|
| 1 | +import { getPage } from '../helper/browser' |
| 2 | + |
| 3 | +describe('segmentation', () => { |
| 4 | + /** @type {Awaited<ReturnType<getPage>>} */ |
| 5 | + let page |
| 6 | + beforeEach(async () => { |
| 7 | + page = await getPage() |
| 8 | + |
| 9 | + const dataURL = await page.evaluate(() => { |
| 10 | + const canvas = document.createElement('canvas') |
| 11 | + canvas.width = 100 |
| 12 | + canvas.height = 100 |
| 13 | + const context = canvas.getContext('2d') |
| 14 | + const imdata = context.createImageData(canvas.width, canvas.height) |
| 15 | + for (let i = 0, c = 0; i < canvas.height; i++) { |
| 16 | + for (let j = 0; j < canvas.width; j++, c += 4) { |
| 17 | + imdata.data[c] = Math.floor(Math.random() * 256) |
| 18 | + imdata.data[c + 1] = Math.floor(Math.random() * 256) |
| 19 | + imdata.data[c + 2] = Math.floor(Math.random() * 256) |
| 20 | + imdata.data[c + 3] = Math.random() |
| 21 | + } |
| 22 | + } |
| 23 | + context.putImageData(imdata, 0, 0) |
| 24 | + return canvas.toDataURL() |
| 25 | + }) |
| 26 | + const data = dataURL.replace(/^data:image\/\w+;base64,/, '') |
| 27 | + const buf = Buffer.from(data, 'base64') |
| 28 | + |
| 29 | + const dataSelectBox = page.locator('#ml_selector dl:first-child dd:nth-child(2) select') |
| 30 | + await dataSelectBox.selectOption('upload') |
| 31 | + |
| 32 | + const uploadFileInput = page.locator('#ml_selector #data_menu input[type=file]') |
| 33 | + await uploadFileInput.setInputFiles({ |
| 34 | + name: 'image_kittler_illingworth.png', |
| 35 | + mimeType: 'image/png', |
| 36 | + buffer: buf, |
| 37 | + }) |
| 38 | + |
| 39 | + const taskSelectBox = page.locator('#ml_selector dl:first-child dd:nth-child(5) select') |
| 40 | + await taskSelectBox.selectOption('SG') |
| 41 | + const modelSelectBox = page.locator('#ml_selector .model_selection #mlDisp') |
| 42 | + await modelSelectBox.selectOption('kittler_illingworth') |
| 43 | + }) |
| 44 | + |
| 45 | + afterEach(async () => { |
| 46 | + await page?.close() |
| 47 | + }) |
| 48 | + |
| 49 | + test('initialize', async () => { |
| 50 | + const methodMenu = page.locator('#ml_selector #method_menu') |
| 51 | + const buttons = methodMenu.locator('.buttons') |
| 52 | + |
| 53 | + const threshold = buttons.locator('span:last-child') |
| 54 | + await expect(threshold.textContent()).resolves.toBe('') |
| 55 | + }) |
| 56 | + |
| 57 | + test('learn', async () => { |
| 58 | + const methodMenu = page.locator('#ml_selector #method_menu') |
| 59 | + const buttons = methodMenu.locator('.buttons') |
| 60 | + |
| 61 | + await expect(page.locator('#image-area canvas').count()).resolves.toBe(1) |
| 62 | + const threshold = buttons.locator('span:last-child') |
| 63 | + await expect(threshold.textContent()).resolves.toBe('') |
| 64 | + |
| 65 | + const fitButton = buttons.locator('input[value=Fit]') |
| 66 | + await fitButton.dispatchEvent('click') |
| 67 | + |
| 68 | + await expect(threshold.textContent()).resolves.toMatch(/^[0-9.]+$/) |
| 69 | + await expect(page.locator('#image-area canvas').count()).resolves.toBe(2) |
| 70 | + }) |
| 71 | +}) |
0 commit comments