Skip to content

Commit 0c26c38

Browse files
authored
Update opencv_functional.py
1 parent 9544e4d commit 0c26c38

File tree

1 file changed

+1
-46
lines changed

1 file changed

+1
-46
lines changed

CV/CLPI-Collaborative-Learning-for-Diabetic-Retinopathy-Grading/opencv_functional.py

Lines changed: 1 addition & 46 deletions
Original file line numberDiff line numberDiff line change
@@ -300,51 +300,6 @@ def adjust_brightness(img, brightness_factor):
300300
return cv2.LUT(img, table)
301301

302302

303-
def adjust_hue(img, hue_factor):
304-
"""Adjust hue of an image.
305-
The image hue is adjusted by converting the image to HSV and
306-
cyclically shifting the intensities in the hue channel (H).
307-
The image is then converted back to original image mode.
308-
`hue_factor` is the amount of shift in H channel and must be in the
309-
interval `[-0.5, 0.5]`.
310-
See `Hue`_ for more details.
311-
.. _Hue: https://en.wikipedia.org/wiki/Hue
312-
Args:
313-
img (numpy ndarray): numpy ndarray to be adjusted.
314-
hue_factor (float): How much to shift the hue channel. Should be in
315-
[-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
316-
HSV space in positive and negative direction respectively.
317-
0 means no shift. Therefore, both -0.5 and 0.5 will give an image
318-
with complementary colors while 0 gives the original image.
319-
Returns:
320-
numpy ndarray: Hue adjusted image.
321-
"""
322-
# After testing, found that OpenCV calculates the Hue in a call to
323-
# cv2.cvtColor(..., cv2.COLOR_BGR2HSV) differently from PIL
324-
325-
# This function takes 160ms! should be avoided
326-
if not(-0.5 <= hue_factor <= 0.5):
327-
raise ValueError(
328-
'hue_factor is not in [-0.5, 0.5]. Got {}'.format(hue_factor))
329-
if not _is_numpy_image(img):
330-
raise TypeError('img should be numpy Image. Got {}'.format(type(img)))
331-
img = Image.fromarray(img)
332-
input_mode = img.mode
333-
if input_mode in {'L', '1', 'I', 'F'}:
334-
return np.array(img)
335-
336-
h, s, v = img.convert('HSV').split()
337-
338-
np_h = np.array(h, dtype=np.uint8)
339-
# uint8 addition take cares of rotation across boundaries
340-
with np.errstate(over='ignore'):
341-
np_h += np.uint8(hue_factor * 255)
342-
h = Image.fromarray(np_h, 'L')
343-
344-
img = Image.merge('HSV', (h, s, v)).convert(input_mode)
345-
return np.array(img)
346-
347-
348303
def adjust_gamma(img, gamma, gain=1):
349304
r"""Perform gamma correction on an image.
350305
Also known as Power Law Transform. Intensities in RGB mode are adjusted
@@ -489,4 +444,4 @@ def radius_reduction(img, mask):
489444
'''
490445
叠加Mask,去除中值滤波灰色外缘
491446
'''
492-
return cv2.bitwise_and(img, img, mask=mask)
447+
return cv2.bitwise_and(img, img, mask=mask)

0 commit comments

Comments
 (0)