Skip to content

Commit e57518f

Browse files
author
Scinawa
committed
Add revised montecarlo chapter and algo pseudocode and citations
1 parent 643c383 commit e57518f

File tree

3 files changed

+1143
-1319
lines changed

3 files changed

+1143
-1319
lines changed
Lines changed: 39 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,39 @@
1+
\documentclass{article}
2+
\usepackage[utf8]{inputenc}
3+
\usepackage{algorithm}
4+
\usepackage{algpseudocode}
5+
\usepackage{braket}
6+
\usepackage{amsmath}
7+
\usepackage{amssymb}
8+
9+
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
10+
11+
12+
\begin{document}
13+
\pagestyle{empty}
14+
15+
\begin{algorithm}[ht]
16+
\caption{}
17+
\begin{algorithmic}[1]
18+
19+
\Require A quantum algoritm $A$ on $n$ qubits initialized to $\ket{0^n}$ such that $0\leq \nu(A) \leq 1$, integer $t$, real $\delta>0$. $A$ makes no measurement until the end of the algorithm and its final measurement is a measurement of the last $k\leq n$ qubits in the computational basis.
20+
\Ensure An estimate of $\mathbb{E}[\nu(A)]$.
21+
\vspace{10pt}
22+
\Statex
23+
24+
\State If necessary, modify $A$ such that it makes no measurement until the end of the algorithm; operates on initial input state $\ket{0^n}$; and its final measurement is a measurement of the last $k\leq n$ of these qubits in the computational basis.
25+
26+
\State Let $W$ be the unitary operator on $k+1$ qubits defined by
27+
\begin{equation}
28+
W\ket{x}\ket{0} =\ket{x}\big(\sqrt{1-\phi(x)}\ket{0}+\sqrt{\phi(x)}\ket{1}
29+
\end{equation}
30+
where each computational basis state $x \in \{0,1\}^k$ is associated with a real number $\phi(x) \in [0,1]$, such that $\phi(x)$ is the value output by $A$ when measurement $x$ is recieved.
31+
32+
\State Repeat the following step $O(\log(1/\delta)$ times and output the median of the results:
33+
Apply $t$ iterations of amplitude estimation, setting $\ket{\psi} = (I \otimes W)(A \otimes I)\ket{0^{n+1}}$, $P = I \otimes |1\rangle\langle 1|$.
34+
35+
36+
\end{algorithmic}
37+
\end{algorithm}
38+
39+
\end{document}

0 commit comments

Comments
 (0)