1+ {
2+ "_schemaVersion" : " 1.0.0" ,
3+
4+ "_typedefs" : {
5+
6+ "Lr" : {
7+
8+ "purpose" :" Cell array of strings containing the labels of the rows of the input" ,
9+ "type" :[" cell" , " size=1,N" ],
10+ "elements" :{
11+ "type" :[[" string" ], [" char" ]]
12+ }
13+ },
14+
15+ "Lc" : {
16+
17+ "purpose" :" Cell array of strings containing the labels of the columns of the input" ,
18+ "type" :[" cell" , " size=1,N" ],
19+ "elements" :{
20+ "type" :[[" string" ], [" char" ]]
21+ }
22+ },
23+
24+ "Sup_CorAna" : {
25+
26+ "purpose" :" Structure containing indexes or names of supplementary rows or columns" ,
27+ "type" :" struct" ,
28+ "fields" :[
29+ {"name" :" r" , "type" :[[" single" , " vector" ], [" double" , " vector" ], [" cell" ]], "purpose" :" vector containing row indexes or vector of cell array of strings or table or 2D numeric array, containing supplementary rows" },
30+ {"name" :" Lr" , "type" :" cell" , "purpose" :" cell array of strings containing the labels of the supplementary units if Sup.r is a 2D numeric array" },
31+ {"name" :" c" , "type" :[[" single" , " vector" ], [" double" , " vector" ], [" cell" ]], "purpose" :" vector containing column indexes or vector of cell array of strings or table or 2D numeric array use as supplementary columns, or table or 2D numeric array containing supplementary rows" },
32+ {"name" :" Lc" , "type" :" cell" , "purpose" :" cell array of strings containing the labels of the supplementary units if Sup.c is a 2D numeric array" }
33+ ]
34+ },
35+
36+ "Plots_CorAna" : {
37+
38+ "purpose" :" Correspondence analysis plots additional options" ,
39+ "type" :" struct" ,
40+ "fields" :[
41+ {"name" :" alpha" , "type" :[[" numeric" , " scalar" ], [" char" ], [" string" ]], "purpose" :" Type of plot displayed" },
42+ {"name" :" FontSize" , "type" :[" numeric" , " scalar" ], "purpose" :" Font size of labels" },
43+ {"name" :" MarkerSize" , "type" :[" numeric" , " scalar" ], "purpose" :" Size of plot markers" }
44+ ]
45+ }
46+ },
47+
48+ "CorAna" :
49+ {
50+ "inputs" :
51+ [
52+ {"name" :" N" , "kind" :" required" , "type" :[[" single" , " 2d" ], [" double" , " 2d" ]], "purpose" :" Contingency table (default) or n-by-2 input dataset" },
53+ {"name" :" k" , "kind" :" namevalue" , "type" :[" double" , " size=1,1" ], "purpose" :" Number of dimensions to retain" },
54+ {"name" :" Lr" , "kind" :" namevalue" , "type" :" cell:Lr" , "purpose" :" Vector of row labels" },
55+ {"name" :" Lc" , "kind" :" namevalue" , "type" :" cell:Lc" , "purpose" :" Vector of column labels" },
56+ {"name" :" Sup" , "kind" :" namevalue" , "type" :" struct:Sup_CorAna" , "purpose" :" Structure containing indexes or names of supplementary rows or columns" },
57+ {"name" :" datamatrix" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Data matrix or contingency table" },
58+ {"name" :" plots" , "kind" :" namevalue" , "type" :[[" struct:Plots_CorAna" ], [" numeric" , " scalar" , " choices={0,1}" ]], "purpose" :" Display plots on screen" },
59+ {"name" :" dispresults" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Display results on screen" },
60+ {"name" :" d1" , "kind" :" namevalue" , "type" :[" numeric" , " scalar" ], "purpose" :" Dimension to show on the horizontal axis" },
61+ {"name" :" d2" , "kind" :" namevalue" , "type" :[" numeric" , " scalar" ], "purpose" :" Dimension to show on the vertical axis" }
62+ ],
63+
64+ "outputs" :
65+ [
66+ {"name" :" out" , "type" :" struct" , "purpose" :" Structure containing the output of the function" }
67+ ],
68+
69+ "description" :" Perform correspondence analysis"
70+ },
71+
72+ "CorAna" :
73+ {
74+ "inputs" :
75+ [
76+ {"name" :" N" , "kind" :" required" , "type" :" table" , "purpose" :" Contingency table (default) or n-by-2 input dataset" },
77+ {"name" :" k" , "kind" :" namevalue" , "type" :[" double" , " size=1,1" ], "purpose" :" Number of dimensions to retain" },
78+ {"name" :" Sup" , "kind" :" namevalue" , "type" :" struct:Sup_CorAna" , "purpose" :" Structure containing indexes or names of supplementary rows or columns" },
79+ {"name" :" datamatrix" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Data matrix or contingency table" },
80+ {"name" :" plots" , "kind" :" namevalue" , "type" :[[" struct:Plots_CorAna" ], [" numeric" , " scalar" , " choices={0,1}" ]], "purpose" :" Display plots on screen" },
81+ {"name" :" dispresults" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Display results on screen" },
82+ {"name" :" d1" , "kind" :" namevalue" , "type" :[" numeric" , " scalar" ], "purpose" :" Dimension to show on the horizontal axis" },
83+ {"name" :" d2" , "kind" :" namevalue" , "type" :[" numeric" , " scalar" ], "purpose" :" Dimension to show on the vertical axis" }
84+ ],
85+
86+ "outputs" :
87+ [
88+ {"name" :" out" , "type" :" struct" , "purpose" :" Structure containing the output of the function" }
89+ ],
90+
91+ "description" :" Perform correspondence analysis"
92+ },
93+
94+ "corrNominal" :
95+ {
96+ "inputs" :
97+ [
98+ {"name" :" N" , "kind" :" required" , "type" :[[" single" , " 2d" ], [" double" , " 2d" ]], "purpose" :" Contingency table (default) or n-by-2 input dataset" },
99+ {"name" :" Conflev" , "kind" :" namevalue" , "type" :[" double" , " scalar" ], "purpose" :" Confidence level to be used to compute confidence intervals" },
100+ {"name" :" conflimMethodCramerV" , "kind" :" namevalue" , "type" :[" char" , " choices={'ncchisq', 'ncchisqadj', 'fisher', 'fisheradj'}" ], "purpose" :" Method to compute confidence inteval for Cramer's V" },
101+ {"name" :" dispresults" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Display results on screen" },
102+ {"name" :" Lr" , "kind" :" namevalue" , "type" :" cell:Lr" , "purpose" :" Vector of row labels" },
103+ {"name" :" Lc" , "kind" :" namevalue" , "type" :" cell:Lc" , "purpose" :" Vector of column labels" },
104+ {"name" :" datamatrix" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Data matrix or contingency table" },
105+ {"name" :" NoStandardErrors" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Just indexes without standard errors and p-values" },
106+ {"name" :" plots" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Display balloonplot and pareto plot of squared Pearson residuals" }
107+ ],
108+
109+ "outputs" :
110+ [
111+ {"name" :" out" , "type" :" struct" , "purpose" :" Structure containing the output of the function" }
112+ ],
113+
114+ "description" :" corrNominal measures strength of association between two unordered (nominal) categorical variables"
115+ },
116+
117+ "corrNominal" :
118+ {
119+ "inputs" :
120+ [
121+ {"name" :" N" , "kind" :" required" , "type" :" table" , "purpose" :" Contingency table (default) or n-by-2 input dataset" },
122+ {"name" :" Conflev" , "kind" :" namevalue" , "type" :[" double" , " scalar" ], "purpose" :" Confidence level to be used to compute confidence intervals" },
123+ {"name" :" conflimMethodCramerV" , "kind" :" namevalue" , "type" :[" char" , " choices={'ncchisq', 'ncchisqadj', 'fisher', 'fisheradj'}" ], "purpose" :" Method to compute confidence inteval for Cramer's V" },
124+ {"name" :" dispresults" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Display results on screen" },
125+ {"name" :" datamatrix" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Data matrix or contingency table" },
126+ {"name" :" NoStandardErrors" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Just indexes without standard errors and p-values" },
127+ {"name" :" plots" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Display balloonplot and pareto plot of squared Pearson residuals" }
128+ ],
129+
130+ "outputs" :
131+ [
132+ {"name" :" out" , "type" :" struct" , "purpose" :" Structure containing the output of the function" }
133+ ],
134+
135+ "description" :" corrNominal measures strength of association between two unordered (nominal) categorical variables"
136+ },
137+
138+ "corrOrdinal" :
139+ {
140+ "inputs" :
141+ [
142+ {"name" :" N" , "kind" :" required" , "type" :[[" single" , " 2d" ], [" double" , " 2d" ]], "purpose" :" Contingency table (default) or n-by-2 input dataset" },
143+ {"name" :" NoStandardErrors" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Just indexes without standard errors and p-values" },
144+ {"name" :" dispresults" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Display results on screen" },
145+ {"name" :" Lr" , "kind" :" namevalue" , "type" :" cell:Lr" , "purpose" :" Vector of row labels" },
146+ {"name" :" Lc" , "kind" :" namevalue" , "type" :" cell:Lc" , "purpose" :" Vector of column labels" },
147+ {"name" :" datamatrix" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Data matrix or contingency table" },
148+ {"name" :" Conflev" , "kind" :" namevalue" , "type" :[" double" , " scalar" ], "purpose" :" Confidence level to be used to compute confidence intervals" },
149+ {"name" :" plots" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Display balloonplot and pareto plot of individual contributions to C-D" }
150+ ],
151+
152+ "outputs" :
153+ [
154+ {"name" :" out" , "type" :" struct" , "purpose" :" Structure containing the output of the function" }
155+ ],
156+
157+ "description" :" corrOrdinal measures strength of association between two ordered categorical variables"
158+ },
159+
160+ "corrOrdinal" :
161+ {
162+ "inputs" :
163+ [
164+ {"name" :" N" , "kind" :" required" , "type" :" table" , "purpose" :" Contingency table (default) or n-by-2 input dataset" },
165+ {"name" :" NoStandardErrors" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Just indexes without standard errors and p-values" },
166+ {"name" :" dispresults" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Display results on screen" },
167+ {"name" :" datamatrix" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Data matrix or contingency table" },
168+ {"name" :" Conflev" , "kind" :" namevalue" , "type" :[" double" , " scalar" ], "purpose" :" Confidence level to be used to compute confidence intervals" },
169+ {"name" :" plots" , "kind" :" namevalue" , "type" :[" logical" , " scalar" ], "purpose" :" Display balloonplot and pareto plot of individual contributions to C-D" }
170+ ],
171+
172+ "outputs" :
173+ [
174+ {"name" :" out" , "type" :" struct" , "purpose" :" Structure containing the output of the function" }
175+ ],
176+
177+ "description" :" corrOrdinal measures strength of association between two ordered categorical variables"
178+ }
179+
180+ }
0 commit comments