diff --git a/README.md b/README.md index eac221b..c58837a 100644 --- a/README.md +++ b/README.md @@ -98,7 +98,8 @@ Leonhard Euler, one of the most significant mathematicians in history, contribut * **Euler's Formula:** - $\huge \color{DeepSkyBlue} e^{i\theta} = \cos(\theta) + i\sin(\theta)$ + $\huge \color{DeepSkyBlue} e^{i\theta} = \cos(\theta) + i\sin(\theta)$ + Where: - $\large \color{DeepSkyBlue} \( e \)$: Base of the natural logarithm. @@ -119,6 +120,8 @@ Carl Friedrich Gauss was pivotal in developing the mathematical framework used i $\huge \color{DeepSkyBlue} f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ +
+ Where: - $\large \color{DeepSkyBlue}\( \mu \)$: Mean of the distribution. - $\large \color{DeepSkyBlue} \( \sigma \)$: Standard deviation. @@ -144,6 +147,8 @@ Joseph Fourier’s development of Fourier analysis allowed quantum mechanics to $\huge \color{DeepSkyBlue} f(x) = \int_{-\infty}^{\infty} \hat{f}(k) \, e^{2\pi i k x} \, dk$ +
+ [Where](): - $\large \color{DeepSkyBlue} f(x)$ is the original function in the spatial domain. - $\large \color{DeepSkyBlue} \hat{f}(k)$ is the transformed function in the frequency domain.