq1Zs0abdq0SePHj7egY4wGOTk5KiwsHDTu\ncrlUXl5uQUcAAAAAAAAAgHAU1iHNwYMHJUl33XXXZa9JSEjQK6+8ovvuu0/PP/+89u3b5wlq0tLS\ngtUqRpGSkhKVlJQMGq+oqFBBQUHwGwIAAAAAAAAAhCW71Q0MR3t7uyRpypQpV7zOZrMRfYuBAAAg\nAElEQVTp2Wef1Re/+EUZhqH9+/dr9erVamlpCUabAAAAAAAAAAAAg4R1SBMTEyNJOn/+/DVd//TT\nT+uBBx6QYRg6cOCA1qxZo9bW1pFsEQAAAAAAAAAAYEhhHdJMnjxZknTkyJFrvucXv/iFvvKVr3iC\nmuLiYjU3N49UiwAAAAAAAAAAAEMK65Bm/vz5MgxDmzdv9uu+n//85/rqV78qwzBUUVGhu+++e4Q6\nBAAAAAAAAAAAGFpYhzSrVq2SJL322mvq7Oz0696nnnpKX/va12QYBjNpAAAAAAAAAABA0IV1SHPb\nbbdJklwul5577jm/7//Zz36m9evXyzCMQLcGAAAAAAAAAABwRZFWNzAcM2bM0Gc/+1nV1dWpvLz8\nup7x05/+VNHR0frtb38b4O4AAAAAAAAAAAAuL6xDGklyOBzDfsaGDRu0YcOG4TcDAAAAAAAAAABw\njcI+pAGCzeFwDBkOulyu4DcDAAAAAAAAAAhbYyakefPNN3XrrbdKkmw2m/r6+izuCOGqurpapaWl\nVrcBAAAAAAAAAAhzYyakkSTDMKxuAaNATk6OCgsLB427XK7r3hsJAAAAAAAAADD2jKmQBgiEkpIS\nlZSUDBqvqKhQQUFB8BsCAAAAAAAAAIQlu9UNAAAAAAAAAAAAjEWENAAAAAAAAAAAABYgpAEAAAAA\nAAAAALAAIQ0AAAAAAAAAAIAFCGkAAAAAAAAAAAAsQEgDAAAAAAAAAABgAUIaAAAAAAAAAAAACxDS\nAAAAAAAAAAAAWICQBgAAAAAAAAAAwAKENAAAAAAAAAAAABYgpAEAAAAAAAAAALBApJXFt23bFrRa\n+/btC1otjG4Oh0MOh2PQuMvlCn4zAAAAAAAAAICwZWlIU1RUJJvNFrR6NptNhmEErR5Gp+rqapWW\nllrdBgAAAAAAAAAgzFka0gwIVnASzEAIo1dOTo4KCwsHjbtcLpWXl1vQEQAAAAAAAAAgHIVESEN4\ngnBSUlKikpKSQeMVFRUqKCgIfkMAAAAAAAAAgLBkaUgzdepUAhoAAAAAAAAAADAmWRrSVFdXW1ke\nAAAAAAAAAADAMnarGwAAAAAAAAAAABiLCGkAAAAAAAAAAAAsQEgDAAAAAAAAAABgAUIaAAAAAAAA\nAAAACxDSAAAAAAAAAAAAWICQBgAAAAAAAAAAwAKENAAAAAAAAAAAABYgpAEAAAAAAAAAALAAIQ0A\nAAAAAAAAAIAFCGkAAAAAAAAAAAAsQEgDAAAAAAAAAABggUirGwDCjcPhkMPhGDTucrmC3wwAAAAA\nAAAAIGwR0gB+qq6uVmlpqdVtAAAAAAAAAADCHCEN4KecnBwVFhYOGne5XCovL7egIwAAAAAAAABA\nOCKkAfxUUlKikpKSQeMVFRUqKCgIfkMAAAAAAAAAgLBkt7oBAAAAAAAAAACAsYiQBgAAAAAAAAAA\nwAKENAAAAAAAAAAAABYgpAEAAAAAAAAAALAAIQ0AAAAAAAAAAIAFCGkAAAAAAAAAAAAsQEgDAAAA\nAAAAAABgAUIaAAAAAAAAAAAACxDSAAAAAAAAAAAAWICQBgAAAAAAAAAAwAKENAAAAAAAAAAAABYg\npAEAAAAAAAAAALAAIQ0AAAAAAAAAAIAFCGkAAAAAAAAAAAAsQEgDAAAAAAAAAABgAUIaAAAAAAAA\nAAAACxDSAAAAAAAAAAAAWICQBgAAAAAAAAAAwAKENAAAAAAAAAAAABaItLoBINw4HA45HI5B4y6X\nK/jNAAAAAAAAAADCFiEN4Kfq6mqVlpZa3QYAAAAAAAAAIMwR0gB+ysnJUWFh4aBxl8ul8vJyCzoC\nAAAAAAAAAIQjQhrATyUlJSopKRk0XlFRoYKCguA3BAAAAAAAAAAIS3arGwAAAAAAAAAAABiLCGkA\nAAAAAAAAAAAsQEgDAAAAAAAAAABgAUIaAAAAAAAAAAAACxDSAAAAAAAAAAAAWICQBgAAAAAAAAAA\nwAKENAAAAAAAAAAAABYgpAEAAAAAAAAAALAAIQ0AAAAAAAAAAIAFCGkAAAAAAAAAAAAsQEgDAAAA\nAAAAAABgAUIaAAAAAAAAAAAACxDSAAAAAAAAAAAAWICQBgAAAAAAAAAAwAKENAAAAAAAAAAAABYg\npAEAAAAAAAAAALAAIQ0AAAAAAAAAAIAFCGkAAAAAAAAAAAAsQEgDAAAAAAAAAABgAUIaAAAAAAAA\nAAAACxDSAAAAAAAAAAAAWICQBgAAAAAAAAAAwAKENAAAAAAAAAAAABYgpAEAAAAAAAAAALAAIQ0A\nAAAAAAAAAIAFCGkAAAAAAAAAAAAsQEgDAAAAAAAAAABggUirGwDCjcPhkMPhGDTucrmC3wwAAAAA\nAAAAIGwR0gB+qq6uVmlpqdVtAAAAAAAAAADCHCEN4KecnBwVFhYOGne5XCovL7egIwAAAAAAAABA\nOCKkAfxUUlKikpKSQeMVFRUqKCgIfkMAAAAAAAAAgLBkt7oBAAAAAAAAAACAsYiQBgAAAAAAAAAA\nwAKENAAAAAAAAAAAABYgpAEAAAAAAAAAALAAIQ0AAAAAAAAAAIAFCGkAAAAAAAAAAAAsQEgDAAAA\nAAAAAABgAUIaAAAAAAAAAAAACxDSAAAAAAAAAAAAWICQBgAAAAAAAAAAwAKENAAAAAAAAAAAABYg\npAEAAAAAAAAAALAAIQ0AAAAAAAAAAIAFCGkAAAAAAAAAAAAsQEgDAAAAAAAAAABgAUIaAAAAAAAA\nAAAACxDSAAAAAAAAAAAAWICQBgAAAAAAAAAAwAKENAAAAAAAAAAAABYgpAEAAAAAAAAAALAAIQ0A\nAAAAAAAAAIAFCGkAAAAAAAAAAAAsQEgDAAAAAAAAAABgAUIaAAAAAAAAAAAACxDSAAAAAAAAAAAA\nWICQBgAAAAAAAAAAwAKENAAAAAAAAAAAABYgpAEAAAAAAAAAALBApNUNAAg9bsOt1s7WoNdNi0+T\n3UZ2DAAAAAAAAGBsIKQBMEhrZ6syn8wMet2mB5uUkZAR9LoAAAAAAAAAYAX+lXUAAAAAAAAAAAAL\nENIgbLS3t+vxxx/XsmXLlJaWpvj4eM2aNUtf+MIXtHv3bqvbAwAAAAAAAADALyx3hrBQVlamO+64\nQ7W1tT7jx48f1/Hjx/X888/rBz/4gb7//e9b1CEAAAAAAAAAAP5hJg1CXlVVlT7ykY+otrZWNptN\nX/ziF7Vp0ybt2rVLP/vZz5SVlaX+/n794z/+o37+859b3S4AAAAAAAAAANeEmTQIed/61rfU0tIi\nSXrmmWd0//33ez676aab9MlPflJLlixRc3OzHn74Yd1xxx3Kzs62ql0AAAAAAAAAAK4JM2kQ0g4e\nPKjf//73kqSbb77ZJ6AZMGXKFD3++OOSpM7OTv3sZz8Lao8AAAAAAAAAAFwPZtIg4I4fP66ysjLV\n1taqt7dXqampmjt3rlasWKHY2Fi/nrVx40bP71/4whcue91nPvMZrV+/Xp2dndq4caM2bNhw3f0D\nAAAAAAAAABAMhDSjXF1dncrKyvTOO++orKxM5eXlOn/+vOfzadOmqbq6OiC1XnnlFf3TP/2TnE7n\nkJ8nJiaqpKREP/jBD5Senn5NzywtLfX8vnr16steFxcXp+XLl2vz5s2qqqrSqVOnNGXKFP/+AAAA\nAAAAAAAABBEhzSj01ltv6V//9V/1zjvvqL6+fsTr9fT06POf/7xeeOGFK17X0dGhX/ziF/rv//5v\nbdy4UatWrbrqsysqKiRJ48aN0+TJk694bV5enjZv3izJXCaNkAYAAAAAAAAAEMrYk2YUevfdd/W7\n3/0uKAGN2+3Wpz/96UEBTUREhKZPn66FCxcqOTnZ57Pm5mZ96EMf0s6dO6/47J6eHp0+fVqSrilw\nufiakydPXusfAQAAAAAAAAAASxDSjDGJiYkBfd6//Mu/6Pe//73P2Je+9CXV1NSoqqpKe/bsUVtb\nm/73f/9XU6dO9VzT2dmpT33qUzp79uxln33xsmzX0ndSUtKQ9wIAAAAAAAAAEIoIaUaxpKQkFRUV\n6dvf/rZefvllVVdX67XXXgvY81tbW/WjH/3IZ+yJJ57Q008/rezsbM+Y3W7XJz/5Sb399tvKycnx\njNfW1uonP/nJZZ/f1dXl+T06Ovqq/cTExAx5LwAAAAAAAAAAoYg9aUahj33sY7r11ls1d+5c2e2+\nOdyJEycCVufHP/6xz4yVVatW6aGHHrrs9ZMmTdKvf/1rfeADH/CM/fSnP9XXv/51paWlDbo+Li7O\n83tvb+9V++np6RnyXoSPH277oW6eerOWZC/R9JTpstlsVrcEAAAAAAAAACOGkGYUmjlz5ojXcLvd\nev75533GHn300au+VF+zZo1uueUWbd++XZK5LNlvf/tbffnLXx507cXLl3V0dFy1p4uvufhehI+n\nyp7SU2VPSZKSY5K1OGuxFmct1pKsJVqctViz02bLbmMCIAAAAAAAAIDRgZAG1+Xtt99Wc3Oz53zG\njBkqKiq6pns///nPe0IaSXrllVeGDGliYmKUmZmppqYmnTp16qrPramp8fx+8f43CE9ne85qS/UW\nbane4hlLjE7UoomLfMKbOelzFGnnH2UAAAAAAAAAwg9vNnFdXn/9dZ/zD37wg9e8NNUHP/hBn/Ot\nW7fK5XIpISFh0LX5+flqamrSuXPnVFtbq8mTJ1/2uQcPHvS5D6NPR2+Httds1/Yab8gXFxmnBRMX\neGbbLM5arLyMPEVHXH0fIwAAAAAAAACwEiENrsvevXt9zlesWHHN92ZnZysnJ0fV1dWSzP1mDh48\nqGXLlg26trCwUFu2mDMptmzZonvvvXfIZ3Z1dWnXrl2SpOnTp2vKlCnX3A/CW1dfl3bV7tKu2l2e\nseiIaM2fMF+LJ74/4yZ7iQoyCxQbGWthpwAAAAAAAADgi5AG1+XQoUM+53l5eX7dn5eX5wlpBp43\nVEhz55136tFHH5Uk/cd//MdlQ5oXX3xRnZ2dnnswtvX296q8vlzl9eWesUh7pPIz8n1m3CyYuEDx\nUfEWdgoAAAAAAABgLCOkgd+6urp89n+R5PfMlUuvP3LkyJDX5efn62Mf+5hee+01bd++Xf/+7/+u\n+++/3+eaU6dO6ZFHHpEkxcXFaf369X71gtAxM3Wmqs5UyZAR8Gf3ufu07/Q+7Tu9T8/tfU6SZLfZ\nNS99ns8eNwsnLlRSTFLA6wMAAAAAAADApQhp4LeWlhYZhvclelRUlDIzM/16xqRJk3zOm5qaLnvt\nT37yE7311ltqa2vTl770Je3Zs0d33XWXEhMTVVZWpscff9xz/+OPPz7o2QgfOz+/U7GRsdrbuFfO\nBqecjU45G5w62HxQbsMd8Hpuw62K5gpVNFfo/+3/f5Ikm2yanTbbZ8bNoomLlBqXGvD6AAAAAAAA\nAMY2Qhr4raOjw+c8Pj5eNpvNr2ckJCRc8ZkXmzVrll5//XXdcccdqq+v1zPPPKNnnnnG5xq73a7v\nf//7+sY3vuFXH5fT1NSk5uZmv+6prKwMSO2xLikmSbdMu0W3TLvFM9Z5oVP7T++Xs8Gp3fW75Wx0\n6kDTAfW5+wJe35Cho61HdbT1qF468JJnfEbqDDO0mWjucbM4a7HS49MDXh8AAAAAAADA2EFIA79d\nGqjExvq/GXtcXNwVn3mp5cuXq6KiQr/85S/1u9/9TsePH1d3d7eysrJUXFysL3/5y1q6dKnffVzO\nr371Kz322GMBex6GJz4qXssnL9fyycs9Yz19PXqv6T1zxk2DU7sbdmv/6f3q7e8dkR6qzlSp6kyV\nNh7c6BmbMm6KGdhMfH+5tOwlmpg4cUTqAwAAAAAAABh9CGngt+7ubp/z6Ohov58RExPjc97V1XXV\ne1JSUvTd735X3/3ud/2uh9EnJjJGS7OXamm2N5y70H9BB5sPekIbZ4NTexv3qqvv6n+/rsepc6d0\n6twpvXL4Fc9YVmKWzx43i7MWa/K4yX7PNgMAAAAAAAAw+hHSwG+Xzpzp7fV/5kJPT88Vnwlcj6iI\nKC2YuEALJi7Q5xZ9TpLU5+7TkZYjPjNu9jTuUUfvlWdvXa+Gjga9fux1vX7sdc9YRnyGJ7gZCG9y\nUnIIbgAAAAAAAIAxjpAGfktMTPQ5v3RmzbW4dObMpc+02gMPPKC77rrLr3sqKyv1iU98YoQ6CjLD\nGDV1I+2Rys/MV35mvu5dcK8kyW24VdlW6bPHjbPBqfbu9oDXl6Tmzmb95fhf9Jfjf/GMpcSmDNrj\nZtb4WbLb7CPSAwAAAAAAAIDQQ0gDv10aqHR2dsowDL9mBbhcris+02qZmZnKzMy0ug3rXGWPoBHj\ncklB+Ktgt9mVm5ar3LRc3V1wtyTJMAydaD/hM+PG2eBUS2fLiPTQ3t2uzSc2a/OJzZ6xpOgkLcpa\n5LPHzZy0OYqwR4xIDwAAAAAAAACsRUgDv6Wnp8tms8l4f9bDhQsX1NTUpAkTJlzzM+rq6nzOx3Qg\nEoou+L+EXUD09lz9mhFis9k0I3WGZqTO0J15d0oyg5vac7U+oY2zwamGjoYR6eF873ltO7lN205u\n84zFR8VrwYQFPnvc5GXkKSoiakR6AAAAAAAAABA8hDTwW1xcnKZOnaqTJ096xmpqavwKaWpqanzO\n586dG7D+EABR0dbU/cAHpJv/j1RcbB6TJlnTx/tsNpumJE/RlOQpun3u7Z7xhvMNnsDG2WgumXbq\n3KkR6aHzQqd21u7UztqdnrGYiBjNnzDfZ5+bGzJvUExkzIj0AAAAAAAAAGBkENLgusydO9cnpDl4\n8KCWLVt2zfcfOnRo0PMQOtIyp6np35Ol9rPBrdtVJx19TnruOXMgN1davdoMbIqKpBCZcZWVlKWP\nJH1EH8n9iGes2dWsPY17fPa4qTpTNSL1e/p79G79u3q3/l3PWKQ9UgWZBT573MyfMF/xUfEj0gMA\nAAAAAACA4SOkwXVZuHCh/vIX7ybob7/9ttatW3dN9zY0NKi6utpzHhUVpby8vEC3OGIcDoccDseg\n8Uv32QlndnuEMuYtld5809pGjh41j2eeMc8LCryhTWGhlJpqbX8XyUjI0K0zb9WtM2/1jJ3pOqM9\njXt8lks72np0ROr3ufu0t3Gv9jbu1XN7zZDLbrMrLyPPnG3zfnizYMICJcUkjUgPAAAAAAAAAPxD\nSIPr8tGPflQbNmzwnG/atEmGYchms1313jfeeMPnvLi4WImJQdgtPkCqq6tVWlpqdRsj78YbrQ9p\nLnXggHk89ZRks0mLFnlDm1tukZJCK3xIjUvV6umrtXr6as/YuZ5z2tu417tcWoNTh1oOyW24A17f\nbbh1oOmADjQd0P/d938lSTbZlJuWa862mWgulbYoa5FSYlMCXh8AAAAAAADAlRHS4LqsWLFC6enp\namlpkSRVVVVp69atKi4uvuq9zz77rM/57bfffpkrQ1NOTo4KCwsHjbtcLpWXl1vQ0Qi55x7piSes\n7uLyDENyOs3jySeliAhp2TJvaLNihRQfekt9jYsZp1XTVmnVtFWeMVevS/tP7/eZcVPRXKE+d1/A\n6xsydKT1iI60HtGL773oGZ+ZOtOzv82SrCValLVI6fHpAa8PAAAAAAAAwMtmGIZhdRMInkuDlGnT\npvksPeaPb3/723ryySc954WFhdqyZcsVZ9O8+eab+sAHPuA5T0pKUlVVldLTw/9lcEVFhQoKCjzn\nBw4cUH5+voUdBcCqVdL27VZ3cX2io6Xly72hzU03STExVnd1zbr7unWg6YC5x02DU85Gp/af3q/e\n/t6g9TA1eaontBkIcCYmTgxafQAAAAAAAGAkhNK7XGbS4Lo99NBDeuaZZ9TR0SFJKi0t1YYNG/Tw\nww8PeX1dXZ3uu+8+n7H169ePioBm1HrooeCENC++KEVFSVu2SJs3S4cPD/+Zvb3Stm3m8eijUlyc\ntHKlN7RZulSKDN1/BMZGxmpp9lItzV7qGevt79XB5oPmjJv63XI2OrWvcZ+6+rpGpIeaszWqOVuj\nVw6/4hnLTsr22eNmcdZiTUqadE1LHQIAAAAAAADwxUyaUeqtt95SV9fgF7f79u3Tgw8+6DmfMGGC\nfvOb3wz5jOzsbOXl5V2xzhNPPKFHHnnEZ+zLX/6yvve97yk7O1uS5Ha79eqrr2r9+vWqqanxeX5F\nRYVSUkbHXhihlL4G1Nq10ksvjezzX3jBd6y+Xtq61QxstmyRqqoCXzcx0ZwpVFxsBjcLFphLpoWZ\nPnefjrQc8SyT5mxwak/jHnX0dgSth4z4jEEzbnJScghuAAAAAAAAEJJC6V0uIc0olZOTo5MnTw7r\nGevWrZPD4bjiNW63W7fffrv+8Ic/+IxHRERo2rRpSk5O1okTJ9Te3u7zeVxcnP76179q5cqVw+ox\nlITSFzugWlul+fPN4CTQsrOl/fultLQrX3fypBnWDMy0qa0NfC8pKVJRkTe0yc+XwjRkcBtuHWs9\n5rPHjbPBqbM9Z4PWQ2psqs8eN4uzFmvm+Jmy2+xB6wEAAAAAAAAYSii9yyWkGaWCFdJIUnd3tz73\nuc/pv/7rv67puWlpadq4caOKioqG1V+oCaUvdsC9955UWCidORO4Z6amSqWl0g03+HefYUjHj3tn\n2WzeLDU1Ba6vARkZZmAzENrMnh22oY0kGYahqjNVnsBmILxp7WoNWg9J0UlalLXIZ8bNnLQ5irCH\n3wwmAAAAAAAAhK9QepdLSDNKBTOkGfA///M/+uEPf6i9e/cO+XlCQoLWrVunH/zgB8rMzBxWb6Eo\nlL7YI+K996TbbgvMjJrsbOnPf/Y/oBmKYUiHDnlDm61bpba24T/3UtnZ3v1sVq+WcnICXyPIDMPQ\nqXOnfPa42V2/W6ddp4PWQ3xUvBZOXOizx8289HmKiogKWg8AAAAAAAAYW0LpXS4hDQKusrJS77zz\njurq6tTb26uUlBTNmzdPK1euVGxsrNXtDZvD4RgyvHK5XCovL/ecj7qQRjKXPvv616UXX7z+Z6xd\nKz311NWXOLtebre5hNpAaFNaKp0/H/g6OTne0Ka4WJo0KfA1LFJ/vt4z42Zg1k3tuRFYYu4yYiJi\ntGDiAi2euNgz46Ygs0AxkTFB6wEAAAAAAACjFyENEMYeffRRPfbYY1e9blSGNANef1368Y+lbduu\n/Z5Vq6SHHpI+/OGR62sofX2S0+kNbbZvl7q6Al8nN9cb2hQVSaNstliTq0l7Gvb47HFzov1E0OpH\n2aNUkFngs8fN/AnzFRcVF7QeAAAAAAAAMDoQ0gBhbEzPpLnUgQPSSy9JZWXS7t2+e9akpkpLlkg3\n3ijdc4900T/0LNXba/Y7ENq8/bY5FmgFBd7QprDQ/M9jlGnratOehj1maPP+UmnH2o4FrX6ELUJ5\nGXme2TaLsxZr4cSFSoxODFoPAAAAAAAACD+ENMAoFEpfbEsYhtTRIfX0SDExUmKiZLNZ3dXVdXVJ\nO3eagc3mzWaA09cX2Bo2m7RokTe0ueUWKSkpsDVCxLmec9rbuNezx42zwanDLYflNtxBqW+TTXPS\n5/jMuFk0cZGSY5ODUh8AAAAAAAChL5Te5RLSAAESSl9sDENHh7Rjhze0cTrNfW4CKSJCWrbMG9qs\nWCHFxwe2Rghx9bq07/Q+nz1uKpoq1G/0B62HmakztSR7ic8+N2nxI7QvEgAAAAAAAEJaKL3LJaQB\nAiSUvtgIoPZ2c++dgdBm//7A14iOlpYvNwOb1aulm24yZyONYt193Xrv9Hs+e9y81/SeevtHYOm5\ny5iWPM1nxs3irMWakDghaPUBAAAAAABgjVB6l0tIAwRIKH2xMYKam6XSUm9oc/hw4GvExUkrV3pD\nm6VLpcjIwNcJMb39vapoqvDMtnE2OLXv9D5193UHrYdJSZM8gc1AeJOdlC1bOCzdBwAAAAAAgGsS\nSu9yCWmAAAmlLzaCqKHBDGwGQpuqqsDXSEyUVq3yhjYLFphLpo0Bfe4+HW45bO5x0+CUs9GpPQ17\n5LrgCloPmQmZg2bcTEueRnADAAAAAAAQpkLpXS4hDRAgofTFhoVOnvQNbWprA18jJUUqKvKGNvn5\n0hgKDPrd/TrWdsyccVO/W85Gc7m0cz3ngtbD+LjxZmDz/h43S7KXaEbqDNlt9qD1AAAAAAAAgOsT\nSu9yCWmAAAmlLzZChGFIx4+bYc1AaNPUFPg6GRlmYDMQ2syePaZCG0lyG26dOHPCZ4+b3Q271dbV\nFrQexsWM06KJi3xm3OSm5SrCHh6zntyGW62drUGvmxafRrgFAAAAAACCKpTe5RLSAAESSl9shCjD\nkA4d8oY2W7dKbSMQImRnm2HNQGiTkxP4GmHAMAzVnK3xCW12N+xWk2sEgrLLSIhK0MKJC332uZmX\nMU+R9tDbY6jZ1azMJzODXrfpwSZlJGQEvS4AAAAAABi7QuldLiEN4CeHwyGHwzFo3OVyqby83HNO\nSIOrcrul/fu9oU1pqXT+fODr5OR4Q5viYmnSpMDXCBOGYaiho8Fnj5vd9btVd74uaD3ERsZq/oT5\nPjNuCjILFB0RHbQehkJIAwAAAAAAxopQCmlC71/lBUJcdXW1SktLrW4Do4HdLi1caB7f+pbU1yc5\nnd7QZvt2qatr+HWqq6XnnjMPScrN9YY2RUVSZvBfzFvFZrMpOylb2XOy9bE5H/OMn+44rT2Nezwz\nbpwNTlW3V49ID9193SqrK1NZXZlnLMoepRsm3OCzx80NmTcoLipuRHoAAAAAAABAaGAmDeAnZtIg\naHp7pbIyb2jz9tvmWKAVFHiXRisslFJTA18jDLV1tXmWShsIbyrbKoNWP8IWobyMPC3JXuIJbxZO\nXKiE6IQRqcdMGgAAAAAAMFaE0kwaQhogQELpi41RqqtL2rnTDGw2bzYDnL6+wNaw2aRFi7yhzS23\nSElJga0Rxs52n9Xexr2e2TbOBqcOtxyWoeD8V6lNNs1Nn+vZ32YguEmOTR72s/m7U+4AACAASURB\nVAlpAAAAAADAWBFK73IJaYAACaUvNsaIjg5pxw5vaON0mvvcBFJEhLRsmTe0WbFCio8PbI0w19Hb\noX2N+3z2uDnYfFD9Rn/Qepg1fpbPHjeLsxZrfNx4v55BSAMAAAAAAMaKUHqXS0gDBEgofbExRrW3\nS9u2eUOb/fsDXyM6Wlq+3Bva3HSTFBMT+DphrutCl95rek+763d7wpv3Tr+nC+4LQeshJyXHZ8bN\n4qzFyky4fAhDSAMAAAAAAMaKUHqXS0gDBEgofbEBSVJzs1Ra6g1tDh8OfI24OGnlSm9os3SpFBkZ\n+DqjQG9/rw40HfDZ42Zf4z719PcErYdJSZN89rhZkr1EWYlZstlshDQAAAAAAGDMCKV3ubxJA4DR\nKiNDuvNO85CkhgYzsBkIbaqqhl+jq0vatMk8JCkxUVq1yhvaLFhgLpkGRUdEe2a0DLjQf0GHWw77\n7HGzp3GPOi90jkgPdefrVHekTq8eedUzNiFhghZnLdbctLkjUhMAAAAAAACXx0waIEBCKX0FrsnJ\nk76hTW1t4GukpEhFRd7QJj9fstkCX2cU6Xf362jrUZ8ZN3sa9+hczzmrWxsRzKQBAAAAAADBFkrv\ncplJAwBj1bRpUkmJeRiGdPy4GdYMhDZNTcOv0d4uvfKKeUjm7J7iYm9oM3s2oc0lIuwRmpcxT/My\n5ukz8z8jSXIbblWdqTJDm/rdcjaaP890n7G4WwAAAAAAAAwHIQ0AwAxKZs0yj/vvN0ObQ4e8oc3W\nrVJb2/DrNDdLv/2teUhSdrYZ1gyENjk5w68xCtltds0aP0uzxs/Sp/I/JUkyDEMnz570mXGzu363\nmjubLe4WAAAAAAAA14qQBgAwmM0m5eWZx1e/Krnd0v793tCmtFQ6f374derrpd/8xjwkM6QZCGyK\ni6VJk4ZfY5Sy2WzKSclRTkqO/nbe30oyg5v68/U+e9zsbtit+vP1FncLAAAAAACAobAnDeAnh8Mh\nh8MxaNzlcqm8vNxzzp40GNX6+iSn07s02o4dUucIbHafm+sNbYqKpMzMwNcYAxo7GrWnYY8ntHE2\nOHXy7Emr25IkPfvxZ7Use5lmjZ+luKg4q9sBAAAAAABjQCjtSUNIA/jp0Ucf1WOPPXbV6whpMKb0\n9kplZd7Q5u23zbFAKyjwhjaFhVJqauBrjBGtna2e2TbORqferXtXJ9pPWNaPTTZNTZ6qOelzNCdt\njnLTcj0/pyRPkd1mt6w3AAAAAAAwuhDSAGGMmTTANejqknbu9IY2ZWXm7JtAstmkRYu8oc0tt0hJ\nSYGtMYY0u5qV+WRozlSKjYzV7PGzhwxwUuMI6gAAAAAAgH8IaYBRKJS+2EDI6egwl0QbCG2cTnOf\nm0CKiJCWLfOGNitWSPHxga0xioVySHMlGfEZmpM+R7njc82f7wc4M1JnKCYyxur2AAAAAABACAql\nd7mRllQFAIwtiYnSbbeZhyS1t0vbtnlDm/37h1+jv1/atcs8nnhCio6Wli/3hjY33STF8NJ+tGnu\nbFZzTbN21OzwGbfb7JqeMn3IACc7KVs2m82ijgEAAAAAALwIaQAAwZeSIn384+YhSS0t0tat3tDm\n8OHh1+jtNYOgbdukxx6T4uKklSvN0Ka4WFq6VIqKGn4dhCS34dbxM8d1/Mxx/VF/9PksISrBDGwu\nCXBy03I1LmacRR0DAAAAAICxiJAGAGC99HTpzjvNQ5IaGszAZiC0qaoafo2uLmnTJvOQzNk9q1Z5\nZ9osWGAumYagirBFqN/oD2pN1wWX9jTu0Z7GPYM+y0rM8tnzZiDAmZ4yXVERhHoAAAAAACCwCGkA\nAKEnK0tau9Y8JOnkSd/QprZ2+DU6OqQ//tE8JHN2T1GRN7TJz5dYEmvE1XyjRh0XOnSk5YiOth7V\nkVbvz8aOxqD309DRoIaOBpWeLPUZj7RHambqzEEBzpy0OcpMyGT5NAAAAAAAcF0IaQAAoW/aNKmk\nxDwMQzp+3AxrBoKb06eHX6O9XXrlFfOQpIwMM7RZvdoMbnJzCW1GQFRElHLHmUuNXepczzkzsLkk\nwDnaelSuC66g9tnn7tOR1iM60npEr+k1n8/GxYzzBjcXBTizx89WQnRCUPsEAAAAAADhhZAGABBe\nbDZp1izzuP9+M7Q5dMg7y2brVqmtbfh1mpull182D0nKzvbOsikulqZPH34NXNG4mHFamr1US7OX\n+owbhqG683VDBjgn2k/IbbiD2ue5nnN6t/5dvVv/7qDPJo+bPGSAMy15miLsLK8HAAAAAMBYR0gD\nAAhvNpuUl2ceX/mK5HZL+/d7Q5tt26Rz54Zfp75eeuEF85CknBzf0GbSpOHXwDWx2WyaPG6yJo+b\nrNXTV/t81tPXo+Nnjg8KcI60HlFLZ0vQe609V6vac7V688SbPuPREdGaNX6WT4AzsP9Nenx60PsE\nAAAAAADWIKQBAIwudru0cKF5fPObUl+f5HR6Q5sdO6TOzuHXqa6Wnn/ePCRzObSB0KaoSMrMHH4N\n+C0mMkZ5GXnKy8gb9FlbV5tnubQjLUd0tM38eaztmLr7uoPaZ29/rw42H9TB5oODPhsfN94b3Fw0\n+2bW+FmKjYwNap8AAAAAAGBkEdIAAEa3yEjpxhvN46GHpN5eqazMG9rs3Cn19Ay/ztGj5vFv/2ae\nFxR4Q5vCQik1dfg1MCzj48Zr+eTlWj55uc+423Dr1NlTniXTjrQc8fxec7ZGhoyg9tnW1aZdtbu0\nq3aXz7hNNk1LmTZkgDN53GTZbfag9gkAAAAAAIbPZhhGcN88AKNURUWFCgoKPOcHDhxQfn6+hR0B\nuCZdXWZQMxDalJWZs28CyWaTFi3yhja33CIlJQW2xjA1u5qV+WTwZ/80PdikjISMoNe9Vl0XulTZ\nVukNcFqPeEKc9u52q9vziIuM0+y02UPuf5MSm2J1ewAAAAAAhJRQepdLSAP4yeFwyOFwDBp3uVwq\nLy/3nBPSAGGqo8NcEm0gtHE6zX1uAikiQlq2zBvarFghxccHtoafCGn8YxiGWjpbfIKbgeXTKtsq\ndcF9weoWPTLiMzQnfc6gAGfm+JmKjoi2uj0AAAAAAIIulEIaljsD/FRdXa3S0lKr2wAwUhITpdtu\nMw9Jam+Xtm3zhjb79w+/Rn+/tGuXeTzxhBQdLS1f7g1tbrpJiokZfh2MGJvNpoyEDGUkZGjl1JU+\nn/W5+3Sy/eSQAU7d+bqg99rc2azmmmbtqNnhM2632TU9ZfqQAU52UrZsNlvQewUAAAAAYKxhJg3g\nJ2bSAGNcS4u0das3tDl8OPA14uKklSvN0Ka4WFq6VIqKCnydi7gNt1o7W69+4aGD0v/+TtrjNAOr\n9rPez1KSpfnzpUWLpTv+Vpo776qPS4tPG1N7qXT0duhY6zGf5dMG9sE533ve6vY8EqMTlZuW67t0\n2vs/k2JCa6k+AAAAAAD8FUozaQhpgAAJpS82gCBqaDADm4Hj+PHA10hMNPexWb3aDG0WLjSXTAum\n11+XNmyQtm+/9ntuuUV6+GHpwx8eub5GCcMwdNp12rPfzcUBzvG24+o3+q1u0SMrMUtz0ucod7y5\n581AgDM9dboi7UzSBgAAAACEvlB6l0tIAwRIKH2xAViopsY7y2bzZqm2NvA1UlKkwkJvaJOfL9lH\naDZKa6v0ta9JL710/c9Yu1Z66ikpLS1wfY0hF/ovqOpMle/Mm/eXUTvtOm11ex6R9kjNTJ05ZICT\nmZDJ8mkAAAAAgJARSu9yCWmAAAmlLzaAEGEY5syazZu9M21Oj8BL9YwMqajIG9rk5kqBeCG+f7/0\noQ9J9fXDf1Z2tvTnP0s33DD8Z8HjbPdZHW09OijAOdp6VJ0XOq1uzyM5JtkMbC4KcOakzdHstNmK\nj4q3uj0AAAAAwBgTSu9yCWmAAAmlLzaAEGUY0qFD3pk2W7dKbW2Br5OdbYY1A6HN9On+P2P/fjP4\nOXMmcH2lpkqlpQQ1QeA23Ko/X68jLRfNvHk/vKlur5bbcFvdoseUcVN89755P8CZmjxVEfYgL+sH\nAAAAABgTQuldLiENECCh9MUGECbcbjMMGQhttm2Tzp0LfJ2cHN/QZtKkK1/f2irNnx+YGTSXys42\n/8wsfWaZnr4eHT9zfMgAp6Wzxer2PGIiYjRr/CxPgHPx8mlp8fz9AQAAAABcv1B6l0tIAwRIKH2x\nAYSpvj7J6fSGNjt2SJ0jsGRVbq43tCkqkjIzfT9fu3Z4e9Bczdq10gsvjNzzcd3autrM4KbliM/y\nacdaj6mnv8fq9jzGx433zry5KMCZNX6WYiNjrW4PAAAAABDiQuldLiENECCh9MUGMEr09kplZd7Q\nZudOqWcEXpQXFHhDm54e6e67A1/jUn/4g/SRj4x8HQSE23Cr5mzNkAFOzdkaq9vzsMmmaSnThgxw\nJo+bLLvNbnWLAAAAAIAQEErvcglpgAAJpS82gFGqq8sMagZCm7Iyc/ZNOFq1ytyfBmGv80KnKtsq\nhwxw2rvbrW7PIy4yTrPTZpvBzUX73+Sm5SolNsXq9gAAAAAAQRRK73IJaYAACaUvNoAxoqPDXBJt\nILRxOs19bsLFe++Zs3gwKhmGoZbOFnPPm4v2vznaelSVbZW64L5gdYsemQmZ3pk3FwU4M1JnKDoi\n2ur2RoTbcKu1szXoddPi05jRBAAAAMByofQuN9KSqgAAYPgSE6XbbjMPSWpvl7Zt84Y2+/db29/V\nvPSS9KMfWd0FRojNZlNGQoYyEjJ089SbfT7rc/fpZPvJIQOcuvN1Qe+1ydWkJleTdtTs8BmPsEVo\neup0n+XTBgKcrMQs2Wy2oPcaKK2drcp8MvPqFwZY04NNykjICHpdAAAAAAhVhDQAAIwWKSnSxz9u\nHpLU0iJt3eoNbQ4ftrS9QcrKrO4AFom0R2rm+JmaOX6mPjz7wz6fdfR26GjrUc/yaUfbvMuodfR2\nBLXPfqNflW2Vqmyr1OvHXvf5LDE60Te4ef9nblqukmKSgtonAAAAACB8EdIAADBapadLd95pHpLU\n0GAGNgPH8ePW9rd7t2QYUhjPRkDgJUYnanHWYi3OWuwzbhiGGjsavXveXBTgVJ2pUr/RH9Q+O3o7\n5GxwytngHPRZVmKW5qTPGRTgTE+drkg7//MbAAAAAODF/0sEAGCsyMqS1q41D0mqqfHOstm0Saqv\nD24/Z85IGzZICxdKc+ZIU6dKERHB7QFhw2azKSspS1lJWSrKKfL5rLe/VyfOnPAJcAZ+P+06HfRe\nGzoa1NDRoK3VW33Go+xRmjl+5qAZOHPS5ygjPiOsl08DAAAAAFwfQhoAAMaqqVOldevMo7lZygz+\n/hT6zne8v8fGSrm5ZmAzd673yM01998BLiM6ItqcuZI+Z9Bn7d3tOtZ6zBvgXLQPTldfV1D7vOC+\noMMth3W4ZfDSg8kxyZqTPmdQgDM7bbbio+KD2icAAAAAIHgIaQAAgBQTY3UHUne3tH+/eVxq8mRv\naHNxiDNpEsul4YpSYlO0bNIyLZu0zGfcbbhVd67ON7h5f/m06vZqGTKC2ufZnrMqqytTWd3gvZqm\njJtiBjjjc32WUZuaPFURdmafAQAAAEA4I6QB/ORwOORwOAaNu1yu4DcDAIGSlCSlpppLkIWi2lrz\n2LTJdzwhwTe0Gfh99mwpLs6aXhEW7Da7piRP0ZTkKVozY43PZ9193Tredtwb4Fy0jFprV2vQez11\n7pROnTulTVW+f/9jImI0a/ysIQOctPi0oPcJAAAAAPAfIQ3gp+rqapWWllrdBgAEls0mLV4svfmm\n1Z34x+WSnE7zuJjNJuXkDF46bc4cacIEZt/gimIjY5Wfma/8zPxBn7V2tnrCm4t/Hms9pp7+nqD2\n2dPfo4rmClU0Vwz6LC0uzVwy7ZIAZ+b4mYqNjA1qnwAAAACAyyOkAfyUk5OjwsLCQeMul0vl5eUW\ndAQAAXLjjeEX0lyOYUgnTpjHn//s+1ly8tBLp82cKUVHW9MvwkZafJr+Jv5v9DdT/sZnvN/dr1Pn\nTulIy5FBAU7N2Zqg99na1aqdtTu1s/b/s3fvwVGf973HP7u635DE6rqAEAgJgSRjkMxxbHNLbCeA\nc2maNmOm58RJzh9NZ+L2D2fs6aSTZFofT9y0c8bt9I9zplPmtDZN46ROYhqS2MUY27GxxFVC9ws3\nCXRH9+vu+eOpVvpp14DQ7m9Xq/dr5hlpn5/0e76QLIbfR8/3+Z1l3iGHCjMKVZhRaHtNAAAAAAB/\nDq/Xa2/DbSBK1dXVqby83Pe6trZWZWX+P4ELABHr0iXpgQfsW+/hh+fbmEWCmBhp8+bAAY6L1lG4\nf2PTY2rua/bbgdPY26jbk7fDXZ6tup/rVnZKdrjLAAAAALDKRdKzXHbSAAAAo6JC2rNHOn069Gvt\n3SvNtY4cHpaamqTGRqmhYX40NUmTNraPmp2VmpvN+OUvrdeysgK3Ttu0SYrlr1O4s+S4ZO3I26Ed\neTss816vVz1jPWrsbfQLcFr7WzXtmQ5TxQAAAAAAu/BUAQAAzHv+eXtCmuefn/88LU2qrDRjodlZ\n6epVE9gsDnBu3Qp9jQv19prx/vvW+bg4qbjYf+fN1q2mrRpwBw6HQzkpOcpJydGejXss12Y8M+oY\n7LAEOHMhTudwZ5gqBgAAAAAEGyENAACYd/iw9PTT0rFjoVvjyBHp0KG7f11MjNmpsmmTdPCg9drg\noDW4mfu8pUWatnH3wfS0dPmyGYvl5QVunVZQIDmd9tWIFSnWGasta7doy9otOqzDlmvDk8Nq7m8O\nGOCMTI2EqeJ78+GND/Xf1v03ZSdny+FwhLscAAAAAAg7zqQBgiSS+hgCwLL09ZmzaTpD8NP6brd0\n8WLozniZnpba2/0DnPp6qb8/NGsuVWKiVFLi3zqtpERKTQ13dVjBvF6vuka6THCzKMBpH2jXrHc2\n3CX6pCekq8RV4jeK1xYrLSEt3OUBAAAAiHKR9CyXkAYIkkh6YwPAsl26JO3bJw0MBO+emZnmHJqK\niuDdcyl6ewO3Tmtrkzye8NS02IYN/jtvSktNuMWuAyzD1OyU2gbafAHO+Zvn9Vrta+EuK6D81HxL\naDP3+ebMzUqITQh3eQAAAACiQCQ9yyWkAYIkkt7YABAUly5Jn/tccHbUuN3SiRPhC2juZHJSam31\nb53W0CANDYW7OiM1dT64WRjgFBebnTnAEvWM9ijnRznhLmNJnA6nCjMKTWiz1roDZ0P6BjkdtBEE\nAAAAcG8i6VkuZ9IAAIDAKipMa7Jnn5VeW8ZP3B85Ir3ySuhanC1XQoK0fbsZC3m90q1b1l03cwHO\nlSvmul1GRqSaGjMWcjikwkL/1mmlpVJODrtvEFU8Xo/aBtrUNtCmEzphuZYQk6BiV7EvwPF97irh\n/BsAAAAAEY2QBgAAfDKXS3r1VRO0vPyy9O679/69e/dKzz8vHToUuvpCyeGQ8vLM2L/fem1sTGpu\n9m+d1thortnF6zVn8LS3S7/6lfVaRob/zputW6WiIik+3r4aARtMzk6qtrtWtd21ftc4/wYAAABA\nJCOkAQAAd3f4sBm1tdKxY9KZM2ZXx8IzazIzpcpKafdu6emnpQXbhqNOcrK0Y4cZC3k80o0bgVun\n3bhhb42Dg9KHH5qxUEyMCWoCBTiRutsJWIbbk7f1cefH+rjzY79rnH8DAAAAINwIaQAAwL0rL5de\nfNF87vWaNlyTk6ZlWGoq7bWcTmnDBjOeeMJ6bXhYamry33nT1GR+D+0yO2vWbGryv5aV5d82rbTU\ntFSL5a+NWL7ab9VqYGJATX1NltHS36LJWRvfB/+la6RLXSNdOnXllGWe828AAAAA2IV/bQMAgPvj\ncEhpaWbg7tLSzE6jykrr/OysOeMmUOu0W7fsrbG3V3rvPTMWio+XtmzxP/tm61YpPd3eGrGi5aTk\nqCynTI8VPGaZn/XM6trQNb/wpqmvSR2DHfLKxjOgxPk3AAAAAOxDSAMAABBOMTHS5s1mHDxovTYw\nMB/eLAxxWlqkmRn7apyaki5fNmOx/PzArdMKCszOIuAexDhjVJhRqMKMQj1Z9KTl2uTMpNoG2qzh\nTb/5eHPkpu21cv4NAAAAgGAipAEAAIhUmZnSww+bsdD0tNTe7r/zpr7eek6QHbq6zDh50jqflCSV\nlPgHOCUlUkqKvTViRUuITdC27G3alr3N79rQ5JCa+5r9wpumviYNTQ7ZXivn3wAAAABYKkIaAACA\nlSYuzoQdJSXSF74wP+/1mpZlgVqntbVJHo99NY6PSxcumLHYhg3+rdNKSyW3m3ONsCRrEtao0l2p\nSre1jaDX61X3aLea+5s5/wYAAABARCOkAQAAiBYOh5SdbcZj1jM/NDlp2qQtbp3W0CAND9tb57Vr\nZvz2t9b51NTArdOKi6XERHtrxIrmcDiUm5qr3NRczr8BAAAAENEIaQAAAFaDhASprMyMhbxe6eZN\n666buc+vXLG3xpERqbrajIUcDmnTJv8Ap7TUBFI8qMYScP4NAAAAgEhCSAMAALCaORxSfr4ZBw5Y\nr42NSc3N/q3TGhvNNbt4vaZdW1ub9B//Yb2WkRG4dVpRkWkLBywB598AAAAAsBshDQAAAAJLTpZ2\n7DBjIY9Hun49cOu0zk57axwclD780IyFYmNNULO4dVppqbR2rb01Iipw/g0AAACAUCCkAZbo6NGj\nOnr0qN/86Oio/cUAABAOTqdUUGDGk9Z2URoakpqa/NunNTVJU1P21TgzM7/r5xe/sF7Lzg7cOq2w\nUIqJsa9GRAXOvwEAAACwHIQ0wBJ1dHTo1KlTd/9CAABWozVrpKoqMxaanTVn3CxundbQIHV321tj\nT48Zp09b5+PjpeJi/503W7eaX1cUcSW71P3cEn/fvV5zbtD0lBQXL6WmLvk8IFeya2lrrnCcfwMA\nAADgbghpgCUqLCzUvn37/OZHR0dVvfigYwAAYMTESJs3m3HokPVaf//8rpeFIU5rq9kRY5epKamu\nzozF3O7ArdM2bDA7i1YYp8Op7JTsu3/hpUvSsWPSmTPS2bPSwMD8tcxMadcuafdu6cgRqbw8dAVH\nIc6/AQAAACBJDq/Xa+8eeyBK1dXVqXzBw4na2lqVlZWFsSIAAFa46Wmprc1/501DgzUsCKekJBPY\nLG6dVlJizvRZqY4fl374Q//dRneyZ4/0wgv+IRyCJhLPv/kknH8DAACASBZJz3IJaYAgiaQ3NgAA\nUc3rNe3KFoY2c5+3t0seT7grNAoK/HfelJZK+flLbhNmm74+6dvfNrtn7teRI9Irr0iu1dXaLNwi\n7fybO+H8GwAAAIRbJD3LJaQBgiSS3tgAAKxaExNSS4t/67TGRml4ONzVGWlpgVunbdkiJSaGr66L\nF6WDB6XOzuXfy+2WTpyQKiqWfy8sW6Sdf3MnnH8DAAAAO0TSs1xCGiBIIumNDQAAFvF6pa6uwK3T\nrl4Nd3WG0ylt2uTfOm3rVik7O7S7by5elPbvD24bucxM6dQpgpoIF2nn39wJ598AAAAgWCLpWS4h\nDRAkkfTGBgAASzA6KjU3+wc4jY3S+Hi4qzMyM/3bppWWSps3S3Fxy7t3X5/0wAPB2UGzmNttAiBa\nn604nH8DAACAaBZJz3IJaYAgiaQ3NgAACAKPR7p2LXDrtFAEGvcjNlYqKgp89k1m5r3d48iR5Z1B\ncy/3f/XV0N0ftuP8m5XJ4/Wob6zP9nVdyS6CMgAAEHEi6VkuIQ0QJJH0xgYAACE2NGTdcTMX4DQ3\nS1NT4a7OyMkJfPZNYaEUE2O+5vhx6amnQl/Lm29Khw+Hfh2EHeffRK6e0R7l/CjH9nW7n+tWdkq2\n7esCAADcSSQ9y40Ny6oAAADASrZmjfTQQ2YsNDsrdXQEPvump8feGru7zTh92jqfkCAVF5vQ5swZ\ne2p5+WVCmlUiITZB27K3aVv2Nr9rkXb+ze3J2/q482N93Pmx3zXOvwEAAIBdCGkAAACAYImJMe3H\nior8Q4n+/sCt01paTLhjl8lJqbbWDLu8+65Zb8FPqmH1WZOwRpXuSlW6Ky3zkXj+TddIl7pGunTq\nyinLPOffAAAAINgIaQAAAAA7rF0rfepTZiw0NSW1tfnvvGlokAYHw1NrKBw7Jr34YrirQARyOBzK\nTc1VbmquHit4zHIt0s6/8Xg9ahtoU9tAm07ohOUa598AAADgfhDSAAAAAOEUHz9/bsxCXq9pkRao\ndVp7u7m+ktjVWg1RJcYZo8KMQhVmFOrJoict1yLt/JvJ2UnVdteqttt/l9pqO/8GAAAA946QBgAA\nAIhEDoeUk2PG3r3WaxMTpk3a4tZpDQ3SyEh46r2bDz4wbc9KS6XsbPPrA5aB828AAAAQDQhpAAAA\ngJUmMdGc77L4jBevV+rsDNw67dq18NQ6Z2xM2rfPfJ6RIZWUSFu3Wj8WF0vJyeGtE1GB828AAACw\nUhDSAAAAANHC4ZDWrTPjM5+xXhsdlZqaTGBz7pz0138dnholc9bOmTOBW6AVFPgHOFu3Shs2SDEx\n9teKqML5NwAAAIg0hDQAAADAapCSIu3cacbhw+ENae7k6lUz3nrLOp+QYHbaBApw1q4NT62IKtF+\n/k1mYqbtdQIAAODuCGkAAACA1SYtTcrMlAYGwl3JvZuclGprzVjM5fJvnbZ1q7Rliwl3gGWKlvNv\nAAAAEHkIaQAAAIDVxuGQdu2S3n473JUER1+f9MEHZizkdEobN/rvvCkpMS3hnJzpgeW72/k3c4HN\nwnNwwnX+DQAAACIPIQ0AAACwGu3ebW9Ik5BgdsPYyeOR2tvNOGE900PJyaZ9WqAAJz3d3joRlRae\nf7Nn4x7LtUg7/wYAAADhQ0gDAAAArEZPPy299JJ96338sZSbKzU2mtHUNP+xtVWanravFkkaG5Mu\nXDBjsdzcwGffbN4sxcXZWyei0p3Ov5mYmfCdf+NroxbG828AAAAQWoQ0EsBD7QAAIABJREFUAAAA\nwGpUUSHt2SOdPh36tfbuNetJUk6OWXehmRmpoyNwgNPZGfr6Frt1y4zFvzcxMSaoWbzzZutWKS/P\ntJEDlikxNlHbs7dre/Z2v2uRdv7Nvfi/Z/+vHnI/pG3Z27QubZ0cvE8AAAAsHF6vl33UQBDU1dWp\nvLzc97q2tlZlZWVhrAgAAOAujh+XnnrKnnUOHbq/7x0elpqbAwc4IyPBrXM50tL8d9+UlJiRmhru\n6hDlVsr5N2nxaSrNKtW27G0qdZmP27K2qWhtkWKd/AwpAACwTyQ9yyWkAYIkkt7YAAAA9+zIEenY\nsdDe/9VXg39fr1fq6vIPbhobzRk0s7PBX/N+ud3+O29KSqTCQimWB9MIrbnzb87cOKOvvv7VcJcT\nUJwzTsWuYm3LMqHNXHizNWurkuOSw10eAACIQpH0LJd/EQAAAACr2d/9nXTqVGjairnd0iuvBP++\nkmkt5nabceCA9drUlNTWFjjA6e4OTT130tlpxsmT1vm4OKmoKHCAk51N+zQExdz5NylxKeEu5RNN\ne6Z1ueeyLvdc9ru2MX2jL7RZGOC4kl1hqBQAACD4CGkAAACA1czlkk6ckPbtkwYGgnffzExzX1cY\nHqTGx0ulpWYsNjjoH9w0NZkxPm5vndPTUkODGYtlZAQ++2bLFimZnQVYPa7cvqIrt6/oRMsJy3x2\ncrZpnbYguNmWvU0b1mzg3BsAALCiENIAAAAAq11FhdlN87nPBWdHjdttApqKiuXfK9gyMqTdu81Y\nyOORbtwIfPZNR4dpr2anwUHpzBkzFiso8N95s3WrtGGDFBNjb51AmPSM9ajnao9OXz1tmU+JS1Fp\nVqlfgLNl7RbFxcSFqVoAAIBPRkgDAAAAwAQqFy9Kzz4rvfba/d/nyBHT4iwcO2iWw+k0IceGDdLj\nj1uvTUxIra2BA5y+PvtrvXrVjN/+1jqfkCAVFwcOcNautb9OQGbHS89Yj23rjU6PqqarRjVdNZb5\nWGestqzdYmmbNhfmpMan2lYfAADAYoQ0AAAAAAyXS3r1VRO0vPyy9O679/69e/dKzz8vHToUuvrC\nJTFRKiszY7G+vvnQZmGA09IiTU7aW+fkpFRba8ZiLlfgs2+2bDHhDhAidX9Sp1hnrOp761XfU6+G\n3gbzeW+92gfa5ZU9u9RmPDNq6G1QQ2+D/l3/brm2Yc2GgOfeZKdk21IbAABY3Rxer9379oHoVFdX\np/Lyct/r2tpalQX6hzwAAMBKUVsrHTtmWm7V1FjPrMnMlCorTduwp5+WFvw9CJJmZ81ul8U7bxob\npWvXwl3dPKdTKiz033lTUiKtXy9xtkfU6BntUc6Pcmxft/u57k8MO8anx9XU1+QLcOp7TYjT2Neo\nqdkpmyv150pyBTz3piC9QE6HM9zlAQCAZYikZ7mENECQRNIbGwAAIOi8XmlkxOzWSEiQUlN5gH+/\nRkfNTptAAc7t2+Gubl5ysglrAgU46enhrg5LFIkhzSeZ9cyqfbDdF9wsDHGGJodCVOm9S45L1lbX\nVtMyzVXqC3CKXcWKj4kPd3kAAOAeRNKzXNqdAUt09OhRHT161G9+dHTU/mIAAADs4nBIaWlmYHlS\nUqQdO8xYyOuVurv9g5umJnMmzvS0vXWOjUnnz5uxWG5u4LNvNm+W4jicHcsT44zRlrVbtGXtFn1+\n6+d9816vVzdHblpCm7nPu0a6bKtvbHpM526e07mb56x1O2JUtLbIr21aaVap0hL4sxMAAARGSAMs\nUUdHh06dOhXuMgAAABBtHA4TfuTmSnv2WK/NzEjt7YEDnM5O+2u9dcuMxecWxcSYoGZhcDP3eV4e\nu6+wLA6HQ/lp+cpPy9enN33acm1wYtCcd7Po3Ju2gTZ5vB5b6pv1zqqpr0lNfU36eePPLdfWpa0L\neO5NTkqOHLwvAABY1QhpgCUqLCzUvn37/OZHR0dVXV0dhooAAAAQ9WJjpeJiMw4ftl4bHjZhTaAA\nZ2TE3jpnZ6XmZjMWS0vz33mzdav5NaWm2lsnok5GYoYeXv+wHl7/sGV+YmZCzX3NAc+9mZiZsK2+\nG8M3dGP4ht5qe8syn5mYGfDcm43pGxXjjLGtPgAAED6cSQMESST1MQQAAADk9UpdXYHPvmlvN4FK\npFi3LnCAs3GjCaiwbCvpTBo7zHpmdeX2lfm2aQvapw1ODIa7PCXGJgY896bEVaKE2IRwlwcAwIoX\nSc9y+dsuAAAAAEQjh0Nyu804cMB6bWpKamsLHOB0d9tf640bZpw8aZ2Pi5O2bPFvnbZ1q5SVRfs0\n3LcYZ4w2Z27W5szNOlwyvzvN6/Wqe7Q74Lk3N4Zv2FbfxMyELty6oAu3LljmnQ6nNmdutrRNm9uJ\nk56Yblt9AAAgeAhpAAAAAGC1iY+XSkvNWGxwMHDrtKYmaXzc3jqnp6X6ejMWy8gIfPZNcbGUlGRv\nnYgaDodDuam5yk3N1f7C/ZZrQ5NDauht8J19MxfgtPa3atZrz840j9ejlv4WtfS36JdNv7Rcy0/N\nD3juTV5qHufeAAAQwWh3BgRJJG2RAwAAAILO45GuXw8c4HR0mPZqkaKgIHCAU1AgOZ3hri4sPF6P\n+sb6bF/XleyS0xHdv+eTM5Nq6W/xO/emobdB4zM2B5sBpCekm902iwKcTRmbOPcGALBqRdKzXEIa\nIEgi6Y0NAAAA2GpiQmpp8Q9wGhul/v5wVzcvMdG0T1vcOq2kRFq7NtzVRR6vVxoeNu3x4uOltDRa\nzC2Bx+vR1dtXA5570z8e/vdFQkyCSlwlAc+9SYpjNxoAILpF0rNc2p0BAAAAAJYnMVEqLzdjsb6+\nwGffNDebh/92mpiQamvNWCwrK/DZN0VFUsIqOqj90iXp2DHpzBnp7FlpYGD+WmamtGuXtHu3dORI\n4P+94eN0OFWYUajCjEIdLD5oudYz2hPw3JtrQ9dsq29ydlKXui/pUvcly7xDDm3K3OTXNq00q1SZ\nSZm21QcAwGrBThogSCIpfQUAAAAi3uysdPVq4ADnmn0Pqu/K6ZQKCwMHOOvWRc/OkuPHpR/+UDp9\n+t6/Z88e6YUXpEOHQlfXKjMyNRLw3JuW/hbNeGbCXZ5yU3IDnnvjTnNz7g0AYEWJpGe5hDRAkETS\nGxsAAABY0UZHTfu0QAHO7dvhrm5ecrK1ZdrCj2vWhLu6e9PXJ33722b3zP06ckR65RXJ5QpeXbCY\nnp22nHvT0GdCnIbeBo1Oj4a7PKXFpwU892Zz5mbFOmniAgCIPJH0LJeQBgiSSHpjAwAAAFHJ65W6\nu/2Dm6YmqbVVmp4Od4XzcnMDn32zebMUFxfu6oyLF6WDB6XOzuXfy+2WTpyQKiqWfy/cM4/Xo+tD\n1wOee9M71hvu8hQfE6/itcWWlmnbsrZpa9ZWJcclh7s8AMAqFknPcglpgCCJpDc2AAAAsOrMzEjt\n7f4BTmOj1NUV7urmxcaaoCbQDpy8PPvap128KO3fbz1zZrkyM6VTpwhqIkTvWK9f27T6nnpduX0l\n3KXJIYc2Zmy07LqZC3BcyezIAgCEXiQ9yyWkAYIkkt7YAAAAABYYHjahTaAdOCMj4a5u3po1JqxZ\nHOAUF0upqcFbp69PeuCB4OygWcztNgEQrc8i1ujUqJr6mvx23jT3NWvaE/7daNnJ2QHPvVm/Zj3n\n3gAAgiaSnuXSGBQAAAAAEN3S0qTKSjMW8nrNLptAZ9+0t0uzs/bWOTQkVVebsdi6dYHPvikslGJi\nlrbOt78dmoBGMvd99lnp1VdDc38sW0p8inbm79TO/J2W+enZabUNtPmde1PfW6+RKfvCzJ6xHvVc\n6dG7V9611h2XEvDcm6LMIsXFREgLQQAA7gM7aYAgiaT0FQAAAMAyTU1JbW2BA5zu7nBXNy8+Xioq\nChzgZGX5t087flx66qnQ1/Xmm9Lhw6FfByHn9Xp1Y/iG37k3Db0NujV6K9zlKdYZ6zv3ptRVajn/\nJiU+JdzlAQAiVCQ9y2UnDQAAAAAAi8XHS6WlZiw2OBi4dVpTkzQ+bm+dU1NSfb0Zi2Vm+gc3L71k\nT10vv0xIEyUcDofWr1mv9WvW64miJyzX+sf7A5570zHYIa/s+ZngGc+Mb+3FCtIL/NqmlWaVKjsl\n25baAAC4F+ykAYIkktJXAAAAAGHg8UjXrwcOcDo6THu11eTSJWnBv5GweoxPjwc896apr0lTs1Ph\nLk+uJFfAc282pG+Q0+EMd3lB4fF61DfWZ/u6rmRX1PweAohukfQsl500AAAAAAAEg9MpFRSY8fjj\n1msTE1JLi3+A09go9feHp95QO3ZMevHFcFeBMEiKS9KOvB3akbfDMj/jmVH7QLuvXdrCEGdocsi2\n+vrG+/Te1ff03tX3LPPJccna6trqF+BsWbtF8THxttUXDH1jfcr5UY7t63Y/181OJQBYIkIaAAAA\nAABCLTHR7CoJtLOkry/w2TfNzaad2Up15ky4K0CEiXXGqthVrGJXsb6w9Qu+ea/Xq66RroDn3nSN\ndNlW39j0mM7dPKdzN89Z5mMcMdqydoulZdrcx7SENNvqAwBEJ0IaAAAAAADCyeWSHnnEjIVmZ6Wr\nV/133jQ1SdeuhafWpaipMS3eHI5wV4II53A45E5zy53m1mc2f8ZybXBiMOC5N+2D7fJ4PbbUN+ud\nVWNfoxr7GvWG3rBcW79mfcBzb3JScuTg//sAgHtASAMAAAAAQCSKiZE2bTLjc5+zXhsdNe3TFgc4\njY3SkH1to+5oYEAaGZHS2GmA+5eRmKGH1z+sh9c/bJmfmJlQc1+z37k3jb2NmpydtK2+60PXdX3o\nun7b9lvLfGZiZsBzbzZmbOTMFgCABSENAAAAAAArTUqKtGOHGQt5vVJ3t3/rtLo6qbXV/jr/9m+l\nw4elBx+UYnkEgeBJjE1URW6FKnIrLPOznll1DHbMn3uzIMAZnBi0rb6BiQF9cO0DfXDtA7+6A517\nU7y2WAmxCbbVBwCIHPwNCQAAAACAaOFwSLm5ZuzZMz8/NCSlp9tfz/e/b8aaNaae/fvNILRBiMQ4\nY1S0tkhFa4v0VMlTvnmv16tbo7cs59409JkQ58bwDdvqm5iZ0IVbF3Th1gVr3Y4Ybc7crG3Z21Tq\nKp0PcbK3aU3CGtvqAwDYj78RAQAAAAAQ7dLSpMxM04IsHIaGpOPHzZCsoc2BAya0iYkJT21YFRwO\nh/JS85SXmqcDmw5Yrg1NDgU896Z1oNXWc2+a+5vV3N+sX+gXlmvuNHfAc2/yUvM49wYAogAhDQAA\nAAAA0c7hkHbtkt5+O9yVGIFCm717rTttCG1gkzUJa7R73W7tXrfbMj85M6mW/paA596Mz4zbVl/n\ncKc6hzv1drv1/ZuRmKHSrFK/AKcwo9C22gAAy0dIAwAAAADAarB7d+SENIsNDUlvvmmGRGiDiJAQ\nm6CynDKV5ZRZ5j1ej64MXgl47k3/eL9t9Q1ODOrD6x/qw+sfWuuOSdDmzM221QEAWB5CGgAAAAAA\nVoOnn5ZeeincVdybxaFNero1tNmxg9AGYeN0OLUpc5M2ZW7SoeJDvnmv16uesZ6A595cG7pmW32T\ns5Oq7623bT0AwPIQ0gAAAAAAsBpUVJhzYE6fDv1aGzdKRUXSBx9IExPLv9/t29Ivf2mGRGiDiORw\nOJSTkqOclBztK9xnuTYyNRLw3JuW/hbNemfDVDEAIBIQ0gAAAAAAsFo8/7w9Ic0//IN06JA0OSmd\nOSO9844ZdoQ2Bw5IDzxAaIOIkhqfqip3larcVZb5qdkptfa3+p1709DboLHpsTBVCwCwEyENAAAA\nAACrxeHDpu3ZsWOhW+PIERPQSFJCgtm9s2eP9Bd/YV9ok5Fh3WlDaIMIFR8Tr23Z27Qte5u0bX7e\n4/Xo2u1rZvfNogCnd6w3fAUDAILO4fV6veEuAogGdXV1Ki8v972ura1VWVnZHb4DAAAAAMKgr8+E\nFp2dwb+32y1dvCi5XPf29RMT/qHN5GTw6yK0QRTpHesNeO7NldtXwl2a/ten/5f2F+7XjrwdSo5L\nDnc5APCJIulZLiENECSR9MYGAAAAgDu6dEnat08aGAjePTMzpVOnzNk398uu0CYz0z+0cTqDvw5g\no9GpUTX2Naq+p17VndX63x/977DVEuOI0fbs7b4Wb5X5ldqRt0OJsYlhqwkAFoqkZ7mENECQRNIb\nGwAAAADu6tIl6XOfC86OGrdbOnFieQFNIHOhzcmTJrT53e8IbYB70DPao5wf5YS7DItYZ6zKsst8\noU2Vu0oVuRUENwDCIpKe5RLSYEUYGhrSuXPnVF1drerqatXU1KilpUVz//dtb29XYWFhWGuMpDc2\nAAAAANyTvj7p2Wel1167/3scOSK98sq9tzhbjokJ6aOP5nfaENoAAUViSBNIrDNWFTkVvtCmyl2l\n8pxyJcQmhLs0AFEukp7lEtJgRdi5c6fOnz//idcJaQAAAABgGY4fl15+WXr33Xv/nr17peeflw4d\nCl1dd2NnaLNv33xoU1FBaIOItlJCmkDinHF6IPcBX3BT6a5UeU654mPiw10agCgSSc9yY8OyKrBE\nC7PE9PR07dy5Uw0NDbp582YYqwIAAACAKHH4sBm1tdKxY6bFWE2N9cyazEypslLavVt6+mlpwYON\nsElMNOHJvn3S975nQpsPP7SGNlNTy19nYEB64w0zJEIbIISmPdOq6apRTVeN/s/Z/yNJio+J1wO5\nD6gq34Q2Ve4qlWWXKS4mLszVAsDyEdJgRfjGN76h7OxsVVVVacuWLXI4HNq/fz8hDQAAAAAEU3m5\n9OKL5nOvVxoZMTtTEhKk1FTJ4QhvfXeTmDgfnEjS+Lj/TptQhDZr1863RztwwPw+EtpgFUqJS9Ho\n9GjQ7zs1O6XqzmpVd1ZLNWYuISZBO/J2WIKb7dnbFevkcSeAlYU/tbAiPPvss+EuAQAAAABWF4dD\nSkszY6VKSgoc2pw8aUKbDz8MTmjT3+8f2izcaUNog1Wi9dlWDUwMqLqzWjWdNaruqta5rnMhCW4m\nZyd15sYZnblxxjeXGJuoB/MenG+Vll+pbdnbCG4ARDT+hFqlWltbdebMGV2/fl1TU1PKzMxUaWmp\nHnnkESUmJoa7PAAAAAAAgi9QaLOwPVowQ5t//3czJEIbrBpOh1OlWaUqzSrVHz3wR5KkWc+sGvsa\nTWjTWa2arhqdu3lOY9NjQV9/YmZCH17/UB9e/9A3lxSbpAfzHlSVu8oX3JRmlSrGGRP09QHgfhDS\nRIAbN27ozJkz+uijj3TmzBlVV1dreHjYd33jxo3q6OgIylpvvPGG/vIv/1Jnz54NeD01NVXPPPOM\nvve97ykrKysoawIAAAAAEJGSkkx7sgMHzGu7QhuXyxralJUR2iBqxThjtD17u7Znb9d/3/HfJZng\npqG3wdfCbC64mZiZCPr64zPj+t313+l313/nm0uOS9bOvJ2+0KbKXaUSVwnBDYCwIKQJk/fff19/\n8zd/o48++kidnZ0hX29yclLf/OY39eqrr97x60ZGRvT3f//3+vGPf6zXX39de/fuDXltAAAAAABE\nhMWhzdiYf2gzPb38dfr6pJ/9zAyJ0AarTowzRmU5ZSrLKdPXHvyaJGnGM6P6nnpfaFPdWa0Lty6E\nJLgZmx7T+9fe1/vX3vfNpcSlaFf+Ll9oU+WuUrGrWE4H70UAoUVIEyYff/yx/n3uJ2hCzOPx6Ktf\n/ap+/vOfW+ZjYmJUUFCg9PR0tbe36/bt275rPT09OnjwoN566y196lOfsqVOAAAAAAAiSnKy9OlP\nmyER2gAhFOuMVUVuhSpyK/T1nV+XJE3PTutyz2W/4GZqNgg73BYZnR7V6aundfrqad9cWnyaJbip\ndFdqy9otBDcAgoqQJgKlpqZqZGQkaPf767/+a7+A5o//+I/1F3/xF3K73ZJMkPPzn/9cf/Znf6ar\nV69KksbGxvSHf/iHqq2tVXp6etDqAQAAAABgRfqk0ObkSRPafPRRaEKbrCxraLN9O6ENVoW4mDjt\nyNuhHXk79E19U5I0NTuluu46X2hT01WjCzcvaNoThPfeIsNTwzp15ZROXTnlm1uTsEa78nepKr/K\nF9wUZRbJ4XAEfX0AqwMhTZilpaWpsrJSDz30kHbv3q2HHnpI7e3tOjC3tXqZ+vr69OKLL1rmXnrp\nJb3wwguWOafTqd/7vd/T7t279dhjj/nOwLl+/br+9m//Vj/4wQ/uuM5//ud/amxs+Qe+7dy5U+vW\nrVv2fQAAAAAACLlAoc3vfje/0yZYoU1vr/TTn5ohEdpgVYuPidfO/J3amb9T/3PX/5Rkgpva7lrL\nGTeXbl0KSXAzNDmkdzre0Tsd7/jmMhIzfMFNpdvsutmUsYngBsA9cXi9Xm+4i1iNWltbNTk5qdLS\nUjkX/UXqnXfesYQ0Gzdu9IUmS/X888/r5Zdf9r3eu3ev3nnnnTv+R+Ltt9/W448/7nudlpam9vZ2\nuVyuT/yewsJCXbly5b5qXOif//mf9Ud/9Ef39LX79+/XqVPmJxna29tVWFi47PWXo66uTuXl5b7X\ntbW1KisrC2NFAAAAAICwClVos1hW1nxgMxfa8HB4VesZ7VHOj3JsX7f7uW5lp2Tbvm4gkzOTutR9\nyYQ2nTWq7qpWbXetZjwztqyfmZipSnflfKu0/EoVZhQS3AARIpKe5bKTJkyKiopCvobH49E//dM/\nWea+//3v3/U/Bp/5zGe0Z88enT5tenAODw/r3/7t3/Stb30rZLUCAAAAABB1kpOlz3zGDEkaHbWG\nNmfOBG+nzeuvmyFJ2dn+O214MIxVJiE2QVVu05JszsTMhC7eumhCm85qVXdVq667TrPe2aCvPzAx\noLfa3tJbbW/55tYmrfUFNnMfC9ILCG6AVY6QJop98MEH6unp8b3evHmz9u/ff0/f+81vftMX0kjS\nG2+8cceQ5sMPP9TMzPJ/EmHt2rXLvgcAAAAAABEpJUV6/HEzJP/Q5qOPpCD821o9PYQ2q5wr2aXu\n57rDsm4kS4xN1O51u7V73W7f3Pj0uC7cuuDbbVPTWaO6njp5vJ6gr98/3q/ftP5Gv2n9jW8uKznL\nF9rMBTfr16wnuAFWEUKaKHb8+HHL6yeeeOKe/4B/4oknLK/feecdjY6OKiUlJeDX5+Xl3V+RAAAA\nAACsVp8U2pw8Ob/TJlShzcL2aNu2EdpEGafDGTFtxyJdUlySHl7/sB5e/7Bvbmx6TBduXvCdb1Pd\nWa363vqQBDe9Y736deuv9evWX/vmclJyLLttqtxVcqe5CW6AKEVIE8XOnz9vef3II4/c8/e63W4V\nFhb6zsKZmprS5cuX9dBDDwWzRAAAAAAAMCdQaPPBB9b2aMEKbX7yEzMkQhtgkeS4ZH1qw6f0qQ2f\n8s2NTo3q/M3zluCmobdBXgX/uO/u0W79quVX+lXLr3xzuSm51lZp7kq509xBXxuA/Qhpolh9fb3l\n9fbt25f0/du3b/eFNHP3I6QBAAAAAMAmKSnSE0+YIdkX2uTkzLdHO3BAKi0ltMGqlxKfokcLHtWj\nBY/65oYnh3X+5nlfaFPTVaPG3saQBDe3Rm/pePNxHW+e75yTn5rvF9zkpdLtBlhpCGmi1Pj4uK5e\nvWqZ27Bhw5LusfjrGxsbl10XAAAAAAC4T4tDm5ERa2jz8cfBCW26u/1Dm4U7bQhtAElSWkKa9mzc\noz0b9/jmhiaHdK7rnCW4aeprCsn6XSNd+mXTL/XLpl/65talrVOlu1JV+Sa0qXJXKSclJyTrAwgO\nQpoo1dvbK693PrWPi4tTTs7S/kBet26d5XV3t/0Hzs1paWnRe++9Z5m7efOm7/PXX39dWVlZvtep\nqan6yle+Ylt9AAAAAADYLjVVevJJM6TQhjb/9m9mSIQ2wB2sSVijfYX7tK9wn2/u9sRtnbt5ztIq\nraW/JSTr3xi+oRuNN/SLxl/45tavWa8qd5UvuKnMr+TMIiCCENJEqZGREcvr5OTkJR8ulpKScsd7\n2um9997T17/+9U+8/p3vfMfyeuPGjcsKabq7u9XT07Ok72lpCc1/XAEAAAAAuCefFNqcPDkf2szO\nLn+dxaFNbq41tNm6ldAGWCA9MV37C/drf+F+39zgxKDOdp21BDdtA20hWf/60HVdH7quNxre8M0V\npBdYW6XlV8qV7ArJ+gDujJAmSi0OVBITE5d8j6SkpDveM5r9wz/8g37wgx+EuwwAAAAAAO5foNDm\n/fetO22CEdrcuiX9+MdmSIQ2wD3ISMzQpzd9Wp/e9GnfXP94v852nVVNZ42qu6pV01mj9sH2kKx/\n9fZVXb19VT+r/5lvrjCj0BfaVLmrtCt/l9YmrQ3J+gDmEdJEqYmJCcvr+Pj4Jd8jISHB8np8fHxZ\nNS3HM888o2eeeSZs6wMAAAAAsOKlpkqf/awZkjQ87N8ejdAGCJu1SWv1+ObH9fjmx31zfWN9qumq\nsQQ3V25fCcn6HYMd6hjs0E/rf+qb25y52bLbZlf+LmUmZYZkfWC1IqSJUot3zkxNTS35HpOTk3e8\nJwAAAAAAWMHS0vxDm4U7baqrQxPa5OVZQ5uSEkIb4BO4kl16suhJPVn0pG+ud6zXhDYLWqVdG7oW\nkvXbBtrUNtCmn1z+iW+uKLPI0iptV/4upSemh2R9YDUgpIlSqamplteLd9bci8U7ZxbfM5r9yZ/8\nif7gD/5gSd/T0tKiL33pSyGqCAAAAACAEEtLkz73OTOk0IU2N29K//qvZkiENsASZSVn6bNbPqvP\nbvmsb657tNsvuLkxfCMk67cOtKp1oFU/rvuxb654bbEluNmZv1NrEtaEZH0g2hDSRKnFgcrY2Ji8\nXq8cS/hLzujo6B3vGc1ycnKUk5MT7jIAAAAAAAifTwptTp40oU1NTehDmwMHpOJiQhvgLnJScnSw\n+KAOFh/0zd0cuamazhpfaFPTVaPO4c6QrN/c36zm/mYdqz3mm9sydzR2AAAgAElEQVTq2qpKd6Wq\n8qtU6a7UzrydSktIC8n6wEpGSBOlsrKy5HA45PV6JUnT09Pq7u5Wbm7uPd/jxg1r2k5oAQAAAADA\nKrY4tBkasu60CVVok59v3WlDaAPck7zUPB0uOazDJYd9c13DXb7QZm7cGr0VkvUb+xrV2Neo1y69\nJklyyKHSrFK/4CYlPiUk6wMrBSFNlEpKSlJBQYGuXJk/SOzq1atLCmmuXr1qeV1aWhq0+gAAAAAA\nwAq3Zo108KAZkn9oU10teTzLX6erSzp2zAyJ0AZYhvy0fD2V9pSeKnlKkuT1etU53GnZbVPdWa3u\n0e6gr+2VV/W99arvrde/XPwXSZLT4VRpVqmlVdqDeQ8qOS456OsDkYqQJoqVlpZaQprLly/roYce\nuufvr6+v97sfAAAAAABAQIFCm/fes+60CUVo43ZbQ5stWwhtgHvkcDi0bs06rVuzTl/Y+gVJJri5\nPnTdL7jpHesN+voer0eXey7rcs9l/b8L/0+SCW62Z2+3BDc7cncoKS4p6OsDkYCQJoo9+OCD+vWv\nf+17/cEHH+hrX/vaPX1vV1eXOjo6fK/j4uK0ffv2YJe4Ih09elRHjx71m198hg8AAAAAAKvamjXS\noUNmSKELbTo7pddeM0MitAGWyeFwaEP6Bm1I36AvlX5Jkglurg1dM6FNZ42qu8zHvvG+oK/v8XpU\n212r2u5aHT1/VJIU44hRWU6ZL7SpzK/UjrwdSoxNDPr6gN0IaaLYU089pR/+8Ie+12+99Za8Xq8c\n9/AXk9/85jeW1wcOHFBqamrQa1yJOjo6dOrUqXCXAQAAAADAyrI4tLl927RHO3nShDZnz4Y+tDlw\nQCoqIrQBlsjhcKggvUAF6QX68rYvSzLBzZXbV0xo01ntC24GJgaCvv6sd1YXb13UxVsX9U/n/0mS\nFOuMVVl2marcVb7g5oHcB5QQmxD09YFQIqSJYo888oiysrLU22u2Ira1temdd97RgQMH7vq9//iP\n/2h5/cUvfjEkNa5EhYWF2rdvn9/86Oioqqurw1ARAAAAAAArUHq6f2izcKdNqEKbdeusO20IbYD7\n4nA4VJhRqMKMQv3+9t+XZIKb9sF2X3Az1yrt9uTtoK8/45nRhVsXdOHWBf3jOfMsM84Zp/Kcckur\ntIrcCsXHxAd9fSBYHF6v1xvuImC1OEjZuHGjpfXYUnznO9/Rj370I9/rffv26eTJk3fcTfP222/r\n8ccf971OS0tTW1ubsrKy7quG1aKurk7l5eW+17W1tSorKwtjRQAAAAAArGChCm0WI7QBQsrr9apt\noM0S2tR01WhocsiW9eOccXog9wFLcFOWU0Zws8pF0rNcQpoIFMyQpre3V5s2bdLIyIhv7qWXXtIL\nL7wQ8Otv3Lihxx57zLLed7/7Xf3lX/7lfa2/mkTSGxsAAAAAgKgzOGgNbc6dC01os369NbTZvJnQ\nBggyj9ej1v5WS3BztuushqeGbVk/PiZeO3J3zJ9x465UWXaZ4mLibFkf4RdJz3IJacLo/fff1/j4\nuN/8hQsX9Nxzz/le5+bm6l/+5V8C3sPtdmv79u13XOell17Sn//5n1vmvvWtb+m73/2u3G63JMnj\n8egXv/iF/vRP/1RXr1613L+urk4ZGRn3/OtarSLpjQ0AAAAAQNQjtAGiisfrUXNfs2W3zdmusxqZ\nGrn7NwdBQkyCduTtUFW+CW2q3FXanr1dsU5ODIlGkfQsl5AmjAoLC3XlypVl3eNrX/uajh49esev\n8Xg8+uIXv6g333zTMh8TE6ONGzcqPT1d7e3tGhwctFxPSkrSb3/7Wz366KPLqnG1iKQ3NgAAAAAA\nq85caHPy5HxoE4rHXoQ2gG1mPbNq6mvyC27GpsdsWT8xNlEP5j1oCW5Ks0ojMrjxeD3qG+uzfV1X\nsktOh9P2dZcrkp7lEtKEkV0hjSRNTEzo61//uv71X//1nu7rcrn0+uuva//+/cuqbzWJpDc2AAAA\nAACr3uCgdPq0dadNKB6DbdhgDW02bSK0AUJo1jOrxr5GE9p01qi6q1rnus5pfMa/Y1EoJMUmaWf+\nTl+rtCp3lba6tirGGWPL+p+kZ7RHOT/KsX3d7ue6lZ2Sbfu6yxVJz3IjL/JDSCQmJurYsWP6yle+\nor/6q7/S+fPnA35dSkqKvva1r+l73/uecnLsf1MDAAAAAAAERUaG9PnPmyGFLrS5dk365382Q1q5\noY3XKw0PS1NTUny8lJa2MurGqhPjjNH27O3anr1d/2PH/5AkzXhm1NDbYAluzt88r4mZiaCvPz4z\nrg+ufaAPrn3gm0uJS7EEN5X5lSpxlYQ9uMHKwE6aVaqlpUUfffSRbty4oampKWVkZGjbtm169NFH\nlZiYGO7yVqRISl8BAAAAAMBdDAxYQ5vz50O/0+bAAamwMHLCj0uXpGPHpDNnpLNnze/JnMxMadcu\nafdu6cgRacEzD2AlmPHM6HLPZRPa/FertPM3z2tydtKW9VPjU7Uzb6cvtKlyV6nYVRyy1mDspFma\nSHqWS0gDLNHRo0cDtpgbHR1VdXW17zUhDQAAAAAAK4hdoU1BgXWnTThCm+PHpR/+0Px679WePdIL\nL0iHDoWuLiDEpmendbnnsqo7q33BzYVbFzQ1O2XL+mnxadqVv8sS3BStLQpKcENIszSENMAK9v3v\nf18/+MEP7vp1hDQAAAAAAKxgc6HNyZMmtLlwwZ7QZtOm4K8xp69P+va3ze6Z+3XkiPTKK5LLFby6\ngDCamp1SXXedL7Sp7qzWxVsXNe2ZtmX9NQlrVJlfOd8qzV2poswiOZYY3hLSLA0hDbCCsZMGAAAA\nAIBVqL/futMmVKHNxo3+O22C4eJF6eBBqbNz+fdyu6UTJ6SKiuXfC4hAkzOTqu2utQQ3l7ovacYz\nY8v6GYkZZsdNfpUvuNmUsemOwQ0hzdIQ0gBRKJLe2AAAAAAAIMRWUmhz8aL53oVnzixXZqZ06hRB\nDVaNiZkJXbp1yRfa1HTVqLa71rbgJjMxU5XuSlXlm9Cmyl2ljekbfcENIc3SRNKzXEIaIEgi6Y0N\nAAAAAABs1t8vvfuuNbQJhaWGNn190gMPBGcHzWJutwmAaH2GVWp8elwXb120BDd13XWa9c7asr4r\nyeULbras3aJv/OIbtqy7ECHN8hHSAEESSW9sAAAAAAAQZn19/jttQqGw0BrabNxovX7kyPLOoLmb\nI0ekV18N3f2BFWZ8elwXbl2wtEq73HNZHq8n3KWFBCHN8hHSAEESSW9sAAAAAAAQYeZCm5MnTWhz\n8WJo1lkY2ng80jds+Mn6N9+UDh8O/TrACjU6NaoLty6oprNG1V3Vqu6sVkNvQ1QEN4Q0yxcbllUB\nAAAAAACA1cTlkr70JTMkE9osbI8WrNCmo0M6etQMu7z8MiENcAcp8Sl6ZMMjemTDI765kakRnb95\n3hfc1HTWqKG3QV6xp2K1IaQBAAAAAAAA7OZySb/3e2ZIoQtt7PDuu1JtrbTgp9IB3FlqfKoeK3hM\njxU85psbnhzWuZvnLMFNY19jGKuEHQhpAAAAAAAAgHBbHNr09lpDm0uXwlnd3R07Jr34YrirAFa0\ntIQ07d24V3s37vXNDU0O6VzXOcsZN839zWGsEsFGSAMs0dGjR3U0wJbh0dFR+4sBAAAAAADRKStL\n+vKXzZAiP7Q5cybcFQBRaU3CGu0r3Kd9hft8c7cnbuts11lfaFPdWa3WgdYwVonlIKQBlqijo0On\nTp0KdxkAAAAAAGA1ifTQpqZG8nolhyO8dQCrQHpiug5sOqADmw745pr7mlXy9yVhrAr3i5AGWKLC\nwkLt27fPb350dFTV1dVhqAgAAAAAAKw6i0Obnp750Obtt6X6envrGRiQ3npL2r1bSk+3d20AykjM\nCHcJuE+ENMASPfPMM3rmmWf85uvq6lTOAXkAAAAAACAcsrOl3/99M3p7zWu7Pfmk+bhhg1ReLlVU\nmI/l5VJpqZSUZH9NABDhCGkAAAAAAACAaBIfH971r10z41e/mp9zOqUtW6zBTXm5mYvlESWA1Ys/\nAQEAAAAAAIBokpYmZWaaFmSRwuORmprM+OlP5+cTEqRt2+ZDm7kQZ8MGzrcBsCoQ0gAAAAAAAADR\nxOGQdu0yZ9NEuslJ6fx5MxZKS/NvmVZeHp42bgAQQoQ0AAAAAAAAQLTZvXtlhDSfZHhY+t3vzFgo\nN9ca2pSXS2VlJtQBgBWIkAYAAAAAAACINk8/Lb30kn3rJSdLY2OhX+fWLTMWB1CFhf4t07ZuNe3U\nACCCEdIAAAAAAAAA0aaiQtqzRzp9OvRr7d0rvfOOdO2aVFtrxqVL5mN9vWlpFmodHWa8+eb8XEyM\nVFLi3zZt82ZzDQAiACENAAAAAAAAEI2ef96ekOb55805OAUFZhw6NH9tZkZqbZ0PbeZGc7Pk8YS2\nrtlZExLV10s/+cn8fFKStH27tWVaRYXkdptfBwDYiJAGAAAAAAAAiEaHD5u2Z8eOhW6NI0esocxi\nsbGm7djWrdJXvjI/Pz4uNTT477y5di10tS5cu6bGjIUyMvxbppWXS2vXhr4mAKsWIQ2wREePHtXR\no0f95kdHR+0vBgAAAAAA4E7+7u+kU6ekzs7g39vtll555f6+NylJ2rnTjIVu35bq6qzBzaVLUl/f\n8uu9m8FB6b33zFgoP98/uNm+XUpJCX1NAKIeIQ2wRB0dHTp16lS4ywAAAAAAALg7l0s6cULat08a\nGAjefTMzzX1druDdU5LS06VHHjFjjtcrdXdbg5u5YccPzXZ1mfHb387PORzmbJvFLdNKSqS4uNDX\nBCBqENIAS1RYWKh9+/b5zY+Ojqq6ujoMFQEAAAAAANxBRYXZTfO5zwVnR43bbQKaiorl3+teOBxS\nbq4Zn/nM/LzHI125Yg1tLl0ybdSmp0Nbk9drztppbZV+/vP5+bg409ptcdu0wkLJ6QxtTQBWJEIa\nYImeeeYZPfPMM37zdXV1Ki8vt78gAAAAAACAu6mokC5elJ59Vnrttfu/z5EjpsVZsHfQ3A+nU9q0\nyYzPf35+fnpaam7233nT2mrClVCanp5fb6HkZKmszNoyrbxcysszIRSAVYuQBgAAAAAAAFgNXC7p\n1VdN0PLyy9K779779+7dKz3/vHToUOjqC5a4OHNmzPbt0h/+4fz82JhUX+/fMu3GjdDXNDYmffyx\nGQu5XNbQZm5kZIS+JkQVV7JL3c91h2VdLA8hDQAAAAAAALCaHD5sRm2tdOyYdOaMVFNjPbMmM1Oq\nrJR275aeftoEBytdcrL5NVVWWuf7+6W6Ov+2acE8w+eT9PWZVnSLzz9ev96/Zdq2bVJSUuhrwork\ndDiVnZId7jJwHwhpAAAAAAAAgNWovFx68UXzudcrjYxIk5NSQoKUmrp62nCtXSvt2WPGHK9X6uqy\nhja1tSbMGR8PfU3Xr5tx4sT8nNMpFRX5t0wrLpZiecwLrFS8ewEAAAAAAIDVzuGQ0tLMgPn9cLvN\nePLJ+fnZWamjw79lWmOjNDMT2po8HnPWTnOz9LOfzc/Hx5tdNguDm4oKqaBg9QRtwApGSAMAAAAA\nAAAA9yImxuxmKSqSvvSl+fmpKRPULG6Z1t4e+pqmpqQLF8xYKC1NKiuztkwrL5dyckJfE4B7RkgD\nAAAAAAAAAMsRH2+CkIoK6/zIiHT5sn/btJs3Q1/T8LD04YdmLJSd7d8yraxMWrMm9DUB8ENIAwAA\nAAAAAAChkJoq7d5txkK9veZ8m8Vt027fDn1NPT3Sf/6nGQtt3OjfMq201JxRBCBkCGkAAAAAAAAA\nwE5ZWdK+fWbM8Xql69f9W6ZdvixNToa+pitXzDh+fH4uJkYqLvZvmVZUZK4BWDZCGgAAAAAAAAAI\nN4dD2rDBjIMH5+dnZ6XWVv+Wac3N5loozc5KDQ1mvP76/HxiorR9u3XnTXm5tH69+XUAuGeENAAA\nAAAAAAAQqWJipJISM7785fn5iQmpsdG/ZdqVK6GvaWJCOnvWjIXS0/1bppWXSy5X6GsCVihCGmCJ\njh49qqNHj/rNj46O2l8MAAAAAAAAVqfERGnHDjMWGhoy590sbpvW0xP6mm7flt5/34yF8vL8g5vt\n282ZPcAqR0gDLFFHR4dOnToV7jIAAAAAAAAAf2vWSJ/6lBkLdXf7t0yrrZVGRkJf082bZrz1lnV+\n0ybrWTfl5dLWrVJ8fOhrAiIEIQ2wRIWFhdq38FC3/zI6Oqrq6uowVAQAAAAAAADcRU6O9OlPmzHH\n65WuXvUPburrpamp0NfU3m7GL34xPxcba4KaxW3TNm2SnM7Q1wTYzOH1er3hLgKIBnV1dSovL/e9\nrq2tVVlZWRgrAgAAAAAAAO7DzIzU3GxtmVZbK7W0SB5PeGpKTjYt0ha2TCsvl/LzJYcjPDVhxYqk\nZ7nspAEAAAAAAAAAzIuNlbZtM+MP/mB+fnzc7LJZ3Dbt+vXQ1zQ2JlVXm7HQ2rXWXTdzIzMz9DUB\nQUBIAwAAAAAAAAC4u6QkadcuMxYaHJTq6qwt0y5dkvr7Q19Tf7/07rtmLLRunX/LtG3bzI4cIIIQ\n0gAAAAAAAAAA7l9GhvToo2bM8XqlW7eswc3cGBsLfU03bpjx61/PzzkcUlGRf8u04mIpLi70NUUa\nr1caHjbnD8XHS2lptI4LA0IaAAAAAAAAAEBwORxSXp4ZTzwxP+/xSB0d1tDm0iWpocGchRNKXq85\nV6elRXrjjfn5+HiptNS/ZdrGjZLTGdqa7HbpknTsmHTmjHT2rDQwMH8tM9Psktq9WzpyxPweIOQI\naQAAAAAAAAAA9nA6pc2bzfjCF+bnp6ak5mbrWTe1tVJbmwlXQmlqSrp40YyFUlOlsjJry7Tycikn\nZ+XtODl+XPrhD6XTpz/5awYGpLffNuOll6Q9e6QXXpAOHbKvzlWIkAYAAAAAAAAAEF7x8SYQKSuT\nvvrV+fnRUenyZf+dN11doa9pZET66CMzFsrK8m+ZVlYmpaeHvqal6uuTvv1ts3tmqU6fNuPIEemV\nVySXK/j1gZAGAAAAAAAAABChUlKkhx4yY6G+Pqmuzhrc1NZKg4Ohr6m3V3rnHTMW2rDBGtyUl0vb\ntkmJiaGvKZCLF6WDB6XOzuXd57XXzK/1xAnz60NQEdIAAAAAAAAAAFYWl0vau9eMOV6vCSQWt0y7\nfFkaHw99TdeumfEf/zE/53RKxcX+LdOKiqTYED6ev3hR2r/feubMcnR2Svv2SadOEdQEGSENAAAA\nAAAAAGDlczikdevM+P/t3Xl4VPW9x/HPELKQhSQkhEWBsBWIYhGKC4hCKaICAqViRAsq3iIRoVbZ\nfFzAi5VFrr1q1UqVCAitQgGBUASUxWJBKIgSCEvYiYQshBDIYnLuH7mMnCRAlpmcMzPv1/OcR3+/\nOcs3Ps83TuYz53f69v1pvrhYOnzYHNx8/72UklL6mjuVlJReJyVFWrLkp/nAwNK7bMreedOsWc2f\nd5OZWXoHjasCmkuys6V77ikNgFj6zGUIaQAAAAAAAAAA3svPT2rTpnQbPPin+YKC0vCk7JJpR464\nv6aCAmnXrtLtcvXrm0ObS3ffREdX/txPP13zJc6u5NQpaexY6eOP3XN+H0RIAwAAAAAAAADwPYGB\n0k03lW6Xy80tXSKt7LJpp0+7v6Zz56QtW0q3yzVqVH7JtLg4KSzMvN+qVdKiRe6tceFCadgwqV8/\n917HRxDSAAAAAAAAAABwSViYdOutpdvlzpwxL5d2aTt3zv01nT5duq1fb56PjTUHN7Nnu78WSZo5\nk5DGRQhpAAAAAAAAAAC4loYNpV69SrdLDEM6ftwc2nz3nbR3b+mSZu525EjptnKl+691uU2bSn/W\nG2+s3et6IUIaAAAAAAAAAACqw+GQmjcv3e6776f5H3+UDh0qv2TagQNSSYl19brSokXSq69aXYXH\nI6QBqigxMVGJiYnl5vPy8mq/GAAAAAAAAAD2U7eu1K5d6TZkyE/z+fnSvn3m4Ob776Vjx6yrtbq2\nbbO6Aq9ASANU0ZEjR7Rx48Zr7nfw4MFaqAYAAAAAAACAR/H3lzp3Lt0uyc2VDh4s3Q4cKP3n/v3S\n2bPW1Xkt27aVBkwOh9WVVFnZz24LamNpuisgpAGqKDY2VnfddVe5+YyMDO3Zs8c5HjRoUG2WBQAA\nAAAAAAC159w5qWNHq6twiePHj6vz5aFZLXIYhmFYcmXAyyxfvpxgBgAAAAAAAAA8zLJlyzRw4EBL\nrl3HkqsCAAAAAAAAAAD4OO6kAVzk7NmzpmfVNGvWTIGBgRZWVLsOHjxoupNo2bJlatOmjYUVAXA3\n+h7wLfQ84Hvoe8C30POA7/Hlvi8oKNDx48ed47vuuksRERGW1MIzaQAXiYiIsOyWODtq06aNbrjh\nBqvLAFCL6HvAt9DzgO+h7wHfQs8DvsfX+t6qZ9CUxXJnAAAAAAAAAAAAFiCkAQAAAAAAAAAAsAAh\nDQAAAAAAAAAAgAUIaQAAAAAAAAAAACxASAMAAAAAAAAAAGABQhoAAAAAAAAAAAALENIAAAAAAAAA\nAABYgJAGAAAAAAAAAADAAoQ0AAAAAAAAAAAAFiCkAQAAAAAAAAAAsAAhDQAAAAAAAAAAgAXqWl0A\nAO/QsGFDvfzyy6YxAO9G3wO+hZ4HfA99D/gWeh7wPfS9PTgMwzCsLgIAAAAAAAAAAMDXsNwZAAAA\nAAAAAACABQhpAAAAAAAAAAAALEBIAwAAAAAAAAAAYAFCGgAAAAAAAAAAAAsQ0gAAAAAAAAAAAFiA\nkAYAAAAAAAAAAMAChDQAAAAAAAAAAAAWIKQBAAAAAAAAAACwACENAAAAAAAAAACABQhpAAAAAAAA\nAAAALEBIAwAAAAAAAAAAYAFCGgAAAAAAAAAAAAsQ0gAAAAAAAAAAAFigrtUFALDGoUOHtG3bNp04\ncUKFhYWKjIxU+/bt1a1bNwUFBVldHgAXs1vPFxUVKSUlRXv27NHp06eVm5ur0NBQRUVF6aabbtKN\nN96oOnX4LglQE3br+3Pnzmnfvn06evSo0tLSlJeXJ0mKiIhQ48aN1blzZ7Vo0aLW6wK8hd16HoD7\n0feA77F73xcXF2vHjh1KTk5Wenq6ioqKFBoaquuvv14dOnRQ+/bt+Vu/IgYAn7J06VKjc+fOhqQK\nt9DQUGPMmDHGmTNnaq2mkpISIzk52UhMTDQSEhKMLl26GP7+/qa6RowYUWv1AN7ETj2fmppqzJw5\n0+jTp49Rr169K9YkyQgPDzeeeuopY//+/W6vC/A2dun7vLw8489//rPx4IMPGrGxsVft+UtbbGys\nMXXqVCMzM9OttQHexC49X1l5eXlG69aty9XJ+32g8uzU93fddVel/h9/pW3u3LlurxHwBnbq+4qk\npqYao0ePNiIiIq7a8/Xr1zcGDhxorFq1ypI67YqQBvAR+fn5xsMPP1zpN0oNGzY0Nm7c6NaaPvzw\nQ6N3795GeHj4NevhjzagauzU8/n5+catt95arT/aAgICjFmzZhklJSVuqQ3wJnbqe8MwjAMHDlT7\nA5uYmBhjyZIlbqsN8AZ26/nKeuaZZ3i/D1STHfuekAZwLzv2/eWKi4uNP/7xj0ZgYGCVev/BBx+s\ntRo9AfcWAT6gpKREDz74oD7++GPTvJ+fn1q2bKlOnTopPDzc9NqZM2d077336uuvv3ZbXcuXL9f6\n9euVk5PjtmsAvshuPV9UVKStW7dW+FpQUJBatmyprl27Ki4uTgEBAabXCwsLNX78eI0ZM8bldQHe\nxG59fzURERHq0KGDbr31Vv385z9XTExMuX3S09P1wAMPKDExsVZrAzyFJ/X85bZt26b//d//tez6\ngCfz1L4HUH127/uioiLFx8fr+eefV0FBgem18PBwtW/fXrfccos6dOig4OBgt9fjyQhpAB8wa9Ys\nLV++3DT35JNP6tixY0pNTdXOnTuVlZWlf/zjH2revLlznwsXLmjo0KGWhCghISG1fk3AW9i951u2\nbKkpU6boX//6l86dO6fU1FRt27ZNe/bs0dmzZzV//vxyz6V455139Pbbb7u1LsCT2bnvb7zxRo0f\nP16fffaZfvjhB2VnZys5OVn//ve/tWvXLp0+fVqpqal68cUXVa9ePedxJSUlGjVqlPbt2+e22gBP\nZeeev5LCwkKNHDlSJSUlkni/D1SVp/T92rVrq7T17du3VuoCPJHd+37kyJH69NNPneO6devqqaee\n0rZt25Sdna29e/dq69atSk5OVm5urvbu3as//elP6tatmxwOh1tr8zhW38oDwL0yMjKMsLAw0y2F\nr7322hX3P3HiRLl141966SW31DZw4EBDktG4cWNjwIABxn//938b//znP43MzEzj5ZdfZvkDoBrs\n2PO5ubmGJKN79+7GmjVrKrV0WVZWltG1a1dTXRERETynAqiAHfveMAzj/PnzxoEDB6p0zM6dO43I\nyEhTbUOHDnV5bYAns2vPX8vl7++vu+464w9/+APv94FKsnPfl13uDIBr2LnvDcMw5s+fb7pW06ZN\njW+//bbSx2dlZbmtNk/Eb0/Ay02YMMH0S/POO++85gek69atMx0TFhZmZGRkuLy2HTt2GMeOHavw\nNUIaoHrs2PMFBQXGypUrq3zcyZMnjZCQEFNt77//vsvqAryFHfu+Jt577z1TbSEhIcbFixetLguw\nDU/s+e+//94ICAhwXn/p0qW83weqwM59T0gDuIed+/7MmTNGdHS08zrh4eFV/nIWzFjuDPBiJSUl\nmjt3rmluypQp17ylsHfv3urRo4dznJubq08++cTl9XXu3FnNmjVz+XkBX2XXng8ICFC/fv2qfFzT\npk01YsQI09yaNWtcVRbgFeza9zXx0EMPqU6dn/5MycvL07FjxyysCLAPT+z5kpISjRw5UoWFhZKk\nwYMHa9CgQbVybcAbeGLfA6gZu/f9q6++qoyMDOf4j3/8o8qTjqIAAB1sSURBVNq0aePy6/gSQhrA\ni23ZskVnzpxxjlu1aqWePXtW6tiRI0eaxsuWLXNlaQDcwBt7/vI3mJL4oBYowxv7vn79+mrYsKFp\n7vI/AgFf5ok9/6c//Ulbt26VVNrfPGMOqBpP7HsANWPnvi8oKNC8efOc48aNG2vUqFEuvYYvIqQB\nvNiqVatM4z59+lT6wVx9+vQxjTds2KC8vDyX1QbA9byx5yMjI01jKx50DNiZN/a9JOXn55vGERER\nFlUC2Iun9XxqaqpefPFF5/i1115T06ZN3XpNwNt4Wt8DqDk79/3SpUuVlZXlHMfHx8vPz89l5/dV\nhDSAF9u1a5dp3K1bt0of27RpU8XGxjrHhYWFSk5OdlVpANzAG3v+5MmTpnFUVJRFlQD25I19n5KS\nYgpkQ0ND9bOf/czCigD78LSe/6//+i9duHBBknT77bdr9OjRbr0e4I08re8B1Jyd+75sgNSrVy+X\nnduXEdIAXmzv3r2mcVxcXJWOL7t/2fMBsBdv7PnNmzebxnxQC5h5Y99PmzbNNH744YdVt25di6oB\n7MWTev6vf/2rvvjiC0mSv7+/5syZU+lvAQP4iSf1/SU5OTnavXu3Nm3apP/85z86evSoiouL3X5d\nwFvYue+/+eYb0/jnP/+5JKm4uFirV69WfHy82rVrp5CQEEVERKht27YaOnSo5s6d6/ziBsrjrx3A\nS128eLHcsxuaNWtWpXOU3T8lJaXGdQFwD2/s+XPnzmnx4sWmufvuu8+iagD78ba+z8/P16RJk7Rg\nwQLnXMOGDfXKK69YVhNgJ57U82lpaRo/frxzPGHCBN1www1uuRbgzTyp7y+5+eabtXv3bpWUlJjm\nQ0ND1b17dw0ZMkTDhw9XYGCgW+sAPJWd+z4nJ0f79+93jv38/NSiRQulpqbqkUce0ddff13hMQcP\nHtSnn36qF154QdOnT9dvf/tbl9TjTQhpAC+VkZEhwzCcY39/f8XExFTpHNddd51pnJ6e7pLaALie\nN/b8tGnTdP78eec4Ojpa/fv3t7AiwF48se+3bt2q3Nxc5zg/P1/p6enavn27lixZYrp+48aNlZSU\nVOWfCfBWntTzCQkJOnv2rCSpbdu2euGFF9xyHcDbeVLfX1J2maZLzp8/rzVr1mjNmjV66aWX9Oab\nb+qBBx5way2AJ7Jz36empppqCwsLU3Jysrp161ap58eeOnVKw4cP1549ezR9+nSX1OQtCGkAL3X5\nB5uSFBwcXOXlBUJCQq56TgD24W09v2XLFv3P//yPae6FF15QcHCwRRUB9uOJfT9q1Ch9++23V90n\nKChIjz76qF555RU1bNjQrfUAnsRTev6TTz7RsmXLnOO//OUvCgoKcvl1AF/gKX1fVT/88IOGDh2q\n5557TrNmzbK6HMBW7Nz3l76AcYnD4VD//v2dAU1wcLCGDRumO++8U1FRUcrMzNTGjRu1cOFCXbx4\n0XncjBkzdN111+npp592SV3egJAG8FJlfwFX5w+jevXqXfWcAOzDm3o+PT1d8fHxpnWru3btqjFj\nxlhSD2BX3tT3lwQEBGjs2LH63e9+R0ADlOEJPZ+ZmWn6wOWxxx7jgcJADXhC30uldfXp00f33nuv\nOnXqpDZt2igiIkIFBQVKT0/X119/rUWLFikpKcn0LfzXX39dUVFRmjRpkstrAjyVnfu+bEiTnZ2t\n7OxsSVKXLl30j3/8Q82bNzft89vf/lYvvPCCBg4cqN27dzvnx48fr759+/Lc2f9Xx+oCALhHfn6+\naRwQEFDlc5RdI/by1BuAvXhLzxcUFGjw4ME6fvy4cy4sLEwLFy6Un59frdcD2Jm39P3lCgsLNXPm\nTLVr105PPPGEaWk0wNd5Qs///ve/dy6pEhMTo9dff92l5wd8jSf0/R/+8AedOHFCn332mUaPHq3b\nb79dDRs2lL+/v0JDQ9WqVSs9/PDDWrlypTZt2lRuGabnn3/+mnfZAr7Ezn1/pbDn+uuv19q1a8sF\nNJfExsZq/fr1aty4sXOuoKCA9wmXIaQBvFTZpL2wsLDK5ygoKLjqOQHYhzf0fElJiR555BFt2bLF\nOefn56ePP/5Ybdq0qdVaAE/giX2/a9cuGYbh3M6dO6f9+/drwYIFuvfee537FRcX64MPPtAdd9yh\nzMxMt9YEeAq79/zq1au1YMEC5/iNN95QgwYNXHZ+wBfZve8l6f7771dUVFSl9r3jjju0YcMGRUdH\nO+cMw+C5VcBl7Nz3VzrPrFmzFBkZedVjo6Ojyz2HZv78+ZZ/ScwuCGkALxUaGmoal03iK6PsL8qy\n5wRgH97Q8wkJCVq8eLFz7HA4NGfOHA0YMKBW6wA8hTf0fVhYmNq2bauHH35YSUlJ+vzzz01/4O3e\nvVsjRoyo1ZoAu7Jzz+fm5urJJ590ju+55x4NGzbMJecGfJmd+7662rRpU+45NElJScrKyrKoIsBe\n7Nz3FZ2nQYMGGjJkSKWOf/DBBxUeHu4c5+fna9u2bS6pzdMR0gBequwvzgsXLpjWfq2MvLy8q54T\ngH14es9PnjxZf/nLX0xzs2fP1mOPPVZrNQCextP7viJ9+vTRqlWrVKfOT3+mrFq1SmvXrrWwKsAe\n7NzzkyZN0rFjxySVPjT43Xffdcl5AV9n576vieHDh5uePVdSUqJ169ZZWBFgH3bu+4rOc/vtt8vf\n379SxwcFBemWW24xzW3fvt0ltXk6QhrAS0VHR8vhcDjHRUVFzvWhK+vkyZOmcUxMjEtqA+B6ntzz\n06dPL3fb80svvaRnnnmmVq4PeCpP7vuruf322/XII4+Y5hITE60pBrARu/b84cOHTaHM1KlTFRsb\nW+PzArBv39dUnTp11LNnT9NcSkqKNcUANmPnvm/UqFG5uZ/97GdVOke7du1M46r+bN6KkAbwUvXq\n1Sv3wK5L326rrLL7t2/fvsZ1AXAPT+35P//5z5o8ebJpbty4cZo6darbrw14Ok/t+8r49a9/bRpf\n/qwqwFfZtedzcnJM3/AdP368HA7HNbey/6//6KOPTK9HRETUuDbA09m1712hWbNmpvGZM2csqgSw\nFzv3fevWrRUQEGCaq1+/fpXOUXb/7OzsGtflDQhpAC9W9pdwcnJylY7fu3fvVc8HwF48refnzZun\np59+2jT3+OOP64033nDrdQFv4ml9X1mtW7c2jX/44QeLKgHsxVt7HsCVeWvfl10eqaioyKJKAPux\na9/7+fmVu3OmoKCgSuco+4yd4ODgGtflDQhpAC/WqVMn07gq30JNS0vTkSNHnGN/f3/FxcW5qjQA\nbuBJPb9kyRI9/vjjpm/eDh06VHPmzDHd2g3g6jyp72uisutcA97OV3oewE+8te/LfgHj8mfUAL7O\nzn3fuXNn0/j06dNVOr7s8mZRUVE1rskb1LW6AADu079/f82YMcM5XrdunQzDqNQHoJ9//rlp3KtX\nL1s8YBDAlXlKz69evVrDhg1TcXGxc65fv35asGCB6WHhAK7NU/q+qo4ePWoaV7T+NeCL7Njzbdq0\n0dq1a6t83Lx58zR//nzn+O6779b48eOdY8JZoJQd+94VvvrqK9O47PJngC+zc9/ff//9mjdvnnO8\nY8eOKh1fdv+yz6jxVYQ0gBfr1q2boqOjlZGRIUlKTU3Vhg0b1KtXr2se+8EHH5jGAwcOdEuNAFzH\nE3p+48aNGjJkiAoLC51zvXr10uLFi/kwBqgGT+j76lixYoVpfNNNN1lUCWAvduz50NBQ/epXv6ry\ncWU/oG3SpEm1zgN4Ozv2fU1t3LhRhw4dMs317t3bomoA+7Fz399zzz0KCgpyLlu2e/duHThwQG3b\ntr3msXv27Cm3FFvPnj1dWp+n4uuqgBerU6eOHn30UdPc1KlTTcsLVWT9+vXavHmzcxwWFqahQ4e6\no0QALmT3nt++fbsGDBigixcvOuduu+02ffbZZwoKCnL59QBfYPe+r469e/dq7ty5pjm7fKgEWM0b\nex7A1Xlb3+fl5Wns2LGmuY4dO6pVq1YWVQTYj537PiQkRI888ohpbtq0aZU69pVXXjGN77rrLsXE\nxLisNk9GSAN4uYkTJ5pua9y4caPplsmyTp48qSeeeMI0N27cOEVHR1/1Og6Hw7Rt2LChRnUDqB67\n9vyePXt0zz33KDc31znXqVMnrV692jZLLgCeyo59n5ubq4SEBJ04caJyP8T/+/7779W3b1/T3XYt\nWrTQAw88UKXzAN7Mjj0PwL3s2vfjxo3TqVOnrv0D/L+MjAzdf//92r17t2l+6tSplT4H4Cvs2veS\n9PLLL5u+aDlv3jx9+OGHVz3mnXfe0SeffGKamzx58jWv5SsIaQAvFx0dreeff940N3nyZCUkJJje\nTJWUlGjZsmXq1q2b6QFjTZs21bPPPuuW2vLz87Vu3boKt9TUVNO+aWlpV9w3LS3NLfUBnsiOPZ+W\nlqa7775bmZmZzrmQkBBNmDBB27dvv2JvX2kDYGbHvi8uLta7776rVq1aacCAAZo3b54OHTpU4bf/\nCgsLtWXLFo0ePVqdO3fW8ePHna85HA699dZbqlevnkvrAzyZHXsegHvZte/ffPNNtWrVSoMHD9bH\nH39suubljh8/rlmzZqljx4764osvTK8NGjRIgwcPdnltgKeza99L0vXXX6+JEyea5p544gmNGTPG\n9F5eko4dO6bRo0drzJgxpvmHHnpIffv2dUt9nshhXOs+KQAer6SkRAMHDtTKlStN835+fmrRooXC\nw8N1+PBhnT171vR6vXr1tHbtWnXv3v2a1yj78LIvv/zymutKHjlyRC1btqzcD3EVc+fOLXcbKODL\n7NbzlV07t7J46wKUZ7e+P3v2rCIjI8vNh4WFqXHjxoqIiJBhGMrJydGRI0dUVFRU4fXmzJmjkSNH\nXrM2wNfYreerY8qUKaZvz48YMUKJiYkuOz/gbezY9xU9xLx+/fpq0qSJwsPDVVRUpNOnT1/xbpse\nPXpozZo1fBkDuAI79v0lxcXFGjRoULnaHA6HWrZsqaioKGVmZpb7ErYkde7cWRs3bmRVjctwJw3g\nA+rUqaNPP/1U8fHxpvni4mKlpqZq586d5X6hR0VFKSkpqVK/0AHYCz0P+B5P6fvc3FwdOHBA33zz\njbZv364DBw5UGNC0bdtW69evJ6ABrsBTeh6A63hK3587d04pKSnatm2bdu7cWWFAU6dOHU2YMEHr\n168noAGuws597+fnp8WLF2vEiBGmecMwlJqaqm+++abCgOb+++8noKkAIQ3gI4KCgrRo0SItXrxY\nnTp1uuJ+ISEhSkhIUHJysku/KQegdtHzgO+xU9+Hh4dr48aNmjhxom655RYFBARc8xh/f3/17t1b\nCxYs0HfffefSO/AAb2SnngdQO+zW9++//77i4+PVrFmzSu3fuHFjjRs3TikpKZoxY4b8/f3dVhvg\nLezW95cLDAxUYmKiVq9efdVQyOFw6NZbb9WKFSu0fPlyApoKsNwZ4KMOHjyorVu36uTJkyosLFRE\nRIQ6dOig7t27mx7+BcA70POA77FT3xcUFCg5OVmHDh1SWlqacnNzJZWGOREREWrfvr06duxYqTAH\nQMXs1PMAaoed+j4zM1N79+7V0aNHdebMGeXl5cnPz0+RkZGKjo7WzTffrFatWtVqTYA3slPfl3Xy\n5El9/fXXOnr0qPLz8xUZGakmTZqoe/fuiomJsbQ2uyOkAQAAAAAAAAAAsADLnQEAAAAAAAAAAFiA\nkAYAAAAAAAAAAMAChDQAAAAAAAAAAAAWIKQBAAAAAAAAAACwACENAAAAAAAAAACABQhpAAAAAAAA\nAAAALEBIAwAAAAAAAAAAYAFCGgAAAAAAAAAAAAsQ0gAAAAAAAAAAAFiAkAYAAAAAAAAAAMAChDQA\nAAAAAAAAAAAWIKQBAAAAAAAAAACwACENAAAAAAAAAACABQhpAAAAAAAAAAAALEBIAwAAAAAAAAAA\nYAFCGgAAAAAAAAAAAAsQ0gAAAAAAAAAAAFiAkAYAAAAAAAAAAMAChDQAAAAAAAAAAAAWIKQBAAAA\nAAAAAACwACENAAAAAAAAAACABQhpAAAAAAAAAAAALEBIAwAAAAAAAAAAYAFCGgAAAAAAAAAAAAsQ\n0gAAAAAAAAAAAFiAkAYAAAAAfEBiYqIcDodzS0xMtLokAAAAwOcR0gAAAAAAAAAAAFiAkAYAAAAA\nAAAAAMAChDQAAAAAAAAAAAAWIKQBAAAAAAAAAACwgMMwDMPqIgAAAAAAAAAAAHwNd9IAAAAAAAAA\nAABYgJAGAAAAAAAAAADAAoQ0AAAAAAAAAAAAFqhrdQEAAAAAgKvLzc3Vzp07lZKSorNnz6qgoEDB\nwcGKjIxUbGys4uLi1KhRI6vLrJGUlBR9++23OnPmjHJyctSgQQM1bdpUd9xxhxo0aGB1eQAAAIBb\nENIAAAAAgE395z//0bRp07Rq1SoVFhZedd+WLVuqX79+Gj16tOLi4sq9npiYqMcee8w5njt3rh59\n9NFy+02ZMkVTp06tce1ffvmlevbsedV9zp8/r9mzZ+ujjz7S4cOHK9zHz89PPXr00CuvvKIePXrU\nuC4AAADATljuDAAAAABsaPr06eratauWLl16zYBGkg4fPqy3335bCxcurIXqam7lypVq3bq1pkyZ\ncsWARpKKi4u1YcMG3XnnnRo1apR+/PHHWqwSAAAAcC/upAEAAAAAm/nggw80efLkcvNhYWGKjY1V\nSEiILl68qKysLJ04cUKGYVhQZfW9//77SkhIUHFxsWk+ODhYLVq0UFhYmLKyspSamqqSkhLTcadP\nn9bSpUvlcDhqu2wAAADA5QhpAAAAAMBGCgoKNGHCBNPckCFDNHnyZHXu3LlcOJGbm6tvvvlGSUlJ\nWrBgQY2vP3z4cN1xxx1VOmbHjh2aNGmSaS4kJKTCfdevX6/Ro0ebwpcBAwbo2WefVffu3VW37k9/\npmZlZemvf/2rpk2bptzcXEnS8uXLNXPmTE2cOLFKNQIAAAB25DA87StXAAAAAODFkpKS1K9fP+d4\n+PDh+uijjyp1bGFhoU6cOKFWrVqVe62yz6SpqiNHjui2227T6dOnnXMTJkzQjBkzyu179uxZdejQ\nQT/88IMkqU6dOpozZ44ef/zxq14jOTlZPXv21JkzZyRJAQEBOnr0qBo3blzj+gEAAAAr8UwaAAAA\nALCR/fv3m8YJCQmVPjYgIKDCgMZdsrOzde+995oCmvj4eE2fPr3C/d977z1nQCNJr7766jUDGkmK\ni4tTYmKic1xYWKi33367+oUDAAAANkFIAwAAAAA2cvHiRdPY39/fokqurqCgQIMGDdK+ffuccz16\n9FBiYmKFz4spLi7WW2+95Rw3b95czz77bKWvd9999+nmm292jpcsWVLNygEAAAD7IKQBAAAAABtp\n2rSpaeyK58y4mmEYevTRR7Vp0ybnXPv27bV8+XIFBgZWeMy3336rU6dOOcfx8fFVDqDuvvtu57/v\n27dPGRkZVawcAAAAsBdCGgAAAACwkV/+8pfy8/Nzjt944w0lJCQoNTXVwqrMJk2apL/97W/OcaNG\njbR69WpFRkZe8ZjNmzebxr/4xS+qfN3mzZubxnv37q3yOQAAAAA7IaQBAAAAABtp1qxZuee0vPvu\nu2rdurV+8YtfaNKkSUpKSlJWVpYl9b3zzjuaOXOmcxwSEqKVK1cqNjb2qseVDVSGDh0qh8NRpe2p\np54yncOq/wYAAACAqxDSAAAAAIDNvPnmmxowYEC5+R07dmjGjBnq16+foqOjdfPNN+v555/Xnj17\naqWuFStWaOzYsc6xn5+f/va3v1XqrpjMzEyX15OTk+PycwIAAAC1iZAGAAAAAGwmKChIy5cv18KF\nC9WpU6cK9zEMQ7t27dJrr72mG2+8Uf3799fBgwfdVtP27dsVHx+v4uJi59xbb72l/v37V+r4s2fP\nurymkpISl58TAAAAqE11rS4AAAAAAFCew+HQQw89pIceekjJyclau3atNmzYoK+++koZGRnl9l+1\napU2bdqkVatWqUePHi6t5fDhw+rfv78uXLjgnJswYYJGjx5d6XMEBwebxtOnT1eXLl1qVNcNN9xQ\no+MBAAAAqxHSAAAAAIDNxcXFKS4uTuPGjZNhGNq3b58+//xzLV68WF999ZVzv9zcXP3mN7/RoUOH\nFBoa6pJrZ2dn67777tPp06edc/Hx8Zo+fXqVzhMdHW0at2zZUr/61a9cUiMAAADgqVjuDAAAAAA8\niMPhUIcOHTRu3Dht3rxZmzZtMgUg6enpmj9/vkuuVVBQoIEDB2rfvn3OuTvvvFOJiYlyOBxVOlfL\nli1NY3cuzQYAAAB4CkIaAAAAAPBgPXr0KHdXy+V311SXYRgaMWKENm/e7Jzr0KGDli1bpsDAwCqf\nr1evXqbxF198UeMaAQAAAE9HSAMAAAAAHq579+6mcUXPrKmqiRMn6u9//7tz3KhRIyUlJSkyMrJa\n57vllltMx37xxRdKTk6ucZ0AAACAJyOkAQAAAAAPVzaUqW6Qcsk777yjWbNmOcchISFatWqVYmNj\nq31Of39//f73v3eODcPQqFGjVFRUVJNSAQAAAI9GSAMAAAAANvLiiy9qwYIF+vHHHyu1v2EYmj17\ntmmuS5cu1b7+ihUrNHbsWOfYz89Pf//732t0zkvGjRunRo0aOcdfffWVfvOb3ygnJ6fS58jLy9Ob\nb76pDz74oMb1AAAAAFara3UBAAAAAICffPfdd5o2bZqeffZZ/frXv9bAgQPVtWtXRUVFmfYrKSnR\nli1bNHXqVK1bt845HxwcrGHDhlX7+vHx8SouLnaOhw4dqsDAQNM1KqNLly7l7ugJDw/Xp59+qt69\nezvvoPnss890ww036JlnntEDDzyg5s2blzvX8ePHtXXrVi1btkwrVqzQuXPn9PLLL1fjpwMAAADs\nhZAGAAAAAGwoPT1d7733nt577z1JUpMmTRQdHa2QkBDl5eXp8OHDOn/+fLnjZs+ereuuu67a171w\n4YJpvGjRIi1atKjK5/nyyy/Vs2fPcvM9evTQvHnz9Nhjjyk/P1+SdPLkST333HN67rnn1KRJE8XE\nxCgwMFA5OTlKT09XdnZ2tX4WAAAAwO4IaQAAAADAA6SlpSktLe2Kr9erV09vvPGGRo0aVYtVVU98\nfLzatm2rYcOGaf/+/abXrvVzSqVLsDVt2tSdJQIAAAC1gmfSAAAAAICNzJkzRx9++KGGDBlien7L\nlTRo0EBPPvmk9u7d6xEBzSVdunRRcnKy5s2bp9tuu01+fn5X3T8wMFC//OUv9frrr+v48eP63e9+\nV0uVAgAAAO7jMAzDsLoIAAAAAEDFDh8+rJSUFB09elQ5OTkqLCxUaGioGjZsqI4dOyouLk5163r+\nIgk5OTn697//rVOnTikjI0NFRUUKCwtTTEyM2rdvr3bt2ikoKMjqMgEAAACXIqQBAAAAAAAAAACw\nAMudAQAAAAAAAAAAWICQBgAAAAAAAAAAwAKENAAAAAAAAAAAABYgpAEAAAAAAAAAALAAIQ0AAAAA\nAAAAAIAFCGkAAAAAAAAAAAAsQEgDAAAAAAAAAABgAUIaAAAAAAAAAAAACxDSAAAAAAAAAAAAWICQ\nBgAAAAAAAAAAwAKENAAAAAAAAAAAABYgpAEAAAAAAAAAALAAIQ0AAAAAAAAAAIAFCGkAAAAAAAAA\nAAAsQEgDAAAAAAAAAABgAUIaAAAAAAAAAAAACxDSAAAAAAAAAAAAWICQBgAAAAAAAAAAwAKENAAA\nAAAAAAAAABYgpAEAAAAAAAAAALAAIQ0AAAAAAAAAAIAFCGkAAAAAAAAAAAAsQEgDAAAAAAAAAABg\nAUIaAAAAAAAAAAAACxDSAAAAAAAAAAAAWICQBgAAAAAAAAAAwAKENAAAAAAAAAAAABYgpAEAAAAA\nAAAAALAAIQ0AAAAAAAAAAIAFCGkAAAAAAAAAAAAsQEgDAAAAAAAAAABgAUIaAAAAAAAAAAAACxDS\nAAAAAAAAAAAAWICQBgAAAAAAAAAAwAKENAAAAAAAAAAAABYgpAEAAAAAAAAAALDA/wEXjiGsNGyh\ncgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res_w_copy = dict(res_w)\n", + "res_w_copy.pop('HWT')\n", + "\n", + "exp.plot_compression_experiments(res_w_copy, comp_ratios,\n", + " \"../figs/compression_wiki2.png\")\n", + "Image(filename=\"../figs/compression_wiki2.png\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Reconstruction Error: FSWT vs GWT" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " GWT error| FSWT error| Reduction\n", + "-----------------------------------------------\n", + " 1.1236578| 0.9424534| -0.1612630\n", + " 0.5947244| 0.4116692| -0.3077982\n", + " 0.3650694| 0.2490409| -0.3178259\n", + " 0.2259673| 0.1528849| -0.3234200\n", + " 0.1347382| 0.0679602| -0.4956130\n", + " 0.0702006| 0.0388420| -0.4466996\n", + "\n" + ] + } + ], + "source": [ + "reduction = np.divide(res_w['FSWT'], res_w['GWT']) - 1\n", + "text = \"{:>15s}|{:>15s}|{:>15s}\\n\".format('GWT error', 'FSWT error', 'Reduction')\n", + "text += \"-\"*47 + \"\\n\"\n", + "for i in range(len(comp_ratios)):\n", + " text += \"{:>15.7f}|{:>15.7f}|{:>15.7f}\\n\".format(res_w['GWT'][i], res_w['FSWT'][i], reduction[i])\n", + "print(text)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Blogs" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "G = io.read_graph(\"../\" + data.polblogs[\"path\"] + \"polblogs.graph\",\n", + " \"../\" + data.polblogs[\"path\"] + \"polblogs.data\")\n", + "F = io.read_values(\"../\" + data.polblogs[\"path\"] + \"polblogs.data\", G)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#vertices = 1222\n", + "#edges = 16717\n" + ] + } + ], + "source": [ + "print(\"#vertices = \", G.number_of_nodes())\n", + "print(\"#edges = \", len(G.edges()))" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "algs = [static.OptWavelets(n=20), static.GRCWavelets(), static.Fourier(), static.HWavelets()]\n", + "\n", + "comp_ratios = [0.1, 0.20, 0.30, 0.40, 0.50, 0.60]\n", + "\n", + "res_b, time_b = exp.compression_experiment(G, F, algs, comp_ratios, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmUAAARLCAYAAAB1IKfZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAuIwAALiMBeKU/dgAAIABJREFUeJzs3Xt4VeWdN/zfTkhCQhKgCQc5gyfAqjgiIueO2qltHZ1p\na8fqtCi1o73ewXY8zeP12NppfXqw2mntaJ9Wa/tOdWzVajvjdN5OrQKewPN5EOUkqIAckwBJIPv9\ng2FPdo47kKwdwudzXbnKvfZa9/1LL7hde33XulcqnU6nAwAAAAAAgB5VkO8CAAAAAAAADgdCGQAA\nAAAAgAQIZQAAAAAAABIglAEAAAAAAEiAUAYAAAAAACABQhkAAAAAAIAECGUAAAAAAAASIJQBAAAA\nAABIgFAGAAAAAAAgAUIZAAAAAACABAhlAAAAAAAAEiCUAQAAAAAASIBQBgAAAAAAIAFCGQAAAAAA\ngAQIZQAAAAAAABIglAEAAAAAAEiAUAYAAAAAACABQhkAAAAAAIAECGUAAAAAAAASIJQBAAAAAABI\ngFAGAAAAAAAgAUIZAAAAAACABAhlAAAAAAAAEiCUAQAAAAAASIBQBgAAAAAAIAFCGQAAAAAAgAQI\nZQAAAAAAABIglAEAAAAAAEiAUAYAAAAAACABQhkAAAAAAIAE9Mt3AXCo2rZtWyxatCjTHj16dJSU\nlOSxIgAAAAAAWqqvr4+333470547d24MGjQoL7UIZeAALVq0KM4999x8lwEAAAAAQBc8+OCDcc45\n5+RlbMuXAQAAAAAAJEAoAwAAAAAAkADLl8EBGj16dFb7wQcfjKOOOipP1QAAAAAA0JY333wz61UU\nLa/tJkkoAweopKQkq33UUUfFcccdl6dqAAAAAADIRctru0myfBkAAAAAAEAChDIAAAAAAAAJEMoA\nAAAAAAAkQCgDAAAAAACQAKEMAAAAAABAAoQyAAAAAAAACRDKAAAAAAAAJEAoAwAAAAAAkAChDAAA\nAAAAQAKEMgAAAAAAAAkQygAAAAAAACRAKAMAAAAAAJAAoQwAAAAAAEAChDIAAAAAAAAJ6JfvAgDg\ncJVOp6OpqSnS6XS+SwEAAOj1UqlUFBQURCqVyncpAAdMKAMACdm7d2/U1dVFTU1N1NXVxd69e/Nd\nEgAAwCGnuLg4KioqoqKiIvr37y+kAQ4pQhkA6GF79+6Nd999N2pqavJdCgAAwCGvoaEhNm/eHJs3\nb46ioqIYMWJElJWV5bssgJx4pwwA9KDGxsZYs2aNQAYAAKAHNDY2xtq1a2Pnzp35LgUgJ0IZAOgh\n9fX1sXr16qivr893KQAAAH1WOp0WzACHDMuXAUAP2bBhQ+zZsydrWyqVirKysqioqIjS0tIoLCy0\n/jEAAEAO0ul0NDY2Rm1tbezYsSMaGxuzPnvnnXfiyCOP9B0L6NWEMgDQAxobG6Ouri5rW3FxcYwe\nPTqKi4vzVBUAAMChraioKMrKymLIkCGxfv36rKWiGxsbo76+Pvr375/HCgE6ZvkyAOgB27dvz2oX\nFBTE2LFjBTIAAADdIJVKxciRI6OoqChr+44dO/JUEUBuhDIA0ANahjKVlZXRr58HVAEAALpLKpWK\nysrKrG3Nn5wB6I2EMgDQzdLpdDQ0NGRta/lFAQAAgINXXl6e1W5oaIh0Op2nagA6J5QBgG7W1NTU\nalvLR+oBAAA4eG2tSNDWdzKA3kIoAwDdrK27sgoK/CcXAACgu7X1XcuTMkBv5goRAAAAAABAAoQy\nAAAAAAAACRDKAAAAAAAAJEAoAwAAAAAAkAChDAAAAAAAQAKEMgAAAAAAAAkQygAAAAAAACRAKAMA\nAAAAAJAAoQwAAAAAAEAC+uW7AAAAkrVr16547rnnYsWKFbF169aoq6uL0tLSqKysjDFjxsSRRx4Z\nEyZMiIIC9+8A+bFhw4Z48cUXY82aNbFt27aor6+P8vLyGDRoUAwZMiROPPHEGDVqVL7LBACALvNN\nGwAgz8aNGxepVOqgfr70pS91OEY6nY7f/OY3cdZZZ0VlZWXMmjUrLrroovi7v/u7uO666+LKK6+M\nL3zhC/GRj3wkjj766Bg0aFB86EMfiuuvvz6WLl0aTU1NrfpsaGiIsrKyrDqWL1/epd/9rrvuavW7\nXHfddV3qo76+PkpLS7P6eOWVV+L6668/6P9fc/lZvXp1l+oF2rZixYq4+uqr4+ijj47hw4fHn/3Z\nn8UXvvCFuPrqq+O6666LL3/5y3HRRRfFxz/+8Rg9enQMHTo0PvnJT8a9994bu3btarffJUuWZP2b\nHTFiRJdru+SSS1r923/44Ye71MeiRYuyjh8yZEik0+mYN29ej89T48aN6/LvTP7t2bM9ampeiJ07\n34jdu9dFY+PWaGqqj3Q6ne/SDgstz88effTRHuvr7bffzvq8qKgo6urqujTGDTfc0Orf/h133NGl\nPtasWZN1fGFhYWzfvj3mz5+fyDkVwOHCkzIAwMFJpyNqaiIaGiKKiyMqKiJ8qepV1qxZExdffHH8\n8Y9/zPmYmpqaePTRR+PRRx+Nr33ta/Hggw/GOeeck7VPcXFxTJ8+PR555JHMtsWLF8exxx6b8ziL\nFi1qtW3x4sU5Hx8RsXTp0ti9e3emXVVVFccdd1zcd999XeqHw09Tuik279yc+LhVZVVRkHJ/3H7r\n16+Pq6++Ou655542A+D2bNq0Ke6///64//77o6KiIi6//PK44oorYtCgQVn7TZs2Lfr375+ZJ959\n991YsWJFHH300TmP1d5cdfrppx9wH3PmzHERkk6k4oUX5sXevdtbbC+IwsKyKCgY8N//WxaFhWVR\nWDgg8+d9/9u63Xz/7OOzP0uliv39TNDo0aNj/PjxsWrVqoiI2LNnTzzxxBNx5pln5txHe/PUggUL\nDriPKVOmxMCBA3M+HoDcCGUAgK57+eWIf/mXiGXLIp57LmLr1v/5bPDgiD/5k4hp0yI+85mID34w\nf3USK1eujDlz5sT69etbfVZcXBzjx4+PgQMHRn19fWzZsiXWr1/f5kXR9u7KnTt3bqtQ5pJLLsm5\nvrYCmGXLlkV9fX2UlJQcUB8udJKrzTs3x9DvDk183I1XbowhA4YkPm5v9NBDD8VnP/vZ2LJlS5uf\nDxgwIKqrq6O6ujrq6+tjw4YNsXnz5lbzVE1NTXzjG9+IH/7wh7FmzZqorKzMfFZSUhLTp0/PujN9\n8eLFOYcy7733XqxYsaLV9q4GyC33nzt3bpeO5/DTr19ljBx5Waxd+60WnzTF3r21sXdvbTQ29szY\nqVRJTJv2epSWju+ZAWhl7ty5mVAmYt+ckWsos2fPnnjyySdbbTdPAfROQhkAIHcPPRTx7W9HLFnS\n/j5bt0Y8/PC+n29+M2L27Ii///uIj340uToPcd/97nfjxBNP7NIxY8aMabWtsbExzj777KxAJpVK\nxQUXXBB/8zd/E9OnT49+/bJPB2tra+PZZ5+N3/3ud3HffffFW2+91eG4c+bMyWp35cv/xo0b21zu\nbPfu3bFs2bKYPXt2Tv20dwHhs5/9bMyaNSunPq644op46aWXMu2rrroqPvzhD+d07PDhw3PaD8j2\nz//8z3HRRRfF3r17s7Yfd9xx8fnPfz5OP/30OP7441sd19DQEIsXL47f/e53cf/998eaNWsyn23b\nti0aGhpaHTNnzpxWoUyud4+3N68tXbo0Ghoaori4uNM+Ghsb46mnnsratn+uuummm2Jr85sbOtDy\nAu0vfvGLGDZsWKfHlZaW5tQ/vc/IkZfH22/fHOl067/XPWnYsAsFMgmbM2dO/OxnP8u0u3JO9dxz\nz0VtbW2r7atXr4633347Ro8enVM/7Z1TXX311XHhhRfm1MeFF14YGzZsyLQP5LwWoK8TygAAndu8\nOeJv/3bf0zFdtWTJvp/PfCbiBz+IqKrq/vr6mJNPPjnmzZt30P386Ec/itdeey3T7t+/f9x///3x\n0Q4CsvLy8pg7d27MnTs3vvWtb8WiRYvie9/7XhQWFra5//Tp06O4uDhzEXTt2rWxevXqnN5f0PyL\nf3FxcRx99NHx6quvRsS+5TNyCWXaujN0/wWECRMmxIQJEzrtIyJi8ODBWe3JkyfHGWeckdOxQNct\nW7YsFixYkBXIDBo0KH7wgx/EBRdcEAUF7S/vVlxcHGeccUacccYZ8a1vfSt+9rOfxQ033JAVzrTU\n8m7vtpb5aU/zuerEE0+Ml19+OZqammLXrl2xbNmynMLfZ599Nuv9EIMHD84ETieffHLOtbQ0c+ZM\n74vp40pKhsfw4Z+Ld9/9SWJjplLFMW7cVxIbj31azlNLly7N+cnh5vPUqFGjor6+PjZt2hQR++a7\nXAKVlk8FplKpzLnY5MmTY/LkyTn9Hv37989qd9d5LUBfYiFjAKBjL70UccIJBxbINHf33fv6efnl\n7qmLTv385z/Pan/1q1/tMJBpy9y5c+PBBx+Ms88+u83PS0tLY9q0aVnbcr2zs/l+U6dOzXoyJdc+\nWt4ZOmjQoDjhhBNyOhbIjy1btsR5550Xjc3WXRo1alQ89thj8dd//dcdBjItFRUVxSWXXBLLly+P\nyy67rN39TjvttKwnWtasWRNvv/12TmM0n48+9rGPZd3xfSDzXUTE7Nmzu/R7cngbPfqKiEhuWc4R\nI/4m+vdv/QQuPWvChAkxatSoTLu+vj6WLl2a07HN55g5c+ZkhcUHOk8df/zx8YEPfCCnYwHoGmeB\nAED7XnopYt68iHfe6Z7+3nknYu5cwUwCtmzZEs8++2ymXVBQ0KV3vXTFgS5h1vICQvMnY5588snY\ns2dPl/qIcKETDgXXX3991lMtRUVF8dvf/jaOO+64A+6zpKQkbr311rjvvvvaXE6stLQ0pk6dmrUt\nl6dltm7dGq+88kqm3XKuOtCLnd7TQFeUlR0b1dXnJjJWQUFpjBlzbSJj0dqBnFOl0+l47LHHsvow\nTwH0br6xAgBt27w54qyz9r0jpjtt3RrxkY/s658e0/w9MhER1dXVUdVDS8e1/NKey5f/bdu2xcvN\nwrnZs2dn3dVZW1sbzz33XKf9uIAAh5bNmzfHHXfckbXt2muvjZNOOqlb+v/EJz4RlZWVbX52IHPV\nkiVLIp1OR0REYWFhzJgxI+ti5xNPPNHqnTgtNTU1xeOPP95hLdCZ0aOvTmScUaMuj5IS70rLlwOZ\np15++eWs91LNnj07a55avnx51jte2uOcCiA5QhkAoG1/+7fd94RMS++8E7FwYc/0TURE1NTUZLU7\nu2h4MGbMmBH9+v3PqwpXrFgR7777bofHLFmyJJqamiJi31M8M2fOjCFDhsTEiRMz+3R2F3tTU1PW\nnaERLiBAb3fbbbfFzp07M+2ysrL48pe/nMjYB/Jemeb7TJkyJSoqKrIudtbU1HQaIL/44ouxbdu2\nTLuysjKmTJmSa9kQEREDB06PgQM7f9fawSgsrIzRo6/q0THoWMt56oknnuj0yeHm81R1dXVMmjQp\nTjrppCgvL89s7yzc2bJlS9ZTgRGtn9oBoPsIZQCA1h566ODfIdOZu+/eNw49YtCgQVntzZs3x5tv\nvtkjY5WXl7d6UXVnX/6bf37CCSfEwIEDIyK6tNxGyztDKyoquu1ue6Bn/OY3v8lqf+pTn8r8++9p\nM2fOzAqQ33jjjU7vHm8+D+2fn4YNGxZHH310m/t01kdExKxZs6KwsDDnumG/nn5aZvToK6OoyDtE\n8unYY4+NYcOGZdp1dXVZy9G2pfkcM2vWrEilUlFYWBinnXZam/u0pflTgRERkydPjiFDhnS1fABy\nJJQBAFr79reTGec730lmnMPQhAkTon///lnbrrnmmqwv3N2pq2ugt3yfzH7NlzB77LHHMk/TdNbH\n/mNd6ITeq7a2Np5//vmsbR/72McSG7+8vLxVcNvRXNWy3vbmqq6GMp7o40BVVX00ysom90jfRUXV\nMWrUl3qkb7qmq+dUS5YsafNY8xRA7yWUAQCyvfxyRLMvdz1q8eKIFksl0D369+8fp59+eta2X//6\n13H66ae3erdBd+jKskB1dXVZy/00v4DQ/EmZbdu2xUsvvdRuPy4gwKHlySefbLWU4tSpUxOtoStz\n1eOPP55Vb/P5qfmfW95h3tKSFv9NNVdxoFKpghgzpmeelhkz5u+jX7+KHumbrunKPNXyfTHtnVO1\nfLq4JedUAMnq1/kuAECi9uyJWLcuf+P/6EfJjnfbbRFX5WH98lGjIvr1zlOhZ599ttP1w5s7+eST\nY/Dgwa22//3f/3081GKJuEceeSRmzZoVY8eOjQ9/+MNx2mmnxbRp02LSpElRUHDg9+vMmjUrCgoK\nMk+2vPbaa7F58+aoqqpqtW/L9dGbXzQYP358jBw5MtavXx8R+y4StPfuBRc6+4Y9TXti3Y78zHmb\nd27Oy7hrt6+Nusa6RMccVTkq+hXkd8574403stqVlZUxfvz4RGuYO3dufPe73820O7p7vPlnkyZN\niurq6ky7+by1devWePnll+OEE05o1cfrr78emzZtyrTbWu6RQ0NT056or8/j+dl/q6g4LYqKhkdj\n43vd1mdR0bD4wAc+Frt2re62Pg9UScmoKMjzXNWerp6fNbd79+6c9215PvP4449HU1NTm+dpzeep\nioqKrHOmU089NYqKiqKxsTHS6XQsWbIk/vzP/7xVH209xeicCqBn9c7/0gHA4WzduoiEL1Ll1a23\n7vtJ2qpVEePGJT9uDq688sou7f/II4/EvHnzWm2fNWtWXHfddfH1r3+91Wdr1qyJn/zkJ/GTn/wk\nIvZdKJw2bVrMmzcvzjrrrC7fvT5w4MA48cQTM1/q93/5P/fcc1vt2/wCwrHHHhtDhw7N+nz27Nlx\nzz33ZPZduHBhqz5a3hk6YMCAxO+4p3us27Euxn//MJrzImLqT5L/u7rq8lUxbtC4xMdtbsuWLVnt\n5iFHUloGyK+88kps3bq1zWC7vWUWIyKOOuqoGD58eLz33nuZfdsKZVqGPjNmzMh6rw2Hjvr6dbF0\nad+cqxobN8TTT0/KdxkREXHqqauitHRcvstoU1fPzw7UcccdF1VVVbF5874bB/Y/OdzWTSrN55gZ\nM2ZkLeNaVlYWJ598cjz11FOZfdsKZVo+FXjMMcfE8OHDu+33AaA1y5cBAPRh//AP/xDf//73W71f\npqXa2tr44x//GF/5ylfilFNOiQ9+8IPx05/+tMN3urTU8q7K9u5Ab+vF2c21XBaosz4iXOiEQ0HL\nUGbgwIFdOn7x4sXxhz/8odOfjpZoHDRoUFZ4sj9Abmn37t3x9NNPZ9qdzVW5zHcR7j4HOpdKpVrN\nOd1xTmWeAug9hDIAAH3cwoULY8WKFfHFL34x54ugr776aixYsCCmTZsWa9asyemYXNZAr6+vj2XL\nlmXaLe8+j8i+gLBx48Z4/fXXW+3jAgIcempqarLaAwYM6NLxf/mXfxlnnnlmpz8XXHBBh/3kMlct\nXbo06uvrM+3O5ioXO4HulMs8tWbNmli7dm2m3dk89dxzz0VtbW2rfcxTAMkTygAA9DKPPPJIpNPp\nnH/aWrqspVGjRsU//dM/xYYNG+K3v/1tfPnLX46pU6dGcXFxh8c9++yzMW3atHjrrbc6HWP27NmR\nSqUy7RdffDF27NiRtc/SpUuz1lVv667OD37wg1lLCbV1sdMFBDj0VFRkv0S8ri7Z9+rsl8tTfc0v\ngI4dOzZGjx7dap/m89eGDRti+fLlWZ+vXLky1jV7R1xpaWmccsopB1w3kF9dPT9r/jN27NgujdVy\nnmrrib7m81RJSUlMmzat1T4zZ87MnJvt3bu31ZOEu3fvzrpZpq2xAeh+QhkAgMNISUlJnH322XHz\nzTfH008/HTU1NfHMM8/E97///Tj77LPbDGk2btwYn/jEJ7LWG29LVVVVHHfccZl2W1/+m1/8HD16\ndIxr470+qVQqZs6c2eYxERGrV6/OujO0tLS0zQsRQO/ygQ98IKu9ffv2vNTRMkB+/vnnWz3F09H7\nZPY74YQTsp4+bDlXtWyfdtppnQbhABERJ554Ytb8smnTplZPDjefY6ZNmxYlJSWt+vnABz6QdW7W\ncl566qmnoqGhIdOeMGFCjBo16qDrB6BjQhkAgMNYcXFxnHzyybFw4cL47W9/G++8805cddVVWS+K\njdj31Ms999zTaX+dLbfR2drnbX3W2YXO6dOnu9AJh4CWocz+l1jn6v3332/zDvRHHnmkS/1UV1fH\n5MmTM+2WAXJjY2PmxdgR7c9VBQUFMWPGjEy7o/kuwt3nQO4KCgpi1qxZWdu645zKPAXQO3gbKgD0\nNqNGRaxalb/xL7wwooOXJHe7mTMjfvGL5Mbbz12AbaqqqorvfOc7MWfOnDj33HOzno75xS9+kdO7\nGv7pn/4p027+ZX/Pnj3x5JNPZtrt3X0ekX0BYd26dbFy5cqYMGFCqz73j8mha1TlqFh1eX7mvM07\nN8fUn0xNfNxnLnkmqsqqEh1zVGX+57xjjjkmq719+/ZYvXp1m0/M9bS5c+fGq6++mmkvXrw4PvKR\nj0TEvmUbmy+t1tlc9bvf/S4iWi8vZK7qW0pKRsWpp+bx/Kwdb7xxaWzd+v91+bhjj/1pDBr0oR6o\n6OCUlOR/ruot5s6dGw899FCmvXjx4rj00ksjIuK9996LFStWZD7rbJ667bbbIiLi6aefjt27d0f/\n/v0zfbYcE4CeJ5QBgN6mX7+IPFygypgzJ9lQZu7c/P6+tOnjH/94fO5zn4uf/vSnmW2PPfZYp8e1\nvCjwzDPPxK5du6K0tLTVC2Y7uqvz5JNPjtLS0ti1a1dE7LtoIJTpm/oV9Itxg8blZewBRV170Xx3\nGTNwTAwZMCQvY+fTaaedFoWFhVlh7zPPPJOXUGbOnDlx6623ZtrN55Xmfx46dGgce+yx7fbTfB5b\nu3ZtJmR65513st7FVVJSEqeeemp3lU8eFBT0i9LScfkuo5Vx467vcihTWTkjhg+fn7WMH71Py3Oq\n5sFv83mqsLAw66m9lprPUw0NDfHUU0/FvHnzWj0VGOGcCiApli8DALKdf37fHo+cnXfeeVnt2tra\nTt8BMWzYsKwLmI2NjZmnY5pfQGi5fFBLxcXFWRcw9x/b8s7QkpKSmD59eg6/DZBv5eXlcdJJJ2Vt\n+/d///e81NLywuPTTz+dFQLv11F4HBFxyimnZL3HYf+xLcPjU089NXNnOnSngQOnx8CBHf89bWnC\nhP8jkDkEnHzyyVFeXp5p739yOCJ7jpkyZUpUVFS028+oUaOywu/9x7Z8KnDMmDF5CckBDkdCGQAg\n2/HHR3RyEarbzJkT8cEPJjMWXdbWF/OdO3d2elx775XpyoXOlvu01UfEvhfbutAJh45zzjknq/2r\nX/0qduzYkXgdw4cPz1pObf/d401NTVnvl+loSaCIfcHwtGnTMu325ip3n9OTRo++Oud9Bw8+MwYN\n8vfxUNCvX79WT8C0Ncd0Nk9F5HZOZZ4CSI5QBgBo7Zpr+tY4HJDmd0/uV1XV+XswWn6pX7x4cTQ1\nNWUtf9bVUGblypWxfv16FxDgEHfZZZdFWVlZpl1XVxff//7381JLW3PVSy+9FNu2bcts6+pc1d6T\nMuYqelJV1UejrKz9p0+bGz/+Gz1cDd2prXlqy5Yt8corr2S2dXWeeuqpp6KxsdE8BZBHQhkAoLWP\nfaznlxX7zGciPvrRnh2Dg/L0009ntYcPHx7FxcWdHtfyjs2lS5fGs88+G1u3bm13n7bsf//EfosX\nL87c3bmfCwhwaKmqqoqLL744a9s3vvGNeOmllxKvpeU81HKOGThwYJx44omd9tP8Yuebb74ZL7/8\ncrz22muZbUVFRXHaaad1Q8XQtlSqIEaPvqrT/aqqzonKymmd7kfv0dY8tWTJkkin05ltXQ1ldu7c\nGUuXLm31rkDnVADJEcoAAG275ZaIESN6pu8RIyJ+8IOe6ZuIiHj//ffj7rvvjqampgM6vqGhIW65\n5ZasbX/2Z3+W07GjRo2KCRMmZNq7du2K7373u5l2RUVFTJkypdN+Wr5/4oEHHohXX3010y4qKurw\nxbZA73T99dfH6NGjM+2Ghob48z//8/iv//qvROtoeQHyySefjIcffjjTnjFjRhQUdP6VueV+3/jG\nN7IumJ5yyilZTwdBTxg27DNRXNzReVsqxo//emL10D2mTZsWpaWlmfbKlSvj7rvvzrQnTZoU1dXV\nnfYzceLEGDJkSKZ9yy23ZL0ncMSIEXHUUUd1U9UAdEYoAwC0raoq4j/+I2Lw4O7td/Dgff3msAwW\nB662tjYuuOCCOP744+MXv/hF5gXWudi9e3dceOGFWQFIRMRnP/vZnPtoebHzvvvuy/x5xowZWU/A\ndKT5nZ33339/1oXOqVOnutAJh6Cqqqr45S9/GUVFRZlta9asiZkzZ8Y999yT9e88F2+88cYB1TF6\n9OgYP358pr1r16546KGHMu1cnuiLiKisrMx6oqb5fBfh7nOSUVBQHKNGfbndz4cO/asoLz8+wYro\nDsXFxTF9+vSsbc3nmFznqYiIWbNmtdlHhHkKIGlCGQCgfccfH7FoUfc9MTNixL7+jndRICmvvfZa\n/PVf/3UMHz48Lrnkkrj33nvj3XffbXPfd955J2699daYNGlS3HvvvVmf/eVf/mX86Z/+ac7jtrxI\n0PyJnVyW2Whr35ZP/biAAIeu0047LX784x9nPWGyZcuWOP/88+Okk06KW265JV5//fU2j02n07Fq\n1ar40Y9+FLNmzYq/+Zu/OeA6zFX0JSNGfCEKCwe28UlhjBv3tcTroXuYpwD6nn75LgAA6OWOPz7i\npZciFi6MaLZcQpd95jP7lizzhExe7NixI26//fa4/fbbI2LfnerV1dUxaNCg2L17d7z77ruxcePG\nNo899dRT48477+zSeB19uT/Quzq7MgbQ+82fPz8GDx4c8+fPj23btmW2v/jii7Fw4cKI2LeM4ZAh\nQ6K6ujrS6XTU1NTEunXroq6urs0+q6ur4ytf+UrONcydOzd+/vOft9rev3//OOWUU3LuZ/bs2fGD\nNpbl7NdXHnneAAAgAElEQVSvX8ycOTPnfuBg9OtXGSNHXhZr134ra/sRR1wUZWVH56kqDlZ3nVN1\nFOA4pwJIlidlAIDOVVVF3HVXxL/9W0QXvvxFxL79H3po3/ECmcSUl5d3+ILqzZs3x/Lly2Pp0qXx\n4osvthnIFBQUxKWXXhr/+Z//GZWVlV0af/z48VnvjNivpKQkpk3L/SXDQ4YMiYkTJ7baXlhY6EIn\n9AHnnHNOvPTSS/HpT386UqlUq89ra2tj1apV8fTTT8czzzwTy5cvbzOQGTx4cFx55ZWxYsWKuPji\ni3Mev70LkaeeemoUFxfn3E97Fzv/5E/+JMrLy3PuBw7WyJELI5X6n7+7qVRxjB17XR4r4mBNnz69\nzflo7NixbZ5rteekk05qcz4aNmxYm+daAPQcoQwAkLuPfWzf8mMvvxxx7bURZ5zR+p0zgwfv237t\ntfv2W7Qo4qMfzU+9h7Hq6up44YUX4q233oqbb745zj777Bic4/uBjjjiiLj88svjhRdeiNtuuy0q\nKioOqIa2LnZOmzYtSkpKutRPWxc7TzrppAOuC+hdRo8eHffcc0+8/vrrccUVV8SECRNyOm7YsGFx\n7rnnxj333BPvvvtu3HjjjTFo0KAujT1hwoQYNWpUq+1duft8fy1HH936SYSu9gMHq6TkiBg+/H/e\nATdixKXRv/+YPFbEwSotLW3zhpauzi+FhYVx2mmntdrelSXQAOgeqXRX36IIRETEq6++Gh/84Acz\n7VdeeSWOO+64PFYE9BZ79uyJFStWZG07+uijo1+/PrpqaDodUVsbUV8fUVISUV4e0cbdzuRfOp2O\nNWvWxBtvvBFr166N7du3x65du6KsrCwqKipixIgRceKJJ7Z5gRL6oqZ0U2zeuTnxcavKqqIg5f64\njrz77rvx0ksvxZo1a2Lr1q3R0NAQFRUVMXjw4Kiqqorjjz8+xo4dm+8yoVfauXN5LFs2KQoKSmP6\n9JVRXDws3yVBjzrsvn8BB6Q3Xcs1OwEAByeViqio2PdDr5ZKpWLcuHExbty4fJcCvUJBqiCGDBiS\n7zJowxFHHBFHHHFEvsuAQ1JZ2bFRXX1OlJVNFMgAQC8klAEAAADoQ8aOvS769x+X7zIAgDYIZQAA\nAAD6kIqKP8l3CQBAOyxkDAAAAAAAkAChDAAAAAAAQAKEMgAAAAAAAAkQygAAAAAAACRAKAMAAAAA\nAJAAoQwAAAAAAEAChDIAAAAAAAAJEMoAAAAAAAAkQCgDAAAAAACQAKEMAAAAAABAAoQyAAAAAAAA\nCRDKAAAAAAAAJEAoAwAAAAAAkAChDAAAAAAAQAKEMgAAAAAAAAkQygAAAAAAACRAKAMAAAAAAJAA\noQwAAAAAAEAChDJ0mx07dsSiRYvipptuivPPPz+OOeaYKCgoiFQqFalUKlavXt1pH/Pnz8/s35Uf\nAAAAAADo7frluwD6jrlz58YLL7yQ+LgTJ05MfEwAAAAAAOgqoQzdJp1OZ/48cODAOOmkk+K//uu/\n4r333su5jxtuuCGuvPLKTvf7yle+Eg888EBERCxYsKDrxQIAAAAAQMKEMnSbiy++OIYMGRJTp06N\no446KlKpVMybN69LoczIkSNj5MiRHe6ze/fuePTRRyMioqioKD772c8eTNkAAAAAAJAIoQzdZuHC\nhYmM88ADD8TWrVsjIuLjH/94DB06NJFxAQAAAADgYAhlDmNvvfVWLFu2LNatWxcNDQ0xePDgmDhx\nYsyYMSP69++f7/Ladccdd2T+bOkyAAAAAAAOFUKZXmL9+vWxbNmyWLp0aSxbtiyeeeaZqKmpyXw+\nduzYWL16dbeM9eCDD8bXv/71eO6559r8vLy8PObPnx9f/epXo7q6ulvG7C5r1qyJP/7xjxERMWLE\niPjIRz6S54oAAAAAACA3Qpk8evzxx+Omm26KpUuXxjvvvNPj49XX18eCBQvirrvu6nC/2tra+OEP\nfxi//OUv47777os5c+b0eG25uvPOOyOdTkdExOc+97koLCzMc0UAAAAAAJCbgnwXcDh7+umn44EH\nHkgkkGlqaopPf/rTrQKZwsLCGD9+fEyZMiUGDhyY9dmmTZvirLPOiieffLLH68tFU1NT/OxnP8u0\nL7744vwVAwAAAAAAXSSU6aXKy8u7tb8bb7wxfvOb32Rtu/TSS2Pt2rWxcuXKeP7552PLli3x61//\nOsaMGZPZZ+fOnXHeeefF9u3bu7WeA/Hwww/HmjVrIiJi7ty5cdRRR+W5IgAAAAAAyJ1QpheoqKiI\nefPmxVVXXRX33ntvrF69Ov71X/+12/rfvHlz3HDDDVnbvvnNb8Ztt90WI0aMyGwrKCiIv/iLv4gn\nnngixo0bl9m+bt26uPnmm7utngN1xx13ZP68YMGCPFYCAN1r3LhxkUqlDurnS1/6Uqxevfqg+8nl\n5/rrr8/3/2UAAABwSPJOmTw6++yz48Mf/nBMnDgxCgqy87FVq1Z12zjf+c53oqamJtOeM2dOXHPN\nNe3uP3LkyLj99tvjjDPOyGz73ve+FwsXLoyqqqpuq6srtm7dGg8++GBERAwcODA++clP5qUOAAAA\nAAA4UJ6UyaMjjzwyJk+e3CqQ6U5NTU1x5513Zm27/vrrI5VKdXjc6aefHrNnz860a2pq4le/+lWP\n1JiLu+66K+rr6yMi4vzzz4/S0tK81QIAAAAAAAfCkzJ93BNPPBGbNm3KtCdMmBDz5s3L6dgFCxbE\nkiVLMu0HH3wwLrvssu4uMSfNly67+OKL81IDAK1taWyMT7/2Wta2X06eHB8oKspTRX3Dd7/73Tjx\nxBO7dMyYMWNi+PDh8Z//+Z857f/73/8+brzxxkz7hBNOiJtuuimnYydMmNCl2gAAAIB9hDJ93EMP\nPZTVPvPMMzt9Sqb5vs09+uijUVdXFwMGDOi2+nLx/PPPxwsvvBAREccff3yccsopiY4PQPvu2bgx\n/rB1a9a2X27cGJeNHJmnivqGk08+OeebKFpqvvxoR9atW5fVHjx4cM7HAgAAAAfG8mV93P4wY78Z\nM2bkfOyIESNi3LhxmXZDQ0O81uJu6CT89Kc/zfx5wYIFiY8PQPt+9t57OW0DAAAAQCjT573++utZ\n7cmTJ3fp+Jb7t+yvp9XX18ddd90VERHFxcVx4YUXJjo+AO17ta4unq6pabV9WU1NvFZXl4eKAAAA\nAHo3oUwftmvXrli7dm3WttGjR3epj5b7L1++/KDr6ooHHnggtv73sjjnnntuVFVVJTo+AO37eQdP\nxHT0GQAAAMDhyjtl+rD3338/0ul0pl1UVBRDhw7tUh8jW7wTYOPGje3u++abb8Zjjz2Wte29Zhfl\n7rvvvqiurs60y8vL45Of/GSH4ye1dNnGjRtj06ZNXTrmzTff7KFqAHq/PU1N8c8bNrT7+T9v2BA3\njB8f/Qrc/wEAAACwn1CmD6utrc1ql5WVRSqV6lIfAwYM6LDP5h577LG46KKL2v38qquuymqPHTu2\nw1Bm7dq18fDDD0dExJgxY3r05cO33nprfO1rX+ux/gEONel0Ot5vbGz380e2bYv3Ghra/fzdhoZ4\n4P33Y96gQe3uU11U1OX/LgEAAAAcyoQyfVjLAKV///5d7qO0tLTDPnvSnXfeGU1NTRERMX/+/Chw\ntzVAYl6srY2Tnn32oPo477XXOvz8halT48Ty8oMaAwAAAOBQ4ip3H7Z79+6sdnFxcZf7KCkpyWrv\n2rWr3X3nz58f6XQ655/Vq1d3OPZXv/rVzL6eYgFI1q/ff7/nx+jispEAAAAAhzpPyvRhLZ+Maehg\nmZn21NfXd9hnX/HFL34xPvWpT3XpmDfffDPOPffcHqoIOJztaWqKdS3m36T9soN3iHXnGBcNH97j\n47RnVElJr33nzbPPPht79uzJef+TTz45Bg8e3IMVAQAAAN1BKNOHlbdYEqblkzO5aPlkTMs++4qh\nQ4fG0KFD810GQERErKuvj/FLl+a7jB63fNeuvP6eq049Nca1WKazt7jyyiu7tP8jjzwS8+bN65li\nAAAAgG7TO28PpVu0DFB27twZ6XS6S33U1dV12CcAAAAAAJAboUwfVl1dHalUKtNubGyMjV1cjmb9\n+vVZbU+TAAAAAADAgRHK9GGlpaUxZsyYrG1r167tUh8t9584ceJB1wUAdOyRRx6JdDqd84+lywAA\nAODQIJTp41qGKK+99lqXjn/99dc77A8AAAAAAMiNUKaPmzJlSlb7iSeeyPnYd999N1avXp1pFxUV\nxeTJk7urNAAAAAAAOKz0y3cB9KyPf/zj8e1vfzvT/sMf/hDpdDrrXTPt+f3vf5/V/tCHPhTl5eXd\nXiMA2UaVlMSqU0/NdxmtXLJ8efxh27YDOvbMwYPjx8cc080VHZxRJSX5LgEAAAA4zAhl+rgZM2ZE\ndXV1vP/++xERsXLlynj00UfjQx/6UKfH3nHHHVntc845p0dqBCBbv4KCGFdamu8ysqTT6Xixru6A\nj3+xtjbG9u+f000BAAAAAH2V5cv6uIKCgpg/f37Wtq997WuRTqc7PO7hhx+OJUuWZNoVFRVx3nnn\n9USJABwCVu7eHZsaGw/4+I2NjbFq9+5urAgAAADg0COUOQxcc801WcuOLVq0KGtJs5bWr18fn//8\n57O2XX755VFdXd1jNQLQuz25ffvB97FjRzdUAgAAAHDosnxZnj3++OOxa9euVttffPHFrPbu3bvj\nD3/4Q5t9jBgxIiZPntzuGNXV1XHttdfGtddem9n2v/7X/4q1a9fG//7f/ztGjBgRERFNTU3x29/+\nNi6//PJYu3ZtVv9XXHFFl34vAPqWzgKVCf37Rzqiw6dhnty+PS4YNqybKwMAAAA4dAhl8uyCCy6I\nNWvWdLrfhg0b4swzz2zzs8997nPxs5/9rMPjr7nmmnjiiSfi3/7t3zLbbrvttvjxj38cY8eOjYED\nB8aqVatiW4sXOJeWlsavfvWrGDRoUOe/DAB9VkehzGeHDYtbjj46IiL+nxUr4p83bOhyHwAAAACH\nA8uXHSYKCgri3nvvjb/6q7/K2r53795YuXJlPP/8860Cmaqqqvj3f//3mDlzZpKlAtDLpNPp2Ll3\nb6vtAwsL418mTYqfT5oUlf36RWW/fvH/TpoUd0+aFJWFha32r9u7t9N3mgEAAAD0ZUKZw0j//v3j\nX/7lX+K+++6LKVOmtLvfgAED4otf/GK89tprMW/evOQKBKBXSqVS8ezUqXH5yJGR+u9tswYOjBdP\nOSX+qo3lyM4fNixenDo1ZlZW7js+Ir40alQ8O3VqpFKpVvsDAAAAHC4sX5Znq1evTnzMT3ziE/GJ\nT3wi3nzzzVi6dGmsX78+GhoaYtCgQTFp0qSYOXNm9O/fP/G6AOi9BhQWxj8efXR8csiQeHLHjvjy\nqFHRr6D9ezvGlZbGo1OmxM3r1sWMysqYZRlMAAAAAKHM4eyoo46Ko446Kt9lAHAImTVoUM4BS7+C\ngrh6zJgerggAAADg0GH5MgAAAAAAgAQIZQAAAAAAABJg+TIAgDzLxzvm5s+fH/Pnz098XAAAADic\neVIGAAAAAAAgAUIZAAAAAACABAhlAAAAAAAAEiCUAQAAAAAASIBQBgAAAAAAIAFCGQAAAAAAgAQI\nZQAAAAAAABIglAEAAAAAAEiAUAYAAAAAACABQhkAAAAAAIAECGUAAAAAAAASIJQBAAAAAABIgFAG\nAAAAAAAgAUIZAAAAAACABAhlAAAAAAAAEiCUAQAAAAAASIBQBgC6WSqVarWtqakpD5UAAAD0bW19\n12rrOxlAbyGUAYBuVlDQ+j+vjY2NeagEAACgb9uzZ0+rbW19JwPoLcxQANDNUqlUFBcXZ23bsWNH\nnqoBAADou2pra7PaxcXFnpQBejWhDAD0gIEDB2a1d+zY0eYdXAAAAByYdDrd6ga4ioqKPFUDkBuh\nDAD0gJahTFNTU6xZsyYaGhryVBEAAEDfkU6nY/369a2Wiq6srMxTRQC56ZfvAgCgLyoqKooBAwZE\nXV1dZltDQ0OsXLkyysrKory8PMrKyqKwsNCj9QAAADloamqKPXv2RG1tbezYsaNVIFNUVBQlJSV5\nqg4gN0IZAOghw4YNi7Vr12YtW5ZOp6Ouri4rrAEAAODgpFKpGDFihJvegF7P8mUA0ENKSkpi3Lhx\n7tQCAADoQalUKsaMGRNlZWX5LgWgU0IZAOhBRUVFMXbsWC+bBAAA6AFFRUUCGeCQYvkyAOhhhYWF\nMWrUqNi7d2/U1dVFbW1t1NbWxt69e/NdGgAAwCGnuLg4KioqorKyMkpKSixZBhxShDIAkJDCwsKo\nrKyMysrKiNj3fpmmpqZIp9N5rgwAAKD3S6VSUVBQIIQBDmlCGQDIk1QqFYWFhfkuAwAAAICEeKcM\nAAAAAABAAoQyAAAAAAAACRDKAAAAAAAAJEAoAwAAAAAAkAChDAAAAAAAQAKEMgAAAAAAAAkQygAA\nAAAAACRAKAMAAAAAAJAAoQwAAAAAAEAChDIAAAAAAAAJEMoAAAAAAAAkQCgDAAAAAACQAKEMAAAA\nAABAAoQyAAAAAAAACRDKAAAAAAAAJEAoAwAAAAAAkAChDAAAAAAAQAKEMgAAAAAAAAkQygAAAAAA\nACRAKAMAAAAAAJAAoQwAAAAAAEAChDIAAAAAAAAJEMoAAAAAAAAkQCgDAAAAAACQAKEMAAAAAABA\nAoQyAAAAAAAACRDKAAAAAAAAJEAoAwAAAAAAkAChDAAAAAAAQAKEMgAAAAAAAAkQygAAAAAAACRA\nKAMAAAAAAJAAoQwAAAAAAEAChDIAAAAAAAAJEMoAAAAAAAAkQCgDAAAAAACQAKEMAAAAAABAAoQy\nAAAAAAAACRDKAAAAAAAAJEAoAwAAAAAAkAChDAAAAAAAQAKEMgAAAAAAAAkQygAAAAAAACRAKAMA\nAAAAAJAAoQwAAAAAAEAChDIAAAAAAAAJEMoAAAAAAAAkQCgDAAAAAACQAKEMAAAAAABAAoQyAAAA\nAAAACRDKAAAAAAAAJEAoAwAAAAAAkAChDAAAAAAAQAKEMgAAAAAAAAkQygAAAAAAACRAKAMAAAAA\nAJAAoQwAAAAAAEAChDIAAAAAAAAJEMoAAAAAAAAkQCgDAAAAAACQAKEMAAAAAABAAoQyAAAAAAAA\nCRDKAAAAAAAAJEAoAwAAAAAAkAChDN1ix44dsWjRorjpppvi/PPPj2OOOSYKCgoilUpFKpWK1atX\nH1T/q1evjoqKikx/48aN65a6AQAAAAAgKf3yXQB9w9y5c+OFF17okb7T6XQsWLAgamtre6R/AAAA\nAABIgidl6BbpdDrz54EDB8a8efNi+PDh3dL3j370o/jjH/8Yw4YN65b+AAAAAAAgH4QydIuLL744\n7r777njjjTdi69at8cgjj8Sxxx570P2uWbMmrr766oiIuOWWWw66PwAAAAAAyBfLl9EtFi5c2CP9\n7l+27Nxzz41PfepTPTIGAAAAAAAkQShzmHrrrbdi2bJlsW7dumhoaIjBgwfHxIkTY8aMGdG/f/98\nlxcREf/3//7fePjhh2PQoEFx66235rscAAAAAAA4KEKZXmD9+vWxbNmyWLp0aSxbtiyeeeaZqKmp\nyXw+duzYWL16dbeM9eCDD8bXv/71eO6559r8vLy8PObPnx9f/epXo7q6ulvGPBBr166Nq666KiIi\nbrzxxjjiiCPyVgsAAAAAAHQHoUyePP7443HTTTfF0qVL45133unx8err62PBggVx1113dbhfbW1t\n/PCHP4xf/vKXcd9998WcOXN6vLa2XHLJJVFTUxN/+qd/Gp///OfzUgMAAAAAAHSngnwXcLh6+umn\n44EHHkgkkGlqaopPf/rTrQKZwsLCGD9+fEyZMiUGDhyY9dmmTZvirLPOiieffLLH62vp9ttvj9//\n/vdRVlYWP/7xjxMfHwAAAAAAeoJQphcqLy/v1v5uvPHG+M1vfpO17dJLL421a9fGypUr4/nnn48t\nW7bEr3/96xgzZkxmn507d8Z5550X27dv79Z6OrJu3bq44oorIiLiH/7hH+LII49MbGwAAAAAAOhJ\nQpk8q6ioiHnz5sVVV10V9957b6xevTr+9V//tdv637x5c9xwww1Z2775zW/GbbfdFiNGjMhsKygo\niL/4i7+IJ554IsaNG5fZvm7durj55pu7rZ7OXHLJJbFjx4445ZRT4ktf+lJi4wIAAAAAQE/zTpk8\nOfvss+PDH/5wTJw4MQoKsrOxVatWdds43/nOd6KmpibTnjNnTlxzzTXt7j9y5Mi4/fbb44wzzshs\n+973vhcLFy6MqqqqbqurLT/96U/jP/7jP6KoqCjuuOOOKCws7NHxAAAAAAAgSZ6UyZMjjzwyJk+e\n3CqQ6U5NTU1x5513Zm27/vrrI5VKdXjc6aefHrNnz860a2pq4le/+lWP1Ljf+vXr4+/+7u8iIuKa\na66J448/vkfHAwAAAACApHlSpg974oknYtOmTZn2hAkTYt68eTkdu2DBgliyZEmm/eCDD8Zll13W\n3SVm/OAHP4jt27dHWVlZHHXUUXHPPfd0uH9dXV1mnwEDBsTZZ5/dY7UBAAAAAEB3EMr0YQ899FBW\n+8wzz+z0KZnm+zb36KOPRl1dXQwYMKDb6muuvr4+IiJ27twZ8+fP73T/999/P84///yIiBg7dqxQ\nBgAAAACAXs/yZX3YCy+8kNWeMWNGzseOGDEixo0bl2k3NDTEa6+91l2lAQAAAADAYUco04e9/vrr\nWe3Jkyd36fiW+7fsrzv94z/+Y6TT6U5/9hs7dmxm2+rVq3usLgAAAAAA6C5CmT5q165dsXbt2qxt\no0eP7lIfLfdfvnz5QdcFAAAAAACHK++U6aPef//9rCdLioqKYujQoV3qY+TIkVntjRs3trvvm2++\nGY899ljWtvfeey/z5/vuuy+qq6sz7fLy8vjkJz/ZpXp60saNG2PTpk1dOubNN9/soWoAAAAAAOiL\nhDJ9VG1tbVa7rKwsUqlUl/oYMGBAh30299hjj8VFF13U7udXXXVVVnvs2LG9KpS59dZb42tf+1q+\nywAA+P/Zu/foqMp7/+OfPdfcAyQkkHuoVQTtwRbRgnKReqpdKni/lKNY0SL2SP2Jl3qUi9qqdVVW\nz1G7eo7UetbxcipWK9qeFgRbxBZqBVquggQCIdwvkuskM/v3R8yYSSbJTDKz98zk/VorK7P3PPt5\nvkM7ivOZ57sBAAAAACmM9mUpqnOAkpaWFvUc6enpPc4JAAAAAAAAAAAiRyiTopqamkKOPR5P1HN4\nvd6Q48bGxm7Hzpw5U6ZpRvyze/fuqOuR1O/rAQAAAAAAAACwC+3LUlTnnTE+ny/qOZqbm3ucM5XM\nmTNH1157bVTX7Ny5U9OnT49TRQAAAAAAAACAVEMok6KysrJCjjvvnIlE550xnedMJQUFBSooKLC7\nDAAAAAAAAABACqN9WYrqHKA0NDTINM2o5qivr+9xTgAAAAAAAAAAEDlCmRSVn58vwzCCxy0tLTp0\n6FBUc9TU1IQcs5MEAAAAAAAAAIC+I5RJUenp6SorKws5V11dHdUcncePHDmy33UBAAAAAAAAADBQ\nEcqksM4hypYtW6K6fuvWrT3OBwAAAAAAAAAAIkcok8LGjBkTcvzhhx9GfG1tba12794dPHa73Ro1\nalSsSgMAAAAAAAAAYMAhlElhl112WcjxihUrZJpmRNf+4Q9/CDmeMmWKsrKyYlYbAAAAAAAAAAAD\nDaFMChs/frzy8/ODx7t27dL7778f0bVLliwJOZ42bVosSwMAAAAAAAAAYMAhlElhDodDM2fODDm3\naNGiXnfLvPfee1q9enXwODs7W9ddd108SgQAAAAAAAAAYMAglElxDzzwQEjbsT/+8Y966qmnuh1f\nU1OjWbNmhZybO3duyI4bAAAAAAAAAAAQPZfdBQxka9asUWNjY5fzGzduDDluamrSihUrws5RVFSk\nUaNGdbtGfn6+HnroIT300EPBcz/4wQ9UXV2thx9+WEVFRZKkQCCgt99+W3PnzlV1dXXI/Pfee29U\nrwsAAAAAAAAAAHRlmJHe+R0xV1FRoT179vRrjltuuUW//OUvexwTCAQ0bdo0vfPOOyHnnU6nysvL\nlZubq6qqKp04cSLk+fT0dC1fvlwTJkzoV42pavPmzTrrrLOCx5s2bdLo0aNtrAgAAAAAAAAA0Fki\nfZZL+7IBwOFw6PXXX9cNN9wQct7v92vXrl1av359l0AmLy9Pv/3tbwlkAAAAAAAAAACIEUKZASIt\nLU2vvvqqli5dqjFjxnQ7LjMzU3PmzNGWLVs0efJk6woEAAAAAAAAACDFcU8ZG+3evdvyNa+++mpd\nffXV2rlzp9auXauamhr5fD4NGjRIZ555piZMmKC0tDTL6wIAAAAAAAAAINURygxQp512mk477TS7\nywAAAAAAAAAAYMCgfRkAAAAAAAAAAIAFCGUAAAAAAAAAAAAsQCgDAAAAAAAAAABgAUIZAAAAAAAA\nAAAACxDKAAAAAAAAAAAAWIBQBgAAAAAAAAAAwAKEMgAAAAAAAAAAABYglAEAAAAAAAAAALAAoQwA\nAAAAAAAAAIAFCGUAAAAAAAAAAAAsQCgDAAAAAAAAAABgAUIZAAAAAAAAAAAACxDKAAAAAAAAAAAA\nWIBQBgAAAAAAAAAAwAKEMgAAAAAAAAAAABYglAEAAAAAAAAAALAAoQwAAAAAAAAAAIAFCGUAAAAA\nAAAAAAAsQCgDAAAAAAAAAABgAUIZAAAAAAAAAAAACxDKAAAAAAAAAAAAWIBQBgAAAAAAAAAAwAKE\nMgAAAAAAAAAAABYglAEAAAAAAAAAALAAoQwAAAAAAAAAAIAFCGUAAAAAAAAAAAAsQCgDAAAAAAAA\nAABgAUIZAAAAAAAAAAAACxDKAAAAAAAAAAAAWIBQBgAAAAAAAAAAwAKEMgAAAAAAAAAAABYglAEA\nAC7Bv+EAACAASURBVAAAAAAAALAAoQwAAAAAAAAAAIAFCGUAAAAAAAAAAAAsQCgDAAAAAAAAAABg\nAUIZAAAAAAAAAAAACxDKAAAAAAAAAAAAWIBQBgAAAAAAAAAAwAKEMgAAAAAAAAAAABYglAEAAAAA\nAAAAALAAoQwAAAAAAAAAAIAFCGUAAAAAAAAAAAAsQCgDAAAAAAAAAABgAUIZAAAAAAAAAAAACxDK\nAAAAAAAAAAAAWIBQBgAAAAAAAAAAwAKEMgAAAAAAAAAAABYglAEAAAAAAAAAALAAoQwAAAAAAAAA\nAIAFCGUAAAAAAAAAAAAsQCgDAAAAAAAAAABgAUIZAAAAAAAAAAAACxDKAAAAAAAAAAAAWIBQBgAA\nAAAAAAAAwAKEMgAAAAAAAAAAABYglAEAAAAAAAAAALAAoQwAAAAAAAAAAIAFCGUAAAAAAAAAAAAs\n4LK7AAAAAAAAAAB909p6Uo2NVXI6M+RwZMjpzJTTmSHD8MgwDLvLAxBjvOeTH6EMAAAAAAAAkLQM\nbdgwWX7/yU7nHZ9/aJvZ4cPbtg9w2x+3f6Db+bjj+NDrQ5/jQ2DADrznkx2hDAAAAAAAAJCkXK4c\nFRffqerqJzs9E5DfXye/v04tLfFZ2zC8Gjduq9LTK+OzAIAueM8nP+4pAwAAAAAAACSx4uK5MgyP\n5esWFs7gw1nABrznkxuhDDCAtbae1KlTG9TQ8ImamvappeW4AoFmmaZpd2kAAAAAACBCXu8wDRt2\ni6VrGoZHFRXzLV0TQBve88mN9mXAgEYPSgAAAAAAUkFp6b2qrX1BkjVftCwq+q7S0sosWQtAV7zn\nkxehDDCA0YMSAAAAAIDUkJFxhvLzp+vIkTfjvpbDka6ysofivg6A7vGeT160LwMGOHpQAgAAAACQ\nGkpL77dknZKSufJ6h1myFoDu8Z5PToQywABHD0oAAAAAAFJDbu75ys29MK5rOJ05Ki29L65rAIgM\n7/nkRCgDQKWl90qy7v4u9KAEAAAAACA+4v3N+dLSeXK7h8R1DQCR4z2ffAhlAAR7UFqBHpQAAAAA\nAMRPXt63lJExKi5zu935Kin5flzmBtA3vOeTD6EMAEn0oAQAAAAAIBUYhkNlZfH5b/yysgflcmXH\nZW4AfcN7Pvm47C4AQGJo70F58uTquK1BD0oAAAAAAOKvoOBG7dr1b/L5amI2p8dTpKKiOTGbD8nF\nNM32R51+9/Sc2eu1vY/p7vlo1onHHNGsE/8/s/T0M+V2F6il5ZBihfd8/BDKAAgqLb0/rqEMPSgB\nAAAAAIg/h8Oj0tJ79Omn82I4Z5o2bvyGEv8D92jWSZSAIXH/zDBwlZc/LKcz3e4yUhKhDICg9h6U\nDQ1bYj43PSiBxNDaelKNjVVyOjPkcGTI6cyU05khw/DIMAy7ywMAAAAQBb+/Qc3NNWpu3tfh9z75\nfDVqatojyVCsPlxvatqlpqZdMZkLQGJLS6vU8OG32V1GyiKUARDU3oNy27aZMZ+bHpRAojC0YcNk\n+f0nO513fB7UZHYIbNpCm/bH7SFO5+OO40OvD32O4AcAAACIjGmaam09ETZs6XiutfW43aUCSEEV\nFQvlcHjsLiNlEcoACEHfWSC1uVw5Ki6+U9XVT3Z6JiC/v05+f51aWuKztmF4NW7cVqWnV8ZnAQAA\nACAJmKZfPt+hHsOW5uYaBQINdpcKYADKyDhThYXftruMlEYoAyBEPPrOGoZLf//7pWG+PZ/Z6Zv4\nmWG+Xd/5XKYcDv7RBfRHcfFc7d37jEzTZ+m6hYUzCGQAAACQ0gIBn5qb9/cQtuyTz1cr02y1u1QA\nCKui4lEZhtPuMlIan2wC6GL48Nu1e/djYdob9U1zc7Wam6tjMpckGYY7TJDTU7jTOfzpORByONJo\nsYSU5vUO07Bht6i29r8sW9MwPKqomG/ZegAAAECstbbW9Ri2NDfXqKXlkN1lAkCfZWWdo6FDr7K7\njJRHKAOgi+7bGyUG02xRa+sJSSfitILRzT0z+razJ9w17PaB3UpL71Vt7QuK1U0/e1NU9F2lpZVZ\nshYAAAAQDdM01dJytMewpbl5n/z+z+wu1XIFBTOUkXG6pLYvLn7xBcbwv0O/4NjbmO5+R7NO12uj\nr7X7mq2dI5p1+DPr7trE/zOz5s9969YZOnp0maJVWfm4DMMR9XWIDp8KAgiruPhuW9obJQZTgUC9\nAoH6uK0QfrdP33b2hLu5Ort90JuMjDOUnz9dR468Gfe1HI50lZU9FPd1AAAAgM4CgVb5fAd6DFua\nm2tkms12l9pvLtdgeb3F8npL5PWWyOP54nFLyxFt2/YvUc2XkzNeZ5753/y3JZCEysoeijqUyckZ\nryFDLo1TReiIUAZAWF7vcA0bdvPn36RHrFm52ycWO3vY7ZOaSkvvtySUKSmZK693WNzXAQAAwMDi\n9zf1Grb4fLWSAnaX2k+GPJ5hwcDli7Dli9DF6y2W05nR4yy1tf+pkydXR7zqiBE/IpABklRu7vnK\nzb2Q93yC4hM1AN0qLZ2n2tolsqq9EWLpi90+LS2H47KCYXhitrMn3DXs9om/vvwlLVpOZ45KS++L\n2/wAAABIPaZpyu//rMewpbl5n1pbj9pdar8ZhjtM2NIxcCmWxzNcDoe732uVlt4f8d/9Bw++WIMG\nTer3mgDsw3s+cRHKAOhWf9oblZber4yMM+T31ysQaJDfXy+/v0GBQPvvruc6jg0EGuLwihBLpulT\na6tP8d/tE5udPeECIXb7RPeXtL7NP09u95C4zQ8AAIDkYpoBtbQc7jFsaW7eF9d20lZxOrN6DFu8\n3hK53fmW3b8hL+9bysgYpYaGLb2Orax83IKKAMQT7/nExadRAHrUl/ZGOTnjNWLEk/3a5WCapgKB\nxpAAJ5IgJ/y58NeYZkuf64MVOu72ic8K3e/2iX5nT7j2cMmw2yeav6RFy+3OV0nJ92M+LwAAABJT\nINAin6+2x7DF59ufEv8t5nbn9xi2eL0lcrly7C4zhGE4VFp6n7Zvv7XHcXl505STM86iqgDEC+/5\nxEUoA6BHdvWgNAzj8w+8e+6J2x+BQEsEQU7/AiEkNut3+/R9Z0937eEMw9m/Cg2Hysru17ZtM2Pz\nkjsoK3tQLld2zOcFAACA9fz++jAhS8ewpUY+30Elf/trh7zeom7v29K286VITmea3YX2SWHhTaqq\n+jf5fPu7GWGosvIxS2sCED+85xMToQyAXqVqD0qHwy2HI1cuV25c5g/d7dM5yOkp3Im81VsqfMMs\ntVm126c/O3sy5HLlye0eGtP7D3k8RSoqmhOz+QAAABAfpmmqtfV4j2FL2/1b4vVFJusYhjfMzpbQ\nXS5ud2FKtzl2ODwqKblHu3aFv+9jQcENyso62+KqAMQL7/nElLr/lgEQM/Sg7JvQ3T75cVkjst0+\n/QuEkNi+2O1z3O5SQpSXPyynM93uMgAAAAY00/TL5zvYY9jS3FyjQKDR7lL7zenM7TFsaWsnNiTh\n2wtboajoDu3Z87j8/pOdnnGqomKRLTUBiB/e84mHUAZAr+hBmbjs3e3Tl1Zv7PYZKKqqHlFNzXPy\neArk8RTK7W773fFx+2/CGwAAYqe19aQaG6u67Jo1DA8fRqeYQKBZzc37ewxbmpv3S/LbXWq/ud2F\nPYYtHk+xXK4su8tMGi5XjoqL71R19ZMh54cPv1UZGV+2qSoA8cJ7PvEQygCICD0oByZrd/tE3rYt\nmkCI3T72aG09qtbWo2po2NzrWKczS2534eehTcHnj8OHOS7XID5QAgCgR4Y2bJgc5tuwjjBtTjvf\nty78ccfx4dukZhD8xFhr66lewpZ9MW09axfDcMnjKeo2bGkLXIbL4fDYXWrKKS6+W3v3PiPT9Elq\na4tcXv6IzVUBiBfe84mFUAZAROhBiXiJ/26fgAKBppDdOv25j0+4QIjdPv3j99fJ769TU9OnvY41\nDHeHoKZzgBMa5rjdQ1O6HzgAAOF0921YKRD8d2787nXn1bhxW5WeXhmfBVKAaZpqaTnSY9jS3LxP\nfv8pu0vtN4cjo5ewpVgeT4EMw2F3qQOS1ztcw4bdrNraFyRJRUWzlZZWZnNVAOKF93xi4ZMKABGj\nByWSkWE4Ouz2iY/udvt0DXL6du8fdvt8wTRb5PPVyOeriWi8y5XXpW1ad7tx4vn/EQAArFRcPDfk\n27BWKSycMaADmUCgVT7fgR7Dlubm/TLNZrtL7TeXa0i392/xeNrv35LLzqkEV1o6T7W1S+RwpKu8\n/CG7ywEQZ7znEwehDICI0YMSCM/63T7R3McnskDINFvjUrvdvmijtqXXsW1t1Dq3TSsI21rN5RrM\nhwwAgITl9Q7TsGG3qLb2vyxb0zA8qqiYb9l6VvP7G4PhSviwpUY+3wFJAbtL7SdDHs/wHsMWr7eY\newKmiIyMM5SfP00ZGSPl8RTaXQ6AOOM9nzgIZQBEhR6UgPWs2u3THtZs2zZTx48vj9taieqLNmq7\neh1rGK4wAU743ThtbdTcFrwCAAC+UFp67+ctSkxL1isq+m5StkExTVOtrSd7DFuam/eptfWY3aX2\nm2F4eglbSuTxDKP96wBTXv6I0tIq7C4DgEV4zycG/k0LICr0oARSU9tun0GSBqmi4tGoQ5mcnK9r\n1Kg31Np6SD7fIfl8B9XS0va74+P238l+Hx7TbJXPt18+3/6IxrtcQ7oEN93txnE6M+NcPQBgIGj7\nNux0HTnyZtzXcjjSVVaWeG1QTDPw+d9Lug9bmpv3pUSrWKczu8ewxestltudz05fdJGd/VW7SwBg\nId7ziYFQBkDU6EEJpLbc3POVm3uhTp5cHfE1I0Y8obS04ZKG9zq2/RupLS0HOwQ4B7uEOe2/U+FG\nt62tx9TaekwNDVt7HetwZHa53013YU5bGzVujgsACK+09H5LQpmSkrnyeofFfZ2OAgGffL7aMCFL\nTYd2YvuT/osgkuR2D+0xbPF6i+Vy5dhdJgAAiBChDICo0YMSSH2lpfdHHMoMHnyxBg2aFPHchmHI\n7R4kt3uQMjLO6HW839/YYdfNoR7DnJaWI7KqTUu8BAL1amqqUlNTVa9j29qoDf08rCnsEuaE7sYp\noI0aAAwwffmiRbSczhyVlt4X0zlbW+s+390SfmdLc3ONWloOxnRNezjl9RaFtBTreN+Wtt9Fcji8\ndhcKAABiiFAGMfPZZ59p/fr1+uijj/TRRx/pb3/7m3bu3CnTbPtwrKqqShUVFZbNg/iiByWQ2vLy\nvqWMjFFqaNjS69jKysfjWovTmS6ns1xpaeW9jg0EWtXaerRTgBMuzGlvo+aLa+3x1tZGrVY+X21E\n49vaqBWEDXA6hzkuV1acq4cVWltPqrGxSk5nhhyODDmdmXI6M2QYHlrYAANENF+06Nv88+R2D4lo\nbNtu2WPd7mxpD138/pNxq9cqDkd6L2FLiTyeAhmG0+5SAQCAxQhlEDOTJk3Shg0bEmYexBc9KIHU\nZhgOlZbep+3bb+1xXF7eNOXkjLOoqt45HK5gwNCbL9qodb4HTvjdOH7/Zxa8gvhqb6Mmbet1rMOR\n0eV+N93txnG7h9BGLWEZ2rBhcpgPOB2fBzWZHQKbttCm/XF7iNP5uOP40OtDnyP4ARJDNF+0iJbb\nna+Sku9LkkzTL5/vYA/txPbJ56tRINAU8zqs5nIN6iFsafvd1mKUfwYCAICuCGUQM+07WSQpNzdX\n55xzjrZt26YDBw7YMg8AoH8KC29SVdW/9XAze0OVlY9ZWlMshbZRO73X8W1t1A53CnDChzktLYeV\n/G3UGtTUtFtNTbt7HdveRi20XVrHAKfj46FyODzxfwGQJLlcOSouvlPV1U92eiYgv79Ofn+dWuJ0\nuwXD8GrcuK1KT6+MzwIAImIYDpWV3a9t22bGfG63e7g2brz481ZjtZL8MV/DWoY8nsJud7a037/F\n6cy0u1AAAJDECGUQM9/5znc0dOhQjR07VqeddpoMw9DkyZOjDlNiNQ8AoH8cDo9KSu7Rrl3h+8QX\nFNygrKyzLa7KPm1t1MqUllbW61jT9Kul5WiX4KZrgHMw5dqo1df3Pt7lGhwmwAm/G8fpzOKbxv1U\nXDxXe/c+Y/n/zwoLZxDIAAnANAPKy7tCHs/wiNtdRqqh4R8xnS+eDMMtr7e4h7ClRB7PcO6/BgAA\n4o5QBjFz9913J9Q8AID+Kyq6Q3v2PB6m9ZFTFRWLbKkpGRiG8/NgoUBSz8GVaZry+z/rcr+b7nbj\npEKf/dbW42ptPa7Gxu29jnU40ru0S+tuNw5t1MLzeodp2LBbVFv7X5ataRgeVVTMt2w9IFmYpinT\n9Mnvb1Qg8MVP5MdNUV+T7MF/JByOzC4BS+eWYm73UP4dAQAAEgKhzAD26aefat26ddq3b598Pp8G\nDx6skSNHavz48UpLS7O7PABAAuiu9dHw4bcqI+PLNlWVWgzDkMuVK5crN6I/U7+/qUMbtYM9hDnt\nbdQC8X8RcRQINEbcRk1yyuMZGibACRfmDJXD4Y13+QmjtPRe1da+IKva6hUVfTeiXWWA3UwzEGUo\n0t/jJiX7P5et5nLlhQ1ZOp5zOnPYVQkAAJIGoUyCqKmp0bp167R27VqtW7dOH330kU6dOhV8vry8\nXLt3747JWm+99ZYee+wxffzxx2Gfz8rK0syZM7VgwQLl5+fHZE0AQPIqLr47pPWRYXhUXv6IzVUN\nXE5nmpzOUqWllfY69os2aofCBjidH5tmswWvIJ788vkOyOc7EGEbtUFhg5twrdWSvY1aRsYZys+f\nriNH3oz7Wg5HusrKHor7Okg9ke4iCQSaYhaSDIRdJInLIY9neI9hi8dTJKcz3e5CAQAAYopQxkZr\n1qzRT37yE61du1b793d3E+XYaW5u1m233aaXX365x3F1dXV69tln9b//+79aunSpJk6cGPfaAACJ\ny+sdrmHDbv78W/ZSUdFsvgGfJELbqJ3V49i2NmqnwgQ44XfjtLaesOZFxFFr6wm1tp5QY+MnvY51\nONK63O+mu904bW3UnBa8guiUlt5vSShTUjJXXu+wuK+D+GMXCfrKMLw9hi1eb4nc7kI5HHwkAQAA\nBh7+BmSjv/71r3rzzfj/h7EkBQIBXX/99frNb34Tct7pdKqsrEy5ubmqqqrSyZNf9Kk/fPiwLr30\nUq1YsUJf//rXLakTAJCYSkvnqbZ2iRyOdJWX8w34VNTWRi1HLleOpNN6HR8INH8e4HRsl9bdbpxU\naKPWpObmPWpu3hPBaIfc7qEh97vpPswpsKyNWm7u+crNvVAnT66O2xpOZ45KS++L2/wDWdddJNHf\nW4RdJIgFhyNDaWkV3YYtHk+x3O68pN5dCAAAEE+EMgkqKytLdXV1MZvv6aef7hLIzJ49W4888oiK\niooktQU3v/nNb/T9739f1dXVkqSGhgZdd9112rRpk3Jzc2NWDwAgubS1PpqmjIyR8ngK7S4HCcDh\n8CotLdI2agG1tBwNE+CEC3MOfv5t+WQWUEtL22upr/9Hr6OdztxO7dK634XjdGb364PO0tL74xrK\nlJbOk9s9JG7zJxJ2kWAgysz8J40d+7EMw2F3KQAAAEmLUCYBZGdn62tf+5rOPfdcjRs3Tueee66q\nqqo0ZcqUmMx/9OhR/fCHPww598QTT+jBBx8MOedwOHTllVdq3LhxuuCCC4L3sNm3b5+eeeYZLVq0\nKCb1AACSU3n5I0pLq7C7DCQhw3DI4xkqj2eoMjNH9zi2rY1aXTf3veka4KRCGzW//6QaG09G1EbN\nMLzdBDjhduPkdWmjlpf3LWVkjFJDw5aYvw63O18lJd+P+byRaNtF0mJpSMIuEsSHU05nuhyOL36+\nOE4Lc65vx598MlvHjr0bdXUjRvyIQAYAAKCfCGVsdPnll+uf//mfNXLkSDkcoX+xraqqitk6P/7x\nj3Xq1Kng8cSJE/XAAw90O764uFgvvPCCvvGNbwTPLV68WHfffbfy8vJiVhcAILlkZ3/V7hIwALS1\nUcuWy5Wt9PQv9To+EPCFtFHreTfOYUn++L+IODLNZjU3V6u5uTqC0Q653fld2qXFK5QpK3tQLlf2\n53VasYukKeQcu0gQD4bh7XcAEt2x25LXVV7+cNShTE7OeA0ZcmmcKgIAABg4CGVs9KUv9f5BQ38F\nAgG9+OKLIecWLlzYa9uLqVOn6sILL9Tq1W3tLU6dOqVf/epXuvPOO+NWKwAAQLQcDo/S0kqUllbS\n69i2NmrHwgQ44cOctg/6k1lALS1tgVX8OVVd/bR2736MXSSII4cFoUjozpRU3RXSl3tMte2S4T4x\nAAAA/UUok+I+/PBDHT58OHg8YsQITZ48OaJrb7vttmAoI0lvvfUWoQwAAEhabW3U8uXx5Cszc1Sv\n41tb6zq1S+s+zGltPW7BK0hkfrW0HLS7CFjMil0kDkda8JxhuAkFYiiae0wNHnyxBg2aFOeKAAAA\nBoaEDWX8fr/q6+uDx+np6XK7rdnKnUrefTd0S/rFF18c8X/IXHzxxSHH77//vurr65WZmRmz+gAA\nABKVy5Ullysr4jZqLS2HuwQ44cOcQ0r2NmpIROwiQXSiucdUZeXjFlQEAAAwMCRsKPPSSy/p9ttv\nDx4vX75cF110kY0VJacNGzaEHI8fPz7ia4uKilRRUaHdu3dLknw+n7Zs2aJzzz03liUCAAAkPYfD\nI6+3WF5vca9jTTOg1tbjndqldb8bJxBosOAVINb6souk466QaEMSdpEgWobhUGnpfdq+/dYex+Xl\nTVNOzjiLqgIAAEh9CRvKHDx4UKZpSpIGDRpEINNHW7duDTkeNar3Vh2dx7eHMu3zEcoAAAD0nWE4\n5Hbnye3Oi6iNmt9f302A0zXMaW09ZsErSEbsIgHCKSy8SVVV/yafb383IwxVVj5maU0AAACpLmFD\nmaysLEmSYRgqLy+3uZrk1NjYqOrq6pBzpaWlUc3Refz27dv7XRcAAAAi53RmKj19hNLTR/Q6NhBo\nCbZRawttet6NY5qtFryCrrruIkmLa0jCLhIgPIfDo5KSe7Rr131hny8ouEFZWWdbXBUAAEBqS9hQ\nZvjw4XaXkPSOHDkS3G0kSW63WwUFBVHNUVwc2oLj0KFD3Y7duXOnPvjgg5BzBw4cCD5eunSp8vPz\ng8dZWVm65ppr4jYPAADAQONwuOX1FsnrLep1rGkG9Nlnf9X69V+XZPY6vjOPZ5iKi+fK6cxkFwmQ\nxIqK7tCePY/L7z/Z6RmnKioW2VITAABAKkvYUObMM8+UJJmmqb1799pcTXKqq6sLOc7IyIj6G4KZ\nmZk9ztnRBx98oFtv7b4f8X33hX77qry8PGyYEqt5onHo0CEdPnw4qmt27tzZrzUBAADsZBgO5eae\np/z86Tpy5M2orz/jjCXKy/tWHCoDYCWXK0fFxXequvrJkPPDh9+qjIwv21QVAABA6krYUGb06NEa\nPXq0Nm/erOPHj2vt2rU677zz7C4rqXQOUNLS0qKeIz09vcc5U8Xzzz+vRYv4FhgAABh4SkvvjzqU\nyckZryFDLo1TRQCsVlx8t/bufUam6ZMkGYZH5eWP2FwVAABAakrovgF33HFH8PGCBQtsrCQ5NTU1\nhRx7PJ6o5/B6vSHHjY2N3Y6dOXOmTNOM+Gf37t1xnQcAAAC9y809X7m5F0Z1zYgRP+IeLUAK8XqH\na9iwm4PHRUWzlZZWZmNFAAAAqSuhQ5k5c+ZowoQJMk1Ty5cv17x58+wuKal03hnj8/minqO5ubnH\nOQEAAJD8Skvvj3js4MEXa9CgSXGsBoAdSkvnSTLkcGSovPwhu8sBAABIWQnbvkySnE6nli1bpiuu\nuEIffPCBFi9erHXr1unRRx/V5MmT7S4v4WVlZYUcd945E4nOO2M6z5kq5syZo2uvvTaqa3bu3Knp\n06fHqSIAAADr5OV9SxkZo9TQsKXXsZWVj1tQEQCrZWScofz8acrIGCmPp9DucgAAAFJWQocyjz76\nqCRp0qRJ2rFjhw4ePKg1a9Zo6tSpKiws1NixY1VZWamcnBy53e6o5p4/f348Sk4onQOUhoYGmaYZ\nVauJ+vr6HudMFQUFBSooKLC7DAAAAFsYhkOlpfdp+/ZbexyXlzdNOTnjLKoKgNXKyx9RWlqF3WUA\nAACktIQOZRYuXBgSIBiGIdM0JUkHDhzQu+++2+e5B0Iok5+fH/Jn1tLSokOHDqmwMPJvPdXU1IQc\nE1wAAACkpsLCm1RV9W/y+fZ3M8JQZeVjltYEwFrZ2V+1uwQAAICUl9D3lAnHMIzgT1+0BxQDQXp6\nusrKQm/OWF1dHdUcncePHDmy33UBAAAg8TgcHpWU3NPt8wUFNygr62wLKwIAAACA1JPwoYxpmjH9\nGWg6hyhbtvTeJ7yjrVu39jgfAAAAUkdR0R1yOnPDPONURcUiy+sBAAAAgFST0O3LVq1aZXcJSW/M\nmDH6/e9/Hzz+8MMPdcstt0R0bW1trXbv3h08drvdGjVqVKxLBAAAQIJwuXJUXHynqqufDDk/fPit\nysj4sk1VAQAAAEDqSOhQZtKkSXaXkPQuu+wyPfXUU8HjFStWyDTNiNq//eEPfwg5njJlirKysmJe\nIwAAABJHcfHd2rv3GZmmT5JkGB6Vlz9ic1UAAAAAkBoSvn0Z+mf8+PHKz88PHu/atUvvv/9+RNcu\nWbIk5HjatGmxLA0AAAAJyOsdrmHDbg4eFxXNVlpaWQ9XAAAAAAAiRSiT4hwOh2bOnBlybtGiRb3e\nX+e9997T6tWrg8fZ2dm67rrr4lEiAAAAEkxp6TxJhhyODJWXP2R3OQAAAACQMghlBoAHHnggpO3Y\nH//4x5CWZp3V1NRo1qxZIefmzp0bsuMGAAAAqSsj4wzl509TScnd8ngK7S4HAAAAAFJGQt9TJlJ1\ndXU6deqUsrOzk+6eJ2vWrFFjY2OX8xs3bgw5bmpq0ooVK8LOUVRUpFGjRnW7Rn5+vh566CE9c1Y0\n+wAAIABJREFU9NAX33L8wQ9+oOrqaj388MMqKiqSJAUCAb399tuaO3euqqurQ+a/9957o3pdAAAA\nSG7l5Y8oLa3C7jIAAAAAIKUYZm99rBLMqVOn9Morr+hPf/qT/vKXv2jv3r3y+/3B551Op8rKynT+\n+edr0qRJuvHGGxM6qKmoqNCePXv6Ncctt9yiX/7ylz2OCQQCmjZtmt55552Q806nU+Xl5crNzVVV\nVZVOnDgR8nx6erqWL1+uCRMm9KvGVLR582adddZZweNNmzZp9OjRNlYEAAAAAAAAAOgskT7LTZr2\nZQ0NDfp//+//qbi4WHPmzNFrr72mqqoqtba2yjTN4E9ra6t27dqlV199VbNnz1ZxcbHmzZsXdjfK\nQOJwOPT666/rhhtuCDnv9/u1a9curV+/vksgk5eXp9/+9rcEMgAAAAAAAAAAxEBShDIbN27UmDFj\n9NOf/lR1dXXBm9QbhtHtjySZpqlTp05p8eLFGjNmTJeWYANNWlqaXn31VS1dulRjxozpdlxmZqbm\nzJmjLVu2aPLkydYVCAAAAAAAAABACkv4e8ps375d3/jGN3T06FFJbUFM+64YScrOzlZeXp4yMzNV\nX1+vo0eP6tSpU8Hr28fv2LFDF198sdasWaMvf/nLtryWcHbv3m35mldffbWuvvpq7dy5U2vXrlVN\nTY18Pp8GDRqkM888UxMmTFBaWprldQEAAAAAAAAAkMoSOpRpaWnRFVdcoaNHj4bsfjn//PP1ne98\nR1OnTlVlZWWX66qqqrRy5Ur94he/0J///OfgtUeOHNEVV1yhf/zjH3K5EvqlW+K0007TaaedZncZ\nAAAAAAAAAAAMCAndvuy5557Tjh07grtdsrOz9dprr+nDDz/UrFmzwgYyklRZWanbbrtNa9as0a9+\n9Svl5OQEn/vkk0/03HPPWfUSAAAAAAAAAAAAJCV4KPP8888HA5mMjAytXLlS1113XVRzXHPNNVq1\napXS09ODcxHKAAAAAAAAAAAAqyVsKLNjxw7t3LlTUtt9YRYtWqSvfvWrfZprzJgxWrhwYfA+NJ9+\n+ql27NgRs1oBAAAAAAAAAAB6k7ChzPr16yW13UPG7Xbrtttu69d8s2bNktvtDh5v2LChX/MBAAAA\nAAAAAABEI2FDmUOHDklq2yVTWVmpQYMG9Wu+QYMGacSIEcHjgwcP9ms+AAAAAAAAAACAaCRsKFNX\nVxd8nJOTE5M5s7Ozg4/r6+tjMicAAAAAAAAAAEAkEjaUyc/Pl9TWvqympiYmc+7fvz/4OC8vLyZz\nAgAAAAAAAAAARCJhQ5mioqLg49raWm3atKlf823evDkklOk4PwAAAAAAAAAAQLwlbCgzYcIEuVwu\nGYYhSVq4cGG/5ut4vcvl0gUXXNCv+QAAAAAAAAAAAKKRsKFMbm6uLrzwQpmmKdM09eabb+rRRx/t\n01w//OEP9cYbb8gwDBmGoYkTJ8bsPjUAAAAAAAAAAACRSNhQRpIWLFggSTIMQ6ZpatGiRZo+fbo+\n/fTTiK7ftWuXrrrqKs2fPz84hyTNnz8/bjUDAAAAAAAAAACE47K7gJ5MnDhRM2bM0P/8z/8EQ5Vl\ny5bpnXfe0QUXXKCLLrpIX/nKV5Sfn6/MzEzV19fr6NGj2rhxo1auXKkPPvgguNOmfZfMjBkzdOGF\nF9r90gAAAAAAAAAAwACT0KGMJC1ZskS1tbV67733gveXCQQCWr16tVavXt3jtR3DGNM0dfHFF2vJ\nkiVWlA0AAAAAAAAAABAioduXSZLb7da7776re+65R9IXQUv74+5+pC/anhmGoXvvvVfLli2Ty5Xw\nORQAAAAAAAAAAEhBCR/KSJLH49FPfvITrV27VjfccIPcbncweOmOaZpyu9266aabtHbtWj399NPy\neDwWVQwAAAAAAAAAABAqqbaNjB07Vq+88opOnjypP//5z1q7dq327Nmj48ePq66uTllZWRo8eLDK\ny8t1/vnn6/zzz1dubq7dZQMAAAAAAAAAACRXKNMuNzdXl1xyiS655BK7SwEAAAAAAAAAAIhIwoYy\nfr9f9fX1weP09HS53W4bKwIAAAAAAAAAAOi7hL2nzEsvvaTBgwcHf1avXm13SQAAAAAAAAAAAH2W\nsKHMwYMHZZqmTNNUbm6uLrroIrtLAgAAAAAAAAAA6LOEDWWysrIkSYZhqLy83OZqAAAAAAAAAAAA\n+idhQ5nhw4fbXQIAAAAAAAAAAEDMJGwoc+aZZ0qSTNPU3r17ba4GAAAAAAAAAACgfxI2lBk9erRG\njx4tSTp+/LjWrl1rc0UAAAAAAAAAAAB9l7ChjCTdcccdwccLFiywsRIAAAAAAAAAAID+SehQZs6c\nOZowYYJM09Ty5cs1b948u0sCAAAAAAAAAADok4QOZZxOp5YtW6YLLrhApmlq8eLFmjhxot5//327\nSwMAAAAAAAAAAIiKy+4CevLoo49KkiZNmqQdO3bo4MGDWrNmjaZOnarCwkKNHTtWlZWVysnJkdvt\njmru+fPnx6NkAAAAAAAAAACAsBI6lFm4cKEMwwgeG4Yh0zQlSQcOHNC7777b57kJZQAAAAAAAAAA\ngJUSOpQJp2NI0xemafZ7DgAAAAAAAAAAgGglfCjTvjMGAAAAAAAAAAAgmSV0KLNq1Sq7SwAAAAAA\nAAAAAIiJhA5lJk2aZHcJAAAAAAAAAAAAMeGwuwAAAAAAAAAAAICBIGF3yvj9ftXX1weP09PT5Xa7\nbawIAAAAAAAAAACg7xJ2p8xLL72kwYMHB39Wr15td0kAAAAAAAAAAAB9lrChzMGDB2WapkzTVG5u\nri666CK7SwIAAAAAAAAAAOizhA1lsrKyJEmGYai8vNzmagAAAAAAAAAAAPonYUOZ4cOH210CAAAA\nAAAAAABAzCRsKHPmmWdKkkzT1N69e22uBgAAAAAAAAAAoH8SNpQZPXq0Ro8eLUk6fvy41q5da3NF\nAAAAAAAAAAAAfZewoYwk3XHHHcHHCxYssLESAAAAAAAAAACA/knoUGbOnDmaMGGCTNPU8uXLNW/e\nPLtLAgAAAAAAAAAA6JOEDmWcTqeWLVumCy64QKZpavHixZo4caLef/99u0sDAAAAAAAAAACIisvu\nAnry6KOPSpImTZqkHTt26ODBg1qzZo2mTp2qwsJCjR07VpWVlcrJyZHb7Y5q7vnz58ejZAAAAAAA\nAAAAgLASOpRZuHChDMMIHhuGIdM0JUkHDhzQu+++2+e5CWUAAAAAAAAAAICVEjqUCadjSNMXpmn2\new4AAAAAAAAAAIBoJXwo074zBgAAAAAAAAAAIJkldCizatUqu0sAAAAAAAAAAACIiYQOZSZNmmR3\nCQAAAAAAAAAAADHhsLsAAAAAAAAAAACAgYBQBgAAAAAAAAAAwAKEMgAAAAAAAAAAABYglAEAAAAA\nAAAAALCAy+4C+urYsWPaunWrjh07ppMnTyoQCOib3/ymCgsL7S4NAAAAAAAAAACgi6QKZQ4dOqRn\nn31Wb7zxhrZt29bl+eXLl4cNZV588UXt3btXklRUVKRZs2bFvVYAAAAAAAAAAICOkiaUefrppzV/\n/nz5fD6ZptnlecMwur22rq5OCxculGEYcjqduvzyy9lRAwAAAAAAAAAALJXw95Tx+/266qqr9OCD\nD6q5ubnL8z2FMe1uu+025eTkyDRN+f1+vfLKK/EoFQAAAAAAAAAAoFsJH8rcddddeuutt2SapgzD\nkGmaOuecc/TAAw/oueeeC7trprOMjAxdfvnlwePf/va38SwZAAAAAAAAAACgi4QOZT744AP953/+\npwzDkGEYys/P17vvvqu//e1veuKJJ3TnnXdKimy3zPTp0yVJpmlqzZo18vl8ca0dAAAAAAAAAACg\no4QOZebPny+pLUjJzs7WH//4R1166aV9muu8884LPm5ubtb27dtjUiMAAAAAAAAAAEAkEjaUOX78\nuFavXh3cJfPwww9r5MiRfZ6vpKREgwcPDh5v27YtFmUCAAAAAAAAAABEJGFDmQ8++EB+v1+macrh\ncGjWrFn9nrOgoCD4+NChQ/2eDwAAAAAAAAAAIFIJG8rs379fUtv9YkaMGKFBgwb1e87c3Nzg41On\nTvV7PgAAAAAAAAAAgEglbChz7Nix4OMhQ4bEZM7m5ubgY7fbHZM5AQAAAAAAAAAAIpGwoUw8drV0\nbFmWn58fkzkBAAAAAAAAAAAikbChzNChQyVJpmlqz549CgQC/Zpv7969qq2tDR4XFRX1az4AAAAA\nAAAAAIBoJGwo80//9E/Bxw0NDVqzZk2/5nv99deDj51Op84///x+zQcAAAAAAAAAABCNhA1lTj/9\ndFVWVsowDEnSM8880+e5PvvsMy1evFiGYcgwDJ177rnKzs6OVakAAAAAAAAAAAC9SthQRpJuvvlm\nmaYp0zT19ttv66WXXop6Dr/fr5tvvlk1NTUyTVOSNGfOnFiXCgAAAAAAAAAA0KOEDmXmzZungoIC\nGYYh0zQ1a9YsPf300/L7/RFdv23bNl100UVatmxZcJfM6aefrptuuinOlQMAAAAAAAAAAIRy2V1A\nTzIzM/XCCy/oyiuvVCAQkN/v14MPPqjnn39eN954o772ta9JkkzTlGEY+tvf/qZjx45p586dWrly\npVauXBncaSNJ6enpeuWVV4It0QAAAAAAAAAAAKyS0KGMJF122WV67rnngi3HTNPUnj179NRTT4WM\nM01TDz74YJdz7QGM2+3Wiy++qHPOOceawgEAAAAAAAAAADpI6PZl7e644w79/ve/V2FhoSQFg5b2\n0KX9p31XTPvOmPZzhYWFeu+993TdddfZ9hoAAAAAAAAAAMDAlhShjCRNnTpVW7du1Y9+9CMNHz48\nGLx0DmLamaapQYMGadGiRdq+fbsuuOACO8oGAAAAAAAAAACQlATtyzrKzc3Vgw8+qPvvv18bN27U\n6tWrtXXrVh09elQnTpxQRkaG8vPzVVlZqSlTpmjcuHFyuZLqJQIAAAAAAAAAgBSVlImFw+HQOeec\nw/1hAAAAAAAAAABA0kia9mUAAAAAAAAAAADJjFAGAAAAAAAAAADAAoQyAAAAAAAAAAAAFiCUAQAA\nAAAAAAAAsAChDAAAAAAAAAAAgAUIZQAAAAAAAAAAACxAKAMAAAAAAAAAAGABQhkAAAAAAAAAAAAL\nEMoAAAAAAAAAAABYgFAGAAAAAAAAAADAAoQyAAAAAAAAAAAAFiCUAQAAAAAAAAAAsAChDAAAAAAA\nAAAAgAUIZQAAAAAAAAAAACxAKAMAAAAAAAAAAGABQhkAAAAAAAAAAAALEMoAAAAAAAAAAABYgFAG\nAAAAAAAAAADAAi67C4iVpqYmrVixQp988omcTqdGjx6tKVOmyOl09nrt/v379fDDD8swDC1ZssSC\natGblStX6r//+7/1l7/8RTU1NWpqalJOTo5GjhypqVOn6vbbb1dpaandZQIAAAAAAAAAEDHDNE3T\n7iL66/XXX9f3vvc9HTlyJOR8cXGxnnzySd100009Xr9582adffbZMgxDfr8/nqWiF42NjZoxY4Z+\n/etf9zguIyNDzz77rG699VaLKutq8+bNOuuss4LHmzZt0ujRo22rBwAAAAAAAADQVSJ9lpv07cte\nfvll3XjjjTpy5IhM0wz52bdvn/7lX/5FM2bMUGNjo92lIgI333xzMJAZPHiwFi1apN/97ndat26d\nXn/9dV111VWSpIaGBt12221655137CwXAAAAAAAAAICIJXX7skOHDumuu+5SIBCQJE2fPl1Tp06V\nz+fTqlWr9Lvf/U5+v1+vvvqqqqqq9Lvf/U45OTk2V43ubNy4UUuXLpUkDR06VB9//LFKSkqCz597\n7rm65ppr9LOf/Uxz5syRaZp65JFHdNlll9lVMgAAAAAAAAAAEUvqnTJLlizRZ599JofDoVdffVW/\n/vWvddddd+mee+7R22+/rT//+c8aNWqUTNPUX/7yF02dOlXHjx+3u2x0Y/Xq1cHHt99+e0gg09Hs\n2bNVVFQkSdqwYYPq6uosqQ8AAAAAAAAAgP5I6p0yf/jDH2QYhr797W/r+uuv7/L82LFjtXbtWt10\n001atmyZPv74Y02dOlUrVqzQkCFDbKg49Xz66adat26d9u3bJ5/Pp8GDB2vkyJEaP3680tLSoprr\ns88+Cz6uqKjodpxhGCovL9f+/fslSadOnVJWVlaf6gcAAAAAAAAAwCpJHcps2bJFknTttdd2OyYz\nM1NvvfWWZs2apRdffFEbN24MBjN5eXlWlWqJmpoarVu3TmvXrtW6dev00Ucf6dSpU8Hny8vLtXv3\n7pis9dZbb+mxxx7Txx9/HPb5rKwszZw5UwsWLFB+fn5Ec55++unBxz3VaZqm9uzZI0nKzc1VQUFB\n5IUDAAAAAAAAAGCTpG5fduLECUlSaWlpj+MMw9CSJUv03e9+V6Zp6u9//7suuugiHTlyxIoy42rN\nmjW66qqrVFxcrJKSEl111VV66qmntGrVqpBAJlaam5s1Y8YMXXnlld0GMpJUV1enZ599VqNGjdKf\n/vSniOa+7LLLgi3LXnjhBdXU1IQd9/Of/zy4S2b27NlyOp1RvgoAAAAAAAAAAKyX1DtlvF6vWltb\nIw4ffvazn8npdOr555/Xpk2bNHXqVK1cuTLOVcbXX//6V7355puWrBUIBHT99dfrN7/5Tch5p9Op\nsrIy5ebmqqqqSidPngw+d/jwYV166aVasWKFvv71r/c4f1pampYtW6bLL79c+/bt09lnn63vf//7\nOu+88zRkyBDt2bNHr732mt544w1J0vXXX69FixbF/oUCAAAAAAAAABAHSb1Tpn1Xxfbt2yO+5tln\nn9Vdd90l0zS1adMmTZkyRYcPH45XibaK9X1Wnn766S6BzOzZs1VdXa1du3Zp/fr1OnbsmH7961+r\nrKwsOKahoUHXXXddSFjTnTFjxmj9+vV6/PHHFQgEtGDBAl1yySUaN26crr32Wr3xxhs677zztHTp\nUr322mvyer0xfY0AAAAAAAAAAMRLUocyX/nKV2SaZtS7Xf7jP/5D3/ve92SapjZv3qwbbrghThVa\nJzs7W5MnT9Z9992n119/Xbt379ayZctiNv/Ro0f1wx/+MOTcE088oZ/97GcqKioKnnM4HLryyiv1\n4YcfqqKiInh+3759euaZZyJaa+nSpXr55Ze7DXE+/vhjvfTSS/r73/8e/QsBAAAAAAAAAMAmSR3K\nTJw4UZK0bNkyNTQ0RHXtv//7v+tf//VfZZpmUu+Uufzyy7V582adOHFCq1at0o9//GNdc801Ki8v\nj+k6P/7xj0PaxE2cOFEPPPBAt+OLi4v1wgsvhJxbvHixjh492u01gUBAM2bM0J133qmtW7dqypQp\n+r//+z8dP35cPp9Pe/bs0fPPP6/Bgwdr2bJlGj9+fEyDJwAAAAAAAAAA4impQ5lLLrlEklRfX69f\n/OIXUV//05/+VHPnzpVpmrEuzTJf+tKXNGrUKDkc8fufMhAI6MUXXww5t3DhQhmG0eN1U6dO1YUX\nXhg8PnXqlH71q191O/7nP/+5Xn75ZUnStddeq/fee0/f/OY3NWjQILndbpWVlenOO+/U2rVrlZeX\np/r6en3729/WkSNH+vHqAAAAAAAA/j97dx4leV3fC/9TVV29z9qzyLDMsKgwoMJl8REiD4h4YxTR\nSwTRRIh471USIR5ISHiSJ3ISrweCgnGJ3pCIepEQEdFoogEE5ABhWAQPzDwqMsM4wzDds0+v1d1V\nzx9FN713VXf1r3p5vc75nq7f9v19q5We7t+7Pt8vACRjTocyRx11VHz4wx+Ot73tbfHEE09MqY+b\nbrop/uRP/iTWrl07bB0UXvXII48MqyY66qij4qyzzirp2ssuu2zY9t133z3uuf/wD/8w+PrGG28c\nN/RZt25dXHHFFRFRDHpuv/32ksYCAAAAAADVVFPtAUzXrbfeOu0+rr/++rj++uunP5h56oc//OGw\n7XPPPXfSKpmh5w71wAMPREdHRzQ1NY06d+PGjRERsWrVqkkDslNPPXXUdQAAAAAAMJvN6UoZkvH0\n008P2z799NNLvnbNmjWxbt26we1cLjduiFJTU8wIe3t7J+136DnZbLbk8QAAAAAAQLUsmFDmvvvu\ni0wmE5lMZvDhP6XZtGnTsO3169eXdf3I80f2N+Doo4+OiIi9e/fGM888M2GfP/nJT0ZdBwAAAAAA\ns9mCCWUiIgqFwmCjNF1dXbF169Zh+w4//PCy+hh5/i9+8Ysxz3vf+943+PrjH/94tLe3j3neww8/\nHF/96lcjIiKTycS73/3ussYDAAAAAADVsKBCGcq3a9euYSFWNpuNVatWldXHoYceOmy7tbV1zPM+\n+clPDq4l8+ijj8Yb3/jG+NznPhcPP/xwPP300/Hv//7v8Yd/+Idx9tlnR3d3d0REXHHFFSplAAAA\nAACYE8zjxYRGVqs0NjZGKpUqq4+mpqYJ+xywZMmSuO++++KCCy6In//857F58+a46qqrxjw3lUrF\nH/7hH8aNN95Y1ljG09raGm1tbWVd8/zzz1fk3gAAAAAALAxCGSY0MkCpr68vu4+GhoYJ+xzqmGOO\niSeeeCLuuuuuuPPOO+Opp56KnTt3Rk9PTyxatCiOOuqoOOOMM+IjH/lIvOlNbyp7LOP58pe/HNdd\nd13F+gMAAAAAgJGEMkxoYJqwAbW1tWX3UVdXN2y7q6trwvOz2WxcdNFFcdFFF5V9LwAAAAAAmK2s\nKcOERlbG5HK5svvo6emZsE8AAAAAAFgIVMowoebm5mHbIytnSjGyMmZkn7PB5ZdfHu9///vLuub5\n55+P9773vTM0IgAAAAAA5huhDBMaGaB0dnZGoVCIVCpVch8dHR0T9jkbrFq1KlatWlXtYQAAAAAA\nMI+ZvowJrVixYlgA09vbG62trWX1sX379mHbwg8AAAAAABYioQwTamhoiCOOOGLYvq1bt5bVx8jz\njz322GmPCwAAAAAA5hqhDJMaGaJs3LixrOs3bdo0YX8AAAAAALAQCGWY1Iknnjhs+5FHHin52h07\ndsSWLVsGt7PZbKxfv75SQwMAAAAAgDlDKMOk3v3udw/bvvfee6NQKJR07X/8x38M2z777LOjubm5\nYmMDAAAAAIC5oqaaN//pT3+a2L2eeeaZxO4135x++umxYsWK2LVrV0REvPDCC/HAAw/E2WefPem1\n//iP/zhs+/zzz5+RMQIAAAAAwGxX1VDmrLPOilQqldj9UqlUyRUevCqdTsell14aN9544+C+6667\nbtL//e6777546KGHBrcXLVoUF1544YyOFQAAAAAAZqtZMX1ZoVBIpDF111xzzbBpxx588MG4/vrr\nxz1/+/bt8dGPfnTYviuvvDJWrFgxY2MEAAAAAIDZrKqVMgOSrJaZjx5++OHo6uoatX/klG3d3d1x\n7733jtnHmjVrYv369ePeY8WKFXHttdfGtddeO7jvz//8z2Pr1q3xF3/xF7FmzZqIiMjn8/H9738/\nrrzyyti6deuw/q+66qqy3hcAAAAAAMwnqUIVS0jWrVtXtUBm8+bNVbnvTFi3bl28+OKL0+rjkksu\niVtvvXXCc/L5fJx//vnxgx/8YNj+TCYTa9eujSVLlsTmzZtj3759w443NDTEPffcE2eccca0xjjb\nPPfcc3HCCScMbj/77LNx/PHHV3FEAAAAAACMNJue5Va1UmbLli3VvD1lSqfT8e1vfzv+4A/+IP75\nn/95cH9/f3+88MILY17T0tISd95557wLZAAAAAAAoFyzYk0Z5o76+vq4/fbb484774wTTzxx3POa\nmpri8ssvj40bN8ZZZ52V3AABAAAAAGCWmhVryjA91ag4uuCCC+KCCy6I559/Ph577LHYvn175HK5\nWLp0aRx33HFxxhlnRH19feLjAgAAAACA2Uoow7Qcc8wxccwxx1R7GAAAAAAAMOuZvgwAAAAAACAB\nQhkAAAAAAIAECGUAAAAAAAASIJQBAAAAAABIgFAGAAAAAAAgAUIZAAAAAACABAhlAAAAAAAAEiCU\nAQAAAAAASIBQBgAAAAAAIAFCGQAAAAAAgAQIZQAAAAAAABIglAEAAAAAAEiAUAYAAAAAACABQhkA\nAAAAAIAECGUAAAAAAAASIJQBAAAAAABIgFAGAAAAAAAgAUIZAAAAAACABAhlAAAAAAAAEiCUAQAA\nAAAASIBQBgAAAAAAIAFCGQAAAAAAgAQIZQAAAAAAABIglAEAAAAAAEiAUAYAAAAAACABQhkAAAAA\nAIAECGUAAAAAAAASIJQBAAAAAABIgFAGAAAAAAAgAUIZAAAAAACABAhlAAAAAAAAEiCUAQAAAAAA\nSIBQBgAAAAAAIAFCGQAAAAAAgAQIZQAAAAAAABIglAEAAAAAAEiAUAYAAAAAACABQhkAAAAAAIAE\nCGUAAAAAAAASIJQBAAAAAABIgFAGAAAAAAAgAUIZAAAAAACABAhlAAAAAAAAEiCUAQAAAAAASIBQ\nBgAAAAAAIAFCGQAAAAAAgAQIZQAAAAAAABIglAEAAAAAAEiAUAYAAAAAACABQhkAAAAAAIAECGUA\nAAAAAAASIJQBAAAAAABIgFAGAAAAAAAgAUIZAAAAAACABAhlAAAAAAAAEiCUAQAAAAAASIBQBgAA\nAAAAIAFCGQAAAAAAgAQIZQAAAAAAABIglAEAAAAAAEiAUAYAAAAAACABQhkAAAAAAIAECGUAAAAA\nAAASIJQBAAAAAABIgFAGAAAAAAAgAUIZAAAAAACABAhlAAAAAAAAEiCUAQAAAAAASIBQBgAAAAAA\nIAFCGQAAAAAAgAQIZQAAAAAAABIglAEAAAAAAEiAUAYAAAAAACABQhkAAAAAAIAECGUAAAAAAAAS\nIJQBAAAAAABIgFAGAAAAAAAgAUIZAAAAAACABAhlAAAAAAAAEiCUAQAAAAAASIBQBgCn9H3eAAAg\nAElEQVQAAAAAIAFCGQAAAAAAgAQIZQAAAAAAABIglAEAAAAAAEiAUAYAAAAAACABQhkAAAAAAIAE\nCGUAAAAAAAASIJQBAAAAAABIgFAGAAAAAAAgAUIZAAAAAACABAhlAAAAAAAAEiCUAQAAAAAASIBQ\nBgAAAAAAIAFCGQAAAAAAgAQIZQAAAAAAABIglGHWWbduXaRSqZLazTffXO3hAgAAAABASYQyAAAA\nAAAACaip9gBgPKecckp87Wtfm/CcQw45JKHRAAAAAADA9AhlmLWamprihBNOqPYwAAAAAACgIkxf\nBgAAAAAAkACVMkzbr3/969iwYUNs27YtcrlcLFu2LI499tg4/fTTo76+vtrDAwAAAACAWUEoM89s\n3749NmzYEI899lhs2LAhnnjiiTh48ODg8bVr18aWLVsqcq+77747/vqv/zqeeuqpMY83NzfHpZde\nGn/1V38VK1asmNI98vl87NixIzo6OmLZsmWxcuXK6QwZAAAAAACqRigzDzz88MPx2c9+Nh577LF4\n6aWXZvx+PT09cdlll8Vtt9024Xnt7e3xxS9+Me644464884748wzzyzrPk8++WQsX7489u/fP7hv\n5cqVce6558Yf//Efx6mnnjql8QMAAAAAQDVYU2YeePzxx+O73/1uIoFMPp+Piy66aFQgk8lk4sgj\nj4wTTzwxlixZMuxYW1tbvPOd74xHH320rHu1t7cPC2QG+vrWt74Vb37zm+Pqq6+OfD4/tTcCAAAA\nAAAJE8rMc83NzRXt72//9m/je9/73rB9H/vYx2Lr1q3xwgsvxM9+9rPYs2dP3HXXXXHEEUcMntPZ\n2RkXXnjhqJBlLIccckhcddVV8eMf/zh27NgRuVwu9u/fH//5n/8ZV1xxRWSz2SgUCvHZz342rr76\n6oq+PwAAAAAAmClCmXlk0aJFcdZZZ8Wf/MmfxLe//e3YsmVL/Ou//mvF+t+9e3d8+tOfHrbvM5/5\nTPz93/99rFmzZnBfOp2O973vffHII4/EunXrBvdv27YtPve5z016n0ceeSRuvPHGeMc73hGvec1r\nIpvNxuLFi+PNb35zfP7zn4/7778/GhsbIyLi5ptvjscff7wybxAAAAAAAGaQUGYeOO+88+K5556L\nffv2xf333x833HBD/O7v/m6sXbu2ove54YYb4uDBg4PbZ555ZlxzzTXjnn/ooYfGLbfcMmzfTTfd\nFLt3757wPqlUasLjZ5xxRvzN3/xNREQUCoX4+7//+8mGDgAAAAAAVSeUmQeOPvroWL9+faTTM/c/\nZz6fj6997WvD9n3qU5+aNEA555xz4q1vfevg9sGDB+Nf/uVfpj2eSy65ZPD9Pvjgg9PuDwAAAAAA\nZppQhpI88sgj0dbWNrh91FFHxVlnnVXStZdddtmw7bvvvnva41m+fHmsWLEiIiJ27Ngx7f4AAAAA\nAGCmCWUoyQ9/+MNh2+eee+6kVTJDzx3qgQceiI6OjmmPqb+/PyIiampqpt0XAAAAAADMNKEMJXn6\n6aeHbZ9++uklX7tmzZpYt27d4HYul4uNGzdOazzbtm0bXJvmsMMOm1ZfAAAAAACQBKEMJdm0adOw\n7fXr15d1/cjzR/ZXri984QuDr88555xp9QUAAAAAAEkQyjCprq6u2Lp167B9hx9+eFl9jDz/F7/4\nxZjn/eAHP4j29vYJ+/rGN74RN954Y0REZLPZ+MQnPlHWWAAAAAAAoBosxsGkdu3aFYVCYXA7m83G\nqlWryurj0EMPHbbd2to65nk33nhjfOhDH4rzzjsv3vrWt8brX//6WLp0aXR3d8emTZvi9ttvj3vu\nuWfw/BtuuCFe97rXlTUWAAAAAACoBqEMkxpZudLY2BipVKqsPpqamibsc6gDBw7EbbfdFrfddtu4\n5zQ3N8fnP//5+MhHPlLWOMbT2toabW1tZV3z/PPPV+TeAAAAAAAsDEIZJjUyQKmvry+7j4aGhgn7\nHPDZz3427r///tiwYUNs2rQpdu/eHbt3745MJhMtLS3xxje+Mc4999y45JJLYtmyZWWPYzxf/vKX\n47rrrqtYfwAAAAAAMJJQhkl1d3cP266trS27j7q6umHbXV1dY5538sknx8knn1x2/wAAAAAAMNul\nqz0AZr+RlTG5XK7sPnp6eibsEwAAAAAA5juVMkyqubl52PbIyplSjKyMGdlntV1++eXx/ve/v6xr\nnn/++Xjve987QyMCAAAAAGC+EcowqZEBSmdnZxQKhUilUiX30dHRMWGf1bZq1apYtWpVtYcBAAAA\nAMA8ZvoyJrVixYphAUxvb2+0traW1cf27duHbQtAAAAAAABYaIQyTKqhoSGOOOKIYfu2bt1aVh8j\nzz/22GOnPS4AAAAAAJhLhDKUZGSIsnHjxrKu37Rp04T9AQAAAADAfCeUoSQnnnjisO1HHnmk5Gt3\n7NgRW7ZsGdzOZrOxfv36Sg0NAAAAAADmBKEMJXn3u989bPvee++NQqFQ0rX/8R//MWz77LPPjubm\n5oqNDQAAAAAA5gKhDCU5/fTTY8WKFYPbL7zwQjzwwAMlXfuP//iPw7bPP//8Sg4NAAAAAADmBKEM\nJUmn03HppZcO23fddddNWi1z3333xUMPPTS4vWjRorjwwgtnYogAAAAAADCrCWUo2TXXXDNs2rEH\nH3wwrr/++nHP3759e3z0ox8dtu/KK68cVnEDAAAAAAALRU21B0BlPPzww9HV1TVq/zPPPDNsu7u7\nO+69994x+1izZk2sX79+3HusWLEirr322rj22msH9/35n/95bN26Nf7iL/4i1qxZExER+Xw+vv/9\n78eVV14ZW7duHdb/VVddVdb7AgAAAACA+SJVKHW1dma1devWxYsvvjitPi655JK49dZbJzwnn8/H\n+eefHz/4wQ+G7c9kMrF27dpYsmRJbN68Ofbt2zfseENDQ9xzzz1xxhlnTGuMs8lzzz0XJ5xwwuD2\ns88+G8cff3wVRwQAAAAAwEiz6Vmu6csoSzqdjm9/+9vxgQ98YNj+/v7+eOGFF+JnP/vZqECmpaUl\n/u3f/m1eBTIAAAAAAFAuoQxlq6+vj9tvvz3uvPPOOPHEE8c9r6mpKS6//PLYuHFjnHXWWckNEAAA\nAAAAZiFryswTW7ZsSfyeF1xwQVxwwQXx/PPPx2OPPRbbt2+PXC4XS5cujeOOOy7OOOOMqK+vT3xc\nAAAAAAAwGwllmLZjjjkmjjnmmGoPAwAAAAAAZjXTlwEAAAAAACRAKAMAAAAAAJAAoQwAAAAAAEAC\nhDIAAAAAAAAJEMoAAAAAAAAkQCgDAAAAAACQAKEMAAAAAABAAoQyAAAAAAAACRDKAAAAAAAAJEAo\nAwAAAAAAkAChDAAAAAAAQAKEMgAAAAAAAAkQygAAAAAAACRAKAMAAAAAAJAAoQwAAAAAAEAChDIA\nAAAAAAAJEMoAAAAAAAAkQCgDAAAAAACQAKEMAAAAAABAAoQyAAAAAAAACRDKAAAAAAAAJEAoAwAA\nAAAAkAChDAAAAAAAQAKEMgAAAAAAAAkQygAAAAAAACRAKAMAAAAAAJAAoQwAAAAAAEAChDIAAAAA\nAAAJEMoAAAAAAAAkQCgDAAAAAACQAKEMAAAAAABAAoQyAAAAAAAACRDKAAAAAAAAJEAoAwAAAAAA\nkAChDAAAAAAAQAKEMgAAAAAAAAkQygAAAAAAACRAKAMAAAAAAJAAoQwAAAAAAEAChDIAAAAAAAAJ\nEMoAAAAAAAAkQCgDAAAAAACQAKEMAAAAAABAAoQyAAAAAAAACRDKAAAAAAAAJEAoAwAAAAAAkACh\nDAAAAAAAQAKEMgAAAAAAAAkQygAAAAAAACRAKAMAAAAAAJAAoQwAAAAAAEAChDIAAAAAAAAJEMoA\nAAAAAAAkQCgDAAAAAACQAKEMAAAAAABAAoQyAAAAAAAACRDKAAAAAAAAJEAoAwAAAAAAkAChDAAA\nAAAAQAKEMgAAAAAAAAkQygAAAAAAACRAKAMAAAAAAJCAmmoPAKiufCEfuzt3J37flsaWSKfkwgAA\nAADAwiGUgQVud+fuWHXjqsTv23p1a6xsWpn4fQEAAAAAqsXH1AEAAAAAABIglAEAAAAAAEiAUAYA\nAAAAACABQhkAAAAAAIAE1FR7AABAsvKFfOzu3J34fVsaWyKd8nkQAAAAYOESygDAArO7c3esunFV\n4vdtvbo1VjatTPy+AAAAALOFj6sCAAAAAAAkQCgDAAAAAACQAKEMAAAAAABAAoQyAAAAAAAACaip\n9gCAhenYLx0bDTUNUZupHWx1NXXDtzN1w4+lSzu3pL7GOZZJZ6r9rQGAisoX8rG7c3fi921pbIl0\nymfAAAAAhhLKAFWxp2tPtYcwpnQqXbGAp5Jh0dDjHnABUI7dnbtj1Y2rEr9v69WtsbJpZeL3BQAA\nmM2EMgBD5Av56Orriq6+rmoPZVyZVGZWhkVDm+AIAAAAAEYTysBCVyhUewSUqb/QP+uDo5p0TUkh\nzpjHpjhNXTlBU22mNlKpVLW/TQAAAAAsMEIZWOja26s9Auahvnxf9OX7orO3s9pDGVc2na1YwFPJ\nsGjgeDadFRwBAAAAzDNCGVjoenPVHgFURW++N3rzvdHR21HtoYwrm87OSFiU6/ffPQAAAEA1CGVg\nocvWVuW2//C9iPr+iFym2HoyQ17XvPp65LHJjo95zE865qjefG/05nqrPYyKufDOC6O5tnn4GkTp\n2shmhlctldJGVjpNen4ma60jAAAAoOo8qoSFrrm5Krc9/xcRKxOa2aoQEX3pKQY60wmDyri2N5PM\n9wKq6YEtD1T1/plUpuzwZyDQGQiQyr5mikFTJu2HAgAAAMxHQhlY6Kq1ZsW6dREH+iJyuWLr6Sl+\n7e+v+K1SEZHNF1vTLC06KEQxmEk6DCrnWsERc11/oT+6+rqiq6+r2kOZVDqVnrGqoaleM17YlEll\nrH8EAAAAJRLKANWxYUNE08rR+/v7Rwc1lXpdiT56ZybVSUVEbX+xVad2aXL5VERvCRVH1QyS+gRH\nzBP5Qj66+7qju6+72kOZVCpS068aSk/hmimETTXpGgESAAAAVSWUAWaXTCaioaHYZqN8vhjMVDsc\nmuj4DEkXIur6i23RLF0nvj/1asXRbJqebuixfsuaMM8UohA9/T3R0z9zP38qabZVGk10DwESAADA\n/COUAShHOh1RV1dsixZVezSjFQoRfX2zIxwa73U+P2NvP1OIyPRF1PfN2C2mrT9V/aqizpqIjaur\n/Z2A6sj15yLXP0uT5RGy6ey01yeqzdRGX34W/1AEZkS+kI/dnbsTv29LY0ukUz6BAgAwEaEMwHyS\nSkVks8XW1FTt0YxtYIq6aodD4/XRN7MPLzOFiIa+YquWtsaIVX+a/H0/8Z8RNYVXw6GB6fDKab0j\ngieYz3rzvdGb743O3s5qD2VK/vL+v4yVjSujqbYpmmuboynbFE21TdGUfWX7lddDj9dmalUIQQXs\n7twdq25clfh9W69ujZVjTVEMAMAgjzMASNZcmKJuILCZLUHRyNdz1F/+NGJlBZ8tF6I4HdykQc40\nw5+Sr5ngPj01EQXPmVlgvvrkV8u+JpPKjBniDNs3cnuSoGdgXzaTnYF3CQAAUB6hDAAMlU5H1NcX\n22xUKLy6rtFUg52uXRF7r632O5m2VETU5Iutsbfao5ncyKnrZiL8qVTIZO0jqqW/0B8Heg7EgZ4D\nFe+7NlNbWohTYugzsK8x2xiZdKbi4wUAAOYnoQwAzCWpVERtbbFNVUdbxI1VCGW+8fWI3tqI7u6I\nrq5iG+/1RMeGvp7BNYoqbTZMXVeqfGp2VBiVco9ez8Ip0cB6Qnu791a87/qa+ooEPSOPN2YbTecG\nAADzjFAGAEjGb78zopLzzBcKxTWAyglxpvN6YLunp3LvYZZKFyLq+otttivE5GHQrAmY/OY9b3X3\ndUd3X3fs7qrswuqpSEVjtnHK1T0TBUF1mTqBDwAAVIE/DQGAuSmVishmi23x4uTum88Xw5mZDoFG\nBkJzqCooSamIqO0vttmuEBF96QTCnxHtYG3Ej19b7XfPVBSiEB29HdHR21HxvtOpdEnVOuVW9zTX\nNlu/BwAAJiCUgQWupbElWq9uHf+Ee+6J+OIXIh79z4iI+Kd3/nb82f/4n8NOuf6rX4k/+NGPX93x\nlv8r4hNXRLz97RPeF2BOSqcjGhuLLUm9vcmFQAOvF0BVUJJSEZHNF1tTgusgtTVGrPrT5O434O3b\n6qKvriba69LRURvRUZOPjnR/tKf7oifmwDx+81y+kI+DuYNxMHew4n1n09lJ1+IpN+gZeG39HgAA\n5jqhDCxw6VQ6Vk40ndB7P1hszz4bcfvt8Z3jj4+oXTrslO/81/8Wf3qgP+K00yIuvjjihBNmeNQA\nC1C1qoJ6eiq3BpCqoAXlW9/qiZWdYwd7femIzmxERzaivTaKoU32la+L6qN9WWN0LG6IjkV10dFU\nG+2NNdHRkImOunTxmpp8dGT6oyPVGx2FXLTnu6Ojvys6ch3Rm08w8WJMvfne2Ne9L/Z176t433WZ\nuopX9zTVFtfvSafSFR8vAACMJJQBSnPCCfHctdfG448/PurQhte9LjbefXesb2qqwsAAmDHpdERD\nQ7ElaaAqqBJrAKkKmpVq8hGLe4pttO5X2hQ0N0euZXV0rFgcHS2Lo2NZU3QsbYz2IQFPR2NNtNen\niwFPbURHJh/t6b7BUKejtyPac+2Drztyr2z3dkS+IDCstp7+nujp6qn4+j0RUVy/p4LTuA28rq+p\nt34PAACDhDJAyb7+8ssTHrv+6KMTHA0A89ZsrgqqZDikKqjy2tujtr09al+MWFbutc3NEcuWDWlH\nDtsuLF8aPUubo2NxQ7Qvqh0MeDrqM8VKnTFCnGEhz8jtIefPxJoxlK+ztzM6ezujrbOtov0OrN9T\nTnXPZEHPwPHaTG1FxwoAwMwTyjDr/PrXv44f/ehH8dOf/jR+/vOfx7Zt26KnpyeWLl0a69evj3e8\n4x1x2WWXxerVq6s91AWlL5+Pb+7cOe7xb+7cGZ8+8sioSZv2AYA5aC5XBU32uv9gRPwm2fc1F7W3\nF9tvxv5epSKi/pU2amW8pqbhgc7y5UO2j3j19cplI4KfZRHZbOQL+ejq7ZowuJkw2Jng/O6+KVYd\nUTEzuX5PTbpmzBAnm85W/F7A7JYv5GN3Z+WrCCfT0thi+keAMgllmFUuvfTS+PrXvz7msba2tnjw\nwQfjwQcfjOuvvz6+9KUvxe/93u8lPML5q1AoxK7e8edgv3/fvng5lxv3+I5cLr67a1ectXTpuOes\nyGZN3QAAQyVRFdTRFnHjqpnrn4iOjmLbtq38a5uaIr1sWTS90kaFNoNBz2HFr6uHBzqT6c/3R2dv\n56TVOuVW97Tn2q3fMwv05ftif8/+2N+zv9pDiYiIW566JVY3rx5V9TN07Z6mbFM0ZBs8xIUK2925\nO1ZV4d/71qtbJ16nFoBRhDLMKtte+UO2qakpzjvvvHjb294Wr3/962PRokXxm9/8Jr797W/Hbbfd\nFgcOHIgPf/jDkc1m46KLLqryqOeHZ9rb46Qnn5xWHxdu3Djh8adPOSXe1Nw8rXsA09fS2BKtV7eO\nPrB3T8S110Z8566pd37Bf4v4X/8rYtnyMe8LLCA33RRxoC9i796JW39/tUdaXdMMdMYNcV5pmWXL\nYtErrbjvNcVgp3b601719veWVslTZnVPR64j+gsL/P8Xc9S1P7m25HOHruHTlH0lsBkZ5IwIc0Ye\nH/Oa2ibTugEAs5pQhlllzZo1cfPNN8dll10WzSMe3p900knxnve8J971rnfFxRdfHIVCIf7oj/4o\nzjvvvGhsbKzSiOePu3btmvl7tLUJZWAWSKfSY3+arWllxDe+E3HRDyNuuCHipz8tvdMzz4y45pqI\n3/mdyg0UmNs+9KHiz5WJFArFKcNGBjV79kwe5gh0phfoNDaOmGatjPZKoJPNZGNpZmksrR+/Unoq\nCoVC5PpzM1Ld09nbGYUoVHS8TM1MreETUZzWbbwgZ1jIU0bQM3BNY7YxMulMxccMACwcQhlmlW98\n4xuTnvOBD3wg7rjjjrj77rtj165dce+998Z73vOeBEY3v93VVvk/hkbdY9euuO7II2f8PsA0vetd\nxfbssxG33x6xYUPEk08WH4AOWLYs4uSTI047LeLiiyNOOKF64wXmrlQqYtGiYjviiPKuHS/QmawN\nBD4LPdDp7Cy2qQY6406zNknQU0KFTiqVirqauqirqYuW0Sv4TEuhUIiuvq6SqnvKDX26+roqOlam\nri/fFwd6DsSBngMz0n99Tf20q3zGO1aXqTPlMwDMc0IZpu3Xv/51bNiwIbZt2xa5XC6WLVsWxx57\nbJx++ulRX18/I/c855xz4u67746IiF/+8pczco+FpDWXi/+vs3PG7/NcR0d88LnnYmVtbTRnMiW1\npldaxh8mkLwTToj49KeLrwcefvb0RNTVRTQ3Fx+mAlRLNQKdgdbXNzPvaa4YCHS2by//2okCncmC\nngpMuZZKpaIx2xiN2caKr4EwsH5Ppat7Ono7Itc//tqOJK+7rzu6+7pjd1flF1VPp9IVr/IZeqwm\n7TEQAFSbf43nme3bt8eGDRviscceiw0bNsQTTzwRBw8eHDy+du3a2LJlS0Xudffdd8df//Vfx1NP\nPTXm8ebm5rj00kvjr/7qr2LFihUVueeA3JAF5zMZpePTtaq2Nh466aT40KZNsbm7e8buU4iI26dY\nkdOQTpcc5JQS9DRnMlGbSvkUGpRq6MNPgLluuoFOR8fUp1wT6CQb6Ay0urrKv5cRMulMLKpbFIvq\nKv9vZV++r6zqnraOtvjyE1+u+DiYeflCPtpz7dGea4/oqHz/tZnaySt2ypjObei+hpoGf18BQAmE\nMvPAww8/HJ/97Gfjsccei5deemnG79fT0xOXXXZZ3HbbbROe197eHl/84hfjjjvuiDvvvDPOPPPM\nio3h/vvvH3x9/PHHV6zfhewtS5bE06ecEn/0q1/FN3furPZwRunK56Mrn4+23t6K9VmTSlUm5BkS\nGDVmMpH2hwjzzJ7e3rho48Zh++5Yvz6WZ7NVGhFAFaVSxWrB5uaIww8v79rxAp1Sp1wT6Ew90Glo\nKH+qtQQDncnUpGtiSf2SWFK/pKTzqxXKvHb5a6Onv2cwKOrum7kPfDE1uf5c5Ppzsbd77+QnlykV\nr1aiTVixU8Z0bkODodrM9KvlAGA2EMrMA48//nh897vfTeRe+Xw+Lrroovje9743bH8mk4kjjjgi\nlixZEps3b479+/cPHmtra4t3vvOdce+998Zb3vKWaY/hiSeeiH//93+PiIhDDz00zj777Gn3SdHi\nmpr4xnHHxTuXL4+P/fKXcWCez7XeVyjEvr6+2FfhBxxN06jqaRpnfzadrugYoRz/3Noa9+4d/of7\nHa2t8fFDD63SiIBytDS2ROvVra/u2LQx4vzzI/btH/+ici1dEvG970Uct37YfRmhGoHOQKvgB1vm\npK6uYpvKh9jGCnRKXU9nFgQ6SXr4Iw8PmxZuYEq3kdO6Df067rHeV45NcE1ffoEHlbNMIQqD/9u1\ndVZ+zdKadE1FqnzGOtaYbYx0yt9cACRDKDPPNTc3R3t7e8X6+9u//dtRgczHPvax+Mu//MtYs2ZN\nRBSDm+9973vxx3/8x7F169aIiOjs7IwLL7wwnn322ViypLRPd42lvb09Lr300uh/JSz4zGc+E1mf\n1K64i1evjrcsXhwf3LQpHj0wM4tjzmcd+Xx05POxs4IPP2qnWNUzXsjTnMlEQzptegFKcuvLL4+5\nTygDc0M6lR6+dsYp/3fEjx6K+O3fntoD6pHWrIn40Y8i3vCG6ffF+KYb6HR2Tn3KNYHOzAc6Y7UZ\nWp8zSTM5pVtEsepjZGgzXpAz6tgk4VBn78yvuUl5+vJ9sb9nf+zvqeCHCoZoqGmoeJXPwLG6TJ2/\nvQAYJJSZRxYtWhQnn3xynHrqqXHaaafFqaeeGps3b65YJcnu3bvj0wMLPr/iM5/5TPzZn/3ZsH3p\ndDre9773xWmnnRa/9Vu/NbiGzbZt2+Jzn/tcXHfddVO6fz6fjw996EPx3HPPRUTEBz7wgfj93//9\nKfXF5NY1NMR7WlqEMrNErlCIPX19saeCVT2piIqGPANTudWo6plXnuvoiMeHrE02YMPBg7GxoyPW\nNzVVYVTAtL3hDRE//3nEFVdEfOtbU+/ngx+M+Lu/i2hRFTOrpVIRTU3Fdthh5V07XqAz2VRrAp2i\n6QQ69fXlTbM2tC0QtZnaqG2ojWUNlX/P+UI+unq7Kl7lM3As15+bfBAkqquvK7r6umJ31+6K951O\npSev2JlilU9TtikyaWvtAswlQpl54Lzzzot3vOMdceyxx0Z6xMPQzZs3V+w+N9xwQxwc8mDuzDPP\njGuuuWbc8w899NC45ZZb4u1vf/vgvptuuimuuOKKaCnzD/dCoRD//b//9/j+978fERFvfvOb45Zb\nbinzHVCu6QQy/6W5OT56yCHR3t8/YesYsd1TKFTwHTCRQkQc7O+PgxWepq6+jOnbSp3qrU5VT9V8\nfYwqmaHHrj/66ARHA1RUS0vEbbcVg5Ubboj46U9Lv/bMMyOuuSbid35n5sbH7JBkoDOy5Rb4Q+vu\n7ogdO4qtXMvqIq6s/JAWknQqXXzgXdsUK2Pl5BeUqbe/d8zqnEpU+XTkOqIQ/q6aTfKFfBzMHYyD\nudEfdqqEukxdNGQbZqRvACpPKDMPHJ3AA7F8Ph9f+9rXhu371Kc+NelD0nPOOSfe+ta3xkMPPRQR\nEQcPHox/+Zd/iY9//OMl37tQKMTll18e//RP/xQRESeddFL86Ec/iiafzp5RhUJhWqHMtp6e+Nia\nNWU/SO/N50cFNeW0jnx+zP0kpzufj+58PnZV8JOxmSitqmeySp6R56YFPRPqy6sZy6kAACAASURB\nVOfjmzt3jnv8mzt3xqePPFJ1FMx173pXsT37bMTtt0ds2BDx5JPFh+IDli2LOPnkiNNOi7j44ogT\nTqjeeJk7phvodHVNbbo1gU5ET0+1R8AksplsLMksiSX1U5/eezyFQiG6+7pLWpdnKlU+3X3dFR8z\n09PT3xM9/dX57/6+zffFkUuPjGUNy2JZ/bJYWr80shnTzANMRChDSR555JFoa3t1ob6jjjoqzjrr\nrJKuveyyywZDmYiIu+++u6xQ5hOf+ER85StfiYiIN77xjXHPPffE0qVLS76eqXmhuzvapvFQvbW3\nNzZ3d8dRDeV9WiebTsfSdDqWVnCtoHyhEF3jhDUlBT1j7DvY3x99qnoS0x8R+/v7Y3+FA7bGSSp1\nygl5BlrtHAooCoXChOHZ/fv2xcsTPNTakcvFd3ftirMm+Jm8IptV5QRzxQknRAxMVVsoRLS3Fx/s\n1tUV1zHx3zJJSqUiGhuLrdw1zMYKdMqZcm2hBzrT8dyzEa//LxHTWEeU6UulUtGQbZixyon+fP+Y\noc54QU+5VT79BR+qm0su/s7Fo/Y11zbHsvplg0HN4NdXQptR+4d8rc3UVuFdACRLKENJfvjDHw7b\nPvfcc0t+yHbuuecO237ggQeio6OjpEqXT3ziE/GlL30pIiLe8IY3xH333Vf21GdMzaP7p7944qMH\nDpQdysyEdCoVTa88YF9dwX5zFQ562vv7ozOfr+AImUxnPh+d+Xy0VrCqJ5tKVTTkac5konGGpm97\npr09TnryyWn1ceHGjRMef/qUU+JNzc3TugdQBalUxKJFxQZzTZKBzsi20CtUzn5bRGdELF4cccQR\nr7a1a4dvr1kTUeNxxFyVSWdiUd2iWFRX+X8jCoVC5Ppz5U3nVkaVT2dvZ8XHzGjtufZoz7XHbw78\npuxrG7ON4wY6Q6txxgp06mvqZ+DdAFSe34IoydNPPz1s+/TTTy/52jVr1sS6detiy5YtERGRy+Vi\n48aNceqpp0543RVXXBFf/OIXIyLi+OOPj/vuuy9WrFhR3sCZssmmLjuqvj4KEbG5e/zS9Uf3748P\nra5kDDK71KbTsTydjuUVrOrpLxSis8JBz8H+/hD1JKe3UIi9fX2xt6+vYn2mIkYFOqWuxzNRQHTX\nrl0VG+N47mprE8oAMHdMJ9CJmN6Ua/Mp0DlwoDgl4rPPjn08kyl+fycKbhYvTnbMzAqpVCrqauqi\nrqYuljcsr3j/+UI+unq7ZqzKpzdfuQ97LVQD4dn2g9vLvra+pn7SQGfo16X1SwdfN9Q0qPAHEiOU\noSSbNm0atr1+/fqyrl+/fv1gKDPQ30ShzJVXXhlf+MIXIqIYyPzkJz+JlSsrv7gi45solPnw6tXx\nhde+NiIi/uhXvxp3zYnprEmzUGVSqVhUUxOLKvjJwUKhED1TqOoZb32egdatqicxhYgZWR8piT85\n7tq1K6478sgE7gRUyp7e3rhoRBXcHevXV/RDCDBvNTQU25o15V9baoXOWEHPXAt0+vsjtm4ttvEs\nXTpxaHPIIcVwB8qQTqWjqbYpmmqbImZgmdre/t6pVfnkOqKzb/JrCmEK7Yl093XHjvYdsaN9R9nX\n1mZqywp0hn5tzDYKdICyCGWYVFdXV2wd8cvy4YcfXlYfI8//xS9+Me65n/zkJ+Pv/u7vIqIY5vzk\nJz+JVatWlXU/pqfwSrXGSEsymfjK614XHxhS/fKN446Ldy5fHh/75S/jwIhrOvr7o1Ao+OWkylKp\nVNRnMlGfyUQla8368vlJg5tyKnoGmj8zkpPE9/rZjo5Y/tBD0VRTEw3pdNSn09Ew0DKZV1+/sj3s\n+Bjn1I9z3cDrmlTKzxyYpn9ubY179+4dtu+O1tb4+FSqBoDSVTLQ2bk54tkPV36MSdq3r9h+/vOx\nj9fURBx22MTBjWpdEpbNZGNpZmksra/8OriFQiG6+7rHrdjZcXBHfPRfP1rx+y4Uuf5c7OzYGTs7\nxv7Q6USy6ezYU6qVEOg01zb7+4UpyRfysbtzd+L3bWlsiXRq7qylO1sJZZjUrl27ojBkQfNsNlt2\nSHLoiD/iW1tbxzzvmmuuiZtvvjkiIlauXBlf+MIXorW1ddzzIyKWLVs2qv9ytba2RltbW1nXPP/8\n89O652yWSqXiyVNOif/nhRfi77Zvj0JE/NaSJfF/jjsu1taPnqP14tWr4y2LF8fvbdoUDx84EKmI\nuPKww+JvjjzSLxfzWE06HUvS6VhS4aqerhkIenIFUU817e3vj70VrvIZTzpi3MCnlFBoKsFRTdov\npMwvt7788pj7hDIwi40MdDpeHzHOzGHzRl9fxJYtxTae5cuHhzQjg5vXvCbCv+PMEalUKhqyDdGQ\nbYgVjaM/btfW0Rbxr8mPKx3pyC/wCbN7873R1tkWbZ3lPVeKiKhJ18TS+qXDplIrNdBZVLfIw/EF\nbHfn7lh1Y/IfYm+9ujVWNpnNaLqEMkyqvb192HZjY/llmU1Nw+uCR/Y54I477hh83dbWFuecc86k\nfV9yySVx6623ljWekb785S/HddddN60+5pumTCZufu1r43dXroxHDxyITx522IQPHtc1NMQDJ54Y\nn9u2LU5fvDh+a2nlPxnE/JdKpaIxk4nGTCYq+atFLp+fNLgpJ+QZmN6N2ScfER2vVHElpSaVKqua\np74CoVBG4M0Mea6jIx4/eHDU/g0HD8bGjo5Y3zQDc70AFdfS2BKtPVdGfP7zJZ3/T+/87fiz//E/\nh+27/qtfiT/40Y9Lv2kqoqWrnFEmYM+eYhuxRuqgbDbi8MPHD24OPzzCzz2Y0I6rdkR9tj72du2N\nvd17h33d171v+L4Rx/d2742+fOXW4pyL+vJ9satzV+zqLH+9z3QqPSrMGRXujPN1Sf0SgQ5UkVCG\nSY0MUOrHqJSYTENDw4R9Mnv91tKlJQcsNel0/OkRR8zwiKB8tel01KbTsayC6yHkX5nmr1Jr9LT3\n98fBvr5Ipp6ESuorFOJgf38cTKgaKCIiOzQIKnOKt8lCobHOqU+nIy0IWhC+PkaVzNBj1x99dIKj\nAaYqnUrHyosvi/hMaaHMd855T0Tt8N/5v/P28+NP7yojlPnZzyJaWl5dK+bFF199PbA929ac7O2N\neOGFYhtPS8voadGGBjerVqm2YUFLpVKxuG5xLK5bHGtjbVnXFgqF6OjtGDPQGRXsjHE815+boXc1\nN+QL+djTtSf2dO2J2Dv5+UOlIhVL6peMu47OmNOxDQl+MmlresF0CGWYVHd397Dt2trasvuoq6sb\ntt3VNfZHqLZMVHoOMIukU6lorqmJ5gpP35YrFCpa0dPe3x9dqnrmnd5CIXr7+4trefX2JnLPulRq\nylO8TSU4qk+nTYGZsL58Pr65c/x51L+5c2d8+sgjTdkHc8Ub3hDx1rdGPPTQhKc9t25dPH7ccaP2\nbzjuuNi4dm2sf/HFye915pkRJ55YfH344RFnnDH2efv3jw5qhm5v3x4x235v2b272J56auzjtbXF\n9zxecHP44cWp5YBRUqlUNNc2R3Ntcxy+pLy1iwuFQnT1dU0Y6IwMc/Z17xt83d3XPflN5rFCFGJf\n977Y170vNu/bXPb1i+sWjxvoDN03VuVOTdrjaPBfAZMaWRmTy5X/SYSenp4J+6y2yy+/PN7//veX\ndc3zzz8f733ve2doRMBClEqloi6Virp0OloqWNXTXyiUHODcs2dPPLB/f8XuzfzRUyhET19f7Evw\nnuOFO9MNhcY7pzaVmtdBUKFQiF0ThHj379sXL0/we96OXC6+u2tXnDVBBe2KbHZefw9hzrnmmklD\nma//1/864bHr//f/Lu0+pViypBgWveENYx/v7Y146aXxg5sXX4yYbbMu5HIRv/51sY1n5crR69kM\n3V65MsLPTihLKpWKxmxjNGYb49DF5a97193XXVagM/RrV99sm6sxeQd6DsSBngPx4v4SgvsRmmub\nSwp0Rk3L1rAsajPlf1AcZiOhDJNqbm4etj2ycqYUIytjRvZZbatWrYpVq5JfHAsgCZlUKhbX1MTi\nEqp6HpvGtCLnLlsWNx9zTHTn89GVz0fXK1U6XSO2u8fYN3R72PExzmHh6H7l/y9lzsYwZamIRNcG\nakinI5tgEPRMe3uc9OST0+rjwo0bJzz+9CmnxJtm2e95sKC9610RF18ccfvtYx7uS6fjm+eeO+7l\n3zz33Pj0LbdEzUT//n7wgxG/8zvTHWlRNlsMKtaOMwVSoRCxb9/E1TYvvVQ8bzZpayu28X4G19e/\nurbNWMHNYYcVzwEqpr6mPg5ZdEgcsuiQsq/t6esZvV5OiYFOR2/HDLybuaU91x7tufb4zYHflH1t\nY7ax7EBn4GtdTd3kN4CECGWY1MgApbOzMwqFQlkPEDo6hv+jM9tCGQCKn6J/dBqhzDPt7XFcY+OM\nPmAemOJtvMBnWOgzxVBo5DndgqAFoxARnfl8dCb4v3k6IrG1gW5vbZ3x93NXW5tQBmaRQqEQu266\nqTj11hhrRt1/0knxckvLuNfvWLEivvvWt8ZZTz899gmveU2s+PznI7Eaj1QqYtmyYnvTm8Y+J5cr\nToM2UbVNZ2dSIy5Nd3fEr35VbONZvXrs0GZgX0uLahtISF1NXaxuXh2rm1eXfW2uPzc4jVq5wc7B\n3MEZeDdzS2dvZ3T2dsb2g9vLvra+pn7KgU5D1jSUVJZQhkmtWLEiUqlUFF75tFFvb2+0trbG6tWl\n/+OzffvwH5aqUgBmnxe6u6NtGuuTtPb2xubu7jhqBudNHzrF2/gTKFVWvlCInjKrebonCHxKCY5y\ns+0TvsyYfER05PPRMU/Cv6+89FLUpFKRSaUiHcX1t9JRrNhLD9mXKfFYekRfUz02eJ8Sjo0c09Bj\nqQjTszGnPNPeHidt2hTxla9MuY8LP/WpCY8/XV8f48Qj1VFbG3HkkcU2lkIhYs+e4aHNyOBmx45k\nx1yKnTuL7fHHxz7e0DB6WrSh7fDDi98boKpqM7WxqmlVrGoq/7lYX75v2Lo4Y62VM16gs7/HFNXd\nfd2xo31H7Ggv/2d8XaZu1FRqpQY6jdmZ/eAic5NQhkk1NDTEEUccES8OWeBx69atZYUyW7duHbZ9\n7LHHVmx8AFTGoxVYS+bRAwdmNJSphvTAAveZTGL3zBcKEwY3MxEK9QqCqIDW3t74f7dsqfYwZtTQ\n8KacgKlS4VM5AdNUw6f5FKSNPLbQHorctWvXzN9jrlXIpVLFqpKWloiTThr7nJ6eiG3bJg5uumbZ\nmhJdXRG/+EWxjSWVinjNayYObpYvV20Ds1hNuiZWNK6IFY0ryr62P98f+3v2T7iOzmDlzhj7C7Gw\n/1bo6e+Jl9tfjpfbR1edTiabzo69Rk4JgU5zbfOC+91loRDKUJJjjz12WCizcePGOPXUU0u+ftOm\nTaP6A2B2mWzqsqPq66MQEZsnWFvs0f3740NlhPaMLZ1KRWMmE42ZTHF+/QT0D5kWbrrr/pQaHPUJ\ngpiD8lEMTiNi9q1bQUkWUpD2v196aca/n/9n5854d0tLZIaMf+D1wPdl4PXAGDNDzhl2/mwJz+rq\nIo4+utjGUihE7N49ej2bods7dyY75skUCsUKoB07Ih57bOxzmppGT4s2dPvQQ1XbwByVSWdiecPy\nWN6wvOxr84V8HOg5MGGgMzTMGTktW74wPyrCp6o33xutHa3R2lH+VMI16ZpxA5zajJ/Hc5lQhpKc\neOKJ8eMf/3hw+5FHHolLLrmkpGt37NgRW4Z8YjKbzcb69esrPUQApmmiUObDq1fHF1772oiI+KNf\n/Sq+Oc6DhumsSUN1ZVKpaK6piSQ/69w3QXAz3bWBxguFFvafhEBERH8Ug+iIEKxVwAvd3XHaU09V\ntM9UxJihzlQCnlIDoin1tXRpsb3pTaOv7+uLzIEDkdm7NzJ790Z6z57I7NkTmd27I71rV2R27YpM\nLheZ/v5IF/5/9u47PKoyfeP4PTMhJCQhgYQWepUiiCi6VGEVlQVERREBRcVVQRTLjyorwmLBvvYO\nIkUFRRFQBJTIKlIUQcpSDDWEXhICKcyc3x9HIpNGJplyZvL9XNdc5Lwz5z1P1n0gmXve9xhyuFxy\nOJ1yuFzm8Z9fO1wu2f/8s8DjPOeXdC67YUgZGdLmzeajwP8wNikxsejgJi6O1TZAiLHb7IqLiFNc\nRJzqq5CtIQthGIbSs9OLHejk/dNpOH30XQWHM64zOnzqsA6f8v3KV/gXoQyKpWfPnpo8eXLu8ZIl\nS2QYRrE+wfTtt9+6HXft2lXRwbS8HQDKAMMwdMqZ/wfeWIdDbzVpon7nrH6Z1qyZuleurPu2blVa\nnnMynM5i//sAhNntirHbFeOn6xmGoRzD8Mp9fzwJjnjLFwA8Y0g6Yxg6IwV/cGa3/7VdmsU5nM4i\nA5+8IU/u10eOyHHokOxr1pjBVFiYHOXKyR4eLkd4uBzly8tRvrzsERFyRETIYbefN/jyxoornwZy\nJTw/79f8zIxQZ7PZVLF8RVUsX1F1Vdejcw3DUEZORokDnRxXye+XCvgaoQyKpX379kpISNDhP/ck\nTk5O1rJly9S1a9fznvv++++7Hffu3dsnNQIASs5ms+mXSy/VY8nJeiUlRYakjrGxmt6smepGROR7\n/a3VqqldxYoauHmzfkxLk03S8Fq1NKl+fX65hGXZbDaF22wKt9sV66drGoah7HO2hvP1vYHOjgMA\n4CmnwyGnwyGfvY2ZmWk+kOvcVWGlDYhsMtTqqm+1PiPDL3U/XLuWKjrC9NGRUyp3bK8cNpvC8gRW\nhY3ljnt5jKArtNhsNkWHRys6PFq1Y2t7dK5hGDqVc0rHMv/cTs3DQCfLmeWj7wowEcqgWOx2u+64\n4w49//zzuWMTJkxQly5divwHb+nSpVq+fHnucUxMjPr27evTWgEAJRPlcOjlxo11U5UqWpGWpodr\n1VKY3V7o6+tFRmpZ69Z6ce9eta9YUR3j4vxYLRAcbDabyttsKm+3y18dYhiGMou5xducQ4f0WQlv\nBN4kMlL1IyLklHmPFZfMLaHOfu0yDLfnXIZhPl+M53LnOs9zAAAEM++vCisnhfv+Jw5D0osHTv55\ndNzn1/PEucGVL4Ifq4w5pL8CLy+NOWy2kAm1bDabosKjFBUepVoVa3l8/umc0/mCmrz3yiks0Dl9\n5rQPviOEGkIZFNuoUaP01ltv6eRJ8x/epKQkTZ48WaNHjy7w9SkpKbr77rvdxoYPH66EhASf1woA\nKLmOcXHFDljC7HaNrFPHxxUB8ITNZlOkw6FIh0OVzvPaWQc9v+HoWc0qVNAXLVuW+HxvMM4T5uQN\niop6Lm9Q5O+A6XzPWeF78db3efY4yDelAgBY0Nl/a3KCfevDAMm7GsvbwU+gxtxWbRV3zBGn8tFx\nqhnTQHWLea7NZlPWmawit1vLF+6c82dGju9XusEaCGVCxI8//qjTp/MnsevWrXM7zszM1JIlSwqc\nIzExUc2bNy/0GgkJCRo7dqzGjh2bOzZmzBjt3r1b48aNU2JioiTJ5XJp3rx5Gj58uHbv3u02/6OP\nPurR9wUAAADfMAxDK9LSSnz+irS0gN9DyvbnL8QITsafwUwoBEzBFJYdzMnRoZySbVB1ttt4qxMA\nQhOhVunkDbXM8CZWDlucHLYGcpSTHOE2hcW6BzqVbTZVtdlkM85IZ07KlZMmIyddxpl0OXPS5TyT\nLmd2ms7kpMuZk6acnDRlZx3V4SO/Bfg7RkkRyoSIAQMGaNeuXed93YEDB9StW7cCnxs0aJCmTp1a\n5PmjRo3STz/9pPnz5+eOvfnmm3rnnXdUt25dxcbGaseOHTp+3H35amRkpD799FPFsbUNAACAJSRn\nZpb4jVlJOpiTox2ZmWoQGenFqlCW2Gw22WTeEwH+0/v33zXvyJESnXtdfLy+aNkyd5Xa2UDo7Ndn\ng6azXzvPCYYKOnZ7rpRzne98b84ViO+LLRsBwPq8E2qFSaosOSpLDknlC3lZ9nFpxQ2luA4CiVAG\nHrHb7Zo9e7buvPNOffzxx7njTqdTycnJBZ4THx+vOXPmqEOHDv4qEwAAAOex4sSJ0s+RlkYoAwQR\nb66QC7PZeEPBj4w8K578ETYVey6XS84TJ+Q6dkzOY8fkPH7cPD5xQs60NPORkyOX3S7nOQ9XIV87\nHQ65bLbcr512e8HHf36d7/yi5i7utRwOOR2OwPzHBgCEPH6GgsciIiI0a9Ys3XTTTZo0aZJ++63g\npXJRUVEaNGiQxo8fr6pVq/q5SgAAABTlfG/MNoiIkCFpR2Zm4XOcOKEB1ap5uTIAvsIKueBlO2cr\nnHKBLqYgtWsX/fyJE9KePdLu3eZj166/vt69W0pJkZxO/9TqAZfNVngAVL68nLVqyVWrlpy1a5tf\nJybKmZgoZ82aclarJldEhNdCNI8CuVOn5HrrLTlPnZLTbteczp31Ry3Pb3YuSVWPHlWr5OS/gquI\nCDlbt9aZsDC32p2Szpx7XIwxNsgCUFYRyoSInTt3+v2affr0UZ8+fbR9+3atXLlSKSkpys7OVlxc\nnJo1a6YOHTooIiLC73UBAADg/IoKZW6vVk2vNm4sSRq2bZs+OnDA4zkAWA8r5BAwsbHm48ILC37+\nzBlp377CQ5tdu6T0dP/WLMluGLIbhsJcBWwgl54uHT4sFfJBVUlSQoJUp475qFv3r6/PPqpWlex2\n7xfev780a5Yk8x5QH3TvXqrpvh0xQm4bTfbvL82YUao5JblthVjcQMdpGO7jZXiMUAsIXoQyKLVG\njRqpUaNGgS4DAAAAxWQYhk4V8InkWIdDbzVpon7nrH6Z1qyZuleurPu2blVannMynM7crYwAWB8r\n5GBZYWF/BRWFOX48f1Bz7vG+fVJB4UkgHT5sPn79teDny5c3VxkVFdx4+mHXBQtyAxlJSk5M1KFK\nlUr8LRysXFk7atRQg9TUvwZnzjSDmR49SjyvJLetEAu7bQYKZ5Qw0HEbL8NjFvvbAmUMoQwAAABQ\nxthsNv1y6aV6LDlZr6SkyJDUMTZW05s1U90C3vy5tVo1tatYUQM3b9aPaWmySRpeq5Ym1a9PIAME\nEVbIIajFxZmPVq0Kfj4nx9wGrbDgZtcuKSPDvzWfT1aWtH27+ShM1aruIU3e4KZKFencf4snT3Y7\nfUXz5qUuc0WLFu6hjCQ9+2ypQxmUDvf3Kp28oZYngU7ueADHTp4ur+mB+h8PpUbfAgAAAGVQlMOh\nlxs31k1VqmhFWpoerlVLYUVsoVIvMlLLWrfWi3v3qn3FiuoYF+fHagGUFivkEPLKlZPq1TMfBTEM\n6dgx99Amb3CTmmq+zkoOHjQfa9YU/HxExF8BTXS0tHy529MrWrQocvoGKSkybDbtSEws9DUrmjfX\ngCVL3Ad/+EHasKHwLekAiwv2UOtQxiFCmSAWrP+/AwAAAOAFHePiih2whNntGlnU1jIALIsVcijz\nbDapcmXz0bp1wa/Jzpb27i16tc3p0/6t+3wyM6WtW81HAYpaKXP7okV69ZVXJEnDhg/XR1dfXfAc\nhQU7s2ZJTz7pWb0AAEIZAAAAAADKAlbIAecRHi41aGA+CmIY0tGj+e9nc+7x/v3+rbkIhqRTBYSu\nsSdP6q0XX1S/77/PHZv29NPqvnKl7nv4YaVFR7u9PuPP+03li2NXrfJ6zQBQFhDKAAAAAABQhrBC\nDighm02KjzcfbdoU/JqsLGnPnqK3ScvM9E+5kn659149NniwXrnxRhl2uzquX6/pTz2lugXcN+rW\n775Tu40bNfCxx/Rjy5ayuVwa/tlnmvTBB/kDGUn65RczqGL1HAB4hFAGAAAAAAAA8Iby5aVGjcxH\nQQxDOnw4/2qbc4Obgwe9Vk5UZqZefv113ZSUpBUtWujh2bMV5nIV+vp6Bw5o2UMP6cW+fdV+wwZ1\n3LCh8MmPHZNOnpRiYrxWLwCUBYQyAAAAAAAAgD/YbFKVKubj0ksLfs3p0+a9bYraJi0726PLdjxf\nwHKOMJdLIz/+uHgTZ2URygCAhwhlAAAAAAAAAKuIjJQaNzYfBXG5pEOH3IOabdukt97yb52SuTII\nAOARQhkAAAAAAAAgWNjtUrVq5qNtW3PMMKRPPjG3FPOX8uWlnTulli39d00AkqT4CvE6+H/5tzrM\ncDr11K5dejc1VZJ0ecWKeqNJY9UuH1HgPLszT2vo1m1alZ4uSbonsYbG1KmrKIej0Oui9AhlAAAA\nAAAAgGBms0lt2khLl/rvmllZUqtWZjB0111Sv35SXJz/rg+UYXabXVWiquQbryLpnZbVdXvt41qR\nlqaHa9VSmN1e6DxVoqQfL6+lF/fuVfuKFdWRHvaLwv+LAAAAAAAAAAgOl10WmOuuXi0NGSLVqCEN\nHCh99525xRqAgOkYF6cRdeoUGcicFWa3a2SdOgQyfkQoAwAAAAAAAAS7W28N7PUzM6UZM6Qrr5Qa\nNpQmTjTvdwMAcEMoAwAAAAAAAAS7li2lTp0CXYVp505p/HipXj3p6quljz82QxsAAKEMAAAAAAAA\nEBJGjQp0Be4MQ1q82FzFU6OGNGyY9Ouv5jgAlFGEMgAAAAAAAEAo6NHD99uY/e1vJVuRc/y49Prr\n0iWXSBdfLL3yinTkiPfrAwCLI5QBAAAAAAAAQsWrr0qJib6ZOzFRmj9f+uEHaetWaezYkl1r3Tpp\n+HDz3L59pW++kZxO79cLABZEKAMAAAAAAACEivh4M+SoVMm781aqZM4bH28eN24sPfmktGuXtGCB\n1KePVK6cZ3NmZ0uzZ0vdu5v3nxk3TvrjD+/WDQAWQygDAAAAAAAAhJKWLaWkJO+tmElMNOdr2TL/\nc2Fh0j/+Ic2ZI6WkSC+9VPDrzmfvXjPkadRI6tJFmjZNysgodekAYDWEMgAAAAAAAECoadlSWr9e\n6t+/dPP072/OU5ygpUoV6aGHzO3JVq+WhgyRYmM9v2ZSkjRokFSjhnTPLBeLogAAIABJREFUPdLP\nP0uG4fk8AGBBhDIAAAAAAABAKIqPl2bMMO8D07mzZ+d27mxuSzZjxl9blhWXzSZdeqn0xhtSaqo0\nc6Z01VWezSFJ6enSu+9K7dpJLVpIzz8vHTjg+TwAYCGEMgAAAAAAAEAo69HDXH3y++/S2LFmQJL3\nnjOVKpnjY8ear0tKMrclK63ISOnWW6XFi6UdO6Tx46U6dTyfZ/NmacQIqVYt6frrpXnzpJyc0tcH\nAH5mMwzW/gElsXHjRl144YW5xxs2bFCLFi0CWBEAAAAAAEAxGYZ08qSUlSWVLy9FR5srXPzB5ZK+\n+0764APp88/NGkqiWjXp9tulO++UmjXzbo0AQoqV3stlpQwAAAAAAABQ1thsUkyMlJBg/umvQEaS\n7HZzVc7Mmeb2Zq+/bm535qkDB6TnnpOaN5fat5fee09KS/N+vQDgRYQyAAAAAAAAAAKjUiVp6FBp\n9Wpp3TrpoYc8v4eNJK1YIf3zn1KNGtIdd0g//GCuBgIAiyGUAQAAAAAAABB4rVpJL70kpaRIc+aY\n97Sxe/j25alT0ocfSldcITVpIj31lDkfAFgEoQwAAAAAAAAA6yhfXurTR1qwQNq92wxWGjXyfJ7t\n26XHHpPq1DEDnjlzSn7/GgDwEkIZAAAAAAAAANZUs6Y0Zoy0dauUlGRuTVahgmdzuFzS119LN99s\nzvfQQ9L69T4pFwDOh1AGAAAAAAAAgLXZbFLnztKUKdL+/dJ770nt23s+z5Ej0n/+I110kXTppdIb\nb0jHjnm/XgAoBKEMAAAAAAAAgOAREyMNHiz9+KO0ebM0cqRUrZrn8/zyi3T//VKNGlL//tKSJeaq\nGgDwIUIZAAAAAAAAAMGpaVNp8mRpzx5p3jzp+uulsDDP5sjKkmbNkrp1kxo0kJ54Qtq50xfVAgCh\nDAAAAAAAAIAgV66c1KuXNHeutHev9PzzUrNmns+za5c0YYJUv7501VXSzJnS6dPerxdAmUUoAwAA\nAAAAACB0VKsmPfqotHGj9PPP0j33mFueeWrpUmnAAHN7s6FDpTVrJMPwfr0AyhRCGQAAAAAAAACh\nx2aTLr9cevttKTVVmjZN6tLF83lOnJDefFNq21a66CLp5ZelQ4e8Xi6AsoFQBgAAAAAAAEBoi4qS\nbrtN+v57aft2adw4qVYtz+f5/Xfp4YelmjWlm26SFi6Uzpzxfr0AQhahDAAAAAAAAICyo2FD6d//\nlnbulL75RurbVwoP92yOnBzps8+kHj2kunWlsWOlbdt8Ui6A0EIoAwAAAAAAAKDscTika66RPvlE\n2rdPeuUVc3syT+3bJz39tNSkidS5szR1qnTypNfLBRAaCGUAAAAAAAAAlG3x8dIDD0i//Sb9+qs0\nbJhUqZLn8yxfLt15p1SjhnT33dJPP0mG4f16AQQtQhkAAAAAAAAAOOvii6VXXzVXwHz8sXT11ZLN\n5tkcJ09K778vdeggNWsmPfuslJrqm3oBBBVCGQAAAAAAAADIKyJCuuUWadEi8/4zEydK9et7Ps+W\nLdKoUVLt2tJ110lffGHekwZAmUQoAwAAAAAAAABFqVNH+te/pO3bpe++kwYONEMbTzid0ldfSTfc\nINWqJf3f/0kbN/qmXgCWRSgDAAAAAAAAAMVht0tdu0offWRuR/bWW9Jll3k+z8GD0gsvSBdeKP3t\nb9I770gnTni/XgCWQygDAAAAAAAAAJ6Ki5PuvVdauVL6/XfpkUekKlU8n2flSnOeGjWk22+Xli2T\nXC6vlwvAGghlAAAAAAAAAKA0LrzQXPmyd6/0+edSz57mqhpPnD5trsDp2lVq3FiaNEnas8c39QII\nGEIZAAAAAAAAAPCG8HDznjFffWUGKs88IzVp4vk8ycnmPWzq1pWuvVb69FMpK8v79QLwO0IZAAAA\nAAAAAPC2xERp1Cjpf/+T/vtf6a67pKgoz+YwDGnRIumWW8z5HnxQ+u0339QLwC8IZQAAAAAAAADA\nV2w2qUMH6f33pf37pQ8+kDp29Hyeo0elV1+VLr5YatNGeu01cwxAUCGUAQAAAAAAAAB/iI6W7rxT\nWr5c2rJFGj1aqlHD83nWrpUeeMA8t18/6dtvJafT+/UC8DpCGQAAAAAAAADwtyZNpKeflnbvlubP\nl268UQoL82yO7Gzpk0+ka66R6teXHn/cvB8NAMsilAEAAAAAAACAQAkLk3r0kD77TNq3T3rxRalF\nC8/n2bNH+ve/pYYNpb//XZo+XTp1yvv1AigVQhkAAAAAAAAAsIIqVaSHH5Z+/11atUq67z6pYkXP\n5/n+e+m228ztze67z5zLMLxfLwCPEcoAAAAAAAAAgJXYbFLbttKbb0qpqeaql7//3fN50tKkt9+W\nLr9catnSXIVz8KD36wVQbIQyAAAAAAAAAGBVFSpIAwZIS5ea94t5/HGpdm3P59m4UXr0UalmTfP+\nNfPnS2fOeL9eAEUilAEAAAAAAACAYFC/vjRhgrRjh/Ttt1K/flL58p7NceaMNHeu1KuXGe6MHi1t\n2eKbegHkQygDAAAAAAAAAMHE4ZC6dZNmzZL27ZNee01q08bzefbvlyZPlpo2lTp2lD74QEpP9369\nAHIRygAAAAAAAABAsKpcWbr/fumXX6S1a6UHHzTHPPXjj9LgwVKNGtJdd0n//a9kGN6vFyjjCGUA\nAAAAAAAAIBS0bi395z/m6plPP5WuvVay2TybIyNDmjJF6tRJuuAC6ZlnzPkAeAWhDAAAAAAAAACE\nkvLlpZtvlr7+Wtq1S5o0SWrQwPN5tm2Txowx7z3Ts6f0+edSdrb36wXKEEIZAAAAAAAAAAhVtWtL\njz1mBizLlkm33y5FRno2h8slLVgg9ekj1awpPfKI9PvvPikXCHWEMgAAAAAAAAAQ6ux26YorpA8/\nlPbvl955R/rb3zyf5/Bh6aWXpFatpLZtpTfflI4f9369QIgilAEAAAAAAACAsqRiRemf/5RWrJA2\nbpT+7/+kqlU9n2fNGmnoUKlGDWnAAOm778xVNQAKRSgDAAAAAAAAAGVV8+bSc89Je/dKX3whXXed\n5HB4NkdmpjRzpnTllVLDhtLEiea9bADkQygDAAAAAAAAAGVduXJS797Sl1+aAc2zz0pNm3o+z86d\n0vjxUv360tVXS7NmmaENAEmEMgAAAAAAAACAc1WvLo0YIW3aJP30k3T33VJ0tGdzGIa0eLHUv7+5\nvdn990u//GKOA2UYoQwAAAAAAAAAID+bTWrXTnr3XWn/fmnqVKlzZ8/nOX5ceuMN6dJLpdatpf/8\nRzpyxOvlAsGAUAYAAAAAAAAAULSoKGnQICkpSdq6VRo7VkpM9Hye9eulhx4yz+3bV/rmG8np9H69\ngEURygAAAAAAAAAAiq9xY+nJJ6Xdu6WFC6WbbjLvSeOJ7Gxp9mype3epbl3pscek7dt9Uy9gIYQy\nAAAAAAAAAADPORxmqDJ7trRvn/Tyy1LLlp7Pk5IiPfWUGfZccYX04YdSRob36wUsgFAGAAAAAAAA\nAFA6CQnS8OHSunXSmjXS0KFSXJzn8/zwg3THHVKNGtI//ymtWCEZhtfLBQKFUAYAAAAAAAAA4B02\nm3TJJdLrr5urZ2bOlK66yhz3RHq69N57Uvv2UosW0vPPSwcO+KZmwI8IZQAAAAAAAAAA3hcZKd16\nq7R4sZScLD3xhHn/GE9t3iyNGCHVrCn17i19+aWUk+P1cgF/IJQBAAAAAAAAAPhWvXrS+PFmOLN0\nqTRggBQR4dkcTqc0b550/fVSrVpmULN5s0/KBXyFUAYAAAAAAAAA4B92u/T3v0vTp0upqdIbb0iX\nXur5PAcPmluaNW8utWsnvfuulJbm/XoBLyOUAQAAAAAAAAD4X1ycNGSItHq1tG6d9NBDUny85/P8\n/LN0zz1S9erSoEFSUpJkGN6vF/ACQhkAAAAAAAAAQGC1aiW99JK0b580Z470j3+Yq2o8cfq0NG2a\n1KWL1Lix9OST0t69PikXKClCGQAAAAAAAACANYSHS336SAsWSLt3S08/bQYsnvrjD2ncOKluXal7\nd2n2bCkry/v1Ah4ilAEAAAAAAAAAWE/NmtLo0dKWLdLy5dIdd0gVKng2h8slffON1LevlJgoDR9u\nbpUGBAihDAAAAAAAAADAumw2qWNHacoUaf9+6b33pPbtPZ/n6FHplVek1q2lSy6RXn9dOnbM+/UC\nRSCUAQAAAAAAAAAEh5gYafBg6ccfpc2bpZEjperVPZ/n11+lYcOkGjWkW2+VFi82V9UAPkYoAwAA\nAAAAAAAIPk2bSpMnS3v2SF99Jd1wgxQW5tkcWVnSxx9LV18t1a8vjR8v7djhm3oBEcoAAAAAAAAA\nAIJZWJjUs6f0+edSSor0wgtS8+aez7N7tzRxotSggXTlldKMGdLp096vF2UaoQwAAAAAAAAAIDRU\nrSo98oi0YYO0cqV0771SxYqez/Pdd9LAgeb2ZkOGSKtXS4bh/XpR5hDKAAAAAAAAAABCi80mXXaZ\n9NZbUmqqNG2a1LWr5/OcOGHOcdllUqtW0ksvSYcOeb9elBmEMgAAAAAAAACA0FWhgnTbbebqlz/+\nkP71L6lWLc/n2bDBXIVTs6bUp4+0YIF05oz360VII5QBAAAAAAAAAJQNDRqY943ZuVNatEi65RYp\nPNyzOXJyzPvX9Owp1akjjRkjbd3qk3IReghlAAAAAAAAAABli8MhXX219PHH5vZmr74qtW7t+Typ\nqdIzz0gXXCB16iRNmSKdPOn9ehEyCGUAAAAAAAAAAGVX5crSsGHS2rXSr79KDzwgVark+Tz//a90\n111S9erS4MHSjz9KhuH9ehHUCGUAAAAAAAAAAJCkiy+WXnlF2rdP+uQT6ZprJJvNszkyMqQPPpA6\ndpSaNpUmTzZX1AAilAEAAAAAAAAAwF1EhNS3r/TNN+b9Z/79b6l+fc/n2bpVGj1aql1b6tVLmjtX\nys72erkIHoQyAAAAAAAAAAAUpk4dadw4aft26fvvpdtukyIjPZvD6ZTmz5duvFGqVUt69FFp40bf\n1FsQw5DS0qTDh80/2VYtYAhlAAAAAAAAAAA4H7td6tJFmjbN3I7s7belyy/3fJ5Dh6QXX5QuvNA8\n/+23pRMnvF6ufv9dGjtWuuoqKT5eio2VqlQx/4yPN8fHjpU2bPD+tVEoQhkAAAAAAAAAADwRGyvd\nc4/0889mqPHoo2bg4alVq6T77pNq1DBX4Hz/veRyla62BQukzp2lVq2kp5+Wli6Vjh1zf82xY+b4\n009LLVuar1+4sHTXRbEQygAAAAAAAAAAUFItWkjPPy/t3WveM6ZXL8nh8GyO06el6dOlv/9datTI\nvIfN7t2ezXHkiNS/v9Szp7R8uWfnLl8u9eghDRhgzgOfIZQBAAAAAAAAAKC0wsOl66+X5s2T9uyR\nJk+WLrjA83l27JAef1yqV0+65hrpk0+kzMyiz1m/3lwZM2tWiUrPNXOmOc/vv5duHhSKUAYAAAAA\nAAAAAG+qUUMaOVLavFn68Udp8GApOtqzOQxD+vZbqV8/KTFReuABae3a/K9bv968182+fV4pXfv2\nSVdcQTDjI4QyAAAAAAAAAAD4gs0mtW8vvfeelJoqTZkiderk+TzHjkmvvSa1aSNdfLH06qvmNmNH\njkjdu+e/Z0xpHTsmXXstW5n5AKEMAAAAAAAAAAC+Fh0t3XGH9MMP0pYt0pgx5ooaT/32m/Tgg+bq\nmTZtvLdCJq99+8zrwKsIZQAAAAAAAAAA8KcmTaSnnpJ275YWLJD69JHKlfNsjuxs83xfmjnTrA9e\nQygDAAAAAAAAAEAghIVJ//iHNGeOlJIivfSSdOGFga7K3bPPBrqCkEIoAwAAAAAAAABAoFWpIj30\nkLR+vbR6tTRkiBQbG+iqzO3WNmwIdBUhg1AGAAAAAAAAAACrsNmkSy+V3nhDSk2VZsyQrrwysDXN\nmhXY64cQQhkAAAAAAAAAAKwoMlLq319askRKTpbGj5fq1PF/HatW+f+aISos0AUAwSorK8vtePv2\n7QGqBAAAAAAAAECZcPPN0o03Su3aSadO+e+6q1aZW5jZbP67phflfe8273u7/kQoA5TQnj173I6v\nv/76AFUCAAAAAAAAAD6Ulia1bBnoKrxmz549atOmTUCuzfZlAAAAAAAAAAAAfkAoAwAAAAAAAAAA\n4Ac2wzCMQBcBBKPjx48rKSkp97h27doqX758ACvyn+3bt7tt1/bFF1+oUaNGAawIgK/R90DZQs8D\nZQ99D5Q99D1QtpT1ns/KynK7HcUVV1yhuLi4gNTCPWWAEoqLi1Pv3r0DXYYlNGrUSC1atAh0GQD8\niL4HyhZ6Hih76Hug7KHvgbKlLPZ8oO4hkxfblwEAAAAAAAAAAPgBoQwAAAAAAAAAAIAfEMoAAAAA\nAAAAAAD4AaEMAAAAAAAAAACAHxDKAAAAAAAAAAAA+AGhDAAAAAAAAAAAgB8QygAAAAAAAAAAAPgB\noQwAAAAAAAAAAIAfEMoAAAAAAAAAAAD4AaEMAAAAAAAAAACAHxDKAAAAAAAAAAAA+EFYoAsAEHyq\nVKmi8ePHux0DCG30PVC20PNA2UPfA2UPfQ+ULfS8ddgMwzACXQQAAAAAAAAAAECoY/syAAAAAAAA\nAAAAPyCUAQAAAAAAAAAA8ANCGQAAAAAAAAAAAD8glAEAAAAAAAAAAPADQhkAAAAAAAAAAAA/IJQB\nAAAAAAAAAADwA0IZAAAAAAAAAAAAPyCUAQAAAAAAAAAA8ANCGQAAAAAAAAAAAD8glAEAAAAAAAAA\nAPADQhkAAAAAAAAAAAA/IJQBAAAAAAAAAADwA0IZAAAAAAAAAAAAPwgLdAEAfO+PP/7QqlWrtHfv\nXmVnZ6tSpUpq2rSp2rdvr4iIiECXB8DLrNbzOTk52rJlizZu3KgDBw4oPT1d0dHRio+PV6tWrXTh\nhRfKbudzIkBpWK3v09LS9L///U+7du1SamqqMjIyJElxcXGqXr262rRpo7p16/q9LiCUWK3vAfgW\nPQ+UPVbve6fTqV9++UWbNm3SwYMHlZOTo+joaNWqVUvNmjVT06ZN+V2/MAaAkDV37lyjTZs2hqQC\nH9HR0cawYcOMQ4cO+a0ml8tlbNq0yZg6daoxdOhQ45JLLjHKlSvnVtegQYP8Vg8QSqzU88nJycaz\nzz5rdOvWzYiMjCy0JklGbGyscf/99xtbt271eV1AqLFK32dkZBivv/66ccsttxj16tUrsufPPurV\nq2dMmDDBOHLkiE9rA0KNVfq+uDIyMoyGDRvmq5Of+YHisVLPX3HFFcX6N76wx5QpU3xeIxAKrNT3\nBUlOTjaGDBlixMXFFdnzFStWNHr37m0sWLAgIHVaGaEMEIIyMzONAQMGFPsHoypVqhhJSUk+remD\nDz4wrrzySiM2Nva89fALGuAZK/V8Zmamcfnll5fol7Tw8HDjueeeM1wul09qA0KJlfreMAxj27Zt\nJX6DpmrVqsZnn33ms9qAUGG1vi+uhx9+mJ/5gRKwYs8TygC+ZcW+P5fT6TSeeuopo3z58h71/i23\n3OK3GoMF64eAEONyuXTLLbdoxowZbuMOh0P169dX69atFRsb6/bcoUOH1L17d61YscJndX355Zda\nunSpTpw44bNrAGWR1Xo+JydHK1euLPC5iIgI1a9fX23btlXz5s0VHh7u9nx2drZGjBihYcOGeb0u\nIJRYre+LEhcXp2bNmunyyy/XRRddpKpVq+Z7zcGDB3XzzTdr6tSpfq0NCCbB1PfnWrVqlf7zn/8E\n7PpAsArWngdQclbv+5ycHPXr109jx45VVlaW23OxsbFq2rSpLrvsMjVr1kwVKlTweT3BjlAGCDHP\nPfecvvzyS7ex++67T7t371ZycrLWrl2ro0eP6vPPP1edOnVyX3Pq1Cn17ds3IKFJVFSU368JhAqr\n93z9+vX1xBNP6Mcff1RaWpqSk5O1atUqbdy4UcePH9dHH32U774Sb7zxhl577TWf1gUEMyv3/YUX\nXqgRI0Zo3rx52r9/v44dO6ZNmzbp559/1m+//aYDBw4oOTlZ//rXvxQZGZl7nsvl0r333qv//e9/\nPqsNCGZW7vvCZGdna/DgwXK5XJL4mR/wRLD0/OLFiz16XHPNNX6pCwhGVu/7wYMHa/bs2bnHYWFh\nuv/++7Vq1SodO3ZMmzdv1sqVK7Vp0yalp6dr8+bNevnll9W+fXvZbDaf1haUAr1UB4D3HD582IiJ\niXFbIvj0008X+vq9e/fm2/f98ccf90ltvXv3NiQZ1atXN3r16mX8+9//Nr755hvjyJEjxvjx49nK\nACgBK/Z8enq6Icno0KGDsWjRomJtRXb06FGjbdu2bnXFxcVxnwmgAFbse8MwjJMnTxrbtm3z6Jy1\na9calSpVcqutb9++Xq8NCHZW7fvzOfdn/Jo1axqPPPIIP/MDxWDlns+7fRkA77By3xuGYXz00Udu\n10pMTDTWrVtX7POPHj3qs9qCFX+DAiFk5MiRbn9Jdu7c+bxviC5ZssTtnJiYGOPw4cNer+2XX34x\ndu/eXeBzhDJAyVix57Oysoz58+d7fF5KSooRFRXlVts777zjtbqAUGHFvi+Nt956y622qKgo4/Tp\n04EuC7CUYOz7DRs2GOHh4bnXnzt3Lj/zA8Vk5Z4nlAF8w8p9f+jQISMhISH3OrGxsR5/GAv5sX0Z\nECJcLpemTJniNvbEE0+cd4nglVdeqU6dOuUep6en69NPP/V6fW3atFHt2rW9Pi9QVlm158PDw9Wj\nRw+Pz0tMTNSgQYPcxhYtWuStsoCQYNW+L41bb71Vdvtfv5JkZGRo9+7dAawIsJZg7HuXy6XBgwcr\nOztbknTDDTfo+uuv98u1gWAXjD0PoHSs3vdPPvmkDh8+nHv81FNPqVGjRl6/TllDKAOEiJ9++kmH\nDh3KPW7QoIG6dOlSrHMHDx7sdvzFF194szQAPhCKPX/uD5SSeGMWyCMU+75ixYqqUqWK29i5v/QB\nZV0w9v3LL7+slStXSjJ7nPvEAcUXjD0PoHSs3PdZWVmaNm1a7nH16tV17733evUaZRWhDBAiFixY\n4HbcrVu3Yt9Iq1u3bm7Hy5YtU0ZGhtdqA+B9odjzlSpVcjsOxE2JASsLxb6XpMzMTLfjuLi4AFUC\nWE+w9X1ycrL+9a9/5R4//fTTSkxM9Ok1gVASbD0PoPSs3Pdz587V0aNHc4/79esnh8PhtfnLMkIZ\nIET89ttvbsft27cv9rmJiYmqV69e7nF2drY2bdrkrdIA+EAo9nxKSorbcXx8fIAqAawpFPt+y5Yt\nbgFsdHS0mjRpEsCKAGsJtr7/5z//qVOnTkmS2rVrpyFDhvj0ekCoCbaeB1B6Vu77vIFR165dvTZ3\nWUcoA4SIzZs3ux03b97co/Pzvj7vfACsJRR7fvny5W7HvDELuAvFvp80aZLb8YABAxQWFhagagDr\nCaa+f++99/Tdd99JksqVK6d333232J/0BWAKpp4/68SJE1q/fr1++OEH/frrr9q1a5ecTqfPrwuE\nCiv3/erVq92OL7roIkmS0+nU119/rX79+umCCy5QVFSU4uLi1LhxY/Xt21dTpkzJ/ZAGCsZvPEAI\nOH36dL57L9SuXdujOfK+fsuWLaWuC4BvhGLPp6Wlac6cOW5j//jHPwJUDWA9odb3mZmZGj16tKZP\nn547VqVKFU2cODFgNQFWE0x9n5qaqhEjRuQejxw5Ui1atPDJtYBQFUw9f9bFF1+s9evXy+VyuY1H\nR0erQ4cO6tOnj26//XaVL1/ep3UAwcrKfX/ixAlt3bo199jhcKhu3bpKTk7WwIEDtWLFigLP2b59\nu2bPnq1x48bpmWee0W233eaVekINoQwQAg4fPizDMHKPy5Urp6pVq3o0R82aNd2ODx486JXaAHhf\nKPb8pEmTdPLkydzjhIQE9ezZM4AVAdYSjH2/cuVKpaen5x5nZmbq4MGDWrNmjT777DO361evXl0L\nFy70+HsCQlkw9f3QoUN1/PhxSVLjxo01btw4n1wHCGXB1PNn5d126ayTJ09q0aJFWrRokR5//HG9\n8soruvnmm31aCxCMrNz3ycnJbrXFxMRo06ZNat++fbHu/7pv3z7dfvvt2rhxo5555hmv1BRKCGWA\nEHDuG5mSVKFCBY+3CoiKiipyTgDWEWo9/9NPP+nFF190Gxs3bpwqVKgQoIoA6wnGvr/33nu1bt26\nIl8TERGhO+64QxMnTlSVKlV8Wg8QbIKl7z/99FN98cUXucdvv/22IiIivH4dINQFS897av/+/erb\nt6/+7//+T88991ygywEsxcp9f/bDFmfZbDb17NkzN5CpUKGC+vfvr86dOys+Pl5HjhxRUlKSZs6c\nqdOnT+eeN3nyZNWsWVMPPPCAV+oKFYQyQAjI+xduSX4JioyMLHJOANYRSj1/8OBB9evXz23f6bZt\n22rYsGEBqQewqlDq+7PCw8P14IMP6p577iGQAQoQDH1/5MgRtzdZ7rzzTm4CDJRQMPS8ZNbVrVs3\nde/eXa1bt1ajRo0UFxenrKwsHTx4UCtWrNCsWbO0cOFCt0/ZP//884qPj9fo0aO9XhMQrKzc93lD\nmWPHjunYsWOSpEsuuUSff/656tSp4/aa2267TePGjVPv3r21fv363PERI0bommuu4b6x57AHugAA\npZeZmel2HB4e7vEcefd4PTfVBmAtodLzWVlZuuGGG7Rnz57csZiYGM2cOVMOh8Pv9QBWFip9f67s\n7Gw9++yzuuCCC3T33Xe7bXUGIDj6/qGHHsrdJqVq1ap6/vnnvTo/UJYEQ88/8sgj2rt3r+bNm6ch\nQ4aoXbt2qlKlisqVK6fo6Gg1aNBAAwYM0Pz58/XDDz/k21Zp7Nix511FC5QlVu77wsKdWrVqafHi\nxfkCmbPq1aunpUuXqnr16rljWVlZ/IyQB6EMEALyJunZ2dkez5E9qNSyAAAXb0lEQVSVlVXknACs\nIxR63uVyaeDAgfrpp59yxxwOh2bMmKFGjRr5tRYgGARj3//2228yDCP3kZaWpq1bt2r69Onq3r17\n7uucTqfef/99dezYUUeOHPFpTUAwsXrff/3115o+fXru8UsvvaTKlSt7bX6grLF6z0vSddddp/j4\n+GK9tmPHjlq2bJkSEhJyxwzD4J5TwDms3PeFzfPcc8+pUqVKRZ6bkJCQ7z4yH330UcA/FGYlhDJA\nCIiOjnY7zpu0F0fevxjzzgnAOkKh54cOHao5c+bkHttsNr377rvq1auXX+sAgkUo9H1MTIwaN26s\nAQMGaOHChfr222/dfqFbv369Bg0a5NeaACuzct+np6frvvvuyz2+9tpr1b9/f6/MDZRVVu75kmrU\nqFG++8gsXLhQR48eDVBFgLVYue8Lmqdy5crq06dPsc6/5ZZbFBsbm3ucmZmpVatWeaW2UEAoA4SA\nvH9Rnjp1ym3v1uLIyMgock4A1hHsPT9mzBi9/fbbbmMvvPCC7rzzTr/VAASbYO/7gnTr1k0LFiyQ\n3f7XryQLFizQ4sWLA1gVYB1W7vvRo0dr9+7dkswb/b755ptemRcoy6zc86Vx++23u907zuVyacmS\nJQGsCLAOK/d9QfO0a9dO5cqVK9b5ERERuuyyy9zG1qxZ45XaQgGhDBACEhISZLPZco9zcnJy93Yu\nrpSUFLfjqlWreqU2AN4XzD3/zDPP5FvG/Pjjj+vhhx/2y/WBYBXMfV+Udu3aaeDAgW5jU6dODUwx\ngMVYte937NjhFsJMmDBB9erVK/W8QFln1Z4vLbvdri5duriNbdmyJTDFABZj5b6vVq1avrEmTZp4\nNMcFF1zgduzp9xbKCGWAEBAZGZnvBltnP7lWXHlf37Rp01LXBcA3grXnX3/9dY0ZM8ZtbPjw4Zow\nYYLPrw0Eu2Dt++K48cYb3Y7PvdcUUJZZte9PnDjh9ineESNGyGaznfeR99/7Dz/80O35uLi4UtcG\nBDOr9rw31K5d2+340KFDAaoEsBYr933Dhg0VHh7uNlaxYkWP5sj7+mPHjpW6rlBBKAOEiLx/6W7a\ntMmj8zdv3lzkfACsJdh6ftq0aXrggQfcxu666y699NJLPr0uEEqCre+Lq2HDhm7H+/fvD1AlgPWE\nat8DKFio9nze7Y5ycnICVAlgPVbte4fDkW9lTFZWlkdz5L1HToUKFUpdV6gglAFCROvWrd2OPfmU\naWpqqnbu3Jl7XK5cOTVv3txbpQHwgWDq+c8++0x33XWX26dq+/btq3fffddtqTaAogVT35dGcfep\nBsqCstL3AEyh2vN5P3Bx7j1mgLLOyn3fpk0bt+MDBw54dH7e7cri4+NLXVOoCAt0AQC8o2fPnpo8\neXLu8ZIlS2QYRrHe8Pz222/djrt27WqJGwICKFyw9PzXX3+t/v37y+l05o716NFD06dPd7u5N4Dz\nC5a+99SuXbvcjgvavxooq6zY940aNdLixYs9Pm/atGn66KOPco+vvvpqjRgxIveYQBawZs97w3//\n+1+347zbmQFlmZX7/rrrrtO0adNyj3/55RePzs/7+rz3mCnLCGWAENG+fXslJCTo8OHDkqTk5GQt\nW7ZMXbt2Pe+577//vttx7969fVIjAO8Jhp5PSkpSnz59lJ2dnTvWtWtXzZkzhzdegBIIhr4via++\n+srtuFWrVgGqBLAeK/Z9dHS0rrrqKo/Py/umbI0aNUo0DxDKrNjzpZWUlKQ//vjDbezKK68MUDWA\n9Vi576+99lpFRETkbkO2fv16bdu2TY0bNz7vuRs3bsy3tVqXLl28Wl8w4yOqQIiw2+2644473MYm\nTJjgtl1QQZYuXarly5fnHsfExKhv376+KBGAF1m959esWaNevXrp9OnTuWN/+9vfNG/ePEVERHj9\nekBZYPW+L4nNmzdrypQpbmNWeRMJsIJQ7HsAhQu1ns/IyNCDDz7oNtayZUs1aNAgQBUB1mPlvo+K\nitLAgQPdxiZNmlSscydOnOh2fMUVV6hq1apeqy3YEcoAIWTUqFFuyxSTkpLclkDmlZKSorvvvttt\nbPjw4UpISCjyOjabze2xbNmyUtUNoGSs2vMbN27Utddeq/T09Nyx1q1b6+uvv7bMFgpAsLJi36en\np2vo0KHau3dv8b6JP23YsEHXXHON22q6unXr6uabb/ZoHiDUWbHvAfiOVXt++PDh2rdv3/m/gT8d\nPnxY1113ndavX+82PmHChGLPAZQVVu17SRo/frzbByunTZumDz74oMhz3njjDX366aduY2PGjDnv\ntcoSQhkghCQkJGjs2LFuY2PGjNHQoUPdfnhyuVz64osv1L59e7cbgiUmJurRRx/1SW2ZmZlasmRJ\ngY/k5GS316amphb62tTUVJ/UBwQjK/Z8amqqrr76ah05ciR3LCoqSiNHjtSaNWsK7e3CHgDcWbHv\nnU6n3nzzTTVo0EC9evXStGnT9McffxT46b7s7Gz99NNPGjJkiNq0aaM9e/bkPmez2fTqq68qMjLS\nq/UBwc6KfQ/Ad6za86+88ooaNGigG264QTNmzHC75rn27Nmj5557Ti1bttR3333n9tz111+vG264\nweu1AcHOqn0vSbVq1dKoUaPcxu6++24NGzbM7Wd5Sdq9e7eGDBmiYcOGuY3feuutuuaaa3xSX7Cy\nGedbCwUgqLhcLvXu3Vvz5893G3c4HKpbt65iY2O1Y8cOHT9+3O35yMhILV68WB06dDjvNfLebOz7\n778/776QO3fuVP369Yv3TRRhypQp+ZZ1AmWZ1Xq+uHvfFhc/pgD5Wa3vjx8/rkqVKuUbj4mJUfXq\n1RUXFyfDMHTixAnt3LlTOTk5BV7v3Xff1eDBg89bG1AWWa3vS+KJJ55w+4T8oEGDNHXqVK/ND4QS\nK/Z8QTcdr1ixomrUqKHY2Fjl5OTowIEDha6m6dSpkxYtWsSHL4BCWLHvz3I6nbr++uvz1Waz2VS/\nfn3Fx8fryJEj+T50LUlt2rRRUlISu2bkwUoZIMTY7XbNnj1b/fr1cxt3Op1KTk7W2rVr8/0FHh8f\nr4ULFxbrL3AA1kLPA2VPsPR9enq6tm3bptWrV2vNmjXatm1bgYFM48aNtXTpUgIZoAjB0vcAvCNY\nej4tLU1btmzRqlWrtHbt2gIDGbvdrpEjR2rp0qUEMkARrNz3DodDc+bM0aBBg9zGDcNQcnKyVq9e\nXWAgc9111xHIFIJQBghBERERmjVrlubMmaPWrVsX+rqoqCgNHTpUmzZt8uqn4AD4Fz0PlD1W6vvY\n2FglJSVp1KhRuuyyyxQeHn7ec8qVK6crr7xS06dP1++//+7VFXZAqLJS3wPwPav1/DvvvKN+/fqp\ndu3axXp99erVNXz4cG3ZskWTJ09WuXLlfFYbECqs1vfnKl++vKZOnaqvv/66yBDIZrPp8ssv11df\nfaUvv/ySQKYQbF8GlAHbt2/XypUrlZKSouzsbMXFxalZs2bq0KGD2826AIQGeh4oe6zU91lZWdq0\naZP++OMPpaamKj09XZIZ3sTFxalp06Zq2bJlscIbAIWzUt8D8D0r9fyRI0e0efNm7dq1S4cOHVJG\nRoYcDocqVaqkhIQEXXzxxWrQoIFfawJCkZX6Pq+UlBStWLFCu3btUmZmpipVqqQaNWqoQ4cOqlq1\nakBrCwaEMgAAAAAAAAAAAH7A9mUAAAAAAAAAAAB+QCgDAAAAAAAAAADgB4QyAAAAAAAAAAAAfkAo\nAwAAAAAAAAAA4AeEMgAAAAAAAAAAAH5AKAMAAAAAAAAAAOAHhDIAAAAAAAAAAAB+QCgDAAAAAAAA\nAADgB4QyAAAAAAAAAAAAfkAoAwAAAAAAAAAA4AeEMgAAAAAAAAAAAH5AKAMAAAAAAAAAAOAHhDIA\nAAAAAAAAAAB+QCgDAAAAAAAAAADgB4QyAAAAAAAAAAAAfkAoAwAAAAAAAAAA4AeEMgAAAAAAAAAA\nAH5AKAMAAAAAAAAAAOAHhDIAAAAAAAAAAAB+QCgDAAAAAAAAAADgB4QyAAAAAAAAAAAAfkAoAwAA\nAAAAAAAA4AeEMgAAAAAAAAAAAH5AKAMAAAAAAAAAAOAHhDIAAAAAAAAAAAB+QCgDAAAAACFm6tSp\nstlsuY+pU6cGuiQAAAAAIpQBAAAAAAAAAADwC0IZAAAAAAAAAAAAPyCUAQAAAAAAAAAA8ANCGQAA\nAAAAAAAAAD+wGYZhBLoIAAAAAAAAAACAUMdKGQAAAAAAAAAAAD8glAEAAAAAAAAAAPADQhkAAAAA\nAAAAAAA/CAt0AQAAAACAv6Snp2vt2rXasmWLjh8/rqysLFWoUEGVKlVSvXr11Lx5c1WrVi3QZZbK\nli1btG7dOh06dEgnTpxQ5cqVlZiYqI4dO6py5cqBLg8AAADwGUIZAAAAALCAX3/9VZMmTdKCBQuU\nnZ1d5Gvr16+vHj16aMiQIWrevHm+56dOnao777wz93jKlCm644478r3uiSee0IQJE0pd+/fff68u\nXboU+ZqTJ0/qhRde0IcffqgdO3YU+BqHw6FOnTpp4sSJ6tSpU6nrAgAAAKyG7csAAAAAIMCeeeYZ\ntW3bVnPnzj1vICNJO3bs0GuvvaaZM2f6obrSmz9/vho2bKgnnnii0EBGkpxOp5YtW6bOnTvr3nvv\n1ZkzZ/xYJQAAAOB7rJQBAAAAgAB6//33NWbMmHzjMTExqlevnqKionT69GkdPXpUe/fulWEYAaiy\n5N555x0NHTpUTqfTbbxChQqqW7euYmJidPToUSUnJ8vlcrmdd+DAAc2dO1c2m83fZQMAAAA+QSgD\nAAAAAAGSlZWlkSNHuo316dNHY8aM0f+3d7ehWddtH8CPNXXmjLCWSyPRItJZkM1CsIVZBOnEKJPp\nC3t4kWngiomOICIwmpYIGiZYsUxSqUBbW9CDxRxRlFBEc0m1xNJc5lxLy9k87xc3nfd9XrOuPfk/\nt+v6fGDg8Tt/D8e5d/Ld//+7/vrru4QR7e3t8emnn0ZdXV1s3bq1z+cvWrQobrrpph6t2bt3b1RW\nVmaM5efnn3Xu+++/H0uWLMkIW+bMmRMVFRUxffr0GDLk//5LeuzYsXjhhRdi1apV0d7eHhERu3bt\nijVr1sTKlSt71CMAAAxUOanB9mdWAAAA/yHq6upi9uzZ6XrRokXx8ssvd2ttR0dH/PDDD3HFFVd0\n+ay7d8r01Pfffx/Tpk2LI0eOpMdWrFgRq1ev7jL3+PHjMWnSpPjpp58iIuK8886LzZs3xwMPPPCP\nZzQ2NsaMGTPi559/joiIYcOGxYEDB+LSSy/tc/8AAJBt7pQBAADIkv3792fUS5cu7fbaYcOGnTWQ\nOVdaW1vjjjvuyAhkysrKoqqq6qzzN23alA5kIiKeeuqpfxvIREQUFRVFdXV1uu7o6Ijnnnuu940D\nAMAAIpQBAADIkt9//z2jHjp0aJY6+WenTp2KO++8M5qamtJjJSUlUV1dfdb7Xjo7O2PDhg3pety4\ncVFRUdHt82bNmhVTpkxJ12+88UYvOwcAgIFFKAMAAJAlY8eOzaj7456Y/pZKpeK+++6L+vr69NjE\niRNj165dkZeXd9Y1X3zxRRw6dChdl5WV9Thwuv3229P/bmpqiqNHj/awcwAAGHiEMgAAAFkyc+bM\nyM3NTdfr1q2LpUuXxnfffZfFrjJVVlbG9u3b03VhYWG8/fbbMWrUqL9ds2fPnox66tSpPT533Lhx\nGfW+fft6vAcAAAw0QhkAAIAsufzyy7vcs/L888/HlVdeGVOnTo3Kysqoq6uLY8eOZaW/jRs3xpo1\na9J1fn5+vPXWWzF+/Ph/XPevAcr8+fMjJyenRz8PP/xwxh7Z+h0AAEB/EsoAAABk0fr162POnDld\nxvfu3RurV6+O2bNnR0FBQUyZMiUee+yx+OqrrxLpq6amJpYtW5auc3NzY/v27d166uWXX37p937a\n2tr6fU8AAEiaUAYAACCLhg8fHrt27YpXX301rrvuurPOSaVS8fnnn8fTTz8d11xzTZSWlsY333xz\nznr67LPPoqysLDo7O9NjGzZsiNLS0m6tP378eL/3dObMmX7fEwAAkjYk2w0AAAD8t8vJyYkFCxbE\nggULorGxMd5999348MMPo6Gh4awX3NfW1kZ9fX3U1tZGSUlJv/bS3NwcpaWlcfLkyfTYihUrYsmS\nJd3eY8SIERl1VVVVFBcX96mvyZMn92k9AAAMBEIZAACAAaSoqCiKioqivLw8UqlUNDU1xTvvvBOv\nv/56NDQ0pOe1t7fHvHnz4ttvv42RI0f2y9mtra0xa9asOHLkSHqsrKwsqqqqerRPQUFBRj1hwoS4\n7bbb+qVHAAAYzLy+DAAAYIDKycmJSZMmRXl5eezZsyfq6+szAo+WlpZ45ZVX+uWsU6dOxdy5c6Op\nqSk9dvPNN0d1dXXk5OT0aK8JEyZk1OfyVWsAADCYCGUAAAAGiZKSki5Prfz/p2d6K5VKxb333ht7\n9uxJj02aNCl27twZeXl5Pd7vlltuyah3797d5x4BAOA/gVAGAABgEJk+fXpGfbY7Z3pq5cqVsWPH\njnRdWFgYdXV1MWrUqF7td+ONN2as3b17dzQ2Nva5TwAAGOyEMgAAAIPIv4YwvQ1O/rJx48Z45pln\n0nV+fn7U1tbG+PHje73n0KFD45FHHknXqVQqFi9eHKdPn+5LqwAAMOgJZQAAALLk8ccfj61bt8af\nf/7ZrfmpVCrWrl2bMVZcXNzr82tqamLZsmXpOjc3N3bs2NGnPf9SXl4ehYWF6bqhoSHmzZsXbW1t\n3d7jxIkTsX79+njxxRf73A8AAAwEQ7LdAAAAwH+rL7/8MlatWhUVFRVx1113xdy5c+OGG26Iiy++\nOGPemTNn4qOPPoonn3wy3nvvvfT4iBEjYuHChb0+v6ysLDo7O9P1/PnzIy8vL+OM7iguLu7yxM6F\nF14Yr732Wtx6663pJ2TefPPNmDx5cjz66KNxzz33xLhx47rsdfDgwfjkk09i586dUVNTE7/++ms8\n8cQTvfh2AAAw8AhlAAAAsqylpSU2bdoUmzZtioiIMWPGREFBQeTn58eJEyeiubk5fvvtty7r1q5d\nG5dddlmvzz158mRGvW3btti2bVuP9/nggw9ixowZXcZLSkpiy5Ytcf/998cff/wRERE//vhjLF++\nPJYvXx5jxoyJ0aNHR15eXrS1tUVLS0u0trb26rsAAMBgIJQBAAAYYA4fPhyHDx/+28/PP//8WLdu\nXSxevDjBrnqnrKwsrrrqqli4cGHs378/47N/9z0j/veVamPHjj2XLQIAQGLcKQMAAJAlmzdvjpde\neinuvvvujPtX/s5FF10UDz30UOzbt29QBDJ/KS4ujsbGxtiyZUtMmzYtcnNz/3F+Xl5ezJw5M559\n9tk4ePBgPPjggwl1CgAA51ZOKpVKZbsJAAAAIpqbm+Prr7+OAwcORFtbW3R0dMTIkSPjkksuiWuv\nvTaKiopiyJDB/8KDtra2+Pjjj+PQoUNx9OjROH36dFxwwQUxevTomDhxYlx99dUxfPjwbLcJAAD9\nTigDAAAAAACQAK8vAwAAAAAASIBQBgAAAAAAIAFCGQAAAAAAgAQIZQAAAAAAABIglAEAAAAAAEiA\nUAYAAAAAACABQhkAAAAAAIAECGUAAAAAAAASIJQBAAAAAABIgFAGAAAAAAAgAUIZAAAAAACABAhl\nAAAAAAAAEiCUAQAAAAAASIBQBgAAAAAAIAFCGQAAAAAAgAQIZQAAAAAAABIglAEAAAAAAEiAUAYA\nAAAAACABQhkAAAAAAIAECGUAAAAAAAASIJQBAAAAAABIgFAGAAAAAAAgAUIZAAAAAACABAhlAAAA\nAAAAEiCUAQAAAAAASIBQBgAAAAAAIAFCGQAAAAAAgAQIZQAAAAAAABIglAEAAAAAAEiAUAYAAAAA\nACABQhkAAAAAAIAECGUAAAAAAAASIJQBAAAAAABIgFAGAAAAAAAgAUIZAAAAAACABAhlAAAAAAAA\nEvA/mrZVctQIiDcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exp.plot_compression_experiments(res_b, comp_ratios,\n", + " \"../figs/compression_blog.png\")\n", + "Image(filename=\"../figs/compression_blog.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlIAAARLCAYAAAD/Dz6YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAuIwAALiMBeKU/dgAAIABJREFUeJzs3Xt0XtV9J/zfI+tmW5ItS75fkLkMN3MrxoAxFgxJJyFh\nYMIKhJAmaknSlvcttJOmtJlOE5p0mlDSlqQlWSFJlTeE3CAhdFI6GVKwIRCMTWIbQ4zBlo1l44ts\nY12si63n/cOxokfS0cWWnkeSP5+1tKyzn332+Wm1KEfne/beqXQ6nQ4AAAAAAAB6yct1AQAAAAAA\nAKOVIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCB\nIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCBIAUA\nAAAAACCBIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCBIAUAAAAA\nACCBIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCB\nIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACBBfq4LgGw6cOBArFixout4/vz5UVRU\nlMOKAAAAAADoqa2tLd54442u4+rq6pg6dWpOahGkcFJZsWJF3HDDDbkuAwAAAACAIXj00Ufj+uuv\nz8m1Le0FAAAAAACQwIwUxqXa2tqora3t1b53797sFwMAAAAAwJglSGFcqqury9gLJcmjjz4ap59+\nehYqAgAAAABgsF577bWMbRrmz5+fs1oEKYxLVVVVUV1d3au9ubk5Vq9e3XV8+umnx7nnnpvN0gAA\nAAAAGKKioqKcXVuQwrhUU1MTNTU1vdo3bNgQixYtyn5BAAAAAACMSTabBwAAAAAASCBIAQAAAAAA\nSCBIAQAAAAAASCBIAQAAAAAASCBIAQAAAAAASCBIAQAAAAAASJCf6wJgJNTW1kZtbW2v9ubm5uwX\nAwAAAADAmCVIYVyqq6uLFStW5LoMAAAAAADGOEEK41JVVVVUV1f3am9ubo7Vq1fnoCIAAAAAAMYi\nQQrjUk1NTdTU1PRq37BhQyxatCj7BQEAAAAAMCbZbB4AAAAAACCBIAUAAAAAACCBIAUAAAAAACCB\nPVIAYBRJp9PR2dkZ6XQ616UAAADjXCqViry8vEilUrkuBWBUE6QAQA6l0+lobW2NxsbGaGxsjPb2\n9lyXBAAAnGQmTJgQkydPjtLS0pg8eXJMmDAh1yUBjCqCFADIkZaWltixY0d0dHTkuhQAAOAkduTI\nkTh48GAcPHgwIiJKS0tj9uzZAhWAX7NHCgDkQEtLS2zbtk2IAgAAjDqNjY2xdetWf68A/JoZKYxL\ntbW1UVtb26u9ubk5+8UA9HAsRLEPCgAAMFq1tbVFXV1dLFiwIIqKinJdDkBOCVIYl+rq6mLFihW5\nLgOgl3Q6HTt27OgVohQUFERZWVmUlJREQUGBzR4BAIARl06n48iRI3Ho0KFobGyMlpaWjL9VDh8+\nHLt27YoFCxbksEqA3BOkMC5VVVVFdXV1r/bm5uZYvXp1DioCOKq1tbXX9PjS0tKYO3eu8AQAAMi6\ngoKCKC4ujvLy8mhvb4833ngj2tvbuz5vbm6Ojo6OKCgoyGGVALklSGFcqqmpiZqaml7tGzZsiEWL\nFmW/IIBfa2xszDguKCgQogAAAKNCYWFhnHLKKfH6669HZ2dnV/tbb70VlZWVOawMILdsNg8AWdQz\nSCkrKxOiAAAAo0Z+fn6UlZVltL311ls5qgZgdBCkAECWpNPpjCnyERElJSU5qgYAAKBvPYOUjo6O\nXvs8ApxMBCkAkCXdp8YfY51hAABgtOn5d0o6nRakACc1QQoAZElff3hY1gsAABht8vJ6PzLs68Uw\ngJOFIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACCBIAUAAAAAACBBfq4LgJFQW1sb\ntbW1vdqbm5uzXwwAAAAAAGOWIIVxqa6uLlasWJHrMgAAAAAAGOMEKYxLVVVVUV1d3au9ubk5Vq9e\nnYOKAAAAAAAYiwQpjEs1NTVRU1PTq33Dhg2xaNGi7BcEAAAAAMCYJEgBACAOHToUL774YmzatCn2\n798fzc3NMXHixCgrK4sFCxbEaaedFqeeemrk5eXlulQAYJzatWtXrF27NrZu3RoHDhyItra2KCkp\nialTp8b06dPjggsuiHnz5uW6TABOQoIUAIBRqKqqKrZu3XpCY9x5553xj//4j4mfp9PpeOyxx+LL\nX/5yPPHEE3H48OF+xystLY2LL744qqur453vfGdccsklvYKV9vb2mDp1ahw6dKir7Ve/+lWceeaZ\ng677W9/6VnzgAx/IaPvLv/zL+PSnPz3oMdra2mLq1KnR2tra1bZ+/fp4+OGH4+677x70OMdry5Yt\nUVVVNeLXgfFiuH7n/fEf/3EsXLhwmKpK9slPfjI+9alPjfh14GSwadOmeOCBB+KHP/xhvPbaawP2\nnz59eixfvjxuvvnmePe73x0TJ07ss9/TTz8dy5cv7zqePXt27NixY0i1feQjH4mvfvWrGW1PPPFE\nXHPNNYMeY8WKFXHVVVd1HVdWVsbu3bvj6quvHvG9XU855ZSoq6sb0WsAnCwEKQDA8EunIxobI9rb\nIwoLI0pLI1KpXFdFN1u3bo3f+73fi//4j/8Y9DmNjY3x1FNPxVNPPRV33313PProo3H99ddn9Cks\nLIzLLrssnnzyya62lStXDilI6euhwsqVKwd9fkTE888/nxGiVFRUxLnnnhsPP/zwkMYBYHzpTHdG\nQ0tD1q9bMaki8lJmdXZXX18ff/Znfxbf+c53orOzc9Dn7dmzJx555JF45JFHorS0NO6888742Mc+\nFlOnTs3ot2TJkiguLu66H9i5c2ds2rQpzjjjjEFfK+meZKhBSnfLly+PlPtigDFHkAIADI/16yO+\n/e2IVasiXnwxYv/+33xWXh7xW78VsWRJxPvfH2G/qpzavHlzLF++POrr63t9VlhYGAsXLowpU6ZE\nW1tb7Nu3L+rr6/t8wJFOp/scv7q6uleQ8pGPfGTQ9fUVmqxatSra2tqiqKjouMbw0AKAiIiGloaY\nce+MrF9395/ujumTp2f9uqPVj3/84/jgBz8Y+/bt6/PzyZMnR2VlZVRWVkZbW1vs2rUrGhoaet2P\nNDY2xmc+85n4p3/6p9i6dWuUlZV1fVZUVBSXXXZZPPXUU11tK1euHHSQ8uabb8amTZt6tQ/15Y6e\n/aurq4d0PgCjgyAFADgxP/5xxOc+F/H008l99u+P+OlPj3797d9GXHllxJ//ecS112avzjHu3nvv\njQsuuGBI5yxYsKBXW0dHR1x33XUZIUoqlYpbb701fv/3fz8uu+yyyM/PvEVsamqKNWvWxOOPPx4P\nP/xwvP766/1et/syGhFDe+Cwe/fu2LhxY6/21tbWWLVqVVx55ZWDGifpocUHP/jBWLZs2aDG+NjH\nPhbr1q3rOv74xz8ev/3bvz2oc2fNmjWofox9+zo64uaXX85o++4558S0goIcVTQ+HO/vvFmzZsX/\n/b//d1D9f/KTn8Tf/d3fdR2ff/758fnPf35Q55566qlDqg34jW9+85vxu7/7u3HkyJGM9nPPPTc+\n/OEPxzXXXBPnnXder/Pa29tj5cqV8fjjj8cjjzySsRzggQMHor29vdc5y5cv7xWk3HbbbYOqM+n+\n5fnnn4/29vYoLCwccIyOjo74+c9/ntF27J7k85//fOzv/uJRP97+9rdnHD/44IMxc+bMAc9LWvYM\ngKETpAAAx6ehIeKP/ujoLJShevrpo1/vf3/EF74QUVEx/PWNMxdffHHG+trH68tf/nK83O2hb3Fx\ncTzyyCNxbT+hVklJSVRXV0d1dXV89rOfjRUrVsQ//MM/xIQJE/rsf9lll0VhYWHXA41t27ZFXV3d\noPYM6f7QorCwMM4444zYsGFDRBxdGmMwQcrhw4fjueeey2g79tDi1FNPHfQD0PLy8ozjc845J972\ntrcN6lxOHt/ZvTue6PEg7Lu7d8cfzp2bo4rGhxP5nTfY/063b9+ecVxeXu6/cRhhq1atittuuy0j\nRJk6dWp84QtfiFtvvbXX3mvdFRYWxtve9rZ429veFp/97GejtrY2/uZv/qbf/ZV6zv4Yyp4k3e9J\nLrjggli/fn10dnbGoUOHYtWqVYN6MWPNmjXR3NzcdVxeXt4VEl188cWDrqWnK664wl5sAFlmgU4A\nYOjWrYs4//zjC1G6e+iho+OsXz88dTGgb3zjGxnHn/zkJ/sNUfpSXV0djz76aFx33XV9fj5x4sRY\nsmRJRttgZ6V077d48eKMGSCDHePFF1+MpqamruOpU6fG+eefP6hzYahq33xzUG0AJ7t9+/bFTTfd\nFB0dHV1t8+bNi2eeeSZ+53d+p98QpaeCgoL4yEc+Ehs3bow//MM/TOx3+eWXZ8wc2bp1a7zxxhuD\nukb3+453vetdGbPkjue+JiLiyiuvHNLPCcDo4bc3ADA069ZFXHVVxI4dwzPejh0R1dXClCzYt29f\nrFmzpus4Ly9vSHuXDMXxLu/Vvd/y5cszZqA899xzcfjw4SGNEeGhBSNnQ3NzvNDY2Kt9VWNjvNzt\nDWQAIj71qU9lzB4pKCiIxx57LM4999zjHrOoqCjuv//+ePjhh/tcamvixImxePHijLbBzErZv39/\nvPTSS13HPe9JjjdIsT8KwNjlL0oAYPAaGiLe+c7MjeSHw/79Ee94x9HxGTE9N5evrKyMihFaVq3n\ng4LBPHA4cOBArO8WqF155ZUZy2Y0NTXFiy++OOA4HlqQLd/oZ+ZJf58BnGwaGhria1/7WkbbJz7x\nibjooouGZfwbb7wxY6P57o7nnuTpp5+OdDodERETJkyIpUuXZgQpzz77bK89Xnrq7OyMn/3sZ/3W\nAsDYIUgBAAbvj/5o+Gai9LRjR8Qdd4zM2ERERGOPN+cHegBwIpYuXZqxaf2mTZti586d/Z7z9NNP\nR2dnZ0QcnS1zxRVXxPTp0+Oss87q6jPQW6SdnZ3xzDPPZLR5aMFIONzZGd/ctSvx82/u2hWHf/3/\nzwAnuy996UvR0tLSdTxp0qT4kz/5k6xc+3j2Sene58ILL4zS0tKMIKWxsXHAlzvWrl0bBw4c6Dou\nKyuLCy+8cLBlAzDKCFIAgMH58Y9PfE+UgTz00NHrMCKmTp2acdzQ0BCvvfbaiFyrpKSk1yaqA70B\n2v3z888/P6ZMmRIRMaSlNNavXx/7u82YKi0tHba3XTm5pNPp2NPenvj1g71748329sTzd7a3xw/3\n7u13jGNvOwOMdz/60Y8yjt/73vd2/e/8SLviiisyXu549dVXY1c/QXhE5v3GsfuQmTNnxhlnnNFn\nn4HGiIhYtmxZTJgwYdB1AzC65A/cBcae2traqK2t7dXebK1qgOP3uc9l5zr33BPxrndl51onmVNP\nPTWKi4ujtbW1q+2uu+6Khx9+OFKp1LBfb/ny5fH88893Ha9cuTJuvvnmxP4990c5ZtmyZfHAAw9E\nRMQzzzwTnZ2diXueeGjBcFnb1BQXddtT6Hjc9PLL/X7+y8WL44KSkhO6BsBo19TUFL/4xS8y2t6V\nxXu9kpKSuOiii+KFF17oalu5cmW8973v7bN/z3p73pNs2rSpa4yPfexjide11CjA+GJGCuNSXV1d\nrFixotfX6tWrc10awNi0fn3E009n51orV0Z029yT4VNcXBzXXHNNRtsPfvCDuOaaa3qt4T0chrKU\nRnNzc8YSGd0fWnSfkXLgwIFYt25d4jgeWjBcfrB378hfY8+eEb8GQK4999xzvZYT7bkB/Egbyj3J\nz372s4x6u9+HdP+++z4qfXm6x72zexKAsc2MFMalqqqqPm9SmpubhSnA2HT4cMT27bm7/pe/nN3r\nfelLER//eHavecy8eRH5o+8Wac2aNXH48OFB97/44oujvLy8V/uf//mfx497LJ/25JNPxrJly+KU\nU06J3/7t347LL788lixZEmeffXbizI/BWLZsWeTl5XXte/Lyyy9HQ0NDnxvcP/vssxk/X/cHFQsX\nLoy5c+dGfX19RBwNS5LWGPfQYnw43NkZ29vaclrDd3fvzso1fnfWrBG/Tn/mFRVF/gn8dz5Shut3\nHqPX4c7Dsf1g9u9tGloasn7NiIhtb22L5o7sr5Awr2xe5Ofl9r7m1VdfzTguKyuLhQsXZrWG6urq\nuPfee7uO+1uWq/tnZ599dlRWVnYdd78/2b9/f6xfvz7OP//8XmO88sorsadbWN7XkqcAjC2j7ykB\nDIOampqoqanp1b5hw4ZYtGhR9gsCOFHbt0dk+Q/OnLr//qNfubBlS0RVVW6u3Y8//dM/HVL/J598\nMq666qpe7cuWLYv/+T//Z3z605/u9dnWrVvjgQce6FpGq6SkJJYsWRJXXXVVvPOd7xzy26NTpkyJ\nCy64oGt5jHQ6HU8//XTccMMNvfp2f2hx5plnxowZMzI+v/LKK+M73/lOV9877rij1xgbN27MWPN8\n8uTJWX/jleGxva0tFnZbFm682njoUM5/zi2XXhpVEyfmtIa+DNfvPEav7Qe3x8L7Tp57m8UP5OZ/\nj7bcuSWqplbl5NrH7Nu3L+O4ezCRLT1f7njppZdi//79fQawSUuNRkScfvrpMWvWrHjzzTe7+vYV\npPQMapYuXZqxTwsAY8/oe/UIAIAR9dd//ddx3333RXFxcb/9mpqa4j/+4z/ir/7qr+KSSy6JRYsW\nxde//vWuhxCD0XNGSNIboH1t6tpdz6U0BhojwkMLABgNegYpQ91kfuXKlfHEE08M+NXfMqVTp07N\nCDyOvdzRU2tra8ZeKgPdkwzmvibCDFmA8UCQAgBwErrjjjti06ZNcfvttw/6gcaGDRvitttuiyVL\nlsTWrVsHdc5g1iRva2uLVatWdR33fPszIvOhxe7du+OVV17p1cdDCwAYfRobGzOOJ0+ePKTz3/Oe\n98Tb3/72Ab9uvfXWfscZzD3J888/H23dlpYc6J5EkAJw8hCkAACMAU8++WSk0+lBfw1miZt58+bF\nP//zP8euXbviscceiz/5kz+JxYsXR2FhYb/nrVmzJpYsWRKvv/76gNe48sorI5VKdR2vXbs2Dh48\nmNHn+eefj9bW1oxzelq0aFHG8ht9Pbjw0ALGj5H4nQfkRmlpacZxc3P294qJGNws2e7hyimnnBLz\n58/v1af7fcquXbti48aNGZ9v3rw5tnfb23DixIlxySWXHHfdAIwOghQAgJNcUVFRXHfddfH3f//3\n8cILL0RjY2OsXr067rvvvrjuuuv6DFZ2794dN954Yxw5cqTfsSsqKuLcc8/tOj5y5EivpTe6P8iY\nP39+VPWxR00qlYorrriiz3MiIurq6mLbtm1dxxMnTowlS5b0WxsAMPKmTZuWcfzWW2/lpI6eL3f8\n4he/6DVbpr/9UY45//zzM2bz9rwn6Xl8+eWXD/iSCgCjnyAFAIAMhYWFcfHFF8cdd9wRjz32WOzY\nsSM+/vGPx4QJEzL6rV27tmsD+P4MtJTGQPuj9PXZQA8tLrvsMg8tAGAU6BmkNDQ0DOn8vXv39jkT\n7cknnxzSOJWVlXHOOed0Hfd8uaOjoyN+/vOfdx0n3ZPk5eXF0qVLu477u6+JMEMWYLyw+yYAjAXz\n5kVs2ZK763/gAxH9bOA57K64IuLBB7N3ve7mzcvNdUexioqKuOeee2L58uVxww03ZMxCefDBBwe1\nJvk///M/dx13f8Bw+PDheO6557qOk97+jMh8oLF9+/bYvHlznHrqqb3GPHZNxq55RUWx5dJLc11G\nLx/ZuDGeOHDguM59e3l5fOU//adhrujEzSsqynUJnKTmlc2LLXdm/96moaUhFj+wOOvXXf2R1VEx\nqSLr151Xlvv7mv/U43ffW2+9FXV1dX3OQB1p1dXVsWHDhq7jlStXxjve8Y6IOLp0afdlxwa6J3n8\n8ccjInptWu+eBGB8EqQAwFiQnx+Rgz82uyxfnt0gpbo6tz8vfXr3u98dH/rQh+LrX/96V9szzzwz\n4Hk9H0SsXr06Dh06FBMnTowXX3wxmpqauj7rb0bKxRdfHBMnToxDhw5FxNEHFYKU8Sk/Ly+qJk7M\ndRkZ0ul0rD2Bdf3XNjXFKcXFGcvKwMksPy8/qqZWZf26kwuGttH5cFkwZUFMnzw9J9fOtcsvvzwm\nTJiQ8SLG6tWrcxKkLF++PO6///6u4+73D92/nzFjRpx55pmJ43S/X9m2bVtXMLRjx46MPeSKiori\n0lH4YgAAQ2dpLwBgYLfcMr6vx6DddNNNGcdNTU0DrnU+c+bMjIcRHR0dXbNQuj+06LnkRk+FhYUZ\nDyOOnfvmm2/Gpk2butqLiorisssuG8RPA4O3ubU19nR0HPf5uzs6Yktr6zBWBDA2lJSUxEUXXZTR\n9m//9m85qaXnixYvvPBCxgsax/T3YkdExCWXXBJF3Wb0HTu354sdl156aRQXF59QzQCMDoIUAGBg\n550XMcAflMNm+fKIRYuycy2GrK+3R1taWgY8L2mflKE8tOjZp68xIiKWLFnioQXD7rlh2Bz5uYMH\nh6ESgLHn+uuvzzj+3ve+Fwdz8Dtx1qxZGUuNtbe3x89//vPo7OzM2C+lv2W9Io6+tLFkyZKu46R7\nEjNkAcYPQQoAMDh33TW+rsNxae5jaaOKioHXfO/5IGHlypXR2dmZsTTYUIOUzZs3R319vYcWZMVA\nIcipxcWxcIAAbzjCGICx6A//8A9j0qRJXcfNzc1x33335aSWvu5J1q1bFwe67YE11HuSpBkp7kkA\nxg9BCgAwOO9618gvufX+90dce+3IXoMT8sILL2Qcz5o1KwoLCwc8r+ebnc8//3ysWbMm9u/fn9in\nL8fWWT9m5cqVXW+BHuOhBSOhvyDlgzNnxi8WL45fLl4cvzNz5nGNATCeVVRUxO/93u9ltH3mM5+J\ndevWZb2WnvcbPe8lpkyZEhdccMGA43QPUl577bVYv359vPzyy11tBQUFcfnllw9DxQCMBoIUAGDw\nvvjFiDlzRmbsOXMivvCFkRmbiIjYu3dvPPTQQ9HZ2Xlc57e3t8cXv/jFjLb/8l/+y6DOnTdvXtfG\n8BERhw4dinvvvbfruLS0NC688MIBx+m5zvoPf/jD2LBhQ9dxQUFBLF26dFA1wWCl0+lo6bZJ8jFT\nJkyIb599dnzj7LOjLD8/yvLz4/87++x46Oyzo6xb4HdM85EjkU6ns1EywKjzqU99KubPn9913N7e\nHv/1v/7X+NWvfpXVOnq+cPHcc8/FT3/6067jpUuXRl7ewI/Levb7zGc+k/E7/pJLLsmYhQPA2CZI\nAQAGr6Ii4t//PaK8fHjHLS8/Ou4gloji+DU1NcWtt94a5513Xjz44INdm6sORmtra3zgAx/ICC0i\nIj74wQ8OeoyeDy4efvjhru+XLl2aMdOkP93fAH3kkUcyHlosXrzYQwuGXSqVijWLF8edc+dG6tdt\ny6ZMibWXXBLv62MGyi0zZ8baxYvjirKyo+dHxB/PmxdrFi+OVCrVqz/AyaCioiK++93vRkFBQVfb\n1q1b44orrojvfOc7Qw6aX3311eOqY/78+bFw4cKu40OHDsWPf/zjruPBzJCNiCgrK8uYudL9vibC\nDFmA8UaQAgAMzXnnRaxYMXwzU+bMOTreeecNz3gM6OWXX47f+Z3fiVmzZsVHPvKR+P73vx87d+7s\ns++OHTvi/vvvj7PPPju+//3vZ3z2nve8J/7zf/7Pg75uzwcT3WfGDGYt8r769pxd46EFI2XyhAnx\nj2ecESsvvDDuOfXUePKCC+KUfvZEqZo4MZ668ML43KmnxsoLL4x/OP30mDzIsBBgvLr88svjK1/5\nSsZMjn379sUtt9wSF110UXzxi1+MV155pc9z0+l0bNmyJb785S/HsmXL4vd///ePuw73JAAMVX6u\nCwAAxqDzzotYty7ijjsiHnro+Md5//uPLudlJkpOHDx4ML761a/GV7/61Yg4+qZoZWVlTJ06NVpb\nW2Pnzp2xe/fuPs+99NJL41/+5V+GdL3+HigM9u3PiIhly5Yd1zVgOCybOjWWTZ06qL75eXnxZwsW\njHBFAGNLTU1NlJeXR01NTcYG72vXro077rgjIo4u5Tl9+vSorKyMdDodjY2NsX379mhubu5zzMrK\nyvirv/qrQddQXV0d3/jGN3q1FxcXxyWXXDLoca688sr4Qh9L0+bn58cVV1wx6HEAGP0EKYxLtbW1\nUVtb26s96aYLgONQURHxrW8dDUPuuSdi5crBn7t8ecRdd9lYPstKSkriggsuiLVr1/b5eUNDQzQ0\nNPQ7Rl5eXnz0ox+Ne+65J0pLS4d0/YULF8b8+fPjjTfeyGgvKiqKJUuWDHqc6dOnx1lnndVrTfUJ\nEyZ4aAEAY8D1118f69ati49//OPxve99r9eyXk1NTdHU1BRbtmzpd5zy8vK47bbb4n/8j/8RUwcZ\nckckv3hx6aWXRmFh4aDHSZq98lu/9VtRUlIy6HEAGP0EKYxLdXV1sWLFilyXAXByeNe7jn699FLE\nt78dsWpVxJo1Efv3/6ZPeXnExRdHLFkSccstEYsW5a7ek1hlZWX88pe/jM2bN8ePfvSjePLJJ+OZ\nZ56J/d3/b5Vg9uzZcdNNN8Vtt90W553AMmzV1dXx4IMPZrQtWbIkioqKhjTOlVde2StIueiii4Yc\n7gAAuTF//vz4zne+E3fffXc88MAD8cMf/jA2b9484HkzZ86Myy+/PN73vvfFDTfcMOR7iIiIU089\nNebNmxfbt2/PaB/KDNljtZxxxhmxadOmExoHgNEvlR7qbl4wBvQ3I2X16tVdxy+99FKce+65WawM\nOJkdPny41x9ZZ5xxRuTnj8P3GtLpiKamiLa2iKKiiJKSCBssj0rpdDq2bt0ar776amzbti3eeuut\nOHToUEzqeXbsAAAgAElEQVSaNClKS0tjzpw5ccEFF8S8efNyXSoAnLDOdGc0tPQ/+3IkVEyqiLyU\nbWoHsnPnzli3bl1s3bo19u/fH+3t7VFaWhrl5eVRUVER5513Xpxyyim5LvOkcFL97QKMWhs2bIhF\n3V7EzOWzXL/9GJdqamqipqamV3vP//gAGCGpVERp6dEvRrVUKhVVVVVRVVWV61IAYMTlpfJi+uTp\nuS6DBLNnz47Zs2fnugwA6MXrEAAAAAAAAAkEKQAAAAAAAAkEKQAAAAAAAAkEKQAAAAAAAAkEKQAA\nAAAAAAkEKQAAAAAAAAkEKQAAAAAAAAkEKQAAAAAAAAkEKQAAAAAAAAkEKQAAAAAAAAkEKQAAAAAA\nAAkEKQAAAAAAAAkEKQAAAAAAAAkEKQAAAAAAAAkEKQAAAAAAAAkEKQCQJalUqldbOp3OQSUAAADJ\nOjs7e7Xl5XmMCJy8/AYEgCzp6w+Pjo6OHFQCAACQrOffKalUqs8XwwBOFoIUAMiSVCoVhYWFGW1N\nTU05qgYAAKBvBw8ezDguKCgQpAAnNUEKAGRRaWlpxvHBgwct7wUAAIwahw8f7hWkTJkyJUfVAIwO\nghQAyKKeQUpHR0fU19cLUwAAgJxrb2+PrVu39tojRZACnOzyc10AjITa2tqora3t1d7c3Jz9YgC6\nKS4ujoKCgow1hxsbG+P111+PsrKyKCkpifz8fBs5AgAAIy6dTseRI0eipaUlmpqaoqWlpddLXpMn\nT46CgoIcVQgwOghSGJfq6upixYoVuS4DoJdUKhVz5syJbdu2ZfyB0tHREQ0NDdHQ0JDD6gAAAH6j\noKAgZs6cmesyAHJOkMK4VFVVFdXV1b3am5ubY/Xq1TmoCOA3Jk2aFAsWLOgVpgAAAIwWRUVFMX/+\nfLNRAEKQwjhVU1MTNTU1vdo3bNgQixYtyn5BAD0cC1N27NiRscwXAABArpWWlsbs2bNjwoQJuS4F\nYFQQpABAjkyaNClOO+20aGtri4MHD0ZjY2O0t7fnuiwAAOAkM2HChCgpKYmSkpKYPHmyAAWgB0EK\nAORQKpWK4uLiKC4ujhkzZkQ6nY7Ozk5LfgEAACMulUpFXl5epFKpXJcCMKoJUgBgFEmlUt7+AgAA\nABhF8nJdAAAAAAAAwGglSAEAAAAAAEggSAEAAAAAAEggSAEAAAAAAEggSAEAAAAAAEggSAEAAAAA\nAEggSAEAAAAAAEggSAEAAAAAAEggSAEAAAAAAEggSAEAAAAAAEggSAEAAAAAAEggSAEAAAAAAEgg\nSAEAAAAAAEggSAEAAAAAAEggSAEAAAAAAEggSAEAAAAAAEggSAEAAAAAAEggSAEAAAAAAEggSAEA\nAAAAAEggSAEAAAAAAEggSAEAAAAAAEggSAEAAAAAAEggSAEAAAAAAEggSAEAAAAAAEggSAEAAAAA\nAEggSAEAAAAAAEggSAEAAAAAAEiQn+sCYCTU1tZGbW1tr/bm5ubsFwMAAAAAwJglSGFcqqurixUr\nVuS6DAAAAAAAxjhBCuNSVVVVVFdX92pvbm6O1atX56AiAAAAAADGIkEK41JNTU3U1NT0at+wYUMs\nWrQo+wUBAAAAADAm2WweAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAg\ngSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAF\nAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAA\nAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAg\ngSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAF\nAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAggSAFAAAAAAAgQX6uC2Ds6+joiMcffzzW\nrFkTa9asic2bN0dDQ0Ps378/ioqKYs6cObF48eK4+eab47rrrotUKpXrkgEAAAAAYFAEKZywXbt2\nxfXXX9/nZx0dHfHqq6/Gq6++Gg899FAsXbo0Hn744Zg9e3aWqwQAAAAAgKETpDAspk2bFtXV1bF4\n8eJYuHBhzJo1K8rLy+Ott96KtWvXxle/+tVYv359PPvss3HNNdfEiy++GMXFxbkuGwAAAAAA+iVI\n4YTNmTMn9uzZE3l5fW+5U11dHbfffnu85z3viX/913+NV155Jb7+9a/H7bffnuVKAQAAAABgaGw2\nzwnLy8tLDFGOyc/Pj7/4i7/oOn7yySdHuiwAAAAAADhhZqScpF5//fVYtWpVbN++Pdrb26O8vDzO\nOuusWLp06YgtuVVWVtb1/cGDB0fkGgAAAAAAMJwEKaNAfX19rFq1Kp5//vlYtWpVrF69OhobG7s+\nP+WUU6Kurm5YrvXoo4/Gpz/96XjxxRf7/LykpCRqamrik5/8ZFRWVg7LNY958MEHu74/66yzhnVs\nAAAAAAAYCYKUHPnZz34Wn//85+P555+PHTt2jPj12tra4rbbbotvfetb/fZramqKf/qnf4rvfve7\n8fDDD8fy5cuP+5qdnZ2xe/fu+NWvfhUPPPBAPPTQQxERUVhYGH/wB39w3OMCAAAAAEC2CFJy5IUX\nXogf/vCHWblWZ2dn3HzzzfGjH/0oo33ChAmxYMGCmDJlSmzZsiXeeuutrs/27NkT73znO+OJJ56I\nyy+/fNDX2rt3b0yfPj3x8ylTpsRDDz0UZ5999tB/EAAAAAAAyDKbzY9CJSUlwzre3/3d3/UKUf7g\nD/4gtm3bFps3b45f/OIXsW/fvvjBD34QCxYs6OrT0tISN910U0bAcrxSqVT89//+32Pjxo1x7bXX\nnvB4AAAAAACQDYKUHCstLY2rrroqPv7xj8f3v//9qKuri3/9138dtvEbGhrib/7mbzLa/vZv/za+\n9KUvxZw5c7ra8vLy4r/9t/8Wzz77bFRVVXW1b9++Pf7+7/9+0NcrLy+P9evXx/r16+OXv/xl/PSn\nP43PfOYzMX/+/Ljvvvvitttui/r6+hP+uQAAAAAAIBtS6XQ6nesiTkavv/56tLW1xVlnnRV5eZl5\n1lNPPRVXX3111/GJbDZ/1113xT333NN1vHz58njqqacilUolnvPTn/403va2t3Udl5aWxpYtW6Ki\nouK4aog4uvfKjTfeGD/5yU9i5syZ8eSTT+Zkea8NGzbEokWLuo5feumlOPfcc7NeBwAAAAAAyUbT\ns1wzUnLktNNOi3POOadXiDKcOjs741/+5V8y2j71qU/1G6JERFxzzTVx5ZVXdh03NjbG9773vROq\npaSkJL75zW/GxIkTY9euXTabBwAAAABgTBCkjGPPPvts7Nmzp+v41FNPjauuumpQ5952220Zx48+\n+ugJ1zNjxoxYtmxZRESsXLkydu7cecJjAgAAAADASBKkjGM//vGPM47f/va3DzgbpXvf7p566qlo\nbm4+4ZoqKyu7vj/e5coAAAAAACBbBCnj2C9/+cuM46VLlw763Dlz5mRsOt/e3h4vv/zyCde0ffv2\nru9LS0tPeDwAAAAAABhJgpRx7JVXXsk4Puecc4Z0fs/+Pccbqrq6uvj5z38eERGTJ0+O00477YTG\nAwAAAACAkSZIGacOHToU27Zty2ibP3/+kMbo2X/jxo199vvWt74Ve/fu7XesPXv2xE033RQdHR0R\nEXHLLbfExIkTh1QPAAAAAABkW36uC2Bk7N27N9LpdNdxQUFBzJgxY0hjzJ07N+N49+7dffZ74IEH\n4sMf/nBce+21cfXVV8c555wT5eXlcfjw4aivr48VK1bEN77xjdi/f39ERJx++unx2c9+dog/UW+7\nd++OPXv2DOmc11577YSvCwAAAADAyUOQMk41NTVlHE+aNGnQG80fM3ny5H7H7K61tTV+8IMfxA9+\n8IN+x7z22mvja1/7WlRUVAyplr7cf//9cffdd5/wOAAAAAAAkESQMk71DD2Ki4uHPEbPpbeSgpRv\nfvOb8fjjj8ezzz4bL7/8cuzatSv27NkTR44ciSlTpsTpp58el156abzvfe+LSy+9dMh1AAAAAABA\nrghSxqnW1taM48LCwiGPUVRUlHF86NChPvvNnz8/PvrRj8ZHP/rRIV8DAAAAAABGM0HKONVzBkp7\ne/uQx2hra+t3zFy7/fbb473vfe+QznnttdfihhtuGKGKAAAAAAAYbwQp41RJSUnGcc8ZKoPRcwZK\nzzFzbcaMGTFjxoxclwEAAAAAwDiWl+sCGBk9Q4+WlpZIp9NDGqO5ubnfMQEAAAAAYLwTpIxTlZWV\nkUqluo47Ojpi9+7dQxqjvr4+49jsDwAAAAAATjaClHFq4sSJsWDBgoy2bdu2DWmMnv3POuusE64L\nAAAAAADGEkHKONYz+Hj55ZeHdP4rr7zS73gAAAAAADDe2Wx+HLvwwgvj//yf/9N1/Oyzz8aHPvSh\nQZ27c+fOqKur6zouKCiIc845Z7hLHDG1tbVRW1vbq73nvi9jVWe6MxpaGrJ+3YpJFZGXkr8CAAAA\nACcPQco49u53vzs+97nPdR0/8cQTkU6nM/ZOSfKTn/wk4/jqq68eU5vN19XVxYoVK3JdxohpaGmI\nGfdmf8+a3X+6O6ZPnp716wIAAAAA5IogZRxbunRpVFZWxt69eyMiYvPmzfHUU0/F1VdfPeC5X/va\n1zKOr7/++hGpcaRUVVVFdXV1r/bm5uZYvXp1DioCAAAAAGAsEqSMY3l5eVFTUxP33ntvV9vdd98d\nV111Vb+zUn7605/G008/3XVcWloaN91004jWOtxqamqipqamV/uGDRti0aJF2S8IAAAAAIAxyWYH\n49xdd92VsSTXihUrMpb76qm+vj4+/OEPZ7TdeeedUVlZOWI1AgAAAADAaGVGSg797Gc/i0OHDvVq\nX7t2bcZxa2trPPHEE32OMWfOnH43ga+srIxPfOIT8YlPfKKr7S/+4i9i27Zt8Zd/+ZcxZ86ciIjo\n7OyMxx57LO68887Ytm1bxvgf+9jHhvRzAQAAAADAeCFIyaFbb701tm7dOmC/Xbt2xdvf/vY+P/vQ\nhz4UtbW1/Z5/1113xbPPPhv/+3//7662L33pS/GVr3wlTjnllJgyZUps2bIlDhw4kHHexIkT43vf\n+15MnTp14B8GAAAAAADGIUt7nQTy8vLi+9//frzvfe/LaD9y5Ehs3rw5fvGLX/QKUSoqKuLf/u3f\n4oorrshmqQAAAAAAMKoIUk4SxcXF8e1vfzsefvjhuPDCCxP7TZ48OW6//fZ4+eWX46qrrspegQAA\nAAAAMApZ2iuH6urqsn7NG2+8MW688cZ47bXX4vnnn4/6+vpob2+PqVOnxtlnnx1XXHFFFBcXZ70u\nAAAAAAAYjQQpJ6nTTz89Tj/99FyXMWJqa2v73Dumubk5+8UAAAAAADBmCVIYl+rq6mLFihW5LgMA\nAAAAgDFOkMK4VFVVFdXV1b3am5ubY/Xq1TmoCAAAAACAsUiQwrhUU1MTNTU1vdo3bNgQixYtyn5B\n48STdU/GudPPjbllc2NK0ZRIpVK5LgkAAAAAYEQJUoBBu/nhm7u+n1QwKeaWzo25ZXOP/tv9+1//\nO7t0duTn+TUDAAAAAIxdnnACx6WloyU27dsUm/ZtSuyTilTMLJkZ88rmJYYtc8vmRllRWRYrBwAA\nAAAYPEEKMGLSkY43m96MN5vejNWRvDdNSWHJgLNbZpXMigl5E7JYPQAAAACAIAUYBZram2Jjw8bY\n2LAxsc+E1ISYVTKr37BlbtncKCksyWLlAAAAAMB4J0gBxoQj6SNR31gf9Y31/fYrKypLnN0yr2xe\nzC2bGzMmz4i8VF6WKgcAAAAAxjJBCjCuHGw7GAfbDsYre19J7JOflx+zS2YPOLtlUsGkLFYOAAAA\nAIxGghRg0Or/pD4Opw9H/cH62H5w+9EZIgfru2aKHPu+9XBrrkvt1+HOw/HGwTfijYNv9NtvavHU\nXrNbjs1qOdZeOanS7BYAAAAAGMcEKYxLtbW1UVtb26u9ubk5+8WMIwUTCmLO5DmxYMqCxD7pdDr2\nt+7/TcDS899ff7+nZU8WKz8+B1oPxIHWA7Fhz4bEPgV5BTGndM6As1uK84uzWDkAAAAAMFwEKYxL\ndXV1sWLFilyXcVJKpVIxbeK0mDZxWpw387zEfm2H22JH445+w5b6xvpoP9KexeqHrqOzI7a+tTW2\nvrW1337TJk7rvV9Lj7ClYmJFpFKpLFUOAAAAAAyGIIVxqaqqKqqrq3u1Nzc3x+rVq3NQET0V5RfF\nwvKFsbB8YWKfdDodDYcaBpzd0nCoIYuVH599h/bFvkP7Yv3u9Yl9iiYUDTi7ZU7pnCjKL8pi5QAA\nAABwchOkMC7V1NRETU1Nr/YNGzbEokWLsl/QcEunc3Pd738v4pRzIubOPfo1efKIXi6VSkXlpMqo\nnFQZF8y6ILHfoY5DA85u2dG4Izo6O0a03hPVdqQtthzYElsObOm3X+WkysRZLcf+LS8uN7sFAAAA\nAIaBIAXGoqam3Fz3//l/I1q6HU+dGjFv3tFQ5di/3b+fNy9i2rSIEX6gP7FgYpw27bQ4bdppiX06\n052xt2Vvv7Nbth/cHgdaD4xorcNhb8ve2NuyN9buWpvYpzi/ODNc6RG0zCubF7NLZkfBhIIsVg4A\nAAAAY48gBcaijlGyb8iBA0e/XnopuU9xce+ApWfYMmtWRP7I/jrKS+XFjMkzYsbkGXHR7IsS+7V0\ntAy4lNjOpp1xuPPwiNZ7oloPt8br+1+P1/e/ntgnFamYMXlGv0uJzS2bG1OKppjdAgAAAMBJS5AC\nY1FBYa4rGLzW1ojXXz/6lSQv72iY0lfI0v3fSZNGvNxJBZPijIoz4oyKMxL7dKY7Y3fz7sRZLceO\nD7YdHPF6T0Q60rGreVfsat4VL+58MbHfpIJJfc5u6b602KySWZGf539SRlJnujMaWrK/H1DFpIrI\nS+Vl/boAAAAAo4WnXjAWlZTkuoLh1dkZsWPH0a8XXkju19dSYj1nuWRhKbG8VF7MKpkVs0pmxcVx\ncWK/pvamQc1u6Ux3jmi9J6qloyU27dsUm/ZtSuyTl8qLmZNnDji7payoLIuVjy8NLQ0x494ZWb/u\n7j/dHdMnT8/6dQEAAABGC0EKjEUn6zJLY2gpsYiIksKSOLPyzDiz8szEPkc6j8Su5l0ZQcv2g9sz\nwpb6xvpoas/RvjiD1JnujJ1NO2Nn085YHasT+5UUlmSEK91ntRz7d+bkmTEhb0IWqwcAAACAZIIU\nGIMqJlXE7rY7I+67L4sXrYiK4s6Ilv3Zu+bxGOpSYklhS5aWEpuQNyHmlM6JOaVz4pK4JLHfwbaD\nA85uebPpzUhHesRrPhFN7U2xsWFjbGzYmNhnQmpCzCqZNeDslpLCcTYzCwAAAIBRSZACY1BeKi+m\n33JbxN9mMUh5/qmIRYsiWlqOLsG1fXtEff1v/u3+/c6dR5frGq0Gu5RYefnA+7ZkYSmxiIiyorIo\nm14WZ08/O7HP4c7D8WbTmwPObmnpaBnxek/EkfSRrpr7U1ZU9ptZLQmhy4zJM+zvAQAAAMAJEaTA\nWHXeeRFXXhnx9NMjf63ly4+GKBFHZ2mcfvrRrySHD0fs2tV3yNL939bWka/9ROzff/RrqEuJ9Zzl\nkqWlxPLz8mNe2byYVzYvsU86nY632t4acHbL7ubdo352y8G2g3Gw7WC8sveVxD75efkxu2T2gLNb\nJhWM/OwjAAAAAMYmQQqMZXfdlZ0g5a67htY/P/83QUKSdPpoSDFQ2LLfUmLDKZVKxdTiqTG1eGqc\nO+PcxH4dRzpiZ9POzFktPcKW+sb6aD08usOww52H442Db8QbB9/ot195cfmAYUvlpEqzWwAAAABO\nQoIUxqXa2tqora3t1d7c3Jz9YkbSu94VccstEd/+9shd4/3vj7j22uEfN5U6uizWtGkR55+f3C9p\nKbHuAcx4W0qsv7AlS0uJFUwoiAVTFsSCKQsS+6TT6djfun/A2S17WvaMeL0nan/r/tjfuj9e2p08\n+6ggryDmlM5JDFzmlc2LOaVzoji/OIuVAwAAADDSBCmMS3V1dbFixYpcl5EdX/xixIoVRx/SD7c5\ncyK+8IXhH3cojmcpsaRZLuNpKbH+wpYsLSWWSqVi2sRpMW3itDhv5nmJ/doOt8WOxh39hi31jfXR\nfqR9xGs+ER2dHbH1ra2x9a2t/farmFgx4OyWiokVkcpCIAYAAADAiROkMC5VVVVFdXV1r/bm5uZY\nvXp1DioaQRUVEf/+7xHV1cO7DFZ5+dFxKyqGb8yRcjxLiSWFLeN1KbG+9m/JwlJiERFF+UWxsHxh\nLCxfmNgnnU5Hw6GGfme3bD+4PfYd2peVmk9Ew6GGaDjUEOt2rUvsUzShqM/ZLfPK5nV9P6d0ThRO\nKMxi5QAAAAD0JZVOp0f3bsIwjDZs2BCLjm2aHhEvvfRSnHtu8j4RY8r69RHveMfwzEyZM+doiHJe\n8iyDcaul5TcBS9K+LW++ObqXEhusnkuJ9TXLJUtLiQ3WoY5DA85u2dG4Izo6O3Jd6rCYPml6V9gy\nrXhafHP9N7New+4/3R3TJ0/P+nUBAACAk9toepZrRgqMF+edF7FuXcQdd0Q89NDxj/P+9x9dzmss\nzEQZCZMmRZxxxtGvJIcPHw1T+gtb6ustJTYCJhZMjNOmnRanTTstsU9nujP2tuwdcHbLgdYDWan5\nROxp2RN7WvbEL9/8Za5LAQAAADhpCVJgPKmoiPjWt46GIffcE7Fy5eDPXb484q67RmZj+fEmP/9o\niDBvXnKfpKXEei4pNp6WEusvbMniUmJ5qbyYMXlGzJg8Iy6afVFiv5aOln7DlvqD9bGzaWcc7jyc\nlboBAAAAGJ0EKTAevetdR79eeini29+OWLUqYs2azIf25eURF18csWRJxC23RHSbJscwSKWOLos1\nbVrE+ecn9+u+lFjSvi2jfSmxzs6jS8oNtKxc0lJi3cOWLC4lNqlgUpxRcUacUZE8+6gz3Rm7m3cn\nzmo5dnyw7WBWas6F//X0/4ozKs6I2SWzY07pnJhTOidmlcyKggkFuS4NAAAAICvskcJJZTStq5d1\n6XREU1NEW1tEUVFEScmo2vuCfnRfSiwpbBkLS4kNRs+lxPqa5ZLFpcQGq6m9aVCzWzrTozgQG6Lp\nk6bH7NJfhyslc7q+Pxa4zC6dHbNKZkXhhMJclwoAAACMQaPpWe7oehIFjJxUKqK09OgXY0v3pcQu\nvbTvPul0xL59A+/bYimxEVFSWBJnVp4ZZ1aemdjnSOeR2NW8KyNo2X5we0bYUt9YH03tTVmr+0Qc\n279l3a51/fbrHrh0n9Xy/7N359FR3ffdxz8zo10zSEK72A1ikUAgwNhObOwY2zFkaZ2niWOn2Zqk\nT5KmWVo3TpOmrtMsTeI8SZzEWdrTB5/UcbanzWbAwdjGGC9EGG0gIwECxKIFoWU02mfu88dFI40W\n0DJz50rzfp1zD+iO9Ls/fLhGcz/6fr8ELgAAAAAAYLYgSAGAucDhMGfkZGZOvZXY6F/nUiuxq4Ut\nCxean2NRZZbL6QqGCNfr+gk/r7Ovc9zqllNtp7Tn5B5L9hpOkw1cslKyxoYsI4MXAhcAAAAAABAl\nBCkAEEtSUqTCQvOYyHitxMZrKWb3VmJtbeZRVTXx50zUSmxkAGNxK7F5ifM0L3ue1mSvCTnf4mtR\nziM5lu3Dape6L+lS96UZBS5DlS8ELgAAAAAAIJwIUgAAoabaSuxqc1vmYiux8apcLG4lFsumGrhM\n1E6MwAUAAAAAAEwWQQoAYOqm2krsamHLXGwlNlFLMQtbiYXLloItaulu0cWui+odtHkV0gjTDVxG\ntxMjcAEAAAAAAAQpAIDImWkrsZEBzFxpJXatuS25uZa2EruWP9z/B2WnZsswDLX3tuti10Vd8F7Q\nRa/56wXvheFzV36NpcBlKGwhcAEAAAAAYO6yz5MaAEBsmm4rsfHCltnQSuzECfOYiNMp5eePDVvy\n51m3z3E4HA5lJGcoIzlDRdlFE34egUvWVduJEbgAAAAAADD7EKRgTtq5c6d27tw55rzP57N+MwBm\nbrqtxMZrKTYbWokN7XmkFEmfjcqOpmQqgUtHX8dwyOINDVlme+BS1XyVyiSFBi75nnwVuEPbieW7\n85XnzlNiXKJFOwcAAAAAABMhSMGcdPr0ae3fvz/a2wBgtam0Erva3JZz56S+Puv2HYMcDofSk9KV\nnpRO4HIV4wUuI6tbCFwAAAAAAIg8ghTMSUuXLtWtt9465rzP51NZWVkUdgTANka2EpvIUCuxa4Ut\n7e3W7TtaDCOql59O4HK1dmJzNXDJTM4cDlcIXAAAAAAACCuHYUT5CQlgoaNHj2rt2rXBj6urq1Vc\nXBzFHQGY1Xw+6cKFq89tuXgxLGFES4qUE4XWXs3tH1F20fXSypVmpU9+vtlqbZaaq4HLZA0FLsGQ\nxR3aTmxohguBS/QFjIBau1stv25mSqacDqfl1wUAAACA0ez0LJeKFAAApis1deqtxCaa32LXVmI/\n+Xep+9+HPx76Mw8FKyN/zcyM3j4naSYVLuO1E5ttgUtrT6tae1onXeEyOmQhcLFOa3erch7Jsfy6\nzQ80Kzs12/LrAgAAAICdEaQAABBJ02klNl5LsUtnJHkt2/aEfD6pvNw8RsvIGD9gKSyUPB7r9zoD\nBC4ELgAAAAAADCFIAQAg2hwOs5ojM1Nav378z+lqlr6Va+2+pqqtTXr1VfMYLS9vuHpnZMiyfLmU\nnGz9XsNkqoHLtdqJXfReVM9gj4V/gpmZSuAyembL6OCFwAUAAAAAYFcEKQAAzAazeC6JJLO9WWOj\ndKgo9scAACAASURBVOBA6HmHQ1q0aPwqlmXLpPj46Ow3zEYGLmuy10z4eZMJXIZem42BS3Vz9VU/\n71qBS74nX/nufAIXAAAAAIClCFIAAJgFMlMy1dz3Kem737X2upF+Vm8Y0tmz5rFvX+hrLpcZpozX\nLmzRIsk59wZiTzdwGa+dWKwELuO1EyNwAQAAAACEE0EKAACzgNPhVPZ9H5K+ZmGQ8ta3Si0tUm2t\n2bbLan6/dOKEeYyWmCitWBEasAz9Pi9v9lfwXMNUApfOvs7xQ5auC3M+cJmfPP+q7cQIXAAAAAAA\nk0GQAgDAbLFunXTLLWPbY0XC1q3S738//HFrq1RXZ4Yqo3/1+SK/n9H6+qSjR81jNLd7/HkshYXm\nHJoY4nA4lJaUprSktJgMXC73XNblnsszClxGVr4QuAAAAABAbCJIAQBgNnnwQWuClAcfDP04M9M8\nbrwx9LxhmLNPxgtYTp40Aw+rdXVJR46Yx2jz548fsBQWSh6P9Xu1iekELiHtxK4ELiNnu8zlwGWi\ndmIELgAAAAAwNxGkAAAwm7zlLdJ990lPPhm5a9x/v7Rjx+Q+1+GQ8vPN49ZbQ1/z+6WGBjNYGR2y\n1Nebr1vt8mXp1VfNY7S8vPEDluXLpeRk6/dqQwQu0wtcRrcTI3ABAAAAgNmFIAUAgNnme9+T9u+X\nLlwI/9oFBdKjj4ZnLZdLWrrUPO68M/S1gQEzTBmvXdjZs+G5/lQ1NprHCy+Ennc4zOH24w29X7pU\nio+PynbtbCaBSzBkieHAJd+Tr+Q4wjsAAAAAsAuCFAAAZpvMTGnPHrMCJJxD4DMyzHWtmCMSH28G\nEStXmlU2I/X0mG3BRgcsdXVm0GE1wzDDnbNnpWeeCX0tLk5atmz8dmGLFklOp/X7nUUIXCYXuAAA\nAAAAoosgBQCA2WjdOrMq5e67w1OZUlBghijr1s18rZlKTpbWrjWP0To7pRMnxp/JEs5QabIGB4dD\nnl27Ql9LSjLbgo1XyZKba1a6YFKmGriMaSc2qsXYbAtcAAAAAADRRZACAMBstW6dVFkpffKT0s9+\nNv117r/fbOdlRSXKTM2bJ23caB6jtbaOH7DU1Uk+n/V77e2Vjh41j9Hc7tA5LCNDlvnzrd/rHDEy\ncFmdtXrCz5tM4DL0a/dAt4V/AgAAAACAHRGkAAAwm2VmSk88YYYh3/jG2PkeV7N1q/Tgg5MfLG93\nmZnSTTeZx0iGIV28OH7AcvKk1Ndn/V67uqTXXjOP0ebPH7+KpbDQDGAwY9MNXEa2EJurgYthGNHe\nAgAAAADYjsPg3RJiyNGjR7V2RKuY6upqFRcXR3FHABBm1dXSk09Khw5Jhw+HtrvKyJA2bZK2bJHu\nu2/81lmxxu+XGhrGD1nq683X7SQ/f/yAZflys5UYosIwDHn7vVdtJzZbApeslCxtyt+kDXkbVJpX\nqg15G1SYWSing3k/AAAAAKxlp2e5BCmYk3bu3KmdO3eOOe/z+VRWVhb8mCAFwJxmGGblQ1+flJho\nVjMwl2Py+vul06fHbxfW0BDt3YVyOKTFi8evZFm6VIqjCNkOZmvgkhqfqpLcEpXmlao03wxX1uas\nVVIc4R0AAACAyLFTkMK7asxJp0+f1v79+6O9DQCILodD8njMA1OXkGAGEStXjn2tu9tsCzZeJUtT\nk/V7NQzpzBnz2Ls39LW4OGnZsvFDloULJSeVBlZxOByalzhP8xLnXbOlWH17vZY/utzC3U3MN+DT\ny+de1svnXg6eczlcWpO9Jli1MvRrRnJGFHcKAAAAAJFBkII5aenSpbr11lvHnB9dkQIAwLSkpEjr\n1pnHaJ2dZqAyOmSprZXa263f6+Dg8H5GS0qSVqwYv11Ybi4VTFHicDjkSbB3AOo3/KpurlZ1c7V+\nWvnT4PklaUvMqpXcDSrNL1VpXqkWzlsoB3+XAAAAAMxitPZCTLFTORgAIMYYhtTaOn4VS22tWeVi\nJx7P+AFLYaE0f360dzfntfhalPNITrS3ERaZyZnakLchpHJlVdYqxTn5mS4AAAAAE7PTs1zevQAA\nAFjB4ZCysszjpptCXzMM6eLFsQFLXZ104oQ5r8VqXq/02mvmMVpm5sQhi9tt/V5ha609rdpXv0/7\n6vcFzyXFJakktyRYubIhb4NKckuUEp8SxZ0CAAAAwPgIUgAAAKLN4ZAKCszjtttCX/P7zeH241Wx\nnD5tvm611lbzeOWVsa/l548/j2X5cikx0fq9YkoeuvUh1V2uU3ljuV6/9LoCRiAi1+kd7NWh84d0\n6Pyh4Dmnw6lVmatCKldK80uVlZIVkT0AAAAAwGQRpAAAANiZyyUtXWoed90V+lp/v1RfP367sIaG\naOzWrKy5eFHavz/0vMMhLVkyfiXL0qVSHN+W2sHfXP83yk7NliR1D3SrurlaRy4eUXljuY40HlFl\nU6V6Bnsicu2AEVDNpRrVXKrRk9VPBs8v8CwIzlsZClmWpi9l7goAAAAAy/COFQAAYLZKSJBWrTKP\n0bq7pZMnx28X1tRk/V4Nw6ygOX1a2rs39LW4OOm660JbhA39fuFCyem0fr9QSnyKtizYoi0LtgTP\n+QN+1bbW6kjjcLhy5OIRtfa0Rmwf573ndd57Xn+o/UPwXFpi2pjKlTVZaxTvio/YPgAAAADELoIU\nAACAuSglRVq3zjxG6+gwZ6+M1y6svd36vQ4OmteurR37WlKStGLF+O3CcnLMShdYxuV0aU32Gq3J\nXqP7190vSTIMQ+e950MqV8oby1XfXh+xfXT0dWj/mf3af2a48inBlaC1OWuDc1dK80pVklsiT6In\nYvsAAAAAEBsIUgAAAGJNWpq0aZN5jGQY5uyT8QKWujqzysVqvb1SdbV5jObxjB+wFBZKGRnW7zVG\nORwOLZy3UAvnLdTbVr0teL69t13ljeUh4cqxlmMaDAxGZB/9/n69dvE1vXbxNan8yt7k0Ir5K8ZU\nr+S58yKyBwAAAABzE0EKAAAATA6HlJVlHm94Q+hrhiFduDDcHmxkyHLypDmvxWper3T4sHmMlpUV\nGqwM/X7FCsnttn6vMSg9KV23Lb1Nty29LXiud7BXx1qO6cjFI8FwpaKpQl39XRHZgyFDdZfrVHe5\nTr869qvg+Tx3Xmi4kleq5fOXy+mgjRwAAACAsQhSAAAAcG0Oh7RggXncdlvoa36/dPbs+FUs9fVS\nIGD9fi9dMo+XXx77WkHB+FUsy5dLiYnW7zWGJMUlaWP+Rm3M3xg8FzACOnn5ZHDeSnlTuY5cPKIm\nX+Rm+TR2NWrPiT3ac2JP8Jw7wa31uetDKleKs4uVGMffCQAAACDWEaQAAABgZlwuadky87jrrtDX\n+vvNMGW8dmHnzkVnvxcumMf+/aHnnU5p8eLx24UtWSLF8a1zJDgdThVmFqows1DvKn5X8HxjV2PI\n3JUjjUd04vKJiO2jq79LBxsO6mDDweC5OGecirKLQipX1uetV3pSesT2AQAAAMB+eDcIAACAyElI\nkFatMo/RurvNofcjA5ah3zc3W7/XQEA6fdo8/vjH0Nfi46Xrrhu/kmXBAjOEQVjlufO0vXC7thdu\nD57z9nlV0VRhhitX2oNVN1drIDAQkT0MBgZV2VSpyqZKPV7xePD8svRlKs0vDQ6235C3QQs8C+Rw\nOCKyDwAAAADR5TAMw4j2JgCrHD16VGvXrg1+XF1dreLi4ijuCAAAjKujY/x5LLW15mt2kpxszl4Z\nL2TJyTHbok1RwAiotbvV/OCj/1v67/8J86ZH+F/vkH74I0lSZkrmrJsT0u/vV01LTchQ+/LGcnX0\nWfv3JCslK1i1MlTBsjJzpVxOl6X7AAAAAOYKOz3LJUhBTLHTzQcAAKbBMMzZJ+PNY6mrM6tc7GTe\nvPEDlpUrpfRJtId66inprW+N/D7/8AfpLW+J/HUsYhiG6tvrg5UrQ3NXznvPW7qP5LhkleSWhMxd\nWZezTsnxyZbuAwAAAJiN7PQslyAFMcVONx8AAAgzwzBnn4wXsJw4IQ1Epv3TtGVljR+wrFghpaaa\nn7N1q3TgQOT3snXr2Jkxc1CLryWkcuVI4xEdv3Rchqx7S+R0OLU6a3XI3JUNeRuUmZJp2R4AAACA\n2cBOz3IJUhBT7HTzAQAAC/n90tmz4w+9P33anI9iJwsWSPn5UlmZddesqpJGfJ8UK3z9PlU1V4UM\ntq9qrlLvYK+l+1g0b9GYuStL0pYwdwUAAAAxy07Pchk2DwAAgLnP5ZKWLTOPN7859LX+funUqfHb\nhZ07F539nj9vHlZ68knpK1+x9po2kJqQqhsX3qgbF94YPDcYGNTxS8eDwcqRxiM6cvGI2nrbIraP\nhs4GNXQ26HfHfxc8l5GUoQ15G0IqV1ZnrVa8Kz5i+wAAAAAwFkEKAAAAYltCgrR6tXmM1t1ttgUb\nL2RpbrZ+r5F06FC0d2Abcc44FecUqzinWO8peY8kc+5KQ2dDcO7KUHuwMx1nIraPtt42PXf6OT13\n+rnguURXotblrgupXCnJLZE7wR2xfQAAAACxjiAFAAAAmEhKilRSYh6jdXSMH7DU1pqvzTaHD5tz\nZmglNS6Hw6HFaYu1OG2x3r7q7cHzl3suq6KxImTuSk1LjfyGPyL76PP3qexCmcoulElHruxNDhVm\nFqo0rzRksH1Oak5E9gAAAADEGmakIKbYqa8eAACYowxDunRp/IClrk7q6Yn2DifW2Sl5PNHexazX\nM9Cjoy1HQ+auVDRVqHug29J95LvzVZpfGjLYflnGMjkdTkv3AQAAAEyHnZ7lUpECAAAAhJPDIWVn\nm8cb3xj6WiAgXbgQGqwM/f7kSWlgIDp7HtLXR5ASBsnxydpcsFmbCzYHz/kDfp24fCKkcuXIxSNq\n6W6J2D4udl3UxbqL2lW3K3jOk+AJmbtSml+qouwiJbgSIrYPAAAAYLYjSAEAAACs4nRKCxeax5ve\nFPra4KB09qwZrFRUSA8+aP3+fvhD6R3vkIqKaPEVZi6nS6uyVmlV1iq9e+27JZlzVy52XQypXClv\nLNfJtpMR24e336sDZw/owNkDwXPxzngV5xSHDLXfkLdB8xLnRWwfAAAAwGxCay/MSTt37tTOnTvH\nnPf5fCorKwt+TGsvAABgS4YhZWZKbW3Ruf6iRdKOHeZx++2Sm0HmVuro7VBlU6VZtXIlXDnafFQD\nAWsrlpZnLA8JV0rzS5XvzpeDkA0AAAAWoLUXEGGnT5/W/v37o70NAACA6XE4pI0bpX37onP9hgbp\nxz82j4QEaetWM1TZvl1atYpqlQhLS0rTLUtu0S1Lbgme6/f361jLMR25OByulDeWy9vvjdg+Trad\n1Mm2k/p/Nf8veC4nNSc0XMkr1Yr5K+RyuiK2DwAAACDaqEjBnERFCgAAmPU+/3npa1+L9i7GWrbM\nDFR27DDbk6WkRHtHMStgBFTfVj9m7srFrouW7iM1PlUluSUhlStrc9YqKS7J0n0AAABgbrFTRQpB\nCmKKnW4+AACAq6qqkkpKor2Lq0tMlG67bbgN2IoV0d4RJDV1NQUrVobag9W11smQdW/9XA6X1mSv\nCalc2ZC3QRnJGZbtAQAAALObnZ7lEqQgptjp5gMAALimrVulAweu/Xl2sWLFcKhy661SEhUJdtHV\n36XKpkozXLl4ROVN5apqqlKfv8/SfSxJWxIMVkrzzXBl0bxFzF0BAADAGHZ6lkuQgphip5sPAADg\nmp56SnrrWyN/nfe/Xzp1SnrpJcnvD8+aycnmoPqhNmDLloVnXYTNgH9Ar196PVi5MvRre2+7pfuY\nnzx/zNyVVVmrFOdkpCcAAEAss9OzXIIUxBQ73XwAAACTcv/90pNPRnb9J54wf9/eLu3dK+3aJe3e\nLTU1he86q1cPhyq33GK2BYPtGIahsx1ng/NWypvMCpaGzgZL95EUl6R1OetC5q6U5JYoJZ6ZPAAA\nALHCTs9yCVIQU+x08wEAAExKa6s5K+XChfCvXVAgVVZKmZljXwsEpPJyM1TZtUt69VXzXDikpkrb\ntpmhyvbt0uLF4VkXEdPa3TqmcuX1S68rYITp78QkOB1OrcxcOWbuSnZqtmV7AAAAgHXs9CyXIAUx\nxU43HwAAwKRVVZkzR9rawrdmRoa0f7+0bt3kPr+1VfrjH81Kld27pUuXwreX4uLhUOWNb5QSEsK3\nNiKmZ6BHVc1VwbkrRxqPqLKpUj2DPZbuY4FngTlvJXdDcO7KsvRlzF0BAACY5ez0LJcgBTHFTjcf\nAADAlFRVSXffHZ7KlIICac+eyYcoowUCUlmZGajs2iX96U9SuN5WeDzSnXeaocr27dKCBeFZF5bw\nB/yqba0NVq0MtQhr7Wm1dB9piWnakLchpHKlKLtI8a54S/cxFQEjoNZua/87SVJmSqacDqfl1wUA\nALgWOz3LJUhBTLHTzQcAADBlra3SJz8p/exn01/j/vulRx8dv53XdLW0SE8/bYYqTz8tXb4cvrXX\nrx+erXLTTVIcA8hnG8MwdN57Pli5MjR3pb693tJ9JLgSVJxdrNK80mDlyvrc9fIkeizdx0RafC3K\neSTH8us2P9BMezQAAGBLdnqWS5CCmGKnmw8AAGDannpK+sY3pBdemPzXbN0qPfigGUhEkt8vHTo0\nPLD+8OHwrZ2WJt11l/lnuPtuKS8vfGvDcu297aporAiZu3Ks5ZgGA4OW7mPF/BVmuDJisH2e2/q/\nWwQpAAAAoez0LJcgBTHFTjcfAADAjFVXS08+aQYXhw+HzlDJyJA2bZK2bJHuu08a8T2QpRobzTZi\nu3eb1SodHeFbe+PG4dkqN9wguVzhWxtR0TfYp6MtR83KlSvhSkVThbr6uyzdR25qbsjcldK8Ui2f\nvzyiLbAIUgAAAELZ6VkuQQpiip1uPgAAgLAyDKmrS+rrkxITJbdbstuw7cFB6eWXh2erVFSEb+35\n86U3v9kMVe6+W8rmwfBcETACOnn5ZEjlSnljuRq7Gi3dhzvBrfW560PmrqzNWavEuMSwrE+QAgAA\nEMpOz3IJUhBT7HTzAQAAxLzz581qlV27pL17Ja83POs6HNL11w/PVtm8WXIyTHuuaexqDM5dGQpX\n6i7XWbqHOGecirKLQsKVDXkblJ6UPuW1CFIAAABC2elZLkEKYoqdbj4AAACM0N8vvfTS8GyV6urw\nrZ2VZVap7NhhzljJzAzf2rAVb59XlU2VOtJ4JDjYvrq5Wv3+fkv3sSx9WUi4UppfqgWeBXJcpUqM\nIAUAACCUnZ7lEqQgptjp5gMAAMBVnD1rBiq7d0vPPCP5fOFZ1+k056kMzVYpLaVaZY7r9/fr9Uuv\nh8xdKW8sV0dfGOf1TEJWSlZouJJXqpWZK+VymrN9CFIAAABC2elZLkEKYoqdbj4AAABMUl+fdODA\n8GyV118P39q5uWagsn27dOedUkZG+NaGbRmGodPtp0Pmrhy5eETnvect3UdyXLJKckvMYfYZy/UP\nz/yDpdeXCFIAAIB92elZLkEKYoqdbj4AAABMU339cKjy7LNST0941nW5pJtuMqtVduyQSkrMeSuI\nGS2+FpU3lodUrhxvPa6AEYj21iKGIAUAANiVnZ7lEqQgptjp5gMAAEAY9PZK+/cPz1apC+Ow8YKC\n4YH1d9whzZsXvrUxa/j6fapqrgoOti9vKldlU6V6B3ujvbWwIEgBAAB2ZadnuQQpiCl2uvkAAAAQ\nAXV1w7NVnnvObAsWDnFx0s03D89WKS6mWiWGDQYGVdtaqyMXj4S0B7vccznaW5syghQAAGBXdnqW\nS5CCmGKnmw8AAAAR1t0tPf+8Wa2ya5fZEixcFi0arlbZtk1yu8O3NmYlwzB0rvNccN5KeZNZwXKm\n40y0t3ZVBCkAAMCu7PQsNy4qVwUAAACASEtJGZ53YhhSbe1wqPLCC1J///TXbmiQfvIT80hIkG65\nZfhaq1ZRrRKDHA6HFqUt0qK0RXr7qrcHz7f1tIXMXDnSeEQ1LTXyG/4o7hYAAABTQUUKYoqdUkwA\nAABEUVeXOah+aLbK2bPhW3vp0uFQ5U1vMgMdYITewV5VN1eblSsjQpaewR7L97I2Z6025W/S+tz1\nWp+3XiW5JcpKybJ8HwAAAKPZ6VkuQQpiip1uPgAAANiEYUjHjpmByq5d0oED0uBgeNZOTJRuu224\nDVhhYXjWxZzT6G1U/v/Jj/Y2JEkFngIzWLkSrqzPXa/CzELFOWlqAQAArGOnZ7l8FwQAAAAgtjkc\n5vD44mLpgQekzk5p377hNmAXLkx/7b4+6emnzePTn5ZWrBgOVW69VUpODt+fA7Oay+mK9haCLngv\n6IL3gnaf2B08lxSXpLU5a1WSUxIMV9bnrVd6UnoUdwoAAGANghQAAAAAGGnePOmee8zDMKSqquFQ\n5aWXJP8MZlucOCF973vmkZxstv7ascMMV667Lnx/BiDMegd7VXahTGUXykLOL05bHFK9UpJbohXz\nV8jpcEZppwAAAOFHkALEgMsDA7r32LGQc78oKtL8+Pgo7QgAAGCWcDikkhLz+NznpPZ2ae9esw3Y\n7t1SY+P01+7pGQ5oJHNI/VCosnWr2RYMsLmzHWd1tuOsfl/7++C5lPgUrctZF9IarCS3RJ5ETxR3\nCgAAMH0EKUAM+Hlzs55paws594vmZn1swYIo7QgAAGCWSk+X3vlO8wgEpPLy4dkqr7xinpuu48fN\n49vfllJTpW3bzFBl+3ZpyZLw/RmACOse6Nar51/Vq+dfDTl/XcZ1KsktCalgWZq+lOoVAABgewQp\nQAzYOc5PSu5sbCRIAQAAmAmnU9q40Ty+8AXp8mXpj380Q5U9e6SWlumv7fNJv/udeUjm/Jah2Spv\nfKOUkBCePwNi3sc2f0x1l+tU0Vihlu4Z/J2dhFNtp3Sq7ZR+8/pvguc8CZ7hcOVKa7B1OeuUmpAa\n0b0AAABMBUEKMMcd9fn0J693zPlDXq+O+XwqSuUNCgAAQFjMny+9+93mEQhIhw+bocru3dKhQ+a8\nlek6etQ8HnlE8nikO+4YbgPGD8dgBh6+7WFlp2bLMAw1djWqoqlCFY0V5q9NFTp+6bj8xgzmAl2D\nt9+rgw0HdbDhYPCcQw6tmL9ieKj9lZBl0bxFcjgcEdsLAADARAhSgDnu8av07X68sVFfX77cwt0A\nAADECKdTuv5683joIbM65emnzVBlzx6zemW6vF7pf/7HPCRzfstQqHLTTRJz8DANDodD+Z585Xvy\ndfeKu4Pnewd7dazlWEi4UtFYobbetqusNjOGDNVdrlPd5Tr9+tivg+fTk9KD81aGwpXi7GIlxydH\nbC8AAACS5DCMmfxYFDC7HD16VGvXrg1+XF1dreLi4ijuKLIGAwEteuUVNfb3j/t6fkKCzt54o+Kc\n9CQGAACwjN9vVqgMzVY5fDh8a6elSXfdZYYqd98t5eeHb21EVIuvRTmP5Fh+3eYHmpWdmj2lrzEM\nQ+c6z6miqUKVTZXBcKW2tVaGrH3E4HQ4tSpzVUj1SkluiQo8BVSvAAAwy9npWS5BCmKKnW6+cDAM\nQ5cGBiZ8/bn2dt177NhV1/hlUZFuS0+f8PWs+HjegAAAAERSY6NZrbJrlzljpb09fGtv3Dg8W+WG\nGySXK3xrI6xmU5Ayke6BblU3V4dUr1Q2VaqzrzMs609FZnLmmNZga7LWKDEu0fK9AACA6bHTs1yC\nFMxJO3fu1M6dO8ec9/l8KisrC34824OUcq9XpeH8CcbxrrF5s9a73RG9BgAAAK4YHJReeWV4tkp5\nefjWzsiQ3vxmM1R585ulHOsf2mNicyFIGY9hGDrTcWZMa7CTbScjds2JxDnjtCZrTUhrsPW565Xr\nzrV8LwAA4NrsFKQwIwVz0unTp7V///5obyPi/vvSpchfo6WFIAUAAMAqcXHSzTebx1e/Kp0/b85U\n2b3brFbxeqe/dlub9POfm4fDIW3ePDxbZfNmqlUQEQ6HQ0vTl2pp+lL92eo/C5739nlV1Vylisbh\n9mCVTZXyDfgitpfBwKCqmqtU1VylJ6qeCJ7PTc0NhipDIcvqrNWKdzFvCAAAmKhIwZwUKxUpaw8d\n0tHu7sheIzVVVddfH9FrAAAAYBIGBqSDB4dnq1RXh2/trCxzpsr27Wa1SmZm+NbGpMzVipSpCBgB\nnWo7NaZ65UzHGcv3kuBKUFF2UUhrsPW565WZwr0BAIBV7FSRQpCCmGKnm2+mmvv7VfDSS/JH+Dou\nSRfe8AblJCRE+EoAAACYkoaG4VDlmWckX5h+kt/plLZsMatVduyQSkvNc4gogpSJdfR2hAy1r2iq\nUHVztXoGeyzfS4GnYEy4UphZqDgnDT8AAAg3Oz3LJUhBTLHTzRcOL3d06D01Narv7Y3I+suSkvSz\nNWt0Y1paRNYHAABAmPT1SS++ODxbpaYmfGvn5AwPrL/zTnPWCsKOIGVq/AG/6i7XhbQGq2iq0LnO\nc5bvJSkuSWtz1oa0Bluft17pSemW7wUAgLnETs9yCVIQU+x084VL5+CgPlFXp582NYV1XaekjR6P\nbvB4tPnKsTolRXH8NCIAAID91debgcru3dK+fVJPmH5y3+WSbrppeLbK+vXmvBXMWMAIqLW71fLr\nZqZkyumYO9/jt3a3hgQrFY0VOtpyVP3+fsv3sjht8ZjqleXzl8+p/94AAESSnZ7lEqQgptjp5gu3\nJ5ua9NHaWnX6I9fsK9npVKnbrc0ejzZdCVdWpaTIxZtnAAAA++rtlV54waxW2bVLqqsL39oFBeZs\nlR07pDvukKhkhg0N+AdU21ob0hqsoqlCjV2Nlu8lJT5F63LWhYQrJbkl8iR6LN8LAAB2Z6dnuQQp\niCl2uvki4XRPj+6vqdHLnZ2WXTPV6VTplVBl05WQZWVKipyEKwAAAPZ04sTwbJXnnzeDlnCIi5Pe\n+Mbh2SrFxVSrwNaafc1jWoMdazmmwcCg5Xu5LuO6YPVKSW6J1uet17L0ZXJwDwEAYpidnuUSlzLs\nFgAAIABJREFUpCCm2Onmi5R/O3NG/1hfH9U9eFyuYOXKUPXKiuRkwhUAAAC76e42w5ShapVwfh+5\ncOFwqLJtm+R2h29tIEL6/f2qaakJVq9UNleqorFCLd0tlu/Fk+AJmbmyPne91uasVWpCquV7AQAg\nGuz0LJcgBTHFTjdfpPxZVZV+12p9b+VrmedyaeOIeSub3G4tT07mJ6wAAADswjCk2trhapX9+6X+\nMM2ViI+Xtm4dHlq/ejXVKpg1DMNQY1fjmNZgxy8dl9+IXGvl8Tjk0Ir5K4LBylDIsmjeIt5bAQDm\nHDs9yyVIQUyx080XCYZhKPell9QyMDCtr49zOOQwDE3vq6cuPS5Om9zu4LyVTR6PliUl8QYAAADA\nDrq6pOeeG65WOXs2fGsvXTocqrzpTVIqP2GP2ad3sFfHWo6FhCsVjRVq622zfC8ZSRnB6pWh1mDF\n2cVKjk+2fC8AAISLnZ7lEqQgptjp5ouEkz09WvHqqzNao+b669UdCOiw16syr1eHvV5V+nwasOh/\nFRlxcSHD7Dd7PFqcmEi4AgAAEE2GIdXUDIcqBw5Ig2GaI5GYKN1663AbsMLC8KwLRIFhGDrXeS6k\neqWyqVK1rbUyZO3jF6fDqVWZq8ZUr+S783l/BQCYFez0LJcgBTHFTjdfJPxXY6Pe+/rrM1tjzRq9\nJzc35FxfIKCqri4d7upS2ZWApdrn06BF//vIvBKujAxYFhKuAAAARE9np7Rv33AbsPPnw7f28uVm\noLJ9u3TbbVIyP1GP2a97oFvVzdUh1SuVTZXq7Ou0fC9ZKVnDs1euhCtrstYoMS7R8r0AAHA1dnqW\nS5CCmGKnmy8S/qa2Vo9duDDh69clJcmQVN/bO/EaBQX6/sqV17xWr9+vSp8vWLVS5vXqqM8nqzoE\nZ8fHjwlXChISCFcAAACsZhhSVdVwqHLwoOQP03eFSUnS7bcPtwG77rrwrAvYgGEYOt1+WpVNlSGt\nwU62nbR8L3HOOK3JWhOsXhkKWnLdudf+YgAAIsROz3IJUhBT7HTzRcLGsjId6eoa97X35ebqe1fa\nJHyirk4/bWoafw23W4c3b57W9Xv8flVcqVoZql455vMpMK3Vpi4vIUGb3O6QcCU/kZ+qAgAAsFR7\nu/TMM2aosnu31NgYvrVXrRoOVbZuNduCAXOMt8+rquaqkNZglU2V8g34LN9LbmrumNZgqzJXKd4V\nb/leAACxx07PcglSEFPsdPOFm2EYWnPokI739IScT3O59KOVK/XuUe26nmxq0kdra9U56qcFVyUn\nq2bLlrBVdvhGhCtD1Ss13d2WdQcuSEgImbeyyeNRbkKCRVcHAACIcYGAVFExPFvllVfMc+GQkiJt\n2zbcBmzJkvCsC9hQwAjoVNupMYPtz3ScsXwvCa4EFWUXhYQr63PXKzMl0/K9AADmNjs9yyVIQUyx\n080XCT6/X184dUqPnj8vQ9LNaWn6rzVrtCQpadzPP93To7+sqdHBzk45JH1q4UJ9edkypbpcEd1n\n1+CgykeGK11dOm5huLIwMdEMVUZUr2QTrgAAAETe5cvSH/9ohip79kgtLeFbu6hoOFS5+WaJ7+8Q\nA9p721XVVBUy3L66uVo9gz3X/uIwW+BZoPV561WSUxIMV1ZmrpTLGdn3lwCAuctOz3IJUhBT7HTz\nRdKL7e16ubNTn1m4UHFO51U/dzAQ0P85d05vmDdPN6enW7TDsToHB3Wkqys4b6XM61Vdj3Xf/C8e\nCldGVK5kxlOuDgAAEDGBgHT48HALsEOHzHkr4eB2S3feaYYq27dLCxeGZ11gFvAH/Kq7XBfSGqyi\nqULnOs9ZvpekuCStzVkbUr1Sklui9KTovfcEAMwednqWS5CCmGKnmw/X1jE4qNdGDLMv83p1srfX\nsusvTUoabgnmdmuTx6MMwhUAAIDIaGkJrVa5fDl8a69bZ1ar7Ngh3XSTxPd0iEGt3a1jBtsfbTmq\nfn+/5XtZnLZ4TGuw5fOXy+m4+g8CAgBii52e5RKkIKbY6ebD9LQNDOi1UZUr9RaGK9eNDFc8Hm10\nu5XOG3EAAIDw8vulP/1peLbK4cPhW3vePOmuu8xQ5e67pfz88K0NzDID/gEdbz1uBiwj5q80djVa\nvpfU+FSty10X0hqsJLdEnkSP5XsBANiDnZ7lEqQgptjp5kP4tA4M6LURw+zLvF6d6euz7PqFycnD\nLcHcbm30eDQvLs6y6wMAAMx5TU1mlcquXWbVSnt7+NYuLR2erXLDDRLfxwFq9jWHBCuVTZU61nJM\ng4FBy/dyXcZ1Y1qDLUtfJofDYfleAADWstOzXIIUxBQ73XyIrEv9/To8cqC916sGC8OVVSPClc0e\nj0rdbrl5Uw4AADBzg4PSK6+Yc1V27ZLKy8O3dkZGaLVKTk741gZmuX5/v2paakIG21c0VehS9yXL\n9+JJ8KgktySkNdjanLVKTUi1fC8zETACau1utfy6mSmZtFEDMCvY6VkuQQpiip1uPlivub8/pCXY\nYa9X5/ut6QfskLQ6JSVkoP0Gt1upLpcl1wcAAJizLlwIrVbxesO39ubNw7NVNm+W7Pa9m2GYf97+\nfikhQfJ4JH5KHxYyDEMXuy6OaQ12/NJx+Q2/pXtxyKHCzMLhgOVKyLJo3iLbVq+0+FqU84j1gW3z\nA83KTs22/LoAMFV2epZLkIKYYqebD/Zwsa9Ph73ekOqVRovCFaekNaPClfVut1Ls9gYdAABgthgY\nkF56aXi2SnV1+NbOzDSrVHbsMKtWsrLCt/ZUVFVJTz4pHTokvfaa1NY2/FpGhrRxo7Rli3T//dKI\n9z6AlXoHe3W0+WiweqWy2Qxa2nrbrv3FYZaRlDGmeqUou0jJ8cmW72U0ghQAuDo7PcslSEFMsdPN\nB/u60NcXMm+lzOtV88CAJdd2SSpKTQ0NV1JTlUS4AgAAMHUNDWYLsN27pb17JZ8vPOs6HOY8le3b\nzWBl40bJGeE2OU89JX3969KBA5P/mltukT73OXOPQJQZhqFznefGtAara62TIWsfTbkcLq3MXBkM\nVoZClnx3vqXVKwQpAHB1dnqWS5CCmGKnmw+zh2EYOn8lXCkbUb1yyaJwJc7hUPGVypWhgKXE7VZi\npN+sAwAAzCV9fdKLLw7PVqmpCd/aOTmh1SoZGeFbu7VV+tu/NatQpuv++6VHHzWragCb8fX7dLTl\n6Jjh9p19nZbvJSslS+tz14dUsBRlFynBlRCR6xGkAMDV2elZLkEKYoqdbj7MboZhqGFkuHLl18uD\ng5ZcP97h0LrU1GDVyiaPR+tSU5VAuAIAADA5p08Phyr79kk9PeFZ1+mUbrppeLbK+vXTn1tSWWlW\nvVy4MPN9FRSYs2TWrZv5WkCEGYah0+2ng6HKUBXLybaTlu8lzhmnNVlrQqpXSnJLlOvOnfHaBCkA\ncHV2epZLkIKYYqebD3OPYRg63dsbDFWGKlfaLQpXEhwOlbjd2uR2B6tXilNTFU+4AgAAcHW9vdIL\nL5ihyu7dUm1t+NbOzx9uAXbHHVJa2uS+rrJSuu220BkoM5WRIe3fT5iCWcvb51VVc1VI9UpVU5V8\nA2Fq2zcFuam5Y1qDrcpcpXhX/KTXIEgBgKuz07NcghTEFDvdfIgNhmHo1IhwZah6pdPvt+T6iQ6H\n1rvdwcqVzR6PilJSFEe4AgAAMLETJ4Znqzz3nBm0hENcnPTGN5qhyvbt5jD48apVWlulkpLwVKKM\nVlBghjS0+cIcETACOtV2KiRcqWis0JmOM5bvJcGVoOLs4jHD7TNTxr/fCFIA4Ors9CyXIAUxxU43\nH2JXwDB0sqcnpCXYa11d8loUriQ5ndpwpWplqHplNeEKAADA+Lq7peefH24DdupU+NZeuHA4VNm2\nTfJ4zPP33z+zmSjXcv/90hNPRG59wAbae9vNtmCNw+3Bqpqr1DsYpmB0ChZ4FoypXimcX6jLPZcJ\nUgDgKuz0LJcgBTHFTjcfMFLAMFQ3OlzxeuULBCy5fsrIcOVK5cqqlBS5ptvPGwAAYC4yDLPt11Co\nsn+/1N8fnrXj46VbbpGWLpX+8z/Ds+bV/OEP0lveEvnrADbiD/hVd7luTPXKee95y/eSFJekVZmr\nVNFUYfm1CVIAzBZ2epZLkIKYYqebD7gWv2Gotrs7pCXYka4udVsUrqQ6nSod0RJsk9utlSkpchKu\nAAAAmLq6zNZfu3aZx9mz0d7R5G3dagZBANTa3To81P5KuHK05aj6/WEKSm2GIAXAbGGnZ7kEKYgp\ndrr5gOnwG4ZeHydc6bUoXPG4XCodMcx+k8ejFcnJhCsAAACGIdXUDA+sP3BAGhiI9q6urqrKnNMC\nYIwB/4COtx4PaQ1W0VShxq7GaG9txghSAMwWdnqWGxeVqwIApsXlcKg4NVXFqal6f16eJGkwEFDN\nqHClvKtLfRHIyb1+v17o6NALHR3Bc/NcLm0a0RJsk9ut5cnJchCuAACAWOJwSEVF5vHAA1Jnp7Rv\n33AbsPPWtw66pieflL7ylWjvArCleFe81uas1dqctXqP3hM83+xrHtMarOZSjQYDg1HcLQAg0ghS\nAGCWi3M6tc7t1jq3Wx/Mz5ckDQQCOurz6XBXVzBgqezqUn8EwpVOv1/Ptbfrufb24Ln0uDhtcruD\n4cpmj0dLk5IIVwAAQOyYN0+65x7zMAypunq4BdjBg5LfH+0dSocORXsHwKyTk5qjO5ffqTuX3xk8\n1+/vV01LTTBYGQpZLnVfiuJOAQDhRGsvxBQ7lYMBVusPBFTt84UMtK/y+TRg0T8D8+PihqtWrvy6\nODGRcAUAAMSe9nbpmWeG24A1RqlVUEaG1NpqVtMACCvDMHSx62IwWBlqD3b80nH5jegGqbT2AjBb\n2OlZLhUpABAjEpxObfR4tNHjCZ7rCwRUdaVqZah6pdrn02AEwpXLg4Pa29amvW1twXOZcXEh81Y2\nezxaSLgCAADmuvR06S/+wjwCAamiQvrv/5a+/GVr99HWJnV1SSO+PwQQHg6HQwWeAhV4CrS9cHvw\nfO9gr442H1VFU4VebnhZ/3HkP6K4SwDAZFGRgphipxQTsKtev1+VoypXjvp8supnpnLi48dUrhQk\nJBCuAACAue3SJSk7Cj8h3tIiZWVZf10AavG1KOeRHMuv+8ZFb9SfrfozbS/cruLsYt5rAbAtOz3L\npSIFABAiyeXSlnnztGXevOC5Hr9fFSPmrRzu6tIxn0+BCFy/eWBAuy9f1u7Ll4Pn8hIStMntDqle\nyU9MjMDVAQAAoiQhITrX5XsqIOYcbDiogw0H9dlnPqtF8xZp+4rt2l64XduWbZMnkQo1ABgPQQrC\n5uTJk9qzZ49eeOEFVVZW6ty5c+rr61N6erqKiop011136UMf+pByc3OjvVUAU5TscunGtDTdmJYW\nPOfz+1Xe1RWsWjns9aqmu1uRKHNs7O/XU5cv66kR4UpBQkJI1comj0e50XoAAQAAMFMejzmzZEQb\n1IjLyJDcbuuuB8B2Gjob9JPXfqKfvPYTxTvjdfPim7WjcIe2r9iuouwiqlUA4ApaeyEsPvCBD+jx\nxx+/5ufNmzdPP/jBD/SXf/mXFuxqLDuVgwFzUdfgoI6MCFfKvF7V9vREJFwZz8LERDNUuVK9ssnj\nUTbhCgAAmC3uuEPat8/a6+3da931AISIVmuvyaJaBUC02elZLhUpCItz585JklJTU/W2t71Nt99+\nu1atWiWPx6OGhgb96le/0hNPPKHOzk69733vU3x8vO69994o7xpAuLnj4nRLerpuSU8PnuscJ1yp\n6+mJyPXP9fXpXF+ffnPpUvDc4qFwZUTlSmZ8fESuDwAAMCNbtlgbpJw6JR06ZF4XAEYZXa1yy5Jb\nzGCFahUAMYiKFITF+973Pm3atEkf+tCH5J6gNPznP/+57rvvPklSVlaWzpw5o5SUFCu3aasUE4hl\nHYODem1ES7Ayr1cne3stu/7SpKTheStutzZ5PMogXAEAANFWVSWVlFh/3be+VXr4YWnjRuuvDcQw\nu1ekXM3itMXBUGXbddvkTqBNIIDws9OzXIIUWOqee+7Rb37zG0nSb3/7W7397W+39Pp2uvkAhGob\nGNBrVwbaD4Ur9RaGK8uTkkKqVja63UonXAEAAFbbulU6cCA6177nHulf/iU6YQ4Qg6IVpNyw4AaV\nXSiT3/CHZT2qVQBEip2e5dLaK4adPHlShw4d0rlz59Tf36+MjAytXr1ab3jDG5SUlBSRa27bti0Y\npNTW1kbkGgBmp4z4eG3LyNC2jIzgudaBgWDlylDAcqavLyLXP9nbq5O9vfplS0vwXGFycjBc2ezx\nqNTt1ry42fFP5+WBAd177FjIuV8UFWk+4RAAAPb24IPRC1L+53/M413vkh56SCoqis4+AETU7+/7\nveJd8dp7cq92n9it3Sd2q7GrcdrrDQQG9Gz9s3q2/ln9w95/oFoFwJw0O54GxYDz58/r0KFDevXV\nV3Xo0CGVlZXJ6/UGX1+yZIlOnz4dlmv95je/0b/+67/qtddeG/d1t9utD3zgA3rooYeUlZUVlmsO\n6e/vD/7e5XKFdW0Ac09mfLzunD9fd86fHzzX0t8frFwZClcaIhSu1PX0qK6nRz9vbg6eW5WcHDJz\npdTtltuG4crPm5v1TFtbyLlfNDfrYwsWRGlHAABgUt7yFum++6Qnn4zeHn75S+lXv5Luv98MVAoL\no7cXABGRnpSudxa/U+8sfqcCRkAVjRXBUOXlhpdnVK1ytuOsfnz4x/rx4R8Hq1V2rNih7YXbtSZr\nDdUqAGYlWntF0cGDB/Wtb31Lr776qi5cuHDVzw1HkNLX16cPfehDeuKJJyb1+dnZ2fr1r3+trVu3\nzui6I73tbW/TH/7wB0nS008/rbvuuitsa0+GncrBAIRPU3+/Do9oCXbY69X5EcFtJDkkrU5JCQlX\nNrjdSo1yWLzl8GH9aUQgL0lbPB69umlTlHYEAAAmrbXVbK91jfeJ05KQIE3l+ySXS3rve6V//mdp\n2bLw7weIYdFq7dX8QLOyU7MnfL2tp03PnHpGu07s0p4Te2ZUrTIa1SoApsJOz3IJUqLoO9/5jj7z\nmc9M6nNnGqQEAgG94x3v0G9/+9uQ8y6XS4sXL1ZaWprq6+vV0dER8npKSoqeeeYZ3XTTTdO+9pCy\nsjLdeOON8vv9WrBggerr6xVvcYsZO918ACLrYl+fGa6MqF5ptChccUpaMypcWe92K8WicOWoz6e1\nf/rT+K9df72KUlMt2QcAAJiBqirp1lulURWmM5KRIT3/vHTxovTFL0oTfL8wrrg46a/+SvrCF6TF\ni8O3JyCG2TVIGWl0tcpLDS8pYATCso8EV4JuWXxltgrVKgDGYadnufbrRQJJZnutrq6usK33zW9+\nc0yI8tGPflRf/OIXVVBQIMkMW37729/q05/+tM6ePStJ6u7u1rve9S5VV1crLS1t2tfv6urSBz7w\nAfn9Zmno1772NctDFACxJT8xUW9NTNRbR7QovNDXF9ISrMzrVfPAQNivHZB0tLtbR7u79XhTkyTJ\nJakoNTU4b2WTx6P1qalKikC48njjxD8x9nhjo76+fHnYrwkAAMJs3Tpp/37p7rvDU5lSUCDt2WOu\nW1Ii3XWX9NRTZqXJkSPX/vrBQeknP5F27pQ+8hHpH/9RomUoMOc5HU6V5peqNL9Un7/l82rradPe\nU+ZslZlWq/T7+7Wvfp/21e/TA3sf0JK0JcFQ5fZlt1OtAsBWqEiJoqGKFI/Ho02bNun666/Xli1b\ndP3116u+vl5vetObgp87k4qU1tZWLVu2LGTmyte+9jV97nOfG/fzz58/r5tvvjnkev/8z/+shx9+\neFrXDwQCuueee/S73/1OkvTud79bT0ap36+dUkwA0WcYhs5dqVwpG1G9cikC4cp44hwOrU1N1Sa3\nOxiulLjdSnQ6p73mYCCgRa+8MmH1TX5Cgs7eeKPiZnANAABgodZW6ZOflH72s+mvcf/90qOPSpmZ\nY18zDOk3vzEDlerqya+ZmCh97GPSgw9KeXnT3xsQw2ZDRcrVDFWr7KrbZc5WOfcy1SoAwspOz3IJ\nUqLo5MmT6uvr0+rVq+Uc9UDr+eefD1uQ8uCDD+ob3/hG8OOtW7fq+eefv+o/QPv27dMdd9wR/Njj\n8ai+vl6Z433jfRWGYejDH/6w/vM//1OSdMMNN2jfvn1KjVJbGTvdfADsyTAMnR0RrgxVr1weHLTk\n+vEOh9alpgZbgm32eLQ2NVUJV/6dMAzjqkHPc+3tuvfYsate45dFRbotPX3C17Pi43mTAgCA3Tz1\nlPSNb0gvvDD5r9m61Qw6duy49ucGAtKvf20Ol3/99clfIzlZ+sQnpM9+VhpRCQzg2mZ7kDLayGqV\n3XW71eRrCtvaVKsAsclOz3IJUmwqXEFKIBBQXl6eWlpagueeffbZkLUnsnXrVh04cCD48WOPPaaP\nfexjk762YRj6+Mc/rh/96EeSpNLSUj377LNKv8rDu0iz080HYPYwDEOne3tDw5WuLrVbFK4kOBwq\ncbu1ye1WTny8/vVK+8VIKd+8WevdvDEBAMCWqqulJ5+UDh2SDh8OnaGSkSFt2iRt2SLdd5804r3P\npPn95voPPyydODH5r3O7zcqZv/97af78qV8XiEEBI6DW7lbLr5uZkimnI7IV6gEjoPLGcu2u2x2x\napUdhTu0fcV2rc5azQ+CAXOUnZ7lEqTYVLiClBdffFG33HJL8OPrrrtOJ06cmNQ/MI8//rg+8IEP\nBD++66679PTTT0/62p/4xCf0gx/8QJJUUlKiZ599dsoVLeFmp5sPwOxmGIZO9faGzFs57PWq88os\nqNnsn5cs0cPLlkV7GwAA4FoMQ+rqkvr6zFZbbrcUroeJg4PST38qfelL0lTei86bJ33mM+Yxgzmb\nAOaWyz2Xtffk8GwVqlUATIadnuUybH6Oe+qpp0I+vvPOOyed0t95550hHz///PPy+XyTasv1t3/7\nt8EQZd26ddq3b1/UQxQACCeHw6Hlyclanpyse3PMcvyAYehkT09ouNLVpa5ZFq7896VLBCkAAMwG\nDofk8ZhHuMXFSR/8oPSe95gD5r/8Zamh4dpf19lpVrN897vSAw+YVSqR2B+AWWV+8nzdu/Ze3bv2\n3rBXq5zpOKMfHf6RfnT4R0pwJWjrkq1msEK1CoAwYtLsHFdeXh7y8Rve8IZJf21BQYGWLl0a/Li/\nv1/HrtF3X5I++clP6vvf/74kqbi4WPv27VMWvXIBxACnw6HClBTdl5urR1as0POlpeq4+Wa9vmWL\n/mvNGn164ULdkpamVJsPeq/x+dQ8wbB6AAAQYxISpL/+a6muTvr+96X8/Ml9XXu79E//JC1bZs52\n8fkiu08As4bT4dTG/I36wtYv6MW/elEt/9Cin/+vn+v969+v3NTcGa3d7+/XM6ee0d//8e9V9FiR\nln13mT7+1Mf1++O/l6+f/w8BmD7bVqT4/X75RnyjlZycrPj4+CjuaHaqqakJ+bioqGhKX19UVBTS\nUqympkbXX3/9hJ//qU99St/73vckmSHKs88+q+zs8A8wA4DZwulwaFVKilalpOg9ueabAr9hqLa7\nO2SY/ZGuLnUHwtMzeCYWJSbqyaIi5SQkRHsrAADAThITpb/5G+mv/kr68Y+lr31Nam6+9te1tpoD\n77/1Lekf/1H63//bHFAPAFdMVK2y68QuvXLulRlXq/yw7If6YdkPqVYBMCO2DVIef/xxfeQjHwl+\nvHfvXt1+++1R3NHs09PTo7OjBhIvWrRoSmuM/vzjx49P+Lmf+cxn9Oijj0oyA5hnn31WOVfa3QAA\nhrkcDq1JTdWa1FS9Ny9PkjQYCOj17m4d7uoKBizlXV3qtThcaejr0+3l5VqRnKyVKSladeXXlcnJ\nWpWSoqz4eN5sAAAQy5KTpU9/WvrIR6Qf/MCsNmmdxLDs5mZzbso3vyl9/vPShz9shjMAMMJQtcpQ\nxcrI2Sq7T+xWs28SAe4EhqpVhipWlqYvDYYqty+7XakJ125lDyB22TZIaWpqkmEYkqT09HRClGm4\ndOlS8L+hJMXHx0852FiwYEHIx80T/MTRgw8+qO985zuSpOzsbH3ve99Tc3PzhJ8vSRkZGWPWn4rm\n5ma1tLRM6WtOnDgx7esBQCTFOZ1a63Zrrdut948IV451dwfnrZR5varo6lLfiP+3R0K/YehYd7eO\ndXePeS09Li4YqqwcCltSUrQiOVmpLldE9wUAAGwkNVX67Gelj31MevRR6ZFHzHZe13LhgvSJT0hf\n/7rZ+uuDH5ToPgFgAqOrVY5cPBIMVWZarXK6/fSYapUdK3Zoe+F2rcpcxQ+QAQhh2yDF7XZLMof5\nLlmyJMq7mZ26urpCPk5JSZnyPwKjB8uPXnPIL37xi+DvW1patG3btmuu/f73v187d+6c0n5Geuyx\nx/Twww9P++sBwO7inE6VuN0qcbv1wSv9yAcCAR31+YKD7A92dKja51Nko5Vh7YODOuT16pDXO+a1\nhYmJYypYVqakaGlSkly8CQEAYG7yeKQvfMEMR779bfPo7Lz21zU0mG2+/u3fpC9+UXrve80B9wAw\nAafDqU0Fm7SpYJP+aes/BatVdp3YpT0n9oStWuXv/vh3VKsAGMO236XkT3aAHSY0OvRISkqa8hrJ\no3rXThSkAACsEe90aoPHow0ejz585dxXTp/WP42YZxUt5/r6dK6vT/tG/TRqgsOh5cnJIeHK0O+z\naRUGAMDckJYm/cu/SJ/8pDkP5bvfndyA+fp6c+7KV78qPfSQdN99ElWuACbBymqVW5fcagYrVKsA\nMcu2QcqaNWskSYZhqKGhIcq7mZ16e3tDPk6YxuDgxFE9a3t6esb9vNM2eIAHALFqvOoQO+k3DNV0\nd6umu3tMD/U0lyvYHmzliLkshSkptAoDAGA2mj9f+spXzDkq3/ym9P3vSxO8jwxx4oTvBFARAAAg\nAElEQVRZlfLVr5qBzF/8heR0Rny7AOaG8apV/njyj9p9YndYqlX2ntqrvaf2BqtVhlqAvWnpm6hW\nAWKEbYOU4uJiFRcX6+jRo2pra9Orr76qG264IdrbmlVGV6D09/dPeY2+vr6rrhlNH//4x/XOd75z\nSl9z4sQJ/fmf/3mEdgQA1jMMQy9Ppn3GBJKdTt3o8ai2p0fnp/HvxEx1+P36k9erP40TBi1ISBhT\nwbIyOVlLk5IUx4MVAADsLTvbHET/d39nzkP54Q+lUe8vx1VTI917r7RunfTww9Kf/7nET34DmKL5\nyfP17rXv1rvXvjtYrbKrbpd2n9itV8+/OuNqlcfKHtNjZY9RrQLEENsGKZL013/91/rUpz4lSXro\noYe0Z8+eKO9odhmaMzNkdIXKZIyuQBm9ZjTl5OQoJycn2tsAgKg61durloGBaX99TyCg/1i9Wtcl\nJ6trcFAnenpU29Oj493dqu3pUW13t453d6vD7w/jrifnfH+/zvf369lRrcLiR7QKG6pgGQpbchMS\neOMCAICd5OWZc1MeeMCsNvn3f5cm871LVZX0jndIpaXSl74kveUtBCoApmVktcoXb/2iWrtbtffU\nXrMNWN1utXS3THvt0dUqy9KXBUMVqlWAucXWQcrHP/5x/fKXv9TBgwe1d+9ePfDAA3rkkUeiva1Z\nY3To0d3dLcMwpvSAyTeqp62dghQAgPRyR8fM1+js1HXJyXLHxQXnr4xkGIZaBgbMUGVEuFLb06MT\nPT0aMKwadW8aMAy93t2t18dpFTbvSquwkRUsQx+7GWALAED0LFgg/eAH0oMPSl/+svR//680OHjt\nrztyRHrb26QtW8xA5a67CFQAzEhmSmZItcprF1/T7rrdYalWqW+vD1arJLoSdevSW4ND61dmruSH\nvoBZzNZPFFwul37/+9/r7W9/u1588UV9+9vf1qFDh/SlL31Jt912W7S3Z3tZWVlyOBwyrjzgGhgY\nUHNzs3Jzcye9xvnz50M+pgIEAOzlWm29rktKkiGp/ipViS93dOg9V/m3weFwKCchQTkJCbo5PT3k\ntcFAQGf6+lR7JVg53v3/2bvz+Kjqs///7zOThIQsBAhGkS1IwLAo1aioSFhaC7Ra7a8uqAVqxbuC\nSqmoiIgsIlpRqUu9tWqDC1bEFWWRWxEFEQwKlagQliCChp0kk33m/P4YMt8sk2SSzHImeT0fjzzI\nnDOfcy5aA+G8c12fIs/n+3wZ3+Fn+U6nsgoKlOVlVFjnylFhlZ0sVUaFRTIqDACA4OjWTXruOWna\nNGnuXOmllySXDw8tN22SRo6ULr7YHagMHx74WgG0eDbDpvTO6UrvnO7pVqm6t0pzulVKnaX6cNeH\n+nDXh5qyagrdKkCYs3SQMmfOHElSRkaGcnJylJeXp/Xr12vEiBFKTk5Wenq6UlJSlJCQoMjIyEZd\ne+bMmYEo2VJiYmLUrVs37d2713Pshx9+aFSQ8sMPP1R7feaZZ/qtPgBA89UXpIxNTtaTqamSpFtz\ncvRyXl6jr9GQCJtNZ8TE6IyYGI2qcc7hdLpHhVXpYKnsajnuy0+g+tmBsjIdKCvTmhqjwiIMQ2dE\nR1fvZDn5+amMCgMAIDB69nR3pdxzjzsYWbxY8qXLdf16acQIaehQ97pLLgl4qQBaj45tO2rMgDEa\nM2BMrW6VL378Qqaa3o1PtwoQ3gzTDPI8jkaw2Wy1/hCpWm5z/oBxhmDWe2N88sknGjZsmOd19+7d\nlZub2+jrjBw5UqtWrfK8zszM1Lhx43xen5KSUu2+Gzdu1Pnnn9/oOqwiOztb/fv397zetm2b+vXr\nF8KKAKDpTNNU2qZN2l5jP6t2drv+t3dvXVsjOH8tL09/2bFD+TX+DuwTE6Pvzj8/aN+4m6apw+Xl\ntTpYthcVaWdxscos9K1JvN1eq4OlMmSJZ1QYAAD+8+237s3llyxp3Lpf/codqAwaFJi6AOAkf3ar\n1JSSmKLRqaM1qtcoDUsZpraRbf12bSCcWelZbtgFKc1VuUdIawlSpk2bpocfftjz+uabb9azzz7r\n09qffvpJnTt39ryOjIzU0aNHw2KflMzMTGVmZtY67nA4lJWV5XlNkAIg3DmcTt27e7ee2L9fpqTB\n7drplbQ0dY+O9vr+3OJi3fDdd1qfny9D0uQuXfRASopi7fag1l0Xp2lqb0lJ9VFhJztZfgjBqLD6\nnBYVVa2DpXLT+xRGhQEA0HT//a80a5b09tuNWzd6tDtQOffcgJQFAFW5TJc2H9js3rB+5wpt/HFj\ns7pVqqrarTI6dbRSO6TSrYJWiyDFR7YAPYRoTUHKunXrdEmVVueePXtq586dPv0BvGjRIo0fP97z\n+tJLL63W3WJls2bN0uzZsxt8H0EKgJZi3fHj2pCfrylduiiigb8/K1wuPfbjj7ooIaHWnidWVlR1\nVNjJXyvDlmMhGBVWlwjDUM+ao8JOhiynMSoMAADffPWVdP/90vvvN27d737n7mw5++zA1AUAXgSy\nW6Vn+56eEWB0q6C1IUjx0dq1awN27YyMjIBd2x/8FaS4XC4lJyfr8OHDnmMff/xxtWvXZciQIfrs\ns888r59++mlNnDix0TWEAh0pANB6mKapI1VHhVXZl2VncbFKLfStTlzVUWFVxoT1bttWCYwKAwCg\nto0b3YFKY3+o7w9/cHe28O89AEEWjG6V0b1Ga1TqKLpV0OIRpKBB/gpSJOnOO+/UggULPK8zMjK0\nZs2aev+g/eijj/TLX/7S8zo+Pl67d+9WUlJSk2qwCit98QEAAs9pmtpXUuLpYKk5KsxK3wSdWnVU\nWJV9WVKioxXFqDAAQGu3bp00c6a0Zo3vawxDGjPGva5Pn8DVBgD1qOxWWb5zuVbtXEW3CtAIVnqW\nS5BiUf4MUg4fPqyUlBQVFhZ6js2fP1/Tpk3z+v79+/dr8ODB1e43Y8YMzZ07t0n3txIrffEBAEKr\nuHJUmJdN749aaFSYXVJKTEy1DpbKfVk6MyoMANDarFkj3XeftH6972tsNumPf3SvO+OMwNUGAA2o\n2q2yPGe5Nu3f5NdulaE9hrqDFbpV0EJY6VkuQUqIrV+/XsXFxbWOb926VVOnTvW8Tk5O1iuvvOL1\nGp07d1bfvn3rvc/8+fM1ffr0asduueUWzZgxw7OhvMvl0nvvvafJkyfrhx9+qHb97OxsJYbRHP26\nWOmLDwBgXUfKy2t1sGwvLlZOUZGlRoXF2my1wpXKbpZ2jAoDALRUpimtXu3uNNm40fd1drv0pz9J\nM2ZI3bsHrj4A8NHhosPV9lY5XHS44UU+6tm+p2cE2NAeQ+lWQViy0rNcgpQQ69Gjh/bu3dusa4wb\nN87rfiBVuVwu/e53v9P7NTbqs9vt6t69u9q1a6c9e/bo+PHj1c7HxMRo9erVuvjii5tVo1VY6YsP\nABB+XKapfaWltTpYdhQXa29JiaVGhSVHRnrGg1Xdl6VnTAyjwgAALYNpSsuXuwOVr77yfV1kpHTT\nTdL06VKXLoGrDwAaobJbZXnOcq3YucKv3SrREdHK6J6hUb1GaXTqaKV2TPXLdYFAs9Kz3BYRpBQW\nFqqgoEDx8fGKi4sLdTmNEqwgRZJKSkr0pz/9Sf/5z398um7Hjh21dOlSDR06tFn1WYmVvvgAAC1L\nsdOpXVVHhVXZl+WIhUaF2SSlREdX62CpDFtOb9OG9n8AQPgxTendd92b0v/3v76va9NG+p//kaZN\nk047LXD1AUATBLJb5Yz2Z3hGgNGtAiuz0rPcsAtSCgoKtHjxYn366af64osvtG/fPjmdTs95u92u\nbt26adCgQcrIyNCYMWMsHa4EM0ip9Oabb+qBBx7Qli1bvJ6PjY3VuHHjdP/99+uUU05pVm1WY6Uv\nPgBA63GkvFw5J8eDVe1kySkuVonLFeryPNpWGRVW2cFS+ToxMjLU5QEAUD+XS3rzTXeg8t13vq+L\niZEmTpTuvlvq1Clw9QFAE7lMl7IOZGlFzoqAdKt49lbpNYpuFViKlZ7lhk2QUlRUpBkzZuj555+X\nw+GQJNVXeuVPU8bFxWnChAmaO3euYmJiglJruNi5c6c2btyo/fv3q6ysTImJiUpLS9PFF1+s6Ojo\nUJcXEFb64gMAwGWa+rFyVFiVDpYdxcXKtdiosFMqR4XV2PS+Z0yM2jAqDABgJU6n9Prr0qxZUk6O\n7+tiY6Xbb5fuuEPq2DFg5QFAcx0uOqxVO1dpxc4VWrVrFd0qaLGs9Cw3LIKUrVu36qqrrtKuXbs8\n4YkvYyeqvrdXr15asmSJzj777IDWCmvIzMz02qXjcDiUlZXleU2QAgCwqhKnU7tKSrxuen+4vDzU\n5XnYJPWoHBVW2clSZVSYjVFhAIBQqaiQXn1VmjNH2r3b93Xx8dKUKe6PxMTA1QcAfuB0ObX5p81a\nkbNCy3cu15f7v6RbBS0GQUojbN++XYMHD9aRI0ckuUORqiXHx8erY8eOio2NlcPh0JEjR1RQUOA5\nX/X9SUlJWr9+vVJT+aJv6WbNmqXZs2c3+D6CFABAODpaXq6cyr1YaowKK7bQqLAYm80Trnj2Yjn5\neXtGhQEAgqW8XFq0SJo7V/rhB9/XJSa6u1Nuv11KSAhcfQDgR4cchzx7qwSiW2V06miN6uXuVomJ\nZPoPAosgxUfl5eXq37+/cnJyPB0opmlq0KBBuvHGGzVixAilpKTUWrdnzx59/PHHevHFF7Vhw4Zq\na/v06aNvvvlGERERQf29ILjoSAEAtEYu09T+mqPCTv6aW1Ii60QsUqfIyFodLL3btlUvRoUBAAKl\ntFR68UVp3jxp/37f13XoIN11l3Trre7xXwAQJpwup3tvlZ3uvVUC1a0yOnW0enXo5ZfrAlURpPho\n4cKF+tvf/ubpKklISNBzzz2nq6++2udrLF26VBMmTFB+fr5M05RhGHrsscc0efLkAFYOq7LSFx8A\nAMFU6nJpV43N7ivDloMWGxXWPTq6VgdLn7Zt1YVRYQAAfygpkZ59Vpo/X8rL831dp07StGnSLbe4\nN6gHgDBTtVtl5c6VOlJ8xG/X7tWhl2cEGN0q8BcrPcu1dJDSu3dvz74obdu21aeffqpzzjmn0dfZ\nsmWLBg8erOLiYpmmqV69emnHjh0BqBhWZ6UvPgAArOLYyVFhVTtYKkOWIouNCkutOSrs5OsOjAoD\nADRWUZH0z39KDz8sHW7E6JtTT5WmT5cmTJCiowNXHwAEUDC6VUb3Gq1RqaPoVkGTWelZrmWDlJyc\nHPXp08czluvvf/+77rjjjiZfb8GCBbrrrrskufdN+f7779krpRWy0hcfAABW5zJNHSgtrdbBUrkv\nyx6LjQpLqjoqrErY0ismRtF2e6jLC7ij5eW65ttvqx17vW9fAiYA8EVBgfTUU9Ijj0jHjvm+rksX\n6d57pRtvlKKiAlcfAARBZbfK8p3LtWrnKrpVYAlWepZr2SBlyZIluvbaayVJUVFR+vnnn5WYmNjk\n6x0/flzJyckqLy+XYRj6z3/+o6uuuspf5SJMWOmLDwCAcFZWOSqsspOlShdLnoVGhRmqMSqsyr4s\nXVvQqLB/7t+vSTk51Y+lpuqW008PUUUAEIZOnJD+8Q/p0Uel/Hzf13XvLt13nzR2rESADaAFqNqt\nsjxnubIOZPm1W2VYj2HuYIVuFTTASs9yLbvj+sGDByW5u0dSUlKaFaJIUmJionr27Knt27dLkvIa\nMwcVAAAA1UTZbEqLjVWal013j1eOCqvSwVIZsjiCPCrMlJRbUqLckhJ9WOOnjKNtNvWKianWwVK5\nL0vHMHsQlvnzz16PEaQAQCO0ayfNnCnddpv02GPSwoVSYWHD6/bulW66yb3nysyZ0vXXS62gGxJA\ny2W32XVBlwt0QZcLNGvoLB1yHNKqXau0YueKZnerlFSUeMaJaaW7W6VyBFhG9wy6VWBZlg1SCqt8\ns5KQkOCXa8bHx3s+dzgcfrkmAAAAqkuMjNR5kZE6r8b3cKZp6kBZWa0Olu3FxdpTXCxnkOsscbm0\nzeHQNi/fF3aIiKjVwVI5KizGYg/Hsh0OfVlQUOv4poICfetwqK+XsAsAUI/27aW5c6XJk6UFC6Qn\nn3Tvp9KQXbukceOkBx+UZs2Srr5astkCXi4ABFqn2E664awbdMNZN3i6VZbnLNeKnSua3a2y8+hO\nPbHpCT2x6QnFRMRoaI+hdKvAkiwbpCQlJUly/4N7//79frnmgQMHPJ937NjRL9cEAACAbwzD0Olt\n2uj0Nm00rH37aufKXC7trjoqrMqm9z+XlQW91qMVFdqQn68NNUa7GJK6tWlTLVyp3Jela3S07CEY\nFbbISzdK1XMPn3FGEKsBgBYkKUl66CFpyhT3hvTPPCOVlDS8bvt2acwY6YEHpNmzpSuvJFAB0GJU\n7VaZPWx2tW6VlTtX6mjx0SZfu7iiuFq3SmqHVE+oQrcKQs2ye6QsX75cv/3tbyW5/9G9devWavPQ\nGis7O1sDBgzwXG/ZsmUaPXq0X2pF+LDSXD0AAOCbExUVyqm62X2VkKXQGew+lrq1MQz3qLCT48Gq\n7svSMTJSRgBClgqXS12/+KLOsOm0qCj9MGiQIniABwDNd+CAe3zXc89JjQn5Bw50ByqXXSa1kL25\nAMAbp8upLw98qRU5K/zSrVJVTESMhqUM82xaf0YHflioNbDSs1zLBiknTpxQp06d5Dz5j+Mrr7xS\nS5cubfL1rrrqKr355puSpMjISB06dMhvI8NgPZmZmcrMzKx13OFwKCsry/OaIAUAgPBlmqZ+qhwV\nViVc2V5UpN0hGBVWn/Y1R4Wd/LVXTIza1jMqzDRNHS4vr/P8muPHdc2339Z77yV9+2poPfsNJgUo\n5AGAFmvfPmnePOmFF6SKCt/XpadLc+ZII0cSqABoFQ46DmrVzpN7q+xa1axulZroVmkdCFJ8NGLE\nCK1Zs0aSu4vk/vvv18yZMxt9nXnz5um+++7z/ANx+PDhWr16tV9rhbXMmjVLs2fPbvB9BCkAALRM\n5S6X9pSUeDpYqm56/1MIRoXVp3JUWNUOlj5t26pbdLS+KSzULzZvDuj9t6Sn6+y4uIDeAwBapNxc\n914qixZJjemQvPBCd6AyYgSBCoBWo2q3yvKdy5V1IKvhRT6iW6XlIkjx0aeffqqhQ4fKMAyZpinD\nMHTZZZfp0Ucf1Rk+zHrevXu3pk6dqnfffVeSPNf45JNPdMkllwS6fIQQHSkAAKAu+RUVyqnci6XG\npvdWGhUWZRhKsNt1uDE/7dwEM7t31+yUlIDeAwBatJwcd6Dy6quSy+X7uiFD3OuGDAlcbQBgUYHs\nVundsbcnVMnokaHoiGi/XRvBRZDSCGPHjtUrr7xSLUwxDEODBw/W8OHDddZZZykpKUmxsbFyOBw6\ncuSItm7dqo8//ljr1q2TaZqedZJ0ww03aNGiRSH+XSFUrPTFBwAArMU0Tf1cVlarg2V7UZF2l5So\nwtrfNjdZ/9hYfXPeeaEuAwDC33ffufdCWbJEaszfGSNGuAOVCy8MXG0AYGFOl1Ob9m/ybDQfqG6V\n0amj1bN9T79dG4FnpWe5lg9SysvLNXr0aH300UeeMKRqMFKfqu8zTVO/+tWv9MEHHygiIiKgNcO6\nrPTFBwAAwke5y6XcKqPCqu7LcsBio8IayybpiV69lBwVpbZ2u9rabNV+janyOpJN6wHLOFpeXmuP\npNf79lWHyMgQVQSPb76RZs2S3nqrcetGjnSP/CLcBtDK0a2CSlZ6lmv5IEWSysrKdM8992jhwoW1\nwpG6VH2PzWbTlClTNG/ePEVFRQWlZliTlb74AABAy1BQdVRYjU3vCyw0KswfIgxDbW22auFKXaFL\nreNezsV4eS+BDeCbf+7fr0k5OdWPpabqltNPD1FFqOXrr6X775eWLWvcussucwcqAwcGpi4ACCPB\n6FYZ3Wu0RqWOCni3ist06UjRkYDew5uObTvKZoTn99dWepYbFkFKpaysLD322GN66623VObDT/5F\nRUXpD3/4g6ZMmaJzzz03CBXC6qz0xQcAAFo20zSVV3VUWJV9WXa14FFh/mCXAhrUVF4n8uTYYCAc\nnb95s74sKKh+LD5eG/m3r/V8+aU0c6a0cmXj1v3+9+5RYVX+DQsArV1eYZ5W7XJ3q3y468OAdKuM\nTh2tId2H+L1b5ZDjkE5ZcIpfr+mLg1MPqlNsp6Df1x+s9Cw3rIKUSidOnNCGDRu0ceNG7d27V8eO\nHVNhYaHi4uLUvn17de/eXYMGDdKgQYPUrl27UJcLC7HSFx8AAGi9KipHhdXoYNlRVKT9YT4qLJzU\nDGz8HdS0JbBBgGQ7HOr/5Zfez513nvrGxga5Ivjk88/dgcpHH/m+xjCka65xd7aceWbgagOAMFS1\nW2V5znJt/mmz367dNrKthvVw763ir24VgpTGs9Kz3LAMUoCmstIXHwAAgDeFlaPCqnSwVAYt+S1s\nVFhrURnYeAtq/DkmLYrAptW4a9cuPbJvn/dzXbvq4TPOCHJFaJS1a6X77pM++8z3NTabdP317iCm\nV6/A1QYAYaxqt8qqnat0rOSY367du2NvzwiwpnarEKQ0npWe5Vo2SHE6nXI4HJ7XMTEximTTPDST\nlb74AAAAGsM0TR0sL9fMPXv03E8/hbocWJBNtUeiBWI/GwKb0KpwudT1iy/0cx3da6dFRemHQYMU\nwV5D1maa7s6U++6TvvjC93V2uzRunHtdjx4BKw8Awl1lt8rynOVasXOFJbpVCFIaz0rPciNCclcf\nLFq0SBMmTPC8Xr16tYYPHx7CigAAAIDQMQxDyVFRdT489UXnqCj9Ii5OxS6XilwuFTmd1X4tdjpV\nas2fs4IPXJIKnU4VOp1SeXnA7lM1sAlEUNPaAxvTNHW4nv//1hw/Xu+fAz+Vlentw4c1NDGxzvck\nRUa2yv9tLcUwpF/+Uhoxwr13ysyZUpYPGyg7ndKLL0ovvST9+c/SvfdKXbsGvl4ACDN2m10Xdr1Q\nF3a9UHOHz/V0qyzPWa4Pd33YrG6VovIifZDzgT7I+UBaIfXp2McTqgRibxVYg2WDlLy8PFU2yyQm\nJhKiAAAAoNUzTVMb8vObvL7CNLVswIB6H6A6TVPFNQOWOkIXr2GMl2NFTmet4wQ24ataYBNAhtSs\nvWl8DXXa2GyWChW2FhbqF5ub91OzV3/7bb3nt6Sn6+y4uGbdA35iGNKoUdLIkdKyZe5AZevWhtdV\nVEjPPiv9+9/SzTdL06dLp50W+HoBIEwlxyVr7NljNfbssapwVbj3VslZ4Zdule1Htmv7ke1auHGh\n2ka21fCU4e5gpdcopbRP8dPvAKFm2SAl7uQ3dYZhqHv37iGuBgAAAAi93SUlOtSMToOD5eXaU1Ki\nnjExdb7HbhiKi4hQoB+xVgY29XXHNCeoqXxvicsV4N8JAsWU5HC55Ajw/4c1Axt/BzWVx3wNbN46\nfDigv19JeuvQIYIUqzEM6fLLpd/+Vnr7bffm8tnZDa8rK5Oeekp6/nnpllukadOkU4I/NgYAwkmE\nLUIXdb1IF3W9yNOtsnLnSq3YucIv3Srv73hf7+94X9L/61YZnTpaaUlp/votIAQsG6Scxk9SoBky\nMzOVmZlZ63jVfXcAAADCzYYTJ5p/jfz8eoOUYAlmYFPiQ+hS1MxQh8AmfAU7sGkoqFlx9GhA65Dc\nYc3sFH5C1pJsNun/+/+kK66QliyRZs2SduxoeF1JifT44+4uldtuk6ZOlZKSAl4uALQEyXHJGjdw\nnMYNHFetW2X5zuX66qevmnXtqt0qMRGh/x4cTWfZICUtzZ3Qmaapffv2hbgahJvc3FytXbs21GUA\nAAD4VUNjvXpGR8uUtKekpO5rnDih65OT/VyZddkNQ7F2u2Lt9oDex2WanmDFH0FNXe8lsAlfwQps\nfJHtcOiOnTuVHBWlOLvd8xFb5XPPsZMBj81C489aBbtdGjNGuuoqafFiafZsaffuhtcVFUkPPyw9\n/bT0179Kf/ub1L594OsFgBaiZrfKz4U/a9XOVX7pVimuKPZjpQg2wzStO5x4wIABys7OlmEY+vzz\nz3XBBReEuiSEifo6UrKqbOC3bds29evXL4iVAQAANN05WVn6urDQ67mxycl6MjVVknRrTo5ezsvz\nfo24OG1OTw9YjQgsl5cOm8aOPPMl1Cm2wMN+WEuszdZg6FJnGFPHe6MMw1L701haebl7g/m5c6W9\ne31f166dO0yZPNn9OQCgySpcFdr440at2OneW6W53SrBcnDqQXWK7RTqMpokOztb/fv397wO5bNc\nSwcpTz75pCZPnizDMPSrX/1KK1euDHVJCHNW+uIDAABoDNM0lbZpk7YXV/9JtnZ2u/63d29dW6PL\n5LW8PP1lxw7l19gQvE9MjL47/3weXqJeNQObxu5N05j3ovWyS80OY2oej7XZFGGzhfq3FjhlZdKL\nL0oPPCDt3+/7uvbtpTvvdI/9Yn+csHW0vFzXfPtttWOv9+2rDpGRIaoIaN0qu1WW71yuD3d9qOMl\nx0NdklcEKf5h6SDF6XRq6NChWr9+vQzD0JQpU7RgwYJQl4UwZqUvPgAAgMZyOJ26d/duPbF/v0xJ\ng9u10ytpaeoeHe31/bnFxbrhu++0Pj9fhqTJXbrogZSUgI+5AnxlVgY2TdybpjHdN2g9om22Wh00\nje2iqXm8rc1mrQC6pET617+kBx+Ufv7Z93VJSdLdd0sTJ0pt2wauPgTEP/fv16ScnOrHUlN1y+mn\nh6giAJWs3K1CkOIflg5SJOn48eO6/PLLtW7dOhmGoYsvvlhz5szR0KFDQ10awpCVvvgAAACaat3x\n49qQn68pXbo0+JPXFS6XHvvxR12UkKDBiYlBqhCwlpqBjT/2sakr1EHLZEju/Za8BDTN6aJp9niz\n4mLpmWekhx6SDh3yfd2pp0r33CPdfLNURxgP6zl/82Z9WVBQ/Vh8vDaee26IKmjYn2gAACAASURB\nVAJQl58Lf9bKnSs9e6uEsluFIMU/LB2kzJkzR5JUXl6u559/Xnl5eZ5vMJKTk5Wenq6UlBQlJCQo\nspFtjDNnzvR7vbA+K33xAQAAAGhZKgMbfwc1+0pLdai8PNS/PQRAhGFUG0vW5C6a0lLFvfSSYh9/\nXLEHDijC11Dv9NOle++VbrxRatMmsL9ZNEu2w6H+X37p/dx556lvbGyQKwLgq8pulaXfLtXCjQuD\nfn+CFP+wdJBi89I6W7Xc5vzUhrPGrGi0Dlb64gMAAAAAX/zum2/03pEjTVqb1ratrkxKUqHTWevD\n4eUY/1JuGaJLSxVXXKy44mLFlpR4Pq/6Ue14TIziRo5UbEaG4qKivAY3lhtv1srctWuXHtm3z/u5\nrl318BlnBLkiAI11yHFIpyw4Jej3JUjxj4iQ3LUZmvuXtmma/MUPAAAAAAgLpmlqQ35+k9cfKS/X\nAykpPv072DRNlZmmz6FLXcdrHnMw8izoStq0UUmbNjrc2JGO339f56nK8WbVAhY/7EUT1cCISrjH\ndL6cl1fn+Zfz8jQvJaXBcZ8AgKazfJBi4YYZAAAAAAACandJSbPGeh0sL9eekhL1jIlp8L2GYaiN\nYaiNzaaOjRyfXR+XaaroZKDSnICm5vFSnhcElSl5/rf3p6rjzeoLaBoT0sTa7bKH0Q/Rmqapw/V8\nna85flw/l5XVef6nsjK9ffiwhtYTnCVFRvKDxQDQDJYOUtasWRPqEgAAAAAACJkNJ040/xr5+T4F\nKYFiMwzFRUQoTlKyH69b7nLJUUdA42u3jLfjjDcLrgrT1PGKCh2vqPDrdaPrCmMaEdLUPBYToPFm\nWwsL9YvNm5t1jau//bbe81vS03V2XFyz7gEArZmlg5SMjIxQlwAAAAAAQMg0NNarZ3S0TEl7Skrq\nvsaJE7o+2Z8RhjVE2mxKtNnUyOFV9TJNU6Ung5nGBDQNBTeMNwu+EpdLJS5XvZ0ejWVI9XfGNHHU\n2VuHD/utxrq8degQQQoANIOlgxQAAAAAAFqz+oKUscnJejI1VZJ0a05OnXsoNGePldbGMAxF2+2K\nttuV5MfrVo43q7pvjD/GnDHeLLhMSQVOpwr8PN4sGN46fFizU1JCXQYAhC3LBilOp1MOh8PzOiYm\nRpF+nNEKAAAAAICVmScfvtfUzm7X//burWurdJm8lJamUR066C87dii/xhqH0ynTNNkfIYQ8480i\n/PsYpnK8WX0BTb3dMg6HCg8cUGFRkQqjo1UYE6PCmBi57Ha/1onQy3Y4dNk336hTZKQS7HYlRER4\nfo2v8brq8Sg2sAcASRYOUhYtWqQJEyZ4Xq9evVrDhw8PYUUAAAAAAASPYRjanJ6ue3fv1hP798uU\nNLhdO72Slqbu0dG13j8mOVkXJiTohu++0/r8fBmSJnfpogdSUghRWijPeLPm/uDprl3S3LnSyy/L\ndLlUGhnpCVUqPxw1XhdGR8tx5pkqHD5chZ07NxjcFDHeLKRMSe8fOdLodW0Mw+fQpb6AJtZul40/\nhwCEMcsGKXl5eTJPtqgmJiYSogAAAAAAWp1Yu10LU1P1h06dtCE/X1O6dFFEPT8h3iMmRp8MHKjH\nfvxRFyUkaHCiP3cQQYt1xhlSZqZ0zz0yZs9W9H/+o+j8fCX5MhZu7lxp+HBpzhzp4ovrfFvN8Wb+\nGnNWxnizgCo1TR0qL9ehZu41Y0ieYKWh0KWhgIYuGQChYNkgJe7kBliGYah79+4hrgbhJjMzU5mZ\nmbWOVx0XBwAAAADhYnBios+hSITNpru6dQtwRWiR+vSRFi+W7r1XmjVLWrrUt3Uff+z++PWv3YHK\n+efXekuwxps1ecxZjQ/6Z/zLlJTvdNYaPdgUUTW6ZHztiql5PI4uGQCNYNkg5bTTTgt1CQhjubm5\nWrt2bajLAAAAAAAg/PTrJ73xhrRliztQefdd39atWuX++O1vpdmzpXPOCWiZkh/Hm1VhmqZK6gho\nmtNFw3gz/ygzTR0uL9fhZnbJSKoWvjR1bFlCRITa0CUDtHiWDVLS0tIkuf/y2rdvX4irQbjp0aOH\nMjIyah13OBzKysoKQUUAAAAAAISZgQOld96RsrKk+++Xli/3bd3777s/rrzSHcScdVZAy/Q3wzAU\nY7crxm5Xkh+v6zw53syXgGbV0aNac/y4H+8ObwqcThU4ndpfVtas61R2yTR3bBldMoB1GaZp3WGS\nAwYMUHZ2tgzD0Oeff64LLrgg1CUhzGVnZ6t///6e19u2bVO/fv1CWBEAAAAAAGFiwwZ3oLJ6dePW\nXX21e13fvoGpqwX63Tff6L0mbA4vSRclJOiOrl2VX1Gh/JNBQeXnVX+tebzUuo8IW5W4usKYRgY0\nbWw2GYQylnLIcUinLDgl6Pc9OPWgOsV2Cvp9/cFKz3It25EiSTfffLMmT54sSbr//vu1cuXKEFcE\nAAAAAADQSl14ofThh9Knn0ozZ0q+jtRessQ9Kuy669yBSmpqYOsMc6ZpakN+fpPX7ywu1pVJSY1+\niF7mcvkcujQU0BDJNF1lV9KBZnbJRBqGX8aWxdntshPIANYOUiZOnKglS5Zo/fr1Wr16taZOnaoF\nCxaEuiwAAAAAAIDWa8gQac0a98d990mff97wGtOUXn1V+s9/pD/+0b2uZ8/A1xqGdpeU6FAz9v84\nWF6uPSUl6hkT06h1UTabOtps6tjM/WZcJ0eY+Rq61BfQlLCvTJOVm6aOVFToSEVFs68VZ7c3e2xZ\nvN2uaLpkEMYsHaTY7XYtW7ZMl19+udatW6fHH39cmzZt0pw5czR06NBQlwcAAAAAANA6GYY0fLg0\nbJi7S+W++6Qvv2x4ndMpZWZKr7wi/elP0owZUrduAS83nGw4caL518jPb3SQ4i82w1BcRITiIiLU\nuU2bZl2rapdMY7tiah6nS6bpKrtkfmrmdSKqdMk0dmxZ1WPxERFh2SXTsW1HHZx6UKZp6khF3WHp\n+hMnNGH7jnqv9Xyf3rqoXbu67xUR6QmtOrbt2LSCUY2lg5Q5c+ZIkjIyMpSTk6O8vDytX79eI0aM\nUHJystLT05WSkqKEhARFNjItnzlzZiBKBgAAAAAAaD0MQ/r1r6VLL5U++MA98uvrrxteV1Eh/etf\n7lBlwgRp+nTp9NMDXm44aGisV8/oaJmS9pSU1H2NEyd0fXKynysLPn91yZimKUdl8OJD6OI57uVY\nMV0yTVZhmjpaUaGjfuiSibXZfApdGgpogtklYzNs6hTbSVsKCvSLLd/W/+aoxHpP37TnoKSDdZ7f\nkp6us2PjmlAl6mLpzeZtXv5Drlpuc/4jdzqdTV6L8GWlDYoAAAAAAGhxTFN65x13oLJtm+/r2rSR\nbrlFuvtu6dRTA1dfGDgnK0tfFxZ6PTc2OVlPntxj5tacHL2cl+f9GnFx2pyeHrAaW7NyL3vJNDWg\nIZIJPbvkc+hSX0ATb7crwmbz6Z4z9+zR3L17A/r7mtm9u2anpAT0HsFgpWe5lu5I8aa5CaFpmszi\nAwAAAAAACATDkK68Uvrd76SlS92by3//fcPrSkulhQulZ5+Vbr1VuusuKSkp8PVajHlyf5Ga2tnt\n+t/evXVtlS6Tl9LSNKpDB/1lxw7l11jjcDp5BhYgkTabOths6uCHLpkil6tJXTE130uXTNM5JR2r\nqNCxigr3n0PN0PZkl0xDocvzPzV3SFrD3jp8uEUEKVZi+Y6UQDAMg46UVspKKSYAAAAAAC2e0ym9\n9po0e7a0c6fv6+LipNtvl+64Q+rQIXD1WZDD6dS9u3frif37ZUoa3K6dXklLU/foaK/vzy0u1g3f\nfaf1+fkyJE3u0kUPpKQo1m4Pat0InYrKLplmji3Lr6gQT0xbBrukAxddpFOiokJdSrNY6VmupYOU\ntWvXBuzaGRkZAbs2rMtKX3wAAAAAALQaFRXSyy9Lc+ZIubm+r0tIkKZMcX/Us7FyS7Tu+HFtyM/X\nlC5dGhwZVOFy6bEff9RFCQkanFj/3gpAXUzTVPHJLpn6Qpd8p1MFDQQ0RXTJhExKdLQWp6VpUAv4\nM9NKz3ItHaQA/malLz4AAAAAAFqdsjL3BvMPPCDt2+f7usREaepUd5dKfHzAygPgH1W7ZBoKXRoK\naOiS8d0fk5P1VGqqEiLCbkcPr6z0LLdl/C8KAAAAAAAA64uKkm6+WRo3Tnr+eWnePMmX/QKOH5dm\nzJAef9y9f8qkSVJsbODrBdAkETab2ttsau+HvWRKXK4mdcXUfK+jBXfJtLPb9Uzv3hpTZR8l+BdB\nCgAAAAAAAIKrTRt3GHLjje4N5ufPlw4ebHjdkSPS3XdLjz4q3XOP9D//I8XEBL5eACFhGIZi7HbF\n2O1KbuZ+HxUulwqrBC1NHVuW73SqwkJDni5MSNBrffvWuY8S/IMgBQAAAAAAAKEREyP99a/ShAnS\n009Lf/+7OyxpyMGD7n1THnlEmj5duukmdzgDAHWIsNmUaLMp0Y9dMs0dW+aPLpnfJSURogQBQQoA\nAAAAAABCKzbWPbLrllukJ56QFixwj/NqyIED0q23Sg8/7B79NX68e3wYAASIP7tknKapQqdTV2Vn\na/WxY026xoYTJ5pVA3xjC3UBTXX06FGtX79ey5Yt0yuvvKKXXnpJeXl5oS4LAAAAAAAATRUfL917\nr5SbK91/v5SQ4Nu6ffvcY7769JH+/W+poiKgZQKAP9gNQwl2u7YUFjb5Ghvy82VaaNRYSxVWHSkH\nDx7UU089pTfffFPff/99rfOrV69WspcNdf79739r3759kqTOnTvrpptuCnitCK3MzExlZmbWOu5w\nOIJfDAAAAAAAaJx27aRZs6Tbb3fvh/KPf0i+/Js+N9e978qDD7qDmDFjJLs90NUCQJPtLinRofLy\nJq8/WF6uPSUl6sl+UQEVNkHKI488opkzZ6qsrMxrwmYYRp1rCwsLNWvWLBmGIbvdrssuu8xr4IKW\nIzc3V2vXrg11GQAAAAAAoDk6dJDmzXPvo/LII9JTT0nFxQ2v27lT+uMf3YHKrFnSH/4g2cJ2MAuA\nFswfo7k25OcTpASY5f8GcTqd+v3vf69p06aptLS01vn6ApRKf/7zn5WQkCDTNOV0OrV48eJAlAoL\n6dGjhzIyMmp9pKenh7o0AAAAAADQWJ06uTei371bmjzZ943lv/tOuuYaaeBA6e23JcbfALCYDfn5\n9Z7vGR2tlAY2k2eflMCzfJAyadIkvfPOOzJNU4ZhyDRN/eIXv9Ddd9+tp59+2qf5b23bttVll13m\neb18+fJAlgwLGD9+vD755JNaH97GfQEAAAAAgDBx6qnSwoXSrl3SxIlSZKRv6775Rvr976Vzz5Xe\nf59ABYBl1BekjE1O1tfp6dqSnq4/1jNhqaEwBs1n6SBl3bp1eu6552QYhgzDUFJSkj744ANt3rxZ\n8+fP1y233CLJt66UK664QpJkmqbWr1+vsrKygNYOAAAAAACAADn9dOnpp90jvCZMkCJ8nF7/9dfS\nZZdJgwZJq1YRqAAIKdM0VeR01jrezm7Xa2lpWpSWpoSICCVEROiltDQtTktTgpd9nxxOJxvOB5il\ng5SZM2dKcv8HFR8fr7Vr12rUqFFNutYFF1zg+by0tFTbt2/3S40AAAAAAAAIkW7dpOeek7Zvl8aP\n930flE2bpJEjpUsukT7+OKAlAkBdDMPQ5vR0TT79dFW2Cgxu105bzztP13rpQBmTnKyt6em6OCHB\nvV7SX7t00eb0dJ+aDdB0lg1Sjh07ps8++8zTjTJjxgydeeaZTb5ely5d1L59e8/r77//3h9lAgAA\nAAAAINR69pT+/W/3nijXXy/5+kBx/XppxAhp2DDps88CWyMAeBFrt2thaqo+HThQf+/ZU2vOPlvd\n69kTpUdMjD4ZOFAP9+ypTwcO1OO9einWS5cK/MuyQcq6devkPNmSZLPZdNNNNzX7mqeccorn84MH\nDzb7egAAAAAAALCQ3r2lV16Rtm2Trr7a93WffCINGSJdeqn0xRcBKw8A6jI4MVF3duumCB866yJs\nNt3VrZsGJyYGoTJIFg5SDhw4IMnd3tSzZ08l+uE/inbt2nk+LygoaPb1AAAAAAAAYEF9+0qvvy5t\n3SpdeaXv61avli68UPrNb6TNmwNXHwAgrFg2SDl69Kjn8w4dOvjlmqWlpZ7PIyMj/XJNAAAAAAAA\nWNRZZ0lvveUORX77W9/XLV8upadLV1zhDmMAAK2aZYOUQHSPVB3nlZSU5JdrAgAAAAAAwOLOOUda\ntsw9tuvXv/Z93bvvSgMHSlddJWVnB64+AIClWTZI6dSpkyTJNE3t3btXLperWdfbt2+ffvrpJ8/r\nzp07N+t6AAAAAAAACDMXXCCtXOneWH7YMN/XLV0qDRjg3sh++/bA1QcAsCTLBilnn3225/OioiKt\nX7++Wdd74403PJ/b7XYNGjSoWdcDAAAAAABAmBo8WPr4Y/fHxRf7tsY0pcWL3fuvjB8v7doV0BIB\nANZh2SCld+/eSklJkWEYkqTHHnusydfKz8/X448/LsMwZBiGzjvvPMXHx/urVAAAAAAAAISjYcPc\n3SmrVrm7VXzhckmLFkl9+kgTJkh79wa2RgBAyFk2SJGksWPHyjRNmaap9957T4sWLWr0NZxOp8aO\nHav9+/fLNE1J0sSJE/1dKgAAAAAAAMKRYUiXXipt2CC9/757PxVfOJ3S889LqanSxInSjz8Gtk4A\nQMhYOkiZOnWqTjnlFBmGIdM0ddNNN+mRRx6R0+n0af3333+v4cOHa9myZZ5ulN69e+u6664LcOUA\nAAAAAAAIK4Yh/eY3UlaW9Pbb0lln+bauvFx65hmpVy9p8mSpyh69AICWwdJBSmxsrJ5//nnZbDYZ\nhiGn06lp06apV69emj59ut58801J8nSabN68WUuXLtVDDz2kSy+9VP3799e6des8XS3R0dFavHix\nZ1wYAAAAAAAAUI1hSFdcIX39tbRkiZSW5tu60lLpiSekM86Qpk6VDh0KbJ0AgKAxzMoUwsKee+45\nTZw40ROISPKEIVXLrxmQmKbp6WaJjIzUyy+/rKuvvjp4hcNysrOz1b9/f8/rbdu2qV+/fiGsCAAA\nAAAAWJrTKb3+ujRrlpST4/u62FjpttvcoUrHjv6pxTSlggKprEyKipLi493BDwC0QFZ6lmvpjpRK\nN998s1atWqXk5GRJ1UOUypFdlYFJzbDFNE0lJyfro48+IkQBAAAAAABA49jt0nXXSd9+K2VmSj17\n+rbO4ZAeekhKSZFmzpSOH2/a/b/5Rpo+XfrlL92BTLt2UqdO7l87dnQfnz5d2ratadcHADQoLIIU\nSRoxYoS+++47PfjggzrttNM8YUnN8KSSaZpKTEzU7NmztX37dg0ePDgUZQMAAAAAAKAliIiQxo2T\nvv9e+te/pG7dfFtXUCDNnesOVB54QMrP923dBx9IQ4a492qZP1/66CPp2LHq7zl2zH18/nxpwAD3\n+5cvb9zvCwDQoLAY7VWTy+XS1q1b9dlnn+m7777TkSNHdPz4cbVt21ZJSUlKSUnRsGHDdP755ysi\nIiLU5cJCrNQOBgAAAAAAwlhpqfTCC9K8edKBA76v69BBuusu6dZb3eO/ajpyxD0S7LXXml7bdde5\n92vx10gxAAgBKz3LDcsgBWgqK33xAQAAAACAFqCkRHr2WXdXSF6e7+s6dZKmTZNuuUWKiXEf++9/\npVGjGhfM1KVzZ2nlSnenCgCEISs9yw2b0V4AAAAAAACA5URHS5MnS7t3S488IiUl+bbu0CHpjjvc\ne648+aT05ZfS0KH+CVEk93UyMtx7rAAAmoUgBQAAAAAAAGiutm2lqVPdgcqDD0rt2/u27uefpdtv\nlwYNqr0HSnMdOyaNHOkeFwYAaDKCFAAAAAAAAMBf4uOle+6R9uyRZs+WEhJ8W+dyBaaeAwfcQQ0A\noMnYiR0tUmZmpjIzM2sddzgcwS8GAAAAAAC0Pu3aSTNnujeOf+wxaeFCqbAwNLUsXuzegP43vwnN\n/QEgzBGkoEXKzc3V2rVrQ10GAAAAAABo7dq3l+bOde+jsmCBez+UoqLg1/H3vxOkAEATEaSgRerR\no4cyMjJqHXc4HMrKygpBRQAAAAAAoFVLSpIeekiaMkV6+GHpmWekkpLg3f/TT6Vt26T+/YN3TwBo\nIQzTNM1QFwEES3Z2tvpX+YZh27Zt6tevXwgrAgAAAAAArdKBA9Lll0ubNwfvntOnS/PmBe9+ANAM\nVnqWy2bzAAAAAAAAQLB17iwlJgb3nps2Bfd+ANBCEKQAAAAAAAAAwWaa0ldfBfeemze77wsAaBSC\nFAAAAAAAACDYCgqkY8eCe89jx6TCwuDeEwBaAIIUAAAAAAAAINjKykJz39LS0NwXAMIYQQoAAAAA\nAAAQbFFRoblvmzahuS8AhDGCFAAAAAAAACDY4uOl9u2De8/27aW4uODeEwBaAIIUAAAAAAAAINgM\nQzrnnODe89xz3fcFADQKQQoAAAAAAAAQCuef37LvBwAtBEEKAAAAAAAAEApjxrTs+wFAC0GQAgAA\nAAAAAITCgAHSJZcE515Dhkj9+wfnXgDQwhCkAAAAAAAAAKFy990t6z4A0AJFhLoAfykpKdH//d//\naceOHbLb7erXr5+GDRsmu93e4NoDBw5oxowZMgxDL7zwQhCqBQAAAAAAACT95jfukVuvvRa4e1x3\nnTR6dOCuDwAtXIsIUt544w3deuutOnz4cLXjp59+uh566CFdd9119a4/duyYMjMzCVIAAAAAAAAQ\nfE8+Ka1dKx044P9rd+4sPfGE/68LAK1I2I/2evXVVzVmzBgdPnxYpmlW+/jxxx/1xz/+UTfccIOK\ni4tDXSoAAAAAAABQW8eO0sqVUvv2/r1u+/bu63bs6N/rAkArE9YdKQcPHtSkSZPkcrkkSVdccYVG\njBihsrIyrVmzRitWrJDT6dRrr72mPXv2aMWKFUpISAhx1QAAAAAAAEANAwa4u1JGjvRfZ8ptt7mv\nCwBolrDuSHnhhReUn58vm82m1157TW+99ZYmTZqkKVOm6L333tOGDRvUt29fmaapL774QiNGjNCx\nY8dCXTYAAAAAAABQ24AB0n//697TxB+eekqqMQofANB4YR2kfPjhhzIMQ9dff72uueaaWufT09O1\nceNGXXbZZTJNU1999ZVGjBiho0ePhqBaAAAAAAAAoAEdO0qvviq9/740ZEjzrnX0qDRtmn/qAoBW\nLKyDlG+//VaSdNVVV9X5ntjYWL3zzjv605/+JNM0tXXrVo0YMUJHjhwJVpkAAAAAAABA4/zmN+5R\nX998I02fLv3yl7X3UGnf3n184kQpKsr7dV54QdqwIfD1AkALFtZ7pBw/flyS1LVr13rfZxiGXnjh\nBUVFRenZZ5/Vf//7Xw0fPlwfffSRkpKSglEqAAAAAAAA0Hj9+0vz5rk/N02psFAqLZXatJHi4iTD\ncJ879VRp5kzv15g4UcrKkuz24NQMAC1MWHektGnTRpJUUFDg0/ufeeYZTZw4UaZpatu2bXSmAAAA\nAAAAIHwYhhQfLyUluX+tDFEk6c47pV69vK/bskV65png1AgALVBYByldunSRJG3fvt3nNU899ZQm\nTZrkCVOGDRumQ4cOBapEAAAAAAAAIPCio6Unn6z7/IwZUl5e8OoBgBYkrIOUs846S6Zp6uOPP27U\nuieffFK33nqrTNNUdna2rr322gBVCAAAAAAAAATJyJHS73/v/dyJE+6uFQBAo4V1kDJkyBBJ0rJl\ny1RUVNSotU888YRuu+02maZJRwoAAAAAAABahoULpbZtvZ97+WXp00+DWw8AtABhHaSMHDlSkuRw\nOPTiiy82ev0//vEPTZ48WaZp+rs0AAAAAAAAIPi6dq1703nJvfF8eXnw6gGAFiCsg5SePXtq7Nix\nGj58uLKyspp0jccff1x33nmnunfvrm7duvm5QgAAAAAAACDIpkyR0tK8n8vOrn8vFQBALYZJOwZa\nkezsbPXv39/zetu2berXr18IKwIAAAAAAAiANWuk4cO9n4uLk77/Xjr99ODWBACNYKVnuWHdkQIA\nAAAAAADAi2HDpDFjvJ8rLJTuuCO49QBAGGs1QcpHH30ku90uu92uiIiIUJcDAAAAAAAABNaCBVJ8\nvPdzr78uffRRcOsBgDDVaoIUSTJN0/MBAAAAAAAAtGidO0uzZ9d9ftIkqbQ0ePUAQJhqVUEKAAAA\nAAAA0Krcdps0YID3c9u3S489Ftx6ACAMMeMKLVJmZqYyMzNrHXc4HMEvBgAAAAAAIFQiIqR//lO6\n5BLv5+fOla6/XurWLbh1AUAYIUhBi5Sbm6u1a9eGugwAAAAAAIDQGzxYGjdOWrSo9rniYumvf5Xe\neiv4dQFAmCBIQYvUo0cPZWRk1DrucDiUlZUVgooAAAAAAABC6OGHpXfekU6cqH3u7belFSukUaOC\nXxcAhAGCFLRI48eP1/jx42sdz87OVv/+/YNfEAAAAAAAQCglJ0vz5km33ur9/G23Sdu2SdHRwa0L\nAMIAm80DAAAAAAAArcFf/iKdc473c7t2ubtWAAC1EKQAAAAAAAAArYHd7t543jC8n58/X9q9O7g1\nAUAYIEgBAAAAAAAAWosLLpBuusn7udJS6fbbJdMMbk0AYHEEKQAAAAAAAEBrMn++1KGD93MffCC9\n915w6wEAiyNIAQAAAAAAAFqTjh2lhx6q+/zkyVJRUfDqAQCLI0gBAAAAAAAAWps//9k95subvXul\nefOCWw8AWBhBCgAAAAAAANDa2GzujedtdTwefOQRafv24NYEABYVEcqbf/rpp0G719atW4N2LwAA\nAAAAAMDyzjlHuuUW6emna58rL5duu01atUoyjODXBgAWEtIgZejQoTKC+AexYRgyTTNo9wMAAAAA\nAAAs7YEHpCVLpEOHap9bvVpaulS66qrg1wUAFmKJ0V6maQblAwAAAAAAkAZXTAAAIABJREFUAEAV\niYnuMV51mTJFKigIXj0AYEGWCFIMwwjKBwAAAAAAAIAaxo6VBg/2fm7/fmnOnODWAwAWE9LRXt26\ndSPgAAAAAAAAAELJMNwbz//iF5LTWfv8woXS+PFSv35BLw0ArCCkQUpubm4obw8AAAAAAABAkgYM\nkG6/XXr88drnKiqkSZOkNWvYeB5Aq2SJ0V4AAAAAAAAAQmzWLOm007yfW7tWWrw4qOUAgFUQpAAA\nAAAAAACQEhKkxx6r+/wdd0gnTgSvHgCwCIIUAAAAAAAAAG7XXCMNG+b9XF6eNHNmcOsBAAsgSAEA\nAAAAAADgZhjS009LkZHezz/1lLRlS3BrAoAQI0gBAAAAAAAA8P+kpUl/+5v3cy6XNHGi+1cAaCUI\nUgAAAAAAAABUd999Uteu3s9t2CAtWhTcegAghAhSAAAAAAAAAFQXGystXFj3+bvuko4eDV49ABBC\nBCkAAAAAAAAAarvySmnkSO/nDh+W7r03uPUAQIgQpAAAAAAAAACozTCkJ56QoqK8n3/2WenLL4Nb\nEwCEAEEKAAAAAAAAAO9SU6W77/Z+zjTdG887ncGtCQCCjCAFAAAAAAAAQN3uuUdKSfF+LitL+te/\nglsPAAQZQQoAAAAAAACAusXEuEd81WX6dOnQoeDVAwBBRpACAAAAAAAAoH6//a10+eXezx07Jk2b\nFtx6ACCICFIAAAAAAAAANGzhQik62vu5F1+UPv88uPUAQJAQpAAAAAAAAABoWEqKdO+9dZ+fOFGq\nqAhePQAQJAQpAAAAAAAAAHxz551Saqr3c1u3Sv/8Z3DrAYAgIEgBAAAAAAAA4Js2baSnnqr7/H33\nST//HLx6ACAICFIAAAAAAAAA+O7SS6U//MH7ufx8d9cKALQgBCkAAAAAAAAAGufxx6XYWO/nXnlF\nWrs2uPUAQAARpAAAAAAAAABonC5dpJkz6z4/aZJUXh68egAggAhSAAAAAAAAADTeX/8qpaV5P5ed\nLf3jH8GtBwAChCAFfpGfn6+1a9fq0Ucf1ZgxY9S7d2/ZbDYZhiHDMJSbmxvqEgEAAAAAAOBPUVHS\nP/9Z9/lZs6QffwxaOQAQKBGhLgAtQ0ZGhrZs2RLqMgAAAAAAABBMQ4dK110nLV5c+5zDId1xh/T6\n60EvCwD8iY4U+IVpmp7P27Vrp6FDh+rUU08NYUUAAAAAAAAIigULpPh47+eWLJH+7/+CWw8A+BlB\nCvzixhtv1OLFi7Vjxw4dO3ZMa9asUZ8+fUJdFgAAAAAAAALttNOkOXPqPj9pklRaGrx6AMDPCFLg\nF7fffrvGjBmj1NRUGYYR6nIAAAAAAAAQTLfeKp11lvdzO3ZIjz4a3HoAwI/YI6WV2rVrlzZt2qQf\nf/xRZWVlat++vc4880xddNFFio6ODnV5AAAAAAAACCcREe6N5wcP9n7+gQfce6n06BHUsgDAHwhS\nLGD//v3atGmTNm7cqE2bNikrK0sFBQWe8927d1dubq5f7vXOO+9o7ty5+uqrr7yej4uL0/jx43X/\n/fcrKSnJL/cEAAAAAABAK3DxxdL48VJmZu1zxcXSlCnS228HuyoAaDaClBBZv369Hn30UW3cuFEH\nDhwI+P1KS0v15z//Wa+++mq97yssLNRTTz2l119/XUuXLtWQIUMCXhsAAAAAAABaiIcflt55Rzp+\nvPa5d96Rli+XRo8Ofl0A0AzskRIiX375pd5+++2ghCgul0vXXHNNrRDFbrcrJSVFAwcOVLt27aqd\nO3TokEaNGqUNGzYEvD4AAAAAAAC0EKecIj34YN3nb7vN3Z0CAGGEIMWC4uLi/Hq9Rx55RO+++261\nY3/5y1/0ww8/aPfu3fr666919OhRvfXWW+rWrZvnPUVFRbr66qt14sQJv9YDAAAAAACAFuzmm6Vz\nz/V+bvdud9cKAIQRgpQQi4+P19ChQ3XnnXfqjTfeUG5urpYtW+a36x85ckTz5s2rdmz+/Pl65v9n\n786j7KwL84E/k4UkEBYlRA1LBqGtJqGlLVQFNSCiVUHAANq6DQIqQyDsS8KSsATZwpYEfgplrFVa\nQAVFrQjCoCBgBKyZAJVlCAQ0LCIw2SCZ3x9Tc5jMe0OGzLx35s7nc05O8r7PvTcPh3P0nHm47/fy\nyzNmzJjV9wYNGpT99tsvd911V+pfd+jXU089lVmzZvVYHwAAAABq3ODBHQfP19UV51/7WvLoo+V2\nAlgPhpQq2XvvvdPS0pIXX3wxt912W84777zsv//+GTt2bI/+Peedd16ng+s/+MEP5sQTT6z4+i23\n3DJXXnllp3sXXXRRnn/++R7tBQAAAEAN+6d/Sg49tDhbvrzjEV/t7eV2AniTDClVst1222XcuHEZ\nNKj3/hWsWrUqV199dad706dPT12l/xrg/+yxxx75wAc+sPr65ZdfzrXXXtsrHQEAAACoUTNnJptv\nXpz95CfJGo+iB+irDCk17K677sqzzz67+vqd73xndtttt3V678EHH9zp+oYbbujJagAAAADUus03\nX/t5KFOmJG1t5fUBeJMMKTXsRz/6UafrPffc8w2/jfL6177e7bffnjb/xwYAAABAdxx0UPLe9xZn\nCxcma5ztC9AXGVJq2AMPPNDpepdddlnn944ZM6bTofMrVqzIggULeqoaAAAAAAPBoEEdB89Xerz9\nBRckDz1UbieAbjKk1LAHH3yw0/W4ceO69f41X7/m5wEAAADAG/r7v08aG4uzV19NJk928DzQpxlS\natTSpUuzcOHCTve23nrrbn3Gmq9/+OGH17sXAAAAAAPQmWcmb3tbcXbrrcm115bbB6AbhlS7AL3j\nueeeS/vrlvyhQ4dm9OjR3fqMLbfcstP14sWLK772kUceyS9/+ctO9/7whz+s/vP111+fUaNGrb4e\nOXJk9t9//271AQAAAKCf2myz5Pzzky98oTg/5pjk4x9PNt643F4A68CQUqNeeeWVTtcbbrjhOh80\n/xcbbbTRWj/z9X75y1/moIMOqpgff/zxna7Hjh273kPK4sWL8+yzz3brPY888sh6/Z0AAAAAvEmf\n+1zyjW8kv/hF1+zpp5MZMzrOTAHoYwwpNWrN0WP48OHd/owRI0as9TOrbe7cuZkxY0a1awAAAACw\nLurqkjlzOs5MWbmya37xxUlDQzJhQunVANbGGSk1atmyZZ2uN9hgg25/xrBhwzpdL126tOJrGxoa\n0t7evs6/Wltbu90HAAAAgH5uhx2SKVOKs5Urk8MPd/A80OcYUmrUmt9AWbFiRbc/Y/ny5Wv9TAAA\nAADotunTkzFjirM77kj+4z9KrQPwRjzaq0aNHDmy0/Wa31BZF2t+A2XNz6y2xsbGHHDAAd16zyOP\nPJJ99923lxoBAAAA8IY23jiZNSv5zGeK8+OOS/beu+OAeoA+wJBSo9YcPZYsWZL29vZuHTjf1ta2\n1s+sttGjR2f06NHVrgEAAABAdx14YHLllcktt3TNFi9OTjstufTS8nsBFPBorxo1atSoTqPJq6++\nmsWLF3frMxYtWtTp2mgBAAAAQI+oq0suuywZOrQ4nzMnuf/+cjsBVGBIqVEjRozINtts0+newoUL\nu/UZa77+Xe9613r3AgAAAIAkybvelRx7bHG2alXS2NjxO0CVGVJq2JrDx4IFC7r1/gcffHCtnwcA\nAAAA6+WUU5I1/mPg1e6+O7n66nL7ABQwpNSwHXfcsdP1XXfdtc7vfeaZZ9La2rr6eujQoRk3blxP\nVQMAAACAZKONkosvrpyfeGLy/PPl9QEo4LD5GrbXXnvl3HPPXX19yy23rPOB8zfffHOn6913373P\nHTa/Nk1NTWlqaupyv62trfwyAAAAAFS2777Jxz6W/OQnXbPnn0+mTUuuuKL8XgD/x5BSw3bZZZeM\nGjUqzz33XJLksccey+23357dd9/9Dd971VVXdbreZ599eqVjb2ltbU1zc3O1awAAAADwRv5y8Pz4\n8cny5V3zr389OfjgZOedy+8GEI/2qmmDBg1KQ0NDp3szZsxIe3v7Wt9366235he/+MXq64033jgH\nHnhgb1TsNfX19Zk4cWKXXzvttFO1qwEAAACwpu2263iMV5H29uSww5KVK8vtBPB/DCk17sQTT+z0\nSK7m5uZOj/ta06JFi3LIIYd0ujdlypSMGjWq1zr2hoaGhtx+++1dfhU97gsAAACAPuCkk5Jtty3O\nfvObjm+mAFSBR3tV0Z133pmlS5d2uf/b3/620/WyZctyyy23FH7GmDFj1noI/KhRozJ16tRMnTp1\n9b2TTz45CxcuzCmnnJIxY8YkSVatWpUf/OAHmTJlShYuXNjp84899thu/XMBAAAAQLeNGNHxiK+9\n9irOp05NJk1KRo8utxcw4NW1v9Fznug19fX1eeKJJ9brM774xS++4bcsVq1alX322Sc33XRTp/uD\nBw/O2LFjs+mmm+bxxx/Piy++2CkfMWJEfvazn2XXXXddr459SUtLSyZMmLD6ev78+Rk/fnwVGwEA\nAADQyb77JjfeWJwddFDyb/9Wbh+gKvrSz3I92msAGDRoUK677rp85jOf6XR/5cqVeeyxx3L//fd3\nGVE233zz/PjHP66pEQUAAACAfuCSSzq+nVLk6quTO+8stw8w4BlSBojhw4fnmmuuyfXXX58dd9yx\n4us22mijNDY2ZsGCBdltt93KKwgAAAAASTJ2bHLKKZXzxsbktdfK6wMMeM5IqaLW1tbS/85JkyZl\n0qRJeeSRR3LPPfdk0aJFWbFiRTbbbLO8+93vzq677prhw4eX3gsAAAAAVjv22OSb30z+93+7Zv/z\nP8mcOcmUKeX3AgYkQ8oAtf3222f77bevdo1e09TUVHh2TFtbW/llAAAAAOieYcOS2bOTj3ykOD/1\n1OTAA5N3vKPcXsCAZEihJrW2tqa5ubnaNQAAAAB4s/bcMznggOS667pmL7+cHHdc8u1vl98LGHAM\nKdSk+vr6TJw4scv9tra2zJs3rwqNAAAAAOi2WbOSH/84KXrKyHe+kxx6aOKcX6CXGVKoSQ0NDWlo\naOhyv6WlJRMmTCi/EAAAAADdt9VWyfTpyfHHF+eHH5488EAydGiptYCBZVC1CwAAAAAAVDRlSjJu\nXHG2YEFy8cXl9gEGHEMKAAAAANB3DR2azJlTOZ8xI3nqqfL6AAOOIQUAAAAA6Nt22y357GeLs7a2\n5OijS60DDCyGFAAAAACg77vggmSTTYqz669Pbr653D7AgGFIAQAAAAD6vre/PTnzzMr55MnJ8uXl\n9QEGDEMKAAAAANA/NDYmf/d3xdnvf9/xrRWAHmZIAQAAAAD6hyFDkrlzK+dnn520tpZWBxgYDCkA\nAAAAQP+xyy7JQQcVZ0uXJlOmlNsHqHlDql0AekNTU1Oampq63G9rayu/DAAAAAA969xzkxtuSP70\np67ZD36Q3HRTstde5fcCapIhhZrU2tqa5ubmatcAAAAAoDdssUUyc2Zy2GHF+ZFHJnvskYwYUW4v\noCYZUqhJ9fX1mThxYpf7bW1tmTdvXhUaAQAAANCjDj00ueqqpOhnPY8/nnzta8mMGeX3AmpOXXt7\ne3u1S0BZWlpaMmHChNXX8+fPz/jx46vYCAAAAIA37de/Tt7znqToR5zDhiXz5yfbb19+L2C99aWf\n5TpsHgAAAADon3beOfnyl4uz5cuTI44oHlkAusGQAgAAAAD0XzNnJqNGFWf//d/J979fbh+g5hhS\nAAAAAID+661vTc49t3J+1FFJW1t5fYCaY0gBAAAAAPq3hobkfe8rzp58MjnrrFLrALXFkAIAAAAA\n9G+DBiVz53b8XuTCC5OHHiq3E1AzDCkAAAAAQP+3447J4YcXZ6++2pE5eB54EwwpAAAAAEBtOPPM\n5G1vK85+/vPkv/6r3D5ATTCkAAAAAAC1YdNNkwsuqJwfc0zy0kvl9QFqgiEFAAAAAKgdn/1sMnFi\ncfbMM8mMGeX2Afq9IdUuAL2hqakpTU1NXe63tbWVXwYAAACA8tTVJXPmdJyZ8tprXfNLLkkaGpId\ndii9GtA/GVKoSa2trWlubq52DQAAAACqYfz45Kijih/ztXJlx8Hzzc0dowvAGzCkUJPq6+szseAr\nnG1tbZk3b14VGgEAAABQqtNOS77zneTpp7tmv/hF8q1vJV/4Qvm9gH6nrr29vb3aJaAsLS0tmTBh\nwurr+fPnZ/z48VVsBAAAAECvufba5NOfLs5Gj04efjjZbLNyOwHrpC/9LNdh8wAAAABAbTrggOTD\nHy7OFi9OTjml3D5Av2RIAQAAAABqU11dMnt2MnRocX755cl995XbCeh3DCkAAAAAQO36m79Jjj++\nOFu1Kmls7PgdoAJDCgAAAABQ26ZOTbbZpji7557k3/6t3D5Av2JIAQAAAABq20YbJZdcUjk/6aTk\n+efL6wP0K4YUAAAAAKD27bNP8vGPF2fPP5+cfHK5fYB+w5ACAAAAANS+urrk0kuTYcOK8yuv7HjM\nF8AaDCkAAAAAwMCw3XaVv3nS3t5x8PzKleV2Avo8QwoAAAAAMHCceGLyzncWZ/fdl/y//1duH6DP\nM6QAAAAAAAPH8OHJZZdVzqdNSxYvLq8P0OcZUgAAAACAgeXjH0/23bc4e/HF5IQTyu0D9GlDql0A\nekNTU1Oampq63G9rayu/DAAAAAB9z8UXJz/9abJ0adfsm99MDjkkef/7y+8F9DmGFGpSa2trmpub\nq10DAAAAgL5q7Njk1FOTqVOL88bGjjNThvgRKgx0/leAmlRfX5+JEyd2ud/W1pZ58+ZVoREAAAAA\nfc6xx3Z8++Thh7tmv/tdMnt2ctRR5fcC+pS69vb29mqXgLK0tLRkwoQJq6/nz5+f8ePHV7ERAAAA\nAFV1yy3JnnsWZxtvnDz0UDJmTLmdgD71s1yHzQMAAAAAA9eHP5wceGBx9vLLyXHHldsH6HMMKQAA\nAADAwDZrVjJyZHF2zTXJz39ebh+gTzGkAAAAAAAD25ZbJtOnV84PPzxZsaK0OkDfYkgBAAAAADjy\nyKTS+QsPPZRcfHG5fYA+w5ACAAAAADB0aDJ3buV8xozkySfL6wP0GYYUAAAAAIAk+eAHk899rjhb\nsiQ5+uhy+wB9giEFAAAAAOAvzj8/2WST4uy7301++tNy+wBVZ0gBAAAAAPiLt789Oeusyvnkycmy\nZeX1AarOkAIAAAAA8HqHHZbsuGNx9sgjyQUXlNsHqCpDCgAAAADA6w0ZsvaD588+O3n88fL6AFVl\nSAEAAAAAWNP73pccfHBxtmxZMmVKuX2AqjGkAAAAAAAUOeec5C1vKc5++MOOX0DNM6QAAAAAABTZ\nYouOMaWSI49Mliwprw9QFYYUAAAAAIBKDjkk2Xnn4qy1de1DC1ATDCkAAAAAAJUMHtxx8HxdXXF+\n3nnJ739fbiegVEOqXQB6Q1NTU5qamrrcb2trK78MAAAAAP3bTjslX/1qcvnlXbMVK5Ijjkh+8pPK\nYwvQrxlSqEmtra1pbm6udg0AAAAAasVZZyXXXZc891zX7Kc/Tb73vWTSpPJ7Ab3OkEJNqq+vz8SJ\nE7vcb2try7x586rQCAAAAIB+7a1v7XiM15e+VJwfdVTy0Y8mI0eW2wvodXXt7e3t1S4BZWlpacmE\nCRNWX8+fPz/jx4+vYiMAAAAA+o1Vq5IPfCC5667i/IQTknPPLbcT1Ki+9LNch80DAAAAAKyLQYM6\nDp4fVOHHqrNmJQsWlNsJ6HWGFAAAAACAdfV3f9dxuHyR115LJk9OPAQIaoohBQAAAACgO2bMSN7+\n9uLsttuS//zPcvsAvcqQAgAAAADQHZtumlxwQeX82GOTl14qrw/QqwwpAAAAAADd9a//muy2W3H2\nzDPJ6aeXWgfoPYYUAAAAAIDuqqtL5sxJhgwpzi+7LPmf/ym3E9ArDCkAAAAAAG/GuHHJ0UcXZytX\nJo2NDp6HGmBIAQAAAAB4s047Ldlyy+LszjuTf//3cvsAPc6QAgAAAADwZo0cmVx0UeX8+OOTP/2p\nvD5AjzOkAAAAAACsj/33T/bcszh79tnklFPK7QP0KEMKAAAAAMD6qKtLZs9ONtigOL/88uQ3vym3\nE9BjDCkAAAAAAOvrr/+64zFeRdrbOw6eX7Wq3E5AjzCkAAAAAAD0hKlTk7Fji7N7702uuqrcPkCP\nMKQAAAAAAPSEDTdMLr20cn7SSclzz5XXB+gRhhQAAAAAgJ6y997JJz5RnL3wQnLyyeX2AdabIQUA\nAAAAoKfU1XV8K2X48OL8yiuTu+8utxOwXgwpAAAAAAA96Z3vXPs3Txobk5Ury+sDrBdDCgAAAABA\nTzvhhGS77Yqz++9Prrii3D7Am2ZIAQAAAADoacOHJ7NnV86nTUv++Mfy+gBvmiEFAAAAAKA3/PM/\nJ/vtV5z9+c8d31oB+rwh1S4AvaGpqSlNTU1d7re1tZVfBgAAAICB6+KLk5/+NFmypGv27/+eHHJI\n8oEPlN8LWGeGFGpSa2trmpubq10DAAAAgIFum22SU0+tfPh8Y2Ny333J0KHl9gLWmSGFmlRfX5+J\nEyd2ud/W1pZ58+ZVoREAAAAAA9YxxyTf/Gby0ENds/nzk8su63gN0CfVtbe3t1e7BJSlpaUlEyZM\nWH09f/78jB8/voqNAAAAABgQfv7zZI89irORI5OHH07GjCm3E/RhfelnuQ6bBwAAAADobR/6UPKZ\nzxRnr7ySHHtsuX2AdWZIAQAAAAAowwUXdHz7pMh//mdy663l9gHWiSEFAAAAAKAMW26ZzJhROZ88\nOVmxorw+wDoxpAAAAAAAlOWII5LXnfvQyUMPJbNmldsHeEOGFAAAAACAsgwdmsydWzk/88xk4cLy\n+gBvyJACAAAAAFCmD3wg+cIXirMlS5Kjjy63D7BWhhQAAAAAgLKdd16y6abF2fe+l/z3f5fbB6jI\nkAIAAAAAULa3vS0566zK+eTJybJl5fUBKjKkAAAAAABUw2GHJX//98XZo492fGsFqDpDCgAAAABA\nNQwevPaD5885J3nssfL6AIUMKQAAAAAA1fLe9yaHHFKcLVuWTJlSbh+gC0MKAAAAAEA1nXNO8ta3\nFmc33ZT84Afl9gE6MaQAAAAAAFTTqFEdY0olRx6ZLFlSXh+gE0MKAAAAAEC1HXJI8k//VJw98UQy\nc2a5fYDVDCkAAAAAANU2aFDHwfN1dcX5+ecn//u/5XYCkhhSAAAAAAD6hn/8x+Sww4qzFSuSyZOT\n9vZyOwGGFAAAAACAPuOss5IttijOfvaz5LvfLbcPYEgBAAAAAOgz3vKWjsd4VXLUUckrr5TXBzCk\nAAAAAAD0KZ//fLLrrsXZokXJGWeU2wcGOEMKAAAAAEBf8peD5wcPLs4vuihpaSm3EwxghhQAAAAA\ngL7mb/82OeKI4uy115LDD3fwPJTEkAIAAAAA0BfNmJG84x3FWXNzcs015faBAcqQAgAAAADQF22y\nSXLhhZXzY49N/vzn8vrAAGVIAQAAAADoqz7zmWT33YuzP/whOf30cvvAAGRIAQAAAADoq+rqktmz\nkyFDivPLLkt++9tyO8EAY0gBAAAAAOjLxo1LjjmmOFu1Kmls7Pgd6BWGFAAAAACAvu7UU5OttirO\n7ror+eY3y+0DA4ghBQAAAACgrxs5Mrn44sr5CSckf/pTeX1gADGkAAAAAAD0B5/6VPLRjxZnzz2X\nTJtWbh8YIAwpAAAAAAD9QV1dx+HyG2xQnF9xRTJvXrmdYAAYUu0C0BuamprS1NTU5X5bW1v5ZQAA\nAACgp/zVX3U8xuuss7pm7e0dB8//6lfJ4MHld4MaZUihJrW2tqa5ubnaNQAAAACg5518cvIf/5G0\ntnbNfv3r5Mork698pfRaUKsMKdSk+vr6TJw4scv9tra2zPP1RgAAAAD6sw03TC69NPnkJ4vzk0/u\nOE9liy3K7QU1qq69vb292iWgLC0tLZkwYcLq6/nz52f8+PFVbAQAAAAAb9InP5n88IfF2cEHd3wz\nBfqpvvSzXIfNAwAAAAD0R5dckgwfXpxddVXHWSnAejOkAAAAAAD0R9tum0ydWjlvbExee628PlCj\nDCkAAAAAAP3V8ccn229fnD3wQHL55eX2gRpkSAEAAAAA6K+GD09mz66cn3JK8oc/lNcHapAhBQAA\nAACgP/voR5NJk4qzl15KTjih3D5QYwwpAAAAAAD93UUXJRtuWJx961vJHXeU2wdqiCEFAAAAAKC/\n23rr5LTTKueNjcmrr5bXB2qIIQUAAAAAoBYcfXTy7ncXZy0tyaWXltsHaoQhBQAAAACgFmywQTJn\nTuV8+vRk0aLS6kCtMKQAAAAAANSK3XdP/uVfirNXXkmOOabcPlADDCkAAAAAALXkwguTjTcuzq69\nNrnllnL7QD9nSAEAAAAAqCXveEdyxhmV88mTk+XLy+sD/ZwhBQAAAACg1kyenOywQ3H28MPJrFnl\n9oF+zJACAAAAAFBrhgxJ5s6tnJ95ZvLEE+X1gX7MkAIAAAAAUIve//7ki18szpYuTY46qtw+0E8Z\nUgAAAAAAatV55yWbbVac3XBD8uMfl9sH+iFDCgAAAABArRo9Ojn77Mr5kUcmy5aV1wf6IUMKAAAA\nAEAt+8pXkn/4h+Ls0UeTc88ttw/0M4YUAAAAAIBaNnhwx8HzdXXF+TnndAwqQCFDCgAAAABArXvP\ne5JDDinOli/veMRXe3u5naCfMKQAAAAAAAwE55yTbL55cfbjHyc33lhuH+gnDCkAAAAAAAPB5psn\nX/ta5XzKlGTJkvL6QD9hSAEAAAAAGCi+9KWOx3wVWbgwOfvscvtAP2BIAQAAAAAYKAYN6jh4flCF\nHw2ff37y8MPldoI+zpACAAAAADCQ/MM/JIcdVpy9+moyebKD5+F1DCkAAAAAAAPNWWclo0cXZ7fc\nklx3Xbl9oA8zpAAAAAAADDSbbdbxGK9Kjj46efnl8vpAH2ZIAQCVoHZ5AAAgAElEQVQAAAAYiD7/\n+eT97y/Onn46OeOMcvtAH2VIAQAAAAAYiOrqOg6eHzy4OL/44qSlpdxO0AcZUgAAAAAABqoddkiO\nPLI4e+21pLHRwfMMeIYUAAAAAICBbPr05B3vKM7uuCP59rdLrQN9jSEFAAAAAGAg22STZNasyvlx\nxyUvvlheH+hjDCkAAAAAAAPdpz+dfOhDxdkf/5icfnq5faAPMaQAAAAAAAx0dXXJnDnJ0KHF+ezZ\nyQMPlNsJ+ghDCgAAAAAAybvelRxzTHG2alXHwfOrVpXbCfoAQwo96sUXX8zMmTOz8847Z/PNN8+G\nG26Y7bffPoceemh+85vfVLseAAAAALA2p56abL11cfarXyVNTaXWgb7AkEKPuffee7PDDjtk2rRp\nmTdvXl544YUsXbo0jz76aK688sq85z3vyZlnnlntmgAAAABAJRttlFx8ceX8xBOTF14orw/0AYYU\nesRjjz2WT3ziE3nqqadSV1eXr3zlK7nlllty991355JLLsk73vGOrFy5Mqeddlouu+yyatcFAAAA\nACrZb7/kn/+5OHvuuWTq1HL7QJUZUugRxxxzTJ577rkkyRVXXJErrrgie+yxR97znvfkyCOPzD33\n3JMtttgiSXLSSSfl6aefrmZdAAAAAKCSurrkssuSDTYozr/+9eTXvy63E1SRIYX1tmDBgtx4441J\nkve///358pe/3OU1W2+9dWbOnJkkWbJkSS655JJSOwIAAAAA3bD99h2P8SrS3t5x8PzKleV2giox\npAxQjz76aK655pqcf/75OfvsszN37tz8/Oc/z7Jly7r9Wddff/3qPx966KEVX/fZz342G264YZf3\nAAAAAAB90MknJ9tuW5zNm5d84xvl9oEqGVLtAiSLFi3Kvffem3vuuSf33ntv5s2bl5dffnl1Pnbs\n2LS2tvbI33XDDTfkzDPPzH333VeYjxw5Mg0NDTn99NMzatSodfrM5ubm1X/+0Ic+VPF1I0aMyHvf\n+978/Oc/z2OPPZYnn3wyW2+9dff+AQAAAACAcowYkVx6abL33sX51KnJpEnJ/z3SH2qVb6RUyZ13\n3plPfepT2XLLLbPVVlvlU5/6VM4999zcdtttnUaUnrJ8+fJ87nOfy3777VdxREmSV155JbNnz864\nceNyxx13rNNnt7S0JEk22WSTbLXVVmt97bhx41b/ecGCBev0+QAAAABAley1V/LJTxZnf/pT5cd/\nQQ0xpFTJr3/963z/+98v5dD1VatW5dOf/nS+/e1vd7o/ePDgbLvtttlxxx2z6aabdsqeffbZfOxj\nH8uvfvWrtX728uXL88c//jFJ1unbJa9/zRNPPLGu/wgAAAAAQLVccknHt1OKXH11ctdd5faBkhlS\n+qCRI0f26Oedf/75qw+D/4uvfvWrWbhwYR577LHcf//9eeGFF/K9730v22yzzerXLFmyJAceeGD+\n/Oc/V/zs1397Zl16b7zxxoXvBQAAAAD6qPr6ZNq0ynljY/Laa6XVgbIZUqps4403zm677Zbjjz8+\n1113XVpbW/PDH/6wxz7/+eefz9lnn93p3jnnnJPLL788Y8aMWX1v0KBB2W+//XLXXXelvr5+9f2n\nnnoqs2bNqvj5S5cuXf3nDTbY4A37DBs2rPC9AAAAAEAfdtxxyV/9VXH2298mc+eW2wdKZEipkr33\n3jstLS158cUXc9ttt+W8887L/vvvn7Fjx/bo33Peeed1+ubHBz/4wZy4lucWbrnllrnyyis73bvo\noovy/PPPF75+xOu+0rdixYo37LN8+fLC9wIAAAAAfdiwYcns2ZXzU09NnnmmvD5QIkNKlWy33XYZ\nN25cBg3qvX8Fq1atytVXX93p3vTp01NXV7fW9+2xxx75wAc+sPr65ZdfzrXXXlv42tc/quuVV155\nw06vf83r3wsAAAAA9HEf+Uiy//7F2UsvJccfX24fKIkhpYbdddddefbZZ1dfv/Od78xuu+22Tu89\n+OCDO13fcMMNha8bNmxYRo8enSR58skn3/BzFy5cuPrPrz+PBQAAAADoBy66KNloo+Ls299Obr+9\n1DpQBkNKDfvRj37U6XrPPfd8w2+jvP61r3f77benra2t8LXjx49Pkrz00kt56qmn1vq5CxYs6PI+\nAAAAAKCf2Gqr5PTTK+eHH568+mp5faAEhpQa9sADD3S63mWXXdb5vWPGjOl06PyKFSs6jSCvN3Hi\nxNV/vu222yp+5tKlS3P33XcnSbbddttsvfXW69wHAAAAAOgjjjoqGTeuOFuwILnkknL7QC8zpNSw\nBx98sNP1uEr/41bBmq9f8/P+Yv/XPRfxG9/4RsXP+853vpMlS5Z0eQ8AAAAA0I8MHZrMmVM5nz49\neYMn10B/YkipUUuXLu10HkmSbn8DZM3XP/zww4WvGz9+fPbee+8kyS9+8Yt8/etf7/KaJ598MlOn\nTk2SjBgxIlOmTOlWFwAAAACgD9ltt+Rf/7U4a2tLjjmm1DrQm4ZUuwC947nnnkt7e/vq66FDh64+\nFH5dbbnllp2uFy9eXPG1s2bNyp133pkXXnghX/3qV3P//ffngAMOyMiRI3Pvvfdm5syZq98/c+bM\nLp/9ZixevDjPPvtst97zyCOPrPffCwAAAAAkueCC5Kabkpde6ppdd11y883JRz5Sfi/oYYaUGvXK\nK690ut5www3X+aD5v9hoo43W+pmvt/322+dHP/pRJk2alKeffjpXXHFFrrjiik6vGTRoUE499dQc\nddRR3epRydy5czNjxowe+SwAAAAAoJve8Y7kjDM6zkwpMnly8rvfJcOGldsLephHe9WoNUeP4cOH\nd/szRowYsdbPXNN73/vetLS05Kyzzso//uM/ZrPNNsvw4cOz7bbb5ktf+lLuueeeTJ8+vds9AAAA\nAIA+6vDDk7/92+Ls979PLryw3D7QC3wjpUYtW7as0/UGG2zQ7c8YtsZSvHTp0jd8z2abbZZp06Zl\n2rRp3f77AAAAAIB+ZsiQZO7c5P3vL87POqvjLJX6+lJrQU8ypNSoNb+BsmLFim5/xvLly9f6mdXW\n2NiYAw44oFvveeSRR7Lvvvv2UiMAAAAAGIB23TVpaEiamrpmS5d2PPrrhhvKbgU9xpBSo0aOHNnp\nes1vqKyLNb+BsuZnVtvo0aMzevToatcAAAAAAM49t2MsefHFrtmNNyY/+lHyiU+U3wt6gDNSatSa\no8eSJUvS3t7erc9oa2tb62cCAAAAACRJRo9OZs6snB9xRMe3U6AfMqTUqFGjRqWurm719auvvprF\nixd36zMWLVrU6dq3PwAAAACAir785WSnnYqzxx/v+NYK9EOGlBo1YsSIbLPNNp3uLVy4sFufsebr\n3/Wud613LwAAAACgRg0e3HHw/Ov+A+9Ovva15NFHy+0EPcCQUsPWHD4WLFjQrfc/+OCDa/08AAAA\nAIBOdt45OfTQ4mz58o5HfHXzCAKoNofN17Add9wxP/3pT1df33XXXfniF7+4Tu995pln0trauvp6\n6NChGTduXE9X7DVNTU1pamrqcn/Nc18AAAAAgB42c2by3e8mzz/fNfvJTzoOpd9vv/J7wZtkSKlh\ne+21V8593XMHb7nllrS3t3c6O6WSm2++udP17rvv3q8Om29tbU1zc3O1awAAAADAwLP55h3noRxy\nSHE+ZUrykY8kG21Ubi94kwwpNWyXXXbJqFGj8txzzyVJHnvssdx+++3Zfffd3/C9V111VafrffbZ\np1c69pb6+vpMnDixy/22trbMmzevCo0AAAAAYAA56KDkqquSX/2qa/bkk8lZZyXnnFN+L3gTnJFS\nwwYNGpSGhoZO92bMmJH2N3gG4a233ppf/OIXq6833njjHHjggb1Rsdc0NDTk9ttv7/Kr6HFfAAAA\nAEAPGzQomTOn4/ciF16YPPRQuZ3gTTKk1LgTTzyx0yO5mpubOz3ua02LFi3KIWt85W7KlCkZNWpU\nr3UEAAAAAGrQ3/990thYnL36ajJ5soPn6Rc82quK7rzzzixdurTL/d/+9redrpctW5Zbbrml8DPG\njBmz1kPgR40alalTp2bq1Kmr75188slZuHBhTjnllIwZMyZJsmrVqvzgBz/IlClTsnDhwk6ff+yx\nx3brnwsAAAAAIEly5pnJddclf/xj1+zWW5Nrr00+/enye0E31LW/0XOe6DX19fV54okn1uszvvjF\nL77h46pWrVqVffbZJzfddFOn+4MHD87YsWOz6aab5vHHH8+LL77YKR8xYkR+9rOfZdddd12vjn1J\nS0tLJkyYsPp6/vz5GT9+fBUbAQAAAECN+9a3ki98oTgbM6bjEV8bb1xuJ/q8vvSzXI/2GgAGDRqU\n6667Lp/5zGc63V+5cmUee+yx3H///V1GlM033zw//vGPa2pEAQAAAACq4HOfSz74weLs6aeT6dNL\nrQPdZUgZIIYPH55rrrkm119/fXbccceKr9too43S2NiYBQsWZLfddiuvIAAAAABQm+rqOg6eHzy4\nOL/kkmT+/HI7QTc4I6WKWltbS/87J02alEmTJuWRRx7JPffck0WLFmXFihXZbLPN8u53vzu77rpr\nhg8fXnovAAAAAKCGTZiQHHVUcuGFXbOVK5PDD09uv71jdIE+xpAyQG2//fbZfvvtq12j1zQ1NRWe\nHdPW1lZ+GQAAAAAgOf305JprOh7ntaY77kj+4z+Sz3++/F7wBgwp1KTW1tY0NzdXuwYAAAAA8Bcb\nb5zMmpWscZbzascdl+y9d7LZZuX2gjdgSKEm1dfXZ+LEiV3ut7W1Zd68eVVoBAAAAADkwAOTK69M\nbrmla7Z4cXLqqclll5XfC9airr29vb3aJaAsLS0tmTBhwurr+fPnZ/z48VVsBAAAAAADzMMPJzvs\nkLz6atds0KDk179O/uEfyu9Fn9KXfpY7qCp/KwAAAAAAA9Pf/E3HY7yKrFrVcfD8qlXldoK1MKQA\nAAAAAFCuadOSbbYpzu6+O7n66nL7wFoYUgAAAAAAKNdGGyUXX1w5P/HE5Pnny+sDa2FIAQAAAACg\nfPvum3zsY8XZ888nU6eW2wcqMKQAAAAAAFC+urrkssuSYcOK8298I7n33nI7QQFDCgAAAAAA1bHd\ndslJJxVn7e3JYYclK1eW2wnWYEgBAAAAAKB6Tjwxeec7i7P77ku+/vVy+8AahlS7APSGpqamNDU1\ndbnf1tZWfhkAAAAAoLIRI5JLL0322qs4nzo1mTQpGT263F7wfwwp1KTW1tY0NzdXuwYAAAAAsC4+\n8Ylkn32SG2/smr34Yse3Vq6+uvxeEEMKNaq+vj4TJ07scr+trS3z5s2rQiMAAAAAYK0uuSS5+eZk\n6dKuWVNTcsghya67ll4LDCnUpIaGhjQ0NHS539LSkgkTJpRfCAAAAABYu7Fjk1NOSaZNK84bG5Pf\n/CYZ4sfalMth8wAAAAAA9A3HHpv89V8XZ//zP8mcOeX2gRhSAAAAAADoK4YNS2bPrpyfemryzDPl\n9YEYUgAAAAAA6Ev23DM54IDi7OWXk+OOK7cPA54hBQAAAACAvmXWrGSjjYqz73wnue22cvswoBlS\nAAAAAADoW7baKpk+vXJ++OHJihWl1WFgM6QAAAAAAND3TJmSjB9fnD34YHLxxeX2YcAypAAAAAAA\n0PcMHZrMmVM5P+OM5Mkny+vDgGVIAQAAAACgb5o4MfnsZ4uztrbkmGPK7cOAZEgBAAAAAKDvuuCC\nZJNNirPrr09uvrncPgw4Q6pdAHpDU1NTmpqautxva2srvwwAAAAA8Oa9/e3JmWd2nJlSZPLk5He/\nS4YNK7cXA4YhhZrU2tqa5ubmatcAAAAAAHpCY2Ny9dXJAw90zX7/++T885NTTim/FwOCIYWaVF9f\nn4kTJ3a539bWlnnz5lWhEQAAAADwpg0Zksydm+yyS3F+9tnJ5z6X1NeXWouBwZBCTWpoaEhDQ0OX\n+y0tLZkwYUL5hQAAAACA9fO+9yVf+lLyb//WNVu2rOPRXzfeWH4vap7D5gEAAAAA6B++9rXkLW8p\nzn7wg+Smm8rtw4BgSAEAAAAAoH/YYotk5szK+ZFHJkuXlteHAcGQAgAAAABA/3HooclOOxVnjz+e\nnHNOuX2oeYYUAAAAAAD6j8GDk8svT+rqivNzz01+//tyO1HTDCkAAAAAAPQvO+2UfOUrxdmKFckR\nRyTt7eV2omYZUgAAAAAA6H/OPjsZNao4++lPk+9/v9w+1CxDCgAAAAAA/c9b39rxGK9KjjoqaWsr\nrw81y5ACAAAAAED/1NCQvO99xdmTTyZnnllqHWqTIQUAAAAAgP5p0KBk7tyO34tceGHy4IPldqLm\nGFIAAAAAAOi/dtwxmTy5OHvtteTwwx08z3oxpAAAAAAA0L+dcUbytrcVZ7fdlvzXf5Xbh5oypNoF\noDc0NTWlqampy/02h0sBAAAAQO3ZdNPkgguSz3++OD/mmOTjH0822aTcXtQEQwo1qbW1Nc3NzdWu\nAQAAAACU5bOfTa68Min6ueAzzyTTpyezZpVei/7PkEJNqq+vz8SJE7vcb2try7x586rQCAAAAADo\nVXV1yZw5HWemvPZa1/zSS5ODDkp22KH8bvRrhhRqUkNDQxoaGrrcb2lpyYQJE8ovBAAAAAD0vvHj\nk6OO6njM15pWrkwaG5M77ugYXWAdOWweAAAAAIDacdppyZZbFme//GXyrW+V24d+z5ACAAAAAEDt\n2HjjtZ+FcvzxyYsvlteHfs+QAgAAAABAbTnggOTDHy7OFi9OTjml3D70a4YUAAAAAABqS11dMnt2\nMnRocX755cl995XbiX7LkAIAAAAAQO35m7/peIxXkVWrOg6eX7Wq3E70S4YUAAAAAABq07Rpydix\nxdk99yRXXVVuH/olQwoAAAAAALVpww2TSy6pnJ90UvL88+X1oV8ypAAAAAAAULs++cnk4x8vzl54\nITn55HL70O8YUgAAAAAAqF11dcmllybDhhXnV17Z8ZgvqMCQAgAAAABAbdtuu8rfPGlv7zh4fuXK\ncjvRbxhSAAAAAACofSee2DGoFLnvvuSKK8rtQ79hSAEAAAAAoPYNH55cdlnlfNq0ZPHi8vrQbxhS\nAAAAAAAYGD72sWS//YqzP/85OeGEcvvQLxhSAAAAAAAYOC66KBkxojj75jeTX/6y3D70eYYUAAAA\nAAAGjrFjk1NPrZw3NiavvVZeH/q8IdUuAL2hqakpTU1NXe63tbWVXwYAAAAA6FuOPbbj2ycPP9w1\n+93vOs5SOfro8nvRJxlSqEmtra1pbm6udg0AAAAAoC/aYINkzpzkwx8uzk8/Pfn0p5MxY8rtRZ9k\nSKEm1dfXZ+LEiV3ut7W1Zd68eVVoBAAAAAD0KXvs0TGW/Nd/dc1efjk57rjkO98pvxd9Tl17e3t7\ntUtAWVpaWjJhwoTV1/Pnz8/48eOr2AgAAAAAqJpFi5J3vSt55ZXi/NZbkw99qNxOJOlbP8t12DwA\nAAAAAAPTllsm06dXzg8/PFmxorQ69E2GFAAAAAAABq4jj0wqfdPhoYeSiy4qtw99jiEFAAAAAICB\na+jQZO7cyvkZZyQLF5bXhz7HkAIAAAAAwMD2wQ8mn/98cbZkSXL00eX2oU8xpAAAAAAAwPnnJ5ts\nUpx973vJf/93uX3oMwwpAAAAAADwtrclZ51VOT/iiGTZsvL60GcYUgAAAAAAIEkOOyzZccfi7JFH\nOr61woBjSAEAAAAAgCQZMmTtB8/PnJk8/nh5fegTDCkAAAAAAPAX73tfcvDBxdmyZcmRR5bbh6oz\npAAAAAAAwOt97WvJW95SnN10U/LDH5bbh6oypAAAAAAAwOuNGpWcc07l/MgjkyVLyutDVRlSAAAA\nAABgTYcckuy8c3HW2rr2oYWaYkgBAAAAAIA1DR7ccfB8XV1xft55ye9/X24nqsKQAgAAAAAARXba\nKfnqV4uzFSuSyZOT9vZyO1E6QwoAAAAAAFRy9tnJFlsUZzffnHz3u+X2oXSGFAAAAAAAqOQtb+l4\njFclRx+dvPJKeX0onSEFAAAAAADW5gtfSHbZpTh76qnkzDPL7UOpDCkAAAAAALA2gwZ1HDw/qMKP\n1GfNShYsKLcTpTGkAAAAAADAG/m7v0uOOKI4e+215PDDHTxfowwpAAAAAACwLmbMSN7+9uLs9tuT\na64ptQ7lGFLtAtAbmpqa0tTU1OV+W1tb+WUAAAAAgNqw6abJhRcmn/1scX7sscleeyWbbFJuL3qV\nIYWa1Nramubm5mrXAAAAAABqzb/8S/KNb3R8A2VNf/hDcvrpyUUXlV6L3mNIoSbV19dn4sSJXe63\ntbVl3rx5VWgEAAAAANSEurpkzpyOM1Nee61rftllyUEHJX/7t+V3o1cYUqhJDQ0NaWho6HK/paUl\nEyZMKL8QAAAAAFA7xo1Ljj46Of/8rtnKlUljY3LHHckgx5TXAv8WAQAAAACgu047Ldlqq+LszjuT\nf//3cvvQawwpAAAAAADQXSNHrv0slBNOSP70p/L60GsMKQAAAAAA8GZMmpR85CPF2bPPJqecUm4f\neoUhBQAAAAAA3oy6uo7D5TfYoDi//PLkN78ptxM9zpACAAAAAABv1l//dXL88cVZe3vHwfOrVpXb\niR5lSAEAAAAAgPUxdWoydmxxdu+9yZVXltuHHmVIAQAAAACA9bHhhsmll1bOTz45ee658vrQowwp\nAAAAAACwvj75yWSvvYqzF15ITjqp3D70GEMKAAAAAAD0hEsvTYYPL86uuiq5++5y+9AjDCkAAAAA\nANATtt224zFelTQ2JitXlteHHmFIAQAAAACAnnLCCcl22xVn99+fXH55uX1Yb4YUAAAAAADoKcOH\nJ7NnV85POSX54x/L68N6M6QAAAAAAEBP+ud/Tj71qeLsz39Ojj++3D6sF0MKAAAAAAD0tIsuSjbc\nsDj71reSO+4otw9vmiEFAAAAAAB62jbbJKeeWjk//PDk1VfL68ObZkgBAAAA4P+3d+fRVZX3/sc/\nIWQgg0lICIMCYbpCBItQHEAmERUBwVIxgmUQb5GIUEXGpQIWK4PUXge0UiUCQlUsIBAuMsjgxTIV\nRQmEIcxEhiSEEMjQZP/+4McpO8mGDOfk7HPyfq2Vpc9z9n6eb1zrG0/yOXtvAIArvPSS1Lx5ya/9\n/LP07ruVWw/KhSAFAAAAAAAAAABX8PeX3n/f+vXJk6VTpyqvHpQLQQoAAAAAAAAAAK7ywANSXFzJ\nr126JI0ZU7n1oMwIUgAAAAAAAAAAcKXZs6XQ0JJf+/xzaf36yq0HZUKQAgAAAAAAAACAK9WrJ02d\nav36889LeXmVVw/KhCAFAAAAAAAAAABXGzlSatmy5NeSk6U//7ly60GpEaQAAAAAAAAAAOBqfn7S\nnDnWr//xj9Lx4/8ZG4Z08aJ0/vzVfxqG62tEiQhSAAAAAAAAAACoDB07SoMGlfza5cvS0KHSpEnS\ngw9KkZFSWJhUq9bVf0ZGXp2fNEn6+efKrbuKI0gBAAAAAAAAAKCyzJx5NRgpyYYN0ptvXn34fEaG\n+bWMjKvzb74ptWoldeokJSa6vl4QpAAAAAAAAAAAUGlq15beeKPi62zZIvXsKQ0cKKWlVXw9WCJI\nAQAAAAAAAACgMj33nNS8uXPWWrRIuvNO6aefnLMeiiFIAQAAAAAAAACgMu3dK5065bz1Tp+WOncm\nTHERghQAAAAAAAAAACpLWprUo4eUleXcdTMypEce4TZfLkCQAgAAAAAAAABAZXnhhatXkLjC6dPS\nqFGuWbsKI0gBAAAAAAAAAKAyrFolLV7s2j0WLbq6D5ymursLAFwhISFBCQkJxeazs7MrvxgAAAAA\nAAAAkKQZMypnn5kzpZ49K2evKoAgBV7p6NGj2rRpk7vLAAAAAAAAAICrfvpJ2rKlcvbavFn6+Wep\nZcvK2c/LEaTAK8XExKhz587F5rOzs7Vz5043VAQAAAAAAACgSnP1Lb1K2u+NNyp3Ty9FkAKvNGTI\nEA0ZMqTY/N69e9WSFBYAAAAAAABAZdu+3bv382IEKahScnNzTeNDhw65qRIAAAAAAAAAVYZhSDt2\nVO6e27dfvb2Xj0/l7uskRf92W/Rvu5WJIAVVyokTJ0zjvn37uqkSAAAAAAAAAHChixelVq3cXYXT\nnDhxQm3atHHL3tXcsisAAAAAAAAAAIAHIEgBAAAAAAAAAACw4GMYhuHuIoDKcuHCBW3atMkxrl+/\nvgICAtxYUeU5dOiQ6VZmy5YtU9OmTd1YEQBXo++BqoWeB6oe+h6oeuh7oGqp6j2fm5trelRD586d\nFR4e7pZaeEYKqpTw8HD16dPH3WXYQtOmTXXHHXe4uwwAlYi+B6oWeh6oeuh7oOqh74GqpSr2vLue\niVIUt/YCAAAAAAAAAACwQJACAAAAAAAAAABggSAFAAAAAAAAAADAAkEKAAAAAAAAAACABYIUAAAA\nAAAAAAAACwQpAAAAAAAAAAAAFghSAAAAAAAAAAAALBCkAAAAAAAAAAAAWCBIAQAAAAAAAAAAsECQ\nAgAAAAAAAAAAYIEgBQAAAAAAAAAAwEJ1dxcAoHLUqlVLkydPNo0BeDf6Hqha6Hmg6qHvgaqHvgeq\nFnrePnwMwzDcXQQAAAAAAAAAAIAdcWsvAAAAAAAAAAAACwQpAAAAAAAAAAAAFghSAAAAAAAAAAAA\nLBCkAAAAAAAAAAAAWCBIAQAAAAAAAAAAsECQAgAAAAAAAAAAYIEgBQAAAAAAAAAAwAJBCgAAAAAA\nAAAAgAWCFAAAAAAAAAAAAAsEKQAAAAAAAAAAABYIUgAAAAAAAAAAACwQpAAAAAAAAAAAAFggSAEA\nAAAAAAAAALBQ3d0FACjZ4cOHtX37dp08eVJ5eXmKiIhQ8+bN1b59ewUGBrq7PABOZreez8/PV3Jy\nsvbu3aszZ84oKytLISEhioyM1J133qmWLVuqWjU+jwFUhCeBb8sAACAASURBVN36/uLFi9q/f7+O\nHTum1NRUZWdnS5LCw8NVp04dtWnTRg0bNqz0ugBvYre+B+Ba9DxQ9di97wsKCrRr1y4lJSXp7Nmz\nys/PV0hIiG677Ta1aNFCzZs353d9KwYAW1m6dKnRpk0bQ1KJXyEhIcbIkSONc+fOVVpNhYWFRlJS\nkpGQkGDEx8cbbdu2Nfz8/Ex1DR48uNLqAbyJnXo+JSXFmDlzptG9e3ejRo0aljVJMsLCwoznn3/e\nOHDggMvrAryNXfo+OzvbeP/9940nn3zSiImJuWHPX/uKiYkxpk6daqSlpbm0NsDb2KXvSys7O9to\n0qRJsTp5zw+Ujp16vnPnzqX6f7zV17x581xeI+AN7NT3JUlJSTFGjBhhhIeH37Dnb7nlFqNPnz7G\nqlWr3FKnnRGkADaRk5NjDBw4sNRvZmrVqmVs2rTJpTV98sknRrdu3YywsLCb1sMvVUDZ2Knnc3Jy\njHvuuadcv1j5+/sbs2bNMgoLC11SG+BN7NT3hmEYBw8eLPcfVaKjo42vvvrKZbUB3sJufV9aL774\nIu/5gXKwY88TpACuZce+v15BQYHxpz/9yQgICChT7z/55JOVVqOn4DodwAYKCwv15JNP6rPPPjPN\n+/r6qlGjRmrdurXCwsJMr507d049evTQ999/77K6li9frvXr1yszM9NlewBVkd16Pj8/X9u2bSvx\ntcDAQDVq1Ejt2rVTbGys/P39Ta/n5eVp7NixGjlypNPrAryJ3fr+RsLDw9WiRQvdc889+tWvfqXo\n6Ohix5w9e1ZPPPGEEhISKrU2wJN4Ut9fb/v27fqf//kft+0PeCpP7XkA5Wf3vs/Pz1dcXJwmTZqk\n3Nxc02thYWFq3ry57r77brVo0UJBQUEur8fTEaQANjBr1iwtX77cNPfcc8/p+PHjSklJ0e7du5We\nnq5//OMfatCggeOYy5cvq3///m4JOoKDgyt9T8Bb2L3nGzVqpClTpuj//u//dPHiRaWkpGj79u3a\nu3evLly4oAULFhR7TsKcOXP03nvvubQuwJPZue9btmypsWPH6uuvv9Yvv/yijIwMJSUl6Z///Kd+\n+OEHnTlzRikpKXr11VdVo0YNx3mFhYUaPny49u/f77LaAE9m5763kpeXp2HDhqmwsFAS7/mBsvCU\nnl+7dm2Zvh5++OFKqQvwRHbv+2HDhunLL790jKtXr67nn39e27dvV0ZGhvbt26dt27YpKSlJWVlZ\n2rdvn/7yl7+offv28vHxcWltHsndl8QAVd358+eN0NBQ0+Vzb775puXxJ0+eLHYf89dee80ltfXp\n08eQZNSpU8fo3bu38cc//tH43//9XyMtLc2YPHkyl/kD5WDHns/KyjIkGR06dDDWrFlTqtt0paen\nG+3atTPVFR4eznMTgBLYse8NwzAuXbpkHDx4sEzn7N6924iIiDDV1r9/f6fXBng6u/b9zVz/Hv/W\nW281XnrpJd7zA6Vg554vemsvAM5h5743DMNYsGCBaa969eoZP/74Y6nPT09Pd1ltnoqfoICbjRs3\nzvSDrVOnTjf9I+a6detM54SGhhrnz593em27du0yjh8/XuJrBClA+dix53Nzc42VK1eW+bxTp04Z\nwcHBpto++ugjp9UFeAs79n1FfPjhh6bagoODjStXrri7LMBWPLHvf/75Z8Pf39+x/9KlS3nPD5SS\nnXueIAVwDTv3/blz54yoqCjHPmFhYWX+ABWK49ZegBsVFhZq3rx5prkpU6bc9PK5bt26qWPHjo5x\nVlaWvvjiC6fX16ZNG9WvX9/p6wJVlV173t/fXz179izzefXq1dPgwYNNc2vWrHFWWYBXsGvfV8RT\nTz2latX+82tEdna2jh8/7saKAHvxxL4vLCzUsGHDlJeXJ0l6/PHH1bdv30rZG/B0ntjzACrG7n3/\nxhtv6Pz5847xn/70JzVt2tTp+1Q1BCmAG23dulXnzp1zjBs3bqwuXbqU6txhw4aZxsuWLXNmaQBc\nwBt7/vo3gZL4YypQhDf2/S233KJatWqZ5q7/RQ2o6jyx7//yl79o27Ztkq72OM89A0rPE3seQMXY\nue9zc3M1f/58x7hOnToaPny4U/eoqghSADdatWqVady9e/dSP8ype/fupvHGjRuVnZ3ttNoAOJ83\n9nxERIRp7I4H4wJ25o19L0k5OTmmcXh4uJsqAezH0/o+JSVFr776qmP85ptvql69ei7dE/Amntbz\nACrOzn2/dOlSpaenO8ZxcXHy9fV12vpVGUEK4EY//PCDady+fftSn1uvXj3FxMQ4xnl5eUpKSnJW\naQBcwBt7/tSpU6ZxZGSkmyoB7Mkb+z45OdkUmoaEhOi//uu/3FgRYC+e1vf//d//rcuXL0uS7rvv\nPo0YMcKl+wHextN6HkDF2bnvi4Y8Xbt2ddraVR1BCuBG+/btM41jY2PLdH7R44uuB8BevLHnt2zZ\nYhrzx1TAzBv7ftq0aabxwIEDVb16dTdVA9iPJ/X93/72N23YsEGS5Ofnp7lz55b6E7UArvKknr8m\nMzNTe/bs0ebNm/Wvf/1Lx44dU0FBgcv3BbyFnft+x44dpvGvfvUrSVJBQYFWr16tuLg43X777QoO\nDlZ4eLiaNWum/v37a968eY4PVqBk/MYDuMmVK1eKPUugrA92L3p8cnJyhesC4Bre2PMXL17UkiVL\nTHOPPvqom6oB7Mfb+j4nJ0cTJkzQwoULHXO1atXS66+/7raaALvxpL5PTU3V2LFjHeNx48bpjjvu\ncMlegLfypJ6/5q677tKePXtUWFhomg8JCVGHDh3Ur18/DRo0SAEBAS6tA/BUdu77zMxMHThwwDH2\n9fVVw4YNlZKSoqefflrff/99ieccOnRIX375pV555RVNnz5dv/vd75xSj7chSAHc5Pz58zIMwzH2\n8/NTdHR0mda49dZbTeOzZ886pTYAzueNPT9t2jRdunTJMY6KilKvXr3cWBFgL57Y99u2bVNWVpZj\nnJOTo7Nnz2rnzp366quvTPvXqVNHiYmJZf6eAG/mSX0fHx+vCxcuSJKaNWumV155xSX7AN7Mk3r+\nmqK3JLrm0qVLWrNmjdasWaPXXntN77zzjp544gmX1gJ4Ijv3fUpKiqm20NBQJSUlqX379qV6nunp\n06c1aNAg7d27V9OnT3dKTd6EIAVwk+v/+ChJQUFBZb6MPjg4+IZrArAPb+v5rVu36s9//rNp7pVX\nXlFQUJCbKgLsxxP7fvjw4frxxx9veExgYKCGDBmi119/XbVq1XJpPYCn8ZS+/+KLL7Rs2TLH+K9/\n/asCAwOdvg/g7Tyl58vql19+Uf/+/fXyyy9r1qxZ7i4HsBU79/21D0hc4+Pjo169ejlClKCgIA0Y\nMECdOnVSZGSk0tLStGnTJi1atEhXrlxxnDdjxgzdeuuteuGFF5xSl7cgSAHcpOgPyfL84lKjRo0b\nrgnAPryp58+ePau4uDjTfZTbtWunkSNHuqUewK68qe+v8ff316hRo/T73/+eEAUogSf0fVpamukP\nI0OHDuVBtEA5eULPS1fr6t69u3r06KHWrVuradOmCg8PV25urs6ePavvv/9eixcvVmJiounT7G+9\n9ZYiIyM1YcIEp9cEeCo7933RICUjI0MZGRmSpLZt2+of//iHGjRoYDrmd7/7nV555RX16dNHe/bs\nccyPHTtWDz/8MM9BvQ4PmwfcJCcnxzT29/cv8xpF71l6fXoMwF68pedzc3P1+OOP68SJE4650NBQ\nLVq0SL6+vpVeD2Bn3tL318vLy9PMmTN1++2369lnnzXdBgyAZ/T9H/7wB8ctRKKjo/XWW285dX2g\nKvGEnn/ppZd08uRJff311xoxYoTuu+8+1apVS35+fgoJCVHjxo01cOBArVy5Ups3by52y6FJkybd\n9GpVoCqxc99bBTK33Xab1q5dWyxEuSYmJkbr169XnTp1HHO5ubm8RyiCIAVwk6KJdV5eXpnXyM3N\nveGaAOzDG3q+sLBQTz/9tLZu3eqY8/X11WeffaamTZtWai2AJ/DEvv/hhx9kGIbj6+LFizpw4IAW\nLlyoHj16OI4rKCjQxx9/rPvvv19paWkurQnwJHbv+9WrV2vhwoWO8dtvv62aNWs6bX2gqrF7z0vS\nY489psjIyFIde//992vjxo2KiopyzBmGwTOUgOvYue+t1pk1a5YiIiJueG5UVFSx56IsWLDA7R/k\nshOCFMBNQkJCTOOiiXZpFP1hVnRNAPbhDT0fHx+vJUuWOMY+Pj6aO3euevfuXal1AJ7CG/o+NDRU\nzZo108CBA5WYmKhvvvnG9EvYnj17NHjw4EqtCbAzO/d9VlaWnnvuOcf4kUce0YABA5yyNlBV2bnn\ny6tp06bFnouSmJio9PR0N1UE2Iud+76kdWrWrKl+/fqV6vwnn3xSYWFhjnFOTo62b9/ulNq8AUEK\n4CZFf7hdvnzZdC/S0sjOzr7hmgDsw9N7fuLEifrrX/9qmps9e7aGDh1aaTUAnsbT+74k3bt316pV\nq1St2n9+jVi1apXWrl3rxqoA+7Bz30+YMEHHjx+XdPVhsx988IFT1gWqMjv3fEUMGjTI9Cy0wsJC\nrVu3zo0VAfZh574vaZ377rtPfn5+pTo/MDBQd999t2lu586dTqnNGxCkAG4SFRUlHx8fxzg/P99x\nr+LSOnXqlGkcHR3tlNoAOJ8n9/z06dOLXeL72muv6cUXX6yU/QFP5cl9fyP33Xefnn76adNcQkKC\ne4oBbMaufX/kyBFTcDJ16lTFxMRUeF2gqrNrz1dUtWrV1KVLF9NccnKye4oBbMbOfV+7du1ic2V9\nWPztt99uGpf1e/NmBCmAm9SoUaPYQ56ufUKstIoe37x58wrXBcA1PLXn33//fU2cONE0N3r0aE2d\nOtXlewOezlP7vjR+85vfmMbXPzsJqMrs2veZmZmmT8uOHTtWPj4+N/0q+v/7Tz/91PR6eHh4hWsD\nPJlde94Z6tevbxqfO3fOTZUA9mLnvm/SpIn8/f1Nc7fcckuZ1ih6fEZGRoXr8hYEKYAbFf1BmZSU\nVKbz9+3bd8P1ANiLp/X8/Pnz9cILL5jmnnnmGb399tsu3RfwJp7W96XVpEkT0/iXX35xUyWA/Xhr\n3wMombf2fNFbAeXn57upEsB+7Nr3vr6+xa5AKfpg+5sp+syXoKCgCtflLQhSADdq3bq1aVyWT3Om\npqbq6NGjjrGfn59iY2OdVRoAF/Cknv/qq6/0zDPPmD692r9/f82dO9d0GTOAG/Okvq+I0t53GagK\nqkrfA7jKW3u+6Ickrn9mClDV2bnv27RpYxqfOXOmTOcXvZVXZGRkhWvyFtXdXQBQlfXq1UszZsxw\njNetWyfDMEr1R8pvvvnGNO7atastHkoHwJqn9Pzq1as1YMAAFRQUOOZ69uyphQsXmh4wDeDmPKXv\ny+rYsWOmcUn3YwaqKjv2fdOmTbV27doynzd//nwtWLDAMX7ooYc0duxYx5gQFbBnzzvDd999ZxoX\nvdUXUJXZue8fe+wxzZ8/3zHetWtXmc4venzRZ6ZUZQQpgBu1b99eUVFROn/+vCQpJSVFGzduVNeu\nXW967scff2wa9+nTxyU1AnAeT+j5TZs2qV+/fsrLy3PMde3aVUuWLOGPJUA5eELfl8eKFStM4zvv\nvNNNlQD2Y8e+DwkJ0YMPPljm84r+IbVu3brlWgfwZnbs+YratGmTDh8+bJrr1q2bm6oB7MfOff/I\nI48oMDDQcYuuPXv26ODBg2rWrNlNz927d2+x24516dLFqfV5Mj5WCrhRtWrVNGTIENPc1KlTTbfS\nKcn69eu1ZcsWxzg0NFT9+/d3RYkAnMjuPb9z50717t1bV65ccczde++9+vrrrxUYGOj0/YCqwO59\nXx779u3TvHnzTHN2+cMPYAfe2PcArHlbz2dnZ2vUqFGmuVatWqlx48ZuqgiwHzv3fXBwsJ5++mnT\n3LRp00p17uuvv24ad+7cWdHR0U6rzdMRpABuNn78eNMlfJs2bTJdHljUqVOn9Oyzz5rmRo8eraio\nqBvu4+PjY/rauHFjheoGUD527fm9e/fqkUceUVZWlmOudevWWr16tW1uLwB4Kjv2fVZWluLj43Xy\n5MnSfRP/388//6yHH37YdNVaw4YN9cQTT5RpHcDb2bHvAbiOXXt+9OjROn369M2/gf/v/Pnzeuyx\nx7Rnzx7T/NSpU0u9BlBV2LXvJWny5MmmD0POnz9fn3zyyQ3PmTNnjr744gvT3MSJE2+6V1VCkAK4\nWVRUlCZNmmSamzhxouLj401veAoLC7Vs2TK1b9/e9FCqevXqacyYMS6pLScnR+vWrSvxKyUlxXRs\namqq5bGpqakuqQ/wRHbs+dTUVD300ENKS0tzzAUHB2vcuHHauXOnZW9bfQEws2PfFxQU6IMPPlDj\nxo3Vu3dvzZ8/X4cPHy7xU3R5eXnaunWrRowYoTZt2ujEiROO13x8fPTuu++qRo0aTq0P8HR27HsA\nrmPXnn/nnXfUuHFjPf744/rss89Me17vxIkTmjVrllq1aqUNGzaYXuvbt68ef/xxp9cGeDq79r0k\n3XbbbRo/frxp7tlnn9XIkSNN7+Ul6fjx4xoxYoRGjhxpmn/qqaf08MMPu6Q+T+Vj3OyaIwAuV1hY\nqD59+mjlypWmeV9fXzVs2FBhYWE6cuSILly4YHq9Ro0aWrt2rTp06HDTPYo+8Orbb7+96X0Ojx49\nqkaNGpXum7iBefPmFbvkEajK7Nbzpb2Xa2nx1gIozm59f+HCBUVERBSbDw0NVZ06dRQeHi7DMJSZ\nmamjR48qPz+/xP3mzp2rYcOG3bQ2oCqyW9+Xx5QpU0yfRB88eLASEhKctj7gTezY8yU9+PqWW25R\n3bp1FRYWpvz8fJ05c8byqpWOHTtqzZo1fGACsGDHvr+moKBAffv2LVabj4+PGjVqpMjISKWlpRX7\noLQktWnTRps2beLuFEVwRQpgA9WqVdOXX36puLg403xBQYFSUlK0e/fuYj90IyMjlZiYWKofugDs\nhZ4Hqh5P6fusrCwdPHhQO3bs0M6dO3Xw4MESQ5RmzZpp/fr1hCjADXhK3wNwDk/p+YsXLyo5OVnb\nt2/X7t27SwxRqlWrpnHjxmn9+vWEKMAN2LnvfX19tWTJEg0ePNg0bxiGUlJStGPHjhJDlMcee4wQ\nxQJBCmATgYGBWrx4sZYsWaLWrVtbHhccHKz4+HglJSU59dNmACoXPQ9UPXbq+7CwMG3atEnjx4/X\n3XffLX9//5ue4+fnp27dumnhwoX66aefnHolG+Ct7NT3AFzPbj3/0UcfKS4uTvXr1y/V8XXq1NHo\n0aOVnJysGTNmyM/Pz2W1Ad7Cbn1/vYCAACUkJGj16tU3DG58fHx0zz33aMWKFVq+fDkhigVu7QXY\n1KFDh7Rt2zadOnVKeXl5Cg8PV4sWLdShQwfTA6MAeAd6Hqh67NT3ubm5SkpK0uHDh5WamqqsrCxJ\nVwOX8PBwNW/eXK1atSpV4ALAmp36HoDr2ann09LStG/fPh07dkznzp1Tdna2fH19FRERoaioKN11\n111q3LhxpdYEeCM79X1Rp06d0vfff69jx44pJydHERERqlu3rjp06KDo6Gi31uYJCFIAAAAAAAAA\nAAAscGsvAAAAAAAAAAAACwQpAAAAAAAAAAAAFghSAAAAAAAAAAAALBCkAAAAAAAAAAAAWCBIAQAA\nAAAAAAAAsECQAgAAAAAAAAAAYIEgBQAAAAAAAAAAwAJBCgAAAAAAAAAAgAWCFAAAAAAAAAAAAAsE\nKQAAAAAAAAAAABYIUgAAAAAAAAAAACwQpAAAAAAAAAAAAFggSAEAAAAAAAAAALBAkAIAAAAAAAAA\nAGCBIAUAAAAAAAAAAMACQQoAAAAAAAAAAIAFghQAAAAAAAAAAAALBCkAAAAAAAAAAAAWCFIAAAAA\nAAAAAAAsEKQAAAAAAAAAAABYIEgBAAAAAAAAAACwQJACAAAAAAAAAABggSAFAAAAAAAAAADAAkEK\nAAAAAAAAAACABYIUAAAAAAAAAAAACwQpAAAAAGADCQkJ8vHxcXwlJCS4uyQAAAAAIkgBAAAAAAAA\nAACwRJACAAAAAAAAAABggSAFAAAAAAAAAADAAkEKAAAAAAAAAACABR/DMAx3FwEAAAAAAAAAAGBH\nXJECAAAAAAAAAABggSAFAAAAAAAAAADAAkEKAAAAAAAAAACAheruLgAAAAAAPF1WVpZ2796t5ORk\nXbhwQbm5uQoKClJERIRiYmIUGxur2rVru7vMCklOTtaPP/6oc+fOKTMzUzVr1lS9evV0//33q2bN\nmu4uDwAAAHAZghQAAAAAKKd//etfmjZtmlatWqW8vLwbHtuoUSP17NlTI0aMUGxsbLHXExISNHTo\nUMd43rx5GjJkSLHjpkyZoqlTp1a49m+//VZdunS54TGXLl3S7Nmz9emnn+rIkSMlHuPr66uOHTvq\n9ddfV8eOHStcFwAAAGA33NoLAAAAAMph+vTpateunZYuXXrTEEWSjhw5ovfee0+LFi2qhOoqbuXK\nlWrSpImmTJliGaJIUkFBgTZu3KhOnTpp+PDh+ve//12JVQIAAACuxxUpAAAAAFBGH3/8sSZOnFhs\nPjQ0VDExMQoODtaVK1eUnp6ukydPyjAMN1RZfh999JHi4+NVUFBgmg8KClLDhg0VGhqq9PR0paSk\nqLCw0HTemTNntHTpUvn4+FR22QAAAIBLEKQAAAAAQBnk5uZq3Lhxprl+/fpp4sSJatOmTbEAISsr\nSzt27FBiYqIWLlxY4f0HDRqk+++/v0zn7Nq1SxMmTDDNBQcHl3js+vXrNWLECFNA0rt3b40ZM0Yd\nOnRQ9er/+TUyPT1df/vb3zRt2jRlZWVJkpYvX66ZM2dq/PjxZaoRAAAAsCsfw9M+GgUAAAAAbpSY\nmKiePXs6xoMGDdKnn35aqnPz8vJ08uRJNW7cuNhrpX1GSlkdPXpU9957r86cOeOYGzdunGbMmFHs\n2AsXLqhFixb65ZdfJEnVqlXT3Llz9cwzz9xwj6SkJHXp0kXnzp2TJPn7++vYsWOqU6dOhesHAAAA\n3I1npAAAAABAGRw4cMA0jo+PL/W5/v7+JYYorpKRkaEePXqYQpS4uDhNnz69xOM//PBDR4giSW+8\n8cZNQxRJio2NVUJCgmOcl5en9957r/yFAwAAADZCkAIAAAAAZXDlyhXT2M/Pz02V3Fhubq769u2r\n/fv3O+Y6duyohISEEp9fUlBQoHfffdcxbtCggcaMGVPq/R599FHdddddjvFXX31VzsoBAAAAeyFI\nAQAAAIAyqFevnmnsjOeeOJthGBoyZIg2b97smGvevLmWL1+ugICAEs/58ccfdfr0acc4Li6uzCHR\nQw895Pj3/fv36/z582WsHAAAALAfghQAAAAAKIMHHnhAvr6+jvHbb7+t+Ph4paSkuLEqswkTJujv\nf/+7Y1y7dm2tXr1aERERluds2bLFNP71r39d5n0bNGhgGu/bt6/MawAAAAB2Q5ACAAAAAGVQv379\nYs8N+eCDD9SkSRP9+te/1oQJE5SYmKj09HS31DdnzhzNnDnTMQ4ODtbKlSsVExNzw/OKhh79+/eX\nj49Pmb6ef/550xru+m8AAAAAOBNBCgAAAACU0TvvvKPevXsXm9+1a5dmzJihnj17KioqSnfddZcm\nTZqkvXv3VkpdK1as0KhRoxxjX19f/f3vfy/V1SVpaWlOryczM9PpawIAAACVjSAFAAAAAMooMDBQ\ny5cv16JFi9S6desSjzEMQz/88IPefPNNtWzZUr169dKhQ4dcVtPOnTsVFxengoICx9y7776rXr16\nler8CxcuOL2mwsJCp68JAAAAVLbq7i4AAAAAADyRj4+PnnrqKT311FNKSkrS2rVrtXHjRn333Xcl\nPmR91apV2rx5s1atWqWOHTs6tZYjR46oV69eunz5smNu3LhxGjFiRKnXCAoKMo2nT5+utm3bVqiu\nO+64o0LnAwAAAHZAkAIAAAAAFRQbG6vY2FiNHj1ahmFo//79+uabb7RkyRJ99913juOysrL029/+\nVocPH1ZISIhT9s7IyNCjjz6qM2fOOObi4uI0ffr0Mq0TFRVlGjdq1EgPPvigU2oEAAAAPBm39gIA\nAAAAJ/Lx8VGLFi00evRobdmyRZs3bzaFFGfPntWCBQucsldubq769Omj/fv3O+Y6deqkhIQE+fj4\nlGmtRo0amcauvA0ZAAAA4EkIUgAAAADAhTp27Fjs6pDrr1IpL8MwNHjwYG3ZssUx16JFCy1btkwB\nAQFlXq9r166m8YYNGypcIwAAAOANCFIAAAAAwMU6dOhgGpf0DJWyGj9+vD7//HPHuHbt2kpMTFRE\nRES51rv77rtN527YsEFJSUkVrhMAAADwdAQpAAAAAOBiRYOT8oYd18yZM0ezZs1yjIODg7Vq1SrF\nxMSUe00/Pz/94Q9/cIwNw9Dw4cOVn59fkVIBAAAAj0eQAgAAAABl8Oqrr2rhwoX697//XarjDcPQ\n7NmzTXNt27Yt9/4rVqzQqFGjHGNfX199/vnnFVrzmtGjR6t27dqO8Xfffaff/va3yszMLPUa2dnZ\neuedd/Txxx9XuB4AAADADqq7uwAAAAAA8CQ//fSTpk2bpjFjxug3v/mN+vTpo3bt2ikyMtJ0XGFh\nobZu3aqpU6dq3bp1jvmgoCANGDCg3PvHxcWpoKDAMe7fv78CAgJMe5RG27Zti10ZExYWpi+//FLd\nunVzXIny9ddf64477tCLL76oJ554Qg0aNCi21okTJ7Rt2zYtW7ZMK1as0MWLFzV58uRyfHcAAACA\n/RCkAAAAAEA5nD17Vh9++KE+/PBDSVLdunUVFRWl4OBgZWdn68iRI7p06VKx82bPnq1bb7213Pte\nvnzZNF68eLEWL15c5nW+/fZbdenSpdh8x44dNX/+HbW4WwAAAvVJREFUfA0dOlQ5OTmSpFOnTunl\nl1/Wyy+/rLp16yo6OloBAQHKzMzU2bNnlZGRUa7vBQAAAPAEBCkAAAAA4ASpqalKTU21fL1GjRp6\n++23NXz48Eqsqnzi4uLUrFkzDRgwQAcOHDC9drPvU7p6u7F69eq5skQAAACg0vCMFAAAAAAog7lz\n5+qTTz5Rv379TM8TsVKzZk0999xz2rdvn0eEKNe0bdtWSUlJmj9/vu699175+vre8PiAgAA98MAD\neuutt3TixAn9/ve/r6RKAQAAANfyMQzDcHcRAAAAAOCpjhw5ouTkZB07dkyZmZnKy8tTSEiIatWq\npVatWik2NlbVq3v+zQAyMzP1z3/+U6dPn9b58+eVn5+v0NBQRUdHq3nz5rr99tsVGBjo7jIBAAAA\npyNIAQAAAAAAAAAAsMCtvQAAAAAAAAAAACwQpAAAAAAAAAAAAFggSAEAAAAAAAAAALBAkAIAAAAA\nAAAAAGCBIAUAAAAAAAAAAMACQQoAAAAAAAAAAIAFghQAAAAAAAAAAAALBCkAAAAAAAAAAAAWCFIA\nAAAAAAAAAAAsEKQAAAAAAAAAAABYIEgBAAAAAAAAAACwQJACAAAAAAAAAABggSAFAAAAAAAAAADA\nAkEKAAAAAAAAAACABYIUAAAAAAAAAAAACwQpAAAAAAAAAAAAFghSAAAAAAAAAAAALBCkAAAAAAAA\nAAAAWCBIAQAAAAAAAAAAsECQAgAAAAAAAAAAYIEgBQAAAAAAAAAAwAJBCgAAAAAAAAAAgAWCFAAA\nAAAAAAAAAAsEKQAAAAAAAAAAABYIUgAAAAAAAAAAACwQpAAAAAAAAAAAAFggSAEAAAAAAAAAALBA\nkAIAAAAAAAAAAGCBIAUAAAAAAAAAAMACQQoAAAAAAAAAAIAFghQAAAAAAAAAAAALBCkAAAAAAAAA\nAAAWCFIAAAAAAAAAAAAsEKQAAAAAAAAAAABYIEgBAAAAAAAAAACwQJACAAAAAAAAAABg4f8BHgCC\nNQk+Uz4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res_b.pop('HWT')\n", + "exp.plot_compression_experiments(res_b, comp_ratios,\n", + " \"../figs/compression_blog2.png\")\n", + "Image(filename=\"../figs/compression_blog2.png\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Reconstruction Error: FSWT vs GWT" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " GWT error| FSWT error| Reduction\n", + "-----------------------------------------------\n", + " 760.4954199| 667.9291131| -0.1217184\n", + " 552.5279946| 483.1301899| -0.1256005\n", + " 408.4589303| 310.3847051| -0.2401079\n", + " 230.1754795| 130.1136140| -0.4347199\n", + " 132.3424893| 27.8478488| -0.7895774\n", + " 55.7708549| 0.1880823| -0.9966276\n", + "\n" + ] + } + ], + "source": [ + "reduction = np.divide(res_b['FSWT'], res_b['GWT']) - 1\n", + "text = \"{:>15s}|{:>15s}|{:>15s}\\n\".format('GWT error', 'FSWT error', 'Reduction')\n", + "text += \"-\"*47 + \"\\n\"\n", + "for i in range(len(comp_ratios)):\n", + " text += \"{:>15.7f}|{:>15.7f}|{:>15.7f}\\n\".format(res_b['GWT'][i], res_b['FSWT'][i], reduction[i])\n", + "print(text)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Average Computation Time (in seconds)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Transform | Small Traffic Traffic Wikipedia Human Blogs\n", + "HWT | 0.1105079 53.0783952 379.8365982 5.1249488 10.7540500\n", + "FT | 0.0714019 33.3342006 168.3058656 3.8720605 8.3236080\n", + "GWT | 0.5620325 32.1109771 513.3351845 19.0809389 51.8282435\n", + "SWT | 1.5199850 Unavailable Unavailable Unavailable Unavailable\n", + "FSWT | 0.5427060 23.3150091 517.8988918 20.3815869 52.4716242\n", + "\n" + ] + } + ], + "source": [ + "times = [time_smt, time_t, time_w, time_h, time_b]\n", + "algs = ['HWT', 'FT', 'GWT', 'SWT', 'FSWT']\n", + "transforms = ('Transform', 'Small Traffic', 'Traffic', 'Wikipedia', 'Human', 'Blogs')\n", + "text = \"{:10s}|{:>15s}{:>15s}{:>15s}{:>15s}{:>15s}\".format(*transforms) + \"\\n\"\n", + "for alg in algs:\n", + " text += \"{:10s}|\".format(alg)\n", + " for time in times:\n", + " msg = np.mean(time.get(alg, 0.))\n", + " if msg != 0.:\n", + " text += \"{:>15.7f}\".format(msg)\n", + " else:\n", + " text += \"{:>15s}\".format('Unavailable')\n", + " text += \"\\n\"\n", + "\n", + "print(text)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.4.6" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/synthetic-data.ipynb b/notebooks/synthetic-data.ipynb similarity index 99% rename from synthetic-data.ipynb rename to notebooks/synthetic-data.ipynb index 11743bb..becd603 100644 --- a/synthetic-data.ipynb +++ b/notebooks/synthetic-data.ipynb @@ -18,34 +18,19 @@ "cell_type": "code", "execution_count": 1, "metadata": { - "collapsed": false + "collapsed": true }, "outputs": [], "source": [ - "import networkx\n", - "import math\n", - "import scipy.optimize\n", - "import numpy\n", + "import numpy as np\n", + "import random\n", "import sys\n", - "from scipy import linalg\n", - "import matplotlib.pyplot as plt\n", + "\n", "from IPython.display import Image\n", - "import pywt\n", - "import scipy.fftpack\n", - "import random\n", - "import operator\n", - "import copy\n", - "from collections import deque\n", - "from sklearn.preprocessing import normalize\n", - "from sklearn.cluster import SpectralClustering\n", - "from matplotlib.lines import Line2D\n", - "from lib.io import *\n", - "from lib.vis import *\n", - "from lib.graph_signal_proc import *\n", - "from lib.syn import *\n", - "from lib.experiments import *\n", - "from lib.static import *\n", - "from lib.datasets import *" + "\n", + "sys.path.append('../')\n", + "\n", + "import lib.experiments as exp" ] }, { @@ -59,26 +44,26 @@ "cell_type": "code", "execution_count": 2, "metadata": { - "collapsed": false + "collapsed": true }, "outputs": [], "source": [ "sizes = range(200, 1001, 200)\n", "\n", - "num = 1\n", + "num = 10\n", "balance = 1.\n", "sparsity = 0.8\n", "noise = .1\n", "energy = 100\n", - "res_t = size_time_experiment(sizes, balance, sparsity, energy, noise, num)" + "random.seed(3)\n", + "np.random.seed(7)\n", + "res_t = exp.size_time_experiment(sizes, balance, sparsity, energy, noise, num)" ] }, { "cell_type": "code", "execution_count": 3, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -93,8 +78,9 @@ } ], "source": [ - "plot_size_time_experiment(numpy.array(res_t), sizes, \"figs/size_time_synthetic.png\")\n", - "Image(filename=\"figs/size_time_synthetic.png\")" + "exp.plot_size_time_experiment(np.array(res_t), sizes,\n", + " \"../figs/size_time_synthetic.png\")\n", + "Image(filename=\"../figs/size_time_synthetic.png\")" ] }, { @@ -108,7 +94,7 @@ "cell_type": "code", "execution_count": 4, "metadata": { - "collapsed": false + "collapsed": true }, "outputs": [], "source": [ @@ -118,15 +104,16 @@ "balance = 1.\n", "noise = .5\n", "energy = 100\n", - "res_acc = sparsity_acc_experiment(sparsity, size, balance, energy, noise, num)" + "random.seed(3)\n", + "np.random.seed(7)\n", + "res_acc = exp.sparsity_acc_experiment(sparsity, size, balance,\n", + " energy, noise, num)" ] }, { "cell_type": "code", "execution_count": 5, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -141,8 +128,9 @@ } ], "source": [ - "plot_sparsity_acc_experiment(res_acc, sparsity, \"figs/sparsity_acc_synthetic.png\")\n", - "Image(filename=\"figs/sparsity_acc_synthetic.png\")" + "exp.plot_sparsity_acc_experiment(res_acc, sparsity,\n", + " \"../figs/sparsity_acc_synthetic.png\")\n", + "Image(filename=\"../figs/sparsity_acc_synthetic.png\")" ] }, { @@ -156,7 +144,7 @@ "cell_type": "code", "execution_count": 6, "metadata": { - "collapsed": false + "collapsed": true }, "outputs": [], "source": [ @@ -166,15 +154,16 @@ "num = 10\n", "sparsity = .5\n", "balance = 1.\n", - "res_acc = energy_acc_experiment(energy, size, sparsity, noise, balance, num)" + "random.seed(3)\n", + "np.random.seed(7)\n", + "res_acc = exp.energy_acc_experiment(energy, size, sparsity,\n", + " noise, balance, num)" ] }, { "cell_type": "code", "execution_count": 8, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -189,9 +178,10 @@ } ], "source": [ - "plot_energy_acc_experiment(res_acc, energy, \"figs/energy_acc_synthetic.png\")\n", + "exp.plot_energy_acc_experiment(res_acc, energy,\n", + " \"../figs/energy_acc_synthetic.png\")\n", "\n", - "Image(filename=\"figs/energy_acc_synthetic.png\")" + "Image(filename=\"../figs/energy_acc_synthetic.png\")" ] }, { @@ -205,7 +195,7 @@ "cell_type": "code", "execution_count": 9, "metadata": { - "collapsed": false + "collapsed": true }, "outputs": [], "source": [ @@ -215,15 +205,15 @@ "sparsity = 1.\n", "balance = 1.\n", "energy = 100\n", - "res_acc = noise_acc_experiment(noise, size, sparsity, energy, balance, num)" + "random.seed(3)\n", + "np.random.seed(7)\n", + "res_acc = exp.noise_acc_experiment(noise, size, sparsity, energy, balance, num)" ] }, { "cell_type": "code", "execution_count": 11, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -238,8 +228,8 @@ } ], "source": [ - "plot_noise_acc_experiment(res_acc, noise, \"figs/noise_acc_synthetic.png\")\n", - "Image(filename=\"figs/noise_acc_synthetic.png\")" + "exp.plot_noise_acc_experiment(res_acc, noise, \"../figs/noise_acc_synthetic.png\")\n", + "Image(filename=\"../figs/noise_acc_synthetic.png\")" ] } ], @@ -259,9 +249,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.4.3" + "version": "3.4.6" } }, "nbformat": 4, - "nbformat_minor": 0 + "nbformat_minor": 1 } diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000..b1bf9e2 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,6 @@ +matplotlib +# The code also supports NetworkX 2.0 but different versions +# could lead to a test failure due to a slightly different output +networkx==1.11 +numpy +scipy