+| CropAndWeed [St23] | 2023 | Steininger et al. | Crops: Maize, Sugar beet, Sunflower, Bean, Pea, Soy, Potato, Pumpkin; Weeds: Grasses, Thistle, Geranium, Knotweed, Amaranth, Goosefoot, Potato weed, Chamomile, Crucifer, Plantago, Poppy, Corn spurry, Mercuries, Solanales, Chickweed, Labiate; | Crops: Zea mays, Beta vulgaris subsp. vulgaris, Helianthus annuus, Phaseoleae, Pisum sativum, Glycine max, Solanum tuberosum, Cucurbita; Weeds: Poaceae, Cardueae, Geranium, Persicaria, Amaranthus, Chenopodium, Galinsoga parviflora, Matricaria chamomilla, Brassicaceae, Plantago, Papaver, Spergula arvensis, Mercurialis, Convolvulaceae, Stellaria media, Lamiaceae; | Leaf, Whole plant | Weed Detection, Weed Identification, Crop Identification | Semantic Masks, Bounding Boxes, Stem Points | | 8034 | https://openaccess.thecvf.com/content/WACV2023/papers/Steininger_The_CropAndWeed_Dataset_A_Multi-Modal_Learning_Approach_for_Efficient_Crop_WACV_2023_paper.pdf | https://github.com/cropandweed/cropandweed-dataset |
0 commit comments