Skip to content

AD error with rat42 #338

@dpo

Description

@dpo

Even though the AD backend for the residual Jacobian is defined, it returns an empty Jacobian:

julia> rat42_nls = rat42(; use_nls = true)                                                                                                                        
ADNLSModel - Nonlinear least-squares model with automatic differentiation backend ADModelBackend{                                                                 
  ForwardDiffADGradient,                                                                                                                                          
  ForwardDiffADHvprod,                                                                                                                                            
  EmptyADbackend,                                                                                                                                                 
  EmptyADbackend,                                                                                                                                                 
  EmptyADbackend,                                                                                                                                                 
  SparseADHessian,                                                                                                                                                
  EmptyADbackend,                                                                                                                                                 
  ForwardDiffADHvprod,                                                                                                                                            
  ForwardDiffADJprod,                                                                                                                                             
  ForwardDiffADJtprod,                                                                                                                                            
  SparseADJacobian,                                                                                                                                               
  SparseADHessian,                                                                                                                                                
}         

julia> jac_structure(rat42_nls)                                                                                                                                   
(Int64[], Int64[]) 

julia> x = [99.94710393753867, 1.6483148108416925, -12.429444473714828]

julia> jac(rat42_nls, x)                                                                                                                                          
0×3 SparseMatrixCSC{Float64, Int64} with 0 stored entries  

There is also an error with the gradient of the NLP model:

julia> rat42_model = rat42()
ADNLPModel - Model with automatic differentiation backend ADModelBackend{
  ForwardDiffADGradient,
  ForwardDiffADHvprod,
  EmptyADbackend,
  EmptyADbackend,
  EmptyADbackend,
  SparseADHessian,
  EmptyADbackend,
}

julia> obj(rat42_model, x)
9111.7101

julia> grad(rat42_model, x)
3-element Vector{Float64}:
 NaN
 NaN
 NaN

@amontoison @tmigot Any ideas?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions