Skip to content

Commit c34e18f

Browse files
committed
Added functionSignatures.json in toolbox\multivariate:
- Added code suggestions to CorAna, it has 2 mutually exclusive syntaxes that hide unnecessary inputs when N is a table. - Added code suggestions to corrNominal, it has 2 mutually exclusive syntaxes that hide unnecessary inputs when N is a table. - Added code suggestions to corrOrdinal, it has 2 mutually exclusive syntaxes that hide unnecessary inputs when N is a table. Typedefs changes and additions inside multivariate\functionSignatures.json: - Added complementary inputs to the Typedefs at the start of document for the function CorAna, corrNominal and corrOrdinal Fixed Typos in documentation: - In CorAna.m, at line 105, changed Sup.r in Sup.c
1 parent 049a28d commit c34e18f

File tree

2 files changed

+181
-1
lines changed

2 files changed

+181
-1
lines changed

toolbox/multivariate/CorAna.m

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -102,7 +102,7 @@
102102
% of the supplementary units can be given using
103103
% Sup.Lc as a cell array of strings.
104104
% Sup.Lc = cell array of strings containing the labels of the
105-
% supplementary units, if Sup.r is a 2D numeric array.
105+
% supplementary units, if Sup.c is a 2D numeric array.
106106
% Example - 'Sup', Sup=struct; Sup.c={'c2' 'c4'}
107107
% Data Types - struct
108108
% REMARK: The default value of Sup is a missing
Lines changed: 180 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,180 @@
1+
{
2+
"_schemaVersion": "1.0.0",
3+
4+
"_typedefs": {
5+
6+
"Lr": {
7+
8+
"purpose":"Cell array of strings containing the labels of the rows of the input",
9+
"type":["cell", "size=1,N"],
10+
"elements":{
11+
"type":[["string"], ["char"]]
12+
}
13+
},
14+
15+
"Lc": {
16+
17+
"purpose":"Cell array of strings containing the labels of the columns of the input",
18+
"type":["cell", "size=1,N"],
19+
"elements":{
20+
"type":[["string"], ["char"]]
21+
}
22+
},
23+
24+
"Sup_CorAna": {
25+
26+
"purpose":"Structure containing indexes or names of supplementary rows or columns",
27+
"type":"struct",
28+
"fields":[
29+
{"name":"r", "type":[["single", "vector"], ["double", "vector"], ["cell"]], "purpose":"vector containing row indexes or vector of cell array of strings or table or 2D numeric array, containing supplementary rows"},
30+
{"name":"Lr", "type":"cell", "purpose":"cell array of strings containing the labels of the supplementary units if Sup.r is a 2D numeric array"},
31+
{"name":"c", "type":[["single", "vector"], ["double", "vector"], ["cell"]], "purpose":"vector containing column indexes or vector of cell array of strings or table or 2D numeric array use as supplementary columns, or table or 2D numeric array containing supplementary rows"},
32+
{"name":"Lc", "type":"cell", "purpose":"cell array of strings containing the labels of the supplementary units if Sup.c is a 2D numeric array"}
33+
]
34+
},
35+
36+
"Plots_CorAna": {
37+
38+
"purpose":"Correspondence analysis plots additional options",
39+
"type":"struct",
40+
"fields":[
41+
{"name":"alpha", "type":[["numeric", "scalar"], ["char"], ["string"]], "purpose":"Type of plot displayed"},
42+
{"name":"FontSize", "type":["numeric", "scalar"], "purpose":"Font size of labels"},
43+
{"name":"MarkerSize", "type":["numeric", "scalar"], "purpose":"Size of plot markers"}
44+
]
45+
}
46+
},
47+
48+
"CorAna":
49+
{
50+
"inputs":
51+
[
52+
{"name":"N", "kind":"required", "type":[["single", "2d"], ["double", "2d"]], "purpose":"Contingency table (default) or n-by-2 input dataset"},
53+
{"name":"k", "kind":"namevalue", "type":["double", "size=1,1"], "purpose":"Number of dimensions to retain"},
54+
{"name":"Lr", "kind":"namevalue", "type":"cell:Lr", "purpose":"Vector of row labels"},
55+
{"name":"Lc", "kind":"namevalue", "type":"cell:Lc", "purpose":"Vector of column labels"},
56+
{"name":"Sup", "kind":"namevalue", "type":"struct:Sup_CorAna", "purpose":"Structure containing indexes or names of supplementary rows or columns"},
57+
{"name":"datamatrix", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Data matrix or contingency table"},
58+
{"name":"plots", "kind":"namevalue", "type":[["struct:Plots_CorAna"], ["numeric", "scalar", "choices={0,1}"]], "purpose":"Display plots on screen"},
59+
{"name":"dispresults", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Display results on screen"},
60+
{"name":"d1", "kind":"namevalue", "type":["numeric", "scalar"], "purpose":"Dimension to show on the horizontal axis"},
61+
{"name":"d2", "kind":"namevalue", "type":["numeric", "scalar"], "purpose":"Dimension to show on the vertical axis"}
62+
],
63+
64+
"outputs":
65+
[
66+
{"name":"out", "type":"struct", "purpose":"Structure containing the output of the function"}
67+
],
68+
69+
"description":"Perform correspondence analysis"
70+
},
71+
72+
"CorAna":
73+
{
74+
"inputs":
75+
[
76+
{"name":"N", "kind":"required", "type":"table", "purpose":"Contingency table (default) or n-by-2 input dataset"},
77+
{"name":"k", "kind":"namevalue", "type":["double", "size=1,1"], "purpose":"Number of dimensions to retain"},
78+
{"name":"Sup", "kind":"namevalue", "type":"struct:Sup_CorAna", "purpose":"Structure containing indexes or names of supplementary rows or columns"},
79+
{"name":"datamatrix", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Data matrix or contingency table"},
80+
{"name":"plots", "kind":"namevalue", "type":[["struct:Plots_CorAna"], ["numeric", "scalar", "choices={0,1}"]], "purpose":"Display plots on screen"},
81+
{"name":"dispresults", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Display results on screen"},
82+
{"name":"d1", "kind":"namevalue", "type":["numeric", "scalar"], "purpose":"Dimension to show on the horizontal axis"},
83+
{"name":"d2", "kind":"namevalue", "type":["numeric", "scalar"], "purpose":"Dimension to show on the vertical axis"}
84+
],
85+
86+
"outputs":
87+
[
88+
{"name":"out", "type":"struct", "purpose":"Structure containing the output of the function"}
89+
],
90+
91+
"description":"Perform correspondence analysis"
92+
},
93+
94+
"corrNominal":
95+
{
96+
"inputs":
97+
[
98+
{"name":"N", "kind":"required", "type":[["single", "2d"], ["double", "2d"]], "purpose":"Contingency table (default) or n-by-2 input dataset"},
99+
{"name":"Conflev", "kind":"namevalue", "type":["double", "scalar"], "purpose":"Confidence level to be used to compute confidence intervals"},
100+
{"name":"conflimMethodCramerV", "kind":"namevalue", "type":["char", "choices={'ncchisq', 'ncchisqadj', 'fisher', 'fisheradj'}"], "purpose":"Method to compute confidence inteval for Cramer's V"},
101+
{"name":"dispresults", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Display results on screen"},
102+
{"name":"Lr", "kind":"namevalue", "type":"cell:Lr", "purpose":"Vector of row labels"},
103+
{"name":"Lc", "kind":"namevalue", "type":"cell:Lc", "purpose":"Vector of column labels"},
104+
{"name":"datamatrix", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Data matrix or contingency table"},
105+
{"name":"NoStandardErrors", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Just indexes without standard errors and p-values"},
106+
{"name":"plots", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Display balloonplot and pareto plot of squared Pearson residuals"}
107+
],
108+
109+
"outputs":
110+
[
111+
{"name":"out", "type":"struct", "purpose":"Structure containing the output of the function"}
112+
],
113+
114+
"description":"corrNominal measures strength of association between two unordered (nominal) categorical variables"
115+
},
116+
117+
"corrNominal":
118+
{
119+
"inputs":
120+
[
121+
{"name":"N", "kind":"required", "type":"table", "purpose":"Contingency table (default) or n-by-2 input dataset"},
122+
{"name":"Conflev", "kind":"namevalue", "type":["double", "scalar"], "purpose":"Confidence level to be used to compute confidence intervals"},
123+
{"name":"conflimMethodCramerV", "kind":"namevalue", "type":["char", "choices={'ncchisq', 'ncchisqadj', 'fisher', 'fisheradj'}"], "purpose":"Method to compute confidence inteval for Cramer's V"},
124+
{"name":"dispresults", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Display results on screen"},
125+
{"name":"datamatrix", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Data matrix or contingency table"},
126+
{"name":"NoStandardErrors", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Just indexes without standard errors and p-values"},
127+
{"name":"plots", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Display balloonplot and pareto plot of squared Pearson residuals"}
128+
],
129+
130+
"outputs":
131+
[
132+
{"name":"out", "type":"struct", "purpose":"Structure containing the output of the function"}
133+
],
134+
135+
"description":"corrNominal measures strength of association between two unordered (nominal) categorical variables"
136+
},
137+
138+
"corrOrdinal":
139+
{
140+
"inputs":
141+
[
142+
{"name":"N", "kind":"required", "type":[["single", "2d"], ["double", "2d"]], "purpose":"Contingency table (default) or n-by-2 input dataset"},
143+
{"name":"NoStandardErrors", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Just indexes without standard errors and p-values"},
144+
{"name":"dispresults", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Display results on screen"},
145+
{"name":"Lr", "kind":"namevalue", "type":"cell:Lr", "purpose":"Vector of row labels"},
146+
{"name":"Lc", "kind":"namevalue", "type":"cell:Lc", "purpose":"Vector of column labels"},
147+
{"name":"datamatrix", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Data matrix or contingency table"},
148+
{"name":"Conflev", "kind":"namevalue", "type":["double", "scalar"], "purpose":"Confidence level to be used to compute confidence intervals"},
149+
{"name":"plots", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Display balloonplot and pareto plot of individual contributions to C-D"}
150+
],
151+
152+
"outputs":
153+
[
154+
{"name":"out", "type":"struct", "purpose":"Structure containing the output of the function"}
155+
],
156+
157+
"description":"corrOrdinal measures strength of association between two ordered categorical variables"
158+
},
159+
160+
"corrOrdinal":
161+
{
162+
"inputs":
163+
[
164+
{"name":"N", "kind":"required", "type":"table", "purpose":"Contingency table (default) or n-by-2 input dataset"},
165+
{"name":"NoStandardErrors", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Just indexes without standard errors and p-values"},
166+
{"name":"dispresults", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Display results on screen"},
167+
{"name":"datamatrix", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Data matrix or contingency table"},
168+
{"name":"Conflev", "kind":"namevalue", "type":["double", "scalar"], "purpose":"Confidence level to be used to compute confidence intervals"},
169+
{"name":"plots", "kind":"namevalue", "type":["logical", "scalar"], "purpose":"Display balloonplot and pareto plot of individual contributions to C-D"}
170+
],
171+
172+
"outputs":
173+
[
174+
{"name":"out", "type":"struct", "purpose":"Structure containing the output of the function"}
175+
],
176+
177+
"description":"corrOrdinal measures strength of association between two ordered categorical variables"
178+
}
179+
180+
}

0 commit comments

Comments
 (0)