|
| 1 | +import pytest |
| 2 | +import torch |
| 3 | +import torch.nn as nn |
| 4 | + |
| 5 | +from continuiti.networks import MultiHeadAttention, ScaledDotProductAttention |
| 6 | + |
| 7 | + |
| 8 | +@pytest.fixture(scope="session") |
| 9 | +def some_multi_head_attn(): |
| 10 | + return MultiHeadAttention( |
| 11 | + hidden_dim=32, |
| 12 | + n_heads=4, |
| 13 | + attention=ScaledDotProductAttention(dropout_p=0.25), |
| 14 | + bias=True, |
| 15 | + ) |
| 16 | + |
| 17 | + |
| 18 | +@pytest.fixture(scope="class") |
| 19 | +def random_qkv(): |
| 20 | + batch_size = 3 |
| 21 | + target_length = 5 |
| 22 | + source_length = 7 |
| 23 | + embedding_dim = 8 |
| 24 | + |
| 25 | + q = torch.rand(batch_size, target_length, embedding_dim) |
| 26 | + k = torch.rand(batch_size, source_length, embedding_dim) |
| 27 | + v = torch.rand(batch_size, source_length, embedding_dim) |
| 28 | + return q, k, v |
| 29 | + |
| 30 | + |
| 31 | +class TestMultiHeadAttention: |
| 32 | + def test_can_initialize(self, some_multi_head_attn): |
| 33 | + assert isinstance(some_multi_head_attn, MultiHeadAttention) |
| 34 | + |
| 35 | + def test_output_shape(self, some_multi_head_attn): |
| 36 | + batch_size = 3 |
| 37 | + query_size = 5 |
| 38 | + key_val_size = 7 |
| 39 | + |
| 40 | + query = torch.rand(batch_size, query_size, some_multi_head_attn.hidden_dim) |
| 41 | + key = torch.rand(batch_size, key_val_size, some_multi_head_attn.hidden_dim) |
| 42 | + val = torch.rand(batch_size, key_val_size, some_multi_head_attn.hidden_dim) |
| 43 | + |
| 44 | + out = some_multi_head_attn(query, key, val) |
| 45 | + |
| 46 | + gt_attn = nn.MultiheadAttention( |
| 47 | + embed_dim=some_multi_head_attn.hidden_dim, |
| 48 | + num_heads=some_multi_head_attn.n_heads, |
| 49 | + batch_first=True, |
| 50 | + bias=True, |
| 51 | + ) |
| 52 | + correct_out, _ = gt_attn(query, key, val) |
| 53 | + |
| 54 | + assert out.shape == correct_out.shape |
| 55 | + |
| 56 | + def test_zero_value(self, random_qkv): |
| 57 | + """Edge case testing for correctness.""" |
| 58 | + q, k, v = random_qkv |
| 59 | + v = torch.zeros(v.shape) |
| 60 | + |
| 61 | + m_attn = MultiHeadAttention(q.size(-1), 4, bias=False) |
| 62 | + |
| 63 | + # V = 0 -> attn score == 0 |
| 64 | + out = m_attn(q, k, v) |
| 65 | + assert torch.allclose(out, torch.zeros(out.shape)) |
| 66 | + |
| 67 | + def test_gradient_flow(self, some_multi_head_attn): |
| 68 | + hidden_size = 32 |
| 69 | + some_multi_head_attn.eval() # Turn off dropout or other stochastic processes |
| 70 | + query = key = value = torch.rand((10, 5, hidden_size), requires_grad=True) |
| 71 | + output = some_multi_head_attn( |
| 72 | + value, |
| 73 | + key, |
| 74 | + query, |
| 75 | + ) |
| 76 | + output.sum().backward() |
| 77 | + |
| 78 | + assert query.grad is not None, "Gradients not flowing to query" |
| 79 | + assert key.grad is not None, "Gradients not flowing to key" |
| 80 | + assert value.grad is not None, "Gradients not flowing to value" |
| 81 | + |
| 82 | + def test_equal_to_torch(self, random_qkv): |
| 83 | + q, k, v = random_qkv |
| 84 | + mask = torch.rand(q.size(0), q.size(1), k.size(1)) < 0.2 |
| 85 | + |
| 86 | + heads = 2 |
| 87 | + embedding_dim = q.size(-1) |
| 88 | + |
| 89 | + gt_attn = nn.MultiheadAttention(q.size(-1), heads, batch_first=True) |
| 90 | + attn = MultiHeadAttention( |
| 91 | + hidden_dim=q.size(-1), |
| 92 | + n_heads=heads, |
| 93 | + attention=ScaledDotProductAttention(dropout_p=0.0), |
| 94 | + bias=True, |
| 95 | + ) |
| 96 | + |
| 97 | + # align in projection |
| 98 | + attn.key_project.weight = nn.Parameter( |
| 99 | + gt_attn.in_proj_weight[embedding_dim : 2 * embedding_dim, :] |
| 100 | + ) |
| 101 | + attn.key_project.bias = nn.Parameter( |
| 102 | + gt_attn.in_proj_bias[embedding_dim : 2 * embedding_dim] |
| 103 | + ) |
| 104 | + |
| 105 | + attn.value_project.weight = nn.Parameter( |
| 106 | + gt_attn.in_proj_weight[2 * embedding_dim :, :] |
| 107 | + ) |
| 108 | + attn.value_project.bias = nn.Parameter( |
| 109 | + gt_attn.in_proj_bias[2 * embedding_dim :] |
| 110 | + ) |
| 111 | + |
| 112 | + attn.query_project.weight = nn.Parameter( |
| 113 | + gt_attn.in_proj_weight[:embedding_dim, :] |
| 114 | + ) |
| 115 | + attn.query_project.bias = nn.Parameter(gt_attn.in_proj_bias[:embedding_dim]) |
| 116 | + |
| 117 | + # align out projection |
| 118 | + attn.out_project.weight = nn.Parameter(gt_attn.out_proj.weight) |
| 119 | + attn.out_project.bias = nn.Parameter(gt_attn.out_proj.bias) |
| 120 | + |
| 121 | + # forward pass |
| 122 | + out = attn(q, k, v, attn_mask=mask) |
| 123 | + |
| 124 | + # torch applies masks differently to scaled-dot-product and multi-head attention (inversed). |
| 125 | + gt_mask = torch.repeat_interleave(mask, heads, 0).logical_not() |
| 126 | + ground_truth, _ = gt_attn(q, k, v, need_weights=False, attn_mask=gt_mask) |
| 127 | + |
| 128 | + assert torch.allclose( |
| 129 | + out[~torch.isnan(out)], ground_truth[~torch.isnan(ground_truth)] |
| 130 | + ) |
| 131 | + |
| 132 | + def test_full_mask_identical_to_none(self, random_qkv): |
| 133 | + heads = 2 |
| 134 | + q, k, v = random_qkv |
| 135 | + |
| 136 | + mask = torch.ones(q.size(0), q.size(1), k.size(1)) |
| 137 | + |
| 138 | + attn = MultiHeadAttention( |
| 139 | + hidden_dim=q.size(-1), |
| 140 | + n_heads=heads, |
| 141 | + attention=ScaledDotProductAttention(dropout_p=0.0), |
| 142 | + bias=True, |
| 143 | + ) |
| 144 | + |
| 145 | + # forward pass |
| 146 | + out_masked = attn(q, k, v, attn_mask=mask) |
| 147 | + out_none = attn(q, k, v) |
| 148 | + |
| 149 | + assert torch.allclose(out_masked, out_none) |
| 150 | + |
| 151 | + def test_mask_all_but_one(self, random_qkv): |
| 152 | + q, k, v = random_qkv |
| 153 | + q.requires_grad = True |
| 154 | + k.requires_grad = True |
| 155 | + v.requires_grad = True |
| 156 | + |
| 157 | + # Masks out the last kvs |
| 158 | + mask = torch.ones(q.size(0), q.size(1), k.size(1), dtype=torch.bool) |
| 159 | + mask[:, :, -1] = 0 |
| 160 | + |
| 161 | + attn = MultiHeadAttention( |
| 162 | + hidden_dim=q.size(-1), |
| 163 | + n_heads=2, |
| 164 | + attention=ScaledDotProductAttention(dropout_p=0.0), |
| 165 | + bias=True, |
| 166 | + ) |
| 167 | + out = attn(q, k, v, attn_mask=mask) |
| 168 | + |
| 169 | + eq = torch.sum(out) |
| 170 | + eq.backward() |
| 171 | + |
| 172 | + assert not torch.any(torch.isnan(q.grad)) |
| 173 | + assert not torch.any( |
| 174 | + torch.isclose(q.grad, torch.zeros(q.shape)) |
| 175 | + ) # all queries have a non-zero gradient |
| 176 | + |
| 177 | + assert not torch.any(torch.isnan(v.grad)) |
| 178 | + unmasked_rows = v.grad[:, :-1, :] # gradient on unmasked values is non-zero |
| 179 | + assert not torch.any( |
| 180 | + torch.isclose(unmasked_rows, torch.zeros(unmasked_rows.shape)) |
| 181 | + ) |
| 182 | + masked_row = v.grad[:, -1, :] # gradient on masked value is zero |
| 183 | + assert torch.allclose(masked_row, torch.zeros(masked_row.shape)) |
| 184 | + |
| 185 | + assert not torch.any(torch.isnan(k.grad)) |
| 186 | + unmasked_rows = k.grad[:, :-1, :] # gradient on unmasked keys is non-zero |
| 187 | + assert not torch.any( |
| 188 | + torch.isclose(unmasked_rows, torch.zeros(unmasked_rows.shape)) |
| 189 | + ) |
| 190 | + masked_row = k.grad[:, -1, :] # gradient on masked key is zero |
| 191 | + assert torch.allclose(masked_row, torch.zeros(masked_row.shape)) |
0 commit comments