diff --git a/README.md b/README.md
index eac221b..c58837a 100644
--- a/README.md
+++ b/README.md
@@ -98,7 +98,8 @@ Leonhard Euler, one of the most significant mathematicians in history, contribut
* **Euler's Formula:**
- $\huge \color{DeepSkyBlue} e^{i\theta} = \cos(\theta) + i\sin(\theta)$
+ $\huge \color{DeepSkyBlue} e^{i\theta} = \cos(\theta) + i\sin(\theta)$
+
Where:
- $\large \color{DeepSkyBlue} \( e \)$: Base of the natural logarithm.
@@ -119,6 +120,8 @@ Carl Friedrich Gauss was pivotal in developing the mathematical framework used i
$\huge \color{DeepSkyBlue} f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
+
+
Where:
- $\large \color{DeepSkyBlue}\( \mu \)$: Mean of the distribution.
- $\large \color{DeepSkyBlue} \( \sigma \)$: Standard deviation.
@@ -144,6 +147,8 @@ Joseph Fourier’s development of Fourier analysis allowed quantum mechanics to
$\huge \color{DeepSkyBlue} f(x) = \int_{-\infty}^{\infty} \hat{f}(k) \, e^{2\pi i k x} \, dk$
+
+
[Where]():
- $\large \color{DeepSkyBlue} f(x)$ is the original function in the spatial domain.
- $\large \color{DeepSkyBlue} \hat{f}(k)$ is the transformed function in the frequency domain.