From 6f1ac8ae99836fb32d07605c7fc952e704a94ff9 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Fabiana=20=F0=9F=9A=80=20=20Campanari?=
<113218619+FabianaCampanari@users.noreply.github.com>
Date: Wed, 15 Jan 2025 22:46:33 -0300
Subject: [PATCH] Update README.md
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Signed-off-by: Fabiana 🚀 Campanari <113218619+FabianaCampanari@users.noreply.github.com>
---
README.md | 7 ++++++-
1 file changed, 6 insertions(+), 1 deletion(-)
diff --git a/README.md b/README.md
index eac221b..c58837a 100644
--- a/README.md
+++ b/README.md
@@ -98,7 +98,8 @@ Leonhard Euler, one of the most significant mathematicians in history, contribut
* **Euler's Formula:**
- $\huge \color{DeepSkyBlue} e^{i\theta} = \cos(\theta) + i\sin(\theta)$
+ $\huge \color{DeepSkyBlue} e^{i\theta} = \cos(\theta) + i\sin(\theta)$
+
Where:
- $\large \color{DeepSkyBlue} \( e \)$: Base of the natural logarithm.
@@ -119,6 +120,8 @@ Carl Friedrich Gauss was pivotal in developing the mathematical framework used i
$\huge \color{DeepSkyBlue} f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
+
+
Where:
- $\large \color{DeepSkyBlue}\( \mu \)$: Mean of the distribution.
- $\large \color{DeepSkyBlue} \( \sigma \)$: Standard deviation.
@@ -144,6 +147,8 @@ Joseph Fourier’s development of Fourier analysis allowed quantum mechanics to
$\huge \color{DeepSkyBlue} f(x) = \int_{-\infty}^{\infty} \hat{f}(k) \, e^{2\pi i k x} \, dk$
+
+
[Where]():
- $\large \color{DeepSkyBlue} f(x)$ is the original function in the spatial domain.
- $\large \color{DeepSkyBlue} \hat{f}(k)$ is the transformed function in the frequency domain.