Skip to content

no argument checks and @inbounds is problematic #140

@ValentinKaisermayer

Description

@ValentinKaisermayer

Consider the following example: https://diffeq.sciml.ai/stable/analysis/parameter_estimation/#Optimization-Based-ODE-Inference-Examples
If one makes an L2Loss there is nothing that stops one from doing:

using DiffEqParamEstim, DifferentialEquations, Plots, RecursiveArrayTools

function f(du, u, p, t)
    du[1] = dx = p[1] * u[1] - u[1] * u[2]
    du[2] = dy = -3 * u[2] + u[1] * u[2]
end
  
u0 = [1.0; 1.0]
tspan = (0.0, 10.0)
p = [1.5]
prob = ODEProblem(f, u0, tspan, p)

sol = solve(prob, Tsit5())
t = collect(range(0, stop=10, length=200))
randomized = VectorOfArray([(sol(t[i]) + .01randn(2)) for i in 1:length(t)])

data = copy(convert(Array, randomized)') # this is the problem

model_ode(p_) = ODEProblem(f, u0, tspan, p_)
loss_objective = build_loss_objective(prob, Tsit5(), L2Loss(t, data); prob_generator=(prob, p) -> model_ode(p))

however, this will result in a crash of Julia. since in

@inbounds for i in 1:length(sol)

the correct dimension of data is assumed.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions