|
| 1 | +--- |
| 2 | +title: Burgers FDM Work-Precision Diagrams with Various MethodOfLines Methods |
| 3 | +author: Alex Jones |
| 4 | +--- |
| 5 | + |
| 6 | +This benchmark is for the MethodOfLines package, which is an automatic PDE discretization package. |
| 7 | +It is concerned with comparing the performance of various discretization methods for the Burgers equation. |
| 8 | + |
| 9 | +```julia |
| 10 | +using MethodOfLines, DomainSets, OrdinaryDiffEq, ModelingToolkit, DiffEqDevTools, LinearAlgebra, |
| 11 | + LinearSolve, Plots |
| 12 | +``` |
| 13 | + |
| 14 | +Here is the burgers equation with a Dirichlet and Neumann boundary conditions, |
| 15 | + |
| 16 | +```julia |
| 17 | +# pdesys1 has Dirichlet BCs, pdesys2 has Neumann BCs |
| 18 | +const N = 30 |
| 19 | + |
| 20 | +@parameters x t |
| 21 | +@variables u(..) |
| 22 | +Dx = Differential(x) |
| 23 | +Dt = Differential(t) |
| 24 | +x_min = 0.0 |
| 25 | +x_max = 1.0 |
| 26 | +t_min = 0.0 |
| 27 | +t_max = 20.0 |
| 28 | + |
| 29 | +solver = FBDF() |
| 30 | + |
| 31 | +analytic_u(t, x) = x / (t + 1) |
| 32 | + |
| 33 | +analytic = [u(t, x) => analytic_u] |
| 34 | + |
| 35 | +eq = Dt(u(t, x)) ~ -u(t, x) * Dx(u(t, x)) |
| 36 | + |
| 37 | +bcs1 = [u(0, x) ~ x, |
| 38 | + u(t, x_min) ~ analytic_u(t, x_min), |
| 39 | + u(t, x_max) ~ analytic_u(t, x_max)] |
| 40 | + |
| 41 | +bcs2 = [u(0, x) ~ x, |
| 42 | + Dx(u(t, x_min)) ~ 1 / (t + 1), |
| 43 | + Dx(u(t, x_max)) ~ 1 / (t + 1)] |
| 44 | + |
| 45 | +domains = [t ∈ Interval(t_min, t_max), |
| 46 | + x ∈ Interval(x_min, x_max)] |
| 47 | + |
| 48 | +@named pdesys1 = PDESystem(eq, bcs1, domains, [t, x], [u(t, x)]) |
| 49 | +@named pdesys2 = PDESystem(eq, bcs2, domains, [t, x], [u(t, x)]) |
| 50 | +``` |
| 51 | + |
| 52 | +Here is a uniform discretization with the Upwind scheme: |
| 53 | + |
| 54 | +```julia |
| 55 | +discupwind1 = MOLFiniteDifference([x => N], t, advection_scheme=UpwindScheme()) |
| 56 | +discupwind2 = MOLFiniteDifference([x => N-1], t, advection_scheme=UpwindScheme(), grid_align=edge_align) |
| 57 | +``` |
| 58 | + |
| 59 | +Here is a uniform discretization with the WENO scheme: |
| 60 | + |
| 61 | +```julia |
| 62 | +discweno1 = MOLFiniteDifference([x => N], t, advection_scheme=WENOScheme()) |
| 63 | +discweno2 = MOLFiniteDifference([x => N-1], t, advection_scheme=WENOScheme(), grid_align=edge_align) |
| 64 | +``` |
| 65 | + |
| 66 | +Here is a non-uniform discretization with the Upwind scheme, using tanh (nonuniform WENO is not implemented yet): |
| 67 | + |
| 68 | +```julia |
| 69 | +gridf(x) = tanh.(x) ./ 2 .+ 0.5 |
| 70 | +gridnu1 = gridf(vcat(-Inf, range(-3.0, 3.0, length=N-2), Inf)) |
| 71 | +gridnu2 = gridf(vcat(-Inf, range(-3.0, 3.0, length=N - 3), Inf)) |
| 72 | + |
| 73 | +discnu1 = MOLFiniteDifference([x => gridnu1], t, advection_scheme=UpwindScheme()) |
| 74 | +discnu2 = MOLFiniteDifference([x => gridnu2], t, advection_scheme=UpwindScheme(), grid_align=edge_align) |
| 75 | +``` |
| 76 | + |
| 77 | +Here are the problems for pdesys1: |
| 78 | + |
| 79 | +```julia |
| 80 | +probupwind1 = discretize(pdesys1, discupwind1; analytic=analytic) |
| 81 | +probupwind2 = discretize(pdesys1, discupwind2; analytic=analytic) |
| 82 | + |
| 83 | +probweno1 = discretize(pdesys1, discweno1; analytic=analytic) |
| 84 | +probweno2 = discretize(pdesys1, discweno2; analytic=analytic) |
| 85 | + |
| 86 | +probnu1 = discretize(pdesys1, discnu1; analytic=analytic) |
| 87 | +probnu2 = discretize(pdesys1, discnu2; analytic=analytic) |
| 88 | + |
| 89 | +probs1 = [probupwind1, probupwind2, probnu1, probnu2, probweno1, probweno2] |
| 90 | +``` |
| 91 | + |
| 92 | +## Work-Precision Plot for Burgers Equation, Dirichlet BCs |
| 93 | + |
| 94 | +```julia |
| 95 | +dummy_appxsol = [nothing for i in 1:length(probs1)] |
| 96 | +abstols = 1.0 ./ 10.0 .^ (5:8) |
| 97 | +reltols = 1.0 ./ 10.0 .^ (1:4); |
| 98 | +setups = [Dict(:alg => solver, :prob_choice => 1), |
| 99 | + Dict(:alg => solver, :prob_choice => 2), |
| 100 | + Dict(:alg => solver, :prob_choice => 3), |
| 101 | + Dict(:alg => solver, :prob_choice => 4), |
| 102 | + Dict(:alg => solver, :prob_choice => 5), |
| 103 | + Dict(:alg => solver, :prob_choice => 6),] |
| 104 | +names = ["Uniform Upwind, center_align", "Uniform Upwind, edge_align", "Nonuniform Upwind, center_align", |
| 105 | + "Nonuniform Upwind, edge_align", "WENO, center_align", "WENO, edge_align"]; |
| 106 | + |
| 107 | +wp = WorkPrecisionSet(probs1, abstols, reltols, setups; names=names, |
| 108 | + save_everystep=false, appxsol = dummy_appxsol, maxiters=Int(1e5), |
| 109 | + numruns=10, wrap=Val(false)) |
| 110 | +plot(wp) |
| 111 | +``` |
| 112 | + |
| 113 | +Here are the problems for pdesys2: |
| 114 | + |
| 115 | +```julia |
| 116 | +probupwind1 = discretize(pdesys2, discupwind1; analytic=analytic) |
| 117 | +probupwind2 = discretize(pdesys2, discupwind2; analytic=analytic) |
| 118 | + |
| 119 | +probweno1 = discretize(pdesys2, discweno1; analytic=analytic) |
| 120 | +probweno2 = discretize(pdesys2, discweno2; analytic=analytic) |
| 121 | + |
| 122 | +probnu1 = discretize(pdesys2, discnu1; analytic=analytic) |
| 123 | +probnu2 = discretize(pdesys2, discnu2; analytic=analytic) |
| 124 | + |
| 125 | +probs2 = [probupwind1, probupwind2, probnu1, probnu2, probweno1, probweno2] |
| 126 | +``` |
| 127 | + |
| 128 | +## Work-Precision Plot for Burgers Equation, Neumann BCs |
| 129 | + |
| 130 | +```julia |
| 131 | +abstols = 1.0 ./ 10.0 .^ (5:8) |
| 132 | +reltols = 1.0 ./ 10.0 .^ (1:4); |
| 133 | +setups = [Dict(:alg => solver, :prob_choice => 1), |
| 134 | + Dict(:alg => solver, :prob_choice => 2), |
| 135 | + Dict(:alg => solver, :prob_choice => 3), |
| 136 | + Dict(:alg => solver, :prob_choice => 4), |
| 137 | + Dict(:alg => solver, :prob_choice => 5), |
| 138 | + Dict(:alg => solver, :prob_choice => 6),] |
| 139 | +names = ["Uniform Upwind, center_align", "Uniform Upwind, edge_align", "Nonuniform Upwind, center_align", |
| 140 | + "Nonuniform Upwind, edge_align", "WENO, center_align", "WENO, edge_align"]; |
| 141 | + |
| 142 | +wp = WorkPrecisionSet(probs2, abstols, reltols, setups; names=names, |
| 143 | + save_everystep=false, maxiters=Int(1e5), |
| 144 | + numruns=10, wrap=Val(false)) |
| 145 | +plot(wp) |
| 146 | +``` |
0 commit comments