|
1 | | -import unittest, math, sequtils, arraymancer |
| 1 | +import std/[unittest, math, sequtils, random] |
| 2 | +import arraymancer |
2 | 3 | import numericalnim |
3 | 4 |
|
4 | | -test "steepest_descent func": |
5 | | - proc df(x: float): float = 4 * x^3 - 9.0 * x^2 |
6 | | - let start = 6.0 |
7 | | - let gamma = 0.01 |
8 | | - let precision = 0.00001 |
9 | | - let max_iters = 10000 |
10 | | - let correct = 2.24996 |
11 | | - let value = steepest_descent(df, start, gamma, precision, max_iters) |
12 | | - check isClose(value, correct, tol = 1e-5) |
13 | | - |
14 | | -test "steepest_descent func starting at zero": |
15 | | - proc df(x: float): float = 4 * x^3 - 9.0 * x^2 + 4 |
16 | | - let start = 0.0 |
17 | | - let correct = -0.59301 |
18 | | - let value = steepest_descent(df, start) |
19 | | - check isClose(value, correct, tol = 1e-5) |
20 | | - |
21 | | -#[ |
22 | | -test "conjugate_gradient func": |
23 | | - var A = toSeq([4.0, 1.0, 1.0, 3.0]).toTensor.reshape(2,2).astype(float64) |
24 | | - var x = toSeq([2.0, 1.0]).toTensor.reshape(2,1) |
25 | | - var b = toSeq([1.0,2.0]).toTensor.reshape(2,1) |
26 | | - let tol = 0.001 |
27 | | - let correct = toSeq([0.090909, 0.636363]).toTensor.reshape(2,1).astype(float64) |
28 | | -
|
29 | | - let value = conjugate_gradient(A, b, x, tol) |
30 | | - check isClose(value, correct, tol = 1e-5) |
31 | | -]# |
32 | | -test "Newtons 1 dimension func": |
33 | | - proc f(x:float64): float64 = (1.0 / 3.0) * x ^ 3 - 2 * x ^ 2 + 3 * x |
34 | | - proc df(x:float64): float64 = x ^ 2 - 4 * x + 3 |
35 | | - let x = 0.5 |
36 | | - let correct = 0.0 |
37 | | - let value = newtons(f, df, x, 0.000001, 1000) |
38 | | - check isClose(value, correct, tol=1e-5) |
39 | | - |
40 | | -test "Newtons 1 dimension func default args": |
41 | | - proc f(x:float64): float64 = (1.0 / 3.0) * x ^ 3 - 2 * x ^ 2 + 3 * x |
42 | | - proc df(x:float64): float64 = x ^ 2 - 4 * x + 3 |
43 | | - let x = 0.5 |
44 | | - let correct = 0.0 |
45 | | - let value = newtons(f, df, x) |
46 | | - check isClose(value, correct, tol=1e-5) |
47 | | - |
48 | | -test "Newtons unable to find a root": |
49 | | - proc bad_f(x:float64): float64 = pow(E, x) + 1 |
50 | | - proc bad_df(x:float64): float64 = pow(E, x) |
51 | | - expect(ArithmeticError): |
52 | | - discard newtons(bad_f, bad_df, 0, 0.000001, 1000) |
53 | | - |
54 | | -test "Secant 1 dimension func": |
55 | | - proc f(x:float64): float64 = (1.0 / 3.0) * x ^ 3 - 2 * x ^ 2 + 3 * x |
56 | | - let x = [1.0, 0.5] |
57 | | - let correct = 0.0 |
58 | | - let value = secant(f, x, 1e-5, 10) |
59 | | - check isClose(value, correct, tol=1e-5) |
| 5 | +suite "1D": |
| 6 | + test "steepest_descent func": |
| 7 | + proc df(x: float): float = 4 * x^3 - 9.0 * x^2 |
| 8 | + let start = 6.0 |
| 9 | + let gamma = 0.01 |
| 10 | + let precision = 0.00001 |
| 11 | + let max_iters = 10000 |
| 12 | + let correct = 2.24996 |
| 13 | + let value = steepest_descent(df, start, gamma, precision, max_iters) |
| 14 | + check isClose(value, correct, tol = 1e-5) |
| 15 | + |
| 16 | + test "steepest_descent func starting at zero": |
| 17 | + proc df(x: float): float = 4 * x^3 - 9.0 * x^2 + 4 |
| 18 | + let start = 0.0 |
| 19 | + let correct = -0.59301 |
| 20 | + let value = steepest_descent(df, start) |
| 21 | + check isClose(value, correct, tol = 1e-5) |
| 22 | + |
| 23 | + #[ |
| 24 | + test "conjugate_gradient func": |
| 25 | + var A = toSeq([4.0, 1.0, 1.0, 3.0]).toTensor.reshape(2,2).astype(float64) |
| 26 | + var x = toSeq([2.0, 1.0]).toTensor.reshape(2,1) |
| 27 | + var b = toSeq([1.0,2.0]).toTensor.reshape(2,1) |
| 28 | + let tol = 0.001 |
| 29 | + let correct = toSeq([0.090909, 0.636363]).toTensor.reshape(2,1).astype(float64) |
| 30 | +
|
| 31 | + let value = conjugate_gradient(A, b, x, tol) |
| 32 | + check isClose(value, correct, tol = 1e-5) |
| 33 | + ]# |
| 34 | + test "Newtons 1 dimension func": |
| 35 | + proc f(x:float64): float64 = (1.0 / 3.0) * x ^ 3 - 2 * x ^ 2 + 3 * x |
| 36 | + proc df(x:float64): float64 = x ^ 2 - 4 * x + 3 |
| 37 | + let x = 0.5 |
| 38 | + let correct = 0.0 |
| 39 | + let value = newtons(f, df, x, 0.000001, 1000) |
| 40 | + check isClose(value, correct, tol=1e-5) |
| 41 | + |
| 42 | + test "Newtons 1 dimension func default args": |
| 43 | + proc f(x:float64): float64 = (1.0 / 3.0) * x ^ 3 - 2 * x ^ 2 + 3 * x |
| 44 | + proc df(x:float64): float64 = x ^ 2 - 4 * x + 3 |
| 45 | + let x = 0.5 |
| 46 | + let correct = 0.0 |
| 47 | + let value = newtons(f, df, x) |
| 48 | + check isClose(value, correct, tol=1e-5) |
| 49 | + |
| 50 | + test "Newtons unable to find a root": |
| 51 | + proc bad_f(x:float64): float64 = pow(E, x) + 1 |
| 52 | + proc bad_df(x:float64): float64 = pow(E, x) |
| 53 | + expect(ArithmeticError): |
| 54 | + discard newtons(bad_f, bad_df, 0, 0.000001, 1000) |
| 55 | + |
| 56 | + test "Secant 1 dimension func": |
| 57 | + proc f(x:float64): float64 = (1.0 / 3.0) * x ^ 3 - 2 * x ^ 2 + 3 * x |
| 58 | + let x = [1.0, 0.5] |
| 59 | + let correct = 0.0 |
| 60 | + let value = secant(f, x, 1e-5, 10) |
| 61 | + check isClose(value, correct, tol=1e-5) |
| 62 | + |
| 63 | + |
| 64 | +############################### |
| 65 | +## Multi-dimensional methods ## |
| 66 | +############################### |
| 67 | + |
| 68 | +suite "Multi-dim": |
| 69 | + proc bananaFunc(x: Tensor[float]): float = |
| 70 | + ## Function of 2 variables with minimum at (1, 1) |
| 71 | + ## And it looks like a banana 🍌 |
| 72 | + result = (1 - x[0])^2 + 100*(x[1] - x[0]^2)^2 |
| 73 | + |
| 74 | + let x0 = [-1.0, -1.0].toTensor() |
| 75 | + let correct = [1.0, 1.0].toTensor() |
| 76 | + |
| 77 | + test "Steepest Gradient": |
| 78 | + let xSol = steepestDescent(bananaFunc, x0.clone) |
| 79 | + for x in abs(correct - xSol): |
| 80 | + check x < 2e-2 |
| 81 | + |
| 82 | + test "Newton": |
| 83 | + let xSol = newton(bananaFunc, x0.clone) |
| 84 | + for x in abs(correct - xSol): |
| 85 | + check x < 3e-10 |
| 86 | + |
| 87 | + test "BFGS": |
| 88 | + let xSol = bfgs(bananaFunc, x0.clone) |
| 89 | + for x in abs(correct - xSol): |
| 90 | + check x < 3e-7 |
| 91 | + |
| 92 | + test "L-BFGS": |
| 93 | + let xSol = lbfgs(bananaFunc, x0.clone) |
| 94 | + for x in abs(correct - xSol): |
| 95 | + check x < 7e-10 |
| 96 | + |
| 97 | + let correctParams = [10.4, -0.45].toTensor() |
| 98 | + proc fitFunc(params: Tensor[float], x: float): float = |
| 99 | + params[0] * exp(params[1] * x) |
| 100 | + |
| 101 | + let xData = arraymancer.linspace(0.0, 10.0, 100) |
| 102 | + randomize(1337) |
| 103 | + let yData = correctParams[0] * exp(correctParams[1] * xData) + randomNormalTensor([100], 0.0, 1e-2) |
| 104 | + |
| 105 | + let params0 = [0.0, 0.0].toTensor() |
| 106 | + |
| 107 | + test "levmarq": |
| 108 | + let paramsSol = levmarq(fitFunc, params0, xData, yData) |
| 109 | + for x in abs(paramsSol - correctParams): |
| 110 | + check x < 9e-4 |
60 | 111 |
|
61 | 112 |
|
0 commit comments