|
| 1 | +use crate::Scalar; |
| 2 | +use numeric_literals::replace_float_literals; |
| 3 | +use simba::simd::SimdBool; |
| 4 | + |
| 5 | +/// Rational approximation of tanh(x) which is valid in the range -3..3 |
| 6 | +/// |
| 7 | +/// This approximation only includes the rational approximation part, and will diverge outside the |
| 8 | +/// bounds. In order to apply the tanh function over a bigger interval, consider clamping either the |
| 9 | +/// input or the output. |
| 10 | +/// |
| 11 | +/// You should consider using [`tanh`] for a general-purpose faster tanh function, which uses |
| 12 | +/// branching. |
| 13 | +/// |
| 14 | +/// Source: <https://www.musicdsp.org/en/latest/Other/238-rational-tanh-approximation.html> |
| 15 | +/// |
| 16 | +/// # Arguments |
| 17 | +/// |
| 18 | +/// * `x`: Input value (low-error range: -3..3) |
| 19 | +/// |
| 20 | +/// returns: T |
| 21 | +#[replace_float_literals(T::from_f64(literal))] |
| 22 | +pub fn rational_tanh<T: Scalar>(x: T) -> T { |
| 23 | + x * (27. + x * x) / (27. + 9. * x * x) |
| 24 | +} |
| 25 | + |
| 26 | +/// Fast approximation of tanh(x). |
| 27 | +/// |
| 28 | +/// This approximation uses branching to clamp the output to -1..1 in order to be useful as a |
| 29 | +/// general-purpose approximation of tanh. |
| 30 | +/// |
| 31 | +/// Source: <https://www.musicdsp.org/en/latest/Other/238-rational-tanh-approximation.html> |
| 32 | +/// |
| 33 | +/// # Arguments |
| 34 | +/// |
| 35 | +/// * `x`: Input value |
| 36 | +/// |
| 37 | +/// returns: T |
| 38 | +pub fn tanh<T: Scalar>(x: T) -> T { |
| 39 | + rational_tanh(x).simd_clamp(-T::one(), T::one()) |
| 40 | +} |
| 41 | + |
| 42 | +/// Fast approximation of exp, with maximum error in -1..1 of 0.59%, and in -3.14..3.14 of 9.8%. |
| 43 | +/// |
| 44 | +/// You should consider using [`exp`] for a better approximation which uses this function, but |
| 45 | +/// allows a greater range at the cost of branching. |
| 46 | +/// |
| 47 | +/// Source: <https://www.musicdsp.org/en/latest/Other/222-fast-exp-approximations.html> |
| 48 | +/// |
| 49 | +/// # Arguments |
| 50 | +/// |
| 51 | +/// * `x`: Input value |
| 52 | +/// |
| 53 | +/// returns: T |
| 54 | +#[replace_float_literals(T::from_f64(literal))] |
| 55 | +pub fn fast_exp5<T: Scalar>(x: T) -> T { |
| 56 | + (120. + x * (120. + x * (60. + x * (20. + x * (5. + x))))) * 0.0083333333 |
| 57 | +} |
| 58 | + |
| 59 | +/// Fast approximation of exp, using [`fast_exp5`]. Uses branching to get a bigger range. |
| 60 | +/// |
| 61 | +/// Maximum error in the 0..10.58 range is 0.45%. |
| 62 | +/// |
| 63 | +/// Source: <https://www.musicdsp.org/en/latest/Other/222-fast-exp-approximations.html> |
| 64 | +/// |
| 65 | +/// # Arguments |
| 66 | +/// |
| 67 | +/// * `x`: |
| 68 | +/// |
| 69 | +/// returns: T |
| 70 | +#[replace_float_literals(T::from_f64(literal))] |
| 71 | +pub fn exp<T: Scalar>(x: T) -> T { |
| 72 | + x.simd_lt(2.5).if_else2( |
| 73 | + || T::simd_e() * fast_exp5(x - 1.), |
| 74 | + (|| x.simd_lt(5.), || 33.115452 * fast_exp5(x - 3.5)), |
| 75 | + || 403.42879 * fast_exp5(x - 6.), |
| 76 | + ) |
| 77 | +} |
| 78 | + |
| 79 | +/// Fast 2^x approximation, using [`exp`]. |
| 80 | +/// |
| 81 | +/// Maximum error in the 0..15.26 range is 0.45%. |
| 82 | +/// |
| 83 | +/// Source: <https://www.musicdsp.org/en/latest/Other/222-fast-exp-approximations.html> |
| 84 | +/// |
| 85 | +/// # Arguments |
| 86 | +/// |
| 87 | +/// * `x`: |
| 88 | +/// |
| 89 | +/// returns: T |
| 90 | +/// |
| 91 | +/// # Examples |
| 92 | +/// |
| 93 | +/// ``` |
| 94 | +/// |
| 95 | +/// ``` |
| 96 | +pub fn pow2<T: Scalar>(x: T) -> T { |
| 97 | + let log_two = T::simd_ln_2(); |
| 98 | + exp(log_two * x) |
| 99 | +} |
0 commit comments