Skip to content

NaiveBayesDecoder: example_data_hc statsmodel ValueError during predict  #9

@Blinky0815

Description

@Blinky0815

Hi,
I am getting this error when trying to run the reconstruction using the NaiveBayesDecoder for example_data_hc.pickle
There is no error when trying to run it on the example data sets.
I am using Ubuntu 19.04 and python3.7


R2s: [0.53720666 0.79702171]
time_elapsed: 38.46179175376892
R2s: [0.65030058 0.77625489]
time_elapsed: 76.14730286598206
R2s: [0.68462371 0.53993597]
time_elapsed: 116.00050210952759
R2s: [0.76831659 0.75020602]
time_elapsed: 153.70069885253906
R2s: [0.53691629 0.64449254]
time_elapsed: 192.6614019870758
/home/blinky/.local/lib/python3.7/site-packages/statsmodels/genmod/families/links.py:521: RuntimeWarning: overflow encountered in exp
return np.exp(z)
/home/blinky/.local/lib/python3.7/site-packages/statsmodels/genmod/families/family.py:430: RuntimeWarning: overflow encountered in multiply
return 2 * resid_dev
/home/blinky/.local/lib/python3.7/site-packages/statsmodels/genmod/families/family.py:134: RuntimeWarning: invalid value encountered in multiply
return 1. / (self.link.deriv(mu)**2 * self.variance(mu))
/home/blinky/.local/lib/python3.7/site-packages/statsmodels/genmod/families/family.py:134: RuntimeWarning: divide by zero encountered in true_divide
return 1. / (self.link.deriv(mu)**2 * self.variance(mu))
/home/blinky/.local/lib/python3.7/site-packages/statsmodels/genmod/generalized_linear_model.py:1163: RuntimeWarning: invalid value encountered in multiply

  • self._offset_exposure)

ValueError Traceback (most recent call last)
in
106 #Fit model
107 print('fit')
--> 108 model_nb.fit(X_b_train,y_train)
109
110 #Get predictions

~/.local/lib/python3.7/site-packages/Neural_Decoding-0.1.2.dev0-py3.7.egg/Neural_Decoding/decoders.py in fit(self, X_b_train, y_train)
914 tuning=glm_run(y_train,X_b_train[:,j:j+1],input_xy)
915 if self.encoding_model=='quadratic':
--> 916 tuning=glm_run(y_train_modified,X_b_train[:,j:j+1],input_xy_modified)
917 #Enter tuning curves into matrix
918 tuning_all[j,:]=np.squeeze(tuning)

~/.local/lib/python3.7/site-packages/Neural_Decoding-0.1.2.dev0-py3.7.egg/Neural_Decoding/decoders.py in glm_run(Xr, Yr, X_range)
829 poiss_model = sm.GLM(Yr, X2, family=sm.families.Poisson())
830 try:
--> 831 glm_results = poiss_model.fit()
832 Y_range=glm_results.predict(sm.add_constant(X_range))
833 except np.linalg.LinAlgError:

~/.local/lib/python3.7/site-packages/statsmodels/genmod/generalized_linear_model.py in fit(self, start_params, maxiter, method, tol, scale, cov_type, cov_kwds, use_t, full_output, disp, max_start_irls, **kwargs)
1026 return self._fit_irls(start_params=start_params, maxiter=maxiter,
1027 tol=tol, scale=scale, cov_type=cov_type,
-> 1028 cov_kwds=cov_kwds, use_t=use_t, **kwargs)
1029 else:
1030 self._optim_hessian = kwargs.get('optim_hessian')

~/.local/lib/python3.7/site-packages/statsmodels/genmod/generalized_linear_model.py in _fit_irls(self, start_params, maxiter, tol, scale, cov_type, cov_kwds, use_t, **kwargs)
1164 wls_mod = reg_tools._MinimalWLS(wlsendog, wlsexog,
1165 self.weights, check_endog=True,
-> 1166 check_weights=True)
1167 wls_results = wls_mod.fit(method=wls_method)
1168 lin_pred = np.dot(self.exog, wls_results.params)

~/.local/lib/python3.7/site-packages/statsmodels/regression/_tools.py in init(self, endog, exog, weights, check_endog, check_weights)
46 if check_weights:
47 if not np.all(np.isfinite(w_half)):
---> 48 raise ValueError(self.msg.format('weights'))
49
50 if check_endog:

ValueError: NaN, inf or invalid value detected in weights, estimation infeasible.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions