diff --git a/README.md b/README.md
index 40d8b60..7ab7560 100644
--- a/README.md
+++ b/README.md
@@ -36,27 +36,24 @@ Feel free to explore, contribute, and share your insights!
1- [Joseph Fourier](*) **(1822)**
──────────────
- * Developed the mathematical framework for the Fourier Transform, which is foundational in quantum mechanics and quantum computing.
+* Developed the mathematical framework for the Fourier Transform, which is foundational in quantum mechanics and quantum computing.
- Formula for Fourier Transform:
-
- $\huge \color{DeepSkyBlue} \hat{f}(k) = \int_{-\infty}^{\infty} f(x) \, e^{-2\pi i k x} \, dx$
-
-
+ **Formula for Fourier Transform:**
+ $$\hat{f}(k) = \int_{-\infty}^{\infty} f(x) \, e^{-2\pi i k x} \, dx$$
- Formula for Inverse Fourier Transform:
-
- $f(x) = \int_{-\infty}^{\infty} \hat{f}(k) \, e^{2\pi i k x} \, dk$
+ **Formula for Inverse Fourier Transform:**
+ $$f(x) = \int_{-\infty}^{\infty} \hat{f}(k) \, e^{2\pi i k x} \, dk$$
Where:
- - $large \color{DeepSkyBlue} f(x)$ is the original function in the spatial domain.
- - $large \color{DeepSkyBlue} \hat{f}(k)$ is the transformed function in the frequency domain.
- - $large \color{DeepSkyBlue} x$ represents position, and $k$ represents momentum or frequency.
+ - $f(x)$ is the original function in the spatial domain.
+ - $\hat{f}(k)$ is the transformed function in the frequency domain.
+ - $x$ represents position, and $k$ represents momentum or frequency.
-
**Relevance in Quantum Mechanics and Computing:**
- - **Quantum Mechanics**: Converts wavefunctions between position and momentum spaces.
- - **Quantum Computing**: Basis for the Quantum Fourier Transform (QFT), essential for algorithms like Shor's factoring algorithm.
+ - **Quantum Mechanics**: Converts wavefunctions between position and momentum spaces.
+ - **Quantum Computing**: Basis for the Quantum Fourier Transform (QFT), essential for algorithms like Shor's factoring algorithm.
+
+