|
| 1 | +# Tensorflow/ Keras Model Profiler |
| 2 | + |
| 3 | +Gives you some basic but important information about your `tf` or `keras` model like, |
| 4 | + |
| 5 | +* Model Parameters |
| 6 | +* Model memory requirement on GPU |
| 7 | +* Memory required to store parameters `model weights`. |
| 8 | +* GPU availability and GPU IDs if available |
| 9 | + |
| 10 | +## Dependencies |
| 11 | + |
| 12 | +``` |
| 13 | +python 3 |
| 14 | +numpy |
| 15 | +tabulate |
| 16 | +tensorflow >= 2.0.0 |
| 17 | +keras >= 2.2.4 |
| 18 | +``` |
| 19 | +Built and tested on `tensorflow == 2.3.1` |
| 20 | + |
| 21 | +## Installation |
| 22 | + |
| 23 | +``` |
| 24 | +pip install model_profiler |
| 25 | +``` |
| 26 | + |
| 27 | +## Usage |
| 28 | + |
| 29 | +Firs load any model built using keras or tensorflow. Here for simplicity we will load model from kera applications. |
| 30 | + |
| 31 | +```python |
| 32 | +form tensorflow.keras.applications import VGG16 |
| 33 | + |
| 34 | +model = VGG16(include_top=True, weights="imagenet", input_tensor=None, |
| 35 | + input_shape=None, pooling=None, classes=1000, |
| 36 | + classifier_activation="softmax") |
| 37 | +``` |
| 38 | + |
| 39 | +Now after installing `model_profiler` run |
| 40 | + |
| 41 | +```python |
| 42 | +from profiler import model_profiler |
| 43 | + |
| 44 | +Batch_size = 128 |
| 45 | +profile = model_profiler(model, Batch_size) |
| 46 | +``` |
| 47 | +`Batch_size` have effect on `model` memory usage so GPU memory usage need `batch_size`, it's default value if `1`. |
| 48 | + |
| 49 | +### Output |
| 50 | + |
| 51 | +``` |
| 52 | +| Model Profile | Value | Unit | |
| 53 | +|----------------------------------|---------------------|---------| |
| 54 | +| Selected GPUs | ['0', '1'] | GPU IDs | |
| 55 | +| No. of FLOPs | 0.30932349055999997 | BFLOPs | |
| 56 | +| GPU Memory Requirement | 7.4066760912537575 | GB | |
| 57 | +| Model Parameters | 138.357544 | Million | |
| 58 | +| Memory Required by Model Weights | 527.7921447753906 | MB | |
| 59 | +``` |
| 60 | +Default units for the prfiler are |
| 61 | + |
| 62 | +``` |
| 63 | +# in order |
| 64 | +use_units = ['GPU IDs', 'BFLOPs', 'GB', 'Million', 'MB'] |
| 65 | +
|
| 66 | +``` |
| 67 | +You can change units by changing the list entry in appropriate location. For example if you want to get `model` FLOPs in million just change the list as follows. |
| 68 | + |
| 69 | +``` |
| 70 | +# keep order |
| 71 | +use_units = ['GPU IDs', 'MFLOPs', 'GB', 'Million', 'MB'] |
| 72 | +``` |
| 73 | +### Availabel units are |
| 74 | +``` |
| 75 | + 'GB':memory unit gega-byte |
| 76 | + 'MB': memory unit mega-byte |
| 77 | + 'MFLOPs': FLOPs unit million-flops |
| 78 | + 'BFLOPs': FLOPs unit billion-flops |
| 79 | + 'Million': paprmeter count unit millions |
| 80 | + 'Billion': paprmeter count unit billions |
| 81 | +
|
| 82 | +``` |
| 83 | +## More Examples |
| 84 | + |
| 85 | +For further details and more examples visit my [github](https://github.com/Mr-TalhaIlyas/Tensorflow-Keras-Model-Profiler) |
0 commit comments