|
| 1 | +#!/usr/bin/env python3 |
| 2 | +# -*- coding: utf-8 -*- |
| 3 | + |
| 4 | +import os, re, time |
| 5 | +import numpy as np |
| 6 | +from PIL import Image |
| 7 | +import imageio |
| 8 | +from tqdm import tqdm |
| 9 | +import torch |
| 10 | +from einops import rearrange |
| 11 | + |
| 12 | +from diffsynth import ModelManager, FlashVSRFullPipeline |
| 13 | +from utils.utils import Causal_LQ4x_Proj |
| 14 | + |
| 15 | +def tensor2video(frames: torch.Tensor): |
| 16 | + frames = rearrange(frames, "C T H W -> T H W C") |
| 17 | + frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) |
| 18 | + frames = [Image.fromarray(frame) for frame in frames] |
| 19 | + return frames |
| 20 | + |
| 21 | +def natural_key(name: str): |
| 22 | + return [int(t) if t.isdigit() else t.lower() for t in re.split(r'([0-9]+)', os.path.basename(name))] |
| 23 | + |
| 24 | +def list_images_natural(folder: str): |
| 25 | + exts = ('.png', '.jpg', '.jpeg', '.PNG', '.JPG', '.JPEG') |
| 26 | + fs = [os.path.join(folder, f) for f in os.listdir(folder) if f.endswith(exts)] |
| 27 | + fs.sort(key=natural_key) |
| 28 | + return fs |
| 29 | + |
| 30 | +def largest_8n1_leq(n): # 8n+1 |
| 31 | + return 0 if n < 1 else ((n - 1)//8)*8 + 1 |
| 32 | + |
| 33 | +def is_video(path): |
| 34 | + return os.path.isfile(path) and path.lower().endswith(('.mp4','.mov','.avi','.mkv')) |
| 35 | + |
| 36 | +def pil_to_tensor_neg1_1(img: Image.Image, dtype=torch.bfloat16, device='cuda'): |
| 37 | + t = torch.from_numpy(np.asarray(img, np.uint8)).to(device=device, dtype=torch.float32) # HWC |
| 38 | + t = t.permute(2,0,1) / 255.0 * 2.0 - 1.0 # CHW in [-1,1] |
| 39 | + return t.to(dtype) |
| 40 | + |
| 41 | +def save_video(frames, save_path, fps=30, quality=5): |
| 42 | + os.makedirs(os.path.dirname(save_path), exist_ok=True) |
| 43 | + w = imageio.get_writer(save_path, fps=fps, quality=quality) |
| 44 | + for f in tqdm(frames, desc=f"Saving {os.path.basename(save_path)}"): |
| 45 | + w.append_data(np.array(f)) |
| 46 | + w.close() |
| 47 | + |
| 48 | +def compute_scaled_and_target_dims(w0: int, h0: int, scale: int = 4, multiple: int = 128): |
| 49 | + if w0 <= 0 or h0 <= 0: |
| 50 | + raise ValueError("invalid original size") |
| 51 | + |
| 52 | + sW, sH = w0 * scale, h0 * scale |
| 53 | + tW = max(multiple, (sW // multiple) * multiple) |
| 54 | + tH = max(multiple, (sH // multiple) * multiple) |
| 55 | + return sW, sH, tW, tH |
| 56 | + |
| 57 | +def upscale_then_center_crop(img: Image.Image, scale: int, tW: int, tH: int) -> Image.Image: |
| 58 | + w0, h0 = img.size |
| 59 | + sW, sH = w0 * scale, h0 * scale |
| 60 | + # 先放大 |
| 61 | + up = img.resize((sW, sH), Image.BICUBIC) |
| 62 | + # 中心裁剪 |
| 63 | + l = max(0, (sW - tW) // 2); t = max(0, (sH - tH) // 2) |
| 64 | + return up.crop((l, t, l + tW, t + tH)) |
| 65 | + |
| 66 | +def prepare_input_tensor(path: str, scale: int = 4, dtype=torch.bfloat16, device='cuda'): |
| 67 | + if os.path.isdir(path): |
| 68 | + paths0 = list_images_natural(path) |
| 69 | + if not paths0: |
| 70 | + raise FileNotFoundError(f"No images in {path}") |
| 71 | + with Image.open(paths0[0]) as _img0: |
| 72 | + w0, h0 = _img0.size |
| 73 | + N0 = len(paths0) |
| 74 | + print(f"[{os.path.basename(path)}] Original Resolution: {w0}x{h0} | Original Frames: {N0}") |
| 75 | + |
| 76 | + sW, sH, tW, tH = compute_scaled_and_target_dims(w0, h0, scale=scale, multiple=128) |
| 77 | + print(f"[{os.path.basename(path)}] Scaled Resolution (x{scale}): {sW}x{sH} -> Target (128-multiple): {tW}x{tH}") |
| 78 | + |
| 79 | + paths = paths0 + [paths0[-1]] * 4 |
| 80 | + F = largest_8n1_leq(len(paths)) |
| 81 | + if F == 0: |
| 82 | + raise RuntimeError(f"Not enough frames after padding in {path}. Got {len(paths)}.") |
| 83 | + paths = paths[:F] |
| 84 | + print(f"[{os.path.basename(path)}] Target Frames (8n-3): {F-4}") |
| 85 | + |
| 86 | + frames = [] |
| 87 | + for p in paths: |
| 88 | + with Image.open(p).convert('RGB') as img: |
| 89 | + img_out = upscale_then_center_crop(img, scale=scale, tW=tW, tH=tH) |
| 90 | + frames.append(pil_to_tensor_neg1_1(img_out, dtype, device)) |
| 91 | + vid = torch.stack(frames, 0).permute(1,0,2,3).unsqueeze(0) |
| 92 | + fps = 30 |
| 93 | + return vid, tH, tW, F, fps |
| 94 | + |
| 95 | + if is_video(path): |
| 96 | + rdr = imageio.get_reader(path) |
| 97 | + first = Image.fromarray(rdr.get_data(0)).convert('RGB') |
| 98 | + w0, h0 = first.size |
| 99 | + |
| 100 | + meta = {} |
| 101 | + try: |
| 102 | + meta = rdr.get_meta_data() |
| 103 | + except Exception: |
| 104 | + pass |
| 105 | + fps_val = meta.get('fps', 30) |
| 106 | + fps = int(round(fps_val)) if isinstance(fps_val, (int, float)) else 30 |
| 107 | + |
| 108 | + def count_frames(r): |
| 109 | + try: |
| 110 | + nf = meta.get('nframes', None) |
| 111 | + if isinstance(nf, int) and nf > 0: |
| 112 | + return nf |
| 113 | + except Exception: |
| 114 | + pass |
| 115 | + try: |
| 116 | + return r.count_frames() |
| 117 | + except Exception: |
| 118 | + n = 0 |
| 119 | + try: |
| 120 | + while True: |
| 121 | + r.get_data(n); n += 1 |
| 122 | + except Exception: |
| 123 | + return n |
| 124 | + |
| 125 | + total = count_frames(rdr) |
| 126 | + if total <= 0: |
| 127 | + rdr.close() |
| 128 | + raise RuntimeError(f"Cannot read frames from {path}") |
| 129 | + |
| 130 | + print(f"[{os.path.basename(path)}] Original Resolution: {w0}x{h0} | Original Frames: {total} | FPS: {fps}") |
| 131 | + |
| 132 | + sW, sH, tW, tH = compute_scaled_and_target_dims(w0, h0, scale=scale, multiple=128) |
| 133 | + print(f"[{os.path.basename(path)}] Scaled Resolution (x{scale}): {sW}x{sH} -> Target (128-multiple): {tW}x{tH}") |
| 134 | + |
| 135 | + idx = list(range(total)) + [total - 1] * 4 |
| 136 | + F = largest_8n1_leq(len(idx)) |
| 137 | + if F == 0: |
| 138 | + rdr.close() |
| 139 | + raise RuntimeError(f"Not enough frames after padding in {path}. Got {len(idx)}.") |
| 140 | + idx = idx[:F] |
| 141 | + print(f"[{os.path.basename(path)}] Target Frames (8n-3): {F-4}") |
| 142 | + |
| 143 | + frames = [] |
| 144 | + try: |
| 145 | + for i in idx: |
| 146 | + img = Image.fromarray(rdr.get_data(i)).convert('RGB') |
| 147 | + img_out = upscale_then_center_crop(img, scale=scale, tW=tW, tH=tH) |
| 148 | + frames.append(pil_to_tensor_neg1_1(img_out, dtype, device)) |
| 149 | + finally: |
| 150 | + try: |
| 151 | + rdr.close() |
| 152 | + except Exception: |
| 153 | + pass |
| 154 | + |
| 155 | + vid = torch.stack(frames, 0).permute(1,0,2,3).unsqueeze(0) # 1 C F H W |
| 156 | + return vid, tH, tW, F, fps |
| 157 | + |
| 158 | + raise ValueError(f"Unsupported input: {path}") |
| 159 | + |
| 160 | +def init_pipeline(): |
| 161 | + print(torch.cuda.current_device(), torch.cuda.get_device_name(torch.cuda.current_device())) |
| 162 | + mm = ModelManager(torch_dtype=torch.bfloat16, device="cpu") |
| 163 | + mm.load_models([ |
| 164 | + "./FlashVSR/diffusion_pytorch_model_streaming_dmd.safetensors", |
| 165 | + "./FlashVSR/Wan2.1_VAE.pth", |
| 166 | + ]) |
| 167 | + pipe = FlashVSRFullPipeline.from_model_manager(mm, device="cuda") |
| 168 | + pipe.denoising_model().LQ_proj_in = Causal_LQ4x_Proj(in_dim=3, out_dim=1536, layer_num=1).to("cuda", dtype=torch.bfloat16) |
| 169 | + LQ_proj_in_path = "./FlashVSR/LQ_proj_in.ckpt" |
| 170 | + if os.path.exists(LQ_proj_in_path): |
| 171 | + pipe.denoising_model().LQ_proj_in.load_state_dict(torch.load(LQ_proj_in_path, map_location="cpu"), strict=True) |
| 172 | + |
| 173 | + pipe.denoising_model().LQ_proj_in.to('cuda') |
| 174 | + pipe.vae.model.encoder = None |
| 175 | + pipe.vae.model.conv1 = None |
| 176 | + pipe.to('cuda'); pipe.enable_vram_management(num_persistent_param_in_dit=None) |
| 177 | + pipe.init_cross_kv(); pipe.load_models_to_device(["dit","vae"]) |
| 178 | + return pipe |
| 179 | + |
| 180 | +def main(): |
| 181 | + RESULT_ROOT = "./results" |
| 182 | + os.makedirs(RESULT_ROOT, exist_ok=True) |
| 183 | + inputs = [ |
| 184 | + "./inputs/example0.mp4", |
| 185 | + "./inputs/example1.mp4", |
| 186 | + "./inputs/example2.mp4", |
| 187 | + "./inputs/example3.mp4", |
| 188 | + ] |
| 189 | + seed, scale, dtype, device = 0, 4, torch.bfloat16, 'cuda' |
| 190 | + sparse_ratio = 2.0 # Recommended: 1.5 or 2.0. 1.5 → faster; 2.0 → more stable. |
| 191 | + pipe = init_pipeline() |
| 192 | + |
| 193 | + for p in inputs: |
| 194 | + torch.cuda.empty_cache(); torch.cuda.ipc_collect() |
| 195 | + name = os.path.basename(p.rstrip('/')) |
| 196 | + if name.startswith('.'): |
| 197 | + continue |
| 198 | + try: |
| 199 | + LQ, th, tw, F, fps = prepare_input_tensor(p, scale=scale, dtype=dtype, device=device) |
| 200 | + except Exception as e: |
| 201 | + print(f"[Error] {name}: {e}") |
| 202 | + continue |
| 203 | + |
| 204 | + video = pipe( |
| 205 | + prompt="", negative_prompt="", cfg_scale=1.0, num_inference_steps=1, seed=seed, |
| 206 | + tiled=False,# Disable tiling: faster inference but higher VRAM usage. |
| 207 | + # Set to True for lower memory consumption at the cost of speed. |
| 208 | + LQ_video=LQ, num_frames=F, height=th, width=tw, is_full_block=False, if_buffer=True, |
| 209 | + topk_ratio=sparse_ratio*768*1280/(th*tw), |
| 210 | + kv_ratio=3.0, |
| 211 | + local_range=11, # Recommended: 9 or 11. local_range=9 → sharper details; 11 → more stable results. |
| 212 | + color_fix = True, |
| 213 | + ) |
| 214 | + video = tensor2video(video) |
| 215 | + save_video(video, os.path.join(RESULT_ROOT, f"FlashVSR_v1.1_Full_{name.split('.')[0]}_seed{seed}.mp4"), fps=fps, quality=6) |
| 216 | + print("Done.") |
| 217 | + |
| 218 | +if __name__ == "__main__": |
| 219 | + main() |
0 commit comments