From f102efbb5c20663c04a41cb1d6d0af561b0ed489 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabiana=20=F0=9F=9A=80=20=20Campanari?= <113218619+FabianaCampanari@users.noreply.github.com> Date: Wed, 15 Jan 2025 22:26:42 -0300 Subject: [PATCH] Update README.md MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Fabiana 🚀 Campanari <113218619+FabianaCampanari@users.noreply.github.com> --- README.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 9a01d35..b5eb977 100644 --- a/README.md +++ b/README.md @@ -120,9 +120,9 @@ Carl Friedrich Gauss was pivotal in developing the mathematical framework used i $\huge \color{DeepSkyBlue} f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ Where: - - **\( \mu \)**: Mean of the distribution. - - **\( \sigma \)**: Standard deviation. - - **\( x \)**: Random variable. + - $\large \color{DeepSkyBlue}\( \mu \)$: Mean of the distribution. + - $\large \color{DeepSkyBlue} \( \sigma \)$: Standard deviation. + - $\large \color{DeepSkyBlue} \( x \)$: Random variable. This formula is widely used to [model measurement uncertainties]() in quantum mechanics.