From 680064c80cd7e598eb78ca8a2e2515a20847146c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabiana=20=F0=9F=9A=80=20=20Campanari?= <113218619+FabianaCampanari@users.noreply.github.com> Date: Wed, 8 Jan 2025 23:08:01 -0300 Subject: [PATCH] Update README.md MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Fabiana 🚀 Campanari <113218619+FabianaCampanari@users.noreply.github.com> --- README.md | 14 +++++++++++++- 1 file changed, 13 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index f408b9d..eb18583 100644 --- a/README.md +++ b/README.md @@ -74,7 +74,6 @@ Feel free to explore, contribute, and share your insights! - $\large \color{DeepSkyBlue} E_n$ is the energy of level $n$. - $\large \color{DeepSkyBlue} n$ is the principal quantum number. - # 4. **Erwin Schrödinger (1926)** @@ -87,7 +86,20 @@ Feel free to explore, contribute, and share your insights! - $\large \color{DeepSkyBlue} \psi(r, t)$ is the wave function of the system. - $\large \color{DeepSkyBlue} \hat{H}$ is the Hamiltonian operator. - $\large \color{DeepSkyBlue} \hbar$ is the reduced Planck constant. + + # + +5. **Werner Heisenberg (1927)** + * Uncertainty Principle, central to quantum physics. + Formula for the Uncertainty Principle: + $\huge \color{DeepSkyBlue} \Delta x \cdot \Delta p \geq \frac{\hbar}{2}$ + + Where: + - $\large \color{DeepSkyBlue} \Delta x$ is the uncertainty in position. + - $\large \color{DeepSkyBlue} \Delta p$ is the uncertainty in momentum. + + #