Skip to content

Commit 6f9181b

Browse files
committed
fix exercise 2.3
1 parent fa736d7 commit 6f9181b

File tree

1 file changed

+12
-10
lines changed

1 file changed

+12
-10
lines changed

chapter02.tex

Lines changed: 12 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -109,16 +109,18 @@ \chapter{完备度量空间}
109109
\[d(x_n,y)\leq d(x_n,A)+\inf_{x\in A}d(x,y)=d(x_n,A),\]
110110
上述不等式再关于 $y\in\overline{A}$ 取下确界得
111111
\[d(x_n,\overline{A})\leq d(x_n,A).\]
112-
$n\to\infty$ 即得 $\lim_{n\to\infty}d(x_n,\bar{A})=0$.
113-
114-
$(y_n)_{n\geq 1}$$\overline{A}$ 中满足 $d(x_n,y_n)=d(x_n,\overline{A})$ 的序列,
115-
$\lim\limits_{n\to\infty}d(x_n,y_n)=0$$(x_n)_{n\geq 1}$ 是 Cauchy 序列有
116-
\[\forall\varepsilon>0,\exists N>0,\forall m,n>N,d(x_n,y_n)<\varepsilon/3,d(x_n,x_m)<\varepsilon/3.\]
117-
118-
\[d(y_n,y_m)\leq d(y_n,x_n)+d(x_n,x_m)+d(x_m,y_m)<\varepsilon.\]
119-
从而 $(y_n)_{n\geq 1}$ 是 Cauchy 序列, 由 $\overline{A}$ 的完备性知 $(y_n)_{n\geq 1}$ 收敛, 记为 $y_n\to y$, 故
120-
\[\forall\varepsilon>0,\exists M>0,\forall n>M,d(y_n,y)<\varepsilon/2,d(x_n,y_n)<\varepsilon/2.\]
121-
因此 $d(x_n,y)\leq d(x_n,y_n)+d(y_n,y)<\varepsilon$, 从而说明 $x_n\to y$.
112+
$n\to\infty$ 即得 $\lim_{n\to\infty}d(x_n,\overline{A})=0$.
113+
114+
对任意的 $\varepsilon>0$ 和任意的 $n\geq 1$, 存在 $y_n\in\overline{A}$ 使得
115+
\[ d(x_n,y_n) < d(x_n, \overline{A}) + \varepsilon. \]
116+
由于 $(x_n)_{n\geq 1}$ 为 Cauchy 序列且 $\lim_{n\to\infty} d(x_n,\overline{A}) = 0$,
117+
故对于上述 $\varepsilon>0$, 存在 $N\geq 1$, 使得当 $m,n\geq N$ 时有
118+
\[ d(x_m,\overline{A})<\varepsilon, \quad d(x_n,\overline{A})<\varepsilon,
119+
\quad d(x_m,x_n) < \varepsilon. \]
120+
因此
121+
\[ d(y_m,y_n) \leq d(y_m,x_m) + d(x_m,x_n) + d(x_n,y_n) \leq 5\varepsilon. \]
122+
这说明 $(y_n)_{n\geq 1}$ 是 Cauchy 序列, 由 $\overline{A}$ 的完备性知 $(y_n)_{n\geq 1}$
123+
收敛, 记为 $y_n \to y$, 从而 $x_n\to y$.
122124
\end{proof}
123125

124126

0 commit comments

Comments
 (0)