From 54f53933f2da0be963c357750bae5f8aa8bcdba7 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Fabiana=20=F0=9F=9A=80=20=20Campanari?=
<113218619+FabianaCampanari@users.noreply.github.com>
Date: Fri, 10 Jan 2025 20:54:41 -0300
Subject: [PATCH] Update README.md
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Signed-off-by: Fabiana 🚀 Campanari <113218619+FabianaCampanari@users.noreply.github.com>
---
README.md | 27 ++++++++++++---------------
1 file changed, 12 insertions(+), 15 deletions(-)
diff --git a/README.md b/README.md
index 40d8b60..7ab7560 100644
--- a/README.md
+++ b/README.md
@@ -36,27 +36,24 @@ Feel free to explore, contribute, and share your insights!
1- [Joseph Fourier](*) **(1822)**
──────────────
- * Developed the mathematical framework for the Fourier Transform, which is foundational in quantum mechanics and quantum computing.
+* Developed the mathematical framework for the Fourier Transform, which is foundational in quantum mechanics and quantum computing.
- Formula for Fourier Transform:
-
- $\huge \color{DeepSkyBlue} \hat{f}(k) = \int_{-\infty}^{\infty} f(x) \, e^{-2\pi i k x} \, dx$
-
-
+ **Formula for Fourier Transform:**
+ $$\hat{f}(k) = \int_{-\infty}^{\infty} f(x) \, e^{-2\pi i k x} \, dx$$
- Formula for Inverse Fourier Transform:
-
- $f(x) = \int_{-\infty}^{\infty} \hat{f}(k) \, e^{2\pi i k x} \, dk$
+ **Formula for Inverse Fourier Transform:**
+ $$f(x) = \int_{-\infty}^{\infty} \hat{f}(k) \, e^{2\pi i k x} \, dk$$
Where:
- - $large \color{DeepSkyBlue} f(x)$ is the original function in the spatial domain.
- - $large \color{DeepSkyBlue} \hat{f}(k)$ is the transformed function in the frequency domain.
- - $large \color{DeepSkyBlue} x$ represents position, and $k$ represents momentum or frequency.
+ - $f(x)$ is the original function in the spatial domain.
+ - $\hat{f}(k)$ is the transformed function in the frequency domain.
+ - $x$ represents position, and $k$ represents momentum or frequency.
-
**Relevance in Quantum Mechanics and Computing:**
- - **Quantum Mechanics**: Converts wavefunctions between position and momentum spaces.
- - **Quantum Computing**: Basis for the Quantum Fourier Transform (QFT), essential for algorithms like Shor's factoring algorithm.
+ - **Quantum Mechanics**: Converts wavefunctions between position and momentum spaces.
+ - **Quantum Computing**: Basis for the Quantum Fourier Transform (QFT), essential for algorithms like Shor's factoring algorithm.
+
+