Skip to content

Commit 9e6a6e3

Browse files
send tests
1 parent 50055e4 commit 9e6a6e3

File tree

2 files changed

+2
-28
lines changed

2 files changed

+2
-28
lines changed

test/cnf_test.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -293,7 +293,7 @@ end
293293

294294
function loss(θ)
295295
logpx, λ₁, λ₂ = ffjord_mdl(train_data, θ; regularize, monte_carlo)
296-
mean(-logpx .+ 0.1 * λ₁ .+ 0.1 * λ₂)
296+
mean(-logpx .+ 1f-1 * λ₁ .+ 1f-1 * λ₂)
297297
end
298298

299299
adtype = Optimization.AutoZygote()

test/neural_de.jl

Lines changed: 1 addition & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -253,12 +253,6 @@ gradsnc2 = Zygote.gradient(()->sum(sode(xs)),Flux.params(xs,sode))
253253
@test ! iszero(gradsnc2[sode.p])
254254
@test ! iszero(gradsnc2[sode.p][end])
255255

256-
gradsc2 = Zygote.gradient(()->sum(sodec(xs)),Flux.params(xs,sodec))
257-
@test_broken gradsc2 isa Tuple
258-
@test ! iszero(gradsc2[xs])
259-
@test ! iszero(gradsc2[sodec.p])
260-
@test ! iszero(gradsc2[sodec.p][end])
261-
262256
dudt22 = Flux.Chain(Flux.Dense(2,50,tanh),Flux.Dense(50,4),x->reshape(x,2,2))
263257
fastdudt22 = FastChain(FastDense(2,50,tanh),FastDense(50,4),(x,p)->reshape(x,2,2))
264258
NeuralSDE(dudt,dudt22,(0.0f0,.1f0),2,LambaEM(),saveat=0.01)(x)
@@ -288,11 +282,6 @@ gradsnc = Zygote.gradient(()->sum(sode(x)),Flux.params(x,sode))
288282
@test ! iszero(gradsnc[sode.p])
289283
@test ! iszero(gradsnc[sode.p][end])
290284

291-
@test_broken gradsc = Zygote.gradient(()->sum(sodec(xs)),Flux.params(xs,sodec))
292-
@test_broken ! iszero(gradsc[xs])
293-
@test ! iszero(gradsc[sodec.p])
294-
@test ! iszero(gradsc[sodec.p][end])
295-
296285
ddudt = Flux.Chain(Flux.Dense(6,50,tanh),Flux.Dense(50,2))
297286
NeuralCDDE(ddudt,(0.0f0,2.0f0),(p,t)->zero(x),(1f-1,2f-1),MethodOfSteps(Tsit5()),saveat=0.1)(x)
298287
dode = NeuralCDDE(ddudt,(0.0f0,2.0f0),(p,t)->zero(x),(1f-1,2f-1),MethodOfSteps(Tsit5()),saveat=0.0:0.1:2.0)
@@ -305,7 +294,6 @@ grads = Zygote.gradient(()->sum(dode(x)),Flux.params(x,dode))
305294
@test_broken ! iszero(grads[xs])
306295
@test ! iszero(grads[dode.p])
307296

308-
309297
fastddudt = FastChain(FastDense(6,50,tanh),FastDense(50,2))
310298
NeuralCDDE(fastddudt,(0.0f0,2.0f0),(p,t)->zero(x),(1f-1,2f-1),MethodOfSteps(Tsit5()),saveat=0.1)(x)
311299
dode = NeuralCDDE(fastddudt,(0.0f0,2.0f0),(p,t)->zero(x),(1f-1,2f-1),MethodOfSteps(Tsit5()),saveat=0.0:0.1:2.0)
@@ -316,18 +304,4 @@ gradsnc = Zygote.gradient(()->sum(dode(x)),Flux.params(x,dode))
316304

317305
@test_broken gradsnc = Zygote.gradient(()->sum(dode(xs)),Flux.params(xs,dode)) isa Tuple
318306
@test_broken ! iszero(gradsnc[xs])
319-
@test ! iszero(gradsnc[dode.p])
320-
321-
fastcddudt = FastChain(FastDense(6,50,tanh,numcols=size(xs)[2],precache=true),FastDense(50,2,numcols=size(xs)[2],precache=true))
322-
NeuralCDDE(fastcddudt,(0.0f0,2.0f0),(p,t)->zero(x),(1f-1,2f-1),MethodOfSteps(Tsit5()),saveat=0.1)(x)
323-
dodec = NeuralCDDE(fastcddudt,(0.0f0,2.0f0),(p,t)->zero(x),(1f-1,2f-1),MethodOfSteps(Tsit5()),saveat=0.0:0.1:2.0,p=pd)
324-
325-
gradsc = Zygote.gradient(()->sum(dodec(x)),Flux.params(x,dodec))
326-
@test ! iszero(gradsc[x])
327-
@test ! iszero(gradsc[dodec.p])
328-
@test gradsnc[x] gradsc[x] rtol=1e-6
329-
@test gradsnc[dode.p] gradsc[dodec.p] rtol=1e-6
330-
331-
@test_broken gradsc = Zygote.gradient(()->sum(dodec(xs)),Flux.params(xs,dodec)) isa Tuple
332-
@test_broken ! iszero(gradsc[xs])
333-
@test ! iszero(gradsc[dodec.p])
307+
@test ! iszero(gradsnc[dode.p])

0 commit comments

Comments
 (0)